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Abstract Many signals produced by dynamical systems may undergo abrupt changes such as a jump

or a sharp change. Detecting such change points is of primary importance in many applications ranging

from exploratory data analysis to diagnosis. This paper addresses the detection of abrupt changes in a

noisy van der Pol oscillator as a model of an electrical circuit with nonlinear resistance. The proposed

approach combines wavelet analysis with information entropy in order to extract signal frequencies

corresponding to any abrupt changes that occur. We also investigate the influence of noise intensity on

detecting change points in the model system. Performance is evaluated on simulated data generated by

using different model parameters.
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1 Introduction

Nonlinear dynamical systems arise in many applications, and are often characterised by the presence of

sudden transitions in one or more of their dynamic states. Here we suggest a method for detecting these

abrupt changes in systems dynamics. Such systems are often modelled either as a deterministic one [1,2],

which ignore the presence of noise, or a stochastic one which, on the other hand, stress randomness [3,4].

Deterministic system models with additive noise can be seen as a combination of a deterministic and a

stochastic model system, even though formally these are classed as stochastic systems. It is this last class

of systems that is of our interest because, practically, all systems are influenced by random movements
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of its intrinsic structural components. For instance, engineering systems which contain switchings and

ignitions generate random fluctuations which assist these switchings and ignitions. Also, in electrical

conductors there is present a random movement of electrons due to thermal agitation that cannot be

eliminated. That is, a system which, for example, switches between different configurations depending

on the value of some decision function, and which is additionally affected by noise, would evolve along

a trajectory which, if noise was absent, would exhibit a corner, a discontinuous change of curvature or

a discontinuity in higher derivative. Obviously, noise will affect such a discontinuity. Depending on the

context, it may be of interest to isolate the effects of deterministic mechanism on system’s behaviour

from that of random fluctuations in order to detect abrupt changes in such hybrid systems.

Detection of change points constitutes a crucial and a challenging problem in different domains.

Several methods have been proposed in the literature for different applications to detect change points

in the process data. For instance, time-domain methods [5], spectral methods [6], and auto-covariance

methods [7]. In particular, Theron and Aldrich [5] developed a time-domain approach for identifying the

nonlinearities in dynamic process systems. The idea is to see whether the measured time series, which

are similar to the stochastic data, have the same power spectra or autocorrelation functions. Babji et

al. [6] proposed a method based on Hilbert-Huang Transform to detect control valve nonlinearity. It was

found that the nonlinearity can be captured by Intrinsic Mode Functions obtained from the Empirical

Mode Decomposition of the process output. Killick and Eckley [7] introduced a locally stationary wavelet

framework to detect changes in general auto-covariance structure within non-stationary time series data.

The character of nonlinearities that we are concerned with here is different from all these cases.

We are interested in revealing change points in a deterministic signal buried in white noise where the

local stationarity is violated. We consider the problem of how to detect these types of nonlinearties,

which we identify by finding sharp changes in the characteristic properties of the signal generated by a

stochastic process. We use a stochastic version of van der Pol type oscillator, which possesses a trivial

fixed point and a limit cycle attractor. We consider different intensities of white Gaussian noise which

might influence the detection of any abrupt changes in the model system. When using traditional methods

to reduce noise in time series data, the results cannot meet the practical needs. Hence, we have developed

a new methodology aimed to process the time series data based on wavelet decomposition technique.

That is, to investigate the ‘deterministic’ part of a stochastic system it is required to separate the

‘deterministic’ components of a signal ‘buried’ in additive noise. Then we need to reconstruct the signal

without noise components. Moreover, when dealing with non-stationary processes, the use of a time-

frequency representation of a signal is suggested because the produced signals do not lend themselves

well to decomposition into sinusoidal components, and they cannot be represented in a meaningful way

by Fourier expansions [8]. Therefore, for non-stationary signals, in which frequency value changes at any

2

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



moment, it is more useful to characterise the signal in terms of its Instantaneous Frequency, which is

a time dependent representation of the frequency of a signal at any moment. It is the instantaneous

frequency which will provide us with information on the presence of a nonlinearity in the signal at any

given time instant. In this paper, we present an algorithm for detecting abrupt changes in time series

data of van der Pol system with additive white noise by combining the advantages of Discrete Wavelet

Decomposition technique, Wavelet energy entropy, and Normalized Hilbert Transform, for computing

the instantaneous frequency. The introduction of the wavelet decomposition resolved one key obstacle

for computing a meaningful instantaneous frequency from a multicomponent signal by reducing it to a

collection of mono-component functions. Once we obtain the mono-component signals, the instantaneous

frequency can be computed using the normalized Hilbert transform method.

The rest of the paper is organized as follows: Sec. 2 introduces the van der Pol oscillator with additive

noise, whereas Sec. 3 discuses the framework of the discrete wavelet decomposition. Sec. 4 illustrates the

details of the proposed approach for estimating the instantaneous frequency peaks. Then in Sec. 5, we

present the detection of abrupt changes in simulated data sets produced by the model system. Finally,

Sec. 6 concludes the paper with suggestions for future work.

2 Van der Pol oscillator with additive noise

This system was initially proposed by van der Pol [9]. It has played an important role in the understand-

ing of nonlinear dynamics in general. Here, we consider a stochastic version with additive white Gaussian

noise ζ(t). The van der Pol equation is an ordinary differential equation describing self-sustaining oscil-

lations in which energy is fed into small oscillations and removed from large oscillations. The van der

Pol oscillator can be modelled in its two-dimensional form as:

ẋ1 = x2 (1)

ẋ2 = µ(1− x21)x2 − x1 + σζ(t) (2)

The position x1, and the velocity x2 are now random variables. µ is a scalar parameter indicating

the nonlinearity and the strength of the damping. σ is the white noise intensity. The Euler scheme is

the most widely used approach with noise intensity σ = 1.0 to describe stochastic systems with purely

additive noise under standard assumptions. It was shown in [10] that stochastic differential equations of

the form

ẋ(t) = f(x(t)) + σζ(t) (3)
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Fig. 1 A sample path of van der Pol oscillator with noise.

can be approximated by a discrete system

xn+1 = xn + f(xn)h+ σWn

√
h, (4)

where h is sufficiently small step size, and Wn is the standard Wiener process. Above numerical

scheme was used to generate time series trajectories of the system (1) and (2). The standard Wiener

process is approximated numerically at each step tn by a function that generates psudo-random numbers

with expected value η = Ex[X] = 0 and standard deviation σ =
√
Ex[(X − η)2] = 1, with Ex and η

denote the expected value and the mean of the process respectively, and X is a random variable.

We are interested here in the asymptotic dynamics of the system. We consider parameter values for

which a limit cycle attractor exists in the system in the absence of noise. In the presence of noise the

system evolution will lie in the region where there exists the limit cycle attractor. A sample path of our

system is presented in Fig. 1. Note that the sample path follows the underlying limit cycle attractor.

The parameter values are: µ = 2, step size h = 0.1, and the noise intensity σ = 1.0.

3 Wavelets and filter banks

The purpose of this section is to illustrate the connection between filter banks and wavelets, which can

be used for analysing the time series data produced by our model system (1) and (2). Wavelets refer to

sets of functions of the form

ψ(a,b)(x) = |a|−1/2ψ
(
x− b
a

)
, (5)

where these sets of functions are formed by dilations and translations of a single function ψ(x). The

dilation and translation parameters a, b may range over either a continuous or discrete set. The corre-

sponding set of functions ψa,b has sufficient members to allow any function f in L2 to be reconstructed
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Fig. 2 Orthogonal two channel discrete-time filter bank with analysis filters h0(n) and h1(n) and synthesis filters h̃0(n)
and h̃1(n).

from its wavelet coefficients 〈f, ψa,b〉 where 〈〉 denotes the standard L2 inner product. The wavelet trans-

form decomposes a function into a weighted sum of its various frequency components. It is useful to

decompose the data into wavelet coefficients by using discrete wavelet transform, because most of the

coefficients will be close to zero, with only a few coefficients carrying most of the information. Although

there are many ways of respecting the (a, b) to a discrete subset of R, the most common choice is a = 2−k,

b = an where k, n ∈ Z. The corresponding discrete wavelet can then be parametrized by a pair of integers

k, n rather than a, b as follows:

ψ(k,n)(x) = 2−k/2ψ(2−kx− n) (6)

We perform discrete wavelet decomposition of a time series data based on the theory of orthogonal

filter banks described in [11]. Consider a subband analysis/synthesis filtering system shown in Fig. 2.

Analysis stands for splitting a signal into frequency bands, while synthesis stands for reconstructing a

signal from various frequency components. Consider real or complex sequences in l2(Z), x(n), n ∈ Z. The

inner product is defined as 〈a(n), b(n)〉 =
∑
a∗(n)b(n). By convolving x(n) with a filter having impulse

response h(n), the output Y (z) is equal to H(z)X(z). Specifically, we want to derive two sub-sampled

sequences by filtering with H0(z) and H1(z) and dropping all samples having odd indices. Reconstruction

is achieved by resampling at the original sampling rate( replacing the drop samples by zero), filtering with

G0(z) and G1(z) and summing up, where G0(z) = H̃0(z) and G1(z) = H̃1(z). Therefore, an orthogonal

filter bank computes a discrete time wavelet transform when iterated on the octave-band.

4 Detection of abrupt changes

The detection process starts by performing a multilevel stationary wavelet decomposition using a specific

biorthogonal wavelet db4 basis function described in [12]. It should be noted that in order to isolate signal

nonlinearities, it is more efficient to use a very short basis function. The decomposition process splits the

time series data into two parts by using a two-channel filter bank. After splitting, we obtain a vector of
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approximation coefficients Ai+1 and a vector of detail coefficients Di+1, both at different scales, where

i is the decomposition level. Then the next step consists of splitting the new approximation coefficient

vector Ai+1 into two parts to obtain a new approximation vector Ai+2, and details vector Di+2. This

process continues till we build the wavelet decomposition tree with a number of approximation and details

vectors Ai+n and Di+n, respectively, where n is the number of decomposition levels. Note that, at each

stage of the filtering process, the approximation vector is obtained by using a low pass filter to extract

the low frequency components while the details vector is obtained by using a high pass filter to extract

the high frequency components. The details and approximation coefficients vectors are reconstructed at

each decomposition level by using the same filtering approach combined with up-sampling by a factor of

2.

The obtained wavelet coefficients were placed in a transformation matrix and ordered using two

patterns, one contained the smoothed data (approximation coefficients), and the other brought out

the details information (details coefficients). It was found that the first few levels contained highest

frequencies that mostly consisted of noise, while higher levels contained the basic response of the system.

All of these components therefore should be discarded and only the levels that carry most of information

of the signal have to be considered for further analysis. Consequently, we have used an energy entropy

based method for choosing the right decomposition level to be analysed further. Entropy measures the

repeatability or predictability within a time series to quantify the complexity of a signal produced by a

system [13]. In our approach, the energy E of each level at time k, and for scale j can be approximated

by

E(j, k) = |si(t)|2 (7)

where si(t) is the reconstructed wavelet coefficients at level i. Summing this energy for all discrete

time k leads to an approximation of the energy content at each scale j such as E(j) =
∑
k

E(j, k). Then,

we have followed the Shannon entropy, which is a probability density function PE defined as a ratio

between the energy of each level and the total energy, that is

PE(j) =
E(j)∑
jE(j)

. (8)

This corresponds exactly to the probability density distribution of energy across the scales. Then, we

calculate the value of energy entropy Eent for each decomposition level i, which computes the variation

of the degrees of complexity of noise such as:
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Eent(i) =

i∑
j=1

−PE(j)ln(PE(j)). (9)

The larger the value of Eent, the more complicated the signal is. The selection of the decomposition

level to be analysed was based on the difference of energy distribution between the noisy time series data

at each level. Hence, the value of entropy Eent at each level i is calculated. The highest difference value

of Eent between two consecutive levels is determined. Then, the higher decomposition level is chosen

for further analysis. The selected signal should have higher degree of regularity and contains low noise

influences.

The next step of the algorithm process is to apply Hilbert transform to produce an envelop to the

identified signal. This envelope is used to normalize the data, and can be computed by Hilbert’s equation

defined as:

H[s(t)] = p.v.

∫ ∞
−∞

s(t− τ)

πτ
dτ, (10)

where p.v. denotes the Cauchy principal value of integral [14]. The envelop can be produced by

computing the absolute value of Hilbert transform of the signal s(t). This envelop e(t) is used as the

base for normalizing the data as follows

n(t) =
s(t)

e(t)
, (11)

where n(t) is the normalized data. Ideally, n(t) should have all the extrema with unity value. Such

normalization is particularly important because it enables us to compute the phase angels directly without

any approximation. The next step is to apply Hilbert transform to the normalized data to obtain an

analytic complex signal such as

H[n(t)] = x(t) + jy(t) = a(t)ejφ(t), (12)

where a(t) is an absolute value of the signal, and φ(t) is a phase function. The imaginary part includes

phase information that depend on the phase of the original data. Once the phase angles are determined,

the instantaneous frequency fs can be computed as a derivative of the phase function φ(t) as follows:

fs(t) =
1

2π

dφ(t)

dt
. (13)

7

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Fig. 3 Wavelet approximation coefficients (left column), and wavelet details coefficients (right column).

This indicates that if fs is a function of t, fs(t) provides a measure of the frequency domain signal

energy concentration as a function of time. The strongest peaks, in the time-frequency representation,

allowed us to identify any abrupt changes in the time series data.

5 Numerical experiments

In this section, we apply the detection process to identify abrupt changes in the signal produced by our

model system (1) and (2) with noise intensity σ = 1.0. For the purpose of our analysis we use the position

data. We consider the length of the time series required to make three revolutions around the underlying

limit cycle attractor (the limit cycle attractor is present in the system in the absence of noise). The total

analysis time is 26.5s. The discrete wavelet transform was applied to decompose the data into five levels

as shown in Fig. 3. The wavelet decomposition technique brings out high resolution data which are the

details coefficients, while at the same time it extracts the remaining data as approximation coefficients.

The selection of the decomposition level to be analysed was based on the calculated Eent values of the

noisy data at each decompisition level. As shown in Fig. 4, the highest entropy difference is between

levels 2 and 3. Hence, level 3 was selected for further analysis. The reconstruction process was applied

to the signal of this level to produce a reconstructed data shown in Fig. 5.

The frequency analysis method was then applied to the reconstructed data where we can isolate

the presence of harmonics, thereby confirming the presence of the limit cycle attractors. We start the

normalization process by calculating Hilbert’s envelop to the signal. Fig. 6 shows a comparison between
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Fig. 4 Wavelet entropy energy of the time series data at each decomposition level.

Fig. 5 The reconstructed wavelet coefficients associated with level 3.

Fig. 6 The identified signal with Hilbert’s envelop.

the obtained data and the calculated Hilbert’s envelop. Fig. 7 presents the produced signal after the

normalization scheme where all of the values of the signal are less than or equal to unity. This normalized

carrier enables us to provide a ready and sharper local energy based measure of any abrupt changes. The

instantaneous frequency of the data can then be computed by applying Hilbert transform. This approach

will enable us to get an exact instantaneous frequency as a derivative of the phase function. Fig. 8 shows

the time-frequency presentation of the time series data generated by our stochastic model system.
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Fig. 7 Normalized data by Hilbert transform.

Fig. 8 Time-frequency presentation of the simulated data.

It can be seen in Fig. 8 that the proposed approach accurately locates the change points in the

time series data. Note that, as shown in Fig. 1 the sample trajectory has two abrupt turning points

when crossing the x-axis. Since the sample trajectory crosses the x-axis six times, we expect to find six

time instances where the sought abrupt changes occur. Six peaks were identified in the time-frequency

representation by means of our algorithm. These changes occur at t = 2.0s, t = 5.3s, t = 10.2s, t = 14.9s

t = 19.6s, and t = 24.4s. This suggests that the instantaneous frequency is able to capture the change

points produced by the stochastic system.

We further investigate the effect of additive white noise on detecting abrupt changes in the time series

data produced by our model system (1) and (2) with different noise intensity levels. We set σ equal to 1.3,

2, 5, and 30. Fig. 9 shows evolution of sample paths for the four different cases. It can be seen that adding

higher noise intensity significantly increases the difficulty of detecting change points in system dynamics.

In the first two cases when σ = 1.3 and 2.0, all the six frequency peaks are successfully identified. The

abrupt changes occur approximately at the same location as in the test case (σ = 1.0). By analysing

the third and fourth case, the algorithm was also able to identify the change points. However, we found

that there are some missing instantaneous frequency peaks. We conjecture that high noise intensity has
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(a) σ = 1.3 (b) σ = 1.3

(c) σ = 2.0 (d) σ = 2.0

(e) σ = 5.0 (f) σ = 5.0

(g) σ = 30.0 (h) σ = 30.0

Fig. 9 Subfigures (a,c,e,g) show evolution of the limit cycles in the phase plane for the model system (1) and (2) with
different noise intensity σ. Subfigures (b,d,f,h) show the corresponding instantaneous frequency peaks of the stochastic
model system (1) and (2) for different noise intensity σ.

.
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a linearising effect on the underlying nonlinearity present in the system, and it is the nonlinearity which

creates the abrupt turning points in system evolution. There is also a slight shift in the identified peaks

as a result of the influence of noise on the system. Hence, the noise intensity should not exceed a certain

system dependent threshold level in order to detect such abrupt changes in the evolution.

6 Conclusion

In this article, we propose a method based on wavelet and frequency analysis for detecting abrupt changes

in the process data of the van der Pol oscillator model with noise. The advantage of this technique

is that it allows us to decompose the data into a set of independent coefficients (mono-components)

corresponding to orthogonal basis functions. These mono-components are then analysed and recombined

into a signal that contains the instantaneous frequency reflections, but not the system main response or

noise. The output is a series of peaks, each of which occurs when the system trajectory exhibits abrupt

change. The effectiveness of the developed algorithm in detecting such changes arises from the fact that

abrupt changes manifest themselves as spikes in the time-frequency plane. Thus, the proposed method

is promising in detecting not only features such abrupt changes but also discontinuities in time series

data. Further work is aimed at investigating the algorithm’s ability to locate change points in the data

generated by switched control systems with noise. The discontinuities which we seek to identify in such

systems occur due to switchings between differentiable vector fields.
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