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Experimental studies have shown that the boundary-layer flow over a rotating cone is
susceptible to crossflow and centrifugal instability modes of spiral nature, depending on
the cone sharpness. For half-angles (ψ) ranging from propeller nose cones to rotating
disks (ψ ≥ 40◦), the instability triggers co-rotating vortices; whereas for sharp spinning
missiles (ψ < 40◦), counter-rotating vortices are observed. In this paper we provide a
mathematical description of the onset of co-rotating vortices for a family of cones rotating
in quiescent fluid, with a view towards explaining the effect of ψ on the underlying
transition of dominant instability. We investigate the stability to inviscid crossflow modes
(type I), as well as modes which arise from a viscous-Coriolis force balance (type II), using
numerical and asymptotic methods. The influence of ψ on the number and orientation
of the spiral vortices is examined, with comparisons drawn between our two distinct
methods, as well as with previous experimental studies.

Our results indicate that increasing ψ has a stabilizing effect on both the type I and
type II modes. Favourable agreement is obtained between the numerical and asymp-
totic methods presented here and existing experimental results for ψ > 40◦. Below this
half-angle we suggest that an alternative instability mechanism is at work which is not
amenable to investigation using the formulation presented here.

1. Introduction

There has been considerable interest in the exact mechanisms governing the stabil-
ity of three-dimensional boundary-layer flows in recent decades, with application to the
modern-day design of laminar aerofoils. A great deal of emphasis has been placed on
understanding the instability mechanisms that lead to the breakdown of the boundary
layer (see the comprehensive reviews by Reed & Saric (1989), Reshotko (1994) and Saric
et al. (2003) and papers referenced therein). In contrast to the two-dimensional case,
the three-dimensional boundary layer exhibits both streamwise and cross-stream flow
components. This is reflected in the fact that stream-wise Tollmien–Schlichting waves,
crossflow instabilities and centrifugal instabilities all play a part in the transition of such
flows; the interplay of these three fundamental mechanisms being dictated by the partic-
ular geometry under question. In this study we investigate the rotating-cone boundary
layer in quiescent fluid.

The influential study of Gregory et al. (1955) contains the first observation of the sta-
tionary crossflow vortex pattern on a rotating disk, which is closely related to the rotating
cone. Malik (1986) presents numerical solutions for the curves of neutral-stability. Using
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a parallel-flow approximation as well as including streamline curvature and Coriolis ef-
fects, he shows that there exist two distinct neutral branches which are termed type I
and II respectively. † Malik’s results were later verified by the linear asymptotic analysis
of Hall (1986), who recovered Stuart’s type I solution along with the type II branch.

The first experimental investigations of boundary-layer flow over rotating cones in
quiescent fluid were carried out by Kreith et al. (1962), Tien & Campbell (1963) and
Kappesser et al. (1973). The scope was restricted to measuring Reynolds numbers at the
onset of transition, whereas later Kobayashi & Izumi (1983), using hot-wire techniques,
refined the transition structure within the boundary layer leading to the observation
of spiral vortices, which are shed under the action of strong distorting forces from the
mean-flow field. Interestingly, the vortices were found to be stationary relative to the
cone, wrapping round its surface and remaining fixed for all rotation rates. Kobayashi
and co-workers have shown that ψ has a key influence on the nature of vortex rotation.
For example, on slender cones with ψ as low as 15◦, Kobayashi & Izumi (1983) show the
existence of pairs of counter-rotating Görtler vortices. These arise from a dynamic insta-
bility induced by the centrifugal force of the flow field. However, as ψ is increased beyond,
say, 30◦, they observe co-rotating spiral vortices. Indeed, Kobayashi (1994) states that
co- and counter-rotating vortices coexist for ψ = 30◦ – the apparent transitional value for
the change of underlying instability. Furthermore, in figure 1c of Kohama (2000), we see
an experimental image of circular rings for ψ = 30◦, which may provide a visualisation
of the physical transition between the two vortex types. As the cone half-angle tends
to 90◦, Kobayashi & Izumi’s measurements of the spiral angle (the angle between the
normal to the vortices and the cone meridian) are shown to approach those observed
for a rotating disk. Hence, the stationary spiral crossflow vortices first observed by Gre-
gory et al. (1955) on the rotating disk are in fact present for larger values of ψ on the
rotating cone. In addition, Garrett (2002) computes the Reynolds numbers at the onset
of convective and absolute instability for the rotating cone and finds close agreement
with those experimentally observed at the appearance of spiral vortices and transition to
turbulence, respectively. An increasing discrepancy is observed for ψ < 50◦, suggesting
an apparent change in the physical nature of the instability which provides the route to
transition. In a recent study (Garrett & Peake (2007)), the absolute instability results
are developed further and the discrepancy for slender cones is discussed in the context
of existing experimental results.

Kobayashi & Izumi (1983) also use local-linear stability theory to predict the onset of
convective instability and hence the appearance of the spiral vortices. They consider a
family of cones with ψ = 15◦ − 90◦ and critical Reynolds numbers for the onset of the
vortices, the vortex angle and number of vortices are predicted at each half-angle. The
estimated critical Reynolds numbers agree reasonably well with the experimental values
given in their paper. However, the experimental measurements conducted by Kreith et

al. (1962) and Kappesser et al. (1973) agree well with each other for low ψ, but are
substantially different to those of Kobayashi & Izumi. Also, Kobayashi & Izumi provide
no information on the instability modes that govern the transition of the boundary layer
and so the relative importance of different modes at each half-angle remains unknown.

Physically, wide rotating cones (say ψ > 40◦) may be considered as a first approxi-
mation to modelling, amongst other aerodynamic applications, the central nose rotor of
an aeroengine fan. Relatively large half-angles are used to deflect any ensuing turbulent

† In previous studies these respective modes are referred to as either upper/inviscid and
lower-branch modes (see Hall (1986) and Malik (1986)), or crossflow and streamline-curvature
modes (see Garrett (2002)).
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flow away from the turbofan core yet still provide a sufficient amount of airflow into
the fan blades. Such physically relevant flows form the basis for our motivation and the
aim of the present study is to investigate the effect of ψ on measurable aerodynamic
quantities. We examine the possibility of a critical half-angle, below which the crossflow
vortex instability no longer dominates, and also attempt to clarify the points raised in
Kobayashi & Izumi’s theoretical investigation by using an alternative formulation in the
numerical setup. Firstly, we introduce the main scalings used to obtain the steady mean-
flow in §2. Next, an asymptotic study at large Reynolds number is presented in §3, where
we identify the type I/II modes. Subsequently, the numerical study is presented in §4,
where we make a parallel-flow approximation in order to conduct a local spatial stability
analysis at points along the cone surface. We demonstrate that the vortices rotate with
the surface of the cone and that the wall shear tends to zero along the type II branch,
providing a theoretical justification of the assumptions made previously. We proceed to
compare the numerical and asymptotic results in §5 both with each other and within the
context of existing experimental data. Finally, our conclusions are presented in §6.

2. Steady mean flow

This paper presents two analyses performed in different frames of reference and us-
ing slightly different scalings. For clarity we present the formulation used within the
asymptotic study here, as that is the more mathematically detailed component of the
investigation. The modifications to this formulation required for the numerical study are
described in §4.1.

Consider a rigid cone of infinite extent with half-angle ψ, rotating about its axis of
symmetry with constant angular velocity Ω∗ in a fluid of kinematic viscosity ν∗, as shown
in figure 1. We choose an orthogonal curvilinear coordinate system which rotates with
the cone (x∗, θ, z∗), representing streamwise, azimuthal and surface-normal variation,
respectively. The local cross-sectional radius of the cone is given by r∗ = x∗sinψ (where
∗ denotes dimensional quantities).

Length quantities are scaled on a characteristic length along the cone surface, l∗, and
the surface-normal coordinate is further scaled on a modified form of the boundary-layer
thickness (ν∗/Ω∗ sinψ)1/2,

x∗ = l∗x, z∗ = l∗z, z = R−1/2ζ, (2.1)

where ζ is the non-dimensional wall-normal coordinate within the boundary layer and R
is the Reynolds number as defined in (2.4). (We shall see that the inclusion of sinψ1/2

enables the half-angle to be scaled out of the problem.) The steady velocities are non-
dimensionalised using the local surface velocity, x∗Ω∗ sinψ, so the axisymmetric mean
flow is

u = ub = Ω∗l∗ sinψ(xŪ(ζ), xV̄ (ζ), R−1/2W̄ (ζ)), (2.2)

where Ū , V̄ and W̄ are the non-dimensional velocities in the x∗-, θ- and z∗-directions
respectively. We scale the steady pressure as

p∗ = pb
∗ = ρ∗Ω∗2l∗2 sin2 ψR−

1

2xP̄ (ζ). (2.3)

This particular choice of non-dimensionalisation leads to the Reynolds number

R =
Ω∗l∗2 sinψ

ν∗
. (2.4)
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Figure 1. Sketch of the coordinate system. The azimuthal axis θ rotates with the cone surface.

The relevant continuity and Navier–Stokes equations for the cone geometry are non-
dimensionalised using (2.1)–(2.4). Expanding the governing equations in terms of R
and ignoring terms of O(R−1/2), leads to the familiar von Kármán (1921) equations
for boundary-layer flow over a rotating disk, and an additional equation for the pressure:

W̄ ′ + 2Ū = 0, (2.5)

W̄ Ū ′ + Ū2 − (V̄ + 1)2 = Ū ′′, (2.6)

W̄ V̄ ′ + 2Ū(V̄ + 1) = V̄ ′′, (2.7)

(V̄ + 1)2 cotψ = P̄ ′, (2.8)

with boundary conditions

Ū = 0, V̄ = 0, W̄ = 0, on ζ = 0,

Ū → 0, V̄ → −1, as ζ → ∞. (2.9)

Note that a prime denotes differentiation with respect to ζ.
Consequently, we note that this choice of non-dimensionalisation results in ψ being

scaled out of the steady flow equations (2.5)–(2.7) for fluid velocity.
The system of equations (2.5)–(2.7) subject to boundary conditions (2.9) is solved using

a fourth-order Runge–Kutta integration method, in conjunction with a two-dimensional
Newton–Raphson searching routine. We iterate on the boundary conditions at infinity
to produce the well known velocity profiles.

3. Asymptotic study

3.1. Linear disturbance equations for the asymptotic analysis

This study uses the formulation introduced in §2. We proceed to linearise the governing
equations about the von Kármán steady mean flow profile (2.2) and the basic fluid
pressure (2.3) by introducing small perturbation quantities ũ∗ and p̃∗ according to:

u∗ = u∗

b + ũ∗, p∗ = p∗b + p̃∗,

where

ũ∗ = Ω∗l∗ sinψ(ũ, ṽ, w̃), p̃∗ = (ρ∗Ω∗2l∗2 sin2 ψ)p̃.
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We non-dimensionalise the governing Navier–Stokes equations and proceed to ignore
nonlinear terms. This leads to the linearised perturbation equations:

∂ũ

∂x
+
ũsinψ + w̃cosψ

h
+

1

h

∂ṽ

∂θ
+
∂w̃

∂z
= 0, (3.1)

(

xŪ
∂

∂x
+
xV̄

h

∂

∂θ
+R−1/2W̄

∂

∂z

)

ũ+ Ū ũ+ xw̃
∂Ū

∂z
− 2
(xV̄ sinψ

h
+ 1
)

ṽ

= −∂p̃
∂x

+
1

R

(

∇2ũ− (ũsinψ + w̃cosψ)sinψ

h2
− 2sinψ

h2

∂ṽ

∂θ

)

, (3.2)

(

xŪ
∂

∂x
+
xV̄

h

∂

∂θ
+R−1/2W̄

∂

∂z

)

ṽ + V̄ ũ

+xw̃
∂V̄

∂z
+
(xV̄ sinψ

h
+ 2
)

(ũ+ w̃cotψ) +
(xŪsinψ +R−1/2W̄ cosψ)ṽ

h

= − 1

h

∂p̃

∂θ
+

1

R

(

∇2ṽ + +
2sinψ

h2

∂ũ

∂θ
+

2cosψ

h2

∂w̃

∂θ
− ṽ

h2

)

, (3.3)

(

xŪ
∂

∂x
+
xV̄

h

∂

∂θ
+R−1/2W̄

∂

∂z

)

w̃ +R−1/2w̃
∂W̄

∂z
− 2
(xV̄ sinψ

h
+ 1
)

ṽ cotψ

= −∂p̃
∂z

+
1

R

(

∇2w̃ − (ũ sinψ + w̃ cosψ) cosψ

h2
− 2 cosψ

h2

∂ṽ

∂θ

)

, (3.4)

where h = x sinψ + z cosψ and

∇2 =
∂2

∂x2
+

1

h2

∂2

∂θ2
+

∂2

∂z2
+

sinψ

h

∂

∂x
+

cosψ

h

∂

∂z
,

is the non-dimensional Laplacian operator.

3.2. Inviscid type I modes

To analyse the type I modes on the rotating cone, in accordance with Gregory et al.
(1955) for the rotating disk, we scale the inviscid-mode wavelengths on the boundary-

layer thickness, which is of order R−
1

2 , in the x- and θ-directions. A small parameter ǫ
can then be introduced, given by ǫ = R−

1

6 , and we subsequently define the perturbation
velocities and pressure as functions of the wall-normal coordinate z, in the form

(ũ, ṽ, w̃, p̃) = (uA(z), vA(z), wA(z), pA(z))exp
( i

ǫ3

{

∫ x

αA(x, ǫ)dx+ βA(ǫ)θ
})

.

We expand the streamwise and azimuthal wavenumbers as

αA = α0 + ǫα1 + . . . ,

βA = β0 + ǫβ1 + . . . .

Significantly, we note that the disturbances associated with these perturbations are neu-
trally stable and hence αA and βA are considered as real quantities. Note also that in
this frame of reference the assumption of stationary vortices means that the disturbances
have no time dependence.

Upon balancing convection and diffusion terms in the disturbance equations, we find
the existence of two layers: an inviscid layer of thickness O(ǫ3) and a viscous layer to
incorporate the no-slip condition at the wall, of thickness O(ǫ4). The velocity and pressure



6 S. J. Garrett, Z. Hussain and S. O. Stephen

perturbations in the inviscid layer are expanded as

uA = u0(ζ) + ǫu1(ζ) + . . . ,

vA = v0(ζ) + ǫv1(ζ) + . . . ,

wA = w0(ζ) + ǫw1(ζ) + . . . ,

pA = p0(ζ) + ǫp1(ζ) + . . . ,

where ζ = zǫ−3, consistent with equation (2.1). Here, ∂
∂x and ∂

∂θ are replaced by ∂
∂x +

i
ǫ3 {α0 + ǫα1 + . . . , } and i

ǫ3 {β0 + ǫβ1 + . . . , }, respectively.

3.2.1. Leading order and first order eigenmodes

We equate terms of O(ǫ−3) in the expansions of equations (3.1)−(3.4), which leads to
the governing Rayleigh equation in the critical layer for the surface-normal eigenfunction

U(w′′

0 − γ0
2w0) − U

′′

w0 = 0, (3.5)

with boundary conditions

w0 = 0, ζ = 0,

w0 → 0, ζ → ∞. (3.6)

Here γ0
2 = α0

2 + β0
2

x2sin2ψ
, which acts as the effective wavenumber from the streamwise

and cross-stream directions, whereas U = α0xŪ + β0V̄
sinψ is interpreted as the effective

velocity profile, as discussed in a similar form by Hall (1986) for the rotating disk.
We solve equation (3.5) subject to the homogenous boundary conditions (3.6) by deter-

mining ζ = ζ̄ such that U and U
′′

both vanish at the location of the critical layer, ζ = ζ.
Mathematically, we note that the important differences with respect to Hall’s analysis
are the radial coordinate r, which is now interpreted as the streamwise distance, x, and
the azimuthal wavenumber is now scaled on the cone half-angle in terms of βA/ sinψ.

Physically, U is in the direction of propagation of the spiral vortices on the rotating cone.
To interpret this in more detail, we consider the rotating cone surface depicted in figure
2, noticing that the spiral vortices which wrap around the cone travel at an angle to the
cone meridian. The streamwise and cross-stream wavenumbers, α0 and β0/r, are shown
in the accompanying diagram of figure 2, with the normal to the spiral vortices in the

direction of the effective velocity, U , making a waveangle, φ, with the streamwise position
vector.

Full details of the analysis are omitted here, but the reader is referred to Hall (1986) for
a complete discussion. In brief, we asymptotically match the leading order eigensolution
in the viscous wall layer to the first-order solution in the inviscid critical layer to obtain
the governing eigenrelation

w′

0(0)2Ai′(0)

γ
∫

∞

0
Ai(s)ds

= 2
(

α0α1 +
β0β1

x2sin2ψ

)

I1 +
(α1

β0
− β1α0

β2
0

)

sinψxI2, (3.7)

where Ai is the Airy function, γ = (i(α0xŪ
′(0)+ β0V̄

′(0)
sinψ ))

1

3 and we normalise the Rayleigh

eigenfunction such that w′

0(0) = 1. The integrals I1 and I2 are identical to those defined
in Hall (1986), and we obtain I1 = 0.094, I2 = 0.058 + 0.029i. Note that the sign of
the imaginary part of I2 differs from that given by Hall. Analysis of the flow within
the critical layer reveals a phase jump in the surface-normal velocity perturbation, as
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Figure 2. Schematic diagram of spiral vortex instability of a rotating cone (left) and the detailed
physical interpretation (right) showing streamwise, azimuthal and effective velocity directions.
Note the cone is rotating anti-clockwise when viewed from the nose tip.

a result of the integration contour being deformed above the singularity at ζ = ζ (see
Gajjar (2007)).

3.2.2. Type I asymptotic wavenumber and waveangle estimates

Upon solving eigenrelation (3.7) in terms of real and imaginary parts, we arrive at the
leading-order and next-order corrections to the effective wavenumber

γδ∗ =
(

αA
2 +

βA
2

x2sin2ψ

)
1

2

= γ0 +
(

α0α1 +
β0β1

x2sin2ψ

)

ǫ/γ0 + . . . ,

= 1.16 − 9.2R
−1/3
δ∗ (sinψ)1/6 + . . . , (3.8)

as well as the spiral waveangle,

tan
(π

2
− φ

)

=
αAx

βA

=
α0x

β0
+
(α1

β0
− β1α0

β2
0

)

xǫ+ . . . ,

=
4.26

sinψ
+ 17.5R

−1/3
δ∗ (sinψ)−

5

6 + . . . . (3.9)

Rδ∗ is the Reynolds number based on the boundary-layer thickness, δ∗ = (ν∗/Ω∗)
1

2 given
by

Rδ∗ = R
1

2x(sinψ)
1

2 . (3.10)

Figures 3 and 4 show the inviscid branches of the neutral curves for the asymptotic
wavenumber and waveangle predictions, given respectively in equations (3.8, 3.9), for
ψ = 20◦–90◦ in 10◦ increments. From these we can see that increasing the cone half-
angle stabilizes the flow by rendering less wavenumbers susceptible to the instability. For
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Figure 3. Neutral asymptotic wavenumber predictions, γδ∗ , for inviscid (type I) modes as a
function of Rδ∗ for ψ = 20◦ − 90◦.
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Figure 4. Neutral asymptotic waveangle predictions, φ, for inviscid (type I) modes as a
function of Rδ∗ for ψ = 20◦ − 90◦.
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the waveangle, increasing the half-angle towards that of a rotating disk has the effect
of deviating the spiral vortices more from the streamwise direction. Physically this is
plausible, as there is an increased ‘rotational shear’ force on each vortex spiral as the
cone’s gradient of slant increases with ψ; vortices are therefore deviated more from the
streamwise direction.

Interpreting the results in terms of energy transfer: on a rotating disk the vortices
transfer less energy in the radial direction than in the azimuthal direction (due to the
purely rotational effect of the disk) and so the resulting deviation waveangle is relatively
large. For a rotating cone of a moderate to slender half-angle, the streamline-curvature
effect of the cone surface causes the spiral vortices to transfer more energy in the stream-
wise direction. This aligns the direction of the effective velocity propagation more with
the streamwise vector, resulting in a reduction in the observed waveangle. However, this
is not the case for the wavenumber as the effective vorticity shed from the cone bound-
ary layer does not change substantially with half-angle, which means that the number of
vortices that are observed to roll-up and wrap around the cone surface are of the same
order.

3.3. Viscous type II modes

In this section we consider the stability of stationary viscous modes to lower-branch
disturbances using a triple-deck structure consistent with Hall (1986) on the rotating
disk and analogous to that found for Blasius flow over a flat-plate (see Smith (1979)).

We take the triple-deck structure to be built on a small parameter, which is now
given by ǫ = R−

1

16 , with the lower, main and upper decks typically having thicknesses
of order ǫ9, ǫ8 and ǫ4, respectively. We define inner variables ξ, ζ, and Z to represent
O(1) variation within the lower, main and upper decks, respectively. In line with Hall’s
formulation, the streamwise and azimuthal wavenumbers, αA and βA, are scaled upon a
viscous length-scale, so that the velocity and pressure perturbations become

(ũ, ṽ, w̃, p̃) = (uA(z), vA(z), wA(z), pA(z))exp
( i

ǫ4

{

∫ x

αA(x, ǫ)dx+ βA(ǫ)θ
})

.

We now expand the streamwise and azimuthal wavenumbers as

αA = α0 + ǫ2α1 + ǫ3α2 + . . . ,

βA = β0 + ǫ2β1 + ǫ3β2 + . . . ,

noting that the O(ǫ) terms are zero, and αi and βi (where i = 0, 1, 2, . . .) are real quanti-
ties. As was the case with the type I modes, much of the analysis for the wall-dominated
type II modes for the rotating cone transpires to be very similar to the rotating-disk wall
modes studied by Hall, with the important difference of a scale factor sinψ.

3.3.1. Triple-deck analysis

We investigate the boundary-layer structure by obtaining leading order solutions in
each of the decks. In the upper deck, disturbances decay exponentially, whereas in the
main deck we use the no-slip condition to argue that the effective wall shear tends to zero
as ζ → 0. We therefore choose the leading order streamwise and azimuthal wavenumbers
such that

α0Ū
′(0) +

β0

x sinψ
V̄ ′(0) = 0. (3.11)

Finally, in the lower deck, the decay of the leading order solution is manifested in
terms of the parabolic cylinder function U(0,

√
2∆

1

4 ξ) (see Abramowitz & Stegun (1964))
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through the balance of viscous and Coriolis forces. Here we have

∆ = i
(

α0xU1 +
β0

sinψ
V1

)

,

where Ui−1 = Ū (i)(0)/i! and Vi−1 = V̄ (i)(0)/i! for i = 1, 2, . . .. These solutions are
matched with the first-order solution in the lower deck to arrive at the eigenrelation

γ2
0I3 +

iγ0U0 sinψ

β0

(

1 +
V 2

0

U2
0

)

I4 =
i∆

1

2 γ0 sin2 ψ

β2
0

(

α1xU0 +
β1V0

sinψ

)

, (3.12)

where I3 and I4 are integrals involving U(0, θ) defined in Hall (1986) and the leading

order effective wavenumber is given by γ0 =
√(

α2
0 +

β2

0

x2 sin2 ψ

)

. We obtain the values

I3 = 0.599, I4 = 0.457 consistent with those calculated by Hall.

3.3.2. Type II asymptotic wavenumber and waveangle estimates

As in §3.2.2, the eigenrelation (3.12) has been decomposed into real and imaginary
parts and solved to yield estimates for the local asymptotic wavenumber and waveangle,
given by

γδ∗ =
(

αA
2 +

βA
2

x2sin2ψ

)
1

2

R−
1

4

=
(

1 +
V 2

0

U2
0

)
3

4

(U0I4
I3

)
1

2

x−
1

2R−
1

4

= 1.22R
−

1

2

δ∗ (sinψ)
1

4 + . . . (3.13)

and

tan
(π

2
− φ

)

=
αAx

βA

=
(α0 + ǫ2α1 + . . .)x

(β0 + ǫ2β1 + . . .)
,

=
α0x

β0
+ ǫ2

(α1

β0
− β1α0

β2
0

)

x,

=
1.21

sinψ
+ 2.31R

−
1

4

δ∗ (sinψ)−
7

8 + . . . . (3.14)

Again, we re-scale the wavenumber and waveangle in terms of the Reynolds number
based on boundary layer-thickness (equation (3.10)); this eliminates any dependence of
the estimates on the streamwise location x.

Figures 5 and 6 show the lower branches of the neutral curve for the asymptotic
wavenumber and waveangle predictions. In a similar fashion to the inviscid branch, we
see that increasing the cone half-angle has the effect of stabilizing the flow by reducing
the available wavenumbers which are susceptible to the instability. Furthermore, in the
case of the waveangle, increasing the cone half-angle towards that of a rotating disk still
has the effect of increasing the waveangle, which we interpret physically as a consequence
of the rotational shear forcing effect detailed in §3.2.2.

Comparisons of our wall-mode results, together with those for the inviscid modes
in §3.2, reveals a greater variation in the asymptotic estimates of the waveangle with
ψ, than for the corresponding wavenumber. We attribute this feature to our choice of
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non-dimensionalisation: scaling lengths on the distance along the cone, l∗, eliminates
dependence of the leading order wavenumber, γ0, on ψ.

The rightmost wavenumber curve and uppermost waveangle curve for both type I and
type II disturbances correspond to ψ = 90◦ and agrees well with the results of Hall
(1986), as well as with the numerical results of Malik (1986) for a rotating disk.

4. Numerical study

4.1. Linear disturbance equations for the numerical analysis

For the numerical study we use slightly different scalings to those introduced in §2,
based on the length scale provided by the boundary-layer thickness δ∗ = (ν∗/Ω∗)1/2. For
simplicity the notation used in this section is consistent with that used in the asymptotic
study for equivalent quantities, although the non-dimensionalisations are different. Care
should therefore be taken in any comparisons made with previous sections. We also con-
sider the cone to be rotating in a fixed frame of reference. This formulation is consistent
with Garrett & Peake (2007) and permits investigation of the speed at which vortices
rotate with respect to the cone body. This frame of reference necessarily eliminates the
appearance of Coriolis terms in the governing equations.

The numerical stability analysis is conducted at local points along the cone surface
x∗ = x∗L, where the local surface radius is r∗L = x∗L sinψ. The non-dimensionalising
length, velocity, pressure and time scales are δ∗, r∗LΩ∗, ρ∗r∗2L Ω∗2 and δ∗/Ωr∗L respectively,
which lead to the local Reynolds number

RL =
x∗LΩ∗ sinψδ∗

ν∗
= xL sinψ = rL, (4.1)

which differs from the Reynolds number used in (2.4) of the asymptotic study. However,
we have RL = Rδ∗ , the displacement-thickness Reynolds number defined in (3.10).

The resulting steady mean flow equations are identical to those presented by Garrett
& Peake (2007) (equations (2)–(5)) when Ts = 0. These differ from equations (2.5)–(2.9)
through the appearance of sinψ factors and the non-appearance of Coriolis terms. The
numerical study is therefore conducted for each ψ, and the basic flow quantities U(η;ψ),
V (η;ψ) and W (η;ψ) are necessarily different to those presented in §2. Note also that

η = z∗/δ∗ so η = ζ/(sinψ)
1

2 .
In order to derive the disturbance equations we consider the instantaneous non-dimensional

flow quantities to be given by

Ũ(η, x, θ, t;RL, ψ) =
r

RL
U(η;ψ) + û(η, x, θ, t;RL, ψ),

Ṽ (η, x, θ, t;RL, ψ) =
r

RL
V (η;ψ) + v̂(η, x, θ, t;RL, ψ),

W̃ (η, x, θ, t;RL, ψ) =
1

RL
W (η;ψ) + ŵ(η, x, θ, t;RL, ψ),

P̃ (η, x, θ, t;RL, ψ) =
1

R2
L

P (η;ψ) + p̂(η, x, θ, t;RL, ψ),

where the hatted quantities are small unsteady perturbations and the unhatted quanti-
ties are the non-dimensional flow determined by modified forms of equations (2.5)–(2.7),
as discussed above. The non-dimensional continuity and Navier–Stokes equations are lin-
earized with respect to these perturbation quantities and the parallel-flow approximation
is made.

In applying the parallel-flow approximation we ignore variation in RL with local surface
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cross-sectional radius and assume that η/rL << 1. The resulting stability equations are
then strictly local, with location RL = rL appearing as a parameter. The assumption
that RL >> 1 (equivalent to δ∗ << x∗L) necessarily prohibits analysis close to the apex
where RL = O(1). The perturbation quantities can then be expressed in normal-mode
form

(û, v̂, ŵ, p̂) = (u(η;ψ), v(η;ψ), w(η;ψ), p(η;ψ)) exp(i(αx+ βRLθ − γt)).

The wavenumber in the x-direction, α = αr + iαi, is complex as required by the spatial
analysis presented here; the frequency, γ, and circumferential wavenumber, β, are real.
It is assumed that β is O(1).

The integer number of complete cycles of the disturbance round the azimuth is n =
βRL, and we identify this with the number of spiral vortices. We also note that the
disturbance phase velocity in the azimuthal direction is c = γ/β, we identify this as the
speed at which the vortices rotate with respect to the cone surface. This is equivalent
to the analysis presented in Garrett & Peake (2002) and Garrett & Peake (2004) for the
rotating sphere; further details can be found in those papers.

As in Garrett & Peake (2007), the perturbation quantities may be written as a set of
six first-order ordinary-differential equations using the transformed variables: †

φ1 = (α− i sinψ/RL)u+ βv, φ2 = (α− i sinψ/RL)u′ + βv′, φ3 = w

φ4 = p, φ5 = (α− i sinψ/RL) v − βu, φ6 = (α− i sinψ/RL) v′ − βu′.

These equations are

φ′1 =φ2, (4.2)
[

φ′2
RL

]

v

=
1

RL

(

[

α2 + β2
]

v
+ iRL

(

αU + βV − γ
)

+ [U sinψ]s

)

φ1

+

[

Wφ2

RL

]

s

+

((

α−
[

i sinψ

RL

]

s

)

U ′ + βV ′

)

φ3 (4.3)

+ i

(

α2 + β2 −
[

iα

RL

]

s

)

φ4 −
[

2V sinψφ5

RL

]

s

,

φ′3 = − iφ1 −
[

φ3 cosψ

RL

]

s

, (4.4)

φ′4 =

[

iWφ1

RL

]

s

−
[

iφ2

RL

]

v

− 1

RL

(

[

α2 + β2
]

v
+ iRL (αU + βV − γ) +W ′

s

)

φ3, (4.5)

φ′5 =φ6, (4.6)
[

φ′6
RL

]

v

=

[

2V sinψφ1

RL

]

s

+

((

α−
[

i sinψ

R

]

s

)

V ′ − βU ′

)

φ3

+
1

RL

(

[

α2 + β2
]

v
+ iRL (αU + βV − γ) + [U sinψ]s

)

φ5 (4.7)

+

[

β sinψφ4

RL

]

s

+

[

Wφ6

RL

]

s

,

† We wish to point out a typographical error in Garrett & Peake (2007) by noting that the
correct signs in the definition of φ5 and φ6 are as given here.
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where the subscripts v and s indicate which of the O(R−1
L ) terms arise from the viscous

and streamline-curvature effects respectively.
The streamline-curvature terms represent the effect of deflection of the inviscid-flow

streamlines through the action of the pressure gradient. By neglecting these terms in
(4.2)–(4.7), the system of equations is demonstrated to be consistent with the Orr–
Sommerfeld equation for the rotating cone in the form

(i/RL)(φ′′′′3 − 2(α2 + β2)φ′′3 + (α2 + β2)2φ3)

+ (αU + βV − γ) (φ′′3 − (α2 + β2)φ3) − (αU ′′ + βV ′′)φ3 = 0.
(4.8)

Further, neglecting both the streamline-curvature and viscous terms in the perturbation
equations leads to Rayleigh’s equation in the form

(αU + βV − γ)
(

φ′′3 − (α2 + β2)φ3

)

− (αU ′′ + βV ′′)φ3 = 0. (4.9)

Although solutions of equations (4.8) and (4.9) will be mentioned briefly, the focus of
this study is the solution of the full equations (4.2)–(4.3).

4.2. Numerical solution

In this section we solve the eigenvalue problem defined by (4.2)–(4.7), with the ho-
mogenous boundary conditions

φi = 0, η = 0,
φi → 0, η → ∞,

where i = 1, 2 . . . 6. This eigenvalue problem will be solved for certain combinations of
values of α, β and γ at each Reynolds number, RL, and for a particular value of ψ. From
these we form the dispersion relation, D(α, β, γ;RL, ψ) = 0, at each ψ, with the aim
of studying the occurrence of convective instabilities. This method is in contrast to that
presented by Kobayashi & Izumi (1983) where a temporal analysis is formulated in terms
of the waveangle.

In what follows the spatial branches are calculated using a double-precision fixed-step-
size, fourth-order Runge–Kutta integrator with Gram–Schmidt orthonormalization and a
Newton–Raphson linear search procedure, using the numerical code discussed in Garrett
(2002).

4.2.1. Stationary vortices

We begin by explicitly assuming that the vortices rotate with the surface of the cone,
i.e. c = 1.0 and so γ = β, which is consistent with the experimental observations described
in §1. We provide a theoretical justification of this approach in §4.2.2. The term stationary

vortices is used to distinguish between vortices that rotate with the surface of the cone
and non-stationary vortices that do not.

In order to investigate the spatial branches at each half-angle, we solve the dispersion
relation for α whilst marching through values of γ = β at fixed RL. For each ψ we
find that two spatial branches determine the convective-instability characteristics of the
system. Figure 7(a) shows these two branches in the complex α-plane when ψ = 70◦

and RL = 400. A branch lying below the αr-axis indicates convective instability. In the
analysis of the Orr–Sommerfeld equation (4.8), branch 2 is not found indicating that it
arises from streamline-curvature effects. Branch 1 is present in the analyses of the Orr–
Sommerfeld and Rayleigh’s (4.9) equations and so arises from inviscid crossflow effects.

Figure 7(b) shows the two branches when ψ = 70◦ and RL = 437 and we see that an
exchange of modes has occurred between them. The modified branch 1 now determines
the region of convective instability. Increasing the value of RL further causes the peak
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Figure 7. The two spatial branches for ψ = 70◦ showing (a) type I instability from branch 1
only at RL = 400; (b) type I and type II instability from the modified branch 1 at RL = 437.

between the two minima on the modified branch 1 to move downwards and the points
where the branch crosses the αr-axis to move apart, thereby widening the two regions of
instability mapping out two lobes on the neutral curve. Above a certain value of RL the
peak moves below the αr-axis and further increases in RL change the region of instability
producing the upper and lower branches of the neutral curve. We identify the crossflow
mode as the type I instability and the streamline-curvature mode as the type II instability
in this frame of reference.

This behaviour of the spatial branches is typical for all ψ, and neutral curves (defined
by αi = 0) have been calculated for half-angles between ψ = 20◦–90◦ in increments of
10◦. Neutral curves based on these results are shown in §5, where a characteristic two-
lobed structure is apparent (see Garrett (2002) for further details). The neutral curve for
ψ = 90◦ is identical to that calculated by Malik (1986).

4.2.2. Non-stationary vortices

To investigate the longitudinal vortex speed we take a different approach in solving
the dispersion relation: we plot spatial branches for fixed values of n (equivalent to fixing
β at each particular RL) and march through values of γ. The global neutral curves for
each ψ would then be the envelope of the individual neutral curves defined by αi = 0
pertaining to each n. This approach does not require a priori knowledge of c, and allows
it to be predicted from γ and n at the critical values of RL using the relationship

c =
γRL
n

.

This approach has been taken for all half-angles investigated and figure 8 shows the
enveloping curves in the region of the onset of instability for a number of these. In the
range of n considered, we note that each curve has a single minimum (corresponding to
the most dangerous type I mode) occurring when c ≈ 1.0 as demonstrated in table 1.

It is important to note that these results demonstrate that disturbances arising from
the type I mode are almost stationary with respect to the cone surface. An alternative
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ψ RL γ n c

20 165.3 0.0475 8 0.982
40 228.3 0.0616 14 1.004
60 265.5 0.0711 19 0.993
80 283.6 0.0773 22 0.997

Table 1. Critical values of parameters for a range of half-angles calculated by fixing n at
various integer values.

numerical investigation into the rotating disk boundary layer by Turkyilmazoglu & Gajjar
(1998) appears to demonstrate that disturbances arising from the type II mode can
move at different speeds relative to the disk surface, and with considerably lower critical
Reynolds numbers than for the type I mode. Under their formulation in the rotating
frame, the value of γ is fixed for each neutral curve plot and β is treated as an independent
variable; fixing γ at different values then enables the analysis of vortices which rotate at
different speeds relative to the disk surface.

4.2.3. Effective wall shear

The effective wall shear along the lower branch is assumed to be zero in the asymptotic
investigation of the type II mode presented in §3.3.1. This assumption is not necessary
in the numerical formulation, but we are able to predict its value from the parameters
along the type II branch of the neutral curves numerically calculated in §4.2.1.

The scalings used in the numerical formulation lead to the definition of effective wall
shear as

αU ′(0;ψ) + βV ′(0;ψ)

sinψ
,

which is consistent with the mathematical definition given in equation (3.11). This quan-



The boundary layer on a rotating cone 17

10
2

10
3

10
4

10
5

10
6

−0.05

0

0.05

0.1

0.15

R
L

ef
fe

ct
iv

e 
w

al
l s

he
ar

Figure 9. Numerical prediction of the effective wall shear along the type II branch for
ψ = 20◦, 40◦, 70◦, 80◦ (arrow indicates direction of increasing ψ).

tity is plotted in figure 9 for a number of half-angles. We note that the effective wall
shear does indeed tend to zero in each case as the Reynolds number increases, providing
a justification of the assumption made in the asymptotic investigation.

5. Results and discussion

5.1. Comparison between the asymptotic and numerical investigations

We note that the local Reynolds number, equation (4.1), used in the numerical anal-
ysis can be immediately identified with the displacement-thickness Reynolds number
defined by equation (3.10). Furthermore, a comparison of the respective normal mode
perturbation structures between the asymptotic and numerical investigations reveal α =
αA(sinψ)

1

2 and β = βA/(x(sinψ)
1

2 ), where the subscript A denotes the asymptotic pa-
rameters, and numerical parameters remain undecorated. All quantities are considered
real to ensure a consistent formulation with both analyses. We subsequently arrive at the
following relations

kδ =
1

(sinψ)
1

2

(

α2 + β2
)

1

2

, (5.1)

ǫ = arctan
(β sinψ

α

)

, (5.2)

which can be directly identified with the asymptotic predictions of wavenumber, equa-
tions (3.8, 3.13), and waveangle, equations (3.9, 3.14).
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Figure 10. Neutral-stability curves for stationary modes in terms of predicted waveangle
(solid line numerical, dashed line asymptotic) (a) ψ = 80◦; (b) ψ = 70◦; (c) ψ = 40◦; (d)
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Figure 11. Neutral-stability curves for stationary modes in terms of predicted wavenumber
(solid line numerical, dashed line asymptotic) (a) ψ = 80◦; (b) ψ = 70◦; (c) ψ = 40◦; (d)
ψ = 20◦.
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Figure 10 shows a comparison between the numerically-calculated waveangle ǫ and the
asymptotic waveangle φ for a number of half-angles. Excellent agreement has been found
for both instability modes at all ψ between 20◦–90◦. Figure 11 shows the equivalent plot
in terms of the numerically-calculated wavenumber kδ and asymptotic estimate γδ∗ . We
have found excellent quantitative agreement for all ψ between 20◦–90◦. Qualitatively, we
observe a decrease in ψ reduces both waveangle branches and also shifts the wavenumber
neutral curves from right to left. Essentially, lower critical Reynolds numbers are obtained
(as shown in figure 8), which results in an enlarged unstable region. Hence, decreasing ψ
is found to destabilise the flow.

Similar comparisons for the rotating disk have been given recently for stationary and
non-stationary neutral solutions by Turkyilmazoglu (2006, 2007).

5.2. Comparison with previous experimental studies

Figure 12 shows a comparison between the predicted onset of the two instability modes
found in the numerical investigation for stationary vortices and the observed onset of
spiral vortices as measured in three experimental investigations: Kreith et al. (1962);
Kappesser et al. (1973) and Kobayashi & Izumi (1983). Note the use of the Reynolds
number based on the local surface radius, Re = x∗2Ω∗ sin2 ψ/ν∗ = R2, used in the
experimental investigations.

The predicted onset of the type I mode is seen to match Kobayashi & Izumi’s measure-
ments well for ψ ≥ 60◦. However, the predicted onset deviates from these measurements
as the half-angle is reduced. At ψ = 30◦, the predictions match the experimental measure-
ments for Kreith et al. and Kappesser et al. reasonably well. For cones with half-angles
between ψ = 30◦–60◦, the predicted onset of the type I mode lies between the three sets
of experimental data. The measurements conducted by Kappesser et al. are reasonably
close to the predicted onset of the type II mode when ψ ≥ 60◦.

These observations may suggest that Kappesser et al. were measuring the onset of
the type II modes in their experiments on cones with large ψ, and the onset of the
type I modes on the more slender cones. We also suggest that Kobayashi & Izumi were
measuring the onset of a type I mode for large ψ, but some other mode on the slender
cones. The oldest set of data, due to Kreith et al., is inconsistent with all other data in
figure 12 for ψ ≥ 50◦; we suggest that this is due to their experimental technique.

Although not shown here, solution of the Orr–Sommerfeld equation (4.8) leads to lower
critical Reynolds numbers for the onset of stationary modes, as indicated in figure 2 of
Lingwood (1995) for the rotating disk. The solution of the full perturbation equations
(4.2)–(4.7) is therefore preferred.

Figure 13 shows a comparison between Kobayashi & Izumi’s experimental waveangles
and those predicted by the asymptotic and numerical investigations for the more dan-
gerous type I mode. The critical R numerical prediction refers to the onset of type I
instability, whereas the asymptotic values are at large R (typically O(106)). We observe
reasonable agreement when ψ ≥ 40◦. It is likely that the small quantitative discrepancy
in this regime exists because we necessarily assume that the vortices are neutrally stable,
however they are experimentally observed to be growing in the streamwise direction.

As ψ is decreased below 40◦, the theoretical predictions deviate from experimental
results. We attribute this behaviour to the change in the underlying instability observed
by Kobayashi & Izumi (1983). This is consistent with the suggestions of Kobayashi
(1994) and Kohama (2000), who identified ψ = 30◦ as the possible transition case from
co-rotating to counter-rotating vortices.
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We propose that the transition between instability mode depends on a force balance
argument, which is based on the centrifugal forcing due to the basic flow in the streamwise
direction and the Coriolis force in the crossflow direction. The balance of these forces
determines the amount of momentum the spiral vortices carry as they are shed from the
boundary layer. For slender cones, the centrifugal instability dominates and the boundary
layer naturally sheds vorticity in equal and opposite directions, leading to the observed
counter-rotating structures. However, as ψ is increased, the surface slope increases and
the boundary layer eventually fails to possess sufficient momentum to shed vorticity in
both directions; vorticity is now shed in one direction only, as the fluid is forced to
roll-back due to the Coriolis force. The result is the shedding of co-rotating crossflow-
dominated vortices, and the above comparisons suggest that this change takes place at
around ψ ≈ 30◦−40◦ where a transition from the shedding of counter-rotating to purely
co-rotating vortices occurs.

The qualitative similarity of all data at large ψ in figure 13 suggests that the underlying
spiral vortex structure remains unchanged. Hence, vortices are shed at similar waveangles
for increasing ψ even at vastly differing Reynolds numbers.

6. Conclusions

In this paper we have identified the respective type I and type II modes of primary
instability on the surface of a rotating cone. We have demonstrated their existence using
both numerical and asymptotic analyses in the linear regime and investigated the effect
of varying ψ on the important physical parameters, including the local wavenumber, local
waveangle and the critical Reynolds number at onset of primary instability. Our results
indicate favourable agreement with a number of previous studies, most notably with the
experiments of Kobayashi & Izumi (1983). We have seen that increasing ψ leads to a rise
in both type I and type II waveangles, which we attribute to the increased rotational
shear effect: the spiral vortices are swept more in an azimuthal direction, due to the steep
angle of the cone surface, resulting in a wider orientation angle with respect to the cone
meridian. Conversely, for smaller ψ, the spiral vortices undergo a stronger forcing in the
streamwise direction and hence wrap around the surface in a helical nature, propagating
at a lower deviation angle from the streamwise vector. Importantly, we observe that
an increase in ψ has the effect of stabilising both the type I and type II modes of
crossflow instability by increasing the predicted value of the critical Reynolds number
at the onset of instability. Furthermore, an increase in ψ results in the wavenumber
neutral-curves undergoing a shift from left to right, which effectively expands the region
of stable flow and gives rise to fewer wavenumbers in the unstable area to the right
of the neutrally stable modes. Physically, in terms of aeroengine intake applications, we
therefore conclude that larger values of ψ will render the flow over a central spinning nose
rotor more stable, resulting in smoother airflow into the turbofan core through delaying
the onset of turbulence. In addition, the consequential increase in the vortex waveangle
means that airflow which is initially entrained into the boundary layer is actually shed
in a direction aligned further away from the streamwise direction, both when the spiral
vortices appear and when the boundary layer undergoes transition. For larger values of
ψ, the desirable result is a reduction in unstable or turbulent air entering the turbofan
core. It appears many modern day nose rotors are designed with this airflow shedding
phenomenon in mind, and typical half-angles range from ψ ≈ 40◦ − 60◦.

Our study has successfully extended the comparisons between the investigations of
Malik (1986) and Hall (1986) to the more general rotating cone. To this extent, for
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the rigid rotating disk, we have recovered Malik’s neutral-stability curves and Hall’s
asymptotics, together with Gajjar’s type I critical layer correction (see Gajjar (2007)).

The parallel-flow approximation was made in the numerical investigation presented in
§4. This approximation is found in many other boundary-layer investigations and means
that the perturbation equations solved in that analysis are not rigorous at O(1/R).
Although it is acknowledged that the approximation will lead to inaccuracies at the
predicted critical Reynolds numbers, it is the authors’ opinion that these will be small.
The excellent agreement obtained between the numerical and asymptotic investigations
show that the affects of the approximation are neglible at high Reynolds number.

Throughout this investigation, we have emphasized that the crossflow instability dom-
inates for larger half-angles, say ψ > 30◦ − 40◦. Half-angles below this loose threshold
region physically model a spinning missile, and in this regime an alternative mecha-
nism appears to be the more dangerous contributor to the onset of instability. Certainly,
a future investigation into these counter-rotating spirals for more slender half-angles
would involve modified vortex-core length scalings, which is apparent from the visuals of
Kobayashi & Izumi (1983). Such observations suggest the possibility of a viscous-mode
dominated structure at work, pertaining to the onset of the centrifugal Görtler instabil-
ity. A theoretical prediction of these Görtler modes, leading to a critical value of ψ where
the change of instability occurs, remains an open and interesting possibility.

Importantly, our current investigation is confined to a cone rotating within still fluid.
Further physical relevance to the flow over turbofan nose cones would include the intro-
duction of an external oncoming flow, which has been studied numerically by Garrett
& Peake (2007) for a range of ψ, and experimentally by Salzberg & Kezios (1965) and
Kobayashi et al. (1983) for ψ = 15◦. Previous studies conclude that increasing the axial
flow stabilizes the spiral vortices, hence suppressing the onset of instability. The stronger
the axial flow, the stronger the stabilisation. However, work in progress suggests extend-
ing the governing parameter regime reveals the existence of a certain value of axial flow
relative to the cone’s rotational speed, which maximizes stability of the spiral vortex
modes. We hope to report on this study in due course.
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