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Epigenetic programming of neuroendocrine systems
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New findings
� What is the topic of this review?

Behavioural epigenetics and its role in early-life programming and adaptation is allowing
us to understand how psychiatric diseases can develop through interactions of genes and
environments.

� What advances does it highlight?
The ability of methyl of Methyl-CpG binding protein 2 to regulate Avp gene expression, in
response to early-life stress, and induce DNA methylation, occurs through the recruitment of
components of the epigenetic machinery.

Arginine vasopressin plays a pivotal role in the control of long-lasting effects of early-life stress on
the brain. We previously reported that maternal separation in mice persistently upregulates Avp
gene expression associated with reduced DNA methylation of a region in the Avp enhancer. This
early-life stress-responsive region serves as a binding site for the methyl-CpG binding protein 2,
which in turn is controlled through neuronal activity. We also found that the ability of methyl-
CpG binding protein 2 to regulate transcription of the Avp gene and induce DNA methylation
occured through the recruitment of components of the epigenetic machinery. Understanding
the sequential events involved in the epigenetic regulation of a gene should allow for targeted
approaches aimed at reprogramming expression during development and possibly later life.
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Early-life adversity can have long-lasting consequences
for mental health by shaping individual differences
in vulnerability to stress-related disorders throughout
life (Heim & Nemeroff, 2002). These epidemiological
findings raise the intriguing question of how adverse
early experiences become integrated at the cellular and
molecular level in the developing brain architecture.
Accruing evidence suggests that the genetic blueprint
is strongly shaped by environmental factors (Fig. 1).
Animal models in which the early environment can be
manipulated in a controlled fashion can help to improve
understanding of gene–environment interactions and
elucidate the pathways through which programming in
response to early-life experiences occurs.

Epigenetic mechanisms, comprising covalent DNA
and histone modifications, are prime candidates for
the regulation of gene expression and allow integration
of intrinsic and environmental signals in the genome
(Jaenisch & Bird, 2003). In this respect, epigenetic
mechanisms have been suggested to underpin brain
plasticity through different life stages, a process requiring
stable modulation of gene expression (Hunter & McEwan,
2013; Patchev et al. 2013). Although DNA methylation is
one of the most intensely studied epigenetic mechanisms,
its role in the translation of life experiences into lasting
changes in postmitotic gene expression still remains poorly
understood.
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Adverse conditions during early life can impact
on experience-dependent maturation of structures
underlying emotional functions and endocrine responses
to stress, such as the hypothalamic–pituitary–adrenal
(HPA) axis (a major part of the body’s stress system),
leading to increased stress responsivity in adulthood (Seckl
& Meaney, 2004). Consistent with this concept, depressed
patients with a history of childhood abuse or neglect are
often characterized by hyperactivity of the HPA axis (Heim
& Nemeroff, 2002).

In order to translate findings from humans to mice,
we used periodic infant–mother separation [known as
maternal separation (MS); 3 h per day from postnatal
day 1 to 10] during early postnatal life (Murgatroyd et al.
2009). This is one of the most commonly used models
for inducing early-life stress in rodents (Nishi et al. 2013),
characterized by lifelong elevated glucocorticoid secretion,
heightened endocrine responsiveness to subsequent

Figure 1. Epigenetics allows the genome to dynamically
respond to the environment
DNA can be compared to the hardware of a computer, while
the operating system of the DNA, the epigenetic programming,
enables the processing of decisions regarding which functions
the DNA hardware does and does not perform. Environmental
conditions can be thought of as inputted data that allow the
epigenetic software to meet nature’s goals of adaptation.

stressors, and disruption of the homeostatic mechanisms
that regulate the activity of the HPA axis. All of these
signs are considered to be pathogenic factors in disorders
of mood and cognition (Holsboer, 2000; Pariante &
Lightman, 2008).

Using this rodent model of early-life adversity, we
examined the coupling of experience-driven neuronal
activity with DNA methylation and gene expression.
We focused on the expression of the two hypothalamic
neuropeptides that regulate HPA axis activity by
increasing the synthesis and release of pituitary
adrenocorticotrophin, namely, arginine vasopressin
(AVP) and corticotrophin-releasing hormone. Abundant
evidence links AVP and corticotrophin-releasing hormone
to mood and cognitive behaviours, making their receptors
targets for potential psychopharmacological interventions
(Bao & Swaab, 2010).

Specifically, we showed that MS leads to reduced DNA
methylation at a downstream enhancer of the Avp gene
within the parvocellular subdivision of the paraventricular
nucleus of the hypothalamus. These epigenetic events are
accompanied by persistent upregulation of Avp mRNA
expression and consequently, sustained hyperactivity of
the HPA axis. Importantly, the MS-induced endocrine
phenotype lasted for at least 1 year following the
initial adverse event and could be normalized through
administration of an AVP V1b receptor antagonist.
Moreover, we identified specific cytosine residues, within
cytosine–guanine (CpG) dinucleotide residues, at the
Avp enhancer whose sustained hypomethylation after
MS is critical for the regulation of Avp expression.
These residues correspond to high-affinity, context-
specific binding sites for the methyl-CpG residue-
binding protein Mecp2. Furthermore, depolarization of
hypothalamic cells induced site-specific phosphorylation
of Mecp2 via calmodulin kinase II and thus controlled
the function of Mecp2 as reader and interpreter of
the DNA methylation signal at the Avp enhancer. This
result is consistent with previous findings that neuronal
depolarization-dependent Ca2+ influx and activation of
calmodulin kinases causes phosphorylation of Mecp2
(Zhou et al. 2006). Such modification is considered to
impair the ability of Mecp2 to bind methylated DNA

Figure 2. A stepwise pathway in the epigenetic programming of Avp during hypothalamic development
in a time-dependent manner
Methyl-CpG binding protein 2 (MeCP2) binds to Avp enhancer, following prior binding of sequence-
specific factors, and recruits histone deacetylases (HDACs) and DNA methyltransferases (DNMTs) to target
DNA methylation and repressive chromatin.
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and relieve repression of target genes. The concept that
experience-dependent stimuli dynamically control the
methylation of the Avp enhancer is further supported
by the observation that MS induces contemporaneous
increases in calmodulin kinase II activation and Mecp2
phosphorylation, indicating that the sequential order of
these events plays a major role in the establishment
of epigenetic marks. Once established, the observed
differences in Avp enhancer methylation centred on Mecp2
binding sites, which appeared to be actively maintained in
MS mice.

Collectively, we propose that MS-induced
depolarization of neurons in the paraventricular
nucleus drives Mecp2 phosphorylation and enhanced
Avp expression, thereby serving as a key mediator of the
effects of MS. Moreover, MS tilts the balance towards
persistent hypomethylation and Avp overexpression by
lasting reductions in Mecp2 binding (Murgatroyd &
Spengler, 2011).

Following on, we investigated how Mecp2 regulates
and establishes epigenetic marking at the Avp enhancer.
We now show that Mecp2 co-associates with repressive
histone marks, histone deacetylases 1 and 2 and DNA
methyltransferases 3a and 3b to establish repressive
epigenetic marks. In addition, we show that Mecp2 is
recruited during neurodevelopment to the Avp enhancer
following prior binding of early developmental factors
known to recruit histone- and DNA methylation-
modifying enzymes. We propose that this lays the ground
for further Mecp2 occupancy at the AVP enhancer.
Given that early social experiences influence specific brain
circuits during specific developmental stages (Andersen
& Teicher, 2008; Loman & Gunnar, 2010), elucidation
of the pathway establishing epigenetic regulation of
Avp during hypothalamic development could enable the
targeting of part of the epigenetic machinery in a time-
dependent manner to regulate long-term programming
of Avp expression in response to early experience
(Fig. 2).

Another rodent model uses chronic social stress in rats
to model postpartum depression and anxiety and allows
testing of adult maternal behaviour and programming
of neuroendocrine genes (Nephew & Bridges, 2011).
Dams exposed to early-life chronic social stress as infants
displayed long-term effects on the neuroendocrinology of
maternal care, consisting of reduced oxytocin, prolactin
and Avp gene activity in brain nuclei involved in the
control of maternal behaviour, with the overall result
being a decreased nursing efficiency in the adult dams
(Murgatroyd & Nephew, 2013). Further studies are aiming
to elucidate the epigenetic mechanisms linking exposure to
chronic social stress during early development to the long-
term effects on adult maternal behaviour and oxytocin and
prolactin activity.

Perspectives

Behavioural epigenetics and its role in early-life
programming and adaptation is a relatively new research
field crucial in aiding our understanding of psychiatric
diseases, through interactions of genes and environments.
It is important to comprehend the mechanisms of how
such processes encode DNA memories so that we might
be able to take advantage of these early opportunities in
neurodevelopmental processes (Nagy & Turecki, 2012).
The identification of potential windows for timely
therapeutic interventions in DNA memory-mediated
disease states following early social stress is likely to be
more effective and less costly than addressing problems
at a later age (Hoffmann & Spengler, 2012). Refinements
to translational animal models are an important way to
address the impact of environmental interactions, such as
maternal care and early-life stress. This will advance our
understanding of how nature and nurture conspire in early
life and ultimately allow us to foster appropriate preventive
measures in the management of complex diseases and
behaviours.

Call for comments

Readers are invited to give their opinion on this article.
To submit a comment, go to: http://ep.physoc.org/
letters/submit/expphysiol;99/1/62.
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