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A multidisciplinary approach has been applied to the preparation of antibacterial Ag zeolite/silicone 

elastomer composites aimed at products that satisfy a range of requirements, namely good mechanical 

properties after zeolite incorporation and strongly antibacterial. Zeolite X was synthesised and used as 

antibacterial agent after ion-exchange with silver. The high level of silver (14 wt.%) within the zeolite 10 

enabled the preparation of antibacterial composites containing a relatively low level of zeolite (2 wt.%). 

The composites showed strong efficacy against Escherichia coli and Staphylococcus epidermidis. 

Organic functionalization of the zeolite with organo-silanes prior blending with the matrix usefully 

improved composite mechanical properties and reduced color development in Ag zeolite containing 

silicone elastomers. Organo-silane modification did not substantially affect the antibacterial performance 15 

of the materials; the number of viable cells of both Gram-positive and Gram-negative bacteria was 

reduced to beyond detection limits within 24 hours of incubation. Efficacy of the Ag zeolite containing 

composites against the yeast Candida albicans was found to be substantially less than observed with the 

two bacteria. This study demonstrates that evaluation of polymer composites needs to be performed via a 

multidisciplinary approach in order to avoid compromising a particular aspect of the materials’ design, 20 

characteristics or performance, including the use of reliable testing methods to determine the latter. 

Introduction 

The use of medical devices has become an essential part of modern 

day medicine and as a consequence, microbial infections resulting 

from bacterial adhesion and colonization to biomaterial surfaces is 25 

of major concern. The continuously increasing levels of antibiotic 

resistance have prompted research into adding therapeutic antimi-

crobials to medical devices with long-term activity to prevent 

infections.1 Zeolites are excellent candidates for such applications. 

They can be exchanged with metal antimicrobials, they are 30 

chemically and thermally stable, their pore structure facilitates the 

slow release of antibacterial metals and also there is a possibility 

for regeneration upon metal depletion by secondary ion-exchange. 

Silver is a well-known antibacterial agent with an ability to act on 

a broad spectrum of organisms.2 Silver is also the most popular 35 

metal of choice for preparation of antibacterial zeolites. The Ag 

leaching and the antimicrobial activity of Ag-exchanged zeolite A 

over a 12 month period has been studied by Yan and co-workers.3 

The study demonstrated that Ag zeolite coatings retained their 

antibacterial activity after 12 months submersion in distilled water 40 

and that they were capable of killing Escherichia coli (E. coli) 

upon repeated exposures. The killing efficacy of Ag zeolites has 

been found to depend not only on the silver content but also on the 

geometry of zeolite pores.4 Zeolites with a three-dimensional pore 

system showed superior antibacterial activity compared to one-45 

dimensional zeolites, probably due to the hindered release of Ag in 

the latter. Further, the antibacterial properties of Ag exchanged into 

zeolites having the same structure (FAU-type) have been found to 

differ depending on the Si/Al ratio.5 Ag-exchanged zeolite Y 

(Si/Al ratio = 2.83) displayed lower minimum inhibitory 50 

concentration against bacteria compared to zeolite X (Si/Al ratio = 

1.64), both containing similar Ag loading of 9.7 wt.% and 9.8 

wt.%, correspondingly. This result was attributed to the presence 

of metallic silver in zeolite X. The bactericidal activity of Ag 

zeolites has also been found to depend on the zeolite physical form, 55 

namely powders or zeolite aggregates.6 Although Ag zeolites of 

very low Ag loading (0.2 wt.%) have shown high activity against 

bacteria,7 higher Ag loadings, 2 wt.% and above, have been 

typically used.5,6,8-12 

 Silver zeolites have been used as antimicrobial additives for a 60 

number of biocompatible polymers at loadings of 1-10 wt.%.13-20 

Amongst these works, only Pehlivan et al. used an organic 

modifier to improve the compatibility between the polymer and the 

Ag zeolite, however, the antibacterial properties of the composite 

films prepared were not reported in their work.14 Modification of 65 

zeolites with silane coupling agents has been extensively studied 

for the preparation of mixed matrix membranes containing zeolite 

fillers.21-23 Despite numerous studies demonstrating the need for 

organic modification of inorganic fillers in order to avoid 

interfacial incompatibility (leading often to poor dispersion), Ag 70 

zeolites have rarely been modified prior to composite 
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fabrication.15-20 Often, only antimicrobial properties have been 

studied without determining how the mechanical properties of the 

composites changed upon Ag zeolite loading.16-19 In addition, in 

some of the antibacterial tests, it was not evident whether a 

neutralizer had been used to deactivate silver following incubation 5 

of inoculated surfaces.16-18 We have recently reported that the 

differences with and without neutralizing the silver can be 

substantial.24 In another clinical study, silver zeolite impregnated 

central vascular catheters have shown a significantly lower 

colonization rate compared to non-impregnated catheters, however 10 

the zeolite type or the silver content were not provided in this 

paper.25 

 All the above published studies clearly demonstrate that often 

certain aspects, which can be essential from industrial point of 

view, are omitted, thereby limiting their usefulness. In this study, 15 

a multidisciplinary approach combining three research areas, 

namely zeolites, polymer science and microbiology, has been 

applied to prepare and evaluate zeolite containing silicone elasto-

mers. Firstly, a zeolite with a high ion-exchange capacity was 

synthesized (zeolite X). Silver was ion-exchanged into the zeolite 20 

to obtain a high silver loading of ca. 14 wt.% in order to provide 

sustained Ag release over long periods of time. The Ag zeolite was 

modified using two organo-silanes and then added to silicone 

elastomers at 2 wt.%. The antimicrobial effect of the silver zeolite 

containing polymers was tested against selected organisms. 25 

Staphylococcus epidermidis (S. epidermidis), Escherichia coli (E. 

coli) and Candida albicans (C. albicans) are amongst the 

organisms, which are recognized to be involved in medical device 

related infections. Coagulase-negative staphylococci such as S. 

epidermidis are often associated with prosthetic implant infections 30 

such as hip and knee replacements,26 and E.coli is one of the main 

organisms involved in catheter related urinary tract infections.27 C. 

albicans is an opportunistic organism and a causal agent of 

infections associated with prosthetic devices in the oral cavity.28 

Experimental 35 

Synthesis procedures 

A batch of NaX zeolite was prepared, and used in all further 

experiments, from a gel with the molar composition 8NaOH : 

0.2Al2O3 : 1.0SiO2 : 200H2O.29 The mixture was homogenized for 

1 h, transferred to 500 mL polypropylene bottles and 40 

hydrothermally treated at 80 °C for 24 h. The zeolite formed was 

recovered by filtration, washed with deionized water to obtain a 

filtrate with neutral pH and dried at 60 °C overnight. 

 The as-made zeolite NaX was added to 0.05 M silver nitrate 

solution (AgNO3, Alfa Aesar) at a weight ratio of 1 to 20. The 45 

slurry was stirred for 72 h at room temperature. The Ag-exchanged 

zeolite was filtered and dried at 60 °C overnight. For the 

preparation of functionalized silver zeolites, 2 g of AgX were 

mixed with 20 g 10 wt.% solution of 3-(trimethoxysilyl) 

propylmethacrylate (GE Bayer Silicones) or triethoxy vinylsilane 50 

(97%, Aldrich) in cyclohexane and stirred for 30 min at room 

temperature. The zeolite was then washed several times with 

cyclohexane by decanting. The modified zeolites were dried at 50 

°C for 72 h. The two samples prepared were labelled as M-AgX 

and V-AgX, correspondingly. All procedures were performed in 55 

the dark using foil to cover the glassware. 

 Composites were prepared from M511 maxillofacial silicone 

elastomer (SE) (Technovent, UK). The system’s components were 

mixed for 60 s under vacuum using Multivac 4 (Degussa AG, 

Germany). After a resting time for 15 min, the uncured SE was 60 

spread into 13 cm x 13 cm x 0.1 cm metal mold (lined with 

polyethylene sheet) using a pallet knife. The mold was placed on a 

vibrating table for 10-15 min to bring the air bubbles to the surface, 

and the bubbles were burst using a thin wire. The molding was 

cured at room temperature for 24 h. After curing, the SE was 65 

removed from the mold and stored in a plastic bag. A plastic sheet 

was used in the mold the facilitate the recovery of the cured SE. 

Zeolite-containing silicone elastomers were prepared similarly 

after adding 2 wt.% zeolites to the uncured SE mixture. SE 

containing NaX, AgX, M-AgX and V-AgX were prepared and 70 

stored as described. 

Characterization methods 

The morphology of the zeolites and dispersion quality within the 

SE/zeolite composites was studied using a JEOL 5600LV 

Scanning Electron Microscope (SEM). The crystallinity of the 75 

zeolites was studied using a PANalytical X’Pert X-ray 

diffractometer (XRD) employing Cu Kα radiation (40 kV and 30 

mA) and a PIXcell detector. Semi-quantitative chemical analysis 

was performed on uncoated sample pellets by energy-dispersive X-

ray spectroscopy (EDS) using a detector from Oxford Instru-80 

ments. The average of three measurements was used in the 

determinations. Nitrogen adsorption isotherms were recorded on a 

Micromeritics ASAP 2020 surface area analyzer at -196 °C. 

Samples were degassed at 110 °C for 12 h prior to analysis. 

Specific surface areas were calculated using the BET equation in 85 

the 0.05–0.3 range of relative pressures, whereas external surface 

areas and micropore volumes were determined by the t-plot 

method. Powder samples diluted in KBr were examined by diffuse 

reflectance Fourier transformed infrared (DRIFT) spectroscopy 

using a Thermo Nicolet Nexus FT-IR spectrometer fitted with a 90 

Spectra-Tech DRIFTS cell (Thermo Fisher Scientific, Waltham 

USA). DRIFT spectra were measured be-tween 400 and 4000 cm-

1 with an instrumental spectral resolution of 4 cm-1 using 160 scans. 

Raman-scattering experiments were performed on NaX and AgX 

zeolite powders with a Horiba Jobin-Yvon T64000 triple-grating 95 

spectrometer equipped with a LN2-cooled Symphony CCD 

detector and an Olympus BH41 microscope with a 50x long-

working distance objective. Spectra in the range 15 - 4000 cm-1 

were collected in backscattering geometry using the 514.5 nm line 

of an Ar+-ion laser (Coherent Innova 90C FreD). The laser power 100 

on the sample surface was 5.9 mW, while the diameter of the laser 

spot on the sample surface was approximately 2 μm. No 

polarization, orientation, or spatial dependence of the Raman 

spectra was detected, indicating that the average linear crystallite 

size is much smaller than linear size of the probed sample volume. 105 

The achieved spectral resolution was 1.9 cm-1, while the precision 

in the peak positions was 0.35 cm-1. The measured spectra were 

baseline corrected for the continuum photoluminescence 

background, temperature-reduced to account for the Bose-Einstein 

occupation factor and then the spectral range 15-650 cm-1 was 110 

fitted with Lorentz functions to accurately determine the peak 

positions, full widths at half maximum (FWHMs) and intensities.  
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 To check whether Ag enters the zeolite structure in mono- or 

divalent ionic form, Fourier transform infrared (FTIR) 

spectroscopic experiments in the far-IR range (50-550 cm-1) were 

conducted on NaX and AgX powders as well as on reference 

mechanical mixtures of NaX with 10 wt.% commercial Ag(I) 5 

(99.99%, Alfa Aesar) and Ag(II) (98%, Alfa Aesar) oxides. FTIR 

spectra were measured in transmission with a Bruker IFS66 v/S 

equipped with a Globar white source, a DTGS detector, and a 6-

m Si/Mylar beamsplitter. In order to avoid artificial absorption 

bands from rotation transitions of atmospheric molecules, in 10 

particular from H2O molecules, the far-IR spectra were measured 

in the sample compartment under a vacuum of 3 mbar. Samples 

have been prepared as ethanol suspensions, placed onto Si 

windows (Korth, 400 m thick, wedged) and the ethanol 

evaporated off. A background spectrum was collected from a clean 15 

Si window. The mirror scanning velocity was 5 kHz and the 

instrumental spectral resolution was 4 cm-1. Spectra were averaged 

over 32 scans. An attempt was made using synchrotron IR 

radiation (IR2 beamline at ANKA/KIT) to collect far-IR spectra 

from individual zeolite particles NaX, AgX, M-AgX, and V-AgX 20 

before and after their incorporation into elastomers. An IR 

microscope, sealed in a home-made compartment and purged with 

N2 gas was used for the analysis. Although the humidity was 

reduced to ~ 3%, the spectral range below 300 cm-1 was still 

confounded by the H2O rotation bands, which prevented definitive 25 

interpretation. 

 Hexane (Fisher) swelling measurements on the composite 

samples were carried out at ambient temperature. Sample 

dimensions were 1 x 2 x 0.1 cm and the immersion was for 24 h. 

After immersion, excess hexane was removed from samples before 30 

weighing using filter paper. Degree of swelling was calculated 

using the following equation: 

 For tensile testing, dumbbell specimens with a width of 3.6 mm 

were cut from the approximately 1 mm thick SE sheets. A 

universal testing machine, Tensometer 2000 (Alpha 35 

Technologies), was used and the tensile tests were carried out at a 

crosshead speed of 500 mm min-1. The dumbbell specimens were 

placed within the tensile grip, with a separation of 20 mm between 

them. Prior to testing, the thickness of each specimen was 

measured using a digital caliper at the center and at the ends. The 40 

tensometer measured extension of samples and a 100 N load cell 

measured the applied force. Five samples per compound were 

tested. 

Antimicrobial tests 

A single colony of E. coli (ATCC 8739) or S. epidermidis (NTCC 45 

11046) from a freshly cultured nutrient agar (Oxoid, UK) plate was 

removed using a sterile loop and inoculated in 100 mL nutrient 

broth (Oxoid, UK). The broth was incubated for 18-24 hours in a 

37 °C rotary shaker incubator set at 150 rpm. The liquid culture 

was centrifuged at 3000 rpm for 10 min to form a pellet. The 50 

supernatant was discarded and the pellet was re-suspended in 

sterile ringers solution (Oxoid, UK). An optical density of 1.0 at 

540 nm wavelength was obtained, and a 1:10 dilution was 

performed in ringers solution. This suspension was used to 

inoculate the surfaces. The dimension of the SE test pieces was 20 55 

mm x 10 mm. Test pieces were sterilized by autoclaving at 121 °C 

for 15 min prior to use and each sample placed in a separate sterile 

petri dish. The antimicrobial activity of test specimens was carried 

out using ISO 22196 standard (Measurement of antibacterial 

activity on plastics and other non-porous surfaces) as guidance. 50 60 

μL of the standardized bacterial suspension (4 x 106 colony 

forming units (CFU) mL-1 for E. coli and 2 x 105 CFU mL-1 for S. 

epidermidis, respectively) was pipetted onto the sample surface. A 

20 mm x 10 mm polyethylene film was placed on top and gently 

pressed down to ensure the bacteria spread evenly on the surface; 65 

care was taken to ensure the bacteria did not leak beyond the edges 

of the film. Immediately after inoculation, surfaces were placed 

individually into 10 mL neutralizing agent (14.6% sodium 

thiosulphate and 10% sodium thioglycollate in 100 mL distilled 

water; 5 mL was filter sterilized into 495 mL sterile distilled 70 

water)30 and vortexed for 30 s to detach bacteria. The neutralizing 

agent acts to neutralize the bactericidal effect of the silver at the 

selected time points. We have demonstrated previously that the 

silver continues to exert its killing effect on the bacteria after the 

test time in the absence of a neutralizing agent.24 Bacteria were 75 

enumerated by serial dilution (1:10) and plating followed by CFU 

determination. 100 μL were spread onto nutrient agar plate and 

plates were incubated overnight at 37 °C. Colony counts were per-

formed and CFU mL-1 were calculated using the equation: 

The remaining surfaces in Petri dishes were incubated at 37 °C and 80 

tested as above at 5 and 24 hours. The value of viable counts was 

determined from an average of the counts on three inoculated 

surfaces. 

 The same procedure was applied for C. albicans (NCYC 1363) 

but the overnight growth was performed in sabouraud dextrose 85 

liquid medium (Oxoid, UK). 50 μL of the standardized Candida 

suspension (2 x 104 CFU mL-1) was inoculated onto the test pieces. 

Serial dilutions (1:10) were made as above and 100 μL were plated 

out onto sabouraud dextrose agar. The surfaces were incubated at 

37 °C and tested at 0, 24 and 48 hours. 90 

 A 2 tailed homoscedastic Student’s t-test was per-formed using 

Microsoft Excel 2013 to compare antimicrobial test data sets. If the 

p-value was less than 0.05, then results were statistically 

significant. 

Results and discussion 95 

Zeolite characteristics 

The zeolite NaX prepared had a Si/Al ratio of 1.4. SEM analysis 

indicated that the sample was highly crystalline and free from 

impurities of other phases (Fig. 1a,c). The crystal sizes ranged 

between 400 nm and 3.5 μm. The introduction of Ag and the 100 

functionalization with organic silanes did not influence the 

morphology or the crystal size distribution of the zeolite samples 

(Fig. 1b,d). EDS analysis showed that 86% of the Na in NaX (15.9 

wt.%) was ion-exchanged with Ag in AgX (Table 1). The Si/Al 

ratio of 1.4 for NaX slightly increased as a result of the modifica-105 

tion procedures to 1.5 for AgX and M-AgX and 1.7 for V-AgX, 

respectively, indicating that there may be a certain degree of Al 

leakage. However, EDS analysis does not allow quantification of  
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Table 1. Ag content, BET surface area (SBET), micropore volume (V) and 

external surface area (SEXT) of zeolite and modified zeolite samples 

Sample Ag, wt.% SBET, m2g-1 V, cm3g-1 SEXT, m2g-1 

NaX - 570.7 0.26 43.1 

AgX 14.1 510.6 0.23 40.6 

V-AgX 9.6 449.6 0.20 42.5 
M-AgX 8.8 351.2 0.16 18.3 

Fig. 1 SEM images at two different magnifications of (a,c) zeolite NaX 

and (b,d) typical SEM images of organically modified AgX crystals. 

the degree of Al leakage. The Ag content of zeolite samples 5 

decreased as a result of silane treatment (Table 1), and a C content 

of ca. 6 wt.% was detected in both M-AgX and V-AgX samples. 

 The phase purity was further confirmed by XRD analysis (Fig. 

2). All observed Bragg peaks in the XRD patterns of all four 

samples could be indexed to the FAU-type zeolite structure.31 Ag 10 

ion-exchange resulted in negligible change in the Bragg peak 

positions and widths, indicating high degree of crystallinity for all 

four samples. The substitution of Ag for Na only changed the 

relative intensity of some diffraction peaks, which was most pro-

nounced for the (220), (311) and (331) faujasite peaks. In the XRD 15 

pattern of NaX, the intensity decreased in the order I(220) > I(331) 

> I(311), whereas in the XRD pattern of all AgX zeolites, the order 

was I(311) > I(220) > I(331). Thе relative intensity variations are 

related to the change in the charge-balancing cations from Na to 

Ag.5 20 

 The gas adsorption data are shown in Fig. S1 (ESI), and Table 

1. Nitrogen adsorption isotherms were all type I isotherms typical 

of microporous materials suggesting that the Ag ion-exchange and 

organic modification did not change the nature of the samples’ 

pore structures. However, there was a progressive decrease in the 25 

micropore volume in the order NaX > AgX > V-AgX > M-AgX. 

The external surface area of all zeolites was similar except for the 

M-AgX. Considering the XRD results, the decrease of the 

micropore volume is most likely due to the larger ionic radius of 

Ag+ compared to Na+ as well as inaccessibility of the nitrogen 30 

adsorbate gas to the pore structure of silane-modified samples and 

not due to loss of crystallinity. 

 The organic modification was further studied by DRIFT 

analysis (ESI Fig. S2). First, all zeolite bands in the range 460 – 

1100 cm-1 remained unchanged confirming preservation of the 35 

zeolite structure in the modified samples. The organic modification 

resulted in additional C-H bands in the range 1200 – 1500 cm-1, 

which were more evident in the spectrum of M-AgX, and also 

bands in the range 2800 – 3000 cm-1 for M-AgX.22,32 In addition, 

a shoulder at 1700 cm-1 was present in spectrum of M-AgX,  40 

 
Fig. 2 XRD patterns of NaX and Ag-containing zeolites. Miller indices 

are given in mFd3 . 

associated with the carbonyl C=O group of the M modifier.33 The 

organic functionalization was further proved by the ability to 45 

obtain dispersions of V-AgX and M-AgX in chloroform and their 

aggregation in distilled water (ESI Fig. S3). 

 Figure 3a shows the Raman spectra of NaX, AgX, V-AgX, and 

M-AgX samples. The Raman spectra of the silane-modified 

samples V-AgX and M-AgX resembled the Raman spectrum of 50 

AgX, i.e. the influence of the organic modifier on the skeleton 

vibrations was negligible. All three Ag-exchanged samples 

showed the same spectral differences in the range of framework 

vibrations as compared to NaX: (i) slight shift of the main Raman 

peak near 510 cm-1 towards lower energies accompanied with a 55 

slight broadening (see Fig.3b) and (ii) additional weak peaks near 

570 and 600 cm-1. 

 The strongest peak in the Raman spectrum of zeolite X is 

generated by the double 6-membered rings (D6Rs) typical of FAU 

framework topology.34 Previous single-crystal XRD analysis of 60 

Ag-exchanged FAU has revealed that a large part of the 

incorporated Ag+ ions are accommodated in the D6Rs.35 On the 

other hand, a lower-energy shift and broadening of the peak near 

510 cm-1 along with appearance of a peak near 570 cm-1 due to the 

existence of single 4-membered rings (S4R) has been observed in 65 

amorphous FAU.34,36 Raman scattering in the vicinity of 600 cm-1 

is typical of small 3-membered rings in amorphous framework 

silicates.37 Therefore, the Raman data presented here indicate that 

the incorporation of Ag in part induces local structural defects, but 

otherwise the overall zeolite framework topology is preserved. The 70 

Raman scattering in the range 3200-3600 cm-1, originating from 

O-H bond stretching is suppressed in the spectrum of AgX. 

Thermogravimetric analysis showed a negligible reduction in the 

water content of AgX compared to NaX (ESI Fig. 4S) indicating 

that this region of the Raman spectra was very sensitive to 75 

variations in the samples’ water content. The level of 

photoluminescence background above 3000 cm-1 was unfortu-

nately too high for M-AgX and V-AgX to draw any conclusions 

about H2O in the pores of these two samples. 

 The comparison of far-IR spectra of AgX with the spectra of 80 

reference mechanical mixtures of zeolite NaX and monovalent and 

divalent silver oxides (Fig. 4) indicate that indeed Ag enters the 

zeolite structure in a monovalent ionic form, in accordance with 

the results from single-crystal XRD analysis34 and EXAFS 

analysis.38 
85 
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Fig. 3 a) Raman spectra of NaX, AgX, V-AgX and M-AgX; spectra are 

vertically offset for clarity. The arrows mark the additional peaks 

observed in all Ag-exchanged samples. b) Position and FWHM of the 

strong peak near 510 cm-1 as determined by fitting the spectra. 5 

Silicone elastomers 

Zeolite and modified zeolite samples were added to silicone 

elastomers at 2 wt.% loading. Digital images of the obtained 

polymers are shown in Fig. 5. The elastomers containing NaX and 

AgX without organic functionali-zation contained aggregated 10 

particles, whereas the polymers prepared with the addition of 

functionalized AgX (M-AgX and V-AgX) appeared rather 

homogeneous. The color of all elastomers containing Ag zeolite 

particles was darker compared to the neat SE. However, AgX/SE 

and M-AgX/SE appeared yellow-brownish, whereas V-AgX/SE 15 

seemed to be considerably less colored, approaching the overall 

appearance of NaX/SE. Since the amount of Ag in M-AgX is 

slightly larger than that in V-AgX (Table 1), the concentration of 

Ag cannot be the sole reason for the color differences observed 

between M-AgX/SE and V-AgX/SE. Brownish discoloration of 20 

polymers upon addition of Ag has been observed before and 

attributed to the reduction of silver within the polymer.19 A 

combined computational and experimental study of the electronic 

structure of d10-ion-exchanged zeolites has demonstrated that the 

color of evacuated (H2O-free) silver containing sodium zeolite X 25 

changes to yellowish/reddish due to electronic transition between 

Ag+ and the lone pair of adjacent O from the four-membered rings  

 
Fig. 4 Far-IR absorption spectra of zeolite X (NaX) and Ag-exchanged 

zeolite X (AgX) as well as of reference mechanical mixtures of zeolite X 30 

with 10 wt.% Ag(I) oxide (NaX + 10 wt.% Ag2O) and Ag(II) oxide (NaX 

+ 10 wt.% AgO). The arrows mark the spectral bands that can 

discriminate monovalent and divalent Agn+. Spectra are vertically offset 

for clarity. 

 35 

Fig. 5 Digital images of silicone elastomers containing NaX, AgX, M-

AgX and V-AgX zeolites. The middle image shows the neat SE. The 

arrows point to zeolite aggregates present in samples NaX/SE and 

AgX/SE. 

in the absence of H2O.39 The reduction of H2O in the zeolite pores 40 

during the preparation of the silicone elastomers maybe the reason 

for the brownish colorization observed in AgX/SE. In the case of 

M-AgX/SE and V-AgX/SE, organic functionalization may have 

partially prevented the water from leaving the zeolite channels 

during preparation thus reducing the degree of colorization, which 45 

reduction was more pronounced for the V-AgX/SE sample. 

 SEM images of cryo-fractured SE/zeolite composite fracture 

surfaces (Fig. 6) supported visual observation of poor zeolite 

dispersion (Fig. 5). Zeolite aggregates and poor filler-matrix 

adhesion are apparent in NaX/SE and AgX/SE (Fig. 6a). In 50 

contrast, composites based on the organo-silane treated zeolite 

showed good filler dispersion and good filler – matrix adhesion 

(Fig. 6b). 
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Table 2 Swelling degree and mechanical properties of the silicone 

elastomers prepared 

Sample Swelling degree, 
% 

Tensile strength, 
MPa 

Break % 

SE 1.77 5.98±0.56 661.6±65.00 

NaX/SE 3.74 3.01±0.78 557.5±91.55 
AgX/SE 3.09 4.50±0.26 523.1±42.86 

V-AgX/SE 1.79 5.63±0.51 694.4±42.45 

M-AgX/SE 1.88 5.89±0.31 649.5±21.00 

 
Fig. 6 Typical SEM images of cryo-fractured surfaces of SE/zeolite 

composite containing: (a) unmodified zeolite (NaX or AgX) and (b) 5 

organo-silane modified Ag zeolite (M-AgX and V-AgX gave similar 

images). 

 The hexane swelling characteristics and the mechanical 

properties of the composites and unfilled matrix are given in Table 

2. The degree of swelling was lower when organo-silane modified 10 

NaX or AgX were added to SE; this is entirely consistent with 

increased filler – matrix interaction. The latter is confirmed by the 

improved mechanical properties arising from organo-silane 

modification, which is also supported by the fracture analysis (Fig. 

6). These results indicated that the coupling agents improved the 15 

compatibility between the zeolite and the polymer and resulted in 

high quality SE/zeolite composites. 

Antimicrobial activity 

The antibacterial activity of Ag-containing silicone elastomers was 

tested against Gram-negative E. coli (Fig. 7) and Gram-positive S. 20 

epidermidis (Fig. 8) after 0, 5 and 24 h of incubation. The SE and 

NaX/SE samples did not show any antibacterial activity in all tests. 

For the AgX/SE samples, E. coli counts were reduced from > 105 

CFU mL-1 to below the limit of viable cell detection of <10 CFU 

mL-1 within 24 hours, and S. epidermidis was reduced from > 104 25 

CFU mL-1 to < 10 CFU mL-1 within 24 hours. There were some 

variations in the killing efficacy of S. epidermidis after 5 h for the 

different Ag containing samples, but these were not significant (p 

> 0.05 ). The bactericidal mechanism of silver ions against E. coli 

and S. aureus has been studied by Feng et al.40 The authors 30 

attributed the inhibitory effect of Ag+ to loss of replication abilities 

of the DNA molecules and inactivation of the bacterial proteins as 

a result of a reaction between the silver ions and the protein thiol 

groups. In addition, similar morphological changes were observed 

in the two types of bacteria but the Gram-positive S. aureus 35 

demonstrated a stronger defense system against Ag+. These results 

may explain the greater reduction in the number of viable E. coli 

cells after 5 h of incubation compared to that of S. epidermidis on 

SE containing functionalized Ag-zeolites. This was not observed 

for SE/Ag zeolite samples, probably because of local fluctuations 40 

in Ag concentration in test pieces as a result of the presence of 

aggregates in this sample (Fig. 5). 

 The antimicrobial activity of the samples against the yeast C. 

albicans was determined after 0, 24 and 48 h of incubation (Fig.  

 45 

Fig. 7 Viable bacterial cell counts of E. coli in the presence of SE and SE 

containing zeolites. 

 
Fig. 8 Viable bacterial cell counts of S. epidermidis in the presence of SE 

and SE containing zeolites. 50 

 
Fig. 9 Viable bacterial cell counts of C. albicans in the presence of SE 

and SE containing zeolites. 

9). C. albicans was found to be less sensitive to the action of Ag 

containing samples compared to bacteria. A small decline in the 55 

number of viable cells was observed over the first 24 h for all test 

samples, although this was only significant when comparing V-

AgX/SE at 0 h to 24 h (p = 0.014). At the 48 h sampling time, an 

increase of C. albicans on the test surfaces was apparent, although 
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again only significant when comparing V-AgX/SE at 24 h to 48 h. 

The reason for this slight increase may be because C. albicans 

reproduces by budding followed by release of daughter cells, 

which could have led to the higher colony count. The results in Fig. 

9 suggest that the Ag+ concentration released from the polymers is 5 

not high enough to kill yeast. Eukaryotic yeast cells are larger and 

more complex than prokaryotic bacterial cells, and are less 

sensitive to many antimicrobial agents. Ferreira et al. found that 

Ag-containing FAU-type zeolites displayed higher minimum 

inhibitory concentrations for yeast compared to bacteria.5 It is 10 

therefore likely that an increase in the Ag-zeolite loading in the SE 

could also lead to greater efficacy against C. albicans. However, 

this was not an objective of the present study. 

 An attempt was made to determine the concentrations of 

released Ag from the different surfaces prepared after immersion 15 

in distilled water (ESI). Silver concentrations were determined to 

be around 0.005 ppm for all surfaces and no trends could be 

established for the influence of the samples’ type or the exposure 

time on the concentrations of released Ag. Greulich et al. have 

reported that silver ions can be toxic not only to bacterial but also 20 

to human cells in the concentration range 0.5 to 5 ppm of silver.41 

The determination of the toxicity of the materials reported in this 

work towards mammalian cells is of paramount importance for a 

biomedical application and will be addressed in a future study. 

Conclusions 25 

A multidisciplinary approach was applied to the development of 

antibacterial silicone elastomers (SE)/zeolite composites. Silver-

zeolite X was prepared and incorporated into silicone elastomers 

after organo-silane modification. Raman spectroscopy revealed 

that Ag ion-exchange of the zeolites introduced local structural 30 

defects, however the overall zeolite structure was preserved. Far-

IR analysis indicated that Ag was present in monovalent form. 

Organo-silane modification of the zeolite was found to be essential 

for retention of composite mechanical properties, relative to the 

unfilled matrix. The latter, together with reduced swelling in 35 

hexane and SEM evidence, indicated that organo-silane 

modification lead to improved filler-matrix interaction. Reduction 

of ionic Ag to metallic Ag led to discoloration of the SE/Ag zeolite 

composites. Organo-silane modification led to a decrease in the 

extent of discoloration; interestingly this effect was strongest with 40 

the vinyl silane. The antibacterial tests revealed 4 to 3-log 

reductions in the viability of E. coli and S. epidermidis (after 24 h 

of incubation), respectively, on contact with SE/Ag zeolite 

composites. C. albicans was less sensitive to the test materials than 

the bacteria tested. A higher concentration of agent might prove 45 

more effective against this microorganism. The composites 

prepared could potentially be used for medical devices featuring 

long-term antibacterial activity to prevent infections. The present 

work and previous research clearly demonstrate that a 

multidisciplinary approach is required for preparation and 50 

evaluation of antimicrobial polymers containing inorganic fillers 

in order to avoid compromising key aspects, e.g., zeolite char-

acteristics, polymers mechanical properties and physical 

appearance or use of reliable antimicrobial tests. 
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