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Abstract

The Kinect v2 sensor supports real-time non-invasive 3D head pose estimation.

Because the sensor is small, widely available and relatively cheap it has great

potential as a tool for groups interested in measuring head posture. In this

paper we compare the Kinect’s head pose estimates with a marker-based record

of ground truth in order to establish its accuracy. During movement of the head

and neck alone (with static torso), we find average errors in absolute yaw, pitch

and roll angles of 2.0±1.2◦, 7.3±3.2◦ and 2.6±0.7◦, and in rotations relative to

the rest pose of 1.4±0.5◦, 2.1±0.4◦ and 2.0±0.8◦. Larger head rotations where

it becomes difficult to see facial features can cause estimation to fail (10.2±6.1%

of all poses in our static torso range of motion tests) but we found no significant

changes in performance with the participant standing further away from Kinect

– additionally enabling full-body pose estimation – or without performing face

shape calibration, something which is not always possible for younger or disabled

participants. Where facial features remain visible, the sensor has applications

in the non-invasive assessment of postural control, e.g. during a programme of

physical therapy. In particular, a multi-Kinect setup covering the full range of

head (and body) movement would appear to be a promising way forward.
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1. Introduction

Sensor systems able to accurately estimate the position of a person’s head

have underpinned research in a wide range of areas including: automatic identity
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recognition (e.g., by explaining variations in the 2D appearance of a person’s

face [1]); interpretation of non-verbal gestures (e.g., by tracking small head

movements and establishing the focus of visual attention [2]); human-computer

interaction (e.g., through gesture- and gaze-driven interfaces for users with dis-

abilities [3]); and physical therapy and rehabilitation (e.g., through real-time

biofeedback systems for the learning of head control [4]).

In each of these applications, the potential utility of the sensor is increased

when the impact of its operation on participants is minimised. Specifically,

sensors will ideally: i) be non-invasive (not requiring any hardware to be in

contact with the participant’s head); and ii) not require the participant to engage

in any training or calibration procedures. For example, in the context of physical

therapy – our own application area of interest – it would be desirable if a sensor

could be used to monitor head control in younger children and/or those with

learning difficulties, who aren’t necessarily willing to wear hardware sensors, or

able to respond to verbal requests for calibration movements [5].

The topic of non-invasive head pose estimation has therefore received consid-

erable attention from computer vision researchers, aiming to produce accurate

estimates of head pose from one or more conventional colour (RGB) cameras

[6]. In more recent years the arrival of cheap, colour+depth sensing (RGB-D)

cameras has significantly progressed the state of the art in both full-body [7]

and head pose estimation [8]. For example, the system in [9] is able to produce

pose estimates from single depth images with rotational errors of less than 6◦,

and translation errors of less than 15mm. And where it is possible for users

to actively participate in an interactive calibration phase, even lower errors are

possible [10].

A problem for those interested in making non-invasive estimates of head

pose is that access to state of the art methods is not straightforward; the reim-

plementation of relevant algorithms requiring considerable time and expertise.

Notable exceptions are the system described in [11] for which source code is

made available on the authors’ web pages, but which only returns yaw/pitch
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rotation estimates, and the subscription-based commercial system1 developed

from [10], which requires participation in an interactive training phase. This

situation has recently changed with the release of the Microsoft Kinect v2 sensor

and its software development kit (SDK).

The High Definition Face Tracking (HDFT) component of the Kinect v2

SDK allows for real-time non-invasive head pose estimation without the need

for calibration or training. The SDK code examples can be easily and quickly

extended to record estimates, and apart from the cost of the sensor itself, use

of the system is completely free. Here we present an evaluation of the sensor’s

accuracy in estimating the rotational and translational components of 3D head

pose, and consider a number of experimental conditions likely to be relevant to

those interested in using the sensor in a clinical setting; e.g., to evaluate head

control in the context of a programme of physical therapy.

2. Methods

2.1. Data collection

Eight participants (age: 21-64; 1M; 7F) were asked to perform a series of pre-

defined head movements (see Section 3 and the supplementary materials for full

details). Their movements were simultaneously recorded using: i) Kinect v2’s

HDFT2; and ii) a marker-based Vicon motion capture system3. The work was

approved by the Ethics Committee for the Faculty of Science and Engineering

at Manchester Metropolitan University and complied with the principles laid

down by the Declaration of Helsinki. All participants gave informed consent to

the work.

2.2. Kinect head pose estimation

Kinect was placed on a tripod (height of 1.15m) and angled to frame the

upper body of participants when they were seated in the centre of the Vicon cap-

1www.faceshift.com
2Kinect for Windows SDK v2.0.1410.19000, Microsoft, USA.
310-camera MX system, Nexus 1.8.5, Vicon Motion Capture, Oxford, UK.
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ture volume (a distance of approximately 1.1m), see Figs. 1a, 1b. Head rotations

relative to the Kinect coordinate system were recorded by subscribing to the

HDFT stream [12] and writing the timestamped FaceOrientation quaternion

to file each time a tracking event was generated. The HighDetailFacePoints

enumeration was also used to extract the locations of the main facial features

from the resulting 3D face mesh, see Fig. 1c and the supplementary materials

for full details and code listing.

2.3. Vicon head pose estimation

The marker set shown in Fig. 1d was used to estimate head rotations relative

to the Vicon coordinate system (see also Section 2.4). A combination of clips

and a head band were used to keep long hair from obstructing the markers, or

the participant’s face. Participants were otherwise dressed normally.

2.4. Post processing

A spatial transformation between the coordinate systems of the Kinect and

Vicon was estimated (see the supplementary materials for full details) and the

Vicon marker data rotated and translated to lie in the Kinect coordinate sys-

tem. Vicon head rotations were then extracted by using Visual 3D (C-Motion,

US) to create a virtual head segment between the ear and face markers, see Fig.

1d and the supplementary materials for full details. Finally, a time synchroni-

sation between the two sensors was estimated (see the supplementary materials

for full details) and the Vicon data downsampled using a simple nearest neigh-

bour interpolation to provide a record of ground truth corresponding with the

timestamp of every HDFT event, e.g. see Fig. 2.

2.5. Data analysis

Following other approaches, yaw, pitch and roll errors were computed and are

presented in units of degrees [9, 13, 14]. Errors were calculated as the modulus

of the difference in the pose estimates generated by the Kinect sensor and the

Vicon system. A millimetre error between facial features was also computed,
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but rather than using the nose (e.g., [9, 11]) the average error between the Vicon

cheekbone markers and the cheekbone features found by the HDFT (see also

Fig. 1c) was computed, so as to additionally account for roll errors. The HDFT

can also return tracking failure events (e.g. see Fig. 2), and these were computed

as a “missed” percentage of the total number of HDFT events recorded during

each movement.

For all experimental conditions described in Section 3, averages for each of

the measures above (yaw, pitch and roll rotation errors, cheekbone translation

errors, and the fraction of missed frames) were computed across the movements

of each individual participant and one-way repeated measure ANOVA tests used

to determine significant differences between conditions.

3. Conditions tested

We evaluated the performance of Kinect against Vicon under each of the

following experimental conditions. In addition to providing a quantification of

its accuracy under optimal conditions, we have also tried to anticipate relevant

scenarios for those wishing to use the Kinect in a clinical setting.

3.1. Baseline: range of motion

This condition is clinically relevant because it facilitates a basic evaluation

of head control, in isolation. Whilst sitting comfortably with their torso and

shoulders still, participants were asked to complete a set of movements that

demonstrated their full range of head motion. For example, testing comfortable

limits in each of yaw (left-to-right), pitch (up-and-down), and roll (side-to-side)

rotations, see also Fig. 2 and the supplementary materials for full descriptions.

This condition was used as a baseline, against which performance in subsequent

conditions was compared.

3.2. Relative rotations

Each movement in the baseline tests began and ended in the participant’s

resting pose: the head pose they naturally take up when seated comfortably. In
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order to remove any impact from our particular choice of Vicon parameterisation

on results, the rotations measured in Section 3.1 were recomputed relative to

each participant’s resting pose, and rotational accuracy recalculated in relative

(rather than absolute) terms.

3.3. Extremes of motion

Visually, missed HDFT events appear to correspond with larger rotations of

the head, see for example the period between 18-20 seconds in Fig. 2. However,

such rotations can easily occur when participants are free (and able) to move

their upper body (relative to a stationary sensor). Participants were asked to

complete a further set of range of motion movements, but with their torso and

shoulders free to move, allowing them to rotate their head further relative to the

Kinect, see for example the images in Fig. 3, and the supplementary materials

for full details.

3.4. Occlusion of facial features

The HDFT tracks facial features in order to estimate head pose, but there are

many reasons the face may become occluded in a clinical setting, e.g., children

raising their hands to their head. Participants were asked to repeat the yaw

and pitch movements from Section 3.1 with their hands over their mouth, see

supplementary materials for full details and images.

3.5. Face shape calibration

The HDFT allows the shape of a person’s face to be learned by having

them participate in an interactive calibration where they perform small head

rotations in response to requests by the Kinect sensor. This extra pre-processing

step can improve facial feature tracking performance [12] and, although such a

calibration is not always possible (e.g., for young or disabled participants), it

may, where feasible, have an impact on the accuracy of head pose estimation.

Participants were guided through the face shape calibration procedure (see the

supplementary materials for full details) before being asked to repeat the range

of motion tests in Section 3.1.
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3.6. Sensor range

When a participant’s body is fully visible in the depth image Kinect can

additionally estimate their body pose [7]. This is an additional measure likely

to be of interest to those studying postural control [15, 16], but it is not possible

in the close-up experimental setup used here and elsewhere (Fig. 1b, [9, 11, 14]).

Participants were asked to stand and move back from the sensor until full-

body pose estimation became possible (a distance of approximately 1.7m from

Kinect, varying slightly with participant height), before then repeating the range

of motion tests (Section 3.1), see supplementary materials for full details and

images.

3.7. Rotated viewpoint

Guaranteeing an anterior view of participants, as shown in Fig. 1b, may not

always be possible or practical. For example, if a physical therapist must work

in front of a patient during an evaluation [17]. Participants were asked to repeat

the range of motion tests (Section 3.1) while seated at a 45◦ angle to the Kinect

sensor (see supplementary materials for full details and images).

4. Results

Table 1 shows the results for each of the eight participant’s baseline range of

motion tests (Section 3.1), with the average performance across all participants

highlighted in grey. Missed frames occurred predominantly during maximal yaw

rotations, which were larger on average (59◦) than pitch (39◦) or roll (33◦) rota-

tions. Table 2 compares this baseline performance against all other conditions

tested (see Section 3), with any significant differences detected by the ANOVA

tests identified using Bonferroni post hoc tests and highlighted in bold.

When the rotations in the baseline condition are recomputed relative to the

participants’ resting poses (second row of Table 2) there is a significant reduction

in average pitch errors (p < 0.001).
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The free torso tests (third row of Table 2) produced no significant change

in pose estimation accuracy, but a significant increase in the number of missed

frames (p < 0.001).

Figure 3 presents an analysis of missed frames and estimation accuracy dur-

ing the free torso yaw, pitch and roll rotations (average maximum extents of

79◦, 87◦ and 66◦, respectively). Both quantities are presented as a function of

the rotational components measured by the Vicon system. For yaw and pitch

rotations, the fraction of missed frames grows very rapidly outside the range

35◦, reaching 100% beyond 65◦. Estimation during roll rotations was more ro-

bust, only reaching 100% beyond 85◦. The error in the estimates that were

returned (not missed) by Kinect grows with the magnitude of the true rotation,

but again this effect is less marked for roll rotations.

When facial features are occluded by hands (fourth row of Table 2), the

number of missing frames is significantly higher (p < 0.001), and their distribu-

tion is shifted right across the participants’ range of motion (see supplementary

materials for a comparison with Fig. 3).

No aspect of performance was statistically significantly different after face

shape calibration (fifth row of Table 2), or with participants standing back to

allow simultaneous full-body pose estimation (sixth row of Table 2).

Estimation from a rotated viewpoint (seventh row of Table 2) lead to a

significant rise in: missed frames (p < 0.001), which occurred during even mod-

erate positive yaws; cheekbone errors (p = 0.045); and all rotational components

(p = 0.026, p < 0.001, p < 0.001 for yaw pitch and roll, respectively). However

this condition did allow for reliable pose estimation at the participants’ extremes

of range (large negative yaws, see supplementary materials for example images).

5. Discussion

Visibility of facial features appears to be the determining factor in whether

Kinect’s HDFT is able to provide an estimate of head rotation; it likely relies

on an algorithm for describing facial structure/appearance (e.g. [18]), extended
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to depth data. Large yaw rotations made with a static torso (where one side

of the face becomes self-occluded) consistently produced missing frames, and

participants raising their hands to their mouths caused a significant rise in

missing frames, distributed right across the entire range of motion (see also

supplementary material). Similarly, combined head and torso rotations resulting

in greater overall rotation led to almost 100% missing frames beyond 55◦ for

both yaw and pitch rotations, but the Kinect was much more robust to combined

roll rotations where facial features tend to remain visible. When estimates are

returned by the Kinect they are reliably low in error and comparable with other

state of the art approaches [9, 14] (a summary of RGB-D methods from the

literature is included in the supplementary materials). If the extremes of motion

are of particular interest, then Kinect can be placed at an angle relative to the

participant, but with significant increases in average error and missed frames

across the full range of motion. For complete coverage, a multi-Kinect setup

which favours the sensor returning minimum relative rotation would appear to

be a promising way forward.

There are three potential sources of error in our evaluation that are indepen-

dent of Kinect’s performance. First, the automatic spatial calibration between

the two sensor systems (Section 2.4). For example, Table 1 shows higher cheek-

bone errors for P5-P8, versus P1-P4, and these groups were recorded on two

separate days following two separate calibration procedures. Second, the au-

tomatic time synchronisation between the two sensor systems. Although this

is mitigated by their high sampling rates (which bound the error if tracking

is accurate) and the fact that all movements studied were slow. Third, our

parameterisation of head pose through Vicon marker placement. Pitch errors

are consistently higher than yaw and roll, but an analysis of rotations measured

relative to the rest pose showed a significant reduction in pitch errors. This sug-

gests the Vicon parameterisation used here (see Section 2.4) may overestimate

pitch rotations versus the parameterisation used by Kinect (the precise details of

which are unknown). Similarly, our comparison between cheekbone translations

involves points on the surface of the skin estimated by Kinect, versus locations
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of Vicon markers sitting just above the surface of the skin.

It is possible that placing Vicon markers on the surface of participants’ faces

may have interfered with the HDFT’s performance. But it was notable that

the face shape calibration procedure (Section 3.5) still operated quickly and

normally with all but one of the eight participants (who was calibrated after

repeating the interactive procedure). Face calibration did not, however, impact

on the quality of head pose estimation. The fact that Kinect offers accurate

head pose estimation without an interactive calibration step is an important re-

sult for those applications where participant cooperation is not always possible

(e.g., due to age and/or disability [3, 4]). Having participants move far enough

from the sensor that their full bodies were visible also had no significant impact

on performance. This result will be of interest to those wishing to make simulta-

neous non-invasive measurements of movement in other parts of the body using

Kinect’s skeletal tracking functionality [7, 15, 16].

The software used in this study was a combination of the standard v2 SDK

examples, extended to record the various Kinect datastreams (e.g., RGB, depth,

skeletal estimates). HDFT events were recorded, on average across the whole

dataset at a rate of 22Hz, but higher rates are possible when not attempting to

record other signals simultaneously. Any group can immediately benefit from

Kinect head pose estimation simply by extending the v2 SDK’s “HDFaceBasics”

example to write the FaceAlignment.FaceOrientation quaternion to file (see

the supplementary materials for full details).

6. Conclusion

Where facial features remain visible (e.g., anterior view with a static torso),

the Kinect v2 sensor is able to offer state of the art head pose estimation accu-

racy in real time and without the need for calibration. Occlusion of the facial

features (e.g., by the hands or through large rotations of the head involving the

torso) can cause tracking to fail and no pose estimate to be returned. How-

ever, this is in useful contrast to returning unreliable, high-error pose estimates
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which must be reviewed and excluded during post processing. The sensor’s low

cost, its easy to use SDK, and its ability to simultaneously estimate body poses,

mean it has considerable potential as a tool for those interested in making non-

invasive measurements of posture. In particular, a multi-Kinect setup covering

the full range of head (and body) movement would appear to be a promising

way forward.
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(a) (b) (c) (d)

Figure 1: Head pose estimation: (a) Kinect placement; (b) Kinect’s view of a participant (full

depth image); (c) facial features estimated by Kinect’s high definition face tracking; (d) the

Vicon marker set used for assessment.
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Figure 2: Typical HDFT results for a pitch (up-and-down) followed by yaw (left-to-right) head

rotation: (Top) Example images with HDFT results overlaid in cyan; (Middle) Corresponding

yaw (blue circles), pitch (green circles) and roll (red circles) estimates from the HDFT, with

tracking failures, e.g. as the participant looks to their right during 18-20sec, shown as black

circles; (Bottom) Corresponding Vicon estimates for the same sequence. (For interpretation

of the references to colour in this figure legend, the reader is referred to the web version of

this article.)
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Figure 3: Free torso rotations: (Top) Example images from yaw, pitch and roll rotations with

any HDFT results overlaid in cyan; (Middle) The percentage of missed frames across all par-

ticipants computed across 10◦ bins (centred at −90◦,−80◦, ...,+90◦) during yaw (blue), pitch

(green), and roll (red) rotations; (Bottom) The average error in Kinect’s rotational estimates

across each bin. Kinect’s estimation of roll rotations is more robust at large rotations, proba-

bly because facial features tend to remain fully visible even at the ends of range (see images).

(For interpretation of the references to colour in this figure legend, the reader is referred to

the web version of this article.)
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Table 1: Head pose estimation accuracy during the static torso range of motion (baseline)

tests for all 8 participants. The highlighted grey row shows the mean and standard deviation

of each quantity across all participants.

Cheekbone (mm) Yaw (◦) Pitch (◦) Roll (◦) Missed (%)

P1 6.6 2.7 4.7 3.6 5.1

P2 7.9 1.2 8.0 2.0 19.5

P3 5.4 1.4 5.9 2.8 8.7

P4 11.5 4.5 12.1 3.4 18.0

P5 13.3 1.2 12.2 2.5 13.0

P6 14.9 1.1 6.5 2.6 3.7

P7 11.6 2.4 5.0 2.0 4.5

P8 12.7 1.8 3.8 1.7 9.1

Average 10.5 ± 3.4 2.0 ± 1.2 7.3 ± 3.2 2.6 ± 0.7 10.2 ± 6.1

Table 2: Comparison between the baseline (grey) and all other conditions. Significant differ-

ences, as identified by the ANOVA tests, are highlighted in bold.

Cheekbone (mm) Yaw (◦) Pitch (◦) Roll (◦) Missed (%)

Range of motion 10.5 ± 3.4 2.0 ± 1.2 7.3 ± 3.2 2.6 ± 0.7 10.2 ± 6.1

Relative - 1.4 ± 0.5 2.1± 0.4 2.0 ± 0.8 -

Free torso 11.7 ± 3.1 2.7 ± 1.2 7.6 ± 3.6 2.4 ± 0.6 38.2± 7.7

Occlusion 10.3 ± 3.7 1.8 ± 1.0 6.6 ± 2.6 1.3 ± 0.5 50.9± 17.5

Calibrated 9.1 ± 2.5 2.0 ± 1.0 6.6 ± 3.2 2.6 ± 0.5 10.5 ± 5.0

Standing 15.0 ± 3.2 2.5 ± 0.9 6.7 ± 3.0 3.3 ± 1.0 12.5 ± 4.3

Rotated 16.3± 9.3 5.1± 3.2 13.9± 5.3 6.8± 4.0 49.0± 21.6
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