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Abstract— As urbanization has been spreading across the
world for decades, the traffic congestion problem becomes
increasingly serious in most of the major cities. Among the
root causes of urban traffic congestion, en route events are the
main source of the sudden increase of the road traffic load,
especially during peak hours. The current solutions, such as
on-board navigation systems for individual vehicles, can only
provide optimal route using current traffic data gained just
before the start of their journeys. Those solutions are thus
unable to provide a better alternative route quickly enough if
an unexpected congestion occurs. Moreover, using the same
alternative routes may lead to new bottlenecks that cannot
be avoided. Thus a global traffic load balance cannot be
achieved. To deal with these problems, we propose a Multi
Agent System (MAS) that can achieve a trade-off between the
individual and global benefits by giving the vehicles optimal
turn suggestions to bypass a blocked road ahead. The simulation
results show that our strategy achieves a substantial gain in
average trip time reduction under realistic scenarios. Moreover,
the negative impact of selfish re-routing is investigated to show
the importance of altruism re-routing applied in our strategy.

I. INTRODUCTION

Nowadays, most of the large cities in the world are
witnessing ever-increasing road traffic congestion due to the
worldwide urbanization that has been carried out for decades.
According to the annual urban transportation report[1], the
incurred economic loss in terms of both travel time delay and
fuel consumption is estimated as $121 billion in 2011 and
is expected to grow up to $199 billion in 2020. Moreover,
among all factors that lead to traffic congestion, en route
events (e.g. special events, unplanned road works, car crashes
etc.) are the major cause of such loss due to their random
nature. The above report reveals also that in order to get
more reliable trips, drivers usually need to plan to spend three
times more travel time by taking this unexpected congestion
into consideration, especially during peak hours with heavy
traffic load.

There are two main existing solutions categories for mit-
igating the huge traffic congestion loss. One is the dynamic
optimization of traffic light phases. For instance, the most
popular traffic control systems used by city planners are
Sydney Coordinated Adaptive Traffic System (SCATS) [2]
and Split Cycle Offset Optimization Technique (SCOOT) [3].
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Both SCATS and SCOOT can optimize traffic light phases
duration at each intersection by collecting real-time traffic
information from the widely deployed infrastructure (e.g.
induction loops, CCTV cameras, advanced sensors etc.) to
reduce the travel delay at each intersection. Another solutions
category is vehicular route assignment using shortest path
finding algorithms. For example, the well-known vehicle
navigation systems (e.g. TomTom, Google Navigation, etc.)
can calculate ”the fastest” route based on the current traffic
conditions to reduce the travel time for a specific journey.

In this paper, we propose a new approach called Multi
agent system based Next-Turn Re-routing (MNTR) from
route assignment perspective to overcome the following
limitations of the existing solutions in the second category:

• Unpredictability makes the route unreliable: the so-
called “fastest” route cannot be always guaranteed the
fastest as some future traffic variation cannot be pre-
dicted in advance, such as random incidents etc. Even
though some solutions [6][7] can provide a route with
guaranteed least travel time based on massive historical
traffic data and prediction models, their low execution
efficiency [18] makes them unsuitable for large-scale
urban scenarios. Moreover, the unpredictability of the en
route events impact on traffic flow makes the estimated
travel time of the advised route unreliable.

• Global benefit is ignored: optimal routes are com-
puted without considering any negative impact to other
vehicles routes (i.e. assigning an optimal route to a
given vehicle may create a bottleneck at one or more
road segments common with several other routes). For
example, for vehicles which need to be rerouted to
bypass the en-route events, it is more likely that they
will choose relatively similar routes for the subsequent
few turns, thus new congestion will certainly occur.

Compared to the state-of-the-art, the contributions of our
work are as follows:

• Two-Step re-routing: instead of calculating the entire
route [4][5][6][7][8] at once, MNTR provides, as first
step, the optimal next turns for the set of concerned
vehicles to bypass the blocked road. Then, as a second
step, when the vehicles enter in their assigned next road
segment, they use the on-board navigation system to
get the complete routes for the rest of their journeys.
Among all the next turn choices, the optimal next-turn
has the greatest potential to lead the rerouted car to
its destination quickly and mitigate the negative impact
on other vehicles. Furthermore, as the optimal next-turn

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by E-space: Manchester Metropolitan University's Research Repository

https://core.ac.uk/display/161889826?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


computation is much faster than recalculating the entire
route, this two-steps re-routing approach fits perfectly
in this time-critical scenario in which the car needs to
be rerouted before reaching its next intersection.

• Efficient MAS architecture: an intelligent agent in
MNTR is defined as each traffic light and all the
outgoing lanes that it controls. Compared to the vehicle-
based MAS solutions [9][10][11][12], our system archi-
tecture has two advantages when applied into practice.
First, traffic lights are easier to update. Rather than in-
stalling Vehicle-to-Vehicle (V2V) communication facil-
ities, traffic lights in which most of MNTR’s function-
alities are implemented, have already been universally
deployed in the existing road infrastructure. Second, the
agents coordination mechanism in MNTR is concise
and efficient. In contrast, the V2V protocols used in
vehicle-based MAS solutions still need to overcome
several unsettled theoretic and technical mobility issues.
However, as the vehicles move from one intersection to
another, this means that the exchange of traffic load
information between agents is done automatically with-
out any need of explicit communication among them
(see Fig. 3). Therefore, when an MNTR agent reaches
its optimal status, all its neighbouring agents will be
optimized consecutively. Besides, even compared with
region-based MAS [13] solutions, MNTR has much
lower traffic information update frequency as it just
refreshes the current traffic conditions after the traffic
light receives the vehicular re-routing request, instead
of applying a periodic update mechanism.

• Global and individual benefits trade-off: when an en
route event happens, by using multi-objective next turn
assignment, MNTR can not only achieve good traffic
load balance (i.e. global benefit) but also can help all the
vehicles to finish their trips as soon as possible (i.e. indi-
vidual benefit). This next-turn decision considers traffic
load and travel time in each agent and the destination
location of the vehicle which needs re-routing. We also
enhance the efficiency of the travel distance estimation
in the re-routing scenario, by adding an angle similarity
mechanism with respect to the blocked road.

We use SUMO[14] as our simulator with a scalable
grid-map and a realistic urban scenario from the project
TAPASCologne[15] to evaluate the performance of MNTR.
The results show that when applying MNTR after en route
event occurrence, up to 51.50% average trip time reduction
can be achieved and the global traffic load can still remain
balanced. We also present an evaluation of the negative
impact of selfish re-routing to show the importance of
altruism re-routing used in MNTR.

For the rest of this paper, we first describe and define the
problem we solve formally in Section II. Then in Section III,
the architecture and detailed operations of our new MNTR
approach are illustrated. The evaluation methodology and
the analysis of the obtained simulation results are outlined
in Section IV and V respectively. Finally, we draw the

conclusion and discuss our future work in Section VI.

II. PROBLEM DEFINITION

Given an urban road network, we denote it as a directed
graph G = (V,E) which consists of a set of intersections
V = {V1, V2, · · · , VM}, (M is the total number of inter-
sections) and a set of road segments (unidirectional lanes),
E = {E1, E2, · · · , EN} (N is the total number of road
segments). Each vehicle running on this road network, vi
(i ∈ {1, 2, · · · ,K}, such that K is the total number of
vehicles in the observed scenario), has its own trip ODvi

starting from the origin location V vi
o and ending at the

intended destination V vi

d (V vi
o , V vi

d ∈ V ). During this trip,
the vehicle crosses a set of consecutive road segments of
its chosen route Rvi = {Eo, · · · , Ei, Ej , · · · , Ed} (Ej is
one of the road segments directly connected to Ei, and
the lane Eo starts from V vi

o while Ed ends at V vi
d ). The

corresponding travel time of this trip is defined as T (Rvi
) =

TEo
vi

+, · · · ,+TEi
vi

+ T
Ej
vi +, · · · ,+TEd

vi where TEi
vi

refers to
the time spent by a vehicle vi run through the lane Ei.

If we consider the urban road network with travel
time information as a discrete time-dependent network,
{t1, t2, · · · , ti, · · · , tJ} (J is the total number of time
intervals in our observed scenario), with equal length
time intervals T

′
(T

′
= ti+1 − ti), then we get the

complete travel time information for each time inter-
val T = {Tt1 , Tt2 , · · · , Tti , · · · , TtJ}, such that Tti =
{TE1

ti , TE2
ti , · · · , TEN

ti }.
Our target is to reduce the average trip time Tavg for all

vehicles’ trips:

Tavg =
Tsum

K
=

∑K
i=1 T (Rvi

)

K
(1)

In an urban road network, all vehicles’ movements are
strongly correlated with each other, which consequently
affects the evolution of traffic flow. The vehicles’ movements
we consider here are the routes that the vehicles are going
to follow. Therefore, the solution we are aiming to find
is a set of routes for each vehicle. However, due to the
rapid variation of the traffic conditions, especially when
unpredictable en route events occur, we need to adapt the
route allocation to the current traffic conditions. Therefore,
the route for one specific vehicle could be different dur-
ing various time intervals. Hence, we define the solution
as R = {Rt1 , Rt2 , · · · , Rti , · · · , RtJ} such that Rti =
Rv1

ti , R
v2
ti , · · · , R

vK
ti (Rvj

ti means the route for vehicle j at
the ith time interval).

A greedy method could be used to find the best routes
allocation in order to minimize our target Tavg . This greedy
method consists in trying every possible routes allocation,
run simulation to record the achieved average travel time for
each route allocation, and then chose the best one. However,
this approach is impractical due to the huge number of route
allocation permutation and combination for each vehicle in
each time interval. A similar reason hinders the application of
existing Dynamic Traffic Assignment (DTA) [19] solutions
in real world.



In this paper, the proposed MNTR reduces calculation
complexity by focusing on updating the routes allocation
only after the occurrence of an en route event by updating
the routes of vehicles whose the current route includes the
blocked road segment(s). It is worth to mention that MNTR
uses two-step re-routing process as those vehicles will be
re-routed only twice (i.e. next turn allocation, then complete
route recalculation) as explained in next section. It is shown
in Section V that MNTR can efficiently reduce the average
travel time with minor change of routes allocation.

III. SYSTEM DESCRIPTION

A. Re-routing Process

First of all, as shown in Fig.1, we describe the general
seven steps of the re-routing process using ”Level-0 MNTR”.
Notice that ”Level-0 MNTR” means that the only traffic light
activated to perform MNTR is the one located at the start of
the blocked road segment.

Fig. 1. Rerouting process in MNTR: driving on the left hand side as in
Ireland

1)When an en route event happens, the Traffic Manage-
ment Center (TMC) detects and verifies it by various means
including road traffic monitoring infrastructures, such as the
widely deployed monitors, sensors and induction loops.
2)TMC communicates this en route event (i.e. the location
of the blocked road) to its closest traffic light which is the
one located at the start junction of the affected road.
3)This step is a confirmation process of re-routing request
using Vehicle to Infrastructure (V2I) communication. First,
the traffic light sends ”re-routing alert” with the location of
the closed road to the first vehicle on each of the incoming
lanes that it controls. Second, after receiving this ”re-routing
alert”, the vehicle checks whether the closed road is included
in its current route or not. If it is the case, the vehicle sends
a ”re-routing request” back to the traffic light along with its
destination location information to confirm this re-routing.

4)When the traffic light receives this re-routing confirmation
with specific destination location, it collects the current
traffic information (i.e. occupancy and travel time) for all
the available outgoing lanes that it controls (i.e. excluding
the closed road), and then computes the optimal next turn
for each particular re-routing request based on these up-to-
date local traffic conditions.
5)Traffic light sends back the optimal turn to the correspond-
ing vehicle.
6)The vehicle follows its next turn suggestion, enters into a
new lane, and thus successfully bypasses the closed road.
7)Finally, this vehicle updates the whole route to its intended
destination using its on-board navigation system (e.g. Tom-
Tom, Google Navigation) according to the current global
traffic conditions.

In addition, our proposed MNTR can also work in different
levels to alleviate the congestion in the vicinity of the
blocked road segment. As shown in Fig.2, we define Level-0
MNTR as the MNTR system with the closest traffic lights
enabled only (i.e. the traffic light controlling the outgoing
lane where the en route event has occurred). Without loss
of generality, Level-(i+ 1) MNTR means that based on the
last MNTR enabled levels, we enable all of Level-i MNTR’s
neighbouring traffic lights. Here, ”Level-i” denotes the traffic
lights located ”i” hops (i.e road segments) away from the
traffic light at ”Level-0”.

Fig. 2. Activated traffic lights in different MNTR levels

B. MAS Architecture in MNTR

In our MAS architecture of MNTR, we define an agent as
the traffic light and the set of outgoing lanes that it controls.
As depicted in Fig.3, the outgoing lanes of agent 1 are the
lanes 1, 3, 5, 7 which are the only available options from
which a vehicle to be rerouted can choose it next turn. This
decision should be taken by collecting the current traffic



information of these outgoing lanes. Notice that the vehicles’
re-routing requests are received by the traffic light from the
incoming lanes (e.g. lanes 2, 4, 6, and 8 in the case of agent
1).

Fig. 3. MAS architecture in MNTR

There are two factors we consider for each agent in
MNTR, traffic load and travel time of all outgoing lanes.
The purpose of balancing the traffic load is to maximize
the utility of the existing road infrastructure. The existing
urban road infrastructure cannot meet the unpredictable and
dynamic requirements of citizen’s trips, and the cost needed
for improving its capacity and efficiency is expected to be
huge. Therefore, proposing a strategy that can balance the
traffic load from global perspective is the most feasible
and efficient way to make full use of the current road
infrastructure, and thus the reduction of average trip time for
all drivers can be achieved. In general, traffic load is a relative
concept measuring the ratio of the number of vehicles in a
specific road to its full capacity. In this paper, we consider
the lane occupancy OEi as an indicator of traffic load in
lane TLEi . The occupancy is defined as the ratio of the
total length of all vehicles running in a particular lane plus
the sum of minimum gap length between them to the total
length of this lane. If we assume that the average length of
each vehicle is Lv meters, KEi is the number of vehicles in
lane Ei, the minimum gap is Lgap meters, and the length of
lane Ei is LEi meters, then the occupancy of a lane Ei can
be defined as:

TLEi = OEi =
KEi × (Lv + Lgap)

LEi

× 100% (2)

The travel time (i.e. the second factor considered by an

agent) of one particular outgoing lane is directly related to
our ultimate goal which is reducing the average trip time.
Typically, the travel time on a specific lane TEi depends on
both the vehicles speed and traffic light phase duration. In
this paper, for the sake of simplicity, we calculate TEi as the
ratio between the length of lane Ei and the average vehicles
speed Avg VEi , measured in meters per second:

TEi =
LEi

Avg VEi

(3)

We evaluate the status1 of each agent by combining both
traffic load and travel time information. The lower difference
among all lanes in one agent in terms of these two factors,
the better status this agent has. More precisely, as shown in
Fig.3, in urban road network, each vehicle travels from one
junction to another, meaning that it roams between adjacent
agents. Consequently, any change in both factors of one
lane of a given agent will definitely affect the status of its
neighboring agents due to the natural movement of vehicles
in an urban scenario. Therefore, it is impossible to find two
adjacent agents with similar status but their respective traffic
load and travel time are significantly different.

One of the distinguishing features of our proposed MNTR
is its automatic coordination mechanism explained below.
For instance, in Fig.3, when the lane 3 is closed due to the
occurrence of an en route event, our MNTR starts to guide
the vehicles requesting re-routing to different turns to achieve
the local optimum, thus the travel time and traffic load of
all other three outgoing lanes will get higher. Each of the
outgoing lanes in this agent is also incoming lane for another
agent. In this case, lane 1, for example, is outgoing lane
in agent 1 but also incoming lane in agent 2, thus the en
route event will soon affect the status of agent 1 and the
other agents follow because the heavy traffic in lane 1 will
quickly increase the traffic on lanes 9, 11 and 13 as well. If
we enable MNTR for all of its adjacent agents, the traffic
load will be more widely balanced, leading to the reduction
of travel time as well. For the sake of energy saving, we
will not suggest the users of our system to enable MNTR
for all agents, as usually only one level MNTR is sufficient,
as shown in Section V.

C. Decision for the Optimal Next-Turn

The idea of next-turn re-routing comes from drivers’
instinct when they are notified about a heavy congestion
ahead. These drivers will choose a next turn to avoid the
congested road instinctively first, and then start thinking
about how to correct their previous routes to reach their
intended destinations. We can see from the Graphical User
Interface (GUI) of the popular navigation systems that they
are all designed following the so-called “first-person view”,
because in a such time critical scenario the drivers care
more about the alternative next turn rather than the entire
new route that excludes the blocked road. Instead of making
next turn decision instinctively, our proposed MNTR does

1The status of an agent is represented by the standard deviation of traffic
load and travel time among all the outgoing lanes that it controls.



this intelligently by considering both traffic load balance
and travel time reduction. In other words, this decision
should lead to a better tradeoff between global and individual
benefit.

In order to suggest the optimal next turn, MNTR needs to
take the two aforementioned local parameters into account,
traffic load TLEi and travel time TEi of a specific lane.
However, such local information is not sufficient for choosing
the optimal next turn to serve various re-routing requests;
we thus need to introduce another parameter which is the
geographic closeness. The lane with the least geographic
closeness will have the highest probability to lead the
rerouted vehicle to its destination faster. In general, the
distance estimation in MNTR uses Euclidean distance, as
most of the implementations of A*. Albeit the correctness
and high efficiency of this metric have been proven over
decades of practice in science and engineering, we still need
to enhance it in re-routing scenario by taking the angle
similarity into account. The concept “angle” here refers to
the angle between the vector from the start junction to the
end junction of the blocked road and the available next turn
lanes. The one with the least similarity will be chosen to
follow because the rerouted vehicle will have more chance
to avoid the congestion in the surrounding caused by the
blocked road.

Fig.4 illustrates how MNTR calculates the geographic
closeness using Euclidean distance and angle similarity.
Suppose a vehicle that needs to be rerouted is approaching
its next junction Vn(xn, yn), there are three roads in front
of it, R1, R2, and Rc, where Rc is the closed road due to
an en route event, while R1 and R2 are available roads for
this vehicle to make progress in its trip. The end junctions of
these three roads are denoted as V1(x1, y1), V2(x2, y2) and
Vc(xc, yc), respectively, with their coordinates provided, and
the realistic length of the two available roads are denoted
as L1, L2. Besides, MNTR is also aware of the destination
location, Vd(xd, yd), sent by the vehicle. All the information
mentioned above are available to the traffic light at junction
Vn before the calculation process.

First, the traffic light computes the estimated Distance
(Di) based on which the best road will be chosen from
Ri, i ∈ {1, 2}. This distance is calculated by adding the re-
alistic lengths (Li) of these roads to the Euclidean Distances
(EDi) from their end points to the vehicle’s destination, as
described below:

Di = Li+EDi = L1+|−−→ViVd| = Li+
√

(xd − xi)2 + (yd − yi)2

Second, the Angle Similarity (AS) can be obtained by the
law of cosine using the following equations:

−−−→
VnVc = (xc−xn, yc−yn), |

−−−→
VnVc| =

√
(xc − xn)2 + (yc − yn)2

−−→
VnVi = (xi − xn, yi − yn), |

−−→
VnVi| =

√
(xi − xn)2 + (yi − yn)2

ASi = 1 + cos θi =

−−−→
VnVc ·

−−→
VnVi

|−−−→VnVc||
−−→
VnVi|

where θi ∈ [0, π]

Therefore, ASi ∈ [0, 2], and the higher the value of angle
similarity, the smaller the angle separating the two vectors
and thus the more similar they are.

Third, we compute the Geographic Closeness (GC) in
MNTR using the following equations:

GCi = wDNDi + wASNASi , wD + wAS = 1

where wD,wAS are weight values assigned to the estimated
factors distance and angle similarity, respectively. NDi

,NASi

are normalized values of the aforementioned two factors
calculated as:

ND1 = D1/max
i∈1,2

Di, NAS1 = AS1/max
i∈1,2

ASi

Finally, the utility function that the final optimal next turn
decision needs to use is:

Ui = wTLN
i
TL + wTN

i
T + wGCGCi (4)

such that wTL + wT + wGC = 1.
Where wTL, wT and wGC are weight values assigned to the
normalized traffic load (NTL), normalized travel time (NT )
and normalized geographic closeness (GC), respectively.
Notice that all variables are in the range of [0, 1], and the lane
with the least utility value will be suggested as the optimal
next turn for the vehicle.

Fig. 4. Illustration of angle similarity mechanism

IV. SYSTEM EVALUATION METHODOLOGY

A. Simulation Setup

We use Simulation of Urban Mobility (SUMO) as our sim-
ulator combined with Traffic Control Interface (TraCI)[16] to
carry out the performance evaluations of MNTR. SUMO is
the most popular open source microscopic simulator of urban
road traffic. It is a discrete-event simulator which is quite
suitable for us to solve the predefined problem (see Section
II) based on discrete time-dependent road traffic network.
TraCI is a part of SUMO release package which allows users
to manipulate and control the simulation process while it



runs. Specifically, we use TraCI to implement most of the
key features in MNTR in Python to dynamically retrieve
traffic information and allocate routes for vehicles.

B. Grid Map v.s. Realistic Map

The evaluation of MNTR is carried out in both grid and
realistic map.

Owing to the lack of accessibility of realistic city maps and
traffic demands data, we use a set of grid maps to perform
our experiments for the first stage (i.e. finding suitable weight
values allocation and MNTR levels). In addition, the grid
map can help us to investigate MNTR performance by
mitigating the unexpected impact of varying road network
topologies.

There are 7 grid maps with various scales in our evalua-
tion, 3×2, 4×3, 5×4, 6×5, 7×6, 8×7 and 9×8. For instance,
6×5 means this grid map has 5 junctions in the horizontal
axis and 4 junctions in the vertical axis. Apart from the
number of junctions, they share all the rest of settings.
For example, all road segments in our grid map set have
equal length of 150 meters and each of them comprises of
two lanes with opposite directions. We uniformly generated
traffic demand for all the grid map scenarios for a 30 minute
duration. We also enabled traffic lights but kept their phase
change settings as default: i.e. static, which means every
traffic light has the same phase duration regardless of the
changes in traffic conditions.

The realistic map we have chosen is a sub-scenario of
TAPASCologne 0.17.0. TAPASCologne is an open project
providing large-scale dataset with the highest realism for
urban vehicular simulation based on SUMO. It uses realistic
map of Cologne extracted from OpenStreetMap[17] and gen-
erates traffic demand from 6:00am to 8:00am using Travel
and Activity PAtterns Simulation (TAPAS) methodology and
Gawrons dynamic user assignment algorithm. Because the
size of original TAPASCologne is so huge (1129.71km2)
which makes it inefficient to run on a computer, we used its
sub scenario which is an 18.15 km2 large area located on the
left-hand side of the river in Cologne city center. Besides,
we kept the original traffic demand from 6:00am to 6:30am
in this sub-map.

For both scenarios, grid map and city center of Cologne,
the whole simulation keeps running until all the vehicles
finish their trips.

C. Evaluation metrics

We have chosen the following two metrics to assess the
performance of MNTR.

1) Average Trip Time: average trip time is the most sig-
nificant indicator of urban traffic congestion. It is calculated
using Eq. (1). We mainly focus on this metric as its reduction
leads to lower fuel consumption, economic growth and better
living experience for citizens.

2) System Stability: to encourage more individual drivers
to start considering the impact that their re-routing decisions
may have on other drivers trips, we need to explore the rela-
tionship between average travel time variation and the global

traffic load changes. This metric also shows whether MNTR
can maximize the utility of the existing road infrastructure
or not. We measure the stability of the road traffic system
in terms of traffic load TL

tj
Ei

we discussed previously. Here,
TL

tj
Ei

refers to the traffic load (occupancy) of road Ei at
time interval tj . We first compute how different is the traffic
load variation among all roads at a specific time interval,
which is the standard deviation SDtj for all TLtj

Ei
at tj ,

SDtj =

√√√√ 1

N

N∑
i=1

(TL
tj
Ei

− 1

N

N∑
i=1

TL
tj
Ei
)2 (5)

Then we get a set of standard deviations for all equal
length time intervals ({t1, t2, · · · , tj , · · · , tJ} where tj+1 −
tj = 30s):

{SDt1 , SDt2 , · · · , SDtj , · · · , SDtJ} (6)

The larger the variation of those standard deviations are,
the worse the system stability we get.

D. Scenarios

We compare five scenarios to highlight the efficiency of
MNTR and the importance of altruism re-routing under both
grid and realistic maps.

• Original (ORG): the scenario with original traffic de-
mand but without any roads closed due to en route
events and any extra routing strategies applied.

• En route event (ERE): the ORG scenario with one lane
in the center of the map (shown in Fig.5) closed for
20 minutes (from 5th min to 25th min) to simulate the
occurrence of an en route event.

• Constant Rerouting (ConRe): the ERE scenario with
all vehicles updating their complete routes every pre-
defined time interval (grid map: 1s /city center: 90s)
throughout the whole simulation using on-broad re-
routing system.

• Moderate Rerouting (ModRe): during the road closure
time period in ERE scenario, all vehicles that have the
closed road included in their unfinished routes, reroute
once according to their current traffic.

• MNTR: during the road closure time period in ERE
scenario, our proposed MNTR is enabled for congestion
avoidance.

V. EVALUATION RESULTS AND ANALYSIS

In the first stage, we explore the optimal allocation of
the weight values, wTL, wGC , wT used for utility function
calculation in Eq. (4). We use 11 possible allocations as
candidates, in which wGC and wT are always equally
important (i.e. have the same value) because they are the
indicators which highlight the individual benefit, while the
indicator of global benefit, wTL, is decreased by 0.1 from
1.0 to 0.0. We apply Level-1 MNTR with all 11 weight value
allocations to all 7 grid maps to alleviate the congestion
caused by the en route event. The test results are recorded
in the average trip time. Finally, we find that the allocation
(wTL = 0.7wGC = 0.15wT = 0.15) has the best average



Fig. 5. Locations of the closed road: grid map (left, 8×7), realistic map (right, city center of Cologne)

performance compared to other allocations under all grid
maps. It also reveals the fact that if the global benefit is
given the higher weight value in each re-routing decision,
more significant reduction of trip time can be achieved for a
larger number of vehicles.

As discussed in Section III, MNTR has several level
options. The higher level the user chooses, the more traffic
lights around the closed road will be activated to perform
MNTR. We apply MNTR to the three large grid maps (6×5,
7×6, 8×7) from Level-0 to Level-4. Compared to Level-
0 MNTR, the average trip time reduction (expressed in
percentage) achieved by MNTR in all other higher levels
are shown in Fig.6.

Fig. 6. Performance improvement of MNTR under higher levels vs. Level-0
MNTR performance: metric used is Average Trip Time

We can learn from this figure that the upgrade from
Level-0 to Level-1 only brings an average reduction of trip
time equals to 5.69% (i.e. average improvement achieved
under the three grid maps). Considering the communication
cost between TMC and traffic lights and the extra energy
consumption that this may incur, Level-1 MNTR with only
five traffic lights enabled can be the most efficient choice
to provide good performance while keeping the operational
cost of MNTR as low as possible.

For the overall performance comparison on both grid and
realistic maps under 5 scenarios, we apply Level-1 MNTR
with the following weights allocation wTL = 0.7, wGC =
0.15 and wT = 0.15. The obtained results for the average trip

time and the system stability (according to standard deviation
values obtained in Eq. (6)) are plotted in Fig.7 and Fig.8,
respectively.

From these two figures, we can see that MNTR outper-
forms all other re-routing strategies (i.e. ConRe and ModRe)
in terms of both average trip time and system stability. In
grid map, Level-1 MNTR can achieve up to 51.50% average
trip time reduction. Even in the city center of Cologne
which has 11 times more areas (i.e. less negative impact
when one road only is closed) and 3 times more vehicles
(i.e. nearly 4 times less traffic density), Level-1 MNTR
can still decrease the average trip time by 11.90%. For
system stability, Level-1 MNTR outperforms significantly
the other re-routing strategies and provides nearly the same
system stability level as the original scenario (ORG) in which
no en route event occurs. In addition, for the comparison
between ConRe and ModRe, surprisingly, if each vehicle
keeps updating its route under current traffic conditions
using on-board navigation system every fixed time interval,
it performs even more worse (77.9% in grid map, 18.35% in
realistic map) than doing nothing with ERE. This discovery
shows the devastating impact of the excessive using of selfish
re-routing and the importance of applying the smart altruism
re-routing strategy.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we have proposed a Multi-Agent based re-
routing strategy dubbed ”MNTR” to avoid the unpredictable
traffic congestion due to random en route events such as
accidents. Our strategy diverts each affected vehicle, due to
this en route event, to its optimal next turn using a novel
smart solution. The obtained evaluation results under various
scenarios highlight that MNTR can achieve a reduction of
average trip time up to 51.50% in grid map and 11.90%
in realistic map. Moreover, it can ensure nearly the same
system stability level as the scenario where no en route event
occurs on the road. Furthermore, our evaluation results also
reveal the devastating impact of overusing selfish re-routing
and highlight the benefit of smart altruism re-routing used in
MNTR. In future work, we plan to use machine learning
algorithms (e.g. gradient descent) to find more accurate
optimal weight allocation under different benchmarks (i.e.
various city maps and traffic densities). Besides, we also



Fig. 7. Comparison of average trip time achieved by the different re-routing strategies

Fig. 8. Comparison of system stability achieved by the different re-routing strategies

plan to extend MNTR by optimizing traffic light phases
by leveraging Vehicle to Vehicle (V2V) communication
technology.
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