
ISSN: 2161-0673

Journal of Sports Medicine & Doping Studies

This article was originally published in a journal by OMICS 
Publishing Group, and the attached copy is provided by OMICS 

Publishing Group for the author’s benefi t and for the benefi t of 
the author’s institution, for commercial/research/educational use 
including without limitation use in instruction at your institution, 
sending it to specifi c colleagues that you know, and providing a copy 
to your institution’s administrator.

All other uses, reproduction and distribution, including without 
limitation commercial reprints, selling or licensing copies or access, 
or posting on open internet sites, your personal or institution’s 
website or repository, are requested to cite properly. 

Available online at: OMICS Publishing Group (www.omicsonline.org)

Digital Object Identifi er: http://dx.doi.org/10.4172/2161-0673.S1-004

The International Open Access
Journal of Sports Medicine & Doping Studies

Special Issue Title: Muscle Hypertrophy

Handling Editors

Jennifer A. Bunn
Campbell University, USA



Sports Medicine & Doping Studies
Degens, J Sport Medic Doping Studie 2012, S1
http://dx.doi.org/10.4172/2161-0673.S1-003

Review Article Open Access

J Sport Medic Doping Studie                                                                          ISSN: 2161-0673 JSMDS, an open access journalMuscle Hypertrophy

Determinants of Skeletal Muscle Hypertrophy and the Attenuated 
Hypertrophic Response at Old Age
Hans Degens1,2*

1Institute for Biomedical Research into Human Movement and Health; Manchester Metropolitan University; United Kingdom
2Division Space Physiology, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany

Abstract
In 2012 we will again see the impressive achievements of many athletes during the London Olympic Games. In 

particular for weightlifters success is dependent on the power- and force-generating capacity of their muscles, which 
in turn are strongly determined by muscle mass. Many athletes and bodybuilders therefore train intensively to develop 
as much muscle hypertrophy as possible. Unlimited hypertrophy, however, is impossible. Limitations may be imposed 
by the peak forces that the tendons, bones and joints can cope with, but also by factors within the muscles themselves. 
For instance, an increase in pennation angle, which accompanies hypertrophy, beyond 450 would result in a reduction 
in muscle strength even if muscle mass continuous to increase. There also is a trade-off between metabolism and 
diffusion, where highly oxidative fibers require shorter diffusion distances, and hence smaller fibers, for adequate 
oxygen supply to the mitochondria, than glycolytic fibers. A similar situation applies to the myonuclei where transcripts 
are distributed over the cell mainly by diffusion and unbridled hypertrophy would, at least in theory, cause serious 
problems with fiber maintenance. Despite these limiting factors muscles in bodybuilders can be as much as 74% 
larger than in the normal population. Elderly people have a lower muscle mass that may cause problems with daily life 
activities and an increase in muscle strength would improve their quality of life. There are indications, however, that 
the maximal attainable hypertrophy is significantly reduced in the elderly. Here it is suggested that while individual 
fibers in the elderly may hypertrophy to a similar extent as their younger counterparts, the age-related loss of muscle 
fibers is an additional limiting factor of the whole muscle hypertrophy at old age. 
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Introduction
This year (2012) will see the Olympic Games in London, where we 

will again witness the remarkable abilities of the human body. These 
achievements do not come easily but are the culmination of years of 
training and sacrifices by the participating athletes. Intense training 
programs make use of the ability of many body systems to adapt to 
altered functional demands, where in particular skeletal muscle tissue 
has a remarkable plasticity. In general terms, endurance training 
induces an increase in the oxidative capacity that enables the muscle 
to generate adenosine triphosphate (ATP, the energy currency in 
the cell) via aerobic metabolism and gives the muscle the ability to 
sustain submaximal workloads for a prolonged time. Power athletes, 
such as weightlifters, do not so much require a large endurance as an 
exceptional power and force generating capacity. To realize this, a 
substantial part of their training program exists of resistance exercise 
where the load of a muscle is regularly increased during the training 
program. In response to the increased load the muscle enlarges, or 
hypertrophies, and concomitantly its force and power generating 
capacity increase. As power is largely determined by muscle mass the 
weightlifter seeks to attain as much hypertrophy as possible for the 
appropriate muscles. But is there a limit to the degree of hypertrophy? 
And if so, what determines this limit of hypertrophy? These are some 
of the questions this review seeks to address.

Weightlifters are one end of the spectrum, but at the other end of the 
spectrum we have the elderly and many people with chronic disorders 
who may suffer from muscle atrophy and weakness. The weakness 
may become so severe that even an everyday task as rising from a chair 
becomes a major challenge. Muscle strengthening exercise is therefore 
regularly applied to improve the quality of life in these situations. 
But again, is there a limit to the gains that can be achieved, and is the 
maximal achievable hypertrophy maybe less or reached at a slower rate 
at old age? And if indeed the degree and/or rate of hypertrophy are less, 
what is then the cause of this attenuated hypertrophic response? These 
questions are also addressed.

Skeletal Muscle Adaptations during Hypertrophy
Hypertrophy and hyperplasia of muscle fibers

In humans skeletal muscle hypertrophy can be induced by 
resistance exercise. Increases of more than 5% in muscle volume or 
cross-sectional area after as little as 9-12 weeks of resistance training 
are no exception [1-7], where it seems that the largest and fastest 
development of hypertrophy is attained when eccentric contractions 
are included in the exercise program [3,8]. Bodybuilders are off course 
the prime example of people with enormous muscles; their muscles can 
be 76% larger than that of the normal population [9]. This exceptionally 
large muscle size may not only be attributable to fiber hypertrophy, but 
also to an increase in the number of fibers, or hyperplasia [10,11]. In 
fact, in one study the large muscle size of the bodybuilders was almost 
entirely attributable to a larger number of fibers, as the size of the fibers 
did not differ between the body builders and a control group [10]. This 
observation remains controversial, however, as the similar estimated 
fiber number in the 76% larger m. biceps brachii of elite bodybuilders 
and controls argues against fiber hyperplasia as a significant contributor 
to muscle hypertrophy [9]. 

In animals hypertrophy can also be induced by resistance exercise 
but a much larger response can be realized by overloading a muscle by 
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(functional) elimination of synergist muscles (Table 1). For instance, 
the size of the muscle in mice, rats and cats may almost double after 
functional elimination of synergist muscles [12-18]. One might thus 
expect that if hyperplasia plays a role in muscle hypertrophy it should 
become particularly evident in these animal models. However, fiber 
counts after nitric acid digestion of the muscle showed that also in this 
case there is little if any hyperplasia [19]. If hyperplasia occurs it requires 
the recruitment of satellite cells and the same degree of compensatory 
hypertrophy in satellite cell-depleted and normal mice [16] provides 
further evidence that hyperplasia, if at all occurring, plays no significant 
role in muscle hypertrophy in mammals. It is only in avian muscle that 
stretch-overload induced hypertrophy is unequivocally accompanied 
with hyperplasia [20]. Indeed, the general consensus is that skeletal 
muscle hypertrophy is a consequence of an increase in the size of the 
individual fibers, while fiber hyperplasia plays no significant role, if at 
all, in human and mammalian muscle hypertrophy [6-8]. 

Changes in muscle architecture

The increase in the size of the muscle fibers poses somewhat of a 
problem as the length of the muscle-tendon complex, and hence the 
length of the aponeuroses to which the fibers can attach, are set by the 
anatomy and unalterable. Yet, the hypertrophied fibers need to attach 
to the aponeuroses. To overcome this problem the pennation angle of 
the fibers in a pennate muscle will increase [2,3] so that despite their 
increase in size they each individually leave a smaller ’footprint’.

Changes in fiber type composition and metabolic profile

During the development of skeletal muscle hypertrophy in 
response to resistance exercise in humans there is also an increase in 
the proportion of type IIA at the expense of type IIX fibers and myosin 

[8,21], similar to the increase in areal fraction of type I and IIA at the 
expense of IIB fibers in the overloaded rat plantaris muscle [18,22]. 
Such a transition is not limited to the myosin heavy chain profile as 
a fast-to-slow transition also occurs in the isoform expression of the 
sarcoplasmic reticulum Ca2+-ATPase in overloaded rat plantaris muscle 
[15]. The activities of metabolic enzymes remain largely unaltered after 
resistance exercise in human [23] or overloaded rat [14,22] muscle, 
but reductions in the citrate synthase activity and glycolytic capacity 
have been reported [24,25].  The minimal alteration in the activities 
of individual metabolic enzymes is reflected by an unaltered oxidative 
capacity of the hypertrophied muscle [26]. It should be noted, however, 
that though the mass-specific metabolic profile of the hypertrophied 
muscle is largely unaltered, the implication is that the total metabolic 
capacity of the muscle is increased. In other words, the metabolic 
capacity increases in proportion to the increase in muscle mass. As 
a consequence the maximal oxygen consumption per muscle (fiber) 
is increased and hence the total amount of oxygen delivered to the 
muscle during maximal exercise has to be increased. This is realized 
by an increase in maximal blood flow through the muscle that also 
is proportional to the increase in muscle mass, as reflected by a 
maintained maximal mass-specific blood flow [12,27]. Ultimately, the 
oxygen has to diffuse from the capillaries to the mitochondria and also 
here we see that the capillary density is maintained or slightly reduced 
consequent to an increase in the number of capillaries per fiber [27,28]. 
This increase in capillary number is not only almost in proportion to 
the increase in muscle mass, but also follows a similar time course as 
the hypertrophy [29]. 

The impact of hypertrophy on skeletal muscle function

It is to be expected that an increase in muscle size is accompanied by 
a proportional increase in muscle force and power generating capacity. 

Reference Species Model Duration Muscle Hypertrophy

15 Rat, ♀
13 weeks Bilateral removal gastrocnemius and soleus 5 weeks Plantaris 80%

17 Rat, ♀
150-170 g Bilateral removal gastrocnemius and soleus 12-14 weeks Plantaris 97%

56 Rat, ♀
170-180 g Bilateral removal gastrocnemius and soleus 56 days

Hypobaric hypoxia (5,500 m) Plantaris 105%

18 Rat, ♀
250-275 g Bilateral removal gastrocnemius and soleus 30 days Plantaris 60%*

12 Rat, ♂ Bilateral removal gastrocnemius 4 weeks Plantaris
Soleus

95%
40%

72
Rat, ♂
8.5 months
38.5 months

Bilateral removal gastrocnemius 8 weeks Plantaris 53%
NS

24 Rat, ♀
150-170 g Unilateral removal gastrocnemius and soleus 8 weeks Plantaris 28%*

14 Rat, ♂,♀ Unilateral removal gastrocnemius 30-100 days Plantaris 84%*

29 Rat, ♂
232 g Unilateral removal gastrocnemius 30 days Plantaris 80%*

22 Rat, ♀
5, 13, 25 months Unilateral denervation gastrocnemius and soleus 6 weeks Plantaris 30%*

37 Rat, ♀
46 days Unilateral denervation gastrocnemius and soleus 7 weeks Plantaris 43%*

94 Rat, ♀
6-8weeks Unilateral removal tibialis anterior 14-61 days Extensor digitorum longus 28%*

27 Rat, ♂,
175-260 g Unilateral removal tibialis anterior 2 weeks

8 weeks Extensor digitorum longus 19%*

52%*

16 Mouse, ♀
4months Bilateral removal gastrocnemius and soleus 2 weeks Plantaris 100%

13 Cat, ♀
3.2-3.5 kg Bilateral removal gastrocnemius and soleus 12 weeks Plantaris 136%

*: contralateral muscle served as control

Table 1: The degree of skeletal muscle hypertrophy in several animal models.
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One might argue that due to a concomitant increase in pennation 
angle the actual increase in force and power generating capacity maybe 
somewhat less than expected, but certainly not more than proportional 
to the increase in muscle size. It may thus come as a surprise that at 
least in humans the increase in force generating capacity significantly 
exceeds the increase in muscle mass, resulting in an increased specific 
tension, or force per muscle (physiological) cross-sectional area after 
resistance exercise [1,2,6,30]. While this might be due to a rise in specific 
tension of individual fibers, as seen in bodybuilders and after long term 
resistance training [11,31], such an increase has not been seen after 
shorter periods of resistance training [21,32]. It has been speculated 
that at least part of the increase in specific tension after (short-term) 
resistance training may be due to enhanced lateral force transmission 
[5,21]. Lateral force transmission does in fact occur [33] and it has 
been suggested that increased lateral connections between the fibers, 
via the connective tissue matrix, and the tendon could result in an 
enhanced force generation for a given amount of contractile material 
at the expense of a reduction in shortening velocity, thus not changing 
the power generating capacity [5]. The increase in specific tension and 
unchanged power generating capacity of hypertrophied human muscle 
[21] does appear to support this hypothesis. The proportion of non-
contractile tissue does, however, not change in response to resistance 
exercise [4,7] and even in bodybuilders it is similar to that in untrained 
controls [9]. Even so, an enhanced lateral force transmission might 
occur if the number of fibers that do not span the entire distance 
between the aponeuroses [34] increases, whereby in-series fibers 
functionally act as parallel fibers and/or if potential slippage of fibers 
is reduced by increased lateral connections between the fibers and 
surrounding connective tissue. Costameric proteins, like paxilin and 
focal adhesion kinase (FAK), are part of these connections and have 
indeed been shown to increase at least transiently, in overloaded rat 
and avian skeletal muscle [35]. 

As discussed above, the degree of hypertrophy in animal models 
can be much higher than that observed in humans and if lateral force 
transmission does occur one might expect that it would be more 
pronounced in these models. Yet, in contrast to humans the specific 
tension in the hypertrophied rat plantaris muscle shows no change 
[36,37] or is even decreased [17], suggesting that in these models there 
is no, or little, enhanced lateral force transmission. While in animals 
an individual muscle can be maximally activated via the nerve, in 
humans isolated muscle stimulation is practically (admittedly direct 
nerve stimulation can be applied but is rather painful) impossible 
and voluntary contractions are often associated with the recruitment 
of agonists or stabilizing muscles which would obscure the training-
induced changes in the muscle of interest. It thus remains to be seen 
whether we do miss something when measuring specific tension 
in human hypertrophied muscle, or whether in contrast to animals, 
in humans the increased force generating capacity after resistance 
training is due to both increases in muscle size and enhanced lateral 
force transmission.

Limits of Hypertrophy
Common sense suggests that infinite hypertrophy is impossible. In 

fact, the absence of any further increase in muscle size in bodybuilders 
after an additional 24-week heavy resistance training program lends 
support to this notion, at least in humans [38]. But what does limit the 
degree of hypertrophy that can be attained? The next section of this 
review will discuss some factors that may prevent the development of 
unrestricted hypertrophy.

Muscle architecture
An excessive muscle size may physically limit the range of motion, 

as one can readily understand when looking at an exceptionally 
large biceps muscle from a bodybuilder. This maybe illustrated by a 
limitation of the range of motion when you place your hand on your 
biceps. Although potentially inconvenient, this does not in itself limit 
the degree of attainable hypertrophy.

It is clear, however, that unbridled hypertrophy is impossible. One 
limitation is the amount of contractile material that can be packed on 
the aponeuroses. The densest packing of contractile material can be 
achieved by orienting the fascicles perpendicular to the aponeurosis 
(or 900 pennation), but any increase in pennation angle beyond 450 
will result in a reduction in the force and power generating capacity 
of the muscle even when muscle mass increases. Functionally relevant 
hypertrophy is thus limited by muscle architecture when the pennation 
angle (during contraction) exceeds 450. However, angles of up to 530 

during submaximal isometric contractions in the m. triceps brachii 
from body builders have been reported [39]. 

Even in parallel-fibered muscles an increase in muscle mass is 
limited by the available space on the aponeurosis as hypertrophy of the 
deep fibers in the muscle will push overlying fibers up and by necessity 
cause them to curve, effectively creating a pennation angle, in order to 
stay attached to the aponeurosis and tendon. An increased curvature of 
the fascicles has indeed been shown in muscle from bodybuilders [39]. 
At some stage, one might conceive that contraction of the overlying 
fibers causes so high compressive forces on the underlying fibers that 
it hampers their contraction as they cannot bulge during shortening.

Tendons, entheses and joints

Larger muscles are able to generate larger forces. The muscle forces 
are transferred via the tendon and bony attachment (enthesis) to the 
joints and bones and one potential constraint of hypertrophy could 
thus be a limit to the forces that those structures can cope with.

Tendons are the first structure in the path of muscle force transfer 
to the joint. It appears that tendons are no static structure but do 
become stiffer in response to resistance exercise [6,40-42] and thereby 
probably reduce the chance of tendon injury. The increased stiffness 
of the tendon after resistance exercise is primarily a result of altered 
properties of the tendon material [40-42], but also some (regional) 
tendon hypertrophy may accompany muscle hypertrophy [42,43]. 
Even in the light of such adaptations there are many tendon injuries in 
athletes [44] and since with tendon rupture the hypertrophic stimulus 
disappears it is conceivable that the tensile strength of the tendon 
puts some limit on the hypertrophy that can be attained. However, 
tendons have a significant safety factor and most tendon injuries are 
a consequence of ‘wrong’ movements rather than an excessive muscle 
force. 

The size of the enthesis, the site of attachment of the tendon to the 
bone [43,45], is limited by the tendon-bone interface. While tendons 
are able to adapt their material properties and size during muscle 
hypertrophy, the size and complexity of the enthesis seems to remain 
unaltered during muscle hypertrophy as shown in sheep [43]. The fixed 
size and complexity of the enthesis thus places a limit on the forces 
that this structure can be subjected to without incurring damage and 
thus may restrict the maximally attainable hypertrophy. However, the 
accumulation of micro-tears during repetitive overload that underlies 
tendinopathies and enthesopathies [45] are probably more important 
in limiting hypertrophy, and yet loaded repetitions are required to 
induce muscle hypertrophy.

While during childhood the bones and joints do appear to respond 
to changes in muscle strength, this is much less, if at all, the case in 
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adulthood [46]. Joint size thus seems to be set at the end of puberty and 
it has been suggested that peak joint forces should not exceed the peak 
forces that the joints were adapted to during puberty to prevent failure 
[46]. A fixed joint size would then potentially put a limit to the maximal 
attainable muscle force generating capacity or hypertrophy.

Neural limitations

Motor control would ensure that the forces on the joints derived 
from muscle contraction will not exceed the peak forces the joint 
was originally adapted to [46]. The Golgi tendon organ may act as 
such a negative feedback controller. When the tension rises the deep 
tendon reflex is activated, effectively inhibiting the contraction of 
the muscle, and hence the hypertrophic stimulus. To perform such 
a function adequately also during resistance exercise or overload the 
responsiveness of this organ to stretch must remain stable, which has 
indeed been observed [47]. If this feedback loop does indeed limit 
the development of hypertrophy one might expect that blunting the 
sensitivity of the Golgi tendon organ would enhance, and increase the 
rate of, hypertrophy.

Diffusional limitations of hypertrophy

Capillaries and aerobic metabolism: Contractile activity and 
aerobic metabolism require high fluxes of oxygen, ATP, ADP and Pi 
within the myofiber. To regenerate ATP aerobically the mitochondria 
need oxygen that diffuses from the capillaries, which also serve to 
remove metabolites and heat. There might therefore be a trade-off 
between the size of a fiber and aerobic metabolism determined by 
diffusion limitations [48]. Indeed, an inverse relationship between 
the size of a fiber and its maximal oxygen uptake has been observed 
[49]. It should be noted, however, that the perimeter increases in direct 
proportion to the radius (fibers are near-circular), while the fiber cross-
sectional area increases in proportion to the square of the radius. As a 
consequence the perimeter : cross-sectional area ratio decreases with 
increasing fiber size. This is important as a considerable amount of ATP 
is used by the Na+/K+-pump to restore the membrane potential after 
each contraction, and with an increase in fiber size a lower proportion 
of the ATP requirement will go to the restoration of the membrane 
potential. Indeed, it was found in the lobster that the cost of Na+/K+-
ATPase function was twice as large in muscles with small fibers, with 
a 2-fold higher surface to volume ratio, than that in muscles with large 
fibers [50]. Based on these considerations Johnston et al developed the 
hypothesis of ‘optimal fiber size’ which suggests that in larger fibers 
there is a trade-off between ‘diffusion constraints’ and ‘metabolic cost 
savings’ associated with a smaller surface to volume ratio [51]. In 
support of this hypothesis is the higher abundance of large-sized fibers 
in the Atlantic cod (Gadus morhua L.) with hemoglobin with a high 
oxygen affinity (at the given temperature) in comparison with those 
with hemoglobin with a lower oxygen affinity [51]. The high affinity of 
hemoglobin alleviates some of the diffusion constraints of oxygen in 
the muscle and allows larger fibers and hence a reduction in the cost of 
maintaining ionic homeostasis by reducing the surface to volume ratio 
by having larger fibers [51]. 

During hypertrophy the growing fibers will push the existing 
capillaries apart and thereby increase the average and maximal diffusion 
distances from the capillaries to the mitochondria (Figure 1 left 
panel). To overcome this problem capillary neoformation takes place 
[27,28,52,53] with a time course similar to the growth in muscle fiber 
size [29]. The capillaries may also become more tortuous in overloaded 
muscles [54] thereby increasing the capillary – fiber perimeter contact 
area. These adaptations ensure that the increase in the average diffusion 
distance from the capillaries to the mitochondria is blunted (Figure 1 

right panel), but not entirely prevented, as reflected by a lower capillary 
density in hypertrophied than control muscles [28,29]. Even if the 
capillary density stays the same, the obligatory location of capillaries 
at the periphery of the fibers will result in increased diffusion distances 
from the capillaries to mitochondria in the interior of the fiber and thus, 
all else staying the same, restrict fiber hypertrophy. Such a situation 
would be aggravated during hypoxia and it is therefore no surprise that 
hypertrophy in human muscle after resistance exercise in hypobaric 
hypoxia is less than that in normoxia [55]. Yet, in plantaris muscles 
from rat exposed to hypobaric hypoxia (equivalent to that at an altitude 
of 5,500 m) a staggering doubling of muscle size occurred after 56 days 
of overload [56]. One adaptation that would prevent the increase in 
maximal diffusion distances from the capillary to the mitochondria is 
a change to a more flattened shape of the fiber as seen in the Anchovy 
[57], but no such adaptation has been reported in hypertrophied 
mammalian muscle.

Facilitated diffusion of oxygen may overcome or attenuate potential 
problems of oxygen diffusion in the larger fibers. In fish, increased 
intramyofiber lipid facilitates oxygen diffusion and does indeed help 
to increase intracellular oxygen tension (PO2) in eels even when fiber 
radius and VO2max are higher as a consequence of higher activity levels 
[58]. It is unknown, however, whether such an adaptation also occurs in 
mammalian hypertrophied muscle, but it is known that the myoglobin 
concentration, which also facilitates oxygen diffusion [59], does remain 
unaltered in hypertrophied muscles [60]. There is thus little, if any, 
evidence for enhanced facilitated oxygen diffusion in hypertrophied 
muscles to compensate for the increased diffusion distances from the 
capillary to the mitochondria.

Another way to reduce the diffusion distances from the capillaries 
to the mitochondria is to move the mitochondria to the periphery 
of the fiber [61]. While such a redistribution of mitochondria does 
decrease the diffusion distance of oxygen it simultaneously increases 
the diffusion distances for the adenonucleotides, which then instead 
may limit muscle fiber size, particularly since radial diffusion of 
adenonucleotides is restricted by the myofilament lattice [62]. Yet, 
the mitochondria are still normally distributed within the fibers as are 
the associations between the metabolic pathways and ATP utilization 
in 136% hypertrophied cat plantaris muscle [13]. Although the total 
oxidative capacity of the muscle fibers was unaltered in this case, in mass 
specific terms it was, in contrast to the less hypertrophied rat plantaris 

Initial situation

Hypertrophy

No angiogenesis Angiogenesis

Figure 1: During hypertrophy of muscle fibers the capillaries are pushed 
apart, resulting in t diffusion distances that could hamper muscle oxygenation. 
Angiogenesis, the formation of new capillaries, indicated in the left panel as 
yellow dots, maintain the average diffusion distances. 
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muscles, reduced [13], suggesting that this massive hypertrophy is 
close to what is maximally attainable.

Although the 136% hypertrophy in cat muscle [13] seems to be 
close to the maximum attainable hypertrophy they are still very much 
smaller than the 600-µm diameter fibers in the blue crab Callinectes 
sapidus [61]. To realize the exceptional maturational growth of fibers 
from less than 80 µm in diameter to fibers with diameters as larger 
as 600 µm in the blue crab the fibers, though acting as a functional 
unit, become metabolically subdivided where each subdivision is well-
perfused with hemolymph and maintains a constant diameter [61]. 
This effectively overcomes the metabolic and diffusional constraints of 
fiber growth. In fact, without subdivisions the aerobic fibers would not 
be able to sustain the observed aerobic fluxes [61]. This thus shows that 
indeed the degree of maximally attainable hypertrophy can be limited 
by metabolic and diffusional constraints.

Myonuclei: The myonucleus provides a template for the production 
of all the ribonucleic acids (RNA) in the cell. The volume of cytoplasm 
supplied by a nucleus is called the myonuclear domain. It has been 
suggested that the myonuclear domain size is limited by the half-
life of RNA and the rate of diffusion of the RNA [63,64]. In a recent 
review we already discussed the relationship between myonuclear 
number and muscle fiber hypertrophy [64] and therefore it will not 
be discussed extensively here. In essence, similar to capillaries, the 
nuclei in mammalian muscle fibers are almost exclusively located at 
the periphery of a fiber and hence this may cause problems with the 
diffusion of RNA to the center of the fiber. Since radial diffusion of 
RNA is severely restricted by the filament lattice and less so in the axial 
direction of muscle fibers [63] it might in fact be more important to 
maintain the nuclear number per perimeter ratio during hypertrophy 
[64]. Given these considerations, one would expect that also during 
exercise or overload-induced hypertrophy, fiber growth has to be 
accompanied by addition of new myonuclei and yet, significant 
hypertrophy is possible without the addition of myonuclei [16,64-66]. 
But also here, like metabolic and diffusion constraints above, the blue 
crab shows that there might be a limit to the volume of cytoplasm, 
or fiber perimeter that can be controlled by a myonucleus. During 
maturational growth of the blue crab, the number of intermyofibrillar 
myonuclei increase in the anaerobic fibers in addition to an increase 
in subsarcolemmal nuclei, while in the aerobic fibers they stay at the 
periphery of the metabolic subdivisions, thereby maintaining the 
nuclear domain size [61]. 

Another adaptation could be to increase the rate of diffusion of 
RNA, which would allow for a lower nuclear density, by increasing the 
RNA diffusion gradient. An increased RNA gradient can be realized 
by a higher rate of transcription, which in turn might be achieved by 
a larger nuclear DNA content. In line with this it has been shown in 
fish that during maturational muscle growth the nuclear domain size 
increases, as does the nuclear content per myonucleus [67]. The larger 
myonuclei in the 100% hypertrophied muscles of satellite cell depleted 
mice [16] might be a reflection of an increased transcriptional capacity 
of the nucleus. It might thus be that we have to consider again the old 
concept of a constant nuclear size : cytoplasmic volume ratio or nuclear 
size : fiber perimeter ratio.

Attenuated hypertrophy at old age

It has been shown in both human [68-70] and animal muscles 
[66,71-75] that the hypertrophic response is attenuated at old age. 
Given the above considerations one might wonder which of the 
discussed limiting factor(s) may become even more limiting at old age, 
but this has hitherto not systematically been investigated. In most cases 

attention is given to molecular pathways and changes in the systemic 
environment of the muscle during ageing [76]. 

There is quite some evidence that molecular pathways involved 
in hypertrophy are indeed altered at old age. For instance, during 
hypertrophy the already phosphorylated 5’-AMP-activated protein 
kinase (AMPK) is even further phosphorylated and this hyper-
phosphorylation may impair protein synthesis and hence contribute 
to the attenuated hypertrophy at old age [75]. Also the upregulation 
of C-myc after initiation of stretch overload is attenuated in anterior 
latissimus dorsi muscle of old quail [77] and the elevated expression 
of inhibitor of differentiation proteins and apoptosis in old rat muscle 
may underlie the blunting of the increase in myogenic regulatory 
factors during hypertrophy [71]. These changes, however, are most 
likely not attributable to a decreased mechanosensitivity of the muscle. 
In isolated repeatedly passively stretched extensor digitorum longus 
muscles the phosphorylation of the mechanosensitive stress-activated 
protein kinase (p38), ribosomal S6 kinase (p70S6K) and the p54 jun 
N-terminal kinase (JNK2) were the same for 2-3 and 26-27-month-
old mice [78]. The phosphorylation of these proteins was independent 
of release of growth factors, as relaxed muscle co-incubated in close 
proximity of passively stretched muscles showed no increased 
phosphorylation of these proteins [78]. This fits the notion that the 
old muscles transplanted in young recover as well from damage as 
young muscles transplanted in young animals [79] and that age-
related decline in muscle recovery is more dependent on changes in the 
systemic environment [80] than the intrinsic plasticity of the muscle. 
However, recovery from muscle damage and muscle hypertrophy may 
differ as hypertrophy can develop without the recruitment of satellite 
cells, while for recovery from muscle damage satellite cell recruitment 
is obligatory [16].

It is thus possible that the altered systemic environment may 
contribute to the decreased hypertrophic response at old age. But what 
about the factors that were discussed in the previous sections? The 
‘strength’ of the bone [81] and tendon [41] decrease with age and this 
would limit the peak forces that these structures can cope with and at 
least in theory diminish the maximal attainable hypertrophy at old age. 
The nuclear domain size [64] and capillary supply do, however, not 
seem to change much with age [82] and maybe there is another reason 
for the attenuated muscle hypertrophy at old age.

Here I suggest a possible explanation. During ageing there is a 
progressive loss of muscle mass beyond the age of about 45 years [83-
85], which is also reflected by a progressive loss of muscle power [86]. 
Even in elite master weight lifters a decrease in muscle power occurs, 
that is proportionally similar, but in absolute terms larger than in non-
weightlifters despite maintaining exceptionally high training levels 
(Figure 2) [87]. Such a phenomenon could be explained by a progressive 
loss of fibers during ageing. In fact a major part of the muscle wasting is 
attributable to a loss of muscle fibers as a consequence of the ongoing 
denervation-reinnervation process [88-90]. If the remaining fibers 
do maintain their ability to develop hypertrophy to the same extent 
at young and old age, or in other words the factors that limit fiber 
(not muscle) hypertrophy stay the same, then at every age also the 
percentage hypertrophy in response to an identical training program 
at a given proportion of 1-repetition maximum would be the same (see 
Figure 2 upward arrows). While the proportional increase in muscle 
mass in this case stays the same, it can readily be seen in Figure 2 that in 
absolute terms the hypertrophy becomes smaller with increasing age, 
a situation similar to that observed in the master weight lifters [87]. It 
is thus suggested that the attenuated hypertrophy is largely attributable 
to a decrease in fiber number where each innervated and healthy fiber 
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in an old muscle can develop just as much hypertrophy as a fiber in a 
young muscle. This is, of course speculation, but it would be interesting 
if such a pattern can indeed be observed in hypertrophied control and 
old muscles.

Nevertheless, even if the above suggestion is true, also in relative 
terms the degree of hypertrophy can be attenuated, at least in very 
old rats [71-73]. To understand this I wish to draw attention again 
to Figure 2, where it is illustrated that there is a linear decrease in a 
functional parameter, e.g. muscle mass, at 1% per year of the value at 
the age of 30 years. If one, however, expresses the yearly decrement 
as a percentage of the value in the previous year one readily sees that 
the rate of deterioration increases exponentially with age (Figure 3). In 
line with this it has regularly been observed that the age-related rate of 
decline in longitudinal studies indeed often exceeds that observed in 
cross-sectional studies [91-93]. This acceleration in the rate of decline 
could be a reflection of the inability of repair systems to cope with 
ongoing damage at old age. Any stimulus, like a hypertrophic stimulus 
to the muscle, would then over-burden the already challenged anabolic 
system and cause further damage rather than an increase muscle mass. 
In muscle this would be reflected by a reduction in specific tension, as 
has indeed been observed in overloaded old rat muscles [73]. 

Concluding remarks

There are several factors that in theory could limit the degree of 
attainable hypertrophy. The maximal degree of hypertrophy seems to 
be rarely, if ever, reached in response to resistance exercise in untrained 
people. Only in exceptional cases, such as in bodybuilders, the limits of 
hypertrophy may be reached, though in avian, rodent and cat models 
even larger hypertrophy is often observed. It therefore remains to be 
seen what the limiting factor of hypertrophy really is. It is tempting to 
speculate that it is the excessive increase in pennation angle that can 
even result in loss of muscle strength when exceeding 450, or the size 
of the joints that is more or less set at puberty. Also metabolism and 

diffusion constraints may put an upper limit on hypertrophy where 
an inverse relationship exists between aerobic capacity of a fiber and 
the size of a fiber. It is suggested that at least part of the attenuated 
hypertrophic response at old age is due to loss of fibers during ageing. 
A better understanding of what factors do in fact limit hypertrophy 
may help to prevent the athlete and the elderly to ‘over-train’ their 
muscles which not only will not be of any additional benefit, but may 
even result in damage and overtraining symptoms.
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