
Music Tagging Type Definitions,
Systems for Music Representation and Retrieval

Carola Boehm
University of Glasgow

C.Boehm@music.gla.ac.uk

Donald MacLellan
University of Glasgow

D.MacLellan@music.gla.ac.uk

Abstract

The paper will discuss the general issues surrounding
structured music information representation and music
information retrieval, present the result of the UK-JISC
funded "proof-of-concept" project: MuTaTeD! [1] (Music
Tagging Type Definition) and inform about further devel-
opment within the UK-Library Information Commission
funded MuTaTeD'II [2] project. Work within the two
projects MuTaTeD! and MuTaTeD'II, striving towards
the design and implementation of an expandable, flexible
music information retrieval system with delivery/access
services for encoded music, has resulted in involvement in
standards development, such as MPEG7, in order to sup-
port the needs of developers within music information
retrieval research.

1. Introduction

A serious problem for IT today concerns Information
Overload. When, as now, the internet is becoming the
platform, the browsers become the operating system, and
applications become services [3], services to access music
content have to define new methods of storing and dis-
tributing time-based data if they are to serve large quanti-
ties of high-quality information across wide area networks
(WANs). Future information services will need to carry
the burden of extensive metadata management, - content
searching and manipulation of time-based data - if they
are to facilitate intelligent access and efficient delivery to
their user communities.

It is now, therefore, quite widely accepted that there
needs to be development in three areas (i) Information
Structure (ii) Information Representation and (iii) Infor-
mation Access.

 In a number of IT sectors, there has been considerable
progress in user interfaces, metadata management systems
for access, information retrieval, workflow management,

and similar areas. But in the area of Music the most
widely encountered music information structure is midi
and visual information representation over WANs is still
largely restricted to static images. Music information re-
trieval is still in its infancy.

 While this leaves plenty of scope for researchers,
there is a sense that users have still to benefit as fully
within the area of Music as they clearly have in other
domains.

2. The Music-Specific Context

Accessing and manipulating time-based data over
wide-area networks is a research area ready to deliver its
first results. For a variety of tasks, such as automatic
page-turning and slide-shows, and within a variety of
fields, such as multi-media applications and professional
video or media companies, there is a requirement for a
language that describes time-based media in its structure.

Two main options seem to be possible here:
• handle the media files as they are and synchronize

their interaction with each other, or
• use a structured language to represent time-based

media files, such as those associated with music,
as a time-based medium within its own time-
dependent structure.

The first option has yielded solutions that have al-
ready been commercially exploited, e.g. interaction of
sound and movies, parallel depiction of scrolling text and
movies, web slide-sound shows, etc. The second option
has so far been neglected, so that the Music community
is left without the musical equivalents of, for example,
SGML (Standard Generalized Markup Language) and
XML (eXtensible Markup Language) and packages to
handle them.

"Music Representation Languages" are essentially a
means to describe certain musical elements and their
time-relation to each other. At the macro level, such a
language might represent a sequence of four sound files

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by E-space: Manchester Metropolitan University's Research Repository

https://core.ac.uk/display/161890082?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

played one after the other, corresponding to the four
movements in a symphony. At the micro level, it might
represent single notes on several staffs in their relative
"time-positions". Thus, within this model of a "time-based
media structure", by heightening the detail of granularity,
we conjoin the two options outlined above.

An application with the combined implementation of
two standards, SMDL (Standard Music Description Lan-
guage, SMDL ISO/IEC 10744) and NIFF (Notation Inter-
change File Format, created 1995 in collaboration with
several music companies.), would support the representa-
tion of music as a structured, time-based entity in its own
gestalt, - while simultaneously supporting high-quality
display via the NIFF format. The publication of the
SMDL standard draft in 1995 was recognized in the NIFF
specification of the same year when it proposed this very
combination for applications. Among applications which
might be founded on this concept are:

• Platform independent file interchange (music soft-
ware, web)

• Intelligent and dynamic access to structured music
(libraries, education)

• Using music-recognition functionality, easy and in-
stant access to a critical mass of music (sheet music
sales and loans, music publishers, performers, mu-
sic and audio distributors)

• Collaborative creation and working processes and
the synchronization of time-based media of the
same or different type (media production industry)

As mentioned above, in order to achieve this, the exis-
tence and acceptance of a language that describes time-
based media in its time-based structure is required and
with it the possibility to represent it in a musical way. The
development and adoption of such a language as we en-
visage will make possible the realization of these objec-
tives.

The basic idea of the MuTaTeD! Project (Music Tag-
ging Type Definition) grew out of these considerations
and suggested the following primary project goals:

• the proof of concept of integrating two existing
standards, one for music content (SMDL) and one
for music score representation (NIFF)

• the use of a standard Meta-DTD for music-tagging
languages

3. Music Representation Standards – The
Historical Context

Research into Music Representation Standards is not
new. There have been many and varied approaches to
standardised music representation. The following, histori-
cally oriented listing helps show the context for our cur-
rent efforts. [4]

Early Number Notation (19th century and ear-
lier): Davantes, Kircher, Avella, Mersenne,
Bontempi, Stierlein, Mine, Schulz, Rousseau,
Galin-Paris-Cheve, Geisler, Teule, Gatting
19th Century Shorthand: Sauveur, la Salle, Ro-
manos, World Music Language
Formats for Typewriter and Early Computer
Age: DARMS, Plain and Easy and ALMA,
WMN, MECOS, ANTOC, SPECO, NUTOC,
Essen EsAC
Computer Age: Formats for Notation Software -
Binary File Formats: Encore File Format, Sy-
qyest, Lime's Tilia, Nightingale, Score's Score,
Computer Age: Formats for Composi-
tion/Performance Systems: Midi, Mode’s Small-
Music, Kyma’s Kyma, Common (Lisp) Music
Notation, Max Score, Csound's Score, NeXT's
Score format, Radio Baton Score File,
Hush/Hymne/DejaVu, MML
Computer Age: Formats for Notation - Text
based File Formats: Finale's Enigma, MusicTex,
Lilyponds Mudela, abc, GUIDO,
Computer Age: Interchange File Formats: NIFF
Computer Age: Analysis and Content Serching:
Humdrum's Kern, MuseData, CPN,
WebAge: Formats for Storage, Compression,
Delivery: MPEG4, SMIL
Web Age: Tagged Music Description Formats:
SMDL/SGML, MuXML, MusicML, MNML,
MPEG7

Independently of (and in parallel with) “conventional”
music notation, numerically based systems for encoding
musical information have been devised, perhaps gov-
erned by an idealistic Pythagorean sense [5] that numeri-
cal abstraction and elegance was especially appropriate.
But they were also to fulfil a practical need, at a time
predating audio recording, to capture musical data as it
was being played – a task for which common music no-
tation is not at all well suited.

Using typewritten text and early computers, substan-
tial archives of incipits and melodies were developed,
giving rise to an ASCII-based notation. These holdings
may still be found in many catalogues of music. With the
development of professionally oriented music applica-
tions for the computer, new data structures, file formats,
and music description standards emerged with almost
with every application. The Music Notation software ap-
plications, in particular, were forced to create their own
underlying mu sic data structures to contain all the infor-
mation needed to print music. In the absence of estab-
lished and widely adopted standards, this was inevitable
if the applications were to be of any practical use. Sur-
prisingly, perhaps, there was not much impetus to agree
a joint standard.

NIFF (Notation Interchange File Format) was the first
(and only) commercially-based effort by several compa-
nies to agree on an interchange file format for Notation.
Although there are now a few NIFF-compliant programs,
all the most widely used notation and music programs are
still not capable of reading NIFF. Perceptions of their
commercial interest appear to lie behind various music
companies’ failure to follow through with previously an-
nounced plans for NIFF implementation. This is difficult
for the Music user community to bear, forced as it is to
struggle on with MIDI, which cannot and indeed was
never intended to support the full extent of the needs of
the field.

Recent activity to revive NIFF-related development is
largely to the credit of the user community rather than
commercial concerns. A positive development can be
seen with music tagging languages. The number of text-
based mu sic languages, cognate with SGML/XML/
SMDL, is rising. A number of groups are pushing for
standardisation of a single language to be used over the
web. There are developments spinning off from XML
under the W3C, and developments with SMDL (Standard
Music Description Language), backed by MuTaTeD! and
their work within MPEG7 [6]. As ever, agreement is re-
quired so that application developers may safely integrate
the standard in their application. Even though SMDL un-
like all the other tagging music standards is an ISO stan-
dard, it seems so far to have failed the final test of accep-
tance by application developers.

 It is hard to understand why it is, that until now no
music representation standard has been accepted. A list of
problems of developers of music representation standards,
which could explain this absence of accepted standards
would encompass difficulties of collaborative develop-
ment efforts as well as difficulties in the intellectual effort
itself. The creation of a music standards will always in-
volve the problematic issue of design and implementation
of time and granularity, representation, and language
functionality.

3.1. Time

The most relevant content based problem which is
faced by any developer of a music representation lan-
guage is the definition of time.

Decisions have to be made in the design of a language
to either define time as an internal attribute of the musi-
cal entities (Fig.1) or define time as an external entity
with links between musical objects? (Fig.2)

Other possible differences in design can be the choice
of a recursive (Fig. 3)

or a sequential representation of time. (Fig. 4)

c(16th) - h(16th) - c(8th) - etc

Fig. 1 Time as an internal attribute

c - h - c - etc

16th - 16th - 8th - etc
0.4sec - 0.4sec- 0.812sec-etc

Fig. 2 Time as an external attribute
with links to the musical objects

Fig. 3 Time as a recursive entity?

measure1

etc

note note note

dur
amp
pitch

dur
amp
pitch

dur
amp
pitch

dur
amp
pitch

c - h - c - etc

16th - 16th - 8th - etc

 8th 8th - etc

Fig. 4 Time as a sequential entity

Deciding on one on or the other model has conse-
quences on the performance of the data structure in cer-
tain use contexts. Recursive time structures, for instance,
might be easier for implementing searches, but might be
slow in processing changes in speed. Having an externally
defined timeline means a high performance in handling
temporal changes but does imply a more complex imple-
mentation of the associated note values.

3.2. Representation paradigms and language
functionality

With text, most applications already have an estab-
lished design for separation of content from representa-
tion,- or "model" from "view". Examples are html, with
stylesheets and SGML, storing the basic text in its
"meaningful" structure with levels of headers and logic
text elements as for instance "quotes", "headers level 1-
10", "emphasis", etc. In music, a similar model-view
separation is needed in order to create a flexible basic
structure to hook up different notations on to, be it guitar
riffs, common music notation, frequencies, midi, or other
representations. In order to switch from one to the other, a
central logic music data structure is needed to which dif-
ferent views can be hooked.

This general Model-View-Controller paradigm, orig i-
nally deriving out of the object-oriented Smalltalk envi-
ronment, could and should be one of the design goals of
any music information description language.

Comparing these requirements with our very success-
ful common western music notation as a possible lan-
guage for describing musical information, one can imme-
diately see that it has at least three major characteristics
defined, which actually fit very well into a model-con-
troller-view paradigm. It is foremost a graphic oriented
language. It represents music in a very graphical manner,
so much so, that other languages have raised its graphical
representation to the definition of music itself by de-
scribing in order to achieve a common music notation of
the music, ignoring the existence of any other means of
transcribing musical information.

Additionally our common music notation is action ori-
ented, as it often contains information of actions to be
taken by the performers: how fast, how slow, how loud
and with what character. In this characteristic it does not
tell the absolute value of an entity but rather how it should
be played, the value being derived out of the following of
these action commands. There is actually long history of
pure action-oriented languages, such as tabulators and
guitar riffs, which do not represent the music itself, but
rather the actions to be taken to achieve a sound. Midi is a
further machined based example of this type, as it does
not contain information about the music in itself, but
rather represents a sequence of actions the instrument has

to execute. The sounding music is derived out of the in-
struments following these directions.

Finally, our common western music notation is highly
structure oriented, the user can immediately grasps the
smaller and the bigger structures and other relational
complexities, such as which instruments play together in
a group, which notes belong together, which is the ac-
companiment and which the melody. In this way it is
structure or logic oriented.

To achieve the same level of usability, a music de-
scription language for music information retrieval would
in the best case either need to encompass all three levels
of language functionality or it would need to be able to
be combined with languages to fulfill them.

Having experimented with own developed model-
view-controller based music data structures in the past,
we realized that the barrier of acceptance was to high to
overcome if a newly developed data structure, thus "yet
another standard" would be used. We looked towards ex-
isting standards, which on the one hand would fulfill our
own requirements of a) having a model-view separation,
b) being a structure- or logic-oriented language and c)
using a standard in order to have a stable base and d)
preferably being a text based language for platform inde-
pendence and web use.

Thus within the MuTaTeD projects it was decided to
use two existing standards, SMDL and NIFF. SMDL
would function as our structure oriented model of our
central music data structure with NIFF providing one
possible view on this structure. SMDL had the advan-
tage of being text-based, structure-oriented and being a
standard. NIFF provided us with a standardised music
notation format representing the graphical information of
music.

4. A Short Introduction to SMDL (Stan-
dard Music Description Language)

SMDL (Standard Music Description Language) is a
HyTime application that conforms to international Stan-
dard ISO/IEC 10744. It builds upon SGML (ISO 8879)
and HyTime (ISO/IEC 10744).

There are four domains in SMDL:
• logical domain - contains the abstract musical

content , described as "the composer's intentions
with respect to pitches, rhythms, harmonies, dy-
namics, tempi, articulations, accents, etc.". It con-
tains any number of `cantus' elements.

• gestural domain - contains any number of per-
formances, each of which specifies how and
where components of the logical domains are ren-
dered in a specific performance, as in "the infor-
mation added by performers".

• visual domain - contains any number of scores,
each of which specifies exactly how components of
the logical domain is rendered visually, as in "the
information added by human editors, engravers,
and typesetters".

• analytical domain - comprised of any number of
theoretical analyses.

The process of creating an SMDL document instance
involves generating a logical domain from a score or a
performance, and (optionally) of generating a visual or
gestural domain which represents all the correspondences
between that score or performance and the logical do-
main. The relationships between the different domains are
created using hyperlinks which may connect chunks of
multimedia materials as well.

SMDL is expected to be published in its revised form
with compatibility with XML and HyTime2 by 2001. [7]

5. A short introduction to NIFF (Notation
Interchange File Format) [8]

As Stephen Mounce writes in his introduction to NIFF:
“The NIFF project began in February 1994

with a meeting between technical people repre-
senting three major music notation programs
and three music scanning programs. The
group's goal was to define a new standard for-
mat for exchange of music notation data, which
everyone agreed was long overdue in the in-
dustry.

The original companies involved were:
Passport Designs (publisher of Encore), San
Andreas Press (Score), Coda Music Technol-
ogy (Finale), Musitek (MidiScan) and TAP Mu-
sic Systems/MusicWare (NoteScan). The list of
advisors has continued to grow over time.

In January of 1995 Coda decided to with-
draw from the process (with the intention to
publish their own Enigma format). Shortly
thereafter, Mark of the Unicorn, Twelve Tone
Systems, Opcode Systems, and TAP Music
Systems/MusicWare agreed to replace Coda as
financial sponsors.” [9]

Thus NIFF is the result of more than two years col-
laboration between major music software publishers and
experts in the field of music notation/representation. NIFF
files include graphical object and page layout as well as
MIDI performance information.

Up to now, MIDI files have been the de facto standard
for exchange of music data between programs. Although
this is sufficient for playback, it is inadequate for dis-
playing and printing of music notation. NIFF tried to an-
swer this need with a dedicated notation score representa-
tion with its major functionality of being an interchange
file format.

To sum up the positive characteristics of NIFF:
• platform-independent interchange
• intended to preserve a significant amount of visual

detail and allows representation of the most com-
mon situations occurring in conventional music

• makes provision for software developers to define
their own extensions to handle the more unusual
situations and allows inclusion of Encapsulated
PostScript (EPS) files and fonts to allow inter-
change of features not otherwise defined in the
format

• the standard is open and non-proprietary and there
are Software Developers Kits (SDKs) available

Both SMDL and NIFF seemed stable enough to start
developing SMDL based and NIFF compatible services
for music information retrieval. Although one may be
aware of the fact that other standards are much more ac-
cepted and hyped within the music industry, and that
both NIFF and SMDL are not accepted by it, they still
seem to be the only standards powerful enough and close
enough to being officially standardized, for developers
not to be prone to the danger of working towards moving
goalposts. Within this context, plans were made to set
up a proof of concept project to validate the concept of
integrating these two existing music representation stan-
dards.

6. MuTaTeD! – a proof of concept

Objectives of the project were: to integrate SMDL as
the Model with NIFF as one possible View, and establish
a standard Meta-DTD for music tagging languages,
which could be used by the wide user community. The
project MuTaTeD! validated the concept of integrating
two existing music representation standards. Addition-
ally, it was to research into the development and integra-
tion of a SMDL DTD for the wider music user commu-
nity and develop a web-application as a demonstrator.
The work heavily influenced the "Structured Music
MPEG7 proposals" [10] which were proposed in order to
ensure an SMDL-compliant standard.

Due to the time and financial constraints of this proj-
ect an early decision was taken to use freely available
software development environments. For the parser and
compiler the Lex/ Yacc Parser Technology (lexer, parser,
code generator) was chosen and a multipass compiler has
been developed with this technology. To create the NIFF
output files the NIFF Software Development Kit, also
freely available, was used.

In addition to this, we could utilize already existing
multipass compilers, which convert SMDL to NIFF, de-
veloped by the CANTATE [11] project (developer: Ste-
ven Mounce). Including our multipass compilers, which

also make use of the NIFF SDK we had the following
compiler passes1:

CANTATE's 2 Pass Compiler: NIFF --> SGML(SMDL):
• NIFF -> SGML(NIFF) and
• SGML(NIFF) -> SGML(SMDL)

MuTaTeD!'s Multi-Pass compiler: SMDL --> NIFF:
• SMDL --> SGML(SMDL),
• SGML(SMDL) --> SGML(NIFF),
• SGML(NIFF) --> C(NiffSDK) --> C-Code,
• C-Code --> NIFF binary .

The feedback from several large libraries and library
projects, which have shown interest in this work, empha-
sized the value of having the full circle of converters from
SMDL to NIFF and NIFF to SMDL available. Although
the SMDL to NIFF converter as developed still has some
restrictions in its functionality, it should be noted that
MuTaTeD!, besides having proved the concept of inte-
grating SMDL and NIFF, it was the very first project to
build a SMDL to NIFF converter.

6.1. The technical Set-Up

The ideal situation, would have been to distribute the
multipass converter across server and client whilst using a
platform independent client (see Fig.5).

This design would have had the advantage of client-
server distribution in order to maximise the performance
for the user. The conversion processes to the final binary
NIFF files would be executed on the client machines, thus
minimising the downloading time and platform depend-
encies. Only text-based information would be send to the

1 For future notation within this document, a file written in SGML

and using an X DTD is described as being in SGML(X). A file written
in C and using functions from the NIFF SDK is referred to as being in
C(NIFF SDK).

client, the binary being created within the client-side ap-
plication. Additionally this would have the advantage of
involving separate passes, allowing the modularity to
add different client side converters, such as for instance
GUIDO [12]. In this way it could be easily expanded.
But facing the problem that the NIFF SDK was avail-
able only for Unix, and not having the time for tedious
recompilation procedures of the software tools for
WinNT, the decision was made to put all of the passes
onto the server side.

6.2. The MuTaTeD! Multipass Compilers

As with any compiler, our programs contain a lexer, a
parser and a code generator. The lexer splits up the pro-
gram text into what are called ‘tokens’, pieces of infor-
mation. These are then examined by the parser, which
builds a tree representing the data structure. If the data
can be parsed successfully, then the tree is well-defined
and is passed on to the code generator, which produces
target code as it examines each node in the tree [13].

The compiler developed in MuTaTeD! worked with
two passes. The first translated SMDL into an intermedi-
ate form of NIFF, called SGML(NIFF). The second
translated into NIFF binary code. Each of the two passes
was written using LEX and YACC. The second pass
translated an SGML(NIFF) file to a C program, using the
NIFF SDK. This was compiled and executed, resulting in
a NIFF binary file that can then be loaded into a NIFF
compatible music editor, such as LIME. We have made
these compilers for the MuTaTeD!1 project freely avail-
able for the developers' community (and hope that inter-
est exists to use this technology to expand upon).

Besides proving the concept of integrating these two
standards, the use of the LEX/ YACC technology enabled
us to implement the converters, but to certain extent also
restricted our flexibility. With LEX/YACC we had to
hardcode our chosen DTD's into the converters. This re-
striction was the major reason for implementing the fol-
low-up system in the project MuTaTeD'II in a different
way. The MuTaTeD'II team decided to use the
Groveminder Technology, which, besides other advan-
tages, caters for the reading-in of different DTDs. NIFF,
being binary, also posed some problems of accessing and
searching the content. The fact that any compila-
tion/search procedure has to always be preceded by a
reading in or out of the whole binary data in the case of
binary formats, has consequences in the design of intui-
tive content music retrieval, specifically for displaying
dynamically parts of music. So although NIFF has
proved to be a powerful format, we are contemplating
using other text based representation languages for future
implementations. As depicted in Fig. 5, the effort in-
volved in implementing compliance with other tag-based
description languages is not immense.

 SMDL
 <ces id=ces2 repeats=2>
 <pitched

exspec=quarter>
 <nom-

p

s

niff
ca-

client side

server side

NIFF

SMDL

SGML(SMDL) --> SGML(NIFF)

SMDL --> SGML(SMDL)

SGML(NIFF) --> C(NiffSDK) --> C-
Code

C-Code --> NIFF binary

SGML(SMDL) --> SGML(GUIDO)

SGML(GUIDO) --= GUIDO

SGML(SMDL) --> SGML(MML)

SGML(MML) --= MML

wide-area network

Fig. 5

7. From MuTaTeD!I to MuTaTeD’II

Although proving the initial concept by having accom-
plished a prototype which was able to convert SMDL to
NIFF for a restricted set of music examples (music up to 7
sharps and flats in time signatures of 4/4), we were aware
of the restrictions imposed on this prototype due to the
choice of technologies to be used and the time restraints
on the whole project. NIFF, being binary, posed some
problems of accessing and searching the content. The fact
that a compilation procedure has to always precede a
reading in, has consequences in the design of intuitive
content music retrieval out of NIFF, specifically for dis-
playing music. So although NIFF has proven to be the
powerful format, another text based representation lan-
guage for future implementations is being considered.
Using LEX/ YACC the DTDs had to be hardcoded into
the parsers, which meant that future use of these parsers
with slightly different types of music or DTDs was a
matter of adding or changing the code. The second pass
of the compiler restricts handling to a single line using
treble clef, where as the first pass is able to process other
clefs, and up to five staves. Although it would have been
easy to build a second project on top of the same technol-
ogy, expanding the parsers and converters to cover the
full requirements of traditional music notation, we wanted
to base the follow-up project on a technology which
would be able to tackle these issues without the restric-
tions of the earlier project. To utilise the full portability
and the scalability of the original SMDL standard, we
chose to use the Groveminder system from Tech-
noTeacher Inc. as the basis for the MuTaTeD’II System.
Using Grove technology [14] and its underlying object-
oriented database management to store the groves we
started to build a new system which we believe holds con-
siderable promise for the music information retrieval
community of the future. More details of the two projects
can be found at their relevant websites [1 and 2].

8. MuTaTeD’II, the technical set-up

MuTaTeD'II used the same basic system architecture,
this time with Groveminder's support for tagged based
languages and its parsers and compilers. The
Groveminder technology allows the construction of
groves from any valid SGML document. A document is
opened, parsed and validated by Groveminder. A SGML
grove is then constructed ready for the second stage of
processing.

Two main API's are used, both written in C++. The
first is the Groveminder system itself which is used to lex,
parse and search SMDL files. The second is GNU Cgicc,
providing functions for talking to a HTTP server and cre-
ating HTML on the fly. Similar to MuTaTeD! the steps
involved in the successful indexing for the searching pro-

cess include the parsing and validation with simultane-
ously building a tree called the "grove", stepping and
navigating through the resulting tree in order to locate
specific information to be indexed for the search, creat-
ing containers and filling them with the values and fi-
nally applying standard search functions to these con-
tainers.

Essentially, the method of creating new in-memory
data models containing only search-specific information
promises a very efficient and very expandable basic soft-
ware design. It allows the non-proprietary ethos of
SGML to be extended to the way data is constructed and
referenced. Although this conformity to a data model
does not dispense with the need for specific code to be
written for SGML files with different DTD’s, it does
provide a number of advantages.

1. Using Groveminder automatically provides sup-
port and the existence of a standard data model,
which is closely linked to our source data.

2. By using a standard object-model like groves and
property sets, the interoperation of a wide variety
of different applications is easily realized. (For
more information on Groves see (The XML
Cover Pages))

3. Portability across platforms.
This is of immense benefit when expanding the sys-

tem in light of future developments.

9. Conclusion

In the past the availability of music information on the
net has been hampered for a variety of reasons, one of
the main ones being the propriety nature of the file for-
mats used in most score notation packages. Throughout
the Mutated projects, we have tried to overcome some of
these restrictions. In MuTaTeD! the task to make SMDL
files viewable was undertaken by creating SMDL to
NIFF converters. This opened the door for the next obvi-
ous step which was carried out in MuTaTeD'II. SMDL
being a tag-based language was one of the obvious
choices for transporting music information over the
internet.

While the process of creating a fully interactive online
music information search and analysis tool is still in its
embryonic stage it is immediately obvious that a solution
of this nature could have a variety of benefits to the mu-
sic community.

• high-level to low-level music search facilities
• adaptable, expandable analysis tools
• use of an underlying powerful, standardized de-

scription language, which does not necessarily re-
strict the handling of purely encoded music

• the expansion possibilities into areas of
audio/video tagging

Finally, the expansion of the web and the general in-
crease in tag-based languages like XML and SGML mean
that, in future, there will be a greater provision for devel-
oping applications that deal in these languages. The next
generation of browsers (i.e. Netscape 6) will be fully
XML compliant and, given time, SGML (or something of
a similar level of complexity) will be more commonly
used. This drive towards easier interchange of information
is inevitable and provides an opportunity to put data under
the control of users rather than leaving them prone to the
fickle trends of commercial application developers who
more often than not have been responsible for the bottle-
neck in information interchange.

References

[1] Cordy Hall, Carola Boehm Boehm, Website of the Project
"Music Tagging Type Definition", MuTaTeD!1.
http://www.pads.ahds.ac.uk/mutated 2000-06-05.

[2] Carola Boehm, and Donald MacLellan, Website of the
Project "MuTaTeD'II, A system for Music Information
Retrieval of Encoded Music"
http://www.pads.ahds.ac.uk/mutated2.html 2000-06-05.

[3] Kostas Glinos (EU, DG3), Information Access and
Interfaces, presentation for the last call of the 4th

framework, 29 September 1997, Brussels.
[4] Following references are useful starting points for

music representation standards of the past and pres-
ent:
Wolfram Steinbeck, "Struktur und Aehnlichkeit,
Methoden automatisierter Melodieanalyse", in:
Kieler Schriften zur Musikwissenschaft , Band XXV,
Baerenreiter Kassel Basel London 1982, p.29 and
p.392.
Eleanor Selfridge-Field, Beyond Midi, Cambridge Massa-
chusetts, CCRMAH 1997.
Murray J. Gould and George W. Longemann, "ALMA,
Alphameric Language for Music Analy sis." Barry S.
Brook Musicology and the Computer, Musicology 1966-
200: A practical Program (New York: The City Uni-
versity of New York Press 1970), p.57.
Helmut Schaffrath, "The ESAC Databases and MAPPET
Software," in: Computing in Musicology 8 (1992), p.66
and Schaffrath, "The Essen Associative Code", in: Sel-
fridge-Field, p.343-359.

[5] Joahnnes Wolf, Handbuch der Notationskunde II, Hilde-
sheim 1963, p.387-389.

[6] The Moving Picture Experts Group (MPEG) is a
working group of ISO/IEC in charge of the devel-
opment of international standards for compression,
decompression, processing, and coded representa-
tion of moving pictures, audio and their combina-
tion. So far MPEG has produced: MPEG-1 (ap-
proved Nov. 1992), MPEG-2 (approved Nov. 1994),
MPEG-4 version 1, the standard for multimedia ap-
plications (approved Oct. 1998). and is now devel-
oping MPEG-7 the content representation standard

for multimedia information search, filtering, man-
agement and processing (to be approved July 2001).
(http://drogo.cselt.stet.it/mpeg/ 11/01/00)

[7] Steven R. Newcomb, "Standards. Standard Music De-
scription Language Complies with Hypermedia Stan-
dard." IEEE Computer 24/7 (July 1991) p.76-79. ISSN:
0018-9162 and
Steven R. Newcomb, V. T. Newcomb, "Some
Background Information about HyTime." Journal
of the Institute of Image Electronics Engineers of
Japan 21/5 (October 1992) p.459-467.

[8] Cindy Grande and members of the NIFF project
team, Specification for the Notation Interchange
File Format,1995.
http://esi24.ESI.UMontreal.CA:80/~belkina/N/NIF
F6a3.txt 2000-06-05.

[9] Stephen Mounce (ed), Niff Homepage,
http://www.student.brad.ac.uk/srmounce/niff.html,
1/11/00

[10] Carola Boehm, Cordy Hall, ISO/IEC JTC1/SC29/WG11/
MPEG 98/P620/W2463, MPEG proposal: Description
Scheme for description of music content , (Vancouver:
MPEG 1999)

[11] Cantate, Computer Access to Notation and Text in
Music Libraries. Download Deliverable 5-3 : De-
velopment Model with Summary and Recommenda-
tion, Amsterdam 1997.
http://www.svb.nl/project/cantate/cant_deliv.htm
2000-06-02.

[12] Holger Hoos, K. A. Hamel, K. Renz, J. Kilian.
1998. "The GUIDO Music Notation Format - A
Novel Approach for Adequately Representing
Score-level Music" (H. H. published in: ICMC'98
Proceedings, p.451-454) Specifications at
http://www.informatik.tu-
darmstadt.de/AFS/GUIDO/ 21/02/00

[13] Carola Boehm, Donald MacLellan, Cordy Hall,
"MuTaTeD!1and MuTaTeD'II" International Computer
Music Conference Proceedings, ICMC, Berlin 2000.

[14] Steve Newcomb, Groveminder, Technical De-
scription , http://www.tecno.com/ 2000-06-05

