

Abstract—Managers of companies are typically not SQL

(Structured Query Language) experts but require information
24/7. Therefore, a growing need for Natural Language
Interfaces to Databases (NLIDs) has been identified, with a
vast amount of research being undertaken in the area. The
existing approaches to NLIDs present many weaknesses
including the inability to deal with grammatical mistakes in
user input, the inability to communicate with the user to
correct mistakes and the inability to allow refinement of query
results. This paper proposes a system, SEEKER, which uses a
Conversational Agent (CA) as the Natural Language Interface
(NLI) in a NLID. The CA is used to capture key words in the
user’s utterance. Once these key words have been identified,
the most appropriate SQL template is selected by the expert
system using rule based reasoning. The identified variables are
mapped to the SQL template in order to create an SQL query.
SEEKER allows for refinement of query results. SEEKER was
evaluated in terms of user satisfaction and task completion.
The results of the evaluation were promising.

Index Terms—Conversational Agents, Natural Language
Interface, Databases

I. INTRODUCTION

Databases are commonly used but require detailed
knowledge of a database query language such as SQL. For
this reason a manager could not simply click a button to
retrieve information from a database. Instead, the manager
would have to formally request the required information,
which could take time. As the amount of data increases it is
essential that information can be retrieved on demand.

A solution to this problem is the use of a NLID. NLIDs
have been a popular research area since the late sixties and
early seventies [1]. A NLID is a system that allows the user
to enter requests in natural language in order to retrieve
information from a database [1]. If a NLID is used, the user
does not have to perform queries over a database in a
database language. Consequently, the user does not need to
concern themself with learning a database language, as they
can type the query they want to perform in their natural
language, for example English. Many different approaches
have been taken to creating NLIDs [1]-[9]. These existing

Manuscript received February, 2014; revised June, 2014.

1 School of Computing, Maths and Digital Technology, The Manchester
Metropolitan University, Chester, Street, Manchester, M1 5GD, UK
(corresponding author phone: +44 161 247 1497; corresponding author
email k.crockett@mmu.ac.uk)

approaches present weaknesses, including the fact that the
systems do not cope with user input that has incorrect
grammar and cannot interact with the user to rectify
mistakes and correct unclear input. Furthermore, existing
approaches do not allow for the results of one query to be
refined further.

This paper introduces SEEKER, a NLID that uses a CA
as the NLI. The key features of SEEKER include the ability
to enter natural language to retrieve information from a
database, the ability to refine or continue with a query’s
results and the ability to rectify or log mistakes. This
addresses a number of weaknesses of previous approaches
to NLIDs such as the inability to log errors [4], [5], the
inability to overcome incorrect results [3]-[7], and the
inability to allow refinement on a query’s results [8], [9].
An evaluation was conducted on SEEKER using a set of
metrics [10], which were measured by a usability
questionnaire and log files produced by the system. The
results of this evaluation were positive and suggest that
further work in this area would be justified.

This paper is organised as follows: Section II outlines the
related work; Section III describes SEEKER’s architecture
and components; Section IV explains SEEKER’s refinement
functionality; Section V summarises the evaluation
performed along with the results and Section VI includes
conclusions and further work.

II. RELATED WORK

A. Natural Language Interfaces to Databases

NLIDs allow the user to enter input in their natural
language and then map this user input to an SQL query and
execute it. Four main approaches to NLIDs have been
established, with each one using a particular system
architecture [1], [2]. These approaches are pattern matching
systems, syntax-based systems, semantic grammar systems
and intermediate representation languages.

Pattern matching systems map user input to the database.
The advantage of using a pattern matching approach,
compared to other approaches, is its simplicity, as parsing is
not involved and systems using this approach usually
manage to produce a reasonable answer [1]. However, this is
dependent on the domain and this approach has also been
criticised for misunderstanding the users input and therefore
producing incorrect results [1]. Syntax-based systems,
semantic grammar systems and intermediate representation
languages all involve some level of parsing [1] [3], [4], [5].

Syntax-based systems parse user input, producing its parse
tree. This parse tree is then mapped to an expression in a
database query language. Also, a grammar is used to

SEEKER: A Conversational Agent as a Natural
Language Interface to a Relational Database

Emma Victoria Smith1, Keeley Crockett1, Annabel Latham1, Fiona Buckingham1 and Mohammed
Kaleem 1

Proceedings of the World Congress on Engineering 2014 Vol I
WCE 2014, July 2 - 4, 2014, London, U.K.

ISBN: 978-988-19252-7-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

(revised on 24 June 2014) WCE 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by E-space: Manchester Metropolitan University's Research Repository

https://core.ac.uk/display/161890381?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

describe the syntactic structures that the users input could
involve. A syntax-based system uses the grammar to create
the parse tree representing the syntactic structure of the
input. An example of a system that uses this syntax-based
approach is LUNAR [3]. Syntax-based systems find it
difficult to deal with ambiguous user input as it can lead to
more than one parse tree for that user input and they can
produce different results [2].

Semantic grammar systems are similar to syntax-based
systems, however, the categories in the grammar do not
represent syntactic concepts. Instead, they represent
semantic concepts. Semantic grammar systems focus on
simplifying the parse tree as much as possible because the
system can then reflect the semantic representation better.
Examples of systems using this approach include PLANES
and LADDER [1]. Semantic grammar systems are difficult
to port to other domains [2].

An intermediate representation language is a language that
is used between a higher-level language and a lower-level
language. Systems that use intermediate representation
languages take user input and express it as an intermediate
logical query in an intermediate representation language,
such as LQL (Logical Query Language). The logical query
is then transformed into a database language query and
evaluated over the database. An advantage to this approach
is the ability of porting the system to different databases.
The more current NLIDs use this intermediate
representation language approach [1], [2].

This intermediate representation language approach was
used in creating MASQUE/SQL [4]. MASQUE/SQL only
supports Ingres for UNIX. Androutsopoulos et al [4] claim
that the system can be easily ported to any DBMS that
supports C with embedded dynamic SQL. Conversely, there
is no evidence that this has been tested. The MASQUE/SQL
system contains a domain-editor, which uses an is-a
hierarchy, to help the user describe entity types of the
database domain. Therefore, it is expected that the user puts
forward the words that they expect to appear in the natural
language questions. Also, the user is expected to define the
meaning of each of these words in terms of a logic
predicate. Even though the system offers the domain-editor
to support the user in these tasks, they will still need to have
some expert knowledge. Androutsopoulos et al [4] address
some limitations of MASQUE/SQL themselves. One of
these limitations is due to when an SQL query fails. The
system cannot locate which part of the query caused the
system to fail and therefore the message it produces to the
user is not particularly informative. Another limitation is
due to the mapping of each logic predicate to a database
table, view or query, as it can sometimes cause redundant
joins in the SQL queries.

The intermediate representation language approach to
creating NLIDs was also used to create a NLID called Edite
[5], which uses SQL. Reis et al [5] point out some possible
limitations of their system. One limitation that is discussed
is the fact that the system can only take in questions, not
statements. Another limitation considered is that there is no
way for the system to log any failures that are encountered.
If the system could log failures then these logs could be used
to improve the system.

There are a small number of NLIDs that do not fall into
the four main approaches. These NLIDs include PRECISE
[6] and Nihalani el al’s [7] NLID. PRECISE used an
approach containing several components; a lexicon, a
tokenizer, a matcher, a parser plug-in, a query generator and
an equivalence checker. Nihalani et al [7] created a NLID by
splitting the system architecture into two modules; a pre-
processor and a run time processor. The pre-processor uses
the database metadata to create rules. The run time
processor parses the user input and tries to match these
words with those in the domain dictionary.

The approaches to creating NLIDs, previously discussed,
cannot always effectively deal with user input containing
incorrect grammar [8]. These approaches do not offer
effective functionality for communication with the user,
which would allow ambiguous input or incorrect results to
be overcome [8], [9]. Furthermore, a number of the systems
that use these approaches do not offer an effective way for
errors, such as the system failing or producing incorrect
results, to be logged [4], [5]. This means the user is not very
well informed and as errors are not recorded they cannot be
corrected.

B. Conversational Agents

A Conversational Agent (CA) allows a user to converse
with a machine in natural language. This has been a goal
within Artificial Intelligence since the Turing Test [11]. A
CA is expected to play the role of a human expert in some
domain. For example, CAs have been useful in applications
for bullying and harassment [12] and student debt advice
[13]. Typically, a CA uses a pattern matching based
approach to converse with the user. Pattern matching
identifies key words in the user’s utterance and tries to
match them with a pattern. This results in a response being
displayed to the user.

The term CA covers a wide range of types. One type of
CA is a Chatterbot, which converses with a human while
trying to keep the conversation going for as long as possible
[10]. Chatterbots, which have been developed to undertake
the Turing Test as part of the Loebner Prize [14] have been
said to use trickery to convince users they are human [10],
[15]. An example of trickery employed is taking the human
utterance and rephrasing it to use in the next response to the
user. Therefore, Chatterbots are restricted in their ability to
hold a meaningful conversation. However, techniques
employed by Chatterbots, such as pattern matching, can be
adopted to create a more robust CA for use in applications.
One of the earliest Chatterbots to be developed was Eliza
[16], a psychotherapist based CA. The trickery employed by
Chatterbots worked well for Eliza due to the nature of
psychiatric interviews. However, other domains may require
more conversation then just rephrasing of user input.

ALICE (Artificial Linguistic Internet Computer Entity)
has been used many times for the creation of CAs, including
three winning occasions of the Loebner Prize in the years
2000, 2001 and 2004 [17]. ALICE is a general purpose CA,
of the Chatterbot type, created using AIML (Artificial
Intelligence Markup Language). ALICE is advantageous as
AIML is simple. However, it has limited functionality, as it
does not allow the capturing of variables from the
conversation.

Proceedings of the World Congress on Engineering 2014 Vol I
WCE 2014, July 2 - 4, 2014, London, U.K.

ISBN: 978-988-19252-7-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

(revised on 24 June 2014) WCE 2014

Another type of CA is a Goal Oriented CA (GO-CA),
which engages in conversation with the user to achieve a
specific goal. Therefore, the agent has a purpose in the
conversation unlike a Chatterbot. Usually, a GO-CA is
developed using pattern matching techniques [10] [18], but
more recently semantic sentence similarity measures have
been used to overcome issues related with scripting and
maintenance [18].

C. Conversational Agent-Natural Language Interface to
Databases

Research has already been undertaken into Conversational
Agent-Natural Language Interfaces to Databases (CA-
NLID) [8], [9]. Pudner et al [8] created a NLID with an
existing CA, InfoChat, from Convagent Ltd [13]. The NLID
also contained an expert system, control module, and
relational database. The majority of modules in this system
were unable to be ported to other domains.

Owda et al [9] took a similar approach to create C-BIRD
(Conversation-Based Interfaces to Relational Databases).
The components C-BIRD includes are a knowledge tree, a
CA, SQL query templates, tree for dynamic generated
queries, relational database metadata and database
annotation, a relational database, information extraction
module, response generation and a conversation manager.

These existing CA-NLID systems have some limitations.
Neither of the CA-NLID systems [8], [9] allow for
refinement to be performed on query results. Refinement
could include adding columns to query results or narrowing
down query results by removing either column(s) or row(s).
Refinement could also provide functionality for results of
one query to be used in a new query, for instance in a
comparison. An example of a comparison would be asking
for a company’s total sales in a particular year and then
asking the system to compare this with the total sales of a
different year. Similarly, the CA-NLID systems [8], [9] do
not provide functionality for a query to be modified e.g.
adding, removing or changing of an attribute. Additionally,
the existing systems [8], [9] do not provide a facility for the
user to receive an explanation of the results. This would be
useful, as the user will understand how the system has
interpreted their input, in order to generate a set of results.

Clearly there are advantages of using a CA as an NLID
such as, the handling of grammatically incorrect user input,
the production of log files of each conversation and the
ability to engage in conversation with a user to clarify
ambiguous input or to rectify incorrect results. However, the
problems of Pudner et al’s [8] CA-NLID and the C-BIRD
system [9] still need to be addressed. The SEEKER system
proposed in this paper will overcome these problems by
allowing refinement to be performed on a query’s results.
Refinement will allow additional columns to be added to
results, as well as allowing results to be narrowed down by
reducing the columns or the rows of the query results.
Additionally, the system will allow for conversation to take
place on whether the results were correct.

III. OVERVIEW OF THE SEEKER SYSTEM

This section describes SEEKER. The main features of the
system are:
 Engage in conversation with a user in natural language, in

order to extract information to build a query, to retrieve
the information required by the user

 Execute the query over the database and display the results
to the user, without them having to view any SQL

 Allowing conversation with the user around the topic of
refinement and therefore allowing refinement to be
performed on query results

 Allowing conversation with the user around whether the
results were correct

 Creating log files recording each conversation and any
module errors

 Answering a set amount of Frequently Asked Questions
(FAQs)

 Keeping the conversation on the topic of the domain
 Making sure the language the user uses is not

inappropriate, e.g. swearing, and informing them if it is
 Allowing conversation around a set amount of unrelated

topics, giving the CA personality, while directing the user
back to the topic of the domain

 Overcoming weaknesses of previous NLIDs as it allows
errors to be logged, allows incorrect results and
ambiguous input to be overcome and allows refinement on
a query’s results.

A. Architecture

The modules within SEEKER are shown in Fig 1.

Fig. 1. SEEKER System Architecture

An overview of the workflow SEEKER follows is
outlined below.
1. User enters an utterance into the Graphical User Interface

(GUI) and the GUI passes this utterance to the control
module

2. Control module passes the user utterance to the CA
engine

3. CA engine processes the user input, using the scripts. It
produces an appropriate response and retrieves any
variables which were set in the scripts

4. Response and variables are passed to the control module
5. Variables are passed to the expert system for processing
6. Expert system determines the SQL template needed and

passes the name of this template to the control module
7. Control module uses this SQL template name to access

the correct SQL template
8. SQL templates pass back the requested SQL template to

the control module

Expert System

Control Module

SQL Templates

CA Engine GUI

 Domain
 Specific

Database

 Metadata
Scripts Log Files

Proceedings of the World Congress on Engineering 2014 Vol I
WCE 2014, July 2 - 4, 2014, London, U.K.

ISBN: 978-988-19252-7-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

(revised on 24 June 2014) WCE 2014

9. Control module maps the variables to the template and
executes this query over the database, retrieving the
results

10. Control module passes the response from the CA engine
and/or the results of the SQL query to the GUI, were they
are displayed to the user

Each module will now be briefly described.

B. Database

An Oracle 11g relational database was used with an
existing travel company domain [19]. This travel company
sells tickets to attractions all over the world. The domain
was adapted for use with SEEKER, by reducing the amount
of tables and attributes used, in order to test proof of concept
on a set of queries that users would typically ask the travel
company. This allowed the database to resemble a real life
situation but focus on certain aspects. Scenarios were
designed to guide users into asking questions that would
formulate SQL queries covered in SEEKER.

C. Conversational Agent Engine

A CA engine is required to provide functionality to
capture attributes within the scripts. An existing CA engine,
Convagent Ltd, was chosen for use with SEEKER [13]. This
CA engine was chosen as it was a GO-CA and provided the
best functionality in terms of architecture and scripting
language abilities for a CA-NLID system from the CA
engines considered. The CA within SEEKER is called
Emma.

D. SQL Templates

A questionnaire was designed and developed to capture
common SQL queries and natural language. Results of this
analysis questionnaire provided many natural language
questions that could be asked to the travel company, and
their corresponding SQL queries. This allowed a number of
SQL templates to be chosen for use with SEEKER. There
were six essential SQL templates implemented within
SEEKER, all are SQL select queries, which are part of the
Data Manipulation Language (DML). An example of one of
the SQL templates used in SEEKER is shown in Fig 2.

Fig. 2. Example of an SQL Template used within SEEKER

This template, Fig 2, allows two attributes to be displayed

in the results window, while joining two tables together. A
third attribute it used to narrow down the results produced to
the user. This template was chosen as it was essential for
allowing SEEKER to perform refinement.

E. Scripts

The scripts for the CA were implemented in the
PatternScript scripting language provided by [13]. Contexts
were used to allow conversation about each table in the
database. Contexts consisted of a number of rules with
patterns associated with the user input. Rules were included
to answer several FAQs where the database could not
provide the answer. A personality layer was also included to

give the CA personality. This layer answered a number of
questions about the CA, for example its favourite football
team, while trying to direct them back to the travel company
domain. Strategies were implemented to deal with
utterances unrelated to the domain and utterances that are
not tolerated e.g. swearing. These strategies involved
politely warning the user about their utterance twice and
then if the user repeated the offence a third time SEEKER
closes.

F. Expert System

The role of the expert system is to determine which SQL
template is the most appropriate for a particular user
utterance. It contains a set of generic rules and takes in
variables set in the scripts. Each rule contains an SQL
template name, which is returned when the rule is fired. The
expert system creates a rule base with all possible rules that
could be fired for a particular utterance. It then executes the
rule base by sorting and determining which rule to fire based
on the rules priority number.

G. Control Module

The control module performs many tasks which include:
 Accessing other modules in the architecture (Fig 1)

allowing for any module failures or errors to be detected
and dealt with

 Checking the database metadata as it contains facts about
the domain, i.e. on the tables, attributes, attribute values
and relationships between tables

 Checking the syntax of the variables to be mapped
 Mapping the variables set in the scripts to the SQL

template that has been retrieved
 Refining a previous queries results
 Writing any module errors or failures to the log files

H. Log Files

The CA engine provides functionality for log files to be
created containing the conversation between the user and
SEEKER. The log files record utterances input by the user
and responses from the CA. Additionally, they include the
rules in the scripts which contain patterns that match the
utterance, and the rules that fired. Therefore, this can be
used in the evaluation, through the recording of specific
metrics, as it is clear whether the correct rule fired or not.

I. Graphical User Interface

The GUI allows the user to enter their utterance, displays
the conversation between them and SEEKER and displays
the query results.

IV. QUERY REFINEMENT

SEEKER can perform refinement on query results for the
user. The refinement allows the user to narrow down results
or find out further information about the results. When the
user is displayed query results, and refinement is possible,
the user is asked if they would like to refine. If the user does
want to refine then they are asked how they want to refine.
An example of a dialogue with SEEKER, using refinement,
is shown in Table 1.

select att_one, att_three
from table_one, table_two

where table_one.join_att_one = table_two.join_att_two
and att_two like ‘%attribute_two_val%’;

Proceedings of the World Congress on Engineering 2014 Vol I
WCE 2014, July 2 - 4, 2014, London, U.K.

ISBN: 978-988-19252-7-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

(revised on 24 June 2014) WCE 2014

TABLE I
EXAMPLE CONVERSATION WITH REFINEMENT

 Utterance

Emma: Hello! My name is Emma. I am here to help you with
information on the attractions we sell tickets for. How can I
help you today?

User: Can you tell me all the attractions you sell tickets for
Emma: I am showing you the attractions we sell tickets for! Shall I

help you refine them? Please let me know by entering yes or no
User: Yes
Emma: How would you like to refine or continue with these results?
User: I just want the attractions in paris please
Emma: Here are the attractions in Paris! Shall I help you refine them?

Please let me know by entering yes or no
User: Yes
Emma: How would you like to refine or continue with these results?
User: Now I want the prices of those attractions
Emma: The prices are now being displayed! Would you like my help

to refine them? Please let me know by entering yes or no
User: Yes
Emma: How would you like to refine or continue with these results?
User: Now I want the disneyland paris ticket types too
Emma: Here are the ticket types for Disneyland. Was this what you

were looking for? Let me know by entering yes or no
User: Yes thanks
Emma: Brilliant! Feel free to ask me something else, or if you want to

exit just type 'bye'
User: Bye
Emma: It was nice chatting to you, goodbye!

As the example conversation in Table 1 shows, the user
can use the refinement functionality to narrow down results
as well as add additional attributes to the results. Results can
be narrowed down by reducing either the attributes or the
rows. Refinement can also be used to rectify incorrect
results or misunderstandings. An example of this involves
the user asking for all attractions in Paris but SEEKER
retrieving all attractions instead. This misunderstanding can
be solved by using refinement to narrow attractions by the
city of Paris.

V. EVALUATION

A. Evaluation Methodology

The evaluation methodology undertaken on SEEKER was
to evaluate two components; task completion and user
satisfaction. Each component was evaluated using existing
metrics [10]. Three types of metrics were chosen for use in
the evaluation; subjective, objective and query-oriented.
User satisfaction was evaluated using eleven of the metrics,
which were measured using a usability questionnaire
completed by participants. Metrics measured by the
usability questionnaire were all subjective metrics except
one query-oriented metric (No. 8 in Table 2). Task
completion was evaluated by the other ten metrics, which
were measured using log files that SEEKER produced
during conversations with participants. Metrics measured
using log files were a combination of objective metrics and
query-oriented metrics (No. 18-20 in Table 3). The
evaluation methodology involved several methods because
evaluation of both CAs and NLIDs is a difficult topic that is
still being researched [10].

B. Experimental Methodology

The experiment involved ten participants, with one
participant at a time using SEEKER and undertaking the
evaluation. Each participant was given a set of scenarios and

the usability questionnaire to read, and verbally given a
short explanation of SEEKER. They used SEEKER on a
laptop and engaged in a conversation with SEEKER
following the scenarios. SEEKER produced log files for
each conversation. While the participants were completing
the scenarios they were unobtrusively observed allowing
any interesting observations to be recorded.

C. Discussion and Results

 Metrics measured by the usability questionnaire are
shown in Table 2 and metrics measured by the log files are
displayed in Table 3. All metrics are shown with their
corresponding percentages summarising how well each
metric was achieved.

TABLE II

METRICS MEASURED BY USABILITY QUESTIONNAIRE

No. Metric %
1 The agents understanding of the user utterances 72%
2 How natural the agent’s behavior seemed 79%
3 User satisfaction 80%
4 Ease of correcting misunderstandings 84%
5 Ease of user understanding the agent 84%
6 Whether the agent behaved as expected 85%
7 Whether the user would use again or prefer human

service
86%

8 The users query retrieved the correct results 88%
9 Ease of use 92%
10 How well the CA controlled the conversation 93%
11 Friendliness of the agent 96%

TABLE III

METRICS MEASURED BY LOG FILES

No. Metric %
12 Number of times the system crashed 0%
13 Number of times the CA misunderstood the user 4%
14 Number of times the CA gave an incorrect response

(not including the misunderstandings)
10%

15 Number of times the CA gave an incorrect response
(including misunderstandings)

14%

16 Number of times the CA gave a correct response 86%
17 Number of times the CA answered questions

correctly
88%

18 Number of times the system produced incorrect
results

4%

19 Number of times the system failed to return any
results

24%

20 Number of times the system produced the correct
results

72%

21 Number of times the results could be refined 100%

Metric results produced for SEEKER were positive,

however, participant evaluations allowed for any issues
SEEKER had to be identified. One issue identified was
some participants using ‘short form’ utterances, which
SEEKER did not accept, as more of a conversation was
expected. Examples of ‘short form’ utterances include “by
paris” and “attractions”. This resulted in the user having to
rephrase the utterance to receive query results. Although
‘short form’ utterances were not expected as they are not
typical in a conversation with a human, they could be
expected when the user tries to refine results. SEEKER did
not always recognise utterances that it should have
recognised and therefore closed after the user entered the
utterance three times. Furthermore, when the user entered an

Proceedings of the World Congress on Engineering 2014 Vol I
WCE 2014, July 2 - 4, 2014, London, U.K.

ISBN: 978-988-19252-7-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

(revised on 24 June 2014) WCE 2014

utterance that was not recognised, while refining the results,
SEEKER asked the user to rephrase the utterance and try
again. When the user rephrased the utterance SEEKER no
longer performed refinement and treated the utterance as a
new query.

D. Key Findings

All problems encountered were due to one module, the
scripts, as they allowed the CA to misunderstand and not
recognise several utterances. These types of problems were
expected as natural language is a vast area, and they can
easily be corrected. The participants’ got use to utterances
SEEKER accepted, and did not mind occasionally
correcting the CA’s misunderstandings, highlighted by the
metric ease of correcting misunderstandings receiving 84%.
This is helpful as there are vast amounts of ways people can
enter utterances that mean the same, and it is difficult to
script them all. Although these scripting problems
occasionally prevented results from being retrieved, the
success rate for the correct results returned was still high. If
the scripts were improved the percentage for the correct
results would improve because all problems identified with
SEEKER were in the scripts module. All other modules
worked correctly and therefore they had a 100% success
rate.

VI. CONCLUSIONS AND FURTHER WORK

This paper introduced SEEKER, a system that contains a
CA as the NLI to a relational database. SEEKER uses the
CA to capture key words in a user’s utterance and translates
this into an SQL query using an expert system and a set of
SQL templates. SEEKER allows for query results to be
refined and allows for errors to be recorded in log files.
Misunderstandings or incorrect results can be overcome
with either the utterance being rephrased or with refinement.
Natural language is a difficult area as one utterance can be
said in many ways. This means 100% accuracy is difficult to
achieve. SEEKER received good results in the evaluation
for all metrics used. There was a 72% success rate for the
number of times SEEKER produced the correct results. All
modules, except the scripts, could be ported to another
domain. Results of SEEKER are positive and justify further
work in this area. Developing SEEKER further would need
a larger sample of participants for analysis and evaluation,
with extensive testing. SEEKER would benefit from the
scripts being extended not only to correct the problems
found in the evaluation but to allow more conversation. It
would be useful to extend the amount of SQL templates that
SEEKER includes, as a larger variety of user utterances
would be accepted. SEEKER allows for refinement of query
results but this does not include comparisons. SEEKER
could be extended to include comparisons, as part of
refinement. This would involve extending the SQL
templates and the scripts, as it could use the refinement
functionality that is already in place. SEEKER could benefit
from an explanation facility, where it could explain results it
has produced. This could help to overcome any
misunderstandings and incorrect results, along with the use
of refinement.

ACKNOWLEDGMENT

The authors would like to thank Convagent Ltd for the
use of their CA engine within SEEKER.

REFERENCES

[1] I. Androutsopoulos, G. Ritchie, and P. Thanisch, ”Natural Language
Interfaces to Databases – An Introduction” Journal of Natural
Language Engineering, vol. 1, 1995, pp. 29-81

[2] N. Nihalani, S. Silakari, and M. Motwani, “Natural Language
Interface for Database: A Brief Review” International Journal of
Computer Science, vol. 8, 2011, pp.600-608

[3] W. Woods, R. Kaplan, and B. Webber, “The Lunar
Sciences Natural Language Information System”, Final Report,
Technical Report 2378, Bolt Beranek and Newman Inc., 1972.

[4] I. Androutsopoulos, G. Ritchie, and P. Thanisch, “MASQUE/SQL –
An Efficient and Portable Natural Language Query Interface for
Relational Databases” in Proceedings of the Sixth International
Conference on Industrial & Engineering Applications of Artificial
Intelligence and Expert Systems. Edinburgh, 1993.

[5] P. Reis, J. Matias, and N. Mamede, “A Natural Language Interface to
Databases: A New Dimension for an Old Approach” in Proceedings
of the Fourth International Conference on Information and
Communication Technology in Tourism. Edinburgh, Scotland, 1997.

[6] A. Popsecu, O. Etzioni, and H. Kautz, “Towards a Theory of Natural
Language Interfaces to Databases” in Proceedings of the Eighth
International Conference on Intelligent User Interfaces. Miami,
Florida, July 2003, pp. 149-157

[7] N. Nihalani, M. Motwani, and S. Silakari, “Natural Language
Interface to Database using Semantic Matching” International
Journal of Computer Applications, 31, 2011, pp. 29-34

[8] K. Pudner, K. Crockett, and Z. Bandar, “An Intelligent
Conversational Agent Approach to Extracting Queries from Natural
Language” in Proceedings of the World Congress on Engineering.
London, 2-4 July 2007

[9] M. Owda, Z. Bandar, and K. Crockett, “Information Extraction for
SQL Query Generation in the Conversation-Based Interfaces to
Relational Databases (C-BIRD)” Manchester: Manchester
Metropolitan University, 2011

[10] J. O’shea, K. Bandar, and K. Crockett, “Chapter 8: Systems
Engineering and Conversational Agents” in A. Tolk, and L. Jain,
(eds.). Intelligent-Based Systems Engineering. Berlin: Springer-
Verlag, 2011, pp. 201-232

[11] A. Turing, ‘Computing Machinery and Intelligence.’ Mind, 49, 1950,
pp.433-460

[12] A. Latham, K. Crockett, and Z. Bandar, “A Conversational Expert
System Supporting Bullying and Harassment Policies” Manchester:
Manchester Metropolitan University, 2010

[13] Convagent Ltd. (2005) Conversational Agents. [Online] Available:
http://www.convagent.com/default.htm

[14] The Loebner Prize Contest. (1991) Homepage of the Loebner Prize in
Artificial Intelligence. [Online] Available:
http://www.loebner.net/Prizef/loebner-prize.html

[15] S. Shieber, “Lessons from a Restricted Turing Test” Communications
of the ACM, 37, 1994, pp. 70-78

[16] J. Weizenbaum, “ELIZA – A Computer Program for the Study of
Natural Language Communication between Man and Machine”
Communications of the ACM, 9, 1996, pp. 36-45

[17] A.L.I.C.E. (no date) A.L.I.C.E. Artificial Intelligence Foundation.
[Online] Available: http://alice.pandorabots.com/

[18] K. O’Shea, Z. Bandar and K. Crockett, “A Novel Approach for
Constructing Conversational Agents using Sentence Similarity
Measures” in IEANG, London, 2-4 July 2008

[19] K. Crockett, S. Morris, P. Rob, and C. Coronel, Database Principles:
Fundamentals of Design, Implementations and Management. 2nd ed.,
Cengage Learning, 2013

Date of Paper modification: 24th June 2014
Brief description of the changes: Mr. Mohammed
Kaleem is added as a co-author.

Proceedings of the World Congress on Engineering 2014 Vol I
WCE 2014, July 2 - 4, 2014, London, U.K.

ISBN: 978-988-19252-7-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

(revised on 24 June 2014) WCE 2014

