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In this study, a new centrifugal instability mode, which dominates within the boundary-
layer flow over a slender rotating cone in still fluid, is used for the first time to model
the problem within an enforced oncoming axial flow. The resulting problem necessitates
an updated similarity solution to represent the basic flow more accurately than previous
studies in the literature. The new mean flow field is subsequently perturbed leading to
disturbance equations that are solved via numerical and short-wavelength asymptotic
approaches, importantly yielding favourable comparison with existing experiments. Es-
sentially, the boundary-layer flow undergoes competition between the streamwise flow
component, due to the oncoming flow, and the rotational flow component, due to effect
of the spinning cone surface, which can be described mathematically in terms of a con-
trol parameter, namely the ratio of streamwise to axial flow. For a slender cone rotating
in sufficiently strong axial flow rates, the instability mode breaks down to Görtler-type
counter-rotating spiral vortices, governed by an underlying centrifugal mechanism, which
is consistent with experimental and theoretical studies for a slender rotating cone in
otherwise-still fluid.

1. Introduction

This paper advances the study of boundary-layer transition over rotating cones. Specif-
ically, we consider the convective instability of a slender rotating cone of half-angle 15◦

placed in oncoming uniform axial flows of various strengths. While the model presented
is valid for other slender half-angles in the range up to approximately 40◦, a half-angle of
15◦ is chosen as a representative value for definiteness and to facilitate comparison with
existing results in the literature by Kobayashi et al. (1983).

The article forms part of a series of studies which have used theoretical techniques to
construct the correct models of governing instability for both broad and slender rotating
cones. The current study represents a significant extension to the general problem in the
slender cone case, introduced when enforcing an oncoming axial flow.

Physically, the problem represents an accurate model of flow over a rotating conical
projectile, such as the nose of a spinning sharp missile. Here laminar–turbulent transition
within the boundary layer can lead to significant increases in drag, which has negative im-
plications for fuel efficiency, control and accurate missile-targeting. In such cases, delaying
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transition to turbulent flow is seen as beneficial, and controlling the primary instability
may be one route to achieving this. Ultimately, control of the input parameters of such
a problem may lead to design modifications and potential cost savings.

The purpose of applying a linear stability analysis in such a study is to reveal the
effect of varying the governing control parameter, namely the ratio of oncoming flow to
rotational flow. While the current authors have conducted cross-flow stability analyses
of the effects of enforced axial flow over broad rotating cones and disks (see Garrett &
Peake (2007), Garrett et al. (2010), Hussain (2010), Hussain et al. (2011)), this paper
represents the first such study to apply a centrifugal Görtler stability analysis to a slender
cone rotating within an axial flow. As such, the investigation extends the work of Hussain
et al. (2014), which presents a full description of the still fluid problem. Specifically, we
present a new and rigorous similarity solution for the basic flow, on which we perform a
stability analysis, employing both asymptotic and numeric methods.

Importantly, in this paper we consider only stationary instabilities, which are the
most easily observed in flow-visualisation experiments. While travelling modes, which
move along the surface in the axial direction, have been shown to play an important
role in the rotating-disk case (see Corke & Knasiak (1998), Hussain et al. (2011)), the
slender rotating-cone boundary layer is dominated by a different underlying centrifugal
instability. Such travelling modes are neglected in the present study, but their effect on
the flow maybe be considered in future investigations.

The paper is structured as follows: we begin by justifying the rationale for the choice of
new basic flow in §2, proceeding to formulate the problem in §3, using modified scalings
to correctly model terms arising from the centrifugal instability. Subsequently we outline
the asymptotic analysis in §4 and the corresponding numerical analysis in §5, along with
the major differences between the two solution methods. The results of the two theoretical
analyses are compared in §6, as well as with other numerical and experimental studies
in the literature. Finally, conclusions are drawn in §7.

2. Justification of the centrifugal mode and updated basic flow

We begin by discussing the rationale for the choice of an alternative instability mech-
anism for slender rotating cones, as well as the reasons for using a modified basic flow
field.

Firstly, flow visualization studies of flow over slender rotating cones by Kobayashi et al.
(1983) (axial flow) and Kobayashi & Izumi (1983) (still fluid) show the primary instability
is characterised by pairs of counter-rotating Görtler vortices. However, as the half-angle ψ
is increased beyond 40◦, their visualizations clearly show that these vortices change to co-
rotating vortices, as observed on rotating disks by Gregory et al. (1955), Kohama (1985),
Reed & Saric (1989), Kobayashi (1994), Corke & Knasiak (1998), Saric et al. (2003), for
example. It has been proposed by Garrett et al. (2009) and Hussain et al. (2014) that
the counter-rotating vortices are expected to arise from a dynamic instability induced by
the centrifugal force of the flow field, and the co-rotating vortices are attributed to an
underlying crossflow instability. Indeed, the existence of an alternative mode of instability
other than the crossflow dominated type I and type II modes used to model vortices on
broad rotating cones was discussed in Garrett et al. (2009). Subsequently a consistent
model to correctly characterise the dominant centrifugal-instability ‘Görtler’ mode for
slender rotating cones has been applied successfully by Hussain et al. (2014) in the still
fluid case. Therefore, both experimental observations and theoretical predictions provide
evidence for the existence of distinct governing instability mechanisms over slender and
broad cones.
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Secondly, the physical problem of superposing an oncoming axial flow onto a rotating
cone in still fluid depends on two important velocities: the rotational speed of the cone
surface and the local tangential slip velocity at the edge of the boundary layer, which is
directly related to the strength of the oncoming axial flow. The ratio of these two veloc-
ities defines whether the cone is rotating ‘quickly’ (with a larger rotational velocity) or
‘slowly’ (with a larger oncoming flow). Specifically, we consider cases where the oncoming
uniform axial flow is increased gradually from zero (starting from initially still fluid), so
the flow setup corresponds to the former case above of a cone rotating ‘quickly’. Impor-
tantly, we note that this is not a single unsteady problem but rather a sequence of steady
ones, each of which characterised by a different strength of oncoming axial flow. Existing
studies have computed the basic flow for this problem, with Garrett et al. (2010) display-
ing accurate solutions for 50◦ and 70◦ half-angle cones. We note that this study adopted
a new method of similarity solution in terms of the governing stream-function, which
resolved problems in the basic flows originally proposed by Garrett & Peake (2007). Fur-
thermore, the earlier basic flow solutions proposed by Kobayashi (1981) and later used
in the theoretical analysis of Kobayashi et al. (1983) appear to show some deviation from
convergent behaviour at the edge of the boundary layer. Results are given for a range of
the spiral waveangles, in order to recover the case which more closely represents experi-
mental results. Both basic flow solutions presented by Kobayashi (1981) and Garrett et
al. (2010) apply a method, which is similar to that used by Koh & Price (1967). How-
ever, the new solutions presented by Garrett et al. (2010) require only specification of the
cone half-angle and the governing ratio of the two characteristic flow velocities in order
to produce solutions exhibiting fully convergent behaviour at the edge of the boundary
layer. It is for this reason that we apply this updated formulation to obtain new basic
flow solutions for a 15◦ half-angle cone in a range of axial flows.

Importantly, for very slender cones (ψ ≤ 15◦), Kobayashi et al. (1983) and Kobayashi
& Izumi (1983) have observed both spiral and circular vortices for cones rotating in axial
flow and still fluid, respectively. These are distinguished by non-zero and zero waveangles.
For the still fluid problem, the theoretical study of these two cases differs depending on
the orientation of the spiral vortices, with the circular wave case of ψ ≤ 15◦ being
analysed by Hussain et al. (2012). Meanwhile, the case of spiral vortices is presented by
Hussain et al. (2014). However, in the present study for a 15◦ cone rotating in an enforced
axial flow, the formulation in §3 covers both circular and spiral vortices, depending on
the waveangle parameter, which is essentially determined by the ratio of the oncoming
flow speed relative to the rotational speed of the cone surface.

3. Formulation

We consider a cone of half-angle ψ rotating in a fluid of kinematic viscosity ν∗ with
an angular velocity Ω∗ in an anti-clockwise direction around the streamwise coordinate
axis x∗ (where a ∗ denotes a dimensional quantity in all that follows). Other than the
imposition of the axial flow, the formulation follows that detailed in Hussain et al. (2014)
and we construct coordinate axes aligned along with and perpendicular to the spiral
vortices (x̂∗ and y∗, respectively), as shown in Figure 1. These are shifted from the con-
ventional streamwise and azimuthal coordinates, x∗ and θ, that are based on cylindrical
polar coordinates. In such a problem, there exists a boundary layer close to the rotating
cone surface characterised by the distance along the cone l∗ and defined by the Reynolds
number, R, such that:

R =
Ω∗l∗2 sinψ

ν∗
.
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However, we make the important distinction in this case of the inclusion of an oncoming
uniform axial flow. The physical problem is subsequently altered such that there now
exists a dimensional local slip velocity at the edge of the boundary layer, which is obtained
via a well-known potential-flow solution (see for example Rosenhead (1963) or Evans
(1968)), given by Ue = C∗x∗m, where C∗ is a constant and for a cone of half-angle 15◦

considered in this study, m = 0.03927 approximately.
We subsequently compare this velocity to the rotational velocity of the cone surface,

given by Vw = Ω∗x∗ sinψ, to obtain the two important ratios. These ratios fully charac-
terise the problem, and are the local axial-flow parameter

Ts =
C∗x∗m

Ω∗x∗ sinψ
,

used in the literature by Garrett & Peake (2007) and the rotational-flow parameter given
by

s =
1

T 2
s

=
(Vw
Ue

)2

,

used earlier by Kobayashi (1981) and Kobayashi et al. (1983). In this study, we will
predominantly use s in order to facilitate comparison of our results with the experiments
of Kobayashi et al. (1983). However, we will make reference to Ts where appropriate in
physical cases where the cone is rotating ‘quickly’ and the axial flow is increased from a
zero value.

In contrast to the axial flow problem for a rotating disk where ψ = 90◦ analysed in
Hussain et al. (2011), the corresponding axial flow problem for a rotating cone with
ψ < 90◦, results in the solution of a system of PDEs, with the basic flow velocities
depending on both the streamwise and normal coordinates. Following Garrett et al.
(2010), we seek a similarity-type solution and utilise a Mangler transformation to capture
the base flow quantities. The full details are provided in Garrett et al. (2010) for ψ = 50◦

and 70◦, and more completely in Hussain (2010) for a range of values of ψ. Here, we shall
outline the important differences between the formulation for broad and slender half-angle
cones in axial flow, and focus on the strategy of shifting the basic flow velocities from
the well-known streamwise and azimuthal coordinates x∗ and θ to the new logarithmic
coordinates along and normal to the spiral vortices x̂∗ and y∗.

We note that the shifted coordinate system (x̂∗, y∗, z∗) rotates with the cone surface at
the constant angular velocity Ω∗ in order to aid the modelling of stationary disturbances
over the cone surface. As in Hussain et al. (2014), the logarithmic spirals are directed such
that the y∗-axis has a positive projection with the direction of rotation of the cone. This
requires that the x̂∗-axis has positive projection onto the axis of rotation and the y∗-axis
to have negative projection, as shown in Figure 1. The spiral vortices are orientated at an
angle φ relative to the circle formed from the planer cross-sectional normal to the axis of
rotation of the cone. Consequently, the governing dimensional Navier–Stokes equations
are derived in this shifted co-ordinate system with appropriate scale factors.

We proceed to non-dimensionalize lengths on the distance along the cone l∗, so that
x̂∗ = l∗x̂ and y∗ = l∗y. Furthermore, we scale both logarithmic coordinates x̂ and y, as
well as the normal coordinate z∗, on the boundary-layer thickness, leading to the scaled
coordinate system (x̌, ȳ, η) = R1/2(x̂, y, z).

As for the still fluid problem, this scaling is imperative to enable the vortex structure
in both logarithmic directions to be analyzed at the same order as the length scale in
the surface-normal direction. This is because the counter-rotating Görtler vortices are
characterized by both logarithmic coordinates, and so, as in Hussain et al. (2014), we
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Figure 1. Diagram of the spiral vortex instability on a rotating cone placed in an oncoming
axial flow, showing coordinates in the x̂- and y-logarithmic spiral directions, as well as the corre-
sponding vortex wavenumber, γ, and vortex waveangle, φ. Note that the problem is characterised
by the relative strengths of the streamwise slip velocity at the edge of the boundary layer, Ue,
and the rotational speed of the cone surface, Vw, both of which are encapsulated in the axial
flow or rotational flow parameters, Ts and s, respectively.

require this scaling to reveal their growth-dependence behaviour in each direction. Inter-
estingly, for rotational flow parameter values s ≥ 5 on a 15◦ rotating cone, experimental
studies by Kobayashi et al. (1983) observe circular ‘Taylor’ waves (φ = 0◦), as opposed
to the more general spiral vortices. Nevertheless, the current formulation is able to model
both spiral and circular waves, as we include the assumption that the spiral vortices exist
and have a corresponding orientation angle φ. Therefore, setting φ = 0◦ pertains to the
circular wave case.

Importantly, the basic flow quantities Ũ and Ṽ are expressed as projections along the
shifted spiral coordinates. However, due to the introduction of an oncoming axial flow,
these are now functions of both the non-dimensional streamwise and surface-normal
coordinates, x and z, respectively (where x is the streamwise direction over the cone,
scaled on l∗). Hence, obtaining the base flows now require the solution of a system
of PDEs (see Garrett et al. (2010) and Hussain (2010) for full details and discussion)
as opposed to the projected von Kármán solution of a system of ODEs presented in
Hussain et al. (2014) for the still fluid problem. We also note from Hussain (2010) that
the basic flow solution to the boundary-layer equations for this problem has a correction
of O(R−

1
2 ). While there exist similar numerical basic flow formulations used by Kobayashi

(1981) and Kobayashi et al. (1983), experimental verification of the basic flow is currently
planned by Lingwood (personal communication, 2015). The shifted basic flow quantities
are written correctly in the form:

Ũ(x, η) = U(x, η) cosφ+ V (x, η) sinφ,

Ṽ (x, η) = U(x, η) sinφ+ V (x, η) cosφ.

Here, U(x, η) and V (x, η) can be expressed in terms of the solution functions f ′(s, η1)
and g(s, η1) (where ′ indicates ∂

∂η1
) obtained in Hussain (2010) and presented in Garrett

et al. (2010) for ψ = 50◦, 70◦. However, in this study, we remain consistent with the
formulation presented in Hussain (2010), pertaining to the shifted basic flow quantities,
which are essential when considering the slender rotating cone problem for ψ < 40◦.
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Figure 2. Velocity profiles Û(s, η1) and V̂ (s, η1) in the x̂- and y-directions, respectively, at
ψ = 15◦ for s = 1.5, 2, 3, 4, 5, 10, 16 and φ = 30.2◦, 22.5◦, 13.6◦, 6◦, 0◦, 0◦, 0◦ (in the directions of
the arrows).
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Specifically, we may write

Ũ(x, η) =
Ue

Ω∗l∗ sinψ

(
f ′(s, η1) cosφ+ s

1
2 g(s, η1) sinφ

)
= s−

1
2 Û(s, η1), (3.1)

Ṽ (x, η) =
Ue

Ω∗l∗ sinψ

(
f ′(s, η1) sinφ+ s

1
2 g(s, η1) cosφ

)
= s−

1
2 V̂ (s, η1), (3.2)

where Û and V̂ are presented in Figure 2 for ψ = 15◦ in a range of axial flows, increasing
from s = 1.5 to s = 16 (corresponding to a ‘quickly’ rotating cone). We note that the
x̂-component, Û exhibits a familiar inflexional nature, with its limiting value at the edge
of the boundary layer increasing as s increases. However, for s ≥ 5, we observe from
the results of Kobayashi et al. (1983) that φ = 0◦, which is consistent with out basic
flow solution where Û recovers the streamwise basic flow component, f ′, to within a
factor of s−

1
2 . In contrast, the y-component of velocity V̂ exhibits a uniform shear and

is consistently reduced as s is increased.
At this point, we outline the important link between the standard surface-normal

coordinate η and the modified surface-normal coordinate η1 scaled on boundary-layer
thickness according to the new velocity scales applied to the basic flow boundary-layer
equations. The coordinate stretching yields

η1 = η
(m+ 3

2s
1
2

sinψ
) 1

2

. (3.3)

This relation enables the shifted velocity profiles Ũ(x, η) and Ṽ (x, η), expressed in terms
of the standard boundary-layer coordinates, to be written in terms of f ′(s, η1) and
g(s, η1), which depend on s and the modified boundary-layer coordinate.

We assume that the spiral waves are periodic in the x̂-direction and introduce peri-
odicity into the perturbation quantities of vortex x̌-wavenumber a and ȳ-wavenumber
b. Scaling our perturbation quantities on the boundary-layer thickness, we introduce a
combined flow of the form

ũ∗ = Ω∗l∗ sinψ[{Ũ(x, η), Ṽ (x, η),R−
1
2W (x, η)}+ R−

1
2 {ũ(η), ṽ(η), w̃(η)}exp(iax̌+ ibȳ)].

Here W (x, η) is the surface-normal basic flow component, which is defined in Hussain
(2010) but not used explicitly in the analysis of the problem. Similarly, the pressure
perturbation term scales as

p∗ = (ρ∗Ω∗2l∗2 sin2 ψ)R−1p̃(η)exp(iax̌+ ibȳ). (3.4)

Importantly, in order to obtain the correct form of the disturbance equations for analysing
spiral vortices and circular waves (φ 6= 0◦ and φ = 0◦, respectively), we employ mathe-
matical approximations, specifically using the assumption of large Reynolds number to
expand the scale factors, which eventually lead to the expressions (A 5) and (A 6). We
also focus on the large spiral wavenumber apparent within the problem, which forms
the basis for a small parameter expansion in §asymp. However, a significant difference
between the current approach and the analysis of Hussain et al. (2014) is that the axial
flow problem is now characterised by x-dependence in the shifted basic flow quantities
(Ũ(x, η), Ṽ (x, η)). Hence, we may express this x-dependence in terms of the logarithmic
spiral coordinates after they have been scaled on boundary layer thickness, x̌ and ȳ, so
that in essence Ũ = Ũ(x̌, ȳ, η) and Ṽ = Ṽ (x̌, ȳ, η). This re-formulation reveals the correct
length-scalings that successfully model the spiral waves.

Next we proceed to investigate the orientation of the short-wavelength asymptotic
structure of the centrifugal instability and hence identify the spiral wavenumber in the
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x̌-direction as a = ε−1, where ε is a small parameter. Here, b = O(1) is the corresponding
wavenumber in the ȳ-direction. The importance of transforming to the new logarith-
mic coordinate system now becomes apparent when considering that the spiral vortex
wavenumbers a and b in the x̌- and ȳ-directions, respectively, enable the introduction
of periodicity into the disturbance quantities. Specifically, we observe that boundary-
layer growth occurs along the x̌-direction, with spiral waves in the ȳ-direction remaining
fixed. Hence, the use of the logarithmic spiral coordinate system is not only imperative
to obtaining the correct length scalings upon which to model the spiral vortices of the
centrifugal instability, but also to revealing the correct orientations along which these
spiral vortices grow within the boundary layer. Further details of the mathematical ma-
nipulations employed in the asymptotic analysis are given in Hussain (2010) and we
subsequently arrive at the governing stability equations given in Appendix A.

4. Asymptotic analysis

As with the asymptotic analysis presented in Hussain et al. (2014) for the still fluid
problem, we follow a strategy of employing a large vortex wavenumber and large Reynolds
number. However, given the experimental observations of Kobayashi (1981) and Kobayashi
et al. (1983), who report the existence of both spiral and circular waves for different values
of s, we extend the analysis of Hussain et al. (2014) to account for both zero and non-zero
values of φ. We subsequently treat φ = 0◦ as a special case of this analysis, recovering
the circular wave setup. It is important to note that the waveangle φ is essentially a
function of both ψ and s, as once the half-angle and axial flow strength is determine, the
instability develops accordingly admitting spiral waves of a certain waveangle. Hence, for
a fixed ψ = 15◦, we may consider φ = φ(s).

We proceed to solve the governing equations to determine leading- and next-order
estimates of the scaled Taylor number for neutrally-stable modes, which arises due to
the scaling analysis and loosely follows Hall (1982) for the Taylor problem of flow be-
tween concentric rotating cylinders. Importantly, we are able to form comparisons with
results in the literature expressed in terms of Reynolds numbers (see §6 for more details).
The corresponding Taylor number, which characterizes the importance of centrifugal to
viscous forces, is given by

T =
2 cotψ cosφ

sin4 ψ
. (4.1)

In the axial flow problem, for a fixed ψ, this quantity is an output of the analysis and rep-
resents a measure of how s (or alternatively Ts) affects the physical flow characteristics.
In general, we can consider it to be a function of ψ and parameterized by the particular
φ(s) and s under consideration. However, in this study, we fix ψ = 15◦ and investigate
the effect of varying s. Consequently, this determines φ and hence the expression for
T , which is observed by Kobayashi et al. (1983) to decrease as s is increased for a 15◦

cone. Essentially, the problem becomes a competition between the rotational flow due
to the spinning cone surface versus the streamwise forcing due the external oncoming
axial flow. The former promotes the centrifugal instability, whereas the latter amplifies
a viscous Tollmien-Schlichting instability. Hence, it is clear that the relative strengths of
these two respective centrifugal and viscous mechanisms reveal why the Taylor number
becomes the governing parameter in this regime. The Taylor number is closely related to
the Görtler number for centrifugal instability problems and has been studied for example
by Hall (1982) for fully developed of boundary-layer flows.

Furthermore, a significant modification for the axial flow problem compared with the
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Figure 3. Plots of ∂V̂
∂η1

(s, η1) for a slender rotating cone with ψ = 15◦, s = 1.5, 2, 3, 4, 5, 10, 16.

still fluid case arises when considering the governing perturbation equations in Appendix
A. Due to the fact that the basic flow quantities and the streamwise coordinate x depend
on the logarithmic coordinates (see above in §3), we expand the shifted basic flows in

powers of R−
1
2 , about the location of vortex activity, namely at η = 0 on the cone surface.

This leads to the expressions

Ũ(x̌, ȳ, η) = R−
1
2 η
∂Ũ

∂η
(x̌, ȳ, 0) +O(R−1), (4.2)

Ṽ (x̌, ȳ, η) = R−
1
2 η
∂Ṽ

∂η
(x̌, ȳ, 0) +O(R−1), (4.3)

noting that Ũ(x̌, ȳ, 0) = Ṽ (x̌, ȳ, 0) = 0. This expansion allows important quantities re-
lated to the basic flows, which appear in the governing perturbation equations, to be
evaluated within the leading- and first order asymptotic analyses.

Leading-order solution

Upon incorporating the basic flow expansions, we expand the perturbation quantities and
pose a WKB solution for small values of ε, where a = ε−1 for the wavenumber a in the
x̌-direction. As for the still fluid problem, the dominant terms in the governing equations
(A 1)–(A 4) balance if we scale T ∼ ε−4 and W/V ∼ O(ε−2), resulting in identical
perturbation expansions to those presented in Hussain et al. (2014) (reproduced here for
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clarity when manipulating subsequent quantities):

ũ =E(u0(η) + εu1(η) + ε2u2(η) + . . .),

ṽ =ε2E(v0(η) + εv1(η) + ε2v2(η) + . . .),

w̃ =E(w0(η) + εw1(η) + ε2w2(η) + . . .),

T =ε−4(λ0 + λ1ε+ λ2ε
2 + . . .),

where λ = λ0 + λ1ε + λ2ε
2 + . . ., E = exp i

ε

∫ ϕ
K(τ)dτ and ϕ = sinψ

h̄1
η. However, when

substituting these expansions in to the governing equations to obtain the corresponding
eigenrelation, we make appropriate simplifications sin2 φ << cos2 φ in (A 1)–(A 4) relat-
ing to a small waveangle, which for ψ = 15◦ holds for s ≥ 5 and reasonably well for
s < 5, from the experiments of Kobayashi et al. (1983). This is subsequently solved to
yield the scaled leading-order eigenvalue estimate

λ̄0 = −
( 2
√
s

m+ 3

) 1
2 1

V̂ ′(s, 0)
,

where the scaled eigenvalue is now given by

λ̄ = λh̄4
1

Ue
Ω∗l∗ sinψ

,

such that λ̄ = λ̄0 + λ̄1ε+ λ̄2ε
2 + . . . and h̄1 is a scale factor defined as h̄1 = 1 + x̌ cosφ−

ȳ sinφ+ η cosψ sin2 φ.
Importantly, we note from Figure 3 that for s ≥ 5, the vortex activity is located at

the wall, with the minimum of V̂ ′(s, η1) existing at η1 = 0. However, for s < 5, the curve
has a minimum slightly departed from the wall, indicating the location of vortex activity
will not be at η1 = 0. This correlation results as a consequence of the requirement of
obtaining valid real solutions for the growth rate K when solving the governing eigenvalue
equation at leading order, which itself arises by following the study of Hall (1982) for
the Taylor problem of flow between concentric rotating cylinders. For the case of s < 5,
the solutions obtained are not the most dangerous modes available, but we include them
as they provide useful information about non-zero wave angles (spiral waves) for a 15◦

rotating cone in axial flow. Furthermore, an interesting observation pertains to the related
study of Hussain et al. (2011) on the rotating disk in axial flow, where non-stationary
travelling modes become more important as the strength of oncoming axial flow increases.
Specifically, for s < 5 in the current problem, it appears that the location of vortex
activity departing slightly from the wall suggests that travelling modes may grow as
Ts is increased (or s reduced) and in fact become the most unstable modes in this
parameter regime. Indeed, physically, the departure of a vortex from the wall suggests
that vorticity within the boundary layer is no longer fixed on the cone surface, but is
instead propagating or travelling in the effective velocity x̂-direction. Ultimately, in order
to confirm whether travelling instabilities may harbour the most unstable modes for the
slender rotating-cone problem, a further investigation would be required, taking account
of time-dependent terms within the governing disturbance equations (A 1)–(A 4).

As seen from Table 1, for ψ = 15◦, the scaled leading-order eigenvalue estimate λ̄0 is
found to decrease as s is increased and also increases as φ(s) increases for corresponding
experimental observations.

First-order solution

We proceed to apply Hall’s method and account for modifications to the analysis of
Hussain et al. (2014) owing to the shifted basic flow terms. We also include assumptions
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s Ts φ(s) λ̄0 λ̄1

1.5 0.8165 30.2◦ 1.6414 38.1682
2 0.7071 22.5◦ 0.9941 3.1288
3 0.5774 13.6◦ 0.6288 0.0321
4 0.5 6◦ 0.4668 0.9479
5 0.4472 0◦ 0.3803 1.7922
10 0.3162 0◦ 0.2782 1.2277
16 0.25 0◦ 0.2236 0.9561

Table 1. Leading- and first-order eigenvalue estimates of the scaled Taylor number for
rotational flow parameters s observed by Kobayashi et al. on a cone with 15◦ half-angle.

of sufficiently small waveangle, such that tan2 φ is small compared with 1, which is
consistent with the vortex activity being located at the wall. Hence, following Hussain et
al. (2014), we pose a thin layer of thickness O(ε

2
3 ) about η1 = 0, expanding the Taylor

number in the form

T = ε−4(λ0 + λ1ε
2
3 + . . .)

and re-scaling the normal variable on an appropriate thickness ξ = ϕ

3
1
3 ε

2
3

. The normal

perturbation velocity is similarly expanded as

w̃ = w0(ξ) + ε
2
3w1(ξ) + . . . ,

with ũ = O(1) and ṽ = O(ε2) as in the leading-order analysis. Substituting these ex-

pressions into the updated governing equations and equating terms of O(ε
2
3 ) yields a

modified eigenvalue relation at first order, which is solved to give a first-order estimate
of our scaled Taylor-number eigenvalue as

λ̄1 =
2.3381× 3

1
3

|V̂ ′(s, 0)|

( 2
√
s

m+ 3

) 1
2
[ V̂ ′′(s, 0) + s−

1
2 V̂ ′(s, 0)2 cosφ

V̂ ′(s, 0)

]2
.

The full analysis is mathematically quite detailed and provided more completely in Hus-
sain (2010). Numerical values for the first order λ̄1 are displayed in Table 1 for various s
and φ corresponding to experimental observations.

Asymptotic estimate of Taylor number

Finally, we combine the leading- and first-order estimates for the scaled effective Taylor
number, which is given by

T̄ =T h̄4
1

Ue
Ω∗l∗ sinψ

,

=ε−4
( 2
√
s

m+ 3

) 1
2

[
1

V̂ ′(s, 0)
+

2.3381× 3
1
3

|V̂ ′(s, 0)|
ε

2
3

( V̂ ′′(s, 0) + s−
1
2 V̂ ′(s, 0)2 cosφ

V̂ ′(s, 0)

)2

+ . . .

]
.

(4.4)

Logarithmic plots of the scaled asymptotic Taylor number against vortex wavenumber,
ε−1 = a, are shown in Figure 4 for ψ = 15◦ and various values of s . The unstable region
is above the curves and the stable region below. In general, we observe that increasing s
leads to a trend of reducing the asymptotic Taylor number branch. Physically, this can
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Figure 4. Asymptotic scaled Taylor number T̄ as a function of non-dimensional vortex
wavenumber ε−1 for ψ = 15◦, s = 1.5, 2, 3, 4, 5, 10, 16 and

φ(s) = 30.2◦, 22.5◦, 13.6◦, 6◦, 0◦, 0◦, 0◦.

be interpreted as promoting the more dangerous centrifugal instability mode, and hence
destabilising the flow, which leads to a larger unstable region above the neutral stability
branch, as depicted in Figure 4.

5. Numerical analysis

In this section, we develop the corresponding numerical solution, outlining the major
differences between the axial flow problem formulated in §3 and the still fluid case pre-
sented in Hussain et al. (2014). These arise due to the fact that the basic flow quantities
Ũ and Ṽ are now functions of the logarithmic spiral coordinates x̌ and ȳ, as well as η.
We manipulate the disturbance equations (A 1)–(A 4) and subsequently express the basic
flow terms in terms of η1 by making use of the coordinate stretching (3.3). The analysis in-
volves neglecting Coriolis terms and viscous streamline-curvature effects. Importantly, we
note that the centrifugal mode under investigation differs from the streamline-curvature
mode for large half-angle cones (as studied in Garrett et al. (2009)), which arises due to
viscous effects of the cone surface. In contrast, the centrifugal mode for small half-angle
cones arises from the centrifugal forces present in the mean flow for small ψ, owing to
the effects of surface-curvature. Such centrifugal curvature terms are not neglected in the
analysis and contain the Taylor number as a factor. Proceeding in this fashion yields a
modified Orr–Sommerfeld (OS) equation for stationary disturbances within the system,
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given by[
i
(
∂2
ηη − k2

)2
+
Re√
s

(
α1Û + β1V̂

) (
∂2
ηη − k2

)
− Re

2s
(m+ 3) sinψ

(
α1Û

′′ + β1V̂
′′
)]
w̃ = 0,

(5.1)
where

α1 =
a sinψ

Re
, β1 = b sinψ, k =

√
α2

1 + β2
1

represent the vortex wavenumbers in the x̌-, ȳ- and effective velocity-directions, respec-
tively, and ∂2

ηη = ∂2/∂η2. Furthermore, Re = x sinψ is the local Reynolds number,
interpreted as the local non-dimensional radius of the cone surface from the axis of rota-
tion. Importantly, we can relate the rotational Reynolds number, Re, to the conventional
Reynolds number, R, defined in §3 using equation (45) of Kobayashi (1981) to re-express
the surface-curvature term, yielding

Re = R
1
2

√
0.6698. (5.2)

In similar fashion to the still fluid study of Hussain et al. (2014), the system depends on
the updated basic flow solutions. However, in the axial flow case, this includes a related
dependence on the rotational flow parameter, s, as well as on the waveangle φ, arising
from the definition of the projected basic flow quantities Û and V̂ in (3.1) and (3.2). We
proceed to solve the OS equation to obtain estimates of the effective vortex wavenumber
k and rotational Reynolds number Re, for a range of values of s and φ, which enable
suitable comparison with the experimental results of Kobayashi et al. (1983).

To obtain the numerical solution, we first convert the system of disturbance equations
(A 1)–(A 4) into a set of six first-order equations. Upon following the above description,
specifically neglecting Coriolis and viscous streamline-curvature terms, we arrive at the
fourth-order OS equation (5.1). However, we now apply an OS solver routine, which has
been modified to allow existing solutions for the OS neutral curve at specific values of ψ
and (s, φ(s)) to be used in order to facilitate fast convergence when searching for neutral
curves for the required the values. Essentially, we reduce ψ for fixed s, traversing from
the upper branch of known neutral curves presented in Garrett et al. (2010) for larger
half-angles ψ = 50◦ and 70◦. Our current basic flows are used as input solutions to the
OS solver in order to obtain results for ψ = 15◦. Subsequently we repeat the updated
routine by reducing s now for fixed ψ = 15◦, traversing from the known upper branch
for large s (s → ∞) and reducing to the required parameter range of s investigated by
Kobayashi et al. (1983). We again use the shifted basic flow solutions for varying (s, φ(s))
at ψ = 15◦. The result is the modified OS solver enables us to gradually merge in an
incremental process from previously computed OS solutions in order to obtain the OS
neutral stability curves that we seek for the required values of ψ and (s, φ(s)).

We present numerical predictions of the critical Reynolds numbers and critical vortex
wavenumbers for ψ = 15◦ in a range of axial flows varying from s = 1.5 to s = 16
in table 2. The results show that an increase in s leads to a reduction in the critical
Reynolds number, which suggests that a stronger rotational flow promotes the centrifugal
instability mode, hence destabilising the flow. This is supported by the critical vortex
wavenumbers in the effective velocity direction, which increase as s is increased, leading
to greater amplification rates for steady flow. Importantly, we observe close agreement
with the experimental observations of Kobayashi et al. (1983) and with our asymptotic
results in §4, discussion of which is developed below in §6.

However, at this stage we must note that the OS numerical analysis presented neglects
Coriolis and streamline-curvature effects. These effects are known to yield a characteristic
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two-lobe structure to the neutral-stability curve, which is unable to be captured by the
OS analysis. This behaviour is concentrated around the critical Reynolds number region
of the stability curve. Consequently, the results of the OS numerical analysis will exhibit
a slight discrepancy when compared with the experimental measurements of Kobayashi
et al. (1983) around the critical Reynolds number region.

Firstly, we justify the use of the OS numerical stability analysis, as it represents a
useful simplification of the disturbance equations (A 1)–(A 4). Nevertheless, the process
of obtaining the numerical solution is complicated by the use of the modified OS solver
routine, which requires the updated basic flow solutions for successively varying values of
ψ and subsequently (s, φ(s)) in order to converge gradually to an updated neutral curve
for ψ = 15◦ and the relevant axial flow strengths. While the process is incremental and
time-consuming when compared with, for example, the asymptotic solution presented in
§4, it improves in accuracy, yielding closer comparisons with the experimental measure-
ments of Kobayashi et al. (1983) as Re increases.

Secondly, the current OS numerical solution essentially represents an interesting com-
parison with the numerical method of Kobayashi (1981) and Kobayashi et al. (1983),
revealing the effect of perturbing around the more accurate base flows Û and V̂ used
in this study. As the majority of the terms in the OS analysis leading to equation (5.1)
depend on these base flow quantities, improving their accuracy can significantly boost
the overall accuracy of the OS neutral-curve solution. In fact, we observe that the numer-
ical analysis presented yields generally better agreement with the experimental data of
Kobayashi et al. (1983) than their numerical calculations do. As such, these comparisons
are expanded upon and discussed later in §6.

Lastly, we note that in the numerical analysis, φ(s) is treated as a general unknown
value. Neutral stability curves are constructed for ψ = 15◦ and the required values of s. As
in Kobayashi (1981), a range of φ are investigated around the critical Reynolds number
region, in order to ascertain the φ with the minimum critical Reynolds number. These
values of φ exist in a range, for example for ψ = 15◦ and s = 3, φ lies between 5◦ and 20◦.
The φ values presented in this study are selected to show direct comparisons between
our numerical analysis and the numerical results of Kobayashi (1981) and Kobayashi
et al. (1983), pertaining to the improved accuracy in our basic flows and perturbation
solutions compared with their numerical techniques. Furthermore, if we consider figure
10 in Kobayashi et al. (1983), we see that there is a wide range of experimental data
measurements available for φ. Our numerical results can be compared with these, but
have not been chosen to fit this data.

6. Comparison between asymptotic and numerical analysis

In this section, we seek to compare the numerical OS neutral stability curves with
the large vortex wavenumber asymptotic predictions. We use modified scalings linking
the Taylor number defined in equation (4.1) to the rotational Reynolds number (used in
Kobayashi et al. (1983)), which yields

Re = T̄
√

0.6698

for large Reynolds number, Re, and large Taylor number, T .
We again seek comparisons between scaled effective asymptotic Taylor number, T̄ ,

versus large vortex wavenumber, ε−1, and the numerical OS neutral curves of Reynolds
number, Re, versus vortex wavenumber σ in the effective velocity direction. Here, σ =
αδ1/h1, from Kobayashi (1981), where α represents the wavenumber in the effective
velocity direction. Following comparisons with the definitions used in Kobayashi (1981),
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s Ts φ(s) Rec α1,c

1.5 0.8165 30.2◦ 58.9 0.75
2 0.7071 22.5◦ 37.2 0.77
3 0.5774 13.6◦ 18.6 0.81
4 0.5 6◦ 16.1 0.84
5 0.4472 0◦ 15.7 0.86
10 0.3162 0◦ 14.9 0.89
16 0.25 0◦ 14.0 0.91

Table 2. Numerical calculations of the critical Reynolds numbers, Rec, and critical vortex
wavenumbers, α1,c, in the effective velocity direction for a cone of 15◦ half-angle in a range of
axial flows defined by s, with corresponding vortex waveangles, φ.
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Figure 5. A comparison between the scaled effective asymptotic Taylor number T̄ (above)
and the Reynolds number Re predicted by the Orr-Sommerfeld analysis (below), against vortex
wavenumbers ε−1 and σ respectively, for ψ = 15◦, s = 1.5.

we associate σ with our vortex wavenumber in the x̌-direction, α1, given in the OS
equation (5.1).

Figures 5, 6 and 7 show log-log comparisons between the scaled effective asymptotic
Taylor number, T̄ , expanded in terms of vortex wavenumber ε−1, versus the numerically
predicted Reynolds number Re, expressed in terms of σ, for ψ = 15◦ and s = 1.5, 2
and 3, respectively. In each figure, we compute asymptotic curves for the corresponding
waveangles used in the experiments of Kobayashi et al. (1983), namely φ = 30.2◦, 22.5◦



16 Z. Hussain, S. J. Garrett, S. O. Stephen and P. T. Griffiths

ǫ
-1

 / σ

1 2 3 4 5 6 7

(0
.6
69
8)

1/
2
T̄
/R

e

10
1

10
2

10
3

10
4

Stable

Unstable

Figure 6. A comparison between the scaled effective asymptotic Taylor number T̄ (below)
and the Reynolds number Re predicted by the Orr-Sommerfeld analysis (above), against vortex
wavenumbers ε−1 and σ respectively, for ψ = 15◦, s = 2.

and 13.6◦ respectively. Additionally, we also present asymptotic curves for φ = 15◦ in
the case of s = 3 in figure 7, which corresponds to the waveangle used in the numerical
study of Kobayashi (1981).

For ψ = 15◦, we observe good qualitative agreement between the OS neutral curves
and the asymptotic branches of the scaled effective Taylor number for s = 1.5, 2 and
3. In particular, the agreement between the asymptotics and numerics becomes more
favourable for larger values of T̄ , further along the asymptotic branch. Due to the nature
of the large vortex wavenumbers and large Reynolds numbers used in the asymptotic
analysis, we expect better agreement for large values of ε−1 and σ. Furthermore, the
accuracy of the OS numerical neutral curves should increase for larger values of Re,
which is consistent with our observations as we move along the upper branch of the
neutral stability curves.

Furthermore, as s increases, we observe closer general agreement between the asymp-
totic and numerical estimates, which can be seen as we move from figures 5 to 7. One
explanation pertains to a modelling assumption used in §4 to derive the asymptotic Tay-
lor number estimates, which requires a sufficiently small waveangle. This is consistent
with the vortex activity being located at the wall, which is the case for s ≥ 5. For
smaller values of s, this location departs slightly from the wall, as can be seen in figure
3. The consequence is that the asymptotic stability modes obtained, whilst not being the
most dangerous modes available, will nevertheless be close to the most dangerous modes.
Hence, comparisons between the asymptotic and numerical estimates should yield greater
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Figure 7. A comparison between the scaled effective asymptotic Taylor numbers T̄ (solid lines,
below) for φ = 13.6◦, 15◦ and the Reynolds number Re predicted by the Orr-Sommerfeld analysis
(solid curve, above) as well as by the numerical calculations of Kobayashi (1981) (dashed curve,
below), plotted against vortex wavenumbers ε−1 and σ respectively, for ψ = 15◦, s = 3. Note
that the asymptotic estimates for φ = 13.6◦ and φ = 15◦ are in fact two separate curves on the
diagram, but appear very close together, with φ = 15◦ slightly above and φ = 13.6◦ slightly
below.

accuracy for larger values of s, where the asymptotic stability modes are closer to the
neutral stability modes obtained from the numerical analysis.

A second explanation for the closer agreement between the asymptotics and numerics
for larger values of s relates to a physical interpretation of the problem, where a larger
value of s corresponds to a stronger rotational flow component. This essentially promotes
the centrifugal instability, which has been used to model the important length scalings
for both the asymptotic and numerical analyses. Hence, the parameter regime of large s
(or small Ts) corresponds to the closest theoretical model of the counter-rotating vortex
activity observed for slender rotating cones in axial flow. In contrast, smaller values
of s lead to a stronger streamwise flow component. This instead promotes a distinct
viscous Tollmien-Schlichting instability, which forces the spiral waves further along in
the streamwise direction. Overall, the centrifugal instability is identified as the more
dangerous mechanism, with a stronger streamwise flow component acting to stabilise the
flow versus the de-stabilising rotational flow component. Consequently, larger values of
s should yield closer agreement between the asymptotic and numerics, as observed.

In the specific case of figure 7, we observe that both our numerical OS results (solid
curve) and the numerical calculations of Kobayashi (1981) (dashed curve) lead to slightly
closer agreement with the asymptotic branch for φ = 15◦ rather than for φ = 13.6◦. This
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is consistent with the fact that φ = 15◦ corresponds to Kobayashi’s numerical study,
whereas φ = 13.6◦ relates to the experiments of Kobayashi et al. (1983).

More importantly, figure 7 shows that while both our numerical results (solid curve)
and those of Kobayashi (1981) (dashed curve) agree well with the asymptotic branches
for large σ and large Re, our OS calculations predict a higher critical Reynolds number at
the leading edge of the curve, compared with the numerical results of Kobayashi (1981).
This discrepancy is discussed further in §7, where we compare both predictions for the
critical Reynolds numbers, with the experimental observations of Kobayashi et al. (1983),
showing our results are closer to their experimental measurements, as depicted in figure
9.

One explanation for the observed improvement in our results involves considering the
differences between our numerical analysis and that of Kobayashi (1981). As discussed
earlier in §2, Kobayashi’s basic flows appear to show some deviation from the required
convergent behaviour at the edge of the boundary layer, matching with the inviscid po-
tential flow solution Ue. In contrast, our shifted basic flows developed in §3 and obtained
using the commercial NAG routine D03PEF exhibit strongly convergent behaviour at
the edge of the boundary layer (as shown in figure 2). While in the asymptotic model,
many of the important quantities which feed into the analysis are calculated at the wall
location (η = 0), this is not the case for the numerical model. Specifically, we see from the
governing OS stability equation (5.1) that the complete basic flow profiles are fed into
the numerical analysis when employing the modified OS solver described in §5. Hence,
greater accuracy in the calculation of these shifted basic flows is important for the numer-
ical model to ensure more accurate predictions of the OS neutral curves when compared
with those curves of Kobayashi (1981), particularly near the regions corresponding to
the critical values of the rotational Reynolds number Re.

7. Conclusion

In this paper, we have presented a physical extension to the problem of boundary-
layer flow over a rotating cone. Specifically, by imposing an oncoming axial flow, we have
developed distinct asymptotic and numerical analyses based on the centrifugal-instability
mode, which captures the effects of surface-curvature and incorporates the rotational
flow component. Furthermore, through the control parameter s, we have also included
the effects of the streamwise flow component, which is susceptible to a viscous Tollmien-
Schlichting instability. We observe that the combined flow is a competition between these
two competing instabilities, with the former the most dangerous mechanism. Meanwhile,
the latter acts to stabilise the flow and force the counter-rotating spiral waves along the
cone surface in the streamwise direction.

In general, we observe close agreement between our asymptotic and OS numerical
stability results. We also obtain reasonably good comparisons between our numerics and
the numerical stability calculations of Kobayashi (1981) in figure 7. Importantly, while
we have used the asymptotic results to provide an envelope for the right-hand branch of
the numerical neutral stability curve, they are unable to predict the effect of varying axial
flow on the critical Reynolds numbers. Nevertheless, the asymptotic analysis has proved
invaluable in this study, as it reveals the correct length-scalings on which to model the
counter-rotating vortex pairs, which characterise the centrifugal mode. Furthermore, by
expanding the shifted basic flows about the location η = 0, we were able to confirm from
that the vortex activity of the most dangerous modes is located at the wall. Subsequently
as s was varied, we tracked the location of vortex activity, observing that it departs
slightly from the wall for s < 5. As a result, we have posed the hypothesis that stationary
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Figure 8. A comparison between the experimental observations of Kobayashi et al. (1983)
(dot-dashed line, 4) and the current theoretical predictions (solid line, ◦) of the vortex orien-
tation angle, φ, at the onset of instability. The diagram illustrates φ(s) reduces with increased
rotational flow parameter, s, to a limiting value of φ = 0◦ at s = 5.

modes could dominate in the region s ≥ 5, but below this non-stationary (or ‘travelling’)
modes may begin to grow. Such an observation requires further investigation, but would
not be possible through solely conducting a numerical analysis. Hence, the importance of
an asymptotic analysis is clear in revealing the underlying physical mechanisms at work,
along with how they might interact.

In contrast, the OS numerical stability results complement the asymptotics in confirm-
ing the existence of the neutral stability curve for the centrifugal mode. Furthermore,
we observe a reduction in the critical Reynolds number Rec as well as an increase in
the critical amplification rate α1,c with increasing s, suggesting that larger values of s
are destabilising (or larger values of Ts are stabilising), as seen in table 2. Hence, the
centrifugal-instability mode is physically the most dangerous mechanism, despite alter-
natives being present, including the crossflow and Tollmien-Schlichting instabilities.

Ultimately, we propose a condition of ‘optimal’ stability existing around s = Ts = 1,
where the competing effects of the rotational and streamwise flow components balance.
For s < 1 (or Ts > 1), the physical problem changes from a ‘quickly’ rotating cone (the
parameter range considered in this study) to a ‘slowly’ rotating cone. In this regime, the
physical effect of the oncoming axial flow strengthens, thereby promoting the streamwise
Tollmien-Schlichting instability, which begins to dominate over the centrifugal mode.
This conclusion has interesting implications for the design of spinning projectiles, for
example in military and defence applications. Here, the streamwise component is often
large due to the projected velocity of the missile. For example, projectile applications that
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Figure 9. A comparison between the experimental and numerical observations of Kobayashi et
al. (1983) (dot-dashed and dashed curves, respectively) and the current theoretical predictions
(solid curve, ◦) of the critical Reynolds number, Rex,c, at the onset of instability. The diagram
illustrates Rex,c reduces with increased rotational flow parameter, s.

involve high rotation rates, such as spinning bullets and spinning missiles, can spin up to
3000◦ per second and higher. In such case, it is important to design a missile that spins
at sufficiently high rotation rate in order to promote the centrifugal mode and obtain a
suitable balance between the competing instabilities. In fact, the primary instability can
break-down to a secondary instability, which has been observed, for example, by Kohama
(1985) in the formation of ‘horseshoe-like’ vortices. Essentially, the aim in such spinning
body applications is to reduce the parameter-scope for transition-to-turbulence within the
flow. Therefore, influencing the primary and, potentially, the secondary instability, over
a longer streamwise distance along the spinning body may achieve a delay in turbulent-
transition, which consequently leads to more accurate targeting and projectile control
properties. It should be noted at this point that the current study neglects the effects
of compressibility, which would play a significant role in accurately modelling such high-
speed applications. In this light, the authors are presently working on a compressible flow
study of the rotating cone Towers & Garrett (2014b) and hope to report on this in the
near future.

Figure 8 presents the observed waveangle, φ, versus various s for a 15◦ rotating cone.
We compare results from the present study with the experiments of Kobayashi et al.
(1983), observing close agreement. Both studies observe that in the regime of a ‘quickly’
rotating cone (s > 1), increasing s leads to a reduction in φ, to the point where φ = 0
for s ≥ 5, physically corresponding to the transition from spiral waves to circular or
‘Taylor’ vortices. Interestingly, this appears consistent with the asymptotic analysis in
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§4 where for s ≥ 5, the vortex activity remains located on the wall at η = 0. Conversely
for s < 5, the stronger axial flow (larger Ts) acts to sweep vorticity in the streamwise
direction, which is again consistent with the asymptotic findings in §4, namely that the
vortex activity undergoes a slight departure from the wall in this regime.

Importantly, we note that φ = φ(s) forms a pseudo parameter in the numerical analysis.
For ψ = 15◦ and fixed s, we obtained basic flows for a range of φ, supplying these as input
profiles to the modified OS solver discussed in §5 in order to construct the neutral stability
curves from the corresponding curves for larger cone half-angles. Consequently, following
the method of Kobayashi (1981), the values of φ yielding the lowest critical Reynolds
numbers when plotting the stability curves were chosen to identify the most unstable
modes and subsequently compare with the experimental measurements of Kobayashi et
al. (1983). Additionally, we observe more consistent and smoother convergence behaviour
in the OS solver for these φ, suggesting that the numerical analysis accurately captures
the dominant centrifugal mode within the parameter range for s under investigation.

In figure 9, we present a logarithmic plot of the critical experimental Reynolds number
Rex,c against various values of s for a cone with ψ = 15◦. We compare our numerics both
with the numerical and experimental results in figure 6 of Kobayashi et al. (1983), using
equation (5.2) and identifying R at the critical location to be Rex,c in Kobayashi’s nota-
tion. Similar to table 2, we observe a reduction in Rex,c as s is increased, suggesting that
increasing the rotational flow is de-stabilising. In general, we observe good comparisons
with the experimental measurements of Kobayashi et al. (1983), with improving accuracy
as s is increased. One explanation for this is that the centrifugal mechanism strengthens
for increasing s, due to the larger rotational flow component. Hence, the length-scalings
and approximations governing the numerical analysis will yield better comparisons with
experiments as s increases.

Interestingly, while our results appear to under-predict the critical Reynolds number
Rex,c, we observe closer agreement with the experiments of Kobayashi et al. (1983) than
their numerical results. This may be due to the increased accuracy achieved in calculat-
ing the shifted basic flow profiles. Indeed, for the numerical analysis in §5, we use the
complete shifted basic flow profiles, as opposed to the asymptotic analysis in §4, where
predominantly the quantities at η = 0 are utilised. Specifically, use of the commercial
NAG routine D03PEF appears to yield more accurate basic flows, with smoother con-
vergence behaviour at the edge of the boundary layer, compared with those obtained in
Kobayashi (1981). As a result, this increased accuracy is transferred to the numerical sta-
bility analysis, where the basic flows are used in solving the governing OS equation (5.1).
Ultimately, this leads to more accurate predictions of the critical Rex,c, when compared
with the experiments of Kobayashi et al. (1983). Furthermore, we notice our results are
consistent with the related study of Garrett et al. (2010), where the OS neutral curves for
a broad rotating cone (ψ = 70◦) under-predict the critical Reynolds number, compared
with the corresponding neutral curves obtained from the full perturbation system.

The problem of experimentally investigating spinning body applications with an axial
flow introduced remains an open question. This is predominantly due to the inherent
difficulties in accurate measurement of the important aerodynamic parameters when
incorporating an external oncoming axial flow. Consequently, theoretical studies, such
as the asymptotic and numerical analyses presented here, represent important pathways
to progress in such complex problems, which often involve the interaction of a number
competing instabilities.

Alternatively, while the present study uses an OS numerical analysis to estimate the
neutral stability curves, it cannot accurately model the familiar two-lobed structure of
the curve near the critical Reynolds number region. However, the numerics yield results
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of improving accuracy as Re increases, and also recover the asymptotics for large Re
and σ, which utilise the full disturbance equations. Furthermore, comparisons of our OS
results Rex,c with the experiments of Kobayashi et al. (1983) in figure 9 show reasonably
good agreement. Nevertheless, we propose a numerical analysis of the full perturbation
equations, including the Coriolis and viscous streamline-curvature effects, as an extension
to this problem. It should be stressed that as in §5, such an analysis will obtain neutral
curves for the required values of ψ and s. We will subsequently investigate the stability
curves for the range of φ which produces the lowest critical Reynolds numbers. This
will form an accurate estimate for φ that can be compared to existing experimental
and numerical results. Ultimately, utilisation of the updated basic flows presented in
this study would potentially lead to closer comparison with existing experiments, not to
mention with any potential future experimental studies. In this light, we are currently
in the process of developing and extending the work of Garrett et al. (2009) for a broad
rotating cone undergoing a crossflow instability, to incorporate an oncoming axial flow.
Consequently, we hope to extend these results in due course to the current problem of a
slender rotating cone in axial flow.

Acknowledgments

ZH wishes to acknowledge Manchester Metropolitan University and the University of
Leicester, where some of the results for this paper were obtained. The authors are also
grateful to the referees for their useful comments regarding the structure of a previous
version of the article, which are now summarised. Firstly, the formulation in §3 was con-
densed slightly, with discussions updated to focus on the strategy for shifting to the new
logarithmic coordinate system. Secondly, further details were included in §5, for example
regarding the relationship between our numerics and previous studies in the literature
by Kobayashi (1981) and Kobayashi et al. (1983). In addition, more thorough compar-
isons were also drawn between the asymptotic and numerical analyses used in §4 and §5,
respectively, highlighting their relative strengths and limitations. Lastly, further informa-
tion was provided regarding the method for obtaining the numerical neutral curves shown
in §6, in particular why the curves represent the most unstable modes and subsequently
enable useful direct comparisons with the results of Kobayashi (1981) and Kobayashi et
al. (1983).

Appendix A. The governing perturbation equations
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ṽ

+
sinψ

h̄1

∂Ṽ
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ũ

+
sin2 ψ

h̄2
2
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Ṽ (x̌, ȳ, η) +W

∂

∂η

)
w̃ +

∂W

∂η
w̃

−2
cosψ sin2 φ

h̄1
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ṽ

+2
( sinψ

h̄2
1

∂h̄1

∂η

∂ũ
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where ∇̄2 = R−1∇2 is now the non-dimensional re-scaled Laplacian operator in the
logarithmic spiral wave coordinate setup, which may be expressed as
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Equations (A 1)–(A 4) represent the continuity and momentum disturbance equations,
with the convective terms in equation (A 4) producing the important quantities leading
to the definition of the Taylor number T in the asymptotic analysis §4. The scale factors
are given by

h1 =
h̄1

sinψ
+O(R−

1
2 ), (A 5)

h2 =
h̄2

sinψ
+O(R−

1
2 ), (A 6)

where

h̄1 = 1 + x̌ cosφ− ȳ sinφ+ η cosψ sin2 φ,

h̄2 = 1 + x̌ cosφ− ȳ sinφ+ η cosψ cos2 φ.
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