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Abstract

Researchers have previously adopted the double stimulus paradigm to study refractoriness in human neuromotor control.
Currently, refractoriness, such as the Psychological Refractory Period (PRP) has only been quantified in discrete movement
conditions. Whether refractoriness and the associated serial ballistic hypothesis generalises to sustained control tasks has
remained open for more than sixty years. Recently, a method of analysis has been presented that quantifies refractoriness in
sustained control tasks and discriminates intermittent (serial ballistic) from continuous control. Following our recent
demonstration that continuous control of an unstable second order system (i.e. balancing a ‘virtual’ inverted pendulum
through a joystick interface) is unnecessary, we ask whether refractoriness of substantial duration (,200 ms) is evident in
sustained visual-manual control of external systems. We ask whether the refractory duration (i) is physiologically intrinsic, (ii)
depends upon system properties like the order (0, 1st, and 2nd) or stability, (iii) depends upon target jump direction (reversal,
same direction). Thirteen participants used discrete movements (zero order system) as well as more sustained control
activity (1st and 2nd order systems) to track unpredictable step-sequence targets. Results show a substantial refractory
duration that depends upon system order (250, 350 and 550 ms for 0, 1st and 2nd order respectively, n = 13, p,0.05), but not
stability. In sustained control refractoriness was only found when the target reverses direction. In the presence of time
varying actuators, systems and constraints, we propose that central refractoriness is an appropriate control mechanism for
accommodating online optimization delays within the neural circuitry including the more variable processing times of
higher order (complex) input-output relations.
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Introduction

Our interactions with the environment include stimuli and

responses. The concatenation of successive stimulus-response

operations is an ongoing process of which we are often unaware.

For example, when manoeuvring a car through heavy traffic we

brake and accelerate in response to the other vehicles actions.

Usually, the chained actions that we execute during the day occur

independently of each other. However, when two unpredictable

stimuli are presented closely spaced in time, the response to the

first stimulus will, at some point, interfere with the response to the

second stimulus [1].

A well-known example of dual-task interference is the Psycho-

logical Refractory Period (PRP) effect in human neuromotor

control which has been studied extensively using the double

stimulus paradigm [e.g. 2–6]. The refractory duration is defined as

the temporal separation of step-stimuli beyond which there is no

interference, that is, the inter-step interval (ISI) up to which the

time to respond to the second step (RT2) is elongated relative to

the time to respond to the first step (RT1) [6]. The ‘‘single channel

hypothesis’’ (as discussed by Smith [7]) provides a possible

explanation of this effect and predicts that a decrease in the ISI

results in an increase in RT2 by the exact same amount.

According to this hypothesis, the intercept of the linear regression

function of the elongated RT2 minus the average RT1 without

interference should equal the refractory duration.

Most models on stimulus-response operations assume three

basic stages of processing: sensory analysis (SA), response

planning/selection (RP/S) and response execution (RE). Accord-

ing to the single channel hypothesis some of these processing stages

cannot overlap and there is a central bottleneck associated with

response selection and response planning [6,8,9]. Selecting and

planning a response can be done for only one response at a time.

Further processing of the second of two closely spaced stimuli is

put on hold until the response selection and programming for the

first stimulus is complete [10]. Interference between two responses

occurs because the first action has already been selected and the

second process is completely or partially blocked [11].

In their seminal studies, Craik and Vince [3–5] demonstrated

the refractory nature of pursuit tracking following an initial

response to an unpredicted, discrete step stimulus (cf. Fig. 1). They

showed that by decreasing the separation between the onset of the
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two stimuli (ISI), RT2 was delayed as compared with RT1 and

that this delay (according to Vince [5] ranging between 200–

500 ms) was most pronounced with short ISIs (typical waveforms

of responses that illustrate the occurrence of RT1 and RT2 are

presented in Fig. 2). Based on these findings, Craik and Vince

argued that human motor control can be described by a servo

system, which is operated intermittently rather than continuously

and proposed serial, ballistic control at a rate of two to three

actions per second [3,5]. Serial ballistic (or intermittent) control

allows for execution of an action followed by observation of the

result, before the selection and planning of the next action. This

way, smooth control can proceed as a sequence of sub-actions

each planned using current sensory information but then executed

open-loop (i.e. without being influenced by immediate feedback of

the result). Craik argued that this intermittent control (i.e. serial

ballistic correction), which was evident in unpredictable discrete

movement control, is the actual mechanism even when control

was sustained. Under usual circumstances, intermittency is not

apparent because participants can predict the required control

action and make smooth continuous movements.

Recently, it has been proposed that the PRP effect is naturally

interpreted as the open-loop interval associated with an intermit-

tent controller [12,13]. A small number of authors have advocated

that the mechanism of intermittent control (which is salient in

discrete responses to step stimuli) may be widely appropriate

during sustained movements and postural control [12–26]. Using

a visuo-manual tracking task in which participants controlled an

external unstable second order system whose output was

represented by a dot displayed on a real oscilloscope, Loram

and colleagues [13] showed that joystick control constrained to be

intermittent open loop using gentle taps (in which the thumb or

index finger were only in contact with the joystick during the tap)

is natural, effective and more robust to unexpected changes than

continuous hand contact, works best with a preferred modal rate

of about two taps per second, and can explain the upper frequency

limit of control by both methods (tapping and continuous contact).

According to the authors, serial ballistic (i.e. intermittent) control,

at an optimum rate on account of refractoriness, provides a

physiologically meaningful paradigm for explaining human

neuromotor control [c.f. 13].

The motor control literature circumstantially suggests that the

PRP effect is not bound to discrete movements and is apparent

over a wider range of stimuli response actions, which have no

recognisable beginning and end (e.g. continuous ramp/sine wave

tracking [27], articulation of words [28], sports [29], rhythmic

movements [30,31] and handwriting [32]). Refractoriness seems to

occur even when the two stimuli are chosen from different sensory

modalities, for example, vision and audition [33], and when the

first and second response make use of different effector systems,

such as one verbal and one manual response [6] and even in

joined actions where two operators share common tasks [34].

Given the omnipresence of the PRP effect, refractoriness is

Figure 1. Diagram of the control system and the experimental set up. The system is ‘virtual’ and is controlled through a joystick interface.
The participant receives visual feed-back information about the system position through a dot presented on a real oscilloscope. The joystick position
defined the system’s: position (0 order system), its velocity (1st order system), or its acceleration (2nd order system). While controlling the system,
participants were asked to track the position of a second dot displayed on the oscilloscope. The four possible step sequences (uni- and reversed
directional step to the left or to the right) of the pursuit target are illustrated by the red line. First and second stimuli are separated by an inter-step
interval (ISI), double stimuli are separated by an approximate recovery period (ARP). When applied to a model (as shown in Fig. 7), this sequence is
applied as a set-point disturbance.
doi:10.1371/journal.pcbi.1002843.g001

Author Summary

In biology, the control of physiological variables such as
body position, blood pressure and body temperature is
founded on negative feedback mechanisms governing
homeostasic input-output relations. The conceptual mod-
els capturing the underlying control principles are often
drawn from engineering control theory. The visuo-manual
control of external systems (like balancing a stick on the
palm of one’s hand) has traditionally been interpreted
using continuous paradigms such as the servo controller
or the continuous optimal controller. These engineering
controllers were designed for machine systems with
precise sensors, consistent actuators, short time delays
and fast computers. Quite the opposite is true for the
human movement system that is characterized by long
neuromuscular delays, variability, history dependence and
fatigue. Serial ballistic control offers an alternative control
paradigm in which smooth control proceeds as a sequence
of sub-movements each planned using current sensory
information but then intermittently executed ‘‘open loop’’.
In the current study we are the first to formally identify
refractoriness, a behavioural characteristic that discrimi-
nates intermittent (serial ballistic) from continuous control,
in the domain of sustained (non-discrete) control of first
and second order systems providing definite evidence for
the validity of intermittent open-loop control as a
paradigm for sustained human control.

Is Sustained Visuo-Manual Control Intermittent?
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Figure 2. Representative responses; reconstruction of the set-point (stage 1). Panels show representative examples of positional joystick
responses over time (blue solid lines) in: Zero Order (top row), First Order (middle row), and Second Order (bottom row) conditions. Left panels show
independent responses without interference, right panels show trials with interference between responses to the second and first stimulus. The
dashed line (red) shows the time-invariant optimized ARMA fit corresponding to the original/actual double step stimulus (dark blue dashed line). The
dotted line (green) shows the best fitting ARMA model corresponding to the non-time-invariant optimised step sequence (dark green dotted line).
Estimates of first (RT1 in blue horizontal bar) and second (RT2 in green horizontal bar) delays hover above, and span the interval between the actual
and optimised step sequence. System position is displayed by the solid gray line; this is the same as joystick position in the Zero Order case.
doi:10.1371/journal.pcbi.1002843.g002
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considered to be a general phenomenon and served as a textbook

example for explaining the various stages of stimulus response

processing [6,10].

One problem is, however, that substantial refractoriness has

never been formally identified in the domain of sustained (non-

discrete) control actions and whether or not refractoriness

generalizes to sustained control is still an open question. This

means that, to date, intermittent control in sustained tasks is

unproven and disputed [35]. Please note that in the current study,

we refer to a low frequency intermittent control process that is

clearly different form the high frequency form of clock-driven

refractoriness predicted by the Adaptive Model Theory developed

by Neilson and colleagues [24,25] that is characterized by an

intermittent interval of 50–100 ms related to pulsatile central

neural control at a frequency of 7–10 Hz matching tremor and

resonance related discontinuities in human data. Here we wish to

study sustained positional control in a reduced but reasonably

generic way, under the most precisely controlled experimental

conditions, using PRP perspectives from psychology [9] and using

engineering control theory as a rigorous interpretational frame-

work [12].

Why has the existence and quantitative value of the PRP effect

not been established in sustained manual control of external

systems? First, sustained control tasks (e.g. ramp/sine wave

tracking, human balance control) lack a clear step in the tracking

stimulus. Second, in sustained control it is difficult to determine a

clear beginning and end of the response. More generally, distinct

bursts of action are difficult to view because muscles and limbs

smooth out the transitions between discrete actions giving the

impression that we respond continuously instead of intermittently.

In other words, due to the dynamics of the (higher order) systems

(e.g. the neuro-muscular system, the inertia of an external system,

etc.) control features (e.g. the kinematic landmarks indicating the

initiation of ballistic control movements) are masked. This has

made it challenging to develop a method of analysis suitable to

show a possible refractory duration effect in sustained control.

Recently [36], a novel approach to discriminating continuous

control from intermittent control and identifying the extent of

refractoriness, was developed and tested on theoretical control

models and on data of human pursuit tracking (discrete stimuli-

response task where control is known to be refractory). As

discussed in Section 2.2 of [36], the relation between stimulus and

response is modelled as a linear time-invariant (LTI) system

together with a varying stimulus delay; an optimization algorithm

determines the LTI system together with a stimulus delay for each

stimulus which best matches the data. The statistical properties of

the estimated stimulus delays are then used to distinguish the

competing continuous and intermittent hypotheses and, in the

latter case, determine an estimate for the refractory duration (i.e.

ISI beyond which there is no interference between stimulus-

response pairs). Subsequently the method reveals the relationship

between stimulus delay and ISI which enables testing for

assumptions like the single channel hypothesis in both discrete

and sustained control tasks. In the sequel, this method will be

referred to simply as ‘‘the method of analysis’’.

Here we applied the method of analysis to data collected in

participants controlling four different systems. These systems

exhibited properties varying in order (0, 1st and 2nd) and (for the

2nd order system) in the unstable time constant (marginally stable

vs. unstable) representing, in a biomechanical analogy, passive

stabilisation. These factors (Order and Stability) make different

demands on the human.

Following [23] the ‘‘complexity’’ demand is related to system

order and can be expressed as the level of processing that is

required to stabilise the system. The level of processing required

depends on the number of derivatives involved in mapping the

system position to joystick movement in order to stabilise the

system. Ongoing stabilisation of a second order system requires

processing of system position and system velocity whereas

stabilisation of a first order system requires processing of only

system position. A zero order system requires no ongoing

stabilisation because joystick position imposes no sustained

movement (velocity) on the system. The ‘‘promptness’’ demand

is related to system stability determined by the unstable time

constant [23].

Thus, an experimental distinction is made between discrete and

sustained control of movement. Discrete movements like throwing

and reaching are ballistic in nature and have a recognizable

beginning and end. These characteristics are comparable to

controlling a zero order load where the joystick position imposes

no sustained movement on the system and no ongoing control is

required after tracking the step change in target. Sustained

movements like human balance are ongoing (and the system is

unstable) which means that sustained feedback is required.

In the current study we test the hypothesis that refractoriness

generalizes to sustained control and address the following 3

research questions. Answers to questions 1-and 2 do not require

model based assumptions.

1. What is the refractory duration of sustained control (of 1st and

2nd order systems) and does it differ from the refractory

duration of discrete pursuit tracking (0 order system)?

2. Is the refractory duration physiologically intrinsic or does it

depend on system complexity (determined by the order of the

system)?

3. Is sustained visual-manual control serial ballistic?

Methods

Details with respect to the apparatus, the visuo-manual tracking

tasks and the method of analysis have been restricted to the

minimum necessary since they are stated more fully in previous

work [23,36], respectively.

Ethical approval
The experiments reported in this study were approved by the

Academic Ethics Committee of the Faculty of Science and

Engineering, Manchester Metropolitan University and conform

to the Declaration of Helsinki, participants gave written, informed

consent to the experiment.

Procedure, apparatus, and measurement
Thirteen healthy subjects (8 male, 5 female), aged 22–34 years

(2864 years, mean 6 S.D.) sat at a table in a self-selected position.

Participants used continuous contact of a uniaxial joystick

supported on the table surface in front of them to control the

left-right position of a dot on a, real, analog oscilloscope placed

50 cm away. This dot represented the position of a one-

dimensional (left-right) virtual system (see Fig. 1). Following

[23,36], the virtual systems were constructed using Simulink, were

compiled using Real-Time Workshop and executed on a laptop

using Real-Time Windows Target within MATLAB v7 (Math-

Works) at a sample rate of 1000 samples per second.

In the current study participants controlled four different

external systems (c.f. Fig. 1) that exhibited properties varying with

respect to the order of the system (0, 1st and 2nd) and (for the 2nd

order system) the unstable time constant of the system (marginally

Is Sustained Visuo-Manual Control Intermittent?
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stable vs. unstable) that, in a biomechanical analogy, represented

passive stabilisation. All these systems have been used in previous

experiments (0 order: [36], 1st and 2nd order (marginally stable and

unstable): [23] (load 5, 1 and 2, Table 1)). The second order stable

system can be thought of as simply being a ‘mass’ with no

destabilising effect from gravity, whereas the unstable system has a

time constant of 0.92 s equivalent to that experienced by an adult

during normal standing [c.f. 23]. In the second order conditions,

the position of the joystick modulated the acceleration of the

system. For the first order condition we removed the mass content

of the system and now the position of the joystick specified the

velocity of the system. For the zero order condition the position of

the joystick specifies the position of the system.

Our set up and instructions were designed to elicit the most

continuous behaviour possible. The trial order was randomized to

eliminate learning effects. All participants were familiarized with

the control tasks. Participants were informed that for zero order

systems the position of the joystick instantly modulated the position

of the system whereas for the first and second order system the

position of the joystick modulated, respectively, the velocity and

acceleration of the system. After some practice, all participants

were able to control the second order system within the limits

imposed by the oscilloscope display. The purpose of the

explanation/familiarization was to overcome the initial (steepest)

part of the learning curve. In the unusual event that the participant

failed to keep the position of the dot within the oscilloscope’s

display limit, the system was swiftly returned to the centre position

and its velocity and acceleration were reset to zero. Three

participants were particularly gifted in controlling the external

systems because of extensive previous experience and/or a gaming

background. Seven had only moderate previous experience of this

task.

Just above (1 cm) the dot representing the external system a

second dot, representing the target position, was displayed on the

oscilloscope (see: Fig. 1). To minimize the degree to which

participants could anticipate their pursuit tracking responses we

designed the following tracking target step sequence. Participants

were told that every now and then, the target would jump to the

left or to the right. The only instruction given to the participants

was to respond as quickly and accurately as possible to each step in

target position and that the deviation between target position and

system position (i.e. the top and bottom dots on the oscilloscope)

was the measure of performance. Participants were not informed

about the amplitude or direction of these jumps. Spatial

unpredictability of the double step stimuli was achieved by varying

the direction of the step in target position (left-right, right-left, left-

left-right to centre, right-right-left to centre, see Fig. 1). Tempo-

rally, stimulus predictability was eliminated by varying the ISI (see

Table 1). The eight different double and/or triple step stimuli were

presented four times in a randomized order. The time it takes a

participant to recover from a step response increases with the

order of the controlled system [c.f. 27]. Based on pilot data it was

estimated what ISI would be sufficient to recover from a step

response when controlling a zero, first, and second order system.

The last two ISIs were chosen well beyond this ‘Approximate

Recovery Period’ (ARP) to serve as an independent base measure.

The remaining six ISI (,ARP) were chosen such that they would

span the hypothesised refractory duration for that specific

condition (see Table 1). The ARP after a double and/or triple

step stimulus (see Fig. 1) was randomly chosen within a one second

range including the (maximum) ARP specific for each system

order (i.e. 0: 1–2 s. 1st: 2–3 s. 2nd: 4–5 s.). The trial duration was

determined by the sum of the selected ISI and ARP attributed to

the specific system order condition. Since participants were

encouraged to perform at their best, a break of up to five minutes

was offered between trials.

Method of analysis
The method of analysis proceeds in three stages [c.f. 36]. The

first two stages do not require model based assumptions and

quantify refractoriness, the key feature discriminating serial

ballistic (intermittent) from continuous control.

Stage 1: Reconstruction of the set-point. Following [36],

we estimated the step-joystick time delay for each first and second

step (i.e. RT1 and RT2) by modelling the closed loop relationship

between the target (step sequence) signal and the joystick position

as a low order, zero delay, autoregressive moving average (ARMA)

process. The ARMA model’s order (10th) was set such that while

the number of coefficients was sufficient to capture the key features

of the participants’ responses (see Fig. 2) they never exceeded

Akaike’s Information Criterion [c.f. 36,37]. Next, we reconstruct-

ed the step sequence by sequentially and individually adjusting the

instant of each step to optimise the fit of the ARMA model. This

was done in a time-invariant and in a non time-invariant way.

Time-invariant optimization means that a best ARMA fit is

achieved by reconstructing the step sequence using equal

adjustments of the instant of all steps (basically determining the

time delay of the ARMA model). The non-time-invariant

optimization method allowed different adjustments of the instant

of the first and second steps and can be referred to as a ‘set-point

reconstructed ARMA model’. If the description can be improved

by optimising the delay to each step, this procedure will provide a

distribution of delayed responses to each first and second step

(RT1 and RT2). Analysis of these delays with respect to ISI can

test for refractoriness [c.f. 36].

Stage 2: Statistical analysis of RT1s and RT2s. Following

the data analysis [36], the main measures of interest were the

distributions of RT1 and RT2. Unless stated otherwise, individual

values are quoted as mean (6 standard deviation) and a repeated

measures ANOVA design is used to test for the effects of Step

Number (first and second ), System Order (0 order, 1st order, 2nd

order), ISI (level 1 through 8), and their interactions. As

recommended in [38], the average of the Greenhouse–Geisser

and Huyhn-Feldt corrections of degrees of freedom was used

Table 1. Selected ISIs.

System Order ISI (s)

zero 0.05 0.10 0.15 0.20 0.25 0.30 0.50 1.00

first 0.10 0.15 0.20 0.25 0.35 0.50 1.00 2.50

second 0.15 0.25 0.35 0.45 0.55 0.65 1.50 4.00

The eight selected ISIs for the three different system orders.
doi:10.1371/journal.pcbi.1002843.t001
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based upon the estimates of sphericity. Post-hoc ANOVAs were

run to evaluate significant main and interaction effects. By design,

the data set can be subdivided into a group of reversed step-pairs

and a group of unidirectional step-pairs which we analyzed

separately.

Without requiring any model based assumptions, the follow-

ing tests provide evidence which can discriminate against

continuous control and quantify the extent of refractoriness in

this task [36].

N Are the ranges of RT1 and RT2 equal? A hypothesis of zero

refractoriness would predict equal ranges (5–95th percentile) in

distributions of RT1 and RT2.

N Is RT2 greater than RT1? A hypothesis of zero refractoriness

would predict equal delays.

N Is there an interaction between the factors: Step Number (first

and second) and ISI (levels 1 through 8)? A hypothesis of

refractoriness would predict an interaction between ISI and

Step Number. Refractoriness would increase RT2 but not alter

RT1.

N Is RT1 independent of ISI? A refractory hypothesis would

predict that RT1 is independent of ISI.

N What is the ISI up to which RT2 is significantly greater than

RT1? Testing within each level of ISI for differences between

RT1 and RT2 will reveal the ISI up to which there is

interference between RT2 and RT1 and quantifies the

duration of refractoriness.

N What is the maximum increase in RT2? Using linear

regression to fit RT2 v ISI for ISIs where RT2 is significantly

greater than RT1, the extent of refractoriness was quantified

using the regression intercept (ISI = 0) minus average RT1.

Stage 3: Model based interpretation of delays

N What is the open-loop interval using the single channel/IC

model hypothesis [12]? A single channel hypothesis of

intermittent control in which a response is triggered by the

first step predicts a slope of 21 in the relationship between

average RT2 and ISI for ISI,open-loop interval [6]. The

above regression method was repeated assuming a least mean

squares fit with slope constrained to 21.

Results

With only a single familiarisation session of less than 10 min-

utes, all subjects were able to control the second order system

while tracking the step sequence within the limits of the

oscilloscope screen for the duration of one trial (,200 s).

Representative pursuit tracking responses to double step
stimuli when controlling zero, first, and second order
systems

Fig. 2 illustrates the comparison between responses without

interference and responses that show evidence of interference.

With long ISIs (left panels, Fig. 2), responses to the second steps

are similar to responses to the first steps. Looking at the examples

for which the ISIs were small (right panels, Fig. 2) we see that

responses to the second steps are interfered by responses to the first

step. This interference is characterized by an elongation of the

second response relative to the first response (in Fig. 2. compare

the blue (RT1) horizontal bar to the green (RT2) horizontal bar).

With large ISIs RT1s are comparable to RT2s. With small ISIs,

however, RT2s are clearly longer than the RT1s.

Reconstruction of the set-point (stage 1): representative
results

Overlaying in Fig. 2: i) a participant’s typical response in solid

black, ii) the ARMA prediction in dotted red and iii) the set-point

reconstructed ARMA prediction in dotted cyan shows (as one

would expect) no real difference for the independent responses (c.f.

left panels Fig. 2). When focusing on the responses hypothesised to

be vulnerable to interference (Fig. 2 right panels) we found that

reconstructing the set-points resulted in a better (ARMA)

description of the data (this is evident when we look at the

response amplitude and even more so when we look at the actual

timing of the responses). The blue and green bars displayed above

and spanning the interval between the actual and optimised steps

displayed in Fig. 2 exemplify the delays identified in stage 1 of the

method of analysis. Whereas RT1 (blue) seems to equal RT2

(green) in the independent responses (left panel Fig. 2.) refracto-

riness is quantified by the elongation of RT2 in the responses

subject to interference (right panel Fig. 2).

Statistical analysis (stage 2): group results
The distributions of RT1 and RT2, including range and central

values are clearly different (Fig. 3 A, B). Whereas RT1 is

independent of ISIs and recovery period (Fig. 3 C, D), RT2 shows

increased range and central value at lower ISIs (Fig. 3E).

The range in RT was systematically affected by Step Number

and System Order (Fig. 4).

Combining all step-pairs directions (i.e. reverse and same) and

all system orders, the mean range in RT was significantly higher

for step 2 than for step 1 (4436185 ms, 2606148 ms, F(1,

12) = 102, p,.0001). The mean range in RT increased signifi-

cantly through zero, first, and second order stable and second

order unstable systems (202685 ms, 2636137 ms, 4626171,

4796182 ms respectively, F(3, 36) = 53.9, p,.0001). We found no

interaction effect between any of the experimental factors: Step

Number (first and second), System Order (0 order, 1st order, and

2nd order), and ISI (level 1 through 8).

Separate tests for step-pairs in the reversed or same direction

revealed the same main effect for Step Number and System Order

on mean range in RT (as per Fig. 4).

RTs showed significant, substantial refractoriness for all system

orders, but in the sustained control conditions (1st and 2nd order)

only for reversed step-pairs stimuli (Fig. 5).
Zero order system. Reversed step-pairs: Combining all ISI

levels, the mean RT was significantly higher for step 2 than step 1

(233674 ms, 176635 ms, F(1, 12) = 24.1, p,.0005, Fig. 5 A).

Combining RT1s and RT2s showed a significant increase in RT

with decreasing ISIs (265692 ms, 217656 ms, 221660 ms,

201653 ms, 197650 ms, 185638 ms, 178636 ms, 172650 ms,

F(7, 84) = 11.2, p,.0001). The significant interaction effect

between Step Number and ISI, (F(7, 84) = 8.96, p,.0001)

indicates that reducing the ISI had different effects on RT1

compared to RT2. Conducting two separate post-hoc tests to

break down the interaction, showed a significant effect of ISI on

the RT2s, (F(7, 84) = 13.4, p,.0001), but not on the RT1s.

We quantified refractoriness in two ways. RT2 was delayed

relative to RT1 for ISIs up to 250 ms (paired comparison of Step

Number at each ISI: for p-values see Fig. 5, A). The maximum

increase in RT2 was 157 ms (subtracting the average RT1

(176 ms) from the intercept (334 ms) of the regression line of mean

interfered RT2s over ISIs (c.f. Fig. 5, A).

Unidirectional step-pairs: analysis of the unidirectional cases

showed a significant main effect of Step Number (250675 ms,

177645 ms, F(1, 12) = 10.1, p,.01). In contrast to the reversed

cases, we did not find a significant difference between ISIs

Is Sustained Visuo-Manual Control Intermittent?
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(210677 ms, 211673 ms, 230672 ms, 216663 ms,

2256112 ms, 214651 ms, 206660). The significant interaction

effect (F(7, 84) = 2.66, p,.05) however indicates that reducing the

ISI had significant effects on RT2 (F(7, 84) = 12.4, p,.005), but

not on the RT1s.

RT2 was delayed relative to RT1 for ISIs up to 300 ms and the

maximum increase in RT2 was 78 ms (subtracting the average

RT1 (177 ms) from the intercept (255 ms).

First order system. Reversed step-pairs: over all ISIs, the

mean RT2 was significantly higher than mean RT1 (3086149 ms,

230656 ms, F(1, 12) = 19.7, p,.0005, Fig. 5 B). Combining RT1s

and RT2s showed a significant increase in RT with decreasing

ISIs (3156125 ms, 2986115 ms, 2946131 ms, 2706108 ms,

263670 ms, 248666 ms, 235641 ms, 235680 ms, F(7, 84) = 3.1,

p,.05). The significant interaction effect (F(7, 84) = 10.6,

p,0.0001) shows that reducing the ISI had significant effects on

RT2 (F(7, 84) = 6.82, p,.0005), but not on the RT1s.

RT2 was delayed relative to RT1 for ISIs up to 350 ms and the

maximum increase in RT2 was 204 ms (subtracting the average

RT1 (230 ms) from the intercept (434 ms).

Unidirectional step-pairs: analysis of the unidirectional cases

showed no significant main or interaction effects and in contrast to

the reversed step-pairs (and to the results in the 0 order system

condition) there was no evidence for refractoriness.

Second order system, marginally stable. Reversed step-

pairs: the mean RT2 was significantly higher than mean

Figure 3. Group results: Distributions. The system condition is Zero Order. Panels A and B show the distribution of RT1 (panel A) and second RT2
(panel B) for all step-pairs (light) and reversed step-pairs only (dark). Panels C and D show individual values of RT1 as a function of the Recovery Period
(panel C), and the inter-step interval (ISI, panel D). Panel E shows individual values of RT2 against ISI.
doi:10.1371/journal.pcbi.1002843.g003
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RT1(3866178 ms, 2876110 ms, F(1, 12) = 17.9, p,.005, Fig. 5 C)

over all ISIs. Combining RT1s and RT2s showed a significant increase

in RT with decreasing ISIs (3706162 ms, 3996192 ms, 3706160 ms,

3586206 ms, 3206139 ms, 3486140 ms, 272689 ms, 258672 ms,

F(7, 84) = 3.1, p,.05). The significant interaction effect (F(7, 84) = 5.68,

p,.005) shows that reducing the ISI had significant effects on RT2 (F(7,

84) = 6.1, p,.01), but not on the RT1s.

RT2 was delayed relative to RT1 for ISIs up to 550 ms and the

maximum increase in RT2 was 256 ms (subtracting the average

RT1 (287 ms) from the intercept (543 ms).

Unidirectional step-pairs: analysis of the unidirectional cases

showed no significant main or interaction effects and in contrast to

the reversed step-pairs (and to the results in the 0 order system

condition) there was no evidence for refractoriness.

Second order system, unstable. Reversed step-pairs: Com-

bining all ISI levels, the mean RT2 was significantly higher than mean

RT1 (3956176 ms, 272688 ms, F(1, 12) = 19.5, p,.001, Fig. 5 D).

Combining RT1s and RT2s showed a significant difference between

ISIs (3626192 ms, 4226205 ms, 3586164 ms, 3056127 ms,

3606148 ms, 3216115 ms, 275691 ms, 263676 ms, F(7, 84) = 3.9,

p,.01). The significant interaction effect (F(7, 84) = 5.9, p,.005) shows

that reducing the ISI had significant effects on RT2 (F(7, 84) = 5.82,

p,.001), but not on the RT1s.

RT2 was delayed relative to RT1 for ISIs up to 550 ms and the

maximum increase in RT2 was 263 ms (subtracting the average

RT1 (272 ms) from the intercept (535 ms).

Unidirectional step-pairs: analysis of the unidirectional cases

showed no significant main or interaction effects and in contrast to

the reversed step-pairs (and to the results in the 0 order system

condition) there was no evidence for refractoriness. Combining all

second order cases (stable and unstable) to improve power

produced the same results.

Single Channel interpretation of RT interference (stage 3)
Fig. 6 shows that in all four conditions, the Single Channel (or

intermittent Control model) interpretations of RT interference (i.e.

the linear interpolation of the ISI up to which RT2 was

significantly greater than RT1 (as demonstrated by the ANOVA)

and the set slope (21) regression line through delayed RT2) were

closely related and corresponded to the average range in RT2.

These predictions of the refractory durations (c.f. Fig. 6) overes-

timated the refractory duration predicted by the intercept of the

unconstrained linear regression through interfered RT2.

All estimates of the refractory duration increased with System

Order and were independent of system stability.

The average RT1 (i.e. the baseline of the refractory duration)

also increased with System Order and was independent of system

stability.

Discussion

Summary of results
In this study, for visual-manual control, we formally identified

refractoriness, the key feature discriminating serial ballistic

(intermittent) from continuous control, in the domain of both

discrete (0 order systems) and sustained (1st and 2nd order systems)

control actions. Our results showed that delays to the second step

were on average longer than delays to the first step. This finding

leads to the rejection of a hypothesis of zero refractoriness that

predicts equal ranges and equal averages in RT. Our results

showed the interaction between Step Number and ISI that was

predicted by the alternative hypothesis of refractoriness. Breaking

down this interaction showed that whereas delays to the first step

were independent of ISI, delays to the second step increased with

decreasing ISI levels. The ISI level up to which there was

interference between RT1 and RT2 provided an upper limit

estimate of the refractory duration which depended upon system

order (250, 350, 550 ms for 0, 1st, and 2nd order respectively,

n = 13, p,0.05) but were independent of system stability. A lower

limit estimate of the refractory duration was provided by the

maximum increase in RT2 (,150, ,200, and ,250 ms;

quantified using the unconstrained regression fit intercept, c.f.

Fig. 6). In sustained control (1st and 2nd order systems),

refractoriness was only identified when the target reverses

direction. The main issues for discussion are: Significance for the

continuous versus intermittent control debate, Rationale for serial

ballistic (or intermittent) control of human movement, Difference

between marginally stable and unstable second order systems,

Difference between unidirectional and reversed direction results,

Interpretation of our evidence for refractoriness within the

intermittent control framework, Why is the refractory duration

so long?, and Applicability to other tasks.

Significance for the continuous versus intermittent
control debate

The traditional paradigm for modelling negative feedback

control is the servo controller or the continuous optimal controller

[39,40,41]. Recently, experimental evidence has been presented

[35] in which the authors advocate that postural responses to

external stimuli are dominated by continuous feedback and cannot

be explained by intermittent control. Although continuous control

is currently the dominant paradigm, circumstantial evidence for

intermittency in human motor control has been observed

repeatedly and this issue is currently regarded as an unsolved

open question (for overview c.f. [42]). With no modelling

assumption this current study provides evidence of refractoriness

in sustained visuo-manual control. A continuous (LTI) model

cannot reproduce this data and therefore a wider, non LTI,

paradigm is required for interpreting visual-manual control [42].

Figure 4. Group results: Ranges. The inter-participant (13 in each
system condition) ranges (5–95%) in RT1 (blue) and RT2 (green). Each
box shows, the median range (central mark), the 25th and 75th
percentile range (the edges of the box are), and the most extreme data
points not considered outliers (the whiskers) of these ranges. The
maximum whisker length is 1.5. Data points are drawn as outliers ‘+’ if
they are larger than q3 + w(q3 - q1) or smaller than q1 - w(q3 -q1),
where w is the whisker length and q1 and q3 are the 25th and 75th
percentiles, respectively.
doi:10.1371/journal.pcbi.1002843.g004
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Refractoriness is associated with response selection and response

planning [c.f. 7]. The single channel explanation of dual-task

interference stresses the psychological relevance of these processes

in human movement control [2,3,6]. From a control engineering

perspective this mechanism is naturally interpreted within an

intermittent control framework [12–26]. So is there a rationale for

serial ballistic or intermittent open loop predictive control based

on rigorous engineering principles and relevant to human control?

Rationale for serial ballistic (or intermittent) control in
man and machine

If a system has a pure time delay, the appropriate engineering

solution is a predictor [14–18,43]. A predictor [44] is a feed-forward

element that, based on an internal system model, can eliminate the

time-delay from the feedback loop. As discussed in [43], several

approaches for reducing controller design and performance analysis to

the delay free case, also applicable to the control of unstable systems

such as the human balance system [45–48], have been applied in an

number of situations including in the engineering literature [39,49,50]

and in the physiological literature [51,52]. A predictor requires that the

system is consistent, known, and therefore, predictable.

Intermittent control is the appropriate engineering solution to

control problems in which there is a time consuming online

computational process [12,43,53].

When the actuators and the system being controlled do not

change with time, and there are no constraints, then controllers

Figure 5. Group results: statistical analysis of Mean delays (stage 2). The four panels: Zero Order System (A), First Order System (B), Second
Order marginally stable System (C), Second Order unstable System (D), show the inter participant mean RT1 (blue) and RT2 (green) against ISI for the
reversed step-pairs stimuli only (for details regarding the box plot’s constituents see caption Fig. 4). The P-values of the ANOVA’s post hoc test are
display above each ISI level (black if significant, gray if not). The blue dotted line shows the mean RT1, the dashed green line shows the unconstrained
regression linear fit between (interfered) RT2 and ISIs.
doi:10.1371/journal.pcbi.1002843.g005
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can use parameters which are computed offline, such as the gains

of a simple or optimal continuous feedback controller. In such

cases the control signal can be computed rapidly from measured

quantities and the reference signal. However, when the actuators

or system change with time, or there are constraints, then online

optimization and computation of the control signal is desirable.

Intermittent open loop predictive control uses an intermittently

moving time horizon which allows slow optimization to occur

concurrently with a fast control action. This approach allows

handling of time varying systems and constraints at the expense

of increased online computational requirement [53]. Thus,

intermittent control provides for a time consuming online

optimization process which lies at the heart of flexible predictive

control.
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Figure 6. Estimates of the refractory duration. The four panels: Zero Order System (A), First Order System (B), Second Order marginally stable
System (C), Second Order unstable System (D), show -in the right axes- how each metric is calculated. Plotted as a function of ISI are mean RT1 (blue
circles) and mean RT2 (green circles). The gray area describes the lower and upper limits of the ANOVAs ‘general linear model’ significance, the cyan solid
line shows the least mean squares fit between RT2 dependent upon ISI with slope constrained to 21, the magenta dashed line shows the unconstrained
regression linear fit between RT2 dependent upon ISI, crosses displayed on the y-axes show the intercepts of these function, and the dotted blue line
shows the mean RT1 which served as a baseline for the left axes that summarizes the four estimates of the refractory duration: the intercept of the
unconstrained regression fit (magenta), the intercept of the 21 regression fit (cyan), the ANOVA metric (brown), and the Range in RT2 (yellow).
doi:10.1371/journal.pcbi.1002843.g006
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As stated above, a predictor requires that the system, actuator,

and constraints are consistent, and therefore, predictable. How-

ever, for neuromuscular control systems consistency is the

exception rather than the norm. First consider the time delays.

In human motor control, delays include neural transmission and

varying degrees of sensori-motor processing according the neural

pathways involved. In lower order, peripheral, control processes

such as reflex mechanisms maintaining a joint angle in which

flexibility is limited to changing the gain and threshold of the

feedback, time delays are rather small (40–100 ms), with low

temporal jitter. In higher order, central, control processes which

allow more flexibility, including choice over direction and timing

of response, delays are both larger (.120 ms) and more variable

and are restricted to a low frequency bandwidth [13,23]. Second,

the actuator system (muscular), sensory, and processing system

(neural) intrinsic to biological control are inherently noisy, variable

and subject to signal dependent noise, fatigue, and time varying

properties such as thixotropy in the case of muscles [54–57].

Third, the constraints determined by environmental factors,

changing goals and priorities, and neuro-muscular biomechanical

limits can vary considerably with time and even fixed (biome-

chanical) constraints defy simple, algebraic, pre-computed solu-

tions [53]. The inherent flexibility and predictive nature of higher

order, central control mechanisms seems suited to the intermittent,

open loop predictive control paradigm. In agreement with

psychology, refractoriness seems appropriate for a control

mechanism that makes choices and intermittently inhibits alter-

native control actions [11] to facilitate appropriate response

selection and response planning.

Recently, Loram and colleagues [13] provided evidence that

control which is explicitly intermittent is particularly robust and

effective in controlling a system that is changing unpredictably

(different joystick gains). A possible explanation of that effective-

ness is that if the system is open loop, causality between input and

output can be identified more clearly. Even though a simple

inverted pendulum like system can be controlled using continuous

linear feedback, an intermittent control structure allows greater

flexibility and usefulness while still being effective.

Within the intermittent control scheme, predictive computation

is most efficient when the intermittent open-loop interval is greater

than the system’s total time delay [43]. This provides an

expectation that the intermittent interval will increases as the

feedback time delay increases. As the order of the controlled

system increases, the feedback time delay also increases in

association with the increased difficulty of predicting the evolution

of states and the increased number of choices of control [23]. Thus

we expect time delay and intermittent interval to increase together

as system order increases from zero to second. That prediction is

confirmed by the results of this experiment.

Difference between marginally stable and unstable
second order systems

We found no difference in results between the marginally stable

and unstable system conditions. This is in line with findings by

Loram et al. [23] where the primary difference in cognitive

demand (as measured by the feedback time delay) was between

first and second order systems and not between second order

systems of different stability.

One solution to an increase in system instability would be to

reduce the feedback time delay (effectively increasing the control

bandwidth). Loram and colleagues [23] demonstrated that

participants were, however, unable to reduce their delay. This

was interpreted as a processing constraint imposed by the order of

the system. While stability alters the required promptness of

response and affects control performance measured by system

position variance, system order increases the cognitive demand by

increasing the number of variables (e.g. system position and

velocity rather than just position) that the controller has to process

in order to stabilise the system. Thus, the demands of system

stability and system order are different.

The requirement for more flexible, intentional control mech-

anisms is one possible justification for central refractoriness.

Central refractoriness is naturally expressed as an intermittent

control mechanism [12] and intermittent control is an appropriate

control mechanism for accommodating time varying systems,

actuators, and constraints, including the more variable processing

times of higher order (complex) input-output relations [53].

Difference between unidirectional and reversed direction
results

In sustained control, refractoriness was only identified when the

target reversed direction. In principle it is possible that our method

of analysis is less sensitive to features in the unidirectional

responses compared to the reversed responses and that the

method’s sensitivity declines with higher order systems because the

control signal is more variable. Thus, we cannot eliminate the

possibility that participants were also refractory during sustained

control in the unidirectional cases and that our method of analysis

did not detect this refractoriness. Since our method has been

validated using model simulation data with varying levels of noise

[c.f. 36], we consider it more likely that in sustained control (1st

and 2nd order systems) refractoriness does not occur in unidirec-

tional responses.

This finding is in line with previous experimental work [58]

showing that stopping ongoing action is subject to refractoriness

while responses to stimuli to continue an ongoing action do not

produce a refractory duration effect. Together, these suggest that

during sustained control, unidirectional responses are online

adjustments to the original plan without incurring refractoriness

whereas responses in the reversed direction require the creation of a

new plan that is associated with refractoriness. In our joystick task,

independent adjustments were only found in the sustained control

conditions (i.e. in the unidirectional cases of the 1st and 2nd order

systems). In these (velocity or acceleration controlled) conditions the

properties of the system (inertia) make it unnecessary to select, plan,

and initiate a second response in the same direction. Unlike the

process of reversing direction, inhibition or attenuation of the

‘breaking action’ is sufficient to facilitate the ongoing movement in

order to bring the system to its final (second) position.

Interpretation of our evidence for refractoriness within
the intermittent control framework

The intermittent control model’s control signal (see diagram in

Fig. 7.) is open loop for a minimum duration known as the

intermittent open-loop interval and this feature discriminates

continuous from intermittent control [13,36]. Even though this

model is an explicitly single channel hypothesis model, depending

on parameter settings, there are several possible relationships

between RT2 and ISI. Fig. 8 shows RT2 v ISI for a variety of

intermittent control parameter settings [c.f. 36]. Consistent for all

parameter settings, the intermittent interval is shown by the ISI up

to which RT2 was delayed relative to RT1 (Fig. 8 B–D).

If the intermittent interval is zero, control is continuous and

RT2 shows no change with ISI (Fig. 8, A). Our results

(identification of refractoriness) reject this interpretation.

At low ISI, below the intermittent interval, the slope of the

relationship between RT2 and ISI need not be exactly 21, even
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for this explicitly single channel model. When events are triggered

externally at one event per step stimulus the slope is 21 (Fig. 8B). If

additional events are triggered, by an internal error signal crossing a

threshold (e.g. due to increased noise) the slope will be less than 21.

Applying noise to the system or ultimately setting the event

threshold to zero provides different examples of events being

triggered internally at the maximal possible rate such that events are

limited by the intermittent interval the slope will be 20.5 (Fig. 8 C).

If noise is high enough [c.f. 36], the IC model does not define the

relationship between RT1 and RT2 vs. ISI and any distinction

between first and second response times breaks down and the slope

is zero. Depending on parameter settings for noise levels and event

thresholds, varying slopes between 21 and 0 can be simulated.

At the lowest ISI, RT2 need not increase as ISI decreases.

Supplementing the intermittent control model with low pass

filtering of the set-point and a sampling delay (i.e. the delay

between the event and the sampling instant c.f. Fig. 7) leads to

RT2 decreasing as ISI decreases leading to a peak in RT at a

certain ISI, equal to the sampling delay (Fig. 8D). This feature,

does not occur in previously published versions of the IC model

[e.g. 12,36,43], but has been introduced to reproduce the

amplitude transition function (ATF) effect observed by Barrett &

Glencross [59,60], in which participants combine their responses

to first and second steps stimuli when ISIs are very small. The fact

that an explicitly intermittent control model implementing a single

channel hypothesis can produce alternative relationships between

RT2 and ISI precludes unambiguous interpretation of the results.

We apply the following principles to interpret our results (stage 3

of our method of analysis). First we identify the open-loop interval

from the ANOVA metric (i.e. the ISI up to which RT2 was

significantly delayed relative to RT1, Fig. 6). Next, the refractory

duration indicated by the intercept of the unconstrained regression

slope (Fig. 6) allows us to infer: i) the degree to which events are

fully triggered by external stimuli (Fig. 8, B) or, at the other side of

the spectrum, internally triggered at a maximum rate determined

by the minimum intermittent interval (Fig. 8, C), ii) the possibility

that participants combining their responses to first and second

steps stimuli when ISIs are very small (Fig. 8, D).

Using these principles we make the following deductions. Our

best estimate of the open-loop interval (The ANOVA metric)

increased with system order (c.f. Fig. 6) as in fact did all the other

estimates of the refractory duration (i.e. the intercept of the

unconstrained regression fit, the intercept of the 21 regression fit,

and the Range in RT2). Thus we conclude that, regardless of the

applied metric, the intermittent interval increased with system

order. The slope of the unconstrained regression line decreased

with system order. This indicates that events have a greater

tendency to be triggered internally rather than by external stimuli

with increasing system order. This interpretation supports the idea

that in sustained control (i.e. 1st and 2nd order systems), event

Figure 7. General model of intermittent control. The intermittent predictive controller is based on continuous control as a special case
[12,36,43], but generally the predicted system state is only used intermittently to update the time varying control signal sent from the generalized
‘‘hold’’ to the actuator. ‘‘Trig.’’ detects when the control trajectory is to be updated and this event trigger requires three conditions: (i) a single event
must be detected (i.e. all events within the sampling delay (Ds) are considered as one), (ii) a minimum open-loop interval (DOL) must have elapsed
since the previous event and (iii) an error signal must exceed a threshold [12,36,43]. Scalar signals are represented by solid lines, vector signals are
represented by dashed lines. The participant’s neuro-muscular dynamics are modelled (linear) in the ‘‘NMS’’ block with input u(t). The linear external
controlled system with output y(t) (represented by the ‘‘System’’ block) is driven by signals ue(t) and d(t) representing the externally observed control
signal and the disturbance signal. The state of the composite ‘‘NMS’’ and ‘‘System’’ blocks is estimated xo(t) by the ‘‘observer’’ block. Sampling is
preceded by an anti-aliasing low-pass filter ‘‘LP’’ of the subtracted set point disturbance w(t) and subject to an event delay ‘‘DS’’ between event and
sampling. The trigger for the sampling times ti is provided by the event detector block labelled ‘‘trig’’. Sampling xw(t) takes place at discrete times ti.
Sampled signals (represented by the dotted lines) are defined only at the sample instants ti. The future state error xp(ti) is provided by the ‘‘predictor’’
block. The various delays in the human controller are accounted for by a pure time delay of td represented by the ‘‘delay’’ block. The block labelled
‘‘hold’’ is a system-matched hold, that provides the delayed version of the continuous-time signal that is multiplied by the feedback gain vector k
(block ‘‘State FB’’) to give the feedback control signal u(t). This figure and its caption are based on [12].
doi:10.1371/journal.pcbi.1002843.g007
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triggering is part of an ongoing control process and not just related

to the external step stimuli.

Our results also show some evidence of a peak in RT2 that is

particularly existent in the second order system conditions (c.f.

Fig. 6, C and D) which may support the idea of a sampling delay.

Participants seem to combine first and second responses for ISIs

smaller than 250 ms which is indicative of a sampling delay

somewhere between 150 and 250 ms. Our experiment was

designed to minimize temporal and spatial predictability of the

step stimuli. Since participants could not pre-program their

responses, this implies that for ISIs larger than the sampling delay

the second step incurred refractoriness.

Why is the refractory duration so long?
One theory of intermittency [24,25] relates high frequency

clock-driven refractoriness with an intermittent interval of 50–

100 ms to tremor and resonance related discontinuities at a

frequency of 7–10 Hz. The intermittent intervals observed here of

250, 350, and 550 ms for zero, first and second order systems

relate to control actions of two to four actions per second. This

frequency of control is clearly different from the high frequency

theory and falls most likely within the voluntary control

bandwidth.

Do these low frequency responses reflect the hard physiological

limits of the system or do they represent a preferred rate

optimizing some soft criterion? If the intermittent interval is

related to the feedback loop time delays, then we have to consider

whether the relevant delays are the minimum transmission times

within the neural circuitry, the time needed to process higher

order (complex) input-output relations, or the time lags associated

with evolution of state. Whereas the first relates to the intrinsic

hard limits within human physiology, the latter two are related to

the order of the external system that is being controlled. The fact

that the refractory duration increases with system order implies

that the intermittent interval is flexibly selected to be appropriate

for the system rather than to be physiologically intrinsic. Humans

are predisposed for a second order world in which systems follow

Newtonian (2nd order) dynamics. Through intermittency, we

might have adopted a strategy to deal with the relatively large time

delays involved in this kind of control making us more flexible and

more resistant to perturbations.

Applicability to other tasks
Our results and reasoning support the idea that refractoriness is

associated with response planning and response selection within

discrete and sustained movement control.

An open question is whether refractoriness applies generally to

human movement control. It is important to realise that control

which seems continuous might in fact be serial ballistic in nature

(e.g. continuous joystick contact in [13] masqueraded tapping like

behaviour). As discussed in [13] serial ballistic control is likely

related to the bandwidth of voluntary control and thus would also

apply to (normal) continuous contact control. Our current study

supports that argument and strengthens the case that continuous

contact manual control is serial ballistic in nature.

Are the mechanisms involved in rudimentary control like

human posture and the mechanisms governing multi-segmental

(voluntary) movements like human balance also serial ballistic in

nature or does intermittency apply only to a subset of the human

movement repertoire? If multi-segmental human balance involves

a higher level of control compared to the more rudimental,

peripheral, high-bandwidth (reflex) feedback mechanisms dedicat-

ed to maintaining individual joint angles of human posture, this

would suggest that while both serial ballistic control and

continuous control are universal control mechanisms; continuous

mechanisms lie embedded within the more executive intermittent

control mechanisms [c.f. 22,23].

Part of the power of the current paper lies in the fact that we

have focussed the experiment on the simplest possible test of the

existence of refractoriness in sustained control. In particular, we

have avoided model-selection issues by familiarising subjects

before each trial and not changing the system during a trial and

we have avoided multi-segmental issues [c.f. 61] by using a single-

input, single output system. Having established the intermittent

paradigm in this basic case, investigating model-selection and

multi-segmental systems are challenges for the future.

Conclusion
Following our recent demonstration that continuous control of

second order systems is unnecessary [13], we asked whether

refractoriness of substantial duration (,200 ms) is evident in

sustained contact control of external systems. We asked whether

the refractory duration (i) is physiologically intrinsic, (ii) depends

Figure 8. Model based interpretation (stage 3). Discriminating
serial ballistic (intermittent) from continuous control and identifying
several possible relationships between RT2 and inter-step interval (ISI).
The simulated system is zero order. The open-loop interval (delta OL) is
0.35 s and feedback time delay (td) is 0.14 s. For four models: A)
continuous LTI, B) externally-triggered intermittent control, C) internal-
ly-triggered intermittent control (triggered to saturation), and D)
externally-trigger intermittent control supplemented with a sampling
delay. The following is shown as a function of ISI: (A–D), mean RT2
(joined green circles), black dotted horizontal shows mean RT2 without
interference, black dotted vertical shows the set open-loop interval,
gray dotted shows unconstrained regression linear fit between RT2 and
ISI using ISIs smaller than delta OL.
doi:10.1371/journal.pcbi.1002843.g008
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upon system order (zero, 1st, 2nd) or passive stabilisation

(marginally stable, unstable) (iii) depends upon target jump

direction (reversal, same direction). Thirteen participants used

discrete movements (0 order external system) as well as more

sustained control activity (1st and 2nd order external systems) to

track unpredictable step-sequence targets. Results show a

substantial refractory duration that depends upon system order

(150–300, 200–500, 250–650 ms for 0, 1st 2nd order respectively,

n = 13, p,0.05) but, in sustained control, only when the target

reverses direction. We found no differences in results between the

marginally stabilized and unstable second order systems. We

propose that central refractoriness is an appropriate control

mechanism for accommodating time varying systems, actuators,

constraints including the more variable processing times of higher

order (complex) input-output relations. Whether or not, intermit-

tent mechanisms explain sustained control had been an open

question for many years. While we cannot formally exclude

alternative unmodelled explanations, our findings show that

refractoriness is present in sustained control and can be best

interpreted as intermittent rather than continuous control.
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