- 1 The assessment of the impact of aviation
- 2 NO_x on ozone and other radiative forcing
- 3 responses the importance of representing
- 4 cruise altitudes accurately

6 A. Skowron, D. S. Lee, R. R. De León

7

- 8 ¹Dalton Research Institute, Manchester Metropolitan University, John Dalton
- 9 Building, Chester Street, Manchester M1 5GD, United Kingdom.

- 11 **Abstract:** Aviation emissions of NO_x result in the formation of tropospheric
- ozone (warming) and destruction of a small amount of methane (cooling),
- positive and negative radiative forcing effects. In addition, the reduction of
- methane results in a small long-term reduction in tropospheric ozone (cooling)
- and, in addition, a long-term reduction in water vapour in the stratosphere
- 16 (cooling) from reduced oxidation of methane, both negative radiative forcing
- impacts. Taking all these radiative effects together, aircraft NO_x is still thought to
- result in a positive (warming) radiative effect under constant emissions
- 19 assumptions. Previously, comparative modelling studies have focussed on the
- variability between models, using the same emissions database. In this study, we
- 21 rather quantify the variability and uncertainty arising from different estimations
- of present-day aircraft NO_x emissions. Six different aircraft NO_x emissions
- inventories were used in the global chemical transport model, MOZART v3. The
- inventories were normalized to give the same global emission of NO_x in order to
- remove one element of uncertainty. Emissions differed in the normalized cases
- 26 by 23% at cruise altitudes (283 hPa 200 hPa, where the bulk of emission
- occurs, globally). However, the resultant short-term ozone chemical
- perturbation varied by 15% between the different inventories. Once all the
- 29 effects that give rise to positive and negative radiative impacts were accounted
- for, the variability of net radiative forcing impacts was 94%. Using these
- radiative effects to formulate a net aviation NO_x Global Warming Potential (GWP)

32	for a 100-year time horizon resulted in GWPs ranging from 60 to 4, over an order
33	of magnitude. It is concluded that the detailed placement of emissions at
34	chemically sensitive cruise altitudes strongly affects the assessment of the total
35	radiative impact, introducing a hitherto previously unidentified large fraction of
36	the uncertainty of impacts between different modelling assessments. It is
37	recommended that future formulations of aircraft $NO_{\boldsymbol{x}}$ emissions focus efforts on
38	the detailed and accurate placement of emissions at cruise altitudes to reduce
39	the uncertainty in future assessments of aviation $NO_{\ensuremath{x}}$ impacts.
40	
41	
42	Keywords: Aviation, radiative forcing, emissions, nitrogen oxides, ozone response

1 Introduction 43 44 45 The impact of aviation NO_x emissions on the production of tropospheric ozone 46 (O₃) has been investigated since the early 1970s (Hidalgo and Crutzen, 1977). 47 Several thematic research programmes in the US and Europe investigated 48 aircraft NO_x effects on tropospheric chemistry in the 1980s and 1990s (see Lee 49 et al., 2010 for a summary). 50 Despite the length of time over which this effect has been investigated, it still 51 52 represents an active research area. One particular milestone was the IPCC 53 (1999) Special Report on 'Aviation and the Global Atmosphere', which 54 summarized results of a number of 3D global chemical transport models (CTMs), 55 which were relatively newly developed over 2D models. The IPCC (1999) 56 highlighted the finding that whilst NO_x emissions from the existing fleet of 57 subsonic aircraft resulted in a small increase in tropospheric O₃, there was also a 58 small but significant reduction in ambient CH₄ (for an equilibrium calculation of 59 constant emissions), since CH₄ has a lifetime of approximately 8–12 years and 60 takes some time to respond to an additional NO_x increase. The IPCC thus 61 identified a positive ozone radiative forcing (RF) and a negative RF associated 62 with a NO_x increase from aircraft. 63 Wild et al. (2001) also identified that with this long-term CH₄ decrease, a small 64 65 decrease in O₃ also resulted (again, for equilibrium conditions). However, it has taken some time to realise that this O₃ decrease could be significant over the 66 67 longer time-period and that the overall RF response from aircraft NO_x arises 68 from one positive and two negative RF responses. More recently, Myhre et al. 69 (2011) summarized a number of model responses to an aircraft NO_x increase and 70 also highlighted a fourth RF response in that a decrease in CH₄ also ultimately resulted in a small negative RF response from water vapour in the stratosphere. 71 72 Any CH₄ response takes decades to come to an equilibrium response and its 73 mixing time means that it can enter the stratosphere where it can be oxidised to

water vapour. The water vapour results in a positive forcing in the stratosphere,

75 so that any reduction in CH₄ will result in a reduction in water vapour forcing in 76 the stratosphere and can therefore be viewed as a negative RF from aviation NO_x. 77 78 The complexity of NO_x-O₃-CH₄ system is intensified not only through different 79 timescales of responses of its components (positive forcing is short-term, 80 negative responses are long-term), but also by differences of their spatial 81 extents: while short-term O_3 enhancement is regional, the CH_4 , CH_4 -induced O_3 82 and stratospheric water vapour (SWV) act on a global scale. 83 84 Many studies have been published over the past 20 years assessing the impact of aviation NO_x emissions on tropospheric chemistry and RF (see Lee et al., 2010 85 86 for a recent review, along with Myhre et al., 2011). Among them, the 87 investigations regarding the impact of aircraft NO_x from modified cruise altitudes 88 also exist (Gauss et al., 2006, Frömming et al., 2012). However, these studies are 89 not always straightforward to compare, since the models have had varying 90 degrees of complexity in terms of completeness of representation of 91 tropospheric and stratospheric chemistry, horizontal and vertical resolution. 92 93 There are numbers of tools which are utilized in order to place on a common 94 scale different climate impacts. The most traditional are radiative forcing (RF) 95 and global warming potential (GWP). Radiative forcing (RF) is an accepted 96 measure of the strength of the perturbation of Earth-atmosphere system caused 97 by natural agents and human activity. The global warming potential (GWP) is a 98 ratio of the RF from the emission of a species relative to that of CO₂ for a nominal 99 kg release of both gases, integrated over given time horizon. While radiative 100 forcing is a backward looking measure, the global warming potential through its 101 relativity is one step further in the cause-effect chain. 102 103 In this paper, we revisit the NO_x impact on chemical composition of the 104 troposphere using a 3D CTM, MOZART v3 (Kinnison et al., 2007) and quantify 105 the individual RF responses from short-term O_3 increases, long-term CH_4 and O_3 106 decreases, and CH₄ feedback effects on stratospheric water vapour. Most 107 importantly, the impact of using different emission inventories is investigated in

108 this work, since all previous comparative studies have utilised different models. 109 Here, we take a novel approach of using a single model with different 110 (normalized) emissions that have slightly different assumptions and therefore 111 vertical distributions of emissions in order to better understand the impact of 112 height distribution of aircraft NO_x emissions and their representation in 113 emission inventories. 114 2 Methodology and experimental design 115 116 117 2.1 Aircraft emission inventories 118 119 The aircraft inventory datasets are usually generated from an aircraft movement 120 database, the characteristic of a global fleet in terms of type of aircraft and 121 engines, fuel-flow model, calculation of emissions at vertical scale from fuel flow, 122 landing and take-off emissions (LTO). The aircraft movement databases are a 123 mixture of a flight plan data, flight operation data, radar data, Official Aviation 124 Guide (OAG) data (www.oag.com) and idealized great circle routes analysis. A 125 comprehensive comparison of global aviation inventories was recently 126 presented by Olsen et al. (2013). 127 Here, six different aircraft inventories were investigated: 128 129 1. AEDT (Aviation Environmental Tool) for the year 2006 (Wilkerson et al., 130 2010). The global aircraft data was provided by <u>Volpe National Transportation</u> 131 Systems Centre. The aircraft fuel burn and emissions were estimated based on 132 an individual flight by flight analysis. This inventory is based on radar data for 133 Europe and North America, which account for 70-80% of global aircraft 134 movements, and for the remaining flight movements the OAG data were used. 135 2. 136 AEM (Advanced Emission Model) for the year 2006 137 (www.eurocontrol.int/services/advanced-emission-model). AEM is a stand-138 alone system (developed and maintained by EUROCONTROL), which calculates 139 aviation emissions and fuel burn. It uses a few basic databases: aircraft, aircraft

140	engines, fuel burn rates and emissions indices. AEM is aimed to analyse the flight
141	profile data, on a flight by flight bases, for different air traffic scenarios.
142	
143	3. AERO2K inventory for the year 2002 (Eyers et al., 2005) was developed
144	under the EC 5th Framework Programme. The dataset is based on a radar
145	tracked flight data for North America and Europe. Data for the rest of the world
146	are covered by scheduled flights data from Back Aviation database (Back, 2002)
147	and by routing information. Forty representative aircraft types were applied in
148	order to calculate the fuel burn and emissions for each flight using means from
149	the PIANO (www.piano.aero) aircraft performance model.
150	
151	4. REACT4C (EC 7th Framework Programme Reducing Emissions from
152	Aviation by Changing Trajectories For the benefits of Climate) for the year 2006
153	(www.react4c.eu). The input data are the CAEP-8 comprehensive set of aircraft
154	movements, which are individual movements for 6 weeks of the year, scaled to a
155	full year's movements. The air traffic movements are from radar data for flights
156	for Europe and North America and the remaining global flight movements are
157	taken from OAG. The models used to generate this inventory are: the fuel-flow
158	model PIANO (Project Interactive Analysis and Optimization model) and global
159	emissions model FAST (The Future Aviation Scenario Tool) (Owen et al., 2010),
160	similarly as for QUANTIFY and TRADEOFF data presented below.
161	
162	5. QUANTIFY (Quantifying the Climate Impact of Global and European
163	Transport Systems) for a year 2000 (Owen et al., 2010). The inventory consists
164	of OAG data for scheduled flights and AERO2K's traffic for non-scheduled aircraft
165	movements. The QUANTIFY dataset, once released, was scaled to the
166	International Energy Aviation (IEA) aviation fuel burn total for year 2000.
167	
168	6. TRADEOFF for the year 1992 (Gauss et al., 2006). The dataset was created
169	based on a flight track data from the EUROCONTROL and FAA from the year
170	1991/1992. Four months of aircraft movements: July 1991, October 1991,
171	January 1992 and April 1992 were scaled to a full year's movement. The global
172	aircraft movement data are a combination of air traffic control and scheduled

173	data. Sixteen civil aircraft-engine type combinations represent the global fleet of
174	aircraft.
175	Aircraft inventories used in this study are three dimensional gridded datasets,
176	with a $1^{\circ}\text{x}1^{\circ}$ horizontal resolution and a vertical resolution which varies from
177	1km through 610m to 500 ft. An overview of the characteristics of each
178	inventory is presented in Table 1. Military emissions have not been taken into
179	account in this study.
180	
181	Each dataset represents different years of emissions, which results in different
182	amounts of burned fuel ranging from 210 Tg/yr for AEDT (2006) to 114 Tg/yr
183	for TRADEOFF (1992) which affects the emitted NO_x . In order to exclude the
184	differences in the amount of injected \mbox{NO}_x and consequently its impact on \mbox{O}_3
185	response, the $\ensuremath{\text{NO}_x}$ emissions of each inventory were scaled to the same global
186	total as the REACT4C , which is $2.33\ Tg\ (NO_2)/yr.$
187	
188	2.2 Global chemical transport model of the atmosphere
189	
190	The Model for Ozone and Related Tracers, version 3 (MOZART-3) was used in
191	this study. It is a 3D Chemistry Transport Model (CTM) comprehensively
192	evaluated by Kinnison et al. (2007) and extensively used for different
193	applications, e.g. impact of El Niño and La Niña events on dynamical, thermal and
194	chemical structure of the middle atmosphere (Sassi et al., 2004), distribution of
195	stratospheric O_3 and downward O_3 transport in the UTLS region during the
196	sudden stratospheric warming event in January 2004 (Liu et al., 2009), forecast
197	analysis of the ozone hole over Antarctica in 2008 (Flemming et al.,2011),
198	evaluation of Ozone Depletion Potentials for n-propyl bromide (Wuebbles et al.,
199	2011).
200	
201	MOZART-3 is built on the framework of the transport model MATCH (Model for
202	Atmospheric Transport and Chemistry) (Rasch et al., 1997) and accounts for
203	advection (flux-form semi-Lagrangian scheme of Lin and Rood (1996));
204	convection (shallow and mid-level convection scheme of Hack et al. (1994) and

205	deep convective transport of Zhang and MacFarlane (1995)); boundary layer
206	exchanges (Holstag and Boville, 1993) and wet and dry deposition (Brausser et
207	al., (1998) and Müller (1992), respectively).
208	
209	MOZART-3 represents detailed chemical and physical processes from the
210	troposphere through the stratosphere. The chemical mechanism consists of 108
211	species, 218 gas-phase reactions, 71 photolytic reactions (including the
212	photochemical reactions associated with organic halogen compounds) and 17
213	heterogeneous reactions. The kinetic and photochemical data is from NASA/JPL
214	(Sanders et al., 2006).
215	
216	The anthropogenic (non-aviation) and biomass burning emissions are taken
217	from Lamarque et al. (2010) and represent the year 2000. The biogenic surface
218	emissions are taken from the European Union project POET (Precursors of Ozone
219	and their Effects on Troposphere) (Granier et al., 2005).
220	
221	The horizontal resolution applied in this study is T42 ($\sim 2.8^{\circ}$ x 2.8°) and the
222	vertical domain extends from the surface to 0.1hPa with 60 hybrid layers (Figure
223	1). The transport of chemical compounds is driven by the meteorological fields
224	from European Centre for Medium Range Weather Forecasting (ECMWF),
225	reanalysis ERA-Interim for the year 2000 (Simmons et al., 2007).
226	
227	Seven experiments were performed, one reference (no-aircraft) run and six
228	perturbation (aircraft) simulations, each starting in January 2000 and finishing
229	in December 2000; each simulation was preceded by one year spin-up. The
230	aircraft perturbation is derived by extracting the difference between aircraft and
231	no-aircraft experiments. The calculations of O_3 change and CH_4 lifetime change,
232	along with RFs, covers the surface-1 hPa domain. Since our experiments are
233	performed for 2 years, the magnitude of aircraft stratospheric response is not
234	fully representative. The O_3 depletion due to aircraft NO_x emissions, from current
235	fleets, is relatively small (-0.01 DU), thus it does not affect O_3 changes
236	significantly. However, the O_3 column change, presented in this paper is
237	overestimated by 5.1% for surface-1 hPa domain and the short-term O ₃ RF is

238 underestimated by 0.6%. The CH₄ lifetime reduction and its negative RF are 239 overestimated by 0.2%. 240 2.3 241 Radiative forcings and global warming potentials calculations 242 243 The short-term O₃ radiative forcings are calculated off-line using the Edwards – 244 Slingo radiation code (Edwards and Slingo, 1996). This comprehensive radiative 245 transfer model was developed in the UK Meteorological Office and is based on 246 the two-stream equations in both the long-wave and short-wave spectral 247 regions. Cloud treatment is based on averaged ISCCP D2 data (Rossow and Schiffer, 1999). Climatological fields of temperature and specific humidity are 248 249 based on ERA-Interim data (Simmons et al., 2007). The calculations were performed on monthly O₃ MOZART-3 output. To account for a stratospheric 250 251 adjustment a 20% reduction was applied to the O₃ RF, following the work of 252 Stevenson et al. (1998). 253 254 A one year CTM simulation is not long enough to calculate the change in CH₄ 255 concentration, as it takes decades for CH₄ to come into equilibrium with the 256 perturbed OH fields. That is why to obtain the steady state concentrations of CH₄ 257 in the perturbation runs the change in CH₄ lifetime owing to reaction with OH 258 was calculated for each inventory, which then, based on Fuglestvedt et al. (1999), 259 was multiplied by the reference CH₄ concentration and a feedback factor of 1.4 260 (Prather et al., 2001) to reflect the effect of changes of CH₄ on its own lifetime: $[CH_4]_{ss} = [CH_4]_{ref} * (1 + 1.4 * \Delta\alpha_0/\alpha_{ref}), \text{ where } \Delta\alpha_0 = \alpha_{per} - \alpha_{ref} \text{ and } [CH_4]_{ref} \text{ is a}$ 261 262 reference run concentration. 263 The RF of CH₄ is calculated using a simplified expression defined in Ramaswamy 264 et al. (2001). The impact of methane change on stratospheric water vapour 265 (SWV) is also included and as described in Myhre et al. (2007) the RF of SWV is 266 assumed to be 0.15 times that of methane RF. The CH₄-induced O₃ is computed 267 based on an assumption that 10% increase of CH₄ leads to 0.64 DU increase of 268 ozone (Prather et al., 2001) and this ozone has a specific RF of 42 mW m⁻² DU⁻¹ 269 (Ramaswamy et al., 2001).

270	The t	emporal evolution of net RF following the $NO_{\mbox{\tiny X}}$ emission is required in order	
271	to calculate GWP. It can be assumed that the constant one year emission is a step		
272	emiss	sion followed by a decay of the resulting forcing from the end of the year	
273	onwa	rds. The GWP calculations are based on a methodology described by	
274	Fugle	stvedt et al., (2010). The primary-mode lifetime is taken into account, while	
275	the lo	ong-term effects (CH ₄ with SWV and CH ₄ -induced O ₃) are integrated over	
276	time	horizons.	
277			
278	3	Results	
279			
280	3.1	Aircraft NO_x emissions	
281			
282	Since	various methodologies have been applied to derive different inventories,	
283	the d	istribution of NO_x emissions reveals some discrepancies. The geographical	
284	distri	bution shows rather common picture (Figure 2). The image of altitudinal	
285	spaci	ng is not so unique (Figure 3).	
286			
287	The N	Northern Hemisphere is the main location of aircraft NO_x emissions:	
288	emiss	sions in 30-60N and 0-30N regions constitute 65% and 24%, respectively,	
289	for A	EDT, AEM and REACT4C inventories; AERO2K, QUANTIFY and TRADEOFF	
290	have	slightly more emissions in mid northern latitudes (68%) and less over the	
291	north	tern tropical region (21%). Most of aircraft NO_x emissions occur over North	
292	Amer	rica, Europe and South-East Asia. AERO2K, QUANTIFY and TRADEOFF have	
293	a bit l	lower emissions, by \sim 4%, in 60-120E region and a bit more, by \sim 4%, in	
294	120-6	60W region than AEDT, AEM and REACT4C.	
295			
296	The la	argest part of the NO_x emissions are injected between 9 and 12 km for most	
297	of the	e inventories, only AEDT and AEM have more aircraft NO_{x} over 12 km than	
298	the o	ther inventories. AERO2K's NO_x emissions at cruise altitudes constitute only	
299	43%	of its total aircraft NO_x emissions (Figure 3), which, when compared with	
300	57%	of QUANTIFY, 58% of AEM, 59% of REACT4C and TRADEOFF and 63% of	
301	AEDT	T, is quite low. The 'missing' ${\sim}10\%$ is hidden under AERO2K's relatively high	
302	NO _x e	emissions at mid-altitudes, which is 34%, while for all the rest of inventories	

303	It is around 25%. The difference in the vertical structure of NO_x emissions
304	between AERO2K and the other datasets is significant.
305	The original aircraft emission data, with their regular vertical gridding (500ft,
306	610m or 1km) are interpolated by MOZART-3 to its irregular (with hybrid sigma
307	layers every $\sim\!1$ km in the upper troposphere and lower stratosphere (UTLS)
308	region) vertical spacing (Figure 1). Figure 4 shows the vertical distribution of
309	aircraft NO_x emissions in MOZART-3 for the six aircraft inventories. Each dataset
310	represents the same amount of global total aircraft NO_x (2.33 Tg NO_2). The initial
311	resolution of dataset plays a significant role when it is redistributed into the
312	lowest CTM's vertical layers. Taking into account that the vertical resolution in
313	MOZART-3 near surface is high (\sim 45 m) the datasets with higher resolution
314	(AEM and AERO2K) have more aircraft NO_x emissions near ground (1000-950
315	hPa).
316	In MOZART-3 most of aircraft NO_x emissions are injected in the 283-200 hPa
317	region, where the emissions differ by 23% when the greatest (TRADEOFF) and
318	the smallest (AERO2K) numbers are taken into account. The peak of aircraft NO_{x}
319	emissions is observed at 227 hPa, with the greatest values occurring for
320	REACT4C and TRADEOFF. AEDT and AEM have more emissions at 200 hPa and
321	at higher altitudes, than other inventories, which raises the possibility of more
322	efficient accumulation of N molecules (Seinfeld and Pandis, 2006).
323	
324	3.2 Chemical perturbation
325	
326	The response of the NO_x - O_3 - CH_4 system affected by aviation NO_x emissions is
327	presented in Figure 5. The positive peak of NO_x response is observed at 227 hPa
328	for all inventories, except for AEDT and AEM, which have their maximum one
329	level higher, at 201 hPa. This suggests that potential of NO_{x} perturbation is
330	greater for higher NO_x emissions. The greatest NO_x response is observed for
331	AEDT and the smallest for AERO2K, which consequently affects the O_3
332	perturbation, which follows the same pattern of differences between datasets in
333	terms of emissions. The largest O_3 response takes place at 227 hPa level for all

334 inventories. The enhanced O_3 changes the oxidizing capacity of the troposphere. 335 In general, aircraft NO_x perturbs the OH/HO₂ ratio: increases OH and decreases 336 HO₂. The positive OH response is observed through all tropospheric domain, the 337 negative HO₂ response is observed mainly at flight altitudes. While the impact of 338 AERO2K inventory on NO_x and O₃ in UTLS region is relatively weak, it is 339 responsible for greater aircraft OH in mid-altitudes and consequently CO and 340 CH₄ changes, than other datasets. The more efficient CO oxidation results in a 341 greater AERO2K's HO₂ perturbation in mid-altitudes compared to other 342 inventories. 343 The same amount of emitted NO_x, but different vertical distributions of NO_x 344 345 emissions lead to significant differences in short-term O₃ response between inventories. Table 2 gives global and annual means of total column O₃ change (in 346 347 DU) and ozone production efficiency values for six different inventories. The 348 greatest column change is observed for AEDT (0.56 DU) and AEM (0.54 DU) and 349 the smallest is for AERO2K (0.48 DU). Also QUANTIFY shows a relatively lower 350 O₃ perturbation (0.50 DU) compared with the other FAST inventories REACT4C 351 and TRADEOFF (0.52 DU). 352 The O_3 production in the troposphere has been shown to be sensitive to the height of the initial precursor emissions (Köhler et al., 2008). This is indirectly 353 354 observed in our results, where more molecules of ozone are produced per 355 molecule of N emitted for inventories with NO_x emissions at higher altitudes, it 356 being 30 for AEDT, 29 for AEM, 28 for REACT4C, 27 for QUANTIFY and 357 TRADEOFF and 25 for AERO2K (Table 2). This shows that a lower potential, by 358 15%, is observed for AERO2K inventory compared to AEDT dataset in terms of 359 ozone production, which is consistent with the spread of O_3 column change. 360 361 The methane lifetime due to destruction by OH in a reference case was observed 362 as 8.88 years. In contrast to the O₃ responses, the CH₄ lifetime reductions are 363 observed to be quite uniform among different inventories (Table 3) ranging from 364 -0.074 years for AERO2K and TRADEOFF, -0.073 years for REACT4C to -0.070 365 years for AEDT. 366

367	3.3 Radiative forcing and global warming potential for aviation NO_x emissions
368	
369	The latitudinal distributions of short-term O_3 RF for the six inventories are
370	shown in Figure 6. The pattern for each inventory shows similar characteristics
371	and it is consistent with zonal-mean distributions of NO_x emissions (Figure 2)
372	(both rather short-lived), with dominating role of short-term O_3RF over the
373	Northern Hemisphere. While agreement in the resultant short-term $O_3\ RF$
374	between inventories at high southern and northern latitudes is observed the
375	tropical region (30 $^{\rm o}\text{S-40}^{\rm o}\text{N}$) shows discrepancies. The largest spread in the
376	short-term O_3RF between inventories occurs over northern tropical belt (15-
377	$30^{\rm o}\text{N})\text{,}$ where locally the standard deviation reaches 3.0-3.5 mWm $^{\rm -2}\text{,}$ over Middle
378	East, Pacific and North Africa.
379	
380	Table 4 presents the global and annual mean RF (mWm $^{-2}$) for short-term O_3 ,
381	CH ₄ -induced O ₃ , CH ₄ , and SWV for a series of inventories. The standard deviation
382	of short-term $\ensuremath{O_3}$ values is 1.0 mWm $\ensuremath{^{-2}}$ (with AEDT and AERO2K resulting in
383	highest and lowest numbers, 14.3 and 11.5 mWm $^{\text{-}2}$, respectively). The CH $_4$
384	responses are much more consistent, the standard deviation is $0.2\ mWm^{-2}$ (with
385	values ranging from -7.1 mWm ⁻² for AERO2K and TRADEOFF and -6.7 mWm ⁻² for
386	AEDT). The net aircraft NO_x RF values ranges from 3.6 mWm ⁻² for AEDT, 2.3
387	mWm ⁻² for REACT4C to 0.2 mWm ⁻² for AERO2K, with 1.2 mWm ⁻² standard
388	deviation.
389	
390	Myhre et al. (2011) reported GWP values for aviation NO_x emissions using the
391	same aircraft emissions, the same experimental design and a range of five
392	models. The differences in their results constitute a good insight into
393	uncertainties which arise from usage of different global chemistry models. In
394	contrast, the spread in results which are presented in this study gives a measure
395	of differences that arise from usage of different aircraft inventories. The
396	resulting GWP values for three time horizons (20, 100 and 500 years) are given
397	in Table 5. The values show significant differences, which are enhanced with
398	larger time horizons; however, the sign of calculated responses shows a
399	consistently net nositive value. The largest differences come from the AFDT and

400	AERO2K inventories, being 57%, 93% different for 20, 100 time horizons
401	respectively. The increase of discrepancy with larger time horizons can be
402	explained by CH_4 , as its response 'remains' for a few decades after NO_x emission.
403	The GWP reduction between a 20 year time horizon and a 100 year horizon is
404	larger for inventories where the CH_4 lifetime reduction is more enhanced, e.g. it
405	is 82% for AEDT, 83% for AEM, 85% for REACT4C, 87% for QUANTIFY and
406	TRADEOFF, 97% for AERO2K. Due to relatively short lifetimes of the net $NO_{\mbox{\scriptsize x}}$
407	components the GWP (H=500) differs between inventories only by the CO_2
408	integral in the denominator.
409	
410	4 Discussion
411	
412	Figure 7 shows the vertical profiles of the relative difference of NO_x , O_3 , OH and
413	HO ₂ responses to that of the AEDT inventory (chosen simply as it gives the
414	largest overall response). The aircraft $NO_{\boldsymbol{x}}$ perturbation for AEDT occurring at
415	227 hPa is about 25% greater than that for AERO2K. The difference increases
416	with higher altitudes and constitutes 55% at 100 hPa. On the contrary, AERO2K's
417	\mbox{NO}_x significantly exceeds that of AEDT at mid altitudes, where the difference
418	reaches 500% at 762 hPa. The response of the O_3 for these discrepancies is not
419	the same. It is observed that AERO2K's O_3 response indeed dominates in the low-
420	troposphere region (1000-600 hPa) but only by about 4% , whereas AEDT's
421	dominance at cruise altitudes reaches 25% and 50% at 100 hPa. The same
422	pattern is observed for all inventories, just the scale of differences is not so well
423	pronounced. The linear correlation between additional NO_x and O_3 response is
424	observed in UTLS region, being the strongest at 227 hPa and becoming weaker at
425	higher altitudes, for AERO2K the ratio of $\ensuremath{\text{O}}_3$ to $N\ensuremath{\text{O}}_x$ is 1 at 227 hPa and 0.9 at
426	100hPa (e.g. for AEM it is 1 at 227 hPa and 0.7 at 100 hPa, for REACT4C it is 1.5
427	at 227 hPa and 0.8 at 100 hPa).
428	
429	Interestingly, the greatest O_3 aircraft perturbation did not introduce the
430	strongest CH ₄ reduction, as might be expected from the chemistry. The
431	altitudinal distribution of emissions can hide the explanation: a significant
432	fraction of AERO2K's NO_x emissions occurs in the mid-troposphere. The ${\sim}4\%$'s

433 dominance of AERO2K's O₃ in 900-700 hPa region significantly changes the oxidizing capacity of the low troposphere (there is more OH by about 30% than 434 435 for AEDT). Annual mean concentrations of OH and CH₄ and temperature are 436 greater at lower altitudes which catalyse OH production and CH₄ destruction. 437 438 Another implication of AERO2K's enhancement of O₃ concentrations at lower 439 altitudes is that this O₃ is not as radiatively efficient as O₃ at higher altitudes 440 (Lacis et al., (1990), Köhler et al., (2008)). 441 442 It is worth to mention, that not only the height is important, also the geographical distribution of aircraft NO_x emissions plays a certain role in terms 443 444 of O₃ RF response. The NO_x emissions from low latitudes have a greater impact 445 on climate forcings than the NO_x emissions from high latitudes (Berntsen et al., 446 (2005), Köhler et al., (2012)) The AERO2K dataset has lower, compared to other 447 inventories, NO_x emissions at cruise altitudes over East Asia and over the Pacific (not shown here), which was also noted by Olsen et al. (2012). Even though 448 449 certain regional differences in the distribution of aircraft NO_x emissions occur, 450 they are not as powerful as altitudinal discrepancies in terms of O₃ production 451 (based on work to be published). 452 453 Figure 8 shows a short-term O_3 RF and net NO_x RF responses normalized to 1 Tg 454 of emitted N reported for a number of model simulations (Stordal et al. (2006), 455 Hoor et al. (2009), Myhre et al. (2011), Hodnebrog et al. (2011, 2012)). The 456 inter-model mean O₃ and NO_x RF values are 22.2 and 5.0 mW m⁻²/Tg(N) yr⁻¹, 457 respectively. While for short-term O₃ responses most of the model results are 458 placed within a one standard deviation range, the net NO_x RF values constitute a 459 more diverse picture. This can be explained by the inter-study differences in the 460 components taken into account for net NO_x calculation. Myhre et al. (2011) 461 pointed out that the ratio of the CH₄ lifetime change to the O₃ column change is very specific for each model, which also influence the net NO_x numbers. The 462 463 results produced by MOZART-3 are in good agreement with other studies. 464

465	The spread in RF values (20% for O_3 RF and 94% for net NO_x RF) between six
466	aircraft inventories is of a smaller magnitude to that of uncertainties between
467	models; however, it is still significant. Myhre et al. (2011) reported a 36% spread
468	in O_3 RF values and 54% in net NO_x RF values between a set of five different
469	models (note that Myhre et al. (2011) account for the time-history emissions
470	(Grewe and Stenke, 2008) in their long term effects); Hoor et al. (2009) reported
471	a 64% spread in O_3 RF and 89% in net $NO_x \mbox{(net is without SWV)}$ values between
472	five different models and Stordal et al. (2006) showed a 33% spread in O_3RF and
473	59% in net NO_x RF (net is a sum of short-term O_3 and CH_4 only) values between
474	three different models. This places the discrepancies between different
475	inventories on the same scale of importance as inter-model differences.
476	
477	5 Conclusions
478	
479	The coupled NO_x - O_3 - CH_4 system, as affected by aviation NO_x emissions, results in
480	a regional short-term \mbox{O}_3 positive radiative forcing and a global long-term \mbox{O}_3 , \mbox{CH}_4
481	and SWV negative responses. Nonetheless the overall radiative forcing induced
482	by current day emissions of aviation \ensuremath{NO}_x from 3D CTM MOZART-3 is positive as
483	shown by this study, ranging from 3.6 to 0.2 mW m ⁻² .
484	
485	By using one model (3D CTM MOZART-3) and a series of aircraft inventories
486	(AEDT, AEM, AERO2K, REACT4C, QUANTIFY, TRADEOFF) scaled to the same
487	global total (2.33 Tg (NO_2)/yr), the sensitivity of O_3 response due to the
488	discrepancies in vertical distribution of aircraft NO_x emissions was investigated.
489	It is observed that the differences in the vertical distribution of aircraft \mbox{NO}_x
490	emissions between inventories, with AEDT and AERO2K being the most
491	different, strongly influence the aircraft short-term O_3 response and
492	consequently the net NO_x effect.
493	
494	The aviation impact on RF per unit emission of NO_{x} differs from inventory to
495	inventory and ranges from 5.2 to 0.3 mW $m^{-2}/Tg(N)$ yr ⁻¹ (for AEDT and AERO2K,
496	respectively). The responses of short-term O_3 RF range from 20.5 to 16.5 mW m $^{-}$
4.97	2/Ta(N) yr-1 (for AEDT and AERO2K respectively). It is observed that both the

498 O₃ and net NO_x RF are greater for inventories with higher peak of perturbation of 499 NO_x concentrations, which is a direct result of the amount of emitted NO_x at 500 higher altitudes. 501 502 The spread between aircraft short-term O₃ RF (20%) and aircraft net NO_x RF (94 503 %) values, which emerges from usage of different aircraft inventories should not 504 be neglected as it constitutes a significant range of uncertainty. Careful attention 505 should be paid to formulating aircraft emission inventories where precise cruise 506 altitudes are defined. 507 508 509 Acknowledgements: Two anonymous reviewers are thanked for their constructive 510 comments. We thank Bethan Owen, Ling Lim and Emily Gray for help in understanding 511 the aircraft inventory peculiarities and Ole Amund Søvde for helpful remarks on the 512 manuscript. The CAEP/MDG, EUROCONTROL 513 (http://www.inventair.eurocontrol.int/home) and projects: AERO2K 514 (http://cate.mmu.ac.uk/aero2k.asp), REACT4C (http://www.react4c.eu), QUANTIFY 515 (http://www.pa.op.dlr.de/quantify), TRADEOFF (http://www.iac.ethz.ch/tradeoff) are 516 thanked for aircraft datasets. This study was funded by the UK Department of Transport. 517 518 519 References 520 521 Back, 2002. Back Information Services, Aviation Link: OAG user's guide for software 522 version 2.3, A division of Back Associates, Inc. 523 524 Berntsen, T. K., Fuglestvedt J. S., Joshi M. M., Shine K. P., Stuber N., Ponater M., Sausen R., 525 Hauglustaine D. A., and Li L., 2005. Response of climate to regional emissions of ozone 526 precursors: Sensitivities and warming potentials. Tellus, Series B: Chemical and Physical 527 Meteorology 57, 283-304. 528 529 Edwards J. M., Slingo A., 1996. Studies with a flexible new radiation code. I: Choosing a 530 configuration for a large-scale model. Quarterly Journal of the Royal Meteorological 531 Society 122, 689-719. 532 533 Eyers C. J., Addleton D., Atkinson K., Broomhead M. J., Christou R. A., Elliff T. E., Falk R., 534 Gee I. L., Lee D. S., Marizy C., Michot S., Middel J., Newton P., Norman P., Plohr M., Raper 535 D. W., Stanciou N., 2005. AERO2k Global Aviation Emissions Inventories for 2002 and 536 2025. QinetiQ Ltd, Farnborough, Hampshire QINETIQ/04/01113. 537 538 Flemming J., Inness A., Jones L., Eskes H. J., Huijnen V., Schultz M. G., Stein O., Cariolle D., 539 Kinnison D., Brasseur G., 2011. Forecasts and assimilation experiments of the Antarctic 540 ozone hole 2008. Atmospheric Chemistry and Physics 11, 1961-1977. 541

- 542 Frömming C., Ponater M., Dahlmann K., Grewe V., Lee D. S., Sausen R., 2012. Aviation-
- induced radiative forcing and surface temperature change in dependency of the
- emission altitude. Journal of Geophysical Research 117, D19104.

- Fuglestvedt J. S., Berntsen T. K., Isaksen I. S. A., Mao H., Liang X. Z. and Wang W. C., 1999.
- 547 Climatic forcing of nitrogen oxides through changes in tropospheric ozone and methane;
- global 3D model studies. Atmospheric Environment 33, 961-77.

549

- Fuglestvedt J. S., Shine K. P., Cook J., Berntsen T., Lee D. S., Stenke A., Skeie R. B., Velders
- G. J. M., Waitz I. A., 2010. Transport impacts on atmosphere and climate: Metrics.
- 552 Atmospheric Environment 44, 4648–4677.

553

- Gauss M., Isaksen I. S. A., Lee D. S., Søvde O. A., 2006. Impact of aircraft NO_x emissions on
- the atmosphere tradeoffs to reduce the impact. Atmospheric Chemistry and Physics 6,
- 556 1529-1548.

557

- Granier C., Guenther A., Lamarque J. F., Mieville A., Muller J. F., Olivier J., Orlando J.,
- Peters G., Petron G., Tyndall G., Wallens S., 2005. POET, a database of surface emissions
- of ozone precursors. (available at
- http://www.aero.jussieu.fr/projet/ACCENT/POET.php).

562

Grewe V., Stenke A., 2008. Airclim: an efficient tool for climate evaluation of aircraft technology. Atmospheric Chemistry and Physics 8, 4621-4639.

565

Hack, J. J., 1994. Parameterization of moist convection in the NCAR community climate model (CCM2). Journal of Geophysical Research 99, 5551–5568.

568 569

570

- Hidalgo H., Crutzen P.J., 1977. The tropospheric and stratospheric composition perturbed by NO_x emissions of high-altitude aircraft. Journal of Geophysical Research 82
- 571 (37), 5833-5866.

572

- Hodnebrog Ø., Berntsen T. K., Dessens O., Gauss M., Grewe V., Isaksen I. S. A., Koffi
- B., Myhre G., Olivié D., Prather M. J., Pyle J. A., Stordal F., Szopa S., Tang Q., van Velthoven
- P., Williams J. E., Ødemark K., 2011. Future impact of non-land based traffic emissions on
- atmospheric ozone and OH an optimistic scenario and a possible mitigation strategy.
- 577 Atmospheric Chemistry and Physics 11, 11293-11317.

578

- Hodnebrog Ø., Berntsen T. K., Dessens O., Gauss M., Grewe V., Isaksen I. S. A., Koffi
- B., Myhre G., Olivié D., Prather M. J., Stordal F., Szopa S., Tang Q., van Velthoven
- P., Williams J. E., 2012. Fure impact of traffic emissions on atmospheric ozone and OH
- based on two scenarios. Atmospheric Chemistry and Physics 12, 12211-12225.

583

- Hoor P., Borken-Kleefeld J., Caro D., Dessens O., Endresen O., Gauss M., Grewe V.,
- Hauglustaine D., Isaksen I. S. A., Jockel P., Lelieveld J., Myhre G., Meijer E., Olivie D.,
- Prather M., Schnadt Poberaj C., Shine K. P., Staehelin J., Tang Q., van Aardenne J., van
- Velthoven P., Sausen R., 2009. The impact of traffic emissions on atmospheric ozone and
- 588 OH: results from QUANTIFY. Atmospheric Chemistry and Physics 9, 3113-3136.

- 590 IPCC, 1999. Aviation and the Global Atmosphere. J. E Penner, D. H. Lister, D. J. Griggs, D. J.
- Dokken, M. McFarland, (eds), Intergovernmental Panel on Climate Change, Cambridge
- 592 University Press, Cambridge, UK.

- Kinnison D. E., Brausser G. P., Walters S., Garcia R. R., Marsh D. R., Sassi F., Harvey V. L., Randall C. E., Emmons L., Lamarque J. F., Hess P., Orlando J. J., Tie X. X., Randel W., Pan L.
- L., Gettelman A., Granier C., Diehl T., Niemeier U., Simmons A. J., 2007. Sensitivity of
- chemical tracers to meteorological parameters in the MOZART-3 chemical transport model, Journal of Geophysical Research 112, D20302, doi:10.1029/2006JD007879.

599

Köhler M. O., Radel G., Dessens O., Shine K. P., Rogers H. L., Wild O., Pyle J. A., 2008.
Impact of perturbations of nitrogen oxide emissions from global aviation. Journal of Geophysical Research 113, D11305.

603

Köhler M. O., Radel G., Shine K. P., Rogers H. L., Pyle J. A., 2012. Latitudinal variation of the effect of aviation NO_x emissions on atmospheric ozone and methane and related climate metrics. Atmospheric Environment 64, 1-9.

607

Lacis A., Wuebbles D., Logan J. A., 1990. Radiative forcing of climate by changes in the vertical distribution of ozone. Journal of Geophysical Research, 95, 9971-9981.

611

- Lamarque J. F., Bond T. C., Eyring V., Granier C., Heil A., Klimont Z., Lee D., Liousse C.,
- Mieville A., Owen B., Schultz M. G., Shindell D., Smith S. J., Stehfest E., Van Aardenne J.,
- 614 Cooper O. R., Kainuma M., Mahowald N., McConnell J. R., Naik V., Riahi K., van Vuuren D.
- P., 2010. Historical (1850–2000) gridded anthropogenic and biomass burning emissions
- of reactive gases and aerosols: methodology and application. Atmospheric Chemistry and Physics 10, 7017–7039.

618

Lee D. S., Owen B., Graham A., Fichter C., Lim L. L., Dimitriu D., 2005. Allocation of
 International Aviation Emissions from Scheduled Air Traffics - present Day and
 Historical. Report to UK Department for Environment, Food and Rural Affairs: London.

622

Lee D. S., Pitari G., Grewe, V., Gierens K., Penner J. E., Petzold A., Prather M., Schumann U.,
 Bais A., Berntsen T., Iachetti D., Lim L. L., Sausen R., 2010. Transport impacts on
 atmosphere and climate: Aviation. Atmospheric Environment 44, 4678–4734.

626627

Lin S. J., Rood R. B., 1996. A fast flux form semi-Lagrangian transport scheme on the sphere. Monthly Weather Review 124, 2046–2070.

628 629

- Liu Y., Liu C. X., Wang H. P., Tie X. X., Gao S. T., Kinnison D., Brasseur G., 2009.
- Atmospheric tracers during the 2003–2004 stratospheric warming event and impact of ozone intrusions in the troposphere. Atmospheric Chemistry and Physics 9, 2157–2170.

633

Myhre G., Nilsen J.S., Gulstad L., Shine K.P., Rognerud B., Isaksen I. S. A., 2007. Radiative forcing due to stratospheric water vapour from CH4 oxidation. Geophysical Research Letter 34, L01807.

637

Myhre G., Shine K. P., Rädel G., Gauss M., Isaksen I. S. A., Tang Q., Prather M. J., Williams J.
E., van Velthoven P., Dessens O., Koffi B., Szopa S., Hoor P., Grewe V., Borken-Kleefeld J.,
Berntsen T. K., Fuglestvedt J. S., 2011. Radiative forcing due to changes in ozone and
methane caused by the transport sector. Atmospheric Environment 45, 387–394.

642

Olsen S. C., Wuebbles D. J., Owen B., 2013. Comparison of global 3-D aviation emissions datasets. Atmospheric Chemistry and Physics 13, 429 – 441.

646 Owen B., Lee D. S., Lim L., 2010. Flying into the future: Aviation Emissions Scenarios to 2050. Environmental science and Technology 44, 2255-2260.

648 649

650

651 652 Prather M., Ehhalt D., Dentener F., Derwent R., Dlugokencky E., et al., 2001. Atmospheric chemistry and greenhouse gases. In: Houghton, J.T. (Ed.), Climate Change 2001: The Scientific Basis, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 239-287.

653 654

Ramaswamy V., Boucher O., Haigh J., Hauglustaine D., Haywood J., et al., 2001. Radiative forcing of climate change. In: Houghton, J.T., et al. (Eds.), Climate Change 2001: The Scientific Basis, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 349-416.

660 661

Rasch P. J., Mahowald N. M., Eaton B. E., 1997. Representations of transport, convection, and the hydrological cycle in chemical transport models: Implications for the modelling of short-lived and soluble species, Journal of Geophysical Research 102, 28,127–28,138.

663 664 665

662

Rossow W. B., Schiffer R. A., 1999. Advances in understanding clouds from ISCCP, Bulletin of the American Meteorological Society 80, 2261–2288.

666 667

Sander S., Friedl R., Ravishankara A., Golden D., Kolb C., Kurylo M., Molina M., Moortgat
 G., Finlayson-Pitts B., Wine P., Huie R., Orkin V., 2006. Chemical kinetics and
 photochemical data for use in atmospheric studies – evaluation number 15. Technical
 report, Jet Propulsion Laboratory (JPL) of the National Aeronautics and Space
 Administration (NASA).

673

Sassi F., Kinnison D. E., Boville B. A., Garcia R. R., Roble R., 2004. Effect of El Niño – Southern Oscillation on the dynamical, thermal, and chemical structure of the middle atmosphere. Journal of Geophysical Research 109, D17108.

677

Seinfeld J. H., Pandis S. N., 2006. Atmospheric Chemistry and Physics From Air Pollution
 to Climate Change, volume 1. John Wiley & Sons, Inc., second edition, pp 210-211.

680

Simmons A.J., Uppala S., Dee D., Kobayashi S., 2007. ERA-Interim: New ECWMF
 reanalysis products from 1989 onwards. ECMWF Newsletter 110.25-35.

683

Stevenson D. S., Johnson C. E., Collins W. J., Derwent R. G., Shine K. P., Edwards J. M.,
1998. Evolution of tropospheric ozone radiative forcing. Geophysical Research Letters
(20), 3819-3822.

687

Stordal F., Gauss M., Myhre G., Mancini E., Hauglustaine D. A., Köhler M. O., Berntsen T., Stordal E. J. G., Iachetti D., Pitari G., Isaksen I. S. A., 2006. TRADEOFFs in climate effects through aircraft routing: forcing due to radiatively active gases. Atmospheric Chemistry and Physics Discussions 6, 10733-10771.

692

Wilkerson J. T., Jacobson M. Z., Malwitz A., Balasubramanian S., Wayson R., Fleming G.,
 Naiman A. D., Lele S. K., 2010. Analysis of emission data from global commercial
 aviation: 2004 and 2006. Atmospheric Chemistry and Physics 10, 6391-6408.

697	Wild O., Prather M. J., Akimoto H., 2001. Indirect long-term global radiative cooling from
698	NOx emissions. Geophysical Research Letters 28, 1719-1722.
699	
700	Wuebbles D. J., Patten K. O., Wang D., Youn D., Martínez-Avilíes M., Francisco J. S., 2011.
701	Three-dimensional model evaluation of the Ozone Depletion Potentials for n-propyl
702	bromide, trichloroethylene and perchloroethylene. Atmospheric Chemistry and Physics
703	11, 2371–2380.