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Abstract: Cobalt phthalocyanine (CoPC) compounds have been reported to provide 

electrocatalytic performances towards a substantial number of analytes. In these 

configurations, electrodes are typically constructed via drop casting the CoPC onto a 

supporting electrode substrate, while in other cases the CoPC complex is incorporated within 

the ink of a screen-printed sensor, providing a one-shot economical and disposable electrode 

configuration. In this paper we critically compare CoPC modified electrodes prepared by 

drop casting CoPC nanoparticles (nano-CoPC) onto a range of carbon based electrode 

substrates with that of CoPC bulk modified screen-printed electrodes in the sensing of the 

model analytes L-ascorbic acid, oxygen and hydrazine. It is found that no “electrocatalysis” 

is observed towards L-ascorbic acid using either of these CoPC modified electrode 

configurations and that the bare underlying carbon electrode is the origin of the obtained 

voltammetric signal, which gives rise to useful electroanalytical signatures, providing new 

insights into literature reports where “electrocatalysis” has been reported with no clear 

control experiments undertaken. On the other hand true electrocatalysis is observed towards 
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hydrazine, where no such voltammetric features are witnessed on the bare underlying 

electrode substrate. 

Keywords: cobalt nanophthalocyanine; cobalt phthalocyanine screen-printed electrodes; 

electrocatalysis; sensing 

 

1. Introduction 

The importance of electrocatalysis continues to be a major interest to chemists and engineers since 

the ability to provide a “clean” system which does not contaminate or foul the electrode surface is vital 

in a range of applications such as electroanalytical sensors, corrosion chemistry and energy conversion 

devices (i.e., hydrogen fuel cell and batteries) to name just a few [1,2]. Chemical moieties have been 

extensively used, as well as transition metals such as iron, cobalt and copper phthalocyanines  

that represent a significant focal point of research [3–5]. These macrocyclic compounds have been 

reported to exhibit electrocatalytic responses compared to the underlying (bare) supporting electrode 

substrate. For example, the sensing of hydrogen peroxide has been extensively studied using metal 

phthalocyanines [6–8], and elegant work by Ozoemena et al. [9] has shown that a cobalt phthalocyanine 

(CoPC)-cobalt (II) tetraphenylporphyrin (CoTPP)-glucose oxidase-Nafion® layer modified glassy 

carbon can be usefully utilised for the sensing of glucose. Additionally similar work by Kondo et al. [10] 

have reported a similar method utilising a boron-doped diamond electrode as the underlying electrode. 

Note that in both cases, electrocatalysis (via the modified CoPC electrodes) towards the sensing of 

hydrogen peroxide produced from the enzymatic reaction is reported compared to the bare 

underlying/supporting electrode substrate [9,10]. Other studies by Wring et al. [11] have reported CoPC 

to be electrocatalytic towards the analytes coenzyme A and reduced glutathione. CoPC has also been 

used extensively towards the sensing of hydrazine where in many cases the literature highlights its 

excellent electrocatalytic properties [11–14], while additionally other toxic nitrogenous compounds such 

as aziprotryne [15] and amitrole [16] have been targeted.  

Throughout the literature it is apparent that there are differences in the utilisation of metal 

phthalocyanines as an electrocatalytic material. There is a vast amount of literature concerning the drop 

casting technique of a dispersion of phthalocyanines (for example, CoPC within a suitable solvent)  

onto the surface of carbon-based electrodes, and this technique has been utilised towards the sensing of 

many analytes with much success. For example, Caro et al. [17] studied the electrocatalytic effect of 

CoPC in the sensing of nitrite using a CoPC-modified vitreous carbon electrode. Other studies by 

Matemadombo et al. [18] have reported the sensing of L-ascorbic acid and have compared the use of 

surface-modified graphitic screen-printed electrodes and a rotating disk electrode, with significant 

findings in favour for the use of screen-printed electrodes with electrocatalysis reported utilising the 

CoPC. Work by Wang et al. [19] explored the effect of nano-CoPC (shown in Scheme 1A) towards  

L-ascorbic acid as an ionophore, with promising electrocatalytic effects compared to a bare glassy carbon 

electrode. Similar studies by Agboola et al. [20] and Pillay et al. [21] have examined the effect of  

nano-CoPC towards analytes such as epinephrine, dopamine and ascorbic acid, where in all instances 

improved electrochemical responses when combined with single-wall carbon nanotubes supported upon 
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an edge plane pyrolytic graphite electrodes (EPPGE) have been demonstrated [20,21]. Such approaches 

are reported to encompass numerous benefits such as alterations in mass transport, a large specific 

surface area, high selectivity and control over microelectrode environment [22]. Other work has reported 

bulk sulfonated-CoPC in a polypyrrole matrix for ammonia gas sensing [23], multi-walled carbon  

nanotubes-cobalt phthalocyanine (MWCNTs-CoPC) nanocomposites [24] and a graphene oxide-CoPC 

hybrid material as a new electrocatalyst for the electrooxidation of L-cysteine, to name just a few [25]. 

Scheme 1. Molecular structures of the CoPC complexes used in this study, (A) shows CoPC 

structure incorporated within the ink of the screen-printed electrodes (bulk-CoPC SPEs); 

while (B) shows the nano-CoTAPC with secondary amine groups bonded at each benzene 

ring of the conjugated system. 

 

In addition to the above approaches where bulk and CoPC nanoparticles are drop casted onto the 

desired electrode surface, an alternative is the use of bulk-CoPC screen-printed electrodes (bulk-CoPC 

SPEs) where the CoPC is incorporated into the ink used to fabricate the screen-printed electrodes 

allowing the mass production of reproducible CoPC modified screen-printed electrodes. Such electrodes 

have been explored towards the sensing of model analytes such as citric acid and hydrazine, resulting in 

an electrocatalytic response when utilising the CoPC modified electrodes compared to graphitic SPEs and 

give rise to highly reproducible, one-shot economical and disposable electrode configurations [26,27].  

To the best of our knowledge, there has been no direct comparison of drop casting nano-CoTAPC 

(shown in Scheme 1B) and CoPC powder upon electrode surfaces with that of using bulk-CoPC  

screen-printed electrodes. Consequently in this paper, we make this critical comparison towards the 

model analytes L-ascorbic acid, oxygen and hydrazine. Interestingly, we find that in the case of the 

electrochemical oxidation of ascorbic acid that the widely reported electrocatalysis of CoPC was not 

observed and that the bare underlying/supporting carbon electrode provides a useful electroanalytical 

response. The electrocatalysis of oxygen by CoPC is found to occur to an extent compared to the bare 

underlying electrode while extensive electrocatalysis is observed for the electrochemical oxidation of 

hydrazine. Such work is of importance for those considering the use of CoPC and which electrode 

modification might best suit the needand intended application.  
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2. Experimental Section 

All chemicals used were of analytical grade and were used as received without any further purification 

and were obtained from Sigma-Aldrich (St. Louis, MO, USA). All solutions were prepared with 

deionised water of resistivity not less than 18.2 MΩ cm. Voltammetric measurements were carried out 

using a Palmsens Emstat (Palmsens, Utrecht, Netherlands) potentiostat.  

Experiments carried out throughout this study consisted of a three electrode system, using  

graphitic screen-printed electrodes (standard-SPE), cobalt (II) phthalocyanine nanoparticle modified 

screen-printed electrodes (nano-CoTAPC SPE) and cobalt (II) phthalocyanine screen-printed electrodes 

(bulk-CoPC SPE) as the defined working electrodes, with a nickel counter and a saturated calomel 

electrode (SCE) as the reference electrode completing the circuit.  

The standard-SPEs were fabricated in-house with appropriate stencil designs to achieve a 3 mm 

diameter working electrode, using a microDEK 1760RS screen-printing machine (DEK, Weymouth, 

UK). A carbon-graphite ink formulation (Product Code: C2000802P2; Gwent Electronic Materials Ltd., 

Pontypool, UK) was next printed onto the polyester (250 µm thickness, AutostatTM, Oxford, UK). This 

layer was cured in a fan oven at 60 degrees Celsius for 30 min. Finally, a dielectric paste (Product Code: 

D2070423D5; Gwent Electronic Materials Ltd.) was then printed onto the polyester substrate to cover 

the connections. After curing at 60 degrees Celsius for 30 min the screen-printed electrodes are ready to 

be used. Note that this work was conducted with an SCE reference electrode, however the screen-printing 

of a reference electrode utilising a silver/silver chloride ink is feasible if required, for example as would 

be necessary for application “into-the-field”. For the bulk-CoPC SPEs a carbon-graphite ink formulation, 

with the mediator CoPC (Product code: C2030408P3; Gwent Electronic Materials Ltd.) was used 

throughout, with a molecular structure shown in Scheme 1A. The same printing method described above 

was also used to fabricate these SPEs. A glassy carbon electrode (GCE) (3 mm diameter, BAS,  

West Lafayette, IN, USA) and a boron-doped diamond electrode (BDDE) (3 mm diameter, BAS,  

West Lafayette, IN, USA) were also utilised. The BDDE and GCE were both thoroughly cleaned and 

polished with 1 µm and 0.25 µm diamond sprays before use. 
The CoPC nanoparticles (termed nano-CoTAPC herein) have a slightly different molecular structure 

than the CoPC used in the bulk-CoPC SPEs (as shown in Scheme 1B). The nano-CoTAPC were 

synthesized as described previously [28] with a slight modification. Briefly, CoTAPC (0.15 g, shown in 

Figure 1A) was dissolved in 98% concentrated sulfuric acid (5 mL). The solution was then added  

drop-by-drop into a vigorously stirred aqueous solution (300 mL) containing hexadecyltrimethyl 

ammonium-chloride ((CTACl; C16H33N(CH3)3Cl)-CTAB, 0.45 g). The resulting solution was 

centrifugally separated. The obtained sedimentation was washed repeatedly to neutralise with water. It 

was then dried in air to obtain the nano-CoTAPC powder. The above mentioned working electrodes 

were modified with nano-CoTAPC which had been dispersed into a solvent—water mixture of  

ethanol–water (50:50) at an amount of 0.5 mg/mL and gently sonicated before use. The aliquots (µL) 

were then pipetted onto the desired electrode surface and then the electrode was placed into an oven to 

evaporate the solvent mixture at 40 °C for 2 min. Note that this method was compared to air/room drying 

at room temperature, where in the case of room temperature drying the modification tended to disperse 

to the edge of the working electrode; additionally this method took longer for the evaporation to take 

place. Consequently this drying method was utilised as such effects were not obtained. Additionally the 
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use of CoPC powder from Sigma-Aldrich was also used to modify the standard-SPEs, using the method 

described previously. 

Figure 1. TEM images of the CoTAPC prior to the reaction with (CTACl; 

C16H33N(CH3)3Cl)-CTAB (A) and the nano-CoTAPC (B) as a result of this reaction with 

the sizes ranging from 8.81 nm to 26.4 nm.  

 

Scanning electron microscope (SEM) images and surface element analysis were obtained with a 

JEOL JSM-5600LV (JEOL, Tokyo, Japan) model having an energy-dispersive X-ray microanalysis 

package. For the high resolution transmission electron microscope images a JEOL JEM 2100F was used. 

Figure 1B depicts a typical TEM image of the nano-CoTAPC utilised throughout this work, it is apparent 

that the nanoparticles have an average size of 23 nm. Zeta potential analysis of the nano-CoTAPC was 

found to exhibit a value of −5.37 mV with a conductivity of 0.004 mS/cm. Raman analysis was carried out 

using the Thermo Scientific™ DXR Raman (Themo ScientificTM, Waltham, MA, USA). 

3. Results and Discussion 

In this work, we critically explore bulk-cobalt (II) phthalocyanine modified screen-printed  

electrodes (bulk-CoPC SPE) and drop casted CoPC nanoparticles modified screen-printed electrodes  

(nano-CoTAPC SPE). Figure 2A displays a typical SEM image of a bare unmodified standard-SPE 

where the electrode surface is free of any CoPC and is in agreement with our prior work [26]. Figure 2B 

shows a typical SEM image of bulk CoPC-SPE where in comparison to the bare SPE (Figure 2A) there 

appears to be no significant morphological differences. Figure 2C,D show typical SEM images of a 

nano-CoTAPC modified screen-printed electrode where the CoPC nanoparticles (20 and 70 µg, 

respectively) have been drop cast onto the electrode surface, it is apparent that at high masses of  

nano-CoTAPC we witness large areas of clumping, creating a non-uniform surface. Further SEM images 

are presented within Figure S1 where we show the extent of using a nano-CoTAPC mass of 5 × 10−3 µg 

and increased masses of 10 µg and 30 µg, again it is clear that we create a non-uniform surface, compared 

to that of the bare-SPEs used throughout. Therefore the surface has led to a heterogeneous surface with 

an uneven coverage of nano-CoTAPC which has resulted in areas of both excessively rich and 

dilapidated levels of CoPC—in effect the nano-CoTAPC has coalesced on the electrode surface to form 
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larger micron sized CoPC particles. This observation (Figure 2C) in surface morphology is in contrast 

to that of the bulk-CoPC SPE (Figure 2B); such observations have been similarly reported by  

Kozub et al. [5] using CoPc drop cast modified edge plane and basal plane pyrolytic graphitic electrodes. 

As the nano-CoTAPC SPEs are experimentally tailored with differing amounts of nano-CoTAPC, each 

modified electrode surface will have a different CoPC coverage. Raman analysis of the nano-CoTAPC 

and bulk CoPC-SPEs are presented in Figure S2, thus elaborating the CoPC coverage upon each 

electrode. It is clear that at very low masses of nano-CoTAPC (5 × 10−3 µg) the response of the chosen 

underlying electrode surface is favoured within this analysis. However, at larger masses of  

nano-CoTAPC (20 µg) it is clear that compared to the bulk CoPC-SPE a similar response is witnessed. 

The coverage of the electrode surface can be calculated using Equation (1): 

nFAQ /=Γ  (1)

where Γ , is the coverage of CoPC immobilised upon the desired electrode surface, Q, is the charge taken 

from the integration of the oxidation wave resulting from the Co 2+/3+ couple recorded in a pH 7.4 

phosphate buffer solution (PBS) at slow scan rates, n is the number of electrons taking place in the 

electrochemical process, F is the Faraday constant and A, is the geometrical electrode area (without 

recourse to any surface roughness corrections). Through the use of Equation (1), a CoPC coverage value 

was found to correspond to 3.39 × 10−14 mol cm−2 for the bulk-CoPC SPEs while for the nano-CoTAPC 

SPEs, values between 1.16 × 10−11 to 5.80 × 10−15 mol cm−2 were obtained for immobilised CoPC masses 

of 5 × 10−4 and 7 × 101 µg, respectively. Note that the CoPC in the CoPC SPEs cannot be easily changed 

and a new ink formulation would need to be developed by the ink supplier. Given that CoPC is a square 

planar molecule with a size of ca. 1.2 nm × 1.2 nm [29], it is possible to estimate that 1 cm2 of monolayer 

CoPC (on an ideally flat surface) should comprise a coverage of 1.2 × 10−10 mol cm−2 CoPC molecules. 

In comparison of this theoretical value to that of our deduced coverage values, the latter are ~10 times 

smaller for nano-CoTAPC SPEs. However as shown in Figure 2, sub-monolayers of CoPC are not 

observed, but rather microcrystalline structures. This will affect the electrical communication with the 

underlying graphitic electrode surfaces since these are comprised of edge plane and basal plane sites 

where the former are electrochemically active “microbands” and the latter are electrochemically inert. 

As such, only CoPC crystals located on top of edge plane defects contribute to the electrochemical 

current, consequently not all of the immobilised nano-CoTAPC will be electrically wired. In terms of 

the bulk modified CoPC, only the surface layer is accessible to the solution and hence the rest of the 

electrode containing the bulk of the incorporated CoPC is likely not wired electrically. In this 

configuration CoPC reduces the percolation pathways depending upon its conductivity and might be 

detrimental to the electrochemical performance. As such, this likely explains the discrepancies observed 

in the deduced coverages. Additionally in comparison to that of the drop casted nano-CoTAPC electrode, 

the bulk-CoPC SPEs have a fixed surface CoPC distribution which cannot be easily altered and this 

might be a potential disadvantage.  
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Figure 2. Typical SEM images of a bare standard-SPE (A), bulk-CoPC SPE (B) and a 

standard-SPE modified with 20 µg and 70 µg nano-CoTAPC (C & D respectively). 

 

Attention was first directed to exploring the electrochemical detection of L-ascorbic acid (vitamin C) 

which has been reported previously at nano-CoPC modified glassy carbon electrodes [19].  

L-Ascorbic acid is a naturally occurring molecule which plays a vital part within mammalian metabolism 

as an antioxidant [30,31]. The detection of L-ascorbic acid is vital for medical diagnosis of scurvy [4,30–36]. 

We first consider the modification of a standard-SPE with nano-CoTAPC (see Experimental section) 

and explore this nano-CoTAPC modified SPE towards the sensing of L-ascorbic acid. Figure 3A shows 

a typical cyclic voltammetric profile where two voltammetric peaks are observed at ~ +0.30 V (vs. SCE) 

and +0.90 V (vs. SCE). Note the former is not evident in the absence of L-ascorbic acid suggesting that 

this new peak is due to the electrocatalysis of CoPC. Figure 3B depicts the effect of increasing amounts 

(mass immobilised on the supporting electrode surface) of nano-CoTAPC upon the observed 

voltammetric peak height occurring at ~ +0.30 V (vs. SCE) towards the electrochemical detection of  

L-ascorbic acid which shows that the peak current on the initial modification of the standard-SPE (5 µg) 

decreases as the amount of nano-CoTAPC is increased, suggesting that the underlying electrode becomes 

blocked by the CoPC nanoparticles. The peak observed at ~ +0.90 V (vs. SCE) was monitored as a 

function of immobilised nano-CoTAPC and found to increase confirming that this peak is due to the 

Co2+/3+ electrochemical process which is in agreement with independent literature reports [5,13]. It is 

noted at this point, that multiple oxidative scans of the nano-CoTAPC SPEs result in a reduced signal 

meaning that a new electrode needs to be constructed each time. Hence the nano-CoTAPC takes the form 

of water insoluble micro-crystalline structures (see Figure 1C) which are then electrochemically oxidised 
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from Co2+PC to Co3+PC undergoing solubilisation with the loss of material from the electrode surface 

and hence a loss/reduction in the voltammetric signal. Such a response has independently been reported 

for CoPC modified carbon electrodes [5]. 

Figure 3. Cyclic voltammograms (A) in the presence (dashed line) and absence (solid line) 

of 1 mM L-ascorbic acid in pH 7.4 PBS utilising a standard-SPE modified with 20 µg  

nano-CoTAPC; (B) shows the corresponding plots of peak height (using the peak observed 

at ~ +0.30 V vs. SCE) as a function of varying amounts (mass) of nano-CoTAPC. Scan rate: 

100 mV s−1.  

 

If we consider further the origin of the electrocatalytic peak (~ +0.30 V vs. SCE) observed in Figure 3A, 

a control experiment reveals that the direct electrochemical oxidation of L-ascorbic acid can be readily 

observed at the bare underlying/supporting electrode, as shown in Figure S3 which demonstrates that the 

electrochemical oxidation of L-ascorbic acid can be observed at bare standard-SPEs, GCE and BDDE at the 

potentials ~ +0.30 V (vs. SCE), ~ +0.80 V (vs. SCE) and ~ +0.90 V (vs. SCE) respectively. Thus it is 

surmised that the peak observed in Figure 3A at ~ +0.30 V (vs. SCE) is the response of the bare 

underlying electrode, with the peak at ~ + 1.00 V (vs. SCE) being that of the Co2+/3+ couple. 

Modifications of the GCE and BDDE using nano-CoTAPC were next scrutinised towards the detection 

of L-ascorbic acid. Figure S4 shows voltammetric data where peaks are witnessed at ~+1.10 V (vs. SCE) 

and ~+0.90 V (vs. SCE) for GCE and BDDE respectively. It can be readily seen that through comparison 

of the voltammetric response in the absence and presence of the target analyte that the electrochemical 

oxidation of the nano-CoTAPC overlaps with that of the direct electrochemical oxidation of the target 

analyte at the bare underlying electrode surface; consequently as the mass of the nano-CoTAPC is 

increased upon the electrode surface, the peak heights (as seen in Figure S4B,D) are observed to increase 

giving the false impression of electrocatalysis. In summary, no electrocatalysis is being observed using 

the nano-CoTAPC modified SPEs and a bare SPE electrode can give rise to a voltammetric signal at a 

lower overpotential. Analysis of CoPC was next scrutinised to see if such commercially available CoPC 

displays electrocatalytic properties toward L-ascorbic acid. Presented in Figure S5 is a coverage study 

of CoPC upon a standard-SPE, as previously witnessed, a peak at ~+0.4 V is obtained for the bare 
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standard-SPE. Analysis of the cyclic voltammetry shows that there is a detrimental effect upon the peak 

height when increasing coverages of 5 µg to 70 µg are immobilised onto a standard-SPE. 

Consideration was next turned towards the use of the bulk-CoPC SPEs which have recently been 

explored towards the sensing L-ascorbic acid [37]. A scan rate study was carried out towards 1 mM  

L-ascorbic acid in a pH 7.4 PBS using bulk-CoPC SPEs using a new electrode after each scan rate due 

to forming the water soluble Co3+PC upon the anodic scan. Figure S6 depicts typical cyclic 

voltammograms recorded over the range of 5 to 500 mVs−1 which show characteristic oxidation peaks 

for the direct electrochemical oxidation of L-ascorbic acid. In comparison with that of Figure S2, the 

first voltammetric peak at ~ +0.20 V (vs. SCE) can be assigned to the direct electrochemical oxidation 

of L-ascorbic acid at bare (unmodified) SPE electrode surfaces, with the second peak arising from the 

Co2+/3+ couple. Analysis of the voltammetric peaks in the form of a plot of peak height vs. the square 

root of scan rate were found to exhibit a linear relationship over the experimentally chosen scan rate 

range indicating a diffusional process is in operation (bulk-CoPC SPE: Ip/µA = 2.10 µA/(V s−1)1/2 + 2.48 µA, 

R2 = 0.99, N = 10). In fact, a similar response is observed if a bare SPE is used (see Figure S1) and 

analysis of the voltammetric peak height as a function of square root of scan rate reveals a linear response 

with a similar gradient (standard-SPE: Ip/µA = 1.44 µA/(V s−1)1/2 + 0.97 µA, R2 = 0.99, N = 10) similar to 

that observed above. It is clear that the direct electrochemical oxidation of L-ascorbic acid is possible 

and no real electrocatalysis using the CoPC incorporated into the bulk of the SPE is observed.  

Last the electroanalytical sensing of L-ascorbic acid using the CoPC modified electrodes was explored 

with additions made over the concentration range of 100 µM to 1000 µM. Figure 4 shows a comparison 

of the responses of the standard-SPE, nano-CoTAPC and the bulk-CoPC SPEs where it is clear  

that the nano-CoTAPC SPEs exhibit two linear ranges; 100 to 600 µM and 600 to 1000 µM  

(nano-CoTAPC SPE, lower range: Ip/µA = 1.58 µA µM−1 + 0.56 µM, R2 = 0.99, N = 5, higher range:  

Ip/µA = 1.55 µA µM−1 + 0.55 µM, R2 = 0.92, N = 5. CoPC SPE: Ip/µA = 1.29 × 10 µA mM−1 + 1.81 mM,  

R2 = 0.97, N = 10) and one linear range for the standard-SPE (Ip/µA = 1.47 × 10 µA mM−1 − 1.29 mM−1,  

R2 = 0.98, N = 10).  

The bulk-CoPC SPEs and standard-SPEs show exceptional yet similar electrochemical performances 

over to that of the nano-CoTAPC SPE since the bare underlying electrode is the origin of the 

electroanalytical signal. In the case of the nano-CoTAPC, this configuration has the greatest coverage 

of CoPC and hence the least unmodified carbon surface therefore the underlying electrode is “locked” 

and therefore the signal is reduced as the CoPC has become saturated on the surface. Of course this 

coverage can be reduced but the reason to do this is meaningless as the bare unmodified SPE is the origin 

of the electroanalytically useful response. This observation that the electrocatalytic oxidation of  

L-ascorbic acid by CoPC [19] can be reproduced on the bare underlying electrode is reported for the first 

time; we note that Kozub et al. [5] reported similarly the electrocatalytic oxidation of nitrite by CoPC 

could be electroanalytical detected on bare carbon electrodes in the absence of CoPC.  
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Figure 4. Calibration plots with error bars (N = 3) arising from the electroanalytical detection 

L-ascorbic acid over the concentration range 100 to 1000 µM within a pH 7.4 PBS using 20 µg 

nano-CoTAPC SPEs (circles), CoPC-SPEs (squares) and a standard-SPE (triangles). The 

voltammetric peak observed at ~ +0.30 V (vs. SCE) was utilised to construct the calibration plot, 

with a new electrode used at each concentration. Scan rate: 100 mV s−1 using cyclic voltammetry. 

 

We next turned our attention to the possible catalytic effect of the CoPC SPEs towards the 

electrochemical reduction of oxygen which has been reported to be electrocatalytic with  

CoPC [13,28,38–42]. Figure 5A shows typical cyclic voltammograms for the electrochemical reduction 

of oxygen, where clear reduction peaks are evident using a nano-CoTAPC SPE ~ −0.45 V (vs. SCE), 

bulk-CoPC SPE ~ −0.40 V (vs. SCE) and a bare standard SPE ~ −0.50 V (vs. SCE) which are in good 

agreement with previous literature concerning the reduction of oxygen. It is apparent upon inspection of 

this data that there is an increase in peak height and a shift to less negative potentials [13,38,39,41]. 

Figure 5B illustrates a coverage study upon a standard-SPE, where it is clear that above 30 µg of  

nano-CoTAPC modified upon the surface of the standard-SPE, saturation is reached and therefore 

magnitude of the peak height starts to plateau off. The observed response of peak potential as a function 

of coverage can be inferred from the work of Ward et al. [43] where in the limit of irreversible kinetics, as 

is the case here, an increase in the nano-CoTAPC coverage effects the peak potential. Quantitatively for 

hemi-spherical particles, in this case, nano-CoTAPC sitting upon the SPE, the peak potential (Ep) shifts 

quantitatively as given by [43]: 




















+−−=

RT

FDv
k

F

RT
EE fp

αϕ
α

ln)2ln(780.0 0  (2)

where, Ef, is the formal potential, R and F hold their standard values, T, is 298 K, α, is 0.5, D, is the 

diffusion coefficient for the analyte of choice, k0, is the heterogeneous rate constant and υ, is the scan 

rate. The surface area ratio, φ, is defined as: 
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In our case the response observed in Figure 5C is consistent with Equation (2) where at low  

nano-CoTAPC coverages the voltammetric peak potential shifts from a high, (~−0.80 V) overpotential 

to a lower (~−0.40 V) value as the coverage increases. As theoretical simulations have shown, in addition 

to the shift in peak potential this is accompanied by an increase in peak height. 

Figure 5. Cyclic voltammograms (A) recorded in an nitrogen degassed (solid line) and an 

oxygen saturated 0.1 M H2SO4 solution utilising a standard-SPE (short dashed line),  

bulk-CoPC SPE (dotted line) and a standard-SPE modified with 20 µg nano-CoTAPC 

(dotted-dashed line). Corresponding plots of coverage of peak height vs. nano-CoTAPC 

mass (B) and peak potential (C). Scan rate: 100 mVs-1  

 

The effect of scan rate upon the voltammetric signal was next performed using each of the electrodes 

utilised throughout this work. Analysis in the form of plots of peak height vs. square root of the scan rate 

were analysed finding a linear response indicating a diffusional process is in operation (Standard-SPE: 

Ip/µA = −2.22 µA/(V s−1)1/2 – 5.93 µA, R2 = 0.96, N = 10. Nano-CoTAPC SPE: Ip/µA = −4.77 µA/ 

(V s−1)1/2 + 2.87 µA, R2 = 0.98, N = 10. Bulk-CoPC SPE: Ip/µA = 5.07 µA/(V s−1)1/2 + 11.1 µA,  

R2 = 0.99, N = 10). To further comprehend the electroanalytical signatures as shown in Figure 5A, Tafel 

analysis was performed which involves the analysis of the voltammograms corresponding to the 

electrochemical reduction of oxygen:  
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The cathodic transfer coefficient (αc) can be deduced from the slope of the plot of the cathodic current 

density (ln|jc|) against the applied potential (E). The cathodic Tafel slope is therefore referred to as the 

derivative dE/dln|jc|. It is implied that ln|jc| has a dimension of 1 [44]. Using Equation (3), Tafel analysis 

revealed a gradient of 315 mV, 134 mV and 135 mV for the bulk-CoPC SPEs, nano-CoTAPC SPE and 

bare SPEs respectively. We note that independent Tafel analysis reported a value of 209 mV for CoPC [45]. 

From these experimentally deduced Tafel values, (αc) values of 0.19, 0.44 and 0.44 are evident for the 

bulk-CoPC SPEs, nano-CoTAPC SPE and bare SPEs respectively suggesting that the transfer of the first 

electron is electrochemically irreversible in all cases. The electrochemical reduction on carbon  

electrodes goes through a 2 electron process to form the undesirable hydrogen peroxide [46] while metal 

phthalocyanines have been reported to undergo a CE process45: Co(II)PC + O2  Co(III)O2
−;  

Co(III)O2
− + e−  product + Co(III)PC; Co(III) + e−  Co(II) with recent work indicating that CoPC 

produces both the undesirable and desirable products H2O2 and H2O [41]. Thus two differing 

electrochemical mechanisms are likely in operation, it is apparent that CoPC modifications provide no 

substantial electrocatalytic effects, as evidenced from the observation of peak potential over that of using 

a bare SPE. A difference however is observed from the magnitude of the voltammetric peak heights where 

the nano-CoTAPC gives rise to the largest improvement, due to the significant increase in surface area. 

Next attention was turned to the electroanalytical sensing of hydrazine, a compound which has a vast 

usage in fields of rocket fuels, missile systems, weapons of mass destruction, fuel cells and corrosive 

inhibitors [39,41,47]. However there have been extensive reports focusing on its detrimental effects upon 

the human body, such as: irritation of the eyes, nose, and throat, dizziness, headache, nausea, pulmonary 

oedema, seizures, and coma in humans [48–50]. Hydrazine has also been reported to be readily oxidised 

by peroxidases, creating reactive intermediates within the human body which can cause severe side 

effects such as DNA manipulation, therefore demonstrating the carcinogenic nature of hydrazine [47].  

Figure 6A shows the cyclic voltammetric response of hydrazine utilising a nano-CoTAPC SPE. It is 

apparent that the standard-SPE gives no distinctive oxidation peak towards this analyte however upon 

CoPC modification, a large oxidation peak at ~+0.90 V (vs. SCE) in the absence of hydrazine is 

observed, confirming that this is the response for the Co2+/3+ couple, also shown is the response in the 

presence of hydrazine ~+0.30 V (vs. SCE), thus confirming that the nano-CoTAPC acts as an 

electrocatalyst, towards hydrazine; such findings are in agreement with previous literature, utilising 

bulk-CoPC-SPEs [26]. Figure 6B depicts a plot of peak height as a function of the mass of  

nano-CoTAPC modified upon the surface of the standard-SPE respectively, upon excessive modification 

(>30 µg) of the working electrode causes reduced electrochemical performance, proven with a decrease 

of peak height.  
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Figure 6. Cyclic voltammograms (A) utilising a standard-SPE (solid line), a 20 µg  

nano-CoTAPC SPE in the presence (dotted line) and absence (dashed line) of 500 µM 

Hydrazine in pH 7.4 PBS. Corresponding plots of nano-CoTAPC mass vs. peak height (B). 

Scan rate: 100 mV s−1.  

 

Dilution of the nano-CoTAPC was next explored via the same study where it was visible that a 

catalysed peak is still present even at a masses of as small as 5.00 × 10−4 µg. The bulk-CoPC SPEs show 

similar responses (shown in Figure S7) to that of our previously reported literature, when utilising this 

type of CoPC SPE towards hydrazine, with a significant oxidation peak at ~+0.50 V (vs. SCE).  

Additions of hydrazine into a pH 7.4 PBS were next explored using the nano-CoTAPC SPEs and 

bulk-CoPC SPEs. Figure 7 illustrates the electroanalytical detection of hydrazine, for both SPEs over 

concentration range of 10 µM to 100 µM (nano-CoTAPC SPE: Ip/µA = 3.00 × 10−3 µA µM−1 − 0.79 µM,  

R2 = 0.98, N = 9; bulk-CoPC SPE: Ip/µA = 3.00 × 10−3 µA µM−1 − 0.40 µM, R2 = 0.98, N = 10). Upon 

inspection of the analytical data for nano-CoTAPC SPE, two linear ranges were determined with the 

first linear range (10 to 30 µM) giving rise to a limit of detection (3σ ) of 9.00 µM compared to that of 

the bulk-CoPC SPEs with a value corresponding to 6.21 µM, which is better than CoPC polymeric-modified 

electrodes [14] and similar to other related cobalt phthalocyanine structures [51] However, the error bars 

presented within Figure 7, shows that the detection below 30 µM is less reproducible as bulk-CoPC SPEs. 

In summary this report has shown the true “electrocatalysis” of hydrazine utilising both CoPC 

electrode configurations, it is also apparent that the drop casted nano-CoTAPC can lead to an improved 

peak height, for the reduction of oxygen compared to that of a bulk-CoPC SPE and the standard-SPE. 

Finally, it has been made clear that L-ascorbic acid has no electrocatalytic activity when utilised with a 

CoPC catalyst via either method, and that useful electrochemical analysis can be made using a bare 

underlying electrode.  
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Figure 7. Calibration plots showing nano-CoTAPC SPE (squares) and CoPC-SPE (circles) 

towards additions of (10 µM to 100 µM) hydrazine into pH 7.4 PBS, utilising a new electrode 

after each addition. Scan rate: 100 mV s−1. In both cases error bars are presented for  

nano-CoTAPC SPE (squares) and CoPC-SPE (circles) responses where the average of three 

measurements and standard-deviations are presented. 

 

4. Conclusions 

CoPC modified electrodes prepared by drop casting CoPC nanoparticles onto a range of  

carbon- based electrode substrates are critically compared with CoPC bulk modified screen-printed 

electrodes in the sensing of the model analytes L-ascorbic acid, oxygen and hydrazine. Coverage analysis 

of both CoPC configurations found that the drop casted nano-CoTAPC showed 10 times less than the 

literature value obtained from the charge of the system for a CoPC monolayer, however SEM analysis 

and coverage values suggest microcrystalline structures therefore indicating that the immobilised CoPC 

on the surface are generally nonconductive and the residing edge plane sites/defects on the underlying 

electrode are the electrochemically active regions; however the amount of CoPC upon the surface can 

easily be changed to optimise the detection of the model analyte under investigation. In terms of the bulk 

modified CoPC, only the surface layer will be accessible to the solution and hence the rest of the 

electrode containing the bulk of CoPC is “dead space” as the electrocatalytic species cannot access this 

(lack of a triple phase boundary). As these electrodes are screen-printed using a mediated CoPC ink the 

amount of CoPC cannot be easily changed, however such techniques produce highly reproducible 

economical disposable one-shot sensors.  

We have reported that that no electrocatalysis occurs at both types of CoPC electrode configurations 

towards the detection of L-ascorbic acid, and it is clear that the bare underlying electrode provides 

suitable voltammetric signals for the analytical detection. It seems that such realisation provides new 

insights into previous literature reports suggesting “electrocatalysis”, without any clear control 

experiments. The electrochemical reduction of oxygen in acidic medium has been reported showing 
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minor electrocatalysis, however an improvement in peak height is witnessed due to a larger CoPC 

surface area upon the electrode surface. On the other hand true electrocatalysis is observed toward 

hydrazine where no such voltammetric features are witnessed on the bare underlying electrode substrate. 

The clear advantage of the nano-CoPC is that differing coverages can be utilised and tailored to 

provide optimal analytical signals but can also givevariable reproducibility. In the bulk-CoPC SPE’s, 

due to their fabrication approach the amount of electrocatalyst cannot be easily altered but give rise to 

very reproducible voltammetric signals; these observations are succinctly summarised in Figure 7 

towards to electroanalytical sensing of hydrazine. 
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