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ABSTRACT

We present the results of 2.5D hydrodynamic calculations of the effects of the
underlying binary system on shaping the ejecta in a classical nova outburst. In the
model, the outburst takes place in the form of a wind with secularly increasing
velocity. This wind flows past a binary companion, which experiences a frictional
drag force and transfers energy and angular momentum from its orbit into the
expanding envelope. We find that many of the features seen in classical nova
remnants can be reproduced, including polar blobs, polar rings and shells with
tropical and equatorial bands. The features seen in the shells correlate with speed
class in the observed manner — fast novae produce spherical shells, whereas slower
novae produce banded shells and polar blobs. The effects of radiative cooling and
the Rayleigh-Taylor instability on the shells are discussed. It is found that, as
observations appear to indicate, the shells of fast novae should comprise a few, large
clumps, whereas the shells of slower novae will be clumped on scales which are small
compared to the shell radius.

Key words: hydrodynamics — instabilities — binaries: general — stars: mass-loss —
novae, cataclysmic variables.

1 INTRODUCTION

Classical novae occur in semidetached binary systems con-
taining a main-sequence star, which fills its Roche Lobe,
and a white dwarf. Matter transferred on to the white dwarf
builds up until nuclear burning commences under degener-
ate conditions, leading to a thermonuclear runaway and the
subsequent ejection of ~107*M,, of material at velocities
of a few hundred to a few thousand km s™' (see, e.g., Bode
& Evans 1989). Several years after outburst, extended opti-
cal emission can be seen around many classical novae. This
usually takes the form of a shell, with aspherical symmetry.
Common features include equatorial rings, polar caps and,
at least in the case of DQ Herculis, pronounced tropical
rings above and below the equatorial band. The latest
images of DQ Her (Slavin, O’Brien & Dunlop 1995) show
all of these features along with an extended diffuse halo,
and ‘cometary tails’ extended radially outward from clumps
within the shell. The degree of asymmetry in the optical
remnant of a nova is also strongly correlated with the speed
class of the outburst (Slavin et al. 1995) — fast novae have
remnants with aspect ratios closer to unity than those of
slow novae.
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An attractive possibility for explaining the departure
from spherical symmetry is the effect of the binary com-
panion. The photospheric radius of the nova ejecta is
greater than the binary separation for several weeks or
months after the outburst, and there is therefore a lengthy
‘common-envelope’ phase in which the ejected matter will
interact with the secondary star (e.g. MacDonald 1980,
1986; Livio et al. 1990; Shankar, Livio & Truran 1991). The
secondary star experiences a frictional drag force in the
nova envelope, and transfers orbital energy and angular
momentum to the ejecta, causing the material to be ejected
in a highly anisotropic flow. Previous 2D calculations of the
effects of the secondary star on nova mass-loss (Livio et al.
1990) assumed a hydrostatic envelope, and are therefore
more likely to be appropriate to the case of a slow nova, in
which the velocity of ejection is low. In this case it was found
that the nova envelope was ejected in the plane of the binary
orbit, with very little mass-loss in the polar direction. In this
paper, we present 2.5D numerical hydrodynamic calcula-
tions which investigate the effects of the binary system on
mass ejection in faster novae, where the ejecta will already
have a significant expansion velocity before the effects of
energy deposition by the secondary star are taken into
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account. We also discuss the effects of radiative cooling of
shocked gas in the ejecta, and the subsequent shredding of
the shell by the Rayleigh—Taylor instability.

2 THE MODEL
2.1 Mass ejection

Mass ejection in novae can be well modelled by an optically
thick, transonic wind (e.g. Bath & Harkness 1989; Kato &
Hachisu 1994, and references therein). Typically, these
winds reach terminal velocity at a radius which is compar-
able to the binary separation for a nova system, and we
therefore assume a steady wind as the initial condition for
our calculations. The wind velocity does not remain con-
stant, however. There is strong evidence to point to the fact
that the ejection velocity in novae increases with time. Spec-
tral lines observed during outburst show increasing veloci-
ties. Also, X-ray emission from hot, shocked gas observed
5d after the outburst of Nova Herculis 1991 (Lloyd et al.
1992) could be explained only in terms of the interaction of
ejecta components with differing velocities (O’Brien, Lloyd
& Bode 1994). The diffuse halo and cometary tails recently
observed in DQ Her also provide evidence for a secular
increase in ejection velocity — the diffuse halo is possibly
composed of material which has overtaken the main shell,
forming cometary tails via ablation of the shell. A detailed
spectroscopic investigation of nova V1974 Cygni (Chochol
et al., preprint) shows that the Orion system of absorptions
can be associated with material which is closer to the central
star than the material responsible for the principal absorp-
tion system, which shows lower radial velocities. Further-
more, thermonuclear runaway calculations (Kovetz &
Prialnik 1994; Prialnik & Kovetz 1995) show that the velo-
city of ejection should increase with time, accompanied by a
decrease in mass-loss rate. Similar behaviour is encountered
in the detailed optically thick wind models of Kato &
Hachisu (1994).

In the model, we assume that the mass-loss rate and
velocity in the wind take the form

M, t<t,
. . —t . .
M=qM,+ M, —M,) Lhst<t 1)
t—1
M, t>t,
and
I t<t,
t—t,
v=< vy+ (v, — 1) t,<t<t,. )
1=l
v, t>t,

2.2 Energy deposition

The drag energy deposition rate is calculated using the pre-
scription of Livio & Soker (1988). The drag luminosity is

therefore given by
L,=¢nRpv?, 3)

where p is the gas density, v, is the relative velocity of the
secondary with respect to the wind, £ is a drag coefficient of
order unity, and R, is the Bondi—-Hoyle accretion radius
given by

2GM,

a” >
vi+c?

“4)

where M, is the mass of the secondary star, and c is the
speed of sound in the gas. The exact value of £ will probably
depend on a number of factors, including the Mach number
of the flow, the density structure of the secondary star and
the effects of radiation pressure. Recent calculations by
Kley, Shankar & Burkert (1995), which include the effects
of radiation pressure and a realistic envelope structure for
the secondary star, obtained drag coefficients (in our nota-
tion) of 0.3 and 5.8 respectively for wind temperatures of
2 x 10° and 2 x 10° K. The latter case is probably the more
realistic; however, we assume £=1 as a conservative esti-
mate.

The energy and angular momentum lost from the binary
orbit are deposited into the wind in a toroidal region formed
by the rotation of the accretion region about the centre of
coordinates, and the subsequent flow is assumed to be axi-
symmetric. This is clearly an approximation to the real situa-
tion, although it is valid when the wind velocity is less than
the orbital velocity; it is in this regime that the drag force has
the greatest effect on the flow. The approximation is neces-
sary in order to make the computations manageable.

3 NUMERICAL CALCULATIONS

The numerical code used to solve the hydrodynamic equa-
tions uses the second-order Godunov scheme due to Falle
(1991). The equations are posed in r— @ spherical polar
coordinates. The ¢ velocity is allowed to be non-zero,
although axisymmetry is imposed so that all gradients in this
direction are zero. Thus the code uses a 2.5D’ approxima-
tion by allowing rotation about the symmetry axis, although
constraining the flow to be axisymmetric. A small amount
of numerical viscosity is required in order to control the
effects of the Quirk instability (Quirk 1992) which afflicts
codes based on the solution of Riemann problems
when strong shocks propagate normally to a grid direction.
This takes the form of a viscous component added to the
fluxes derived from the Riemann problems, which depends
on the difference of the hydrodynamic variables on either
side of a cell boundary. This flux is therefore small in
regions af smooth flow and affects only regions containing
discontinuities.

The white dwarf is placed at the centre of coordinates,
and the nova mass-loss is effected by means of a boundary
condition at the inner radius of the grid. The orbit of the
secondary about the white dwarf is assumed to be circular.
The numerical grid consists of 400 radial cells and 100 cells
in the 6 direction. The radial grid spacing is uniform for the
first 100 cells and increases by 2 per cent per cell thereafter.
The smallest radial grid spacing (Ar,) for each run is given in
Table 1.
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Energy and angular momentum are added in a region
within one accretion radius of the secondary star, and the
size of this region is updated at the beginning of each time-
step. The fluid is assumed to be adiabatic.

Four runs of the code were performed, with the param-
eters listed in Table 1. The speed classes assigned to the
models are based approximately on the relationship
between speed class of a nova and the velocity of the princi-
pal shell (McLaughlin 1960). The white dwarf masses are
also appropriate to the speed class, although this is import-
ant only for determining the orbital velocity. The values
chosen for ¢, and ¢, are, in fact, not appropriate to even the
fastest novae (being of order 1 d). However, computational
constraints prevent the use of more appropriate values. In
order to resolve adequately the flow within the binary sys-
tem, the grid spacing is such that the maximum time-step
dictated by the stability criterion for an explicit difference
scheme is of order 1s. The times chosen are sufficient for
the flow in the region of the binary system to achieve an
approximately steady state, and the shell morphologies pro-
duced by the model should therefore be reliable.

3.1 Model images

Images are produced from the hydrodynamic variables for
times ¢ > ¢, by integrating the square of the gas density along
a grid of lines of sight. These synthetic images allow us to
investigate the appearance of the remnant in the light of an
optically thin transition in which the emission coefficient is
proportional to the square of the density. Although we have
only evolved the models for ~1 d, these images will give the
morphology of the optical remnant in nebular lines at late
times, as long as no further shaping occurs once the material
is well outside the binary system.

4 NUMERICAL RESULTS

The results of the four runs are given in Figs 1-10. Figs 1-8
show the density field (remapped on to the meridional
plane) at two evolutionary times for each of the four runs. In
each case, results are shown for ¢ <t, and for ¢ >¢,. Figs 9
and 10 show grey-scale representations of the model images
derived from the results at ¢ > ¢, for each of the four runs.
Results from the first run, with parameters appropriate
for a fast nova, are shown in Figs 1 and 2. Fig. 1 shows the

Table 1. Model parameters used for the numerical calcula-
tions.

Run1 Run2 Run 3 Run 4
Speed Class Fast Mod. Fast Mod. Fast Slow
vo/kms~! 1500 600 300 100
vy/kms~! 4500 3000 2000 1000
Mwp/Mg 1.0 0.9 0.7 0.6
M, /Mg 0.5 0.45 0.35 0.3
Porp/hr 4.5 4.0 3.3 2.8
Arg/10°cm 3.0 3.0 2.0 2.0
All Runs -  Mo/Mgyr~! = 25x107*

Ml/M@yr_l = 3x10°%

to/s = 5x10*

t1/s = 10°
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region of the meridional plane surrounding the binary sys-
tem (in this case the binary separation is 1.1 x 10" c¢m) for
t<t,. A bow wave-like structure is formed around the
secondary star, due to the expansion of hot material in the
interaction region into the undisturbed wind. Material
inside the bow wave is spun up and accelerated centrifu-
gally, giving a higher wind velocity and hence a lower density
at a given radius than in the undisturbed wind. This is the
mechanism described by Lloyd, O’Brien & Kahn (1995) for
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r/ 1e9 cm

Figure 1. Grey-scale and contours of log density for Run 1 at a
model time of 3.5 x 10*s.

z / 1e9 cm

5000

0 5000 10
r/ 1e9 cm

Figure 2. Grey-scale and contours of log density for Run 1 at a
model time of 1.03 x 10°s.
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Figure 3. Grey-scale and contours of log density for Run 2 at a
model time of 3.1 x 10*s.
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Figure 4. Grey-scale and contours of log density for Run 2 at a
model time of 1.22 x 10°s.

producing a ‘double-cone’ structure in the wind of the pro-
genitor of SN 1987a.

The situation after acceleration of the wind is shown in
Fig. 2. The fast wind is largely unaffected by the drag force,
and retains its spherical symmetry. The slow wind is swept
up into a dense shell, which is also approximately spherically
symmetric, although the density is enhanced where the shell
sweeps up the bow wave structure in the slow wind. The
synthetic image (Fig. 9) shows a roughly spherical nebula,
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Figure 5. Grey-scale and contours of log density for Run 3 at a
model time of 2.9 x 10*s.
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Figure 6. Grey-scale and contours of log density for Run 3 at a
model time of 1.19 x 10°s.

with bands close to the equator corresponding to the density
enhancements in the shell.

Figs 3 and 4 shows the results for Run 2. At early times a
bow wave-like structure is formed around the secondary as
in the previous run, although in this case the opening angle
is larger due to the greater relative contribution of the drag
luminosity compared with the mechanical luminosity of the
wind. When this density distribution is swept up by the fast
wind, an approximately spherical shell is produced, with
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Figure 7. Grey-scale and contours of log density for Run 4 at a
model time of 2.4 x 10*s.
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Figure 8. Grey-scale and contours of log density for Run 4 at a
model time of 1.72 x 10°s.

Figure 9. Synthetic images derived from the hydrodynamic solutions shown in Figs 2 and 4. The images are formed by integrating the square
of the gas density along several lines of sight. The symmetry axis is inclined at an angle of 10° to the plane of the sky.

density enhancements at the points where the ‘double cone’
is being swept up. The synthetic image (Fig. 9) shows a shell
with three pronounced rings — an equatorial ring and two
tropical rings. The equatorial ring is due to centrifugally
accelerated material ploughing into the back of the shell.
Similar structures are seen in Figs 5 and 6, which show the
results for Run 3, although the opening angle of the bow
wave around the interaction region is larger still. In this
case, the image of the swept-up shell (Fig. 10) shows pro-

© 1997 RAS, MNRAS 284, 137-147

nounced polar caps and rings. The emission from the rest of
the shell is weak due to the low density in the evacuated
region outside the ‘double cone’.

Figs 7 and 8 show the results from Run 4. Here, the rate
of drag heating is sufficiently large for the shock wave sur-
rounding the interaction region to be forced on to the sym-
metry axis, where a dense pillar of shocked gas is formed.
Although this feature has the appearance of a ‘jet’, the
outflow velocity in this region is lower than its surroundings.
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Figure 10. Synthetic images derived from the hydrodynamic solutions shown in Figs 6 and 8 (see Fig. 9 for details). The symmetry axis is

inclined at an angle of 10° to the plane of the sky.

After acceleration of the wind, the fast wind sweeps up
the slow wind into a shell which has a greatly enhanced
density at the symmetry axis, where the dense polar
pillar is being swept up. The synthetic image produced
from these results (Fig. 10) is dominated by the enhanced
density regions at the poles, which produce a pair of polar
‘blobs’.

5 RADIATIVE COOLING

The hydrodynamical calculations described in this paper
assume an adiabatic fluid; however, the shell of hot shocked
gas produced in the interaction between the fast and slow
winds is likely to radiate significantly in the soft X-ray, and
these radiative losses could be dynamically important. In
this section, we discuss the effects of radiative cooling, and
the implications for the models.

We will assume that the shocked gas is in collisional
ionization equilibrium, and we have calculated the cooling
rate as a function of temperature using the code due to
Raymond & Smith (1977). Two cases were calculated —
enhanced carbon and oxygen, and enhanced oxygen, neon
and magnesium. Nova ejecta are likely to be significantly
enhanced in one of these two groups of elements, depend-
ing on whether the outburst takes place on a CO or an
ONeMg white dwarf (see, e.g., Livio & Truran 1994). Ele-
mental abundances for the ejecta of 18 novae are given by
Livio & Truran (1994), with a mean heavy-element abun-
dance (by mass) of Z=0.31, and a mean helium-to-hydro-
gen number ratio of 0.22. The abundances used to calculate
our CO and ONeMg cooling curves assume a helium-to-
hydrogen number ratio of 0.2, and enhanced CO or ONeMg
(in solar ratios) such that Z=0.33.

The volumetric cooling rate at a temperature T is given
by

18 e
- 5 __co ]
w T19F —-_. ONeMg ]
& P ]
S —20 f 3
=11 | .
~
o i ]
S RF E
g 22l oo
_ L 1 L ]
23 6 v 8

logm (T/K)

Figure 11. Plot of the cooling function A against temperature. The
straight lines are the power-law fits to the cooling curves.

E=<ﬂ>2 A, )

where p is the gas density and m, is the mean mass of atoms
and ions. The quantity A is plotted in Fig. 11, as a function
of temperature. Between temperatures of 5 x 10° and
5 x 107 K, these cooling curves can be approximated well by
the power law

A=oT ~1* (6)

(Kahn 1976). Fitting power laws to the two cooling curves,
we obtain

Oeo=5.75x 107" erg em’® s—! K2 ™
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and
Oonemg = 1.0 X 10~ erg cm® s K2, ®)

The power-law fits are also plotted in Fig. 11. For both sets
of abundances, the mean mass of particles i =1.4 x 10~ g,
and the mean mass of atoms and ions m,=3.6 x 10™** g.

In order to assess the effects of cooling in our interacting
winds model, we will consider a shock with velocity v, (in the
frame of the central star) sweeping up a wind with velocity
0, in the same frame. We will make the simplifying assump-
tion that v, is constant. The post-shock temperature T is
related to v, and v, by

16 ks
UVs—Up= -3— %T (9)

for a strong shock, where /1 is the mean mass of particles
and kg is Boltzmann’s constant. The density behind the
shock is four times the pre-shock density in the slow wind,
and is therefore given by

M,
p=——" (10)

- b
o, vt

where M, and v, are the mass-loss rate and velocity of the
slow wind, and ¢ is the time since the onset of the fast wind.
The cooling time is given by

PR L Ll 11)

Substituting, we obtain

. ﬂ:(3)3’2m§n'1”2 o2 (v, — 0y)’t?
C= *

E kgza M()

(12)

The cooling time of newly-shocked gas is therefore initially
short, and increases with time as the shock travels outwards
in the slow wind. The shock will become adiabatic when
t.=t, which happens at a time ¢, after the onset of the fast
wind, given by

1/16\*? ki*a M,
Li=—17% 2212 2 3° (13)
n\3 /) mim'? voi(v,—vy)

From the numerical simulations, we find that typically
v,~ 20, (i.e., the shell speed is approximately twice the slow
wind speed). Taking v,=2yv,, we obtain

1 <16>3/2 ko M,

=E zml/z Ug . (14)

3

*
m

In order to investigate how the effects of cooling vary with
speed class, we must first write M, and v, as functions of ¢,
the time to decline 3 mag from visual maximum. Following
Livio (1992), we assume that the entire accreted envelope is
ejected from the surface of the white dwarf, and that the
mass of the envelope is given by (Truran & Livio 1986)

_4TtP crit R—:'d

e 3 15
G M, (15)
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where P, (=2 x 10" dyn cm™?) is the critical pressure
required for a thermonuclear runaway, and M,,4 and R, , are
the mass and radius of the white dwarf. The mass of the
white dwarf in a nova system is related to t; by (Livio
1992)

M M 23 M 2/3713/2
h=t—|—| (=] |, (16)
de de MCh
where M, is the Chandrasekhar mass, and t=51.3d. The
white dwarf radius R, is given by (Nauenberg 1972)

MCh 23 de 23112
R, =R |[— —<—— , 17)
de MCh
where R=1.2x10"*R,,. Using equations (15), (16) and
(17), we obtain

4nP.. R* t 43 ts 23— 1/4
M=—="— (2] [1+4(= , (18)
G Mg\t T

and to a reasonable approximation (given that #;/7 is of
order unity)

4nP., R* [t;\*?
M=——- . (19)
G Mg\t
Assuming that the bulk of the mass is lost in a time #,, the
mean mass-loss rate during this phase is given by
My=—, (20)
t3
and hence

41TP crit R ¢

0 = _—
3/4
G Mgt

tB=7 x 10912 g 571, 1)

This mass-loss rate varies between several times 107* M
yr~* for the fastest novae to ~107>M_, yr ™' for the slowest.
Kovetz & Prialnik (1994) obtained an initial mass-loss rate
of 25x107*M,, yr~' from their thermonuclear runaway
calculations for the case of a very fast nova, implying that
the above analysis is reasonable.

We will take v, to be the velocity of the material respon-
sible for the principal system of absorption lines. Empiri-
cally (McLaughlin 1960), this velocity is related to ¢, by

0y=1.47 x 10"¢; " cm 5™, (22)

where ¢, is in seconds. Substituting for M,, vy, #2, m, and k5,
we can now write ¢, from equation (14), in terms of ¢; as

£y =52 x 10°at 1", (23)

The other time-scale which must be considered is the time
from the onset of the fast wind for the shock to reach the
outer edge of the slow wind, at which time the shock ‘blows
out’ into the low-density gas outside. This time, ¢#,, is equal
to t, for v,=2v,. The quantity ¢, /¢, is therefore given by

te/ty=52 x 10%ar}>. (24)

For CO novae, ,/t, is greater than unity for ¢, > 7.2 d, and
for £;,>5.7d in the case of ONeMg novae. Clearly, for all
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novae with £, 25 d, the shell will always be well cooled until
the shock reaches the outer edge of the wind. Although we
do not expect this to modify the shaping mechanisms
described above, the effects of cooling will have implica-
tions for the final appearance of the shell. In particular, the
flow behind the shock will possess oppositely directed pres-
sure and density gradients if the cooling is strong, and will
therefore be subject to the Rayleigh—Taylor instability. This
will be the case if there is a non-positive radial density
gradient behind the shock, because catastrophic cooling will
always result in a positive radial pressure gradient. The
cooling also serves to make the density gradient more
negative.

The interaction region is not well resolved in these calcu-
lations, as the shock typically covers three grid cells whereas
the interaction region covers about 15 cells. We have
carried out a high-resolution simulation using the same
code with 1100 radial grid cells in order to investigate the
structure of the interaction region. The effects of the
secondary star are neglected, and the fast wind is switched
on instantaneously. In this calculation, we have taken
v,=500km s™", v, =1500 km s, with the same values of M,
and M, as before. Fig. 12 shows radial density and pressure
profiles for the solution at a model time of 3 x 10* s after the
onset of the fast wind. The reverse shock, contact disconti-
nuity and forward shock are all well resolved. The pressure
in the interaction region is approximately uniform, and
there is a negative density gradient between the contact
discontinuity and the forward shock. Hence, in the presence
of strong cooling, we would expect this shell to become
Rayleigh—Taylor unstable. Similar density and pressure
profiles are found in the well-resolved 1D calculations of the
interacting winds model described by O’Brien et al. (1994;
see their fig. 1).

In this case, we would expect the shell to fragment, and
the observed shell at late times will have a clumpy appear-
ance. When the shell reaches the edge of the wind, the
forward shock will accelerate outwards, whereas the cool
shell will continue at constant radial velocity. Any remaining
fast wind behind the shell will be able to stream unimpeded
through the space between the clumps. This provides an
appealing explanation for the appearance of the shells of
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Figure 12. Radial profiles of density (solid line) and pressure
(dashed line) for the high-resolution simulation (see Section 5 for
details).

DQ Her (Slavin et al. 1995) and RR Pic (O’Brien & Slavin
1995), which are highly clumped with ‘cometary tails’
extending radially outwards from the clumps into a diffuse
halo. These tails could be formed by ablation of clump
material as the fast wind streams through the shell. In the
next section, we discuss the Rayleigh—Taylor instability in
more detail.

6 STABILITY OF THE SHELL

As discussed in the previous section, we would expect the
shells formed in an interacting winds model of nova mass-
loss would be well cooled, at least at early times in their
evolution, and that this would give rise to oppositely
directed density and pressure gradients behind the forward
shock. This situation is unstable, and subject to the Ray-
leigh—Taylor instability. In this section, we will use some
general arguments based on an incompressible Rayleigh—
Taylor dispersion relation to investigate the stability of nova
shells at early times in their evolution.

The Rayleigh—Taylor instability in incompressible fluids
is discussed by Chandrasekhar (1961), who gives a disper-
sion relation for the growth of modes in a fluid which is
exponentially stratified in the z direction, constrained
between two plane-parallel surfaces and subject to an
acceleration g. Although this is inappropriate to the case
being considered here, we can at least use the results to gain
some insight into the local stability at some point on a thin,
spherically symmetric shell. The growth time, tgy, of the
modes is given by

H
rZRT=—g— [1 + 0+ 1/4)}, (25)

k*H?

where H is the density scaleheight, g is the effective gravity,
k is the wavenumber of the disturbance, and ¢ is given by

s (Y 26
—( y ) (26)

Here, m is a positive integer, and d is the physical size of the
region. The effective gravity is given by

1 0P

We will assume that the density and pressure scaleheights
are given by r,, the cooling length in the shell, and hence

-~ (28)

== (29)

=, (30)
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Writing k=2n/4, we obtain

647 a2
= |15 (G 14 (31)

Using r=v,¢, and rearranging,

rRT2_64 rcz1 1 izrzé 14 -
(S bl e o

Thus the growth time increases with increasing wave-
length, and the longest wavelength which is unstable is given
by s/t =1. This wavelength, 4,,,, is given by

A 2n r\ 3 fr.\7? 12
— === (=] =1 . (33)
e FE

The shell will therefore be Rayleigh~Taylor unstable for
r.fr<./3/64.

This analysis assumes an incompressible fluid. The
incompressible result holds good for compressible fluids for
wavenumbers k > g/c2, where c, is the speed of sound in the
gas, but the instability is severely damped for wavenumbers
less than this value (Blake 1972). The maximum wavelength
will therefore be given by the maximum of the expression
given in equation (33), and a limiting value due to com-
pressibility

A max r.
ol
r . r

where 7 is the adiabatic index, and hence equation (33) is
modified to

- . 2n r\ 3 [r.\7? 12 r.
— |=min{————— (= )|— (=] —1] ,2ny|—|}.
()i ) 26

(35)

We can now plot A.,/r as a function of r/r (Fig. 13). To
calculate 6, we have taken m =1 and d to be the thickness of

F T T I N | -
or -
_1:_ J

= . ]
N E .
E-2 7
=< X ]
g3l :
—4 f -
Y3 U SRR R R R
-5 -4 -3 -2 -1 0

log,o(r./T)

Figure 13. The variation of the maximum Rayleigh-Taylor
unstable wavelength ., with cooling length r; r is the shell
radius.
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the shell, given by the minimum of r, and some fraction of r;
we will take d =min(r,, 0.2r). For r/r $0.04, the maximum
unstable wavelength is limited by compressibility, and A,,,./r
is proportional to r./r (from equation 34 above). For values
of r/r greater than this, A,,,/r is given by equation (33), and
decreases steadily from a maximum value of ~0.4. As r./r
approaches /(3/64), A,/r falls off rapidly to zero.

The cooling length . is given by the distance (in the frame
of the post-shock gas), traversed by the shock in one cooling
time. The shock velocity in this frame is v/4, and hence
r.=t.v/4. The quantity r/r is therefore equal to 1/4(¢./t).
From equation (12), substituting for M, and v, from equa-
tions (21) and (22) with &= 0yey,, We Obtain

1¢
T 47w 102y, (36)
r 4t ’

Thus r/r increases with time until the shock ‘blows out’ at a
time ¢, after the onset of the fast wind (for v,=2uv,, t,=t,).
The maximum unstable wavelength in the shell also
increases linearly with time, until the shock reaches the edge
of the slow wind (at #,) or r./r reaches a value of 0.04. A value
of r/r=0.04 is reached at ¢, for a nova with t;=12.4 d (from
equation 36), and all novae slower than this (i.e., z; > 12.4 d)
will always remain on the linear part of the (4,,,,./r) versus
(r/r) curve. The optical shell will be formed from the cooled
gas behind the shock prior to blowout, and will be clumped
on scales up to the value of A, /r at t,. For faster novae
(1, <12.4 d), the ratio of the longest wavelength of clumping
to the radius of the shell will be fixed at the maximum value
of A./r (~0.4), assuming self-similar expansion. The long-
est clumping wavelength in the optical shell at late times
(denoted L) can now be plotted as a function of ¢, (see Fig.
14), by calculating the value of r/r at blowout; if r/r at
blowout is less than 0.04, then L/r is equal to A, /r from
equation (24), otherwise L/r is equal to the maximum value
of 1.../r (see Fig. 13) of ~0.4.

Clearly, for the majority of novae, the maximum wave-
length of the unstable modes is small compared to the
radius of the shell and although the shell will be clumped,

0.8

0.6

L/r

0.4

0.2

I|I|I!IlJ_LI|lIIIIIIII

i1 1 T ] | BT

0 20 40 60 80
t,/d

Figure 14. The maximum clumping wavelength L in terms of r, the

shell radius, as a function of ¢, the time to decline 3 mag from
maximum.
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Figure 15. (a) N[u] image of the remnant of GK Per (from Slavin, O’Brien & Dunlop 1995, fig. 5¢) smoothed to the same effective resolution

as their Ha image of V1500 Cyg, reproduced here in (b).

the size of these clumps will be small (of the order of the
shell thickness) and the overall morphology of the shell will
be retained. For the fastest novae (f; <12 d), however, we
would expect the shell to be clumped on scales of order the
shell radius, and the remnant will therefore break up into
only a few discrete components. The predictions of this
simple model are in general agreement with the observa-
tions. The deep optical images of nova shells made by Slavin
et al. (1995) show that the remnants of very fast novae (e.g.,
V1500 Cyg, V476 Cyg) tend to comprise a few, randomly
distributed clumps superposed on spherically symmetric dif-
fuse material, whereas slower novae (e.g., FH Ser, DQ Her)
show highly structured clumpy remnants with one or more
bands of enhanced emission. It is interesting to note that the
remnant of GK Per (a fast nova) is clumpy on very small
scales. However, there is significant power on longer wave-
lengths — smoothing Slavin et al.’s (1995) N[u] image of this
object to the same effective resolution as their image of
V1500 Cyg results in a map which shows a few discrete
emission components, bearing a remarkable resemblance to
the shell of V1500 Cyg (see Fig. 15). If the clumps were
distributed randomly, we would expect a uniform distribu-
tion in the smoothed map. Although the Rayleigh—Taylor
instability may be responsible for forming the large-scale
structure in the remnants of fast novae, the cooling gas will
also be thermally unstable and condense further into
smaller clumps which are resolved in the case of GK Per.
The role of the thermal instability in clumping nova ejecta is
discussed by Pistinner & Shaviv (1995).

7 DISCUSSION

In this paper, we have presented hydrodynamic calculations
of the axisymmetric effects of the underlying binary system
on a point-symmetric interacting winds model of classical

nova mass-loss. The model treats the mass-loss as a wind
with a velocity which increases in time, with an accompany-
ing decrease in mass-loss rate. We find that the resulting
shells can depart significantly from spherical symmetry, and
that slower novae produce remnants which are more
aspherical than those of faster novae, in agreement with
observations.

The shaping effects are due to the transfer of angular
momentum and energy from the binary orbit which result in
the formation of a ‘double-cone’ structure in the wind from
the white dwarf (see Lloyd et al. 1995). The opening angle
of the cones varies with the wind speed, from almost = for
v,~1500 km s~ (giving a disc-like structure) to ~0 for
v,~100 km s~' (giving a polar ‘pillar’). The time-variation
of the wind speed gives rise to complex structures as fast
material overruns slower material ejected earlier, which will
have been subject to a greater degree of shaping.

The structures obtained in the model (with the relevant
run numbers) include polar blobs (Run 4), polar rings (Run
3) banded shells (with equatorial and tropical rings, Run 2)
and spherical shells (Run 1). All of these morphologies are
seen in the shells of novae — candidate objects are HR Del
(polar blobs), RR Pic (polar rings), DQ Her (equatorial and
tropical rings) and GK Per (spherical shell). The speed
classes of the models are all appropriate for the observa-
tional candidates. However, the shells obtained in this
model are oblate, whereas the observed shells of novae are
typically prolate. The effects of white dwarf rotation may
explain the prolateness of nova shells (see, e.g., Ignace,
Cassinelli & Bjorkman 1996 and Livio 1995). This would
give rise to an equatorially enhanced slow wind, which
would produce a prolate remnant when swept up by the fast
wind. The shaping mechanisms described here will still
operate to produce tropical and equatorial rings. Further-
more, the tropical rings produced in Run 2 are more pro-
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nounced than the equatorial ring, whereas the reverse is
true in the observed shell of DQ Her; an equatorially
enhanced slow wind may also remove this discrepancy. The
effects of white dwarf rotation will be considered in a fur-
ther paper. Another possibility is that further shaping takes
place at times after the calculations presented here are
terminated, although this may require the fast wind to be
accelerated further, and a second episode of sweeping up
to occur. This is another possible avenue for future
investigation.

The role of radiative cooling has been considered. We
have shown that the shells are Rayleigh~Taylor unstable,
and we would expect them to fragment into a number of
discrete clumps. When this happens, the fast wind will be
able to stream unimpeded through the holes in the shell,
which we suggest as an explanation for the extended haloes
and ‘cometary tails’ seen in DQ Her (Slavin et al. 1995) and
RR Pic (O’Brien & Slavin 1995). Furthermore, we find that
the shells of moderately fast and slow novae should be
clumped on length-scales comparable to the thickness of the
shell, whereas the Rayleigh—Taylor instability in the fastest
novae can form structures on length-scales comparable to
the radius of the shell. In the latter case, we would expect
the remnant to comprise a few, discrete emission regions, in
agreement with the observations of V1500 Cyg and
GK Per.
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