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Abstract

Face age estimation is a challenging problem due to the variation of craniofacial growth,

skin texture, gender and race. With recent growth in face age estimation research, wrin-

kles received attention from a number of research, as it is generally perceived as aging

feature and soft biometric for person identification. In a face image, wrinkle is a dis-

continuous and arbitrary line pattern that varies in different face regions and subjects.

Existing wrinkle detection algorithms and wrinkle-based features are not robust for face

age estimation. They are either weakly represented or not validated against the ground

truth. The primary aim of this thesis is to develop a robust wrinkle detection method

and construct novel wrinkle-based methods for face age estimation. First, Hybrid Hes-

sian Filter (HHF) is proposed to segment the wrinkles using the directional gradient

and a ridge-valley Gaussian kernel. Second, Hessian Line Tracking (HLT) is proposed

for wrinkle detection by exploring the wrinkle connectivity of surrounding pixels using a

cross-sectional profile. Experimental results showed that HLT outperforms other wrinkle

detection algorithms with an accuracy of 84% and 79% on the datasets of FORERUS

and FORERET while HHF achieves 77% and 49%, respectively. Third, Multi-scale

Wrinkle Patterns (MWP) is proposed as a novel feature representation for face age

estimation using the wrinkle location, intensity and density. Fourth, Hybrid Aging Pat-

terns (HAP) is proposed as a hybrid pattern for face age estimation using Facial Appear-

ance Model (FAM) and MWP. Fifth, Multi-layer Age Regression (MAR) is proposed as

a hierarchical model in complementary of FAM and MWP for face age estimation. For

performance assessment of age estimation, four datasets namely FGNET, MORPH,

FERET and PAL with different age ranges and sample sizes are used as benchmarks.

Results showed that MAR achieves the lowest Mean Absolute Error (MAE) of 3.00

(±4.14) on FERET and HAP scores a comparable MAE of 3.02 (±2.92) as state of the

art. In conclusion, wrinkles are important features and the uniqueness of this pattern

should be considered in developing a robust model for face age estimation.

III



IV



Acknowledgements

In preparation of this thesis, there are many people have contributed towards my under-

standing and thoughts. I would like to acknowledge, and also I wish to express my deep

gratitude to my supervisors, Dr. Moi Hoon Yap and Dr. Nicholas Costen for guidance,

valuable time, technical and friendly dealing through out my study. Without their contin-

ued support, guidance and interest, thesis would not have been the same as presented

here.

I have received direct or indirect help and support from many personalities that

motivated and enabled me to conduct this research. Thanks are due to Dr. Baihua

Li, Dr. Kevin Tan, Dr. John Darby, Dr. Muhammad Salman Haleem, Dr. Xia Han, Dr.

Jamie McPhee, Dr. Liangxiu Han, Dr. Yannis Goulermas, Prof. Tim Cootes, Mr. Adrian

Keith Davison, Mr. Daniel Leightley, Mr. Brett Hewitt, Mr. Ezak Fadzrin, Ms. Gemma

Stringer, Ms. Ruth Shepherd and Taiwan collaborators - Dr. Gee-Sern Hsu and Mr. Yi-

Tseng Cheng for their help and valuable comments. In addition, I would like to present

my sincere appreciation to SciEng Research Degrees and IT Services teams for their

friendly support during my study.

I would like to thank the coders for their valuable time in manual annotation, Phillips

et al. (2000) for FERET, Ricanek and Tesafaye (2006) for MORPH, Minear and Park

(2004) for PAL, Zhou et al. (2013) for FACE++ detector, Savran et al. (2008) for Bospho-

rus, Stegmann (2003) for AAM-API application, Cootes et al. (2001) for am tools appli-

cation, and gratefully acknowledge the advise and code of KLBP provided by Ylioinas

et al. (2013).

A great gratitude also goes to Manchester Metropolitan University, United Kingdom,

in providing a PhD studentship for this work. I am thankful to Dr. Simeon Gill and Prof.

Neil D. Reeves for the part-time jobs which relieved my financial burden.

Finally, I thank my family and friends for their constant encouragement and my wife

for her patience and support.

V



VI



Table of Contents

Abstract III

Acknowledgements V

Table of Contents XI

List of Tables XIV

List of Figures XVII

List of Abbreviations XVIII

List of Symbols XX

List of Publications XXVII

Chapter 1 Introduction 2

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Thesis Organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Chapter 2 Literature Review 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Real World Applications . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Security Control . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Information Retrieval . . . . . . . . . . . . . . . . . . . . . . 11

2.2.3 Marketing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Natural Aging Process . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Childhood Aging . . . . . . . . . . . . . . . . . . . . . . . . 13

VII



2.3.2 Adulthood Aging . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.2.1 Wrinkle . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.2.2 Pigmentation . . . . . . . . . . . . . . . . . . . . . 20

2.3.3 Facial Aging Factor . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.3.1 Intrinsic Factor . . . . . . . . . . . . . . . . . . . . 21

2.3.3.2 Extrinsic Factor . . . . . . . . . . . . . . . . . . . 22

2.4 Human Perception . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 Wrinkle Detection Techniques . . . . . . . . . . . . . . . . . . . . . . 28

2.6 Feature Representation . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.6.1 Global Feature . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.6.2 Local Feature . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.6.2.1 Synthetic Feature . . . . . . . . . . . . . . . . . . 34

2.6.2.2 Natural Feature . . . . . . . . . . . . . . . . . . . 36

2.6.3 Hybrid Feature . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.7 Age Estimation Techniques . . . . . . . . . . . . . . . . . . . . . . . 39

2.7.1 Age Group Classification . . . . . . . . . . . . . . . . . . . . 40

2.7.2 Single-layer Age Estimation . . . . . . . . . . . . . . . . . . 41

2.7.3 Hierarchical Age Estimation . . . . . . . . . . . . . . . . . . 42

2.8 Research Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Chapter 3 Theory, Measurement and Datasets 48

3.1 Segmentation Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1.1 Edge Detection . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1.1.1 Sobel Filter . . . . . . . . . . . . . . . . . . . . . . 51

3.1.1.2 Canny Edge Detector . . . . . . . . . . . . . . . . 52

3.1.1.3 Laplacian of a Gaussian Detector . . . . . . . . . . 53

3.1.1.4 Thresholding . . . . . . . . . . . . . . . . . . . . . 54

3.1.2 Line Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.1.2.1 Cula Method . . . . . . . . . . . . . . . . . . . . . 56

3.1.2.2 Frangi Method . . . . . . . . . . . . . . . . . . . . 58

3.2 Facial Age Descriptors . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2.1 Local Feature Representation . . . . . . . . . . . . . . . . . 60

3.2.1.1 Regional Radon Transform . . . . . . . . . . . . . 60

3.2.1.2 Face++ . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2.1.3 Bio-inspired Features . . . . . . . . . . . . . . . . 62

VIII



3.2.1.4 Kernel-based Local Binary Pattern . . . . . . . . . 63

3.2.2 Global Feature Representation . . . . . . . . . . . . . . . . . 65

3.2.2.1 Principal Component Analysis . . . . . . . . . . . . 65

3.2.2.2 Aging Pattern Subspace . . . . . . . . . . . . . . . 67

3.2.2.3 Facial Appearance Model . . . . . . . . . . . . . . 68

3.3 Estimation Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.3.1 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.3.1.1 Support Vector Machine . . . . . . . . . . . . . . . 72

3.3.1.2 Multi-layer Perceptron . . . . . . . . . . . . . . . . 74

3.3.2 Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.3.2.1 Quadratic Regression . . . . . . . . . . . . . . . . 76

3.3.2.2 Support Vector Regression . . . . . . . . . . . . . 77

3.4 Face Alignment Techniques . . . . . . . . . . . . . . . . . . . . . . . 80

3.4.1 Affine Transformation . . . . . . . . . . . . . . . . . . . . . . 80

3.4.2 Piece-wise Affine Warping . . . . . . . . . . . . . . . . . . . 82

3.4.3 Shape-free Patch . . . . . . . . . . . . . . . . . . . . . . . . 84

3.5 Scientific Measurements . . . . . . . . . . . . . . . . . . . . . . . . 85

3.5.1 Jaccard Similarity Index . . . . . . . . . . . . . . . . . . . . . 85

3.5.2 Accuracy of Wrinkle Detection . . . . . . . . . . . . . . . . . 85

3.5.3 Mean Absolute Error . . . . . . . . . . . . . . . . . . . . . . 86

3.5.4 Cumulative Score . . . . . . . . . . . . . . . . . . . . . . . . 86

3.5.5 Cross Validation . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.6 Benchmark Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.6.1 Bosphorus . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.6.2 FGNET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.6.3 FERET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.6.4 MORPH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.6.5 PAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Chapter 4 Novel Methods of Wrinkle Detection 94

4.1 Human Performance for Wrinkle Detection . . . . . . . . . . . . . . . 94

4.1.1 Dataset Preparation . . . . . . . . . . . . . . . . . . . . . . . 95

4.1.2 Experimental Results of Human Annotation . . . . . . . . . . 97

4.2 Novel Algorithm of Hybrid Hessian Filter . . . . . . . . . . . . . . . . 100

4.3 Novel Algorithm of Hessian Line Tracking . . . . . . . . . . . . . . . . 106

IX



4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.4.1 Performance Assessment on FORERUS . . . . . . . . . . . . 113

4.4.2 Performance Assessment on FORERET . . . . . . . . . . . . 115

4.4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Chapter 5 Multi-scale Wrinkle Patterns 119

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.2 Multi-scale Wrinkle Patterns Algorithm . . . . . . . . . . . . . . . . . 121

5.2.1 Image Resizing . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.2.2 Wrinkle Detection . . . . . . . . . . . . . . . . . . . . . . . . 122

5.2.3 Region of Interest Masking . . . . . . . . . . . . . . . . . . . 122

5.2.4 Pattern Representation . . . . . . . . . . . . . . . . . . . . . 124

5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.3.1 Age Estimation using MWP on FERET . . . . . . . . . . . . . 126

5.3.2 The Effect of Gender on Wrinkle Patterns . . . . . . . . . . . 126

5.3.3 The Effect of Expression on Wrinkle Patterns . . . . . . . . . 127

5.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Chapter 6 Wrinkle Pattern Models 130

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.2 Hybrid Aging Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.3 Multi-layer Age Regression . . . . . . . . . . . . . . . . . . . . . . . 134

6.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.4.1 Performance Assessment using Hybrid Aging Patterns . . . . 137

6.4.2 Performance Assessment using Multi-layer Age Regression . . 138

6.4.2.1 Computation Time of Age Estimation . . . . . . . . 141

6.4.2.2 Age Regression versus Age Group Classification . . 141

6.4.2.3 Soft Boundary Assessment . . . . . . . . . . . . . 143

6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Chapter 7 Conclusion 146

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.2 Research Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

X



7.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.3.1 Wrinkle Analysis . . . . . . . . . . . . . . . . . . . . . . . . 149

7.3.2 Feature Representation of Face Age . . . . . . . . . . . . . . 150

7.3.3 Face Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 151

Bibliography 172

Appendix A Review of Detailed Age Estimation 173

Appendix B Review of Age Groups Classification 176

Appendix C A Preliminary Study of Face Age Estimation 177

Appendix D AAM Builder Configuration 186

XI



XII



List of Tables

2.1 Probable soft tissue or facial appearance effect. . . . . . . . . . . . . 17

2.2 Terms that describe the skin marks. . . . . . . . . . . . . . . . . . . . 19

2.3 Contributions in the topics of facial aging from psychophysics, human

perception and physiology. . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 A comparison between local, global and hybrid features. . . . . . . . . 39

2.5 Summary of NIST findings. . . . . . . . . . . . . . . . . . . . . . . . 43

2.6 Potential research areas for face age estimation. . . . . . . . . . . . . 45

3.1 Parameter settings of MLP. . . . . . . . . . . . . . . . . . . . . . . . 76

4.1 Inter-coder reliability of human annotation. . . . . . . . . . . . . . . . 98

5.1 MAE of different age groups. . . . . . . . . . . . . . . . . . . . . . . 125

5.2 Comparison of MAE results on FERET. . . . . . . . . . . . . . . . . . 126

5.3 Confusion matrix of human identification on FERET. . . . . . . . . . . 127

6.1 Summary of the experimental datasets. . . . . . . . . . . . . . . . . . 137

6.2 Experimental results of age estimation using hybrid features on different

datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.3 Experimental results of face age estimation with and without MAR. . . 139

6.4 Computation time (in seconds) for age regression by SVR. . . . . . . . 141

6.5 Confusion matrix for age regression versus age group classification on

MORPH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.6 A comparison between hard and soft boundaries. . . . . . . . . . . . 144

7.1 Research objective versus outcome. . . . . . . . . . . . . . . . . . . 147

C.1 MLP parameters in WEKA. . . . . . . . . . . . . . . . . . . . . . . . 180

C.2 Experiment 1, a comparison of threshold type. . . . . . . . . . . . . . 183

C.3 Experiment 2, variation in numbers of ROIs. . . . . . . . . . . . . . . 184

C.4 Experiment 3, detailed accuracy by class. . . . . . . . . . . . . . . . 184

XIII



XIV



List of Figures

1.1 Thesis organisation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Facial aging in a male subject. . . . . . . . . . . . . . . . . . . . . . 13

2.2 Face ratio measurements. . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Face shape changes. . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Wrinkle types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Facial hyper-pigmentation. . . . . . . . . . . . . . . . . . . . . . . . 20

2.6 Wrinkle geography. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.7 Feature extraction using Gabor filter. . . . . . . . . . . . . . . . . . . 38

2.8 Flow of face age estimation. . . . . . . . . . . . . . . . . . . . . . . . 40

3.1 Profile of an edge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 Sobel detector masks. . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3 Properties of Canny edge detector. . . . . . . . . . . . . . . . . . . . 52

3.4 An illustration of the Laplacian of a Gaussian kernel. . . . . . . . . . . 53

3.5 Selecting a threshold by visually analysing a image histogram. . . . . 54

3.6 Histogram of forehead wrinkle image. . . . . . . . . . . . . . . . . . . 55

3.7 Flow chart of CLM method. . . . . . . . . . . . . . . . . . . . . . . . 57

3.8 Retinal versus wrinkle image. . . . . . . . . . . . . . . . . . . . . . . 58

3.9 Flow chart of RRT method. . . . . . . . . . . . . . . . . . . . . . . . 60

3.10 An illustration of CNN architecture. . . . . . . . . . . . . . . . . . . . 61

3.11 Flow chart of BIF descriptor. . . . . . . . . . . . . . . . . . . . . . . 62

3.12 Flow chart of KLBP descriptor. . . . . . . . . . . . . . . . . . . . . . 64

3.13 PCA projection of FGNET shape points. . . . . . . . . . . . . . . . . 66

3.14 An illustration of AGES. . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.15 A combined appearance model. . . . . . . . . . . . . . . . . . . . . . 69

3.16 Landmark points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.17 An illustration of SVM hyperplane. . . . . . . . . . . . . . . . . . . . 72

3.18 MLP architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

XV



3.19 Linear SVR model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.20 Different training methods of SVM. . . . . . . . . . . . . . . . . . . . 79

3.21 Affine transformation of a triangle. . . . . . . . . . . . . . . . . . . . 81

3.22 Warping between a shape and the mean shape using PAW. . . . . . . 83

3.23 Bosphorus samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.24 FGNET samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.25 FERET samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.26 MORPH samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.27 PAL samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.1 FORERUS samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.2 Illustration of the working environment settings for human annotation. . 96

4.3 Pixel overlapping between coders. . . . . . . . . . . . . . . . . . . . 97

4.4 Intra-coder reliability of 30% dataset. . . . . . . . . . . . . . . . . . . 98

4.5 Human annotation on FORERUS images. . . . . . . . . . . . . . . . 99

4.6 Process flow of HHF. . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.7 Gaussian kernels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.8 HHF variables at different scales. . . . . . . . . . . . . . . . . . . . . 103

4.9 HHF values at different scales and orientations. . . . . . . . . . . . . 104

4.10 Pseudo code of HHF. . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.11 Multi-scale tracking. . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.12 Ideal wrinkle profile. . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.13 Cross-sectional profile. . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.14 Hessian line tracking. . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.15 Pseudo code of HLT. . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.16 Examples of FORERET images. . . . . . . . . . . . . . . . . . . . . 112

4.17 JSI of automatic wrinkle detection versus benchmark of coder A, B and C.113

4.18 HHF vs HLT of different FORERUS images. . . . . . . . . . . . . . . 114

4.19 Wrinkle detection accuracy between HHF and HLT. . . . . . . . . . . 115

4.20 Wrinkle detection results of FORERET images. . . . . . . . . . . . . 116

5.1 Different kind of face wrinkles. . . . . . . . . . . . . . . . . . . . . . . 120

5.2 Flow chart of MWP. . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.3 Wrinkle template and Face++ landmarks. . . . . . . . . . . . . . . . . 123

5.4 Cumulative score of age estimation on FERET. . . . . . . . . . . . . 125

5.5 MAE results based on gender using MWP. . . . . . . . . . . . . . . . 127

XVI



5.6 MAE results based on expression using MWP. . . . . . . . . . . . . . 128

6.1 A comparison between original and reconstructed face images of FAM. 131

6.2 An illustration of HAP patterns. . . . . . . . . . . . . . . . . . . . . . 132

6.3 Flow chart of MAR. . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.4 Age distribution of different datasets. . . . . . . . . . . . . . . . . . . 136

6.5 An illustration of age group classification in MAR. . . . . . . . . . . . 142

6.6 ROC curves for age regression versus age group classification. . . . . 143

C.1 Information flow of LOWEX for a single individual. . . . . . . . . . . . 178

C.2 Comparison between manual and automated threshold. . . . . . . . . 182

C.3 Center point versus triangle region. . . . . . . . . . . . . . . . . . . . 182

C.4 Different wrinkle region amount. . . . . . . . . . . . . . . . . . . . . . 183

XVII



List of Abbreviations

2D - 2-Dimensional Space

3D - 3-Dimensional Space

AAM - Active Appearance Model

AGES - Aging Pattern Subspace

BIF - Bio-inspired Features

CLM - Cula Method

CS - Cumulative Score

CNN - Convolutional Neural Networks

FACS - Facial Action Coding System

FAM - Facial Appearance Model

FERET - Face Recognition Technology Dataset

FGNET - Face and Gesture Recognition Research Network Dataset

FORERET - Forehead Images of FERET

FORERUS - Forehead Images of BosphoRUS

FRF - Frangi Filter

GPA - Generalised Procrustes Analysis

HAP - Hybrid Aging Patterns

HHF - Hybrid Hessian Filter

XVIII



HLT - Hessian Line Tracking

JSI - Jaccard Similarity Index

LBP - Local Binary Patterns

KLBP - Kernel-based Local Binary Patterns

LOPO - Leave One Person Out

LOWEX - Local Wrinkle-based Extractor

MAE - Mean Absolute Error

MAR - Multi-layer Age Regression

MLP - Multi-layer Perception

MORPH - Craniofacial Longitudinal Morphological Face Dataset

MWP - Multi-scale Wrinkle Patterns

PAL - Park Aging Mind Laboratory Dataset

PAW - Piece-wise Affine Warping

PCA - Principal Component Analysis

ROI - Region of Interest

SMO - Sequential Minimal Optimization

STD - Standard Deviation

SVM - Support Vector Machine

SVR - Support Vector Regression

XIX



List of Symbols

(x,y) - a pixel coordinates in a 2D image

(x′,y′) - a transformed coordinates of (x,y)

(xc,yc) - a center pixel coordinates
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Chapter 1

Introduction

This chapter introduces the research and terminology for face age estima-

tion. A number of important terms are defined. It explains the problem

statement, highlights the thesis contributions, and outlines the thesis struc-

ture.

1.1 Background

There is a huge number of research on the facial image analysis over last few decades,

driven by applications in diverse areas such as biometric, instructional technology, mar-

keting, mental health, and entertainment (Cohn and De la Torre, 2014). Face age

estimation is a broad topic that has grown considerably in recent years (Ramanathan

et al., 2009; Fu et al., 2010) and many methods have been proposed. The taxonomy of

Fu et al. (2010) is adopted to define the area in which this thesis attempts to contribute.

In general, facial image analysis interprets face images in terms of facial attributes such

as identity, expression, gender, age, ethnicity and pose. These can be done in an effi-

cient and automated way through a number of computer vision methods such as face

recognition, facial expression recognition and face gender identification. In this thesis,

face age is the research of interest. Face age estimation labels a face image automati-

cally with the exact age (year) or the age group (year range) of the individual face. From

literature review, there are two main approaches: global approach tends to describe an

image as a whole and local approach represents aging features in a series of image

patches. In this work novel methods based on local approach are developed, using a

fixed template of face regions. In order to extract wrinkles accurately from a face im-

age, two novel wrinkle detection methods are proposed, using a ridge valley pattern
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1.1. Background

and wrinkle connectivity in a local neighbourhood. In addition, a hierarchical approach

of both global and local features is developed where the performance of age estimation

is further improved by combining both features.

Automatic facial age estimation is an important, yet largely unsolved, challenging

problem. This challenge can be attributed to (i) large intra-subject variations and (ii)

large inter-subject similarity. Major intra-subject variations include craniofacial growth

and skin texture, meanwhile, the inter-subject similarities are gender and race. In ad-

dition, 2-Dimensional Space (2D) face images contain huge variations in expression,

pose and illumination in the uncontrolled environment. From these variations, local ag-

ing features such as wrinkles, pores and spots are now beginning to receive increasing

attention in the facial aging community (Batool and Chellappa, 2014).

Conventionally, methods in age estimation are based on appearance features. Ap-

pearance features are computed or modelled for an entire face which comprises both

shape and texture (Cootes et al., 2001). For facial aging research, many algorithms

(Geng et al., 2007; Chen et al., 2010; Chang et al., 2011; Chao et al., 2013) deal with

appearance model parameters in FAM (Cootes et al., 2001) and age manifolds (Fu and

Huang, 2008; Guo et al., 2008a). In training stage, a FAM is constructed from a set

of training images with manually annotated landmarks. It consists of a shape model, a

texture model and a combined appearance model. FAM is a training model that belongs

to Active Appearance Model (AAM) where AAM is a generative model that constructs

the target subject’s face by a set of hidden parameters (Cootes et al., 2001; Gao et al.,

2010). Different faces at different ages can be generated under a similar subspace with

varied parameters for controlling the shape and texture of the individual face. How-

ever, age progression modelling is highly complex due to large intra-subject variation

and inter-subject similarity (Li et al., 2011). In addition, dimensional reduction using

Principal Component Analysis (PCA) in FAM decreases aging representation such as

wrinkles because the least important variance could be aging information rather than

noise (Patterson et al., 2007; Choi et al., 2011).

This thesis investigates the potential use of wrinkle for face age estimation. In

order to detect the facial wrinkle, accurate wrinkle detection is an important task in

face analysis (Batool and Chellappa, 2014). Most of the latest works are based on

clinical perspective (subjective assessment) instead of computer vision (objective as-

sessment). Judgements are typically made on neutral-expression images and the well-

known shortcomings of subjective assessment limit the scientific study of treatment and
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environmental effects on skin aging. Clinician perspective focuses on the level of wrin-

kle severity which is assessed using either descriptive or photographically calibrated

scales (Tsukahara et al., 2000), but in computer vision, the concern is on how a wrinkle

is located correctly relative to the ground truth (Batool and Chellappa, 2014). Therefore,

the wrinkle detection method may become an enhanced tool for age estimation. In ad-

dition, extracted wrinkles can be transformed into a robust representation where wrinkle

location, intensity and density are taken into consideration. Based on wrinkle statistics,

an efficient age estimation method can be developed with a lower feature dimension if

compared to the state of the art.

The field of face age estimation and wrinkle detection has recently benefited from

the introduction of freely available datasets that include ground truth and allow for quan-

titative evaluation and comparison of techniques. In particular, the datasets such as

Face and Gesture Recognition Research Network Dataset (FGNET) (FGNET aging

dataset, accessed on September 2012; Panis et al., 2015), Craniofacial Longitudinal

Morphological Face Dataset (MORPH) (Ricanek and Tesafaye, 2006), Face Recogni-

tion Technology Dataset (FERET) (Phillips et al., 2000) and Park Aging Mind Laboratory

Dataset (PAL) (Minear and Park, 2004), provided the actual age of each subject in all

face images. Moreover, two datasets of wrinkle detection, Forehead Images of Bospho-

RUS (FORERUS) and Forehead Images of FERET (FORERET), are proposed, where

they were created from Bosphorus (Savran et al., 2012a) and FERET, respectively.

These datasets have converged the result presentation within the field, making possible

the quantitative cross-comparison of a range of existing techniques. In the remainder of

this thesis each contribution is thoroughly tested on either the wrinkle datasets or other

freely available face age datasets, quantitative results are presented and comparisons

drawn with existing state-of-the-art approaches.

This chapter is organised as follows. Section 1.1 and 1.2 describes the background

and motivation of this work; Section 1.3 states the aim and objectives of this work;

Section 1.4 lists the contributions made by the thesis compared to the state of the art;

Finally, Section 1.5 provides an insight to the structure and presentation of the thesis.

1.2 Motivation

There are many popular real-world applications related to facial aging. Age estimation

by machine is useful in applications where we do not need to specifically identify the

user, but want to know his or her age when accessing restricted content (Yacenda et al.,
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2013). When humans age, it would be interesting to characterise the progressive but

subtle variations in facial appearance because it has many significant implications such

as the following:

i. Age estimation is a type of soft biometrics that provides ancillary information of

the users identity information (Jain et al., 2004). It can be used to complement

existing biometric features, such as fingerprint and iris, to improve the perfor-

mance of primary (hard) biometrics system (Fu et al., 2010).

ii. With growing needs to regulate the content viewed by minors on the Internet,

age-specific human computer interaction systems have found greater relevance

in recent years. Hence, methods that perform automatic age estimation are

very critical in developing such applications (Lanitis et al., 2004; Ramanathan

et al., 2009). Further, age-based image retrieval and video retrieval systems are

bound to benefit from automatic age estimation systems (Ramanathan et al.,

2009). For example, age-based indexing of face images in e-photo albums,

where users could have the ability to retrieve their photographs by specifying a

required age-range (Lanitis et al., 2004).

iii. In marketing, the most challenging part is to obtain and analyse enough per-

sonal information from all customer groups, which needs companies to estab-

lish long-term customer relationships and sustain a large amount of cost input

(Lanitis et al., 2002). For example, retail shops might want to identify the age

demographic of people who spend more time viewing certain advertisements;

a mobile phone company wants to know which age group is more interested in

their new product models showing in a public kiosk; a store display might show

a business suit as an adult walks by or jeans as a teenager walks by (Fu et al.,

2010).

1.3 Objectives

The primary aim of this work is to propose novel wrinkle-based features for face age

estimation. In order to achieve the primary aim, the following objectives have been

established:

i. To explore novel methods for wrinkle detection where the pattern is an arbitrary

curve and randomly grow.
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ii. To investigate the use of discriminative features such as shapes, wrinkles and

appearances, for face age estimation.

iii. To evaluate the proposed methods using the benchmarks and human judge-

ment.

1.4 Contributions

The fundamental contributions of this thesis are:

i. A novel wrinkle detection method, Hybrid Hessian Filter (HHF), is proposed

to segment the face wrinkles using the directional gradient and a ridge-valley

Gaussian kernel, as shown in Section 4.2 [PUB5, PUB9].

ii. A novel wrinkle detection method, Hessian Line Tracking (HLT), is proposed to

explore the wrinkle connectivity using a cross-sectional profile in addition to the

ridge and valley pattern, as presented in Section 4.3 [PUB1].

iii. A novel feature representation method, Multi-scale Wrinkle Patterns (MWP),

is proposed for face age estimation which takes into consideration the wrinkle

location, intensity and density, as described in Chapter 5 [PUB2, PUB3, PUB6,

PUB8, PUB10, PUB11].

iv. A novel feature representation method, Hybrid Aging Patterns (HAP), and a

novel age estimation method, Multi-layer Age Regression (MAR), are proposed

for face age estimation in complementary of both FAM parameters and wrinkle

patterns, as discussed in Chapter 6 [PUB2, PUB3, PUB8].

These contributions have resulted in three journals (one is accepted), three confer-

ence papers, two collaborations and two awards (see List of Publications).

1.5 Thesis Organisation

This thesis is organised into two parts as shown in Figure 1.1. The first part includes

introductory chapters providing fundamental and background knowledge of the subject

area and the state of the art for wrinkle detection and age estimation. The second

part of this thesis includes three contributory chapters where two novel wrinkle de-

tection methods, two novel feature representions and one age estimation method are
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Figure 1.1: Thesis organisation. Novel methods for wrinkle detection are presented in
chapter 4 and the main contributions for face age estimation are given in chapter 5 and
6.

discussed. Finally, this thesis concludes the works and an insight to future directions of

research and development.

Part I: Introductory Chapters

Chapter 1 provides an overview of this thesis. It defines the problem domain, states

the research motivation and specifies the thesis aims and objectives. It further sum-

marises the proposed approaches and highlights the contributions made by the thesis

to the state of the art. Finally it outlines the thesis organisation.

Chapter 2 presents fundamental knowledge about the conventional ways of wrin-

kle detection, the relationship between wrinkle and aging, the challenges in face age

images and different age estimation methods. The advantages and disadvantages of

each approach are compared and discussed.

Chapter 3 provides an overview of the research methodology. It further highlights

methods being applied in both wrinkle detection and face age estimation.

Part II: Contribution Chapters

Chapter 4 proposes two novel wrinkle detection techniques. The first approach uses the

directional gradient and a ridge-valley Gaussian kernel to determine the ridge and valley
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pattern of wrinkle. The second approach extends the wrinkle exploration by looking into

the wrinkle connectivity in between neighbourhood pixels using cross-sectional profile.

Results of both approaches are compared with two benchmark datasets: FORERUS

(Savran et al., 2008) and FORERET (Phillips et al., 2000).

Chapter 5 presents novel solution for effective face age estimation. This method is

a local feature representation which comprises wrinkle location, intensity and density.

Results are compared with the state-of-the-art methods such as FACE++ (Zhou et al.,

2013), Bio-inspired Features (BIF) (Guo et al., 2009a) and Kernel-based Local Binary

Patterns (KLBP) (Ylioinas et al., 2013) on FERET (Phillips et al., 2000).

Chapter 6 presents a detailed investigation on the use of global and local features

for face age estimation. In particular the use of FAM and wrinkle patterns in a hybrid

pattern and a hierarchical model. Four benchmark datasets: FGNET, MORPH, FERET

and PAL are used for performance evaluation with the state-of-the-art methods. Results

are critically analysed and conclusions made.

Finally, Chapter 7 concludes the thesis with a summary of contributions made by the

thesis, limitations of the present context of research and an insight into future directions

of research.
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Chapter 2

Literature Review

This chapter presents a survey and general discussions that cover the

state-of-the-art techniques for face age estimation. On top of that, it in-

troduces the existing age image representation models and age estimation

techniques. A performance comparison of existing techniques is also dis-

cussed.

2.1 Introduction

In this chapter an overview of face age estimation is presented. Due to the large volume

of works in this area, the overview is not intended to be exhaustive but rather to define

the areas in literature where the thesis attempts to contribute, and their wider context. A

comprehensive review can be found in a number of review papers (Ramanathan et al.,

2009; Fu et al., 2010; Panis et al., 2015).

In Section 2.2, popular applications of face age estimation are discussed. These

include security control, information retrieval and marketing. It inspires a huge number

of studies in facial aging analysis. Section 2.3 summarises the facial aging from birth to

adulthood. It discusses the most significance changes of human faces in two stages:

childhood and adulthood. Section 2.4 explains human perception and interpretation on

facial aging. It covers the aesthetic views and related human experiments for face age

estimation. An elaboration of the face wrinkle and its relationship with age is detailed

in Section 2.5. Various methods of wrinkle detection and its performance are also

included. To further understand the tasks, three concepts (Fu et al., 2010) about human

age are defined as,

i. Actual age: The real age of an individual where the age is cumulated years

9



Chapter 2. Literature Review

after birth.

ii. Perceived age: The individual age gauged by human subjects from a given face

image.

iii. Estimated age: The individual age recognised by a computer machine from a

given face image.

Following the taxonomy of Fu et al. (2010), the literature typically consists of two

concatenated modules: feature representation and age estimation techniques. Feature

representation attempts to construct the aging patterns from a set of images and it is

described in Section 2.6. Age estimation technique uses a model to predict the exact

age or age group of an unseen image as discussed in Section 2.7. Finally, this chapter

concludes by highlighting the challenges of face age estimation and followed by the

summary.

2.2 Real World Applications

As humans age, myriad changes occur chronically within the craniofacial complex. No-

table soft tissue modifications may be seen across each decade of adult life that passes.

As well, subtle hard tissue or bony changes slightly alter an overall shape of the human

face, mainly in the dentoalveolar region (portion of the alveolar bone immediately about

teeth). These age-related changes affect the accuracy and efficacy of face-related ap-

plications. Characterising the progressive, but subtle changes in facial appearances as

human age has many significant implications. They are depicted as follows.

2.2.1 Security Control

Security control and surveillance monitoring issues are more and more crucial in our

everyday life, especially when advanced technologies and explosive information be-

come common to access and possess (Kloeppel, 2010). With the input of a monitoring

camera, an age estimation system can warn or stop under-age drinkers from enter-

ing bars or off-license shops; prevent an under-age person from purchasing tobacco

products from vending machines (Rhodes, 2009); refuse the youngster when he / she

wants to try a roller coaster in an amusement park; and deny children access to adult

web sites or restricted films (Guo et al., 2008a; Lanitis et al., 2004). In Japan, po-

lice found that a particular age group is more apt to money transfer fraud on ATM, in
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which age estimation from surveillance monitoring can play an important role (Fu et al.,

2010). Age estimation is a type of soft biometrics that provides ancillary information of

the users (Jain et al., 2004). It can be used to complement the primary biometric fea-

tures, such as face, fingerprint, iris, and hand geometry, to improve the performance of

a primary (hard) biometric system (Fu et al., 2010). In a homeland security, face-based

authentication systems that typically compare age-separated face images, are bound

to benefit from facial aging models that extract age-invariant signatures (Lanitis et al.,

2002; Ramanathan et al., 2009). Further, in the absence of such systems, authenti-

cation systems face the cumbersome task of periodically updating large face datasets

with more recent face images (Ramanathan and Chellappa, 2006; Ramanathan et al.,

2009).

2.2.2 Information Retrieval

With growing needs to regulate the content viewed by under-age on the Internet, age-

specific Human Computer Interaction (HCI) systems have found greater relevance in

recent years (Guo et al., 2008a). Hence, methods that perform automatic age esti-

mation are very critical for developing such applications. Further, age-based image

retrieval and video retrieval systems are bound to benefit from automatic age estima-

tion systems (Ramanathan et al., 2009). For example, automatic album management

of consumer photographs (Das and Loui, 2003) and age-based indexing of face images

in e-photo albums, where users could have the ability to retrieve their photographs by

specifying a required age-range (Lanitis et al., 2004; Gallagher and Chen, 2009). In

HCI (Ricanek Jr et al., 2009), computer interface may use a face image to dynamically

setup a workspace according to the user’s age group; some companies are develop-

ing a software to determine Closed-Caption TeleVision (CCTV) feeds from stores to

compile demographic information on customer purchasing behaviour. Age estimation

software can also be used in health care systems, such as robotic nurse and intelligent

intensive care unit, for customised services. For example, a personalised avatar will

be selected automatically from the custom-built avatar dataset to interact with patients

from different age groups with particular preferences (Fu et al., 2010). In cosmetol-

ogy, dermatologists are interested in locating and removing the face wrinkles in order

to achieve skin rejuvenation and look younger (Cula et al., 2013; Batool and Chellappa,

2014). Currently, most practices require expert intervention to manually locate and an-

notate the wrinkles before and after of a treatment. Such process is time-consuming

and prone to human error. Therefore, an automatic wrinkle quantification system will
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aid to human decision in cosmetology.

2.2.3 Marketing

Customer Relationship Management (CRM) is a management strategy to use informa-

tion technology and multimedia interaction tools for effectively managing differentiated

relationships with all customers and communicating with them individually (Kloeppel,

2010). Since different groups of customers have very different consuming habits, pref-

erences, responsiveness, and expectation to marketing, companies can gain more prof-

its by acknowledging this fact, responding directly to all customers’ specific needs, and

providing customised products or services. The most challenging part hereby is to ob-

tain and analyse enough personal information from all customer groups, which needs

companies to establish long-term customer relationships and sustain a large amount

of cost input (Lanitis et al., 2002). For example, a fast food shop owner might want to

know what percentage of each age group prefers and purchases what kind of sand-

wiches; determining the age demographic of people who spend more time viewing

certain advertisements; a mobile phone company wants to know which age group is

more interested in their new product models showing in a public kiosk; a store display

might show a business suit as an adult walks by or jeans as a teenager walks by. Obvi-

ously, it is almost impossible to realise those due to privacy issues. However, with the

help of a computer-based automatic age estimation system, a camera snapping photos

of customers could collect demographic data by capturing face images of customers,

automatically labelling age groups and deleting the processed images immediately. All

of these can be done by a machine without violating anyone’s privacy (Fu et al., 2010).

2.3 Natural Aging Process

Human face aging is generally a slow and irreversible process, even though some

retinoic acid (e.g., tretinoin treatment1) may slightly reverse minor photo-aging effects

(Zimbler et al., 2001). Although people are aging differently and aging shows different

forms in different ages, there are still some general changes and resemblances can be

described (Gilchrest, 1996; Albert et al., 2007; Farkas et al., 2013). For instance, cran-

iofacial shape and skin texture. Figure 2.1 shows images of a male subject facial aging.

It is noticed that the shape of the older face is slightly larger than the younger face and

1Tretinoin treatment modifies fine wrinkles and certain other features of human skin damaged by
exposure to the sun or so-called photo-damage (Griffiths et al., 1993).
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Figure 2.1: Facial aging in a male subject. The number indicates the age when the
image was taken. Note that this figure was redrawn from FGNET.

skin patterns around forehead, eyes and nose are different as well. From a biological

or anthropometric point of view, there are roughly two stages of the human life that are

quite different in face growth, development, and aging forms (Mark et al., 1980). The

following sections detail the two stages: childhood aging and adulthood aging.

2.3.1 Childhood Aging

During the early growth and development of the face, from birth to adulthood, the great-

est change is the craniofacial growth (shape change) (Zebrowitz and Montepare, 1992;

Corel Corp, 2012). Overall, the face size is getting larger gradually during the cranio-

facial growth (Meyer-Marcotty et al., 2013). With the growth of the cranium, forehead

slopes back, shrinks, and releases spaces on the surface of the cranium, while the

facial features, such as eyes, nose, ears, and mouth, expand their areas and tend to

cover these interstitial spaces. Cheeks extend to larger areas and the chin becomes

more protrusive. The facial skin relatively does not change too much compared with

the craniofacial growth. But facial hairs, such as a moustache, may become dense and

even bushy. Skin colour may change a bit. Pores may open and enlarge (Corel Corp,

2012).

Age-based anthropometric measurements have been shown to play a critical role

in measuring sizes and proportions on human faces during formative years. Similar

anthropometric data collected on adult faces are not available easily (Fu et al., 2010).

These measurements are crucial in developing a facial aging model. Such studies pro-

vide a quantitative description of the craniofacial complex at different ages and hence,

provide a plethora of options for learning-based approaches to be adopted to char-

acterise facial aging. Face anthropometric studies give dense measurements taken

between key landmarks on human faces across different ages and have played a criti-

cal role in surgical procedure implemented on the child face (Ramanathan et al., 2009).
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(a) Frontal face (b) Profile face

Figure 2.2: Face ratio measurements. For frontal face, measurements of orbits: en-
en (intercanthal width), ex-ex (biocular width), en-ex (eye fissure length); face: zy-zy
(face width), go-go (mandible width); nose: al-al (morphological nose width); labio-oral
region: ch-ch (mouth width). For profile face, head: tr-n (forehead height); face: tr-
gn (physiognomical face height), n-gn (morphological face height), sn-gn (lower face
height); nose: n-sn (nose height), in: (inclination of the nasal bridge); ear: sa-sba
(length of the auricle) (Farkas et al., 2005). Note that this figure is drawn from Bospho-
rus (Savran et al., 2008).

craniofacial aging data are increasingly important where automated face recognition

technology and computer 3-Dimensional Space (3D) modelling of adult faces for use

in adult facial age progression are concerned (Albert and Ricanek Jr, 2008). Earlier

efforts, such as FERET attest to the potential benefits of a cross-disciplinary interface

between forensic anthropology and computer science with forensic science in general

(Phillips et al., 2000).

Farkas (1994) provides a comprehensive overview of face anthropometry and its

significant applications. He defines face anthropometry in terms of measurements

taken from 57 carefully selected landmarks on human faces spread across six regions

in the craniofacial complex (head, face, orbits, nose, lips and mouth, ear). The facial

measurements are of three kinds: (i) projective measurements (shortest distance be-

tween two landmarks); (ii) tangential measurements (distance between two landmarks
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measured along the skin surface); (iii) angular measurement (Gallagher et al., 2005;

Ramanathan et al., 2009). Farkas et al. (2005) investigated the international anthro-

pometric of facial morphology in various ethnic groups or races. They have selected

14 anthropometric measurements to determine the morphologic characteristics of the

craniofacial complex. Ten of them were the neoclassical facial canons of the Renais-

sance used by by classic facial artists Leonardo da Vinci and Albrecht Dürer2 (tr-n,

zy-zy, sn-gn, en-en, en-ex, n-sn, al-al, ch-ch, sa-sba and the inclination of the nasal

bridge), complemented by three facial (tr-gn, n-gn and go-go) and one orbital mea-

surement (ex-ex), as shown in Figure 2.2. They attempt to establish the main facial

characteristics of 25 national groups belonging to four races and thereby differentiate

the morphological complex between one group and another.

Facial anthropometry plays an important role in ergonomic applications (Fang and

Fang, 2011). Most ergonomically designed products depend on stable and accurate

human body measurement data. Head and facial anthropometric dimensions provide

detailed information on head and facial surfaces to develop well-fitting, comfortable and

functionally effective facial masks, helmets or customised products. Fang and Fang

(2011) developed an automated geometric-based facial feature extraction method to

identify head and facial features. They managed to locate 17 digital length measure-

ments and 5 digital tape measurements on the head and face. They claimed that nearly

all length measurement data and tape measurement data meet the 5mm measuring er-

ror standard.

Kwon and da Vitoria Lobo (1999) presented a theory and practical computations

for visual age classification from facial images. The computations are based on cran-

iofacial development theory and skin wrinkle analysis. For primary features, ratios that

distinguish babies from young adults and seniors are computed around the eyes, nose,

mouth, chin, virtual-top of the head and the sides of face. In total, six ratios were used to

build a classifier. They stated that the first ratio, the distance between eyes over the dis-

tance between eye and nose, is the most promising feature because it is not affected by

the facial expressions or facial motions. However, imprecise localisation of landmarks

might affect the results. Moreover, ratio 6, the distance between eye and chin over the

2The human sculptures produced in ancient Greece, notably in the 4th to 5th centuries Before Com-
mon Era (BCE), were derived from proportions that followed established rules or ‘canons’. These rules
were incorporated to the ‘neoclassical canons’ for the human face by Renaissance artists that included
Leonardo da Vinci and Albrecht Dürer. These canons were based on the assumption that certain fixed
ratios existed between different parameters of a harmonious face. Subsequently, these canons were
adapted by medical artists, anatomists and aesthetic surgeons and continue to be used to this day (Le
et al., 2002; Jayaraman and Kulanthaivel, 2012).
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Figure 2.3: Face shape changes. Left is female subject of 18 years old and her face
shape looks like a upside-down triangle. Right is the same subject of 61 years old and
her face shape looks like to a trapezoid. Note that this figure was redrawn from FGNET.

distance between virtual-top of the head and chin, is the most reliable feature but it suf-

fers from errors in estimating the virtual-top of the head. In secondary feature analysis,

a wrinkle geography map is used to guide the detection and measurement of wrinkles.

A combination rule for the ratios and the wrinkle index thus permits categorisation of a

face into one of three classes: babies, young adults and senior adults. However, there

was no validation against the extracted wrinkles where it could be noise like shading or

lines of interest. Overall, they have demonstrated an interesting pioneer work for face

age estimation where computing ratios and detecting the presence of wrinkles can yield

age categorisation.

2.3.2 Adulthood Aging

During adult aging, from adulthood to old age, the most perceptible change becomes

skin aging (texture change). The shape change still continues, but less dramatically,

mostly due to typical patterns in skin and tissue. Originally shown in Gonzalez-Ulloa

and FLORES (1965) and also in Stone (2012), as the face matures and ages with loss

of collagen beneath skin as well as gravity effects, skin becomes thinner, darker, less

elastic, and more leathery (Corel Corp, 2012). A set of wrinkles and blemishes due

to biologic aging gradually appear. Dynamic wrinkles and folds due to muscle motion
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Table 2.1: Probable soft tissue or facial appearance effect. This table is derived from
article of Albert et al. (2007).

Age range Description

20-30
Upper eyelid drooping begins. Eyes appear smaller. Nasolabial lines
begin to form. Lateral orbital lines begin to form. Upper lip retraction
begins in women.

30-40
Circumoral striae begin to form. Lines begin to form from lateral
edges of nose to lateral edges of mouth. Upper lip thickness
decreasing.

40-50
Facial lines and folds continue to increase in depth. Nose and chin
positioning affected as dental arch lengths decrease. Most profound
morphological changes of the head, face, and neck are evident.

50-60
Facial lines and folds continue to increase in depth. Protuberance of
nose and ears due to greater craniofacial convexity.

> 60
Protuberance of nose and ears continues. Concave appearance in
cheek hollows. Diminished jaws.

become more distinct. In the areas of deeper attachment, such as cheeks, eyelids,

chin, and nose, elasticity of muscles and soft tissues get weak and fat continues de-

positing. In other areas, fat may atrophy or be absorbed. These changes lead to the

downward descent or sagging of skin, such as double chin, dropping cheek, and lower

eyelid bags. Ezure et al. (2012) stated that sagging is correlated with various age-

related facial morphological changes, and its severity is influenced by subcutaneous

tissues such as subcutaneous adipose tissue and mimetic tissue. Although the cran-

iofacial growth is not dramatic during this aging period, the facial geometry change is

still evident from 30 to 80 years, especially on the female faces. Faces change from a

U-shaped or upside-down triangle shape to a trapezoid or rectangle, as shown in Fig-

ure 2.3 (Gonzalez-Ulloa and FLORES, 1965; Stone, 2012; Michaud et al., 2015). The

bony framework underneath skin may also deteriorate to accelerate the development of

skin aging, such as wrinkles, creases, and droops. In addition, face aging during this

age period may cause the loss of flexible control of facial muscles and consequently the

facial movements and behaviours may also change unintentionally (Corel Corp, 2012).

Table 2.1 shows the adult hard and soft tissue age-related changes (Albert et al.,

2007). Generally, normal aging of the facial soft tissues begins in the 20s with fine

facial lines appearing horizontally across forehead, vertical lines emerging between the

eyebrows, and faint lines developing around the outer corners of the eyes (i.e., crows’

feet). These faint lines continue to deepen in the 30s and beyond. In the 30s, horizontal

lines appear at the top of nose between the eyes, and nasolabial lines begin to form
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Figure 2.4: Wrinkle types. (a) Type 1 wrinkles due to atrophy. (b) Type 2 wrinkles due
to solar elastosis. (c) Type 3 wrinkles due to expression lines on forehead. (d) Type 4
wrinkles due to gravity near the lower mandible.

(lines or creases from the outer corners of the base of nose diagonally down to the

sides of mouth). During the 40s, many soft tissue age changes occur. The eyebrows

may drop, and the upper eyelid may droop and obscure the upper eyelid crease around

the lateral margins. The lower jaw becomes less firm, circumoral striae develop (lines

around mouth), and the lips can thin out. In the 50s, more prominent soft tissue age

changes become evident. The groove or crease below the eyes may evolve into a pouch

of skin. More tissue may develop on the upper eyelid where drooping further obscures

the crease of the upper eyelid. Existing creases, lines, and grooves continue to deepen.

The lips become thinner. If tooth loss occurs, the cheeks can appear hollow. Jowls and

a double chin may develop. The neck wrinkles can become apparent. In the 60s, the

aging features of the previous decade become more pronounced. During this decade,

nose and ears appear longer, jaw has lost its firmness, and the soft tissues of neck sag.

By the 70s and beyond, creases, lines, and grooves are all exaggerated. There is a loss

of skin elasticity, and significant skin sagging. In summary, key facial age changes of

adult are noted to appear in the upper face before the lower face (Taister et al., 2000).
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Table 2.2: Terms that describe the skin marks. This table is derived from the book of
Ekman et al. (2002).

Terms Description

Line
A surface line with no depth, usually quite fine in terms of width.
Some faces may show permanent surface lines; these may deepen
to a wrinkle when certain actions occur.

Wrinkle

A line which has some depth and often has more width than a
surface line; some faces may show no permanent wrinkles, but they
will appear with certain actions. Other faces may show permanent
wrinkles but they will deepen with certain actions.

Furrow

This term describes a place on face where certain wrinkles may
appear: lower eyelid furrow; infraorbital furrow; or nasolabial furrow.
In some faces there is no wrinkle or line in such a facial location until
there is action. Some faces show a line permanently, but it will
deepen to a wrinkle with certain actions, e.g., some faces show a
permanent line in the lower eyelid furrow, infraorbital furrow or
nasolabial furrow, which will deepen with an action.

2.3.2.1 Wrinkle

Face is part of the body most visible to others, and its wrinkles are a hallmark of aging

(Cula et al., 2013; Hayashi et al., 2003; Li et al., 2006). Wrinkle has been widely inves-

tigated for face analysis especially for face age estimation (Kwon and da Vitoria Lobo,

1999; Takimoto et al., 2007; Dehshibi and Bastanfard, 2010; Choi et al., 2010; Jeong

et al., 2014; Jana et al., 2015). Usually, wrinkles are surface skin features which appear

in images as line segments rather than continuous lines, reasonably similar with those

in fingerprints and palm prints (Kong et al., 2009). Table 2.2 presents the terms that de-

scribe the skin marks, as defined by Ekman et al. (2002). A surface line with no depth,

usually quite fine in terms of width; A wrinkle which has some depth and often has more

width than a surface line; furrow describes a place on face where certain wrinkles may

appear.

According to Piérard et al. (2003), there are four basic types of wrinkles can be

distinguished according to their histological aspects and pathogenesis (as shown in

Figure 2.4). Type 1 wrinkles (atrophic) are fine, almost parallel each other, and they

vanish when skin is put under transversal tension. They are due to the atrophy of the

collagen bundles both in the reticular dermis and the hypodermal connective tissue

strands. Type 2 wrinkles (elastotic) become progressively permanent lines, developed

on certain sun-exposed skin areas where solar elastosis is hypertrophic, compact and
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Figure 2.5: Facial hyper-pigmentation.

largely overcompensating in volume the collagen atrophy. Type 3 wrinkles (expres-

sional) become permanent lines, always orientated in a stereotyped pattern according

to the forces imposed by facial muscles. Type 4 wrinkles (gravitational) result from

gravitational forces inducing folding and sagging of skin which has lost its turgidity.

Ramanathan and Chellappa (2008) proposed a two-step approach towards mod-

elling facial aging in adults. It comprises a shape and a texture variation models. The

texture variation model was designed specifically to characterise facial wrinkles in pre-

designated facial regions. They identified four facial regions which tend to have a high

propensity towards developing wrinkles, namely forehead region, the eye-burrow re-

gion, the nasal region and the lower chin region. Then, they categorised the region-

based facial wrinkle variations across age transformation into one of the three classes:

subtle wrinkle change, moderate wrinkle change and strong wrinkle change. This clas-

sification is performed by studying the pixel-based differences in gradient magnitudes

and orientations. They found that the rates at which facial wrinkles are manifested on

individuals across different ages is often subjective. They claimed that the proposed

texture variation model can be used to predict the different wrinkle patterns that could

have been observed on the individuals.

2.3.2.2 Pigmentation

Hyper-pigmentation is the darkening of an area of skin or nails caused by increased

melanin, often due to sun damage, as shown in Figure 2.5 (Hakozaki et al., 2010;

Perez-Bernal et al., 2000). Pigmentary changes are a hallmark of aging in all races and

ethnicities, and are of growing concern in a world with an aging demographic. Solar

lentigines or age spots remain a major concern amongst individuals globally, but are

of particular concern in Asian populations (Nip et al., 2010; Chang et al., 2013). The

continually increasing understanding of the pigmentation process and the underlying

problems in hyper-pigmentation conditions provide basis for establishing targets against

which to screen new compounds to identify those that may be effective pigmentation
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control agents (Hakozaki et al., 2010).

2.3.3 Facial Aging Factor

The real-world applications are very rich and attractive, existing facts and attitudes from

the perception field reveal the difficulties and challenges of automatic age synthesis

and estimation by computer (Guo et al., 2008a,b). It is imperative to understand that

patterns, rates and characteristics of aging may be different due to culture and lifestyle

(environment, gender) and biology (sex, ancestry or genetics, trauma and disease),

as well as idiosyncratic features (unique to an individual). Moreover, it varies among

people at any given age, or change over time in any one person, are not completely

understood (Farkas and Schendel, 1995; Alley, 1988; Albert et al., 2007). In particular,

Stone (2012) stated that aging can be accelerated by smoking, genetic predisposition,

emotional stress, disease processes, dramatic changes in weight, and exposure to

extreme climates. Following are the discussion of two major factors of aging: intrinsic

and extrinsic. Intrinsic aging is caused by internal biological factors whereas extrinsic

aging is caused by environmental influences (Albert et al., 2011).

2.3.3.1 Intrinsic Factor

As investigated by Berry and McArthur (1986) using an ecological approach, age-

related variations in craniofacial growth play an important role in social perception.

Facial characteristics may affect impressions if they typically reveal psychological at-

tributes. According to Albert et al. (2007), innate adult facial aging results from: (i)

changes in the bony support structure of face and subsequent changes in musculature;

(ii) gravity; (iii) hyper-dynamic facial expressions. Other changes related to advancing

age include loss of tissue elasticity and facial volume and alterations in skin texture

(Scali and Iorio, 2014). Although the manner of aging can be highly unpredictable,

there is a sequence of changes that appears to adhere to a basic progressive pattern

across time. The rate of aging, however, varies across adult ages. There is a strong

likelihood that certain adult age spans yield a greater magnitude of age-related changes

than other time (Albert et al., 2007). For example, there may be minimal changes seen

from ages 20-30, while by contrast there may be noticeable changes from ages 40-

50. Attempts have been made to effectively express the sequence or stages of aging

(Taister et al., 2000). The general sequence of aging is somewhat predictable, with an

understanding that the pace, exact timing, and extent of any one aging feature may be
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unpredictable or unnoticeable due to the normal human variation. The appearance of

facial lines and wrinkling (Taylor, 2000), and their appearance in response to loss of

muscle, bony changes and the natural passage of time have been well documented by

Zimbler et al. (2001).

2.3.3.2 Extrinsic Factor

Suppa et al. (2011) have proven that smoking, obesity and excessive sun exposure

increase the appearance of aging of the skin, especially in the periorbital region. They

also produced some evidence that sunscreen use is protective for age-related cuta-

neous damage. The effects of Ultraviolet Radiation (UVR), usually through exposure to

sunlight, may cause solar aging, which is another strong cause for advanced signs of

face aging. Jdid et al. (2012) found that environmental conditions especially high ambi-

ent UVR can aggravate age-related skin features, even in women with dark skin. Aside

from photo-aging which mainly affects the skin and exaggerates normally occurring age

changes, general exposure to the elements such as wind and arid air can influence fa-

cial aging as well (Taister et al., 2000). Smoking disrupts the microvasculature of skin,

which in turn affects the integrity of elastin and collagen. Dehydration can result in a

greyish cast to a complexion. Lines around the mouth, circumoral striae, may become

evident. In addition, exposure to the elements such as drug use and stress-related

activities decrease in sleep are deemed influential in facial aging (Taister et al., 2000).

Despite these possible effects, it is thought that photo-aging results in more severe

wrinkling than smoking.

Boissieux et al. (2000) also pointed out the challenge to accurately modelling aging

skin because of the different aesthetic values and focuses of attention people have.

Thus, face aging is uncontrollable and personalised, which makes the task of accu-

rately capturing aging variations more difficult (Ramanathan and Chellappa, 2006; Fu

and Huang, 2008; Geng et al., 2007). Further, facial appearances get altered with

increase in age due to factors such as changes in hairstyle. Hence, the proposed char-

acterisation of facial aging effects should ideally account for multiple factors that induce

aging effects (Ramanathan et al., 2009). From a technical point of view, males and

females may have different face aging patterns displayed in images due to the different

extent in using makeups and accessories (Fu et al., 2007; Guo et al., 2008b). Many

female face images may potentially show younger appearances.

Rexbye et al. (2006) investigated the influence of environmental factors on facial

aging. They conducted a population-based survey where participants (aging Danish
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twins) provided information on a wide range of exposures and health indicators. They

were also asked to have a face photograph taken. A total of 1826 elderly (aged 70+)

twins who had a high-quality face photograph taken. Ten nurses assessed the visual

age of each twin from the face photographs. The mean of the nurses’ age estimates for

each twin was used as the twin’s perceived age. Multivariate linear regression and intra-

pair comparison (for intact pairs) were used for analyses. Results confirmed that an

influence of sun exposures, smoking and Body Mass Index (BMI) on facial aging. Their

study also indicated that high social status, low depression score and being married are

associated with a younger look. However, the strength of association varies between

genders.

2.4 Human Perception

Changes in skin condition throughout a person’s life are indicators of the irreversible

aging processes that occur in the human body. The texture and appearance of skin

gradually shifts from a smooth, translucent and uniformity youth to a rougher and more

unevenly pigmented skin. Facial wrinkling, sagging, and pore enlargement, all generally

irreversible without therapeutic intervention, mark the passage of time or, perhaps more

accurately, the accumulation of photo-damage. Though these aging phenomena are

important social and self-esteem determinants, only recently have the biochemical and

physiological changes associated with them begun to be investigated (Gartstein and

Shaya, 1996).

From the aesthetic views, face aging can be explained in a different way. Assuming

that faces are points in a high-dimensional space (Valentine, 1991), the distinctiveness

indicates the distance between any two faces. The attractiveness is negatively corre-

lated with distinctiveness because less distinctive and more typical is seen as more

attractive, presented by Rhodes and Tremewan (1996). Following this theory and con-

cepts, Deffenbacher et al. (1998) found that face aging is actually related to attractive-

ness and distinctiveness. Their experiments are based on a 3D face model built on

European-descent male and female young adults. When the facial caricature technique

is performed, they found that young faces are more attractive but less distinctive than

old faces. When the degree of facial caricature increases, the distinctiveness increases

while the attractiveness decreases linearly and, at the same time, faces are looking

older. Langlois and Roggman (1990) supported the ‘Averageness Hypothesis’ of at-

tractiveness, which indicates that an average face is the most attractive face. Rexbye
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and Povlsen (2007) explored visual age and how signs of age are read and interpreted

in consumer culture. The main indicators of age are biological: skin, eyes and hair

colour, but supplemented by vigour, style and grooming. From the in-depth interviews,

they found that activity and dress code are key themes in the reading and interpretation

of visual aging signs. Braun et al. (2001) believed that the merging of several faces

can remove unpleasant asymmetries, irregularities, wrinkles, and pimples so that the

skin looks perfectly smooth, clear, and younger. Moreover, baby-face makes faces look

younger and can enhance attractiveness. This indicates that facial components such

as wrinkles and pigments would affect the face age. Alley (1981) also found that the

morphological changes of face aging using shape transformations can induce the de-

crease of perceived facial cuteness. Based on the facial aging perception, O’Toole et al.

(1997) applied a facial caricature algorithm to a 3D face model for face aging synthesis.

They support the conclusion that an average face is younger and more attractive than

an individual face. They suggest that the distinctiveness of an individual face, defined

as its distance from the average face in a 3D space, embodies the information highly re-

lated to face aging. So, in perception and aesthetics, facial aging is often explained and

implemented by the concepts of attractiveness and distinctiveness with explicit carica-

tures or transformations from the empirical knowledge of biology anthropometry (face

growth, development, and aging forms).

Mark et al. (1980) investigated the changes in the shape of a human head and the

development of facial wrinkles as potential sources of information about age level. In

the first experiment, participants estimated the ages of faces that had been produced

by systematically manipulating characteristic head shapes and levels of wrinkles as-

sociated with ages 15, 30, 50 and 70 years. The results indicated that participants

used both sources of craniofacial change in making age estimates, but the effects of

either source of change on perceived age depended upon the level of the other source

of change. In the second experiment, the participant ratings of apparent conflict be-

tween levels of head shape and wrinkles further substantiated the conclusion that the

participants are sensitive to the coordination of products of the two sources of change.

These findings suggest that the information specifying perceived age level is a complex

relationship among different types of craniofacial change.

Tsukahara et al. (2000) reported a photographic scale for the assessment of human

wrinkles. A five-grade photo scale of wrinkles at eye corners was developed using

photos obtained from 411 female participants aged 17 to 83 years. Based on this photo

scale, scorings of all photos were performed by two specialists, and a standard photo
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Figure 2.6: Wrinkle geography. Each region is represented by different colours and
letters. Note that this image was redrawn from FGNET.

for each wrinkle grade was obtained. In addition, another scoring was performed by

five observers in order to evaluate the influence of inter-observer differences in grading

criteria. The agreement between the grade standard and the score given by the general

observers was evaluated by calculating the chance-corrected coefficient, i.e., the kappa

value. The degree of agreement for the five-grade scale was more consistent than that

for the nine-grade scale system, in which the kappa values were 0.499 and 0.396,

respectively. When scoring was performed using the five-grade photo scale for the eye

corners after 15 participants used a wrinkle-improving agent, a significant reduction of

the wrinkle scores was confirmed. They also found that wrinkles more rapidly develop

in the order of: eye corners > forehead > lower eyelids > upper eyelids > mouth

angles > nasolabial grooves > cheeks > glabella. Wrinkles around the eyes that

are highly correlated with age also showed a high wrinkle development rate, same

finding was confirmed by Akazaki et al. (2002); Merinville et al. (2015). Taken together,

their findings indicated that the the five-grade wrinkle photo scale is valid and useful to

assess the degree of facial wrinkles. Figure 2.6 illustrates the wrinkle geography map

which has been used in facial aging analysis (Kwon and da Vitoria Lobo, 1994; Kwon

and da Vitoria Lobo, 1999; Takimoto et al., 2007; Bae et al., 2008; Suo et al., 2010,
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2012; Choi et al., 2011). The regions are forehead (A), frown / glabella (B), upper eyelid

(C and D), crows’ feet (E and F), lower eyelid (G and H), cheeks (I and J), nasolabial

segment (K and L), upper lid (M), Marionette (N and O), and lower lid (P) 3. Upper and

lower lid are less common in research but wrinkles in these areas are very obvious

especially on those who smoke a lot.

Aznar-Casanova et al. (2010) studied the influence of wrinkles on facial age judge-

ments. The qualitative (type of wrinkle) and quantitative (density of wrinkles and depth

of furrows) contributions of wrinkles were analysed. Their results indicated that the

greater the number of wrinkles and the depth of furrows, the older a face was rated.

In addition, the quantitative component (density of wrinkles) had a stronger effect on

facial age judgements than the qualitative element (type of wrinkle). Their findings are

similar to Mark et al. (1980) where faces with deep furrows were considered older than

faces with shallow furrows. Moreover, their experiments showed that the perceived fa-

cial age was more strongly influenced by the gender of face; the youngest groups of

participants (undergraduate students) attributed lower ages to faces than senior adults;

wrinkles contributed to making male faces appear older than female faces.

Recently, the work of face aging has begun to consider diurnal changes in individual

faces (Albert et al., 2011). Diurnal changes are those alterations in a person’s face

that occur over the course of a single day, from morning until evening. In a study

by Tsukahara et al. (2004), image analysis of 38 Japanese females and males with

a mean age of 34 years showed significant intensification of wrinkling in all areas of

face evaluated in the afternoon when compare with the morning. The areas include

forehead, corners of the eyes and nasolabial grooves. Wrinkles were likely exacerbated

later in the day due to a decrease in the face swelling thought to occur in the morning

since during sleep gravity is not pulling fluids downward; wrinkles may be plumped

out in the morning. As the day progresses and a person is vertical, gravity may pull

fluids downward from face and into the appendages. As well, a person’s repeated facial

movements or expressions may reinforce already existing lines, where lines become

intensified and deepen into wrinkles. If the intensification in wrinkling occuring from

morning to late afternoon is discernible, the degree to which the change alters the

appearance of an individual’s face is meaningful.

Geng et al. (2006) proposed Aging Pattern Subspace (AGES) for automatic age

estimation. They compare the performance of AGES with the human-based age esti-

mation. 51 face images are randomly selected and presented to 29 human observers.

3Face anatomy is available at Taylor (2000) and Zimbler et al. (2001).

26



2.4. Human Perception

There are two stages in the experiment. In each stage, the 51 face images are ran-

domly shown to the observers, and the observers are asked to choose an age from 0

to 69 for each image. In the first stage, only the grey-scale face regions are shown,

while in the second stage the whole colour images are shown. Multiple cues including

face, hair, skin colour, clothes and background are shown in the second stage due to

the colour information. They claimed that the proposed method outperforms the human

observers in the ability of facial age estimation although human observers are provided

with more information than the input into the algorithms.

Age and identity information of a facial image is encoded in both texture and shapes.

Facial shape variations due to aging are often manifested as subtle drifts in facial fea-

tures and progressive variations in the shape of facial contours. Although facial shape

could be affected by many factors, such as expression, pose and age, it still conveys

much information about the identity and age of the subject (Wu et al., 2012). O’Toole

et al. (1999) examined the relationship between facial attractiveness, age, and ‘avera-

geness’, using laser scans of faces that were put into complete correspondence with

the average face. Their results indicate clearly that normalising the faces with respect

both to their 3D structure and their 2D texture increased the attractiveness of faces.

They also found that the shape-normalised faces which retained their image-based im-

perfections were considered more attractive than the texture-normalised faces. Turaga

et al. (2010) investigated the role of geometry for face age estimation. They tested on

a standard FGNET and a passport dataset which illustrate the effectiveness of their

approach. Their results showed that exploiting geometric cues in a principled manner

provides comparable performance to several systems that utilise both geometric and

textural cues. In summary, facial geometry has a strong influence on age perception.

Han et al. (2015) proposed a generic framework for automatic demographic (age,

gender and race) estimation for a given face image. They extracted demographic infor-

mative features from the commonly used BIF, and predicted the demographic attributes

of a face image using a hierarchical classifier. Quality assessment was used to identify

low-quality face images, which allows possible reacquisition of new face images in co-

operative scenarios, or rejection of the input face image otherwise. Their results were

compared with human estimation using crowd-sourced data obtained via the Amazon

Mechanical Turk (MTurk) service. In a correlation analysis, they claimed that human

tends to overestimate the ages of individual subjects while machine provides relatively

unbiased estimates. For FGNET estimation, human outperformed machine of without

quality assessment. They argued that FGNET is significantly biased age distribution
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Table 2.3: Contributions in the topics of facial aging from psychophysics, human per-
ception and physiology. Partial of this table is derived from the article of Ramanathan
et al. (2009).

Reference Summary of Contributions

Pittenger et al.
(1979)

Interestingly, observed that the cardioidal strain
transformation was effective in altering the perceived age of
cartoon drawings of monkeys, birds, dogs and inanimate
objects such as the ‘Volkswagen’ beetle.

Mark and Todd
(1983)

Extended the 2D cardioidal strain transformation model into
3D and demonstrated its effectiveness in characterising
facial growth in 3D.

Bruce et al.
(1989)

Observed that a subject’s sensitivity to cardioidal strain
related changes in 3D faces were comparable, when
viewed in pairs of face profiles or pairs of 3/4 faces or pairs
of mixed profiles

O’Toole et al.
(1997)

Applied a standard facial caricaturing algorithm on 3D
faces. Noted that an exaggeration or a de-emphasis of
facial creases, increased or decreased the perceived age of
faces, respectively.

where a majority of images belong to subjects less than 18 years old. As a result, the

machine does not contain a sufficient number of images in the age range of 30-69. In

contrast, both MORPH and Pinellas County Sheriffs Office (PCSO) (Han et al., 2015)

datasets have subjects with more uniform age distributions, thus the machine estima-

tion achieved low MAEs across all age ranges. Their comparisons suggest that the age

estimation performance of human is relatively independent of the age distribution in the

dataset and the dataset size because of their prior knowledge. Table 2.3 shows the

related contributions topics of facial aging from psychophysics, human perception and

physiology.

2.5 Wrinkle Detection Techniques

Although the relationship between age and physical and physiology skin attributes has

been studied for the last century, there was no attempt before the advent of image

processing to accurately measure visual characteristics of skin aging (Gartstein and

Shaya, 1996). The visible signs of damage to skin, such as wrinkling, sagging, irregular
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pigmentation, telangiectasia4, and hyperkeratosis5, are frequently clinically assessed

using either descriptive scales or photographically calibrated ones. The well-known

shortcomings of subjective assessment limit the scientific study of treatment and en-

vironmental effects on skin aging. Due to facial wrinkle is very similar to blood vessel

in the retinal image, different segmentation techniques in facial and retinal images are

reviewed here.

Gartstein and Shaya (1996) showed the use of image processing technique to the

analysis of profilometric traces of skin replicas. It is to isolate individual wrinkles and

measure their depth. There are four steps in the processing: masking, shading correc-

tion, enhancement and segmentation, and object identification and morphological mea-

surement. They claimed that the proposed method complements the measurement of

wrinkle width and length as extracted from conventional optical images. In comparing

the image-analysis measurements of subjects’ pictures to their perceived ages, a high

correlation of perceived-age with the total length of wrinkles. Thus, they stated that vi-

sual perception technique should be useful for validation of age-related measurements

and for evaluation of therapies which modify the facial appearance. They also demon-

strated that the proposed technique able to distinguish the old from the young and have

sufficient sensitivity to detect small skin aging related effects.

Cula et al. (2013) developed an algorithm for automatic detection of facial wrinkles.

It is based on estimating the orientation and the frequency of elongated spatial fea-

tures, capture via digital image filtering. They used a similar idea of fingerprint detection

where noise is removed and the contrast of image is improved in order to capture the

irregularities of linear surface. They stated that wrinkle detection is more difficult than

fingerprint detection because the appearance of wrinkles is more subtle, more varied

and significantly noisier, whereas fingerprint features appear as continuous lines with

almost constant thickness and frequency. They defined wrinkle index (WI) as a product

between wrinkle depth and wrinkle length. They claimed that the proposed compu-

tational assessment correlates well with the corresponding clinical scores. However,

the correctness of wrinkle detection is not validated where the found wrinkles could be

noises or lines of interest. Details of this algorithm are depicted in Section 3.1.2.1.

4According to Oxford English dictionary online (Dictionary, 2015), telangiectasia is a condition char-
acterised by dilatation of the capillaries causing them to appear as small red or purple clusters, often
spidery in appearance, on the skin or the surface of an organ, illustration can be found in (Negishi et al.,
2002).

5According to Oxford English dictionary online (Dictionary, 2015), hyperkeratosis is a condition char-
acterised by abnormal thickening of the outer layer of the skin.
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Batool and Chellappa (2014) introduced a novel method for facial wrinkle detection.

It is based on Gabor features using image morphology and geometric constraints. Ga-

bor filter bank is to highlight the subtle curvilinear discontinuities in skin texture based

on wrinkles. Then, image morphology is used to incorporate geometric constraints to

localize curvilinear shapes of wrinkles at image sites of large Gabor filter responses.

They pointed out few image characteristics of wrinkles as follows.

• Wrinkles cause intensity gradients which are highlighted by Gabor filter bank.

• Wrinkles appear as curvilinear features instead of blob like features.

• Wrinkles are continuous and not a series of disconnected curvilinear segments.

• Wrinkles are less probable to intersect each other or to be congested in small

areas.

Experiments are conducted on two sets of low and high resolution images and results

showed that the proposed algorithm is significantly faster than conventional approach

but also provides visually better results. However, their work is lack of intra- and inter-

reliability measurements where the annotation of single coder could be bias. In addition,

their method is time consuming due to a maximum of 30 iterations is required to verify

the neighbouring sites of connected segments. There are two limitations during the

evaluation setup. First, high detection rate did not ensure results of visually high quality

where the term ‘quality’ can be described as the continuity of a wrinkle curve as well

as its smooth curvature looking more similar to real wrinkles to a user. Second, the

hand-drawn wrinkles can be subjective depending on the user perception of wrinkles.

This introduced subjectivity in the quantitative results calculated from the experiments.

On the other hand, they also highlighted factors contributed to the degradation of local-

isation results as follows.

• Very light wrinkles. The most common reason for low detection rates was wrin-

kles’ being very light. The intensity gradients caused by the granular skin texture

are comparable to those caused by wrinkles. Consequently, the algorithm picks

non-wrinkle sites as wrinkles which increasing false alarm rate.

• Skin discolourations. This problem was more pronounced in subjects of lighter

skin colour which is more prone to having moles and brown / dark spots.
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• Illumination and bright spots. Due to the publicly available images being under

uncontrolled acquisition settings, most of the images had some illumination vari-

ation. The variation caused ‘bright spots’ in images where light is reflected from

skin surface due to greasy skin.

Chaudhuri et al. (1989) presented an operator for detecting blood vessels in retinal

images. It is based on the optical and spatial properties of objects to be recognised.

The grey-level profile of the cross section of a blood vessel is approximated by a Gaus-

sian shaped curve. The concept of matched filter detection of signals is used to detect

the piecewise linear segments of blood vessel in these images. They claimed that the

proposed scheme retains the computational simplicity of the enhancement / threshold-

ing type of edge operators, and at the same time incorporates the advantages of using

model-based edge detectors. However, they stated that it may take a long time to run

this algorithm due to the large size of convolutional kernel. They also observed three

interesting properties of the blood vessels in retinal images as follows:

• Since the blood vessels usually have small curvatures, the anti-parallel pairs may

be approximated by the piecewise linear segments.

• Since the vessels have lower reflectance compared to other retinal surfaces, they

appear darker relative to the background.

• Although the width of a vessel decreases as it travels radially outward from the

optic disk, such a change in blood vessel is a gradual one.

Frangi (2001) proposed a vessel enhancement filter for examining the multi-scale

second order structure of an image. A measure of vessel-likeliness is obtained by all

eigenvalues of Hessian. They tested on 2D Digital Subtraction Angiography (DSA)

and 3D aortoiliac and cerebral Magnetic Resonance Angiographic (MRA) data. Since

vessels appear in different sizes, they introduced a measurement scale which varies

within a certain range. They conceived vessel enhancement as a filtering process that

searches for geometrical structures which can be regarded as tubular. Results showed

that the proposed method performs an excellent noise and background suppression in a

two clinical imaging modalities. Details of the algorithm are described in Section 3.1.2.2.
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2.6 Feature Representation

Feature representation is very important for age estimation, since the extracted fea-

tures greatly affect the classification performance. These features can be categorised

into local, global and hybrid features (Mark et al., 1980; Kwon and da Vitoria Lobo,

1994; Kwon and da Vitoria Lobo, 1999; Günay and Nabiyev, 2008; Aznar-Casanova

et al., 2010). As stated in the first chapter, local features represent aging features in

a series of image patches, global features tend to describe an image as a whole and

hybrid features are a combination of both. Local features have been commonly used to

classify people into age groups (e.g. babies, young adults and senior adults) as they

possess unique characteristics that distinguish specific age group. Consequently, these

features are better suited to applications requiring an age group classification (e.g. the

class of less than 20 years old, the class of 20-39 years old, etc.) rather than a de-

tailed age estimation (e.g. 17, 23 years old, etc.). Conversely, unlike local features,

global features tend to be used for a detailed age estimation and contain not only aging

characteristics, but other individual characteristics such as identity, expression, gen-

der, ethnicity, among others. Therefore, individual characteristics are reflected better

in global features than aging clues. For instance, FAM (Cootes et al., 2001) is mainly

used to estimate an age as global features, because they offer greater amounts of in-

formation concerning the appearance and shape of a face than local features (Lanitis

et al., 2002; Geng et al., 2007; Yan et al., 2008a). However, FAM features do not in-

clude detailed wrinkle and skin informations, due to the dimensional reduction made

by PCA. This defect can be resolved by hybrid features through a combination with

local features. Suo et al. (2008) proposed an age estimation method based on hybrid

features and the defect found in each feature can then be compensated by combining

both global and local features. Therefore, hybrid features are desirable for an accurate

estimation of face age (Chao et al., 2013).

2.6.1 Global Feature

As mentioned above, Geng et al. (2006) proposed AGES for learning the facial aging

patterns for automatic age estimation. The basic idea is to model the aging pattern,

which is defined as a sequence of personal aging face images, by learning a represen-

tative subspace. A proper aging pattern for an unseen face image is then determined by

the projection in the subspace that can best reconstruct the face image, while the posi-

tion of the face image in that aging pattern will indicate its age. They claimed that AGES
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treated each aging pattern as a sample, which naturally integrates the personal identity

and the time concept. This changes the learning task from an image-class problem

based on complete data into an (image sequence)-(class sequence) problem based on

incomplete data. An iterative learning algorithm is specially developed to learn a rep-

resentative subspace from the highly incomplete aging patterns. Their results showed

that AGES outperforms the existing algorithms and also exceeds the human ability for

age estimation. However, AGES has three main problems. First, the subspace of one

particular age requires at least few images during the training stage, otherwise no re-

sults can be predicted at that age. Second, the reconstruction of missing face images

are highly redundant which may increase the prediction error. Third, multiple aging sub-

spaces might appear as the lowest distance of an unseen image and it may enlarge the

margin of prediction error.

Fu and Huang (2008) construct a low-dimensional manifold from a set of age-

separated face images using different manifold learning approaches such as Locality

Preserving Projections (LPP), Orthogonal Locality Preserving Projections (OLPP), Con-

formal Embedding Analysis (CEA). They used linear and quadratic regression functions

on the low-dimensional feature vectors from the respective manifolds, in estimating the

age of a face image. Along very similar lines, Guo et al. (2008a) adopted the manifold

learning approach and the use of Support Vector Regression (SVR) to estimate the age

from low-dimensional representation of faces.

Chen et al. (2013) introduced a novel cumulative attribute space based framework

for solving a number of computer vision problems invoking the need for regression es-

timation. Noisy and sparse low level visual features are mapped onto a cumulative

attribute space where each dimension is designed specifically to give a clear semantic

meaning that captures how the scalar output (e.g., age, people count) changes contin-

uously. They claimed that the proposed framework requires no additional human an-

notation to assign attributes and the face age can be estimated efficiently given sparse

and imbalanced training data.

Luu et al. (2011) proposed a novel Contourlet Appearance Model (CAM) to localize

facial landmarks and extract texture features from the convex hull bounded by them.

CAM is a combination between features of Modified Active Shape Model (MASM) and

Nonsubsampled Contourlet Transform. MASM decouples the fitting of facial landmarks

from the extraction of texture features, while Contourlet features represent local fea-

tures such as wrinkles in the adult period. They claimed that CAM is more accurate at

reconstructing an unseen texture compared to a conventional AAM. Results showed
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that the proposed method achieves a MAE of 4.12 on FGNET.

Yang et al. (2011) proposed a feature fusion method which ensembles global fea-

tures from FAM and local features from a Gabor wavelet transformation. First, they

performed FAM modelling on a face image to retrieve global features and the shape-

free patch. Second, they used a Gabor wavelet transformation on the shape-free patch

to get the Gabor feature representation and then PCA is applied to reduce the dimen-

sionality of local features. Third, they utilised SVR to perform regression analysis for

estimating the age. Results showed that a MAE of 5.88 is achieved on PAL.

Chao et al. (2013) proposed a new age estimation approach considering the intrinsic

factors of human ages. In order to avoid over-fitting and explore the connections be-

tween facial features and age labels, LPP (He and Niyogi, 2004) is utilised to reduce the

dimensionality of features drastically and preserve the most important information. They

introduced a label-sensitive concept to better exploit the ordinal relationship among age

labels and presented an age-oriented local regression algorithm. Ordinal relationship

among age labels is one of the factors that causes age estimation more difficult learn-

ing task than the traditional multi-group classification. For example, age of 30 years

is closer to age of 25 years than age of 10 years. Therefore, the ordinal relationship

among age labels are considered in distance metric adjustment and dimensionality re-

duction. They also proposed several imbalance treatments to alleviate the imbalance

problem. They achieved a MAE of 3.06 on FGNET with ages smaller than 30 and a

MAE of 4.11 with a 4-fold cross validation on whole FGNET.

2.6.2 Local Feature

For local descriptor, it can be divided into two categories: synthetic and natural. Syn-

thetic features are a set of artificial patterns created by numerous texture-based de-

scriptors such as Local Binary Patterns (LBP) (Ojala et al., 1994; Ylioinas et al., 2013),

Histogram Of Gradient (HOG) (Dalal and Triggs, 2005; Fernández et al., 2015) and BIF

(Serre et al., 2005; Guo et al., 2009a). Natural features are pixels derived originally

from an image without any preprocessing (i.e., wrinkle, moustache, hair, etc.). Different

methods of synthetic and natural descriptor are discussed in the following section.

2.6.2.1 Synthetic Feature

Yang and Ai (2007) applied Local Binary Pattern Histograms (LBPH) as aging descrip-

tors. Given a restricted local patch, a Chi square distance between the extracted LBPH
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and a reference histogram is used as a measure of confidence belonging to the ref-

erence class. Adopting the AdaBoost technique, they identified a sequence of local

features which when combined into a strong classifier performs the task of age classi-

fication successfully. They claimed that the error rate of age classification is as low as

7.88% on FERET. However, LBPH is weakened by the sparse nature of LBP represen-

tation Ylioinas et al. (2013).

Guo et al. (2009a) proposed BIF for age estimation via faces. The basic idea is

derived from a feedforward model of the primate visual object recognition pathway so-

called the “HMAX” model. It contains alternating layers called Simple (S) and Complex

(C) cell units creating increasing complexity as the layers progress from the primary

Visual cortex (V1) to Inferior Temporal (IT) cortex (Serre et al., 2005). The first layer S1

is created with a Gabor filtering on the input image. The second layer C1 is obtained

with a “MAX” operation on S1. This kind of feature has the advantage of handling small

translations, rotations, and scale changes, which, if effective, captures aging patterns.

The BIF feature combined with Support Vector Machine (SVM) can achieve a MAE of

4.77 years on FGNET, and MAEs of 3.91 and 3.47 years for female and male on the

dataset of Yamaha Gender and Age (YGA) (Fu and Huang, 2008), respectively. These

results demonstrate the superior performance of BIF for the task of age estimation.

Details of this algorithm is presented in Section 3.2.1.3.

Ruiz-Hernandez et al. (2010) proposed a tensor representation from Gaussian re-

ceptive field. A tensorial representation is used to encode the shape changes in the

aging process and it conserves the 3D structure of the scale space. LBP is applied

over each Gaussian receptive field and this operator encodes a set of micro-patterns

from the neighbourhood appearance. Multi-linear PCA is used to reduce the dimen-

sionality of the tensorial space. Results showed that the best MAEs of FGNET and

MORPH are 4.96 and 6.19, respectively. They claimed that a tensorial representation

conserves the natural structure information contained in the binary maps.

Ylioinas et al. (2013) proposed KLBP for face age estimation. This method includes

a pose correction method and a comparison of two local binary pattern based facial

representations, namely a spatially enhanced histogram and a novel kernel density

estimate. It generates sign and magnitude features through face patches. They claimed

that the sparse nature of LBP representation is improved using the proposed kernel

estimator. They achieved a MAE of 5.20 on original images of FGNET and a MAE of

5.09 on pose corrected images. However, this method is not yet tested on FERET.

Details of this algorithm is given in Section 3.2.1.4.
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Fernández et al. (2015) presented a comparative evaluation of four regression learn-

ing algorithms for facial age estimation. They are kernel techniques, ensemble learn-

ing, neural networks and projection algorithms. They used simple HOG descriptors as

feature representation of each image. They claimed that advantages of using HOG

features are no face alignment needed, no modelling of facial aging and no additional

demographic annotations. In a 5-fold cross validation, they achieved a MAE of 4.83 on

MORPH and a MAE of 2.88 on the dataset of Face Recognition Grand Challenge v2.0

(FRGC) (Phillips et al., 2005).

2.6.2.2 Natural Feature

As mentioned above, Kwon and da Vitoria Lobo (1999) proposed a combination rule

of the facial ratios and wrinkle index for age group classification. These criteria were

suggested by craniofacial research and the observation that aging skin develops wrin-

kles. Initially, different ratios are measured from a number of facial landmarks such as

oval, chin, sides of face, virtual top of head, eyes, mouth and nose. Next, a population

of snakelets are used to find wrinkles. A snakelet is a small snake segment designed

to find a small individual curve segment in an image. A wrinkle geography map drops

multiple snakelets in polygonal regions, where wrinkles may typically be found. Their

focus is concentrated on the wrinkles on forehead, next to the eyes and near the cheek

bones. If several curves are found in a particular region, they claimed that wrinkles exist

in that region. The different locales of evidence for the presence of wrinkles are then

weighted appropriately for classifying into one of three groups, babies, young adults and

seniors. Their experiments showed that computing ratios and detecting the presence of

wrinkles can yield age categorization. However, there are at least two problems need

to be addressed. First, there was no objective validation against the extracted wrinkles.

Lines found by the snakelet could be wrinkles or noises. Second, facial alignment was

not done automatically. Wrinkle geography map was placed manually for dropping the

snakelets. It is worth to mention that they failed to locate any wrinkles with an image

resolution of 256×256. A zoom in process is required to further capture the details and

they stated that a high resolution image (1280×1024) is a potential area to be explored

for wrinkle analysis.

Takimoto et al. (2007) investigated the appearance-age features for age estimation.

The features are wrinkle, freckle, shape, hair and colour where these features are dis-

tributed at different parts of face such as forehead, eye corners, eye bags, nasalobial
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region ends of mouth and chin. They used different measurements for different fea-

tures, i.e., edge of wrinkle, strength of freckle, coordinates of shape, brightness and

saturation. A genetic algorithm (GA) is used to select the optimum features and a

Multi-layer Perception (MLP) is implemented to estimate the age from 12 to 68 years

old. Their results suggested that appearance-age features are influenced by different

age groups.

Choi et al. (2010) studied the local feature extraction for age estimation. They com-

pared the performances of Sobel filter, difference image between original and smoothed

image, Ideal High Pass Filter (IHPF), Gaussian High Pass Filter (GHPF), Haar features

and Discrete Wavelet Transform (DWT). They claimed that the facial wrinkles and skin

texture are very important information for age estimation. With age increasing, facial

wrinkles are increased and spots or blotches are appeared on skin texture. These

aging features are generally shown as high frequency components on images. They

also found that local features are largely influenced by the image resolution and it can

be used to estimate detailed age, not limited to age group classification. However,

they only achieved MAE of 6.85 (±5.34) on their dataset of Biometrics Engineering Re-

search Center (BERC) and 8.44 (±7.16) on PAL. This implies that age estimation using

local features still a challenging problem.

2.6.3 Hybrid Feature

Chen et al. (2011) introduced a facial feature fusion which combines global features

extracted from FAM and local features extracted from LBP. They also proposed an ad-

vanced age estimation system combining feature fusion and model selection schemes

such as Least Angle Regression and sequential approaches. Due to the fact that differ-

ent facial feature representations may come with various types of measurement scales,

normalisation scheme is applied for both facial features. Their results showed that fea-

ture fusion achieves better results over single feature. A min-Max normalisation works

better than other normalisation methods.

Choi et al. (2011) proposed a hierarchical classifier based on hybrid features. Hybrid

features are a combination of global and local features. In the global feature extraction

step, FAM appearance and shape parameters are extracted as global features. In the

local feature extraction step, the skin wrinkle is extracted using a set of region specific

Gabor filters, each of which is designed based on the regional direction of the wrinkles,

while the skin texture is extracted using a LBP which is capable of extracting the detailed

textures of skin. Figure 2.7 demonstrates an example of Gabor feature extraction with 8
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Figure 2.7: Feature extraction using Gabor filter. Each column shows a different scale
and each row presents a different orientation. Bottom right corner is a cropped image
from FERET.

different orientations and 5 different scales. It is noticed that a perceptible face outline

can be seen on small size of filter especially around the eyes and mouth. They claimed

that this combination can compensate the defects found in individual global and local

features. Table 2.4 presents the pros and cons of each descriptors. It is noticed that

a combination of features would increase the computation time due to a large size of

feature dimension. Moreover, it might influence the estimation performance because a

mixture patterns with different ranges of values would affect the modelling process of a

classifier, unless a preprocessing step of feature normalisation is applied.

Wu et al. (2012) proposed a model based on the facial shapes and texture patterns.

Facial shapes are distributed as points on a Grassmann manifold. A Grassmann man-

ifold is the space whose points are k -planes where each k -plane is associated with an

equivalence class. It is not a vector space, however points on a Grassmann manifold

can be projected onto the tangent space at a mean-point and standard vector-space

methods can then be applied on the tangent space as aging signatures. Using these

tangent-vectors as shape features, they applied a standard Euclidean space regression
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Table 2.4: A comparison between local, global and hybrid features. Note that partial of
this table was derived from the article of Choi et al. (2011).

Category of
Features

Feature Description Strength Weakness

Local
Skin texture, wrinkle,
hair

Ability to extract
aging features
without an influence
of personal
characteristics

Better suited to age
group classification

Global

FAM-based
parameters, age
manifolds, age
subspaces

Provides a detailed
representation of
face age

Does not include
enough information
on wrinkles and
aged skin

Hybrid
A combination of
both global and local
features

Compensates
weaknesses of each
features

Time consuming
and feature reliability
is doubtful

methods for the age estimation problem. For texture features, they used a Histogram

of Gabor Phase Patterns (HGPP) (Zhang et al., 2007). A Partial-Least Squares (PLS)

regression method is implemented for texture features due to its ability in handling a

very high dimension features. In addition, they proposed a fusion which is based on the

intermediate scores obtained from the shape and textural cues. Experimental results

showed that a fusion between HGPP and geometric features outperform others for age

estimation on FGNET. They argued that facial geometry has a strong influence on age

perception.

2.7 Age Estimation Techniques

Typically, the existing facial aging estimation methods consist of two concatenated mod-

ules: feature representation and feature classification, as shown in Figure 2.8. In the

first step, facial appearance changes are extracted from the face images for a com-

pact representation; in the second step, an age estimation model is built to determine

the face age based on the represented features (Choi et al., 2011; Chao et al., 2013).

In general, age estimation is divided into three categories: age group classification,

single-layer age estimation and hierarchical age estimation (Lanitis et al., 2004; Günay

and Nabiyev, 2008). Age group classification is an approach that predicts an age group,
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Figure 2.8: Flow of face age estimation. Note that this figure was redrawn from FGNET.

whereas single-layer and hierarchical age estimations are focused on detailed age pre-

diction. Moreover, hierarchical age estimation is a coarse-to-fine method that finds the

age label in a pre-defined group. Of these methods, hierarchical age estimation pro-

vides the most improved performance (Luu et al., 2009; Choi et al., 2011). As facial

aging is perceived differently in various age groups, age estimation in a specific age

group provides a more accurate result. Moreover age estimation on a smaller age

group simplifies the computational load (Guo et al., 2009b; Choi et al., 2011).

2.7.1 Age Group Classification

Ramanathan and Chellappa (2006) proposed a method to estimate the age separa-

tion between a pair of face images of an individual. Considering four age separation

categories namely, 1-2 years, 3-4 years, 5-7 years and 8-9 years, they created intra-

personal subspaces for each category using the difference of images obtained from

pairs of age-separated face images from the respective categories. Their approach

was based on the premise that facial appearance variations are induced as a result of

facial aging would be more pronounced. As a result, the ‘image difference’ features

would get progressively more exaggerated with an increase in age separation. They

used a Bayesian framework to classify pairs of face images based on age separation

and further extended the approach to perform face verification across age progression.
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Suo et al. (2007) adopted the multi-resolution grammatical face model (Xu et al.,

2005) and augmented the model with age and hair features. Facial aging was modeled

by means of a dynamic Markov process on the And-Or graph representation. They

created a dictionary of different facial components and regions across five age groups:

20-30 years, 30-40 years, 40-50 years, 50-60 years and 60-70 years. The transitional

probabilities comprised in the dynamic model are computed by means of ‘geometric

distances’ and ‘photometric distances’ computed between facial components from dif-

ferent age groups. They claimed the following attributes related to facial aging are

accounted for, in three different resolutions of the face image as,

• Global appearance variations in facial shape, hair style and skin colour are ad-

dressed at the lowest resolution.

• Deformations in facial components are addressed in the next resolution.

• Finally, finer aspects such as wrinkles and skin pigments are accounted for in the

highest resolution.

Luu et al. (2010) introduced an advanced age determination technique that com-

bines a feature set derived from a face image. It is using multi-factored PCA on the

face shape and skin in order to produce a 30× 1 linear encoding of the face image.

The linearly encoded features are combined with Spectral Regression (SR) to further

reduce the dimensionality of the encoded features such that inter-class distances are

minimized while maximizing intra-class distances. The encoded features are used to

recognise a face into one of two age groups, pre-adult (0-20 years old) and adult (> 20).

Then, an age determination function is constructed for each age group in accordance

to physiological growth periods for humans. Results showed that the proposed method

achieved a MAE of 4.25 on FGNET.

2.7.2 Single-layer Age Estimation

Ricanek Jr et al. (2009) proposed a generalised multi-ethnic age estimation technique.

They used FGNET and MORPH as the benchmark datasets where MORPH is divided

into five race groups: Asian, African-American, Hispanic, Indian and Caucasian. They

claimed that an overall performance of the proposed method is comparable to the ex-

isting algorithms that are tuned for a specific ethnic group. They highlighted three in-

teresting points when developing a general model for face age estimation: feasibility of

reduced features, selectivity of optimized features and size of features.
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Weng et al. (2013) proposed a multi-feature ordinal ranking method for age esti-

mation. It is based on learning weighted classifiers on multiple feature sets. Comple-

mentary information between different feature sets are explored by assigning weights

to their correspondent classifiers through joint learning. Moreover, age estimation prob-

lem is divided into a group of K−1 sub-problem of binary classification according to the

ordinal property of age labels where K is the number of age labels in the dataset. Their

results demonstrated that the proposed ranking method outperforms other multi-view

data fusion approaches.

Guo and Mu (2014) presented a new framework for joint estimation of age, gen-

der and ethnicity. Under the proposed framework, they explored different methods to

accomplish a one-step procedure for the joint estimation problem. They studied the fea-

ture dimensionality problem using the rank theory methods, Canonical Correlation Anal-

ysis (CCA) and PLS. CCA describes a linear relation between two multi-dimensional

variables as the problem of finding basis vectors for each set, while PLS uses latent

variables to learn a new space to make the data correlates to each other. BIF is used

to characterise the facial patterns for age, gender and ethnicity together. They found

that CCA based methods can derive an extremely low dimensionality where only three

dimensions of features are needed to estimate age, gender, and ethnicity together.

2.7.3 Hierarchical Age Estimation

Thukral et al. (2012) proposed a hierarchical approach for age estimation where face im-

ages are divided into different age groups and a separate regression method is learned

for each group. The groups are 0-15, 15-30 and above 30. They claimed that this di-

vision is based on the perceived homogeneity of the geometric growth of human faces

with age and also the number of images available at different age groups. They used

geometric feature vectors (Turaga et al., 2010) to represent each face in the dataset.

Results showed that age estimation in the age group of above 30 is worse than other

groups due to less variation of the facial geometry. They claimed that the proposed

method hits a MAE of 3.40 on FGNET. However, the boundary of age group is a chal-

lenging problem. Such a hard boundary might not applicable to other datasets because

different ethnicity or gender might have different rates of growing.

Han et al. (2015) presented a generic framework for automatic demographic esti-

mation that includes age, gender and race. Given a face image, they first extracted
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Table 2.5: Summary of NIST findings (Ngan and Grother, 2014).

Impact Description
Core accuracy
and speed

Age difference of 5 years on 6 million images is 67%, with a
MAE of 4.3 years. All algorithms < 0.15 seconds.

Demographic
data on accuracy

In 240 thousand images, MAE of males < females; MAE of an
ethnically-heterogeneous population > a homogeneous
population; MAE of age group 56-99 > 18-55.

Image quality on
accuracy

A 17 year-old has a 29% chance of passing for 21. MAE of
high quality mugshot images < poor quality webcam photos.

Number of image
samples on
accuracy

Number of image samples ↑ age estimation times ↑.

demographic informative features via a boosting algorithm, and then employed a hier-

archical approach consisting of between-group classification and within-group regres-

sion. An automated quality assessment model is also proposed to identify low-quality

face images that are difficult to obtain reliable demographic features. Prior to select the

demographic features, they used BIF for feature extraction. Then, multi-class AdaBoost

is used to select the demographic features. The most informative features for age es-

timation are located in the regions where wrinkles typically appear such as eyes and

mouth corners, nasolabial folds and cheeks. In the classification stage, three binary

SVM classifiers are used to build a two-level binary decision tree and a test image is

classified into one of the four groups. In the regression stage, a separate SVM regres-

sion is trained within each group to make an accurate age prediction. They claimed that

the proposed hierarchical classifier with a quality assessment model can closely match

human performance in demographic estimation with a MAE as low as 3.8 on FGNET.

2.8 Research Direction

In 2014, National Institute of Standards and Technology (NIST), United States (U.S.)

Department of Commerce, performed a large scale empirical evaluation of face age

estimation algorithms, with participation from five commercial providers and one uni-

versity, using three large operational datasets comprised of facial images from visas

and law enforcement mugshots, leveraging a combined corpus of over 7 million images

(Ngan and Grother, 2014). They employed a black-box testing methodology designed

to model operational reality where software is shipped and used ‘as-is’ without algorith-

mic training. Core age estimation accuracy was baselined over a large homogeneous
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population, then assessed demographic by age group, gender and ethnicity. The impact

and results of this study are summarised in Table 2.5. For core accuracy and speed,

it highly depends on the provider of the core technology. Using the most accurate age

estimation algorithm, the chance of accurately estimating the age of a person within

five years of their actual age over 6 million images is 67%, with a MAE of 4.3 years. All

algorithms can perform age estimation on a single image in less than 0.15 seconds with

one server-class processor. For impact of demographic data on accuracy of 240,000

images, age is more accurately estimated in males than females, with the tendency for

adult females to be underestimated. A majority of the algorithms demonstrated lower

accuracy and higher MAE on an ethnically heterogeneous population than a homoge-

neous population, which suggests that ethnicity has an impact on age estimation. A

majority of the algorithms estimate age more accurately for the most operationally rel-

evant age group, 18-55, while the majority of algorithms exhibit the highest MAE in the

senior age group, 56-99. For age verification accuracy that a person is at least 21 years

old, a 17 year-old has a 29% chance of passing for 21, as achieved by the most ac-

curate algorithm. This false verification percentage increases as a person gets closer

to age 21. For impact of image quality on accuracy, high quality mugshot images are

more accurate than poor quality web-cam photos due to the overestimation is seen in

web-cam photos. For the impact of number of samples on accuracy, age estimation

computation times increase linearly with respect to the number of image samples. For

contemporaneous mugshot images of the same subject collected within a one year pe-

riod, the results showed a MAE monotonically decreasing as the number of images

provided increased for all algorithms. Appendices A and B show the state-of-the-art

results of detailed age estimation and age group classification on different datasets.

The process of age estimation attempts to label a face image automatically with

the exact age (year) or the age group (year range) of the individual face. By deriving

significant features from faces of known ages, the age of an individual face can be

estimated by solving the inverse problem using the same feature-extraction technique.

Although many algorithms have been proposed since 1994 (Kwon and da Vitoria Lobo,

1994; Ramanathan et al., 2009; Fu et al., 2010), age estimation is still a challenging

problem due to three reasons (Geng et al., 2006, 2007):

i. The aging process is uncontrollable. The procedure of aging is slow and ir-

reversible. Thus the collection of sufficient training data for age estimation is

extremely laborious.

ii. Personalised aging patterns. Different persons age in different ways. The aging
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Table 2.6: Potential research areas for face age estimation.

Feature Types

Age Group
Classification
(Ramanathan and
Chellappa, 2006;
Suo et al., 2007;
Luu et al., 2010)

Single-layer Age
Estimation
(Ricanek Jr et al.,
2009; Weng et al.,
2013; Guo and
Mu, 2014)

Hierarchical Age
Estimation (Choi
et al., 2011;
Thukral et al.,
2012; Han et al.,
2015)

Local Features (Kwon
and da Vitoria Lobo,
1999; Takimoto et al.,
2007; Guo et al.,
2009a; Choi et al.,
2010; Li et al., 2011;
Ylioinas et al., 2013)

Wrinkle, spots,
freckle, etc. were
explored, but the
features are not
robust and no
objective
quantification
against the
extracted features.

BIF and LBP were
well studied,
additional methods
which could
preserve the
complex aging
features are worth
to be studied.

No research yet.

Global Features (Geng
et al., 2006; Fu and
Huang, 2008; Chen
et al., 2013; Luu et al.,
2011; Yang et al.,
2011; Chao et al.,
2013)

Anthropometric
model and
appearance model
were thoroughly
investigated, but
an extension to
detailed age
estimation is
preferable.

FAM-based
parameters and
age manifolds
were widely
investigated, but
feature dimension
and selection
remains a
challenging issue.

Limited
research.

Hybrid Features (Chen
et al., 2011; Choi et al.,
2011; Wu et al., 2012)

A combination of
natural features
were proposed in
literature, results
were not
promising.

A number of hybrid
features were
introduced for
detailed age
estimation, but
feature
normalisation is an
issue.

The hierarchical
design and age
range selection
are challenging
issues.

pattern of each person is determined by his/her gene as well as many external

factors such as health, living style and weather conditions.

iii. The aging patterns are temporal data. The aging progress must obey the order

of time. The face status at a particular age will affect all older faces, but will not

affect those younger ones.
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First, facial age progression is uncontrolled and personalised. Characteristics of ag-

ing variation cannot be captured easily due to the large variations conveyed by human

faces. Facial aging effects are manifested in different forms during different ages. While

facial aging effects are predominantly manifested in the form of facial shape variation

during formative years, textural variations in the form of wrinkles and other skin artefacts

take precedence over shape variations during later stages of adulthood. Hence, facial

aging can be described as a problem of characterising facial shape and facial texture

as functions of time. Since aging affects induce progressive variations in facial appear-

ances, models characterising the same need to account for the temporal nature of the

induced variations (Ramanathan et al., 2009). Second, there is no complete facial aging

dataset with chronological ages. Developing facial growth models or building character-

isations of facial aging begins with identifying the appropriate form of data that provide a

fair description of the event. The data could be individual-specific or population-specific.

Fiducial features (2D or 3D) extracted from age-separated faces, 2D facial imagery or

3D facial scans extracted from individuals across different ages, face anthropometric

measurements extracted from a population, etc. are some forms of data that can help

characterise facial growth (Ramanathan et al., 2009). It is hard to collect a large facial

image set of people throughout their life which are sufficient to present detailed aging

progression. Third, it is difficult to define an absolute aging pattern which can be used

to quantify one particular age. For example, these are weak arguments if we say two

wrinkles at the eye corner is classified as age 20, three wrinkles as 30 years old and so

on. Such vague arguments will cause ambiguity if the person’s age is between 20 and

30. Thus, a robust wrinkle-based representation is needed to cope with the identified

problem.

Table 2.6 shows the potential research areas for face age estimation. It is noted that

most of the works are focusing on global features, hybrid features, age group classifica-

tion and single-layer age estimation. Local features such as wrinkles are particularly a

research of interest as many works have confirmed that wrinkles are highly correlated

with aging. Based on the reviews, here are few observations of facial wrinkles,

i. Facial wrinkles appear when aging.

ii. Facial Wrinkles grow randomly across different parts of face.

iii. Density of wrinkles grows when aging.

iv. Depth of wrinkles increases when aging.
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In addition, hierarchical age estimation is also a potential area to be explored. As a

result, few research questions are highlighted as follows and these will be answered in

the following contribution chapters,

i. How to extract wrinkles from face accurately without human intervention.

ii. How to represent wrinkles as aging features in the context of face age estima-

tion.

iii. How to make use of extracted wrinkles in hierarchical age estimation.

2.9 Summary

This chapter introduces the state-of-the-art methods for face age estimation. It includes

questions like ‘why is face age estimation is important?’, ’what happens to the human

face when aging?’, ’how a human estimates people’s age?’, ’what are the related works

of face age estimation?’. The advantages and disadvantages of each method are also

highlighted. Chapter 3 will present a report of the theory, measurement and datasets

being applied in this work. The idea is to systematically review the existing methods

so that the performance of the proposed methods can be compared to the benchmark

algorithms in terms of accuracy and functionality.
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Chapter 3

Theory, Measurement and Datasets

This chapter describes each of the component techniques, measurement

and datasets that were explored together to develop the novel methods

described in later chapters. These consist of methods for solving wrinkle

detection and face age estimation. A number of different scientific mea-

surements and datasets are introduced. Most of them are applied in the

following chapters as the benchmark methods and datasets.

3.1 Segmentation Algorithms

In this section, different methods for edge detection and line detection are described.

3.1.1 Edge Detection

In image segmentation, the most common approaches for detecting meaningful discon-

tinuities in intensity values are convolution-based techniques such as the Sobel filter,

Canny edge detector, Laplacian Of a Gaussian detector (LoG) typically followed by

thresholding (Sobel and Feldman; Canny, 1986; Gonzalez et al., 2004). Such disconti-

nuities are detected using the first and second order derivatives. The gradient of a 2D

function, f , is defined as

∇ f (x,y) =

[
Gx

Gy

]
=

[
∂ f
∂x
∂ f
∂y

]
(3.1)

The magnitude, Λ, of this vector is
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Λ = mag(∇ f ) (3.2a)

=
[
G2

x +G2
y
]1/2 (3.2b)

=
[(

∂ f
/

∂x
)2

+
(
∂ f
/

∂y
)2
]1/2

(3.2c)

The result of gradient approximations can be simplified by the square-root operation,

Λ≈ G2
x +G2

y (3.3)

or using absolute values,

Λ≈ |Gx|+
∣∣Gy
∣∣ (3.4)

These approximations still behave as derivatives; that is, they are zero in areas of con-

stant intensity and their values are proportional to the degree of intensity change in

areas whose pixel values are variable. It is common practice to refer to the magnitude

of the gradient or its approximations simply as ‘the gradient’.

A fundamental property of the gradient vector is that it points in the direction of

the maximum rate of chance of f at coordinates (x,y). The angle, α, at which this

maximum rate of chance occurs is

α(x,y) = tan−1
(

Gy

Gx

)
(3.5)

One of the key issues is how to estimate the derivatives Gx and Gy digitally. The

various approaches for edge detection are discussed later in the following sections.

The second order derivatives in image processing are generally computed using the

Laplacian function. That is, the Laplacian of a 2D function f is formed from the second

order derivatives, as follows:

∇
2 f (x,y) =

∂2 f (x,y)
∂x2 +

∂2 f (x,y)
∂y2 (3.6)

The Laplacian function is seldom used by itself for edge detection because, it is

unacceptably sensitive to noise; its magnitude produces double edges, and it is unable

to encode edge direction. However, the Laplacian function can be a powerful compo-

nent when used in combination with other edge-detection techniques. For example,

although its double edges make it unsuitable for edge detection directly, this property
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Figure 3.1: Profile of an edge. Top row shows an image with different edges. The
second row is a profile of a horizontal line where y-axis is the grey-scale value. Third
row presents profile of the first order derivative and the last row demonstrates the profile
of the second order derivative. Dotted line means the location of edge of interest. Note
that this figure was redrawn from the book of Sinha and Patel (2014, Chapter 6).

can be used for edge location.

With the preceding discussion as background, the basic idea behind edge detection

is to find places in an image where the intensity changes rapidly, and significantly using

one of two general criteria:

i) Find places where the first derivative of the intensity is greater in magnitude

than a specified threshold.

ii) Find places where the second derivative of the intensity has a zero crossing.

Figure 3.1 shows an example of edge image on a dark background. For the left

image, grey-scale values change from black to white and then to black again, while
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Figure 3.2: Sobel detector masks. Image mask shows the neighbourhood in a 3× 3
filter. Gx and Gy are the first derivatives of Sobel detector. Note that this figure was
redrawn from book of Gonzalez et al. (2004, Chapter 10).

the right image is in the opposite direction. The edge is between black and white area

(dotted line in the figure). The first derivative is positive when the image changes from

dark to light and zero where the image is constant. The second derivative is positive

for the part of the transition associated with the dark side of the edge and negative for

the transition associated with the light side of the edge. Thus the magnitude of the first

derivative can be used to detect the presence of an edge in the image and the sign of

the second derivative can be used to detect whether a pixel lies on the light or dark side

of the edge (Sinha and Patel, 2014, Chapter 6).

3.1.1.1 Sobel Filter

The Sobel edge detector uses the masks in Figure 3.2 to approximate digitally the first

derivatives Gx and Gy by convolution. In other words, the gradient at the center point in

a neighbourhood is computed as

G =
[
G2

x +G2
y
]1/2

(3.7a)

=
(
[(a7 +2a8 +a9)− (a1 +2a2 +a3)]

2

+[(a3 +2a6 +a9)− (a1 +2a4 +a7)]
2
)1/2

(3.7b)

Then, a pixel at location (x,y) is an edge pixel if G ≥ t at that location, where t is a

specified threshold. G is a logical image containing 1s at locations where edges were

detected and 0s elsewhere.
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Figure 3.3: Properties of Canny edge detector. (a) Non-maximal suppression and (b)
hysteresis thresholding.

3.1.1.2 Canny Edge Detector

The Canny detector (Canny, 1986) is the one of the most powerful edge detector for

segmentation. It has been used for wrinkle detection and age group classification by

Dehshibi and Bastanfard (2010). The method can be summarised as:

i. The image is smoothed using a Gaussian filter as Eq. (3.8) with a specified

standard deviation, σ.

ii. The local gradient, G = Gx
2+Gy

2, and edge direction, α = tan−1(Gy/Gx), are

computed at each point. Any of the edge detectors such as Sobel filter can

be used to compute Gx and Gy. An edge point is defined to be a point whose

strength is locally maximum in the direction of the gradient. Note that both

smoothing (i) and edge detection (ii) functions can be combined into a single

step by first order derivative of Gaussian filter.

iii. The detected edge points give rise to ridges in the gradient magnitude image.

The algorithm then tracks along the top of these ridges and sets to zero all

pixels that are not actually on the ridge top so as to give a thin line in the output,

a process known as non-maximal suppression as shown in Figure 3.3(a). Point

A is on the edge ( in vertical direction). Gradient direction is normal to the edge.

Point B and C are in gradient directions. So point A is checked with point B

and C to see if it forms a local maximum. If so, it is considered for next stage,

otherwise, it is suppressed ( put to zero).

iv. The ridge pixels are then thresholded using hysteresis thresholding as shown in

Figure 3.3(b). Let two threshold, t1 and t2, with t1 < t2. Ridge pixels with values
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Figure 3.4: An illustration of the Laplacian of a Gaussian kernel.

greater than t2 are said to be “strong” edge pixels. Ridge pixels with values

between t1 and t2 are said to be “weak” edge pixels. The edge D is above

the t2, so considered as ”strong-edge”. Although edge F is below maxVal, it is

connected to edge D, so that also considered as valid edge and we get that full

curve. But edge E, although it is above t1 and is in same region as that of edge

C, it is not connected to any ”strong-edge”, so that is discarded. So it is very

important that we have to select t1 and t2 accordingly to get the correct result.

3.1.1.3 Laplacian of a Gaussian Detector

Consider a Gaussian function as

f (x,y) =−e−
x2+y2

2σ2 (3.8)

where σ is the standard deviation (Gonzalez et al., 2004). This is a smoothing function

which, if convolved with an image, will blur it. The degree of blurring is determined by

the value of σ. The Laplacian of this function is defined as

∇
2 f (x,y) =−

[
x2 + y2−σ2

σ4

]
e−

x2+y2

2σ2 (3.9)
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Figure 3.5: Selecting a threshold by visually analysing a image histogram. Top right
corner shows an image of Matlab.

For obvious reasons, this function is called the Laplacian of a Gaussian (LoG) (Gon-

zalez et al., 2004). Because the second derivative is a linear operation, convolving

(filtering) an image with ∇2 f is the same as convolving the image with the smoothing

function first and then computing the Laplacian of the result. This is the key concept

underlying the LoG. We convolve the image with ∇2 f , knowing that it has two effects, it

smoothes the image (thus reducing noise), and it computes the Laplacian, which yields

a double-edge image. Figure 3.4 demonstrates an example of LoG where σ = 3.

3.1.1.4 Thresholding

Thresholding is the most common and easy way to undertake image segmentation.

Suppose that the intensity histogram shown in Figure 3.5 corresponds to an image

composed of light objects (coins) on a dark background, in such a way that object

and background pixels have intensity levels grouped into two dominant modes. One

obvious way to extract the objects from the background is to select a threshold t that

separates these modes. Then any point (x,y) for which I(x,y) ≥ t is called an object

point; otherwise, the point is called a background point. In other words, the thresholded

image I′ is defined as

I′ (x,y) =

{
1 if I(x,y)≥ t

0 if I(x,y)< t
(3.10)
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Figure 3.6: Histogram of forehead wrinkle image. Top right corner illustrates the original
image used.

where pixels labeled 1 correspond to objects, whereas pixels labeled 0 correspond to

the background. When t is a constant, this approach is called global thresholding.

Figure 3.6 presents a forehead image with wrinkle and its histogram. As we noticed

that thresholding is not an appropriate method for wrinkle segmentation because it is

hard to set a threshold value between the wrinkles (objects) and background.

Otsu (1979) proposed an adaptive thresholding function where the threshold value

t maximizes the between-class variance σ2
Otsu. To examine this method, a normalised

histogram as a discrete probability density function is defined as,

p̂r̃
(
r̃q
)
=

nq

n
, q = 0,1,2, . . . ,U−1 (3.11)

where n is the total number of pixels in the image, nq is the number of pixels that have

intensity level r̃q, and U is the total number of possible intensity levels in the image.

Now suppose that a threshold t is chosen such that Z0 is the set of pixels with levels

[0,1, ..., t−1] and Z1 is the set of pixels with levels [t, t +1, ...,U−1]. The between-

class variance σ2
Otsu is defined as

σ
2
Otsu = ŵ0 (µ0−µz)

2 + ŵ1 (µ1−µz)
2 (3.12)
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where ŵ and µ are defined as

ŵ0 =
t−1

∑
q=0

p̂q
(
r̃q
)

(3.13a)

ŵ1 =
U−1

∑
q=t

p̂q
(
r̃q
)

(3.13b)

µ0 =
t−1

∑
q=0

qp̂q
(
r̃q
)
/ŵ0 (3.13c)

µ1 =
U−1

∑
q=t

qp̂q
(
r̃q
)
/ŵ1 (3.13d)

µz =
U−1

∑
q=0

qp̂q
(
r̃q
)

(3.13e)

3.1.2 Line Detection

In this section, two existing methods for line detection are discussed.

3.1.2.1 Cula Method

Cula et al. (2013) explored the use of the first order derivatives and Gabor filter for

detecting wrinkle length and depth, respectively. The estimation is based on the ori-

entation and frequency of elongated spatial features. They defined Wrinkle Index (WI)

as the product of both wrinkle length and wrinkle depth. Wrinkle depth is derived from

the Gabor filter responses. They claimed that WI achieves a high correlation between

clinical scores (expert rating) and output of Cula Method (CLM). However, from a com-

puter vision perspective, their work was lack of detailed quantification of line segment

localisation.

Figure 3.7 shows the flow chart of CLM. A portion of the following description is

derived from Cula et al. (2013). The computational process of CLM comprises several

steps. First, the red channel of parallel-polarised face image is selected as the input im-

age. They stated that it captures the most information about the skin surface structure

and minimises information on skin colour variation which is modulated by hemoglobin

and melanin. To better separate between the smooth skin areas and the wrinkles, the

input contrast is enhanced via histogram equalisation. The enhanced image is further
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Figure 3.7: Flow chart of CLM method.

estimated via the corresponding oriented texture field, where for each pixel in the im-

age the local dominant orientation (Chen et al., 2005) within a local window (centered

around the current pixel) is estimated. Because, in general, skin has alternating smooth

areas and wrinkled areas, a reliability image of the estimated orientation is calculated,

based on the coherence of the image covariance within the neighbourhood of each

pixel. The reliability image is adaptively thresholded such that areas in the image with

high orientation reliability are preserved as skin areas with a high chance of presenting

wrinkles. The final enhanced image is obtained by filtering the original normalised im-

age with finely tuned Gabor filters, oriented according to the estimated local orientation.

To detect the presence of the wrinkles, the enhanced image is binarised by globally

thresholding its values using hysteresis thresholding, the result being a wrinkle mask,

which is further used to select from the enhanced image only the areas where wrinkles

appear. The resulting image is a wrinkle mask where the value is 0 indicates that there

are no skin wrinkles, or Gabor filter responses which reflect the degree of shading in

the image. They argues that Gabor responses are correlated to the depth of wrinkles.

According to Gartstein and Shaya (1996), the length of individual wrinkles correlates

well with the perceived age of the subjects, thus they defined the wrinkle measure, WI,

as the product between wrinkle depth and length.
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Figure 3.8: Retinal versus wrinkle image. Retinal image was obtained from Hoover and
Goldbaum (2003) and wrinkle image was from FORERUS.

3.1.2.2 Frangi Method

Frangi et al. (1998) proposed a vessel enhancement filter, referred to here as Frangi

Filter (FRF), for extracting blood vessels and interpreting the dataset of Magnetic Res-

onance Angiography (MRA) cerebral vasculature. It has been widely used in retinal

vessel detection (Sofka and Stewart, 2006; Martinez-Perez et al., 2007), but not for

wrinkle detection. FRF is based on the use of the second order partial derivatives for

the ridge and valley detection.

Pertinent equation of FRF is derived from Frangi et al. (1998). A common approach

to analyse the local behaviour of an image, I, is to consider its Taylor expansion in the

neighbourhood of a point x0,

I(x)≈ I(x0)+(x−x0)
T

∇I(x0)+
1
2
(x−x0)

T H I(x0)(x−x0) (3.14)

This expansion approximates the structure of the image up to the second order where

∇, H , are the gradient vector and Hessian matrix of the image computed in x0 at scale

ϑ. They defined the differentiation as a convolution with derivatives of Gaussian as,

d
dx

I(x,ϑ) = ϑ
ΨI(x)∗ d

dx
G(x,ϑ) (3.15)

where Ψ is a normalised factor and G is a D-dimensional Gaussian defined as,

G(x,ϑ) =
1

√
2πϑ2D exp−|x|

2

2ϑ2 (3.16)

The parameter Ψ was introduced by Lindeberg (1998) to define a family of normalised
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derivatives. This normalisation is particularly important for a fair comparison of the

response of differential operators at multiple scales. When no scale is preferred Ψ

should be set to unity.

Let λϑ,k denote the eigenvalue corresponding to the kth normalised eigenvector,

υϑ,k, of the H 0,ϑ, all computed at scale ϑ. From the definition of eigenvalues,

H0,ϑυϑ,k = λϑ,kυϑ,k (3.17)

and it follows that

υ
T
ϑ,kH0,ϑυϑ,k = λϑ,k (3.18)

The eigenvalue decomposition extracts three orthonormal1 directions which are invari-

ant up to a scaling factor when mapped by the Hessian matrix. λk will be the eigenvalue

with the kth smallest magnitude. In particular, a pixel belonging to a vessel region will

be signalled by λ1 being small or ideally zero, and λ2 and λ3 of a large magnitude and

equal sign. The sign is an indicator of brightness or darkness. In their experiment,

vessels emerge as bright tubular structures in a darker environment. To summary, for

an ideal tubular structure in a 3D image,

|λ1| ≈ 0 (3.19a)

|λ1| � |λ2| (3.19b)

λ2 ≈ λ3 (3.19c)

where the sign of λ2 and λ3 indicate its polarity. Since both wrinkle detection and

vessel enhancement present similar line patterns as shown in Figure 3.8, it would be

interesting to find out the performance of FRF on wrinkle detection. Details of FRF

performance for wrinkle detection are given in Chapter 4.

3.2 Facial Age Descriptors

In this section, different facial feature representations are discussed.

1A set of vectors is orthonormal if every vector has magnitude 1 and the set of vectors are mutually
orthogonal. 2 vectors are orthogonal if they are perpendicular to each other, i.e., the dot product of the
two vectors is zero (Axler, 1997).
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Figure 3.9: Flow chart of RRT method. Dotted rectangle shows the output vector of
RRT.

3.2.1 Local Feature Representation

In this section, four different methods of aging representation are discussed. It includes

the Radon method, Face++, BIF and KLBP.

3.2.1.1 Regional Radon Transform

Günay and Nabiyev (2013) proposed Regional Radon Transform (RRT) features for age

estimation. It consists of three modules: preprocessing, feature extraction with RRT,

and dimensionality reduction using PCA, as shown in Figure 3.9. In the preprocessing

module, the facial images are cropped, scaled and transformed to the size of 88×88,

based on the eye center locations. For feature extraction, RRT computes the projection

of an image along specified direction. In third step, RRT features are projected into a

lower dimension using PCA in order to improve the efficiency. A D-dimensional feature

vector i is transformed into a d-dimensional vector j with d < D. Günay and Nabiyev

(2013) claimed that RRT features convert pixels and geometric information into a low

dimension representation. It brings an advantage of achieving global geometric affine

invariance. Given a set of distances r and angles θ, the projection of RRT along speci-

fied direction is defined as

RRT(r,θ) =
∫

∞

−∞

∫
∞

−∞

f (x,y)∆(r− xcosθ− ysinθ)dxdy (3.20)

where RRT is the line integral of a 2D function f along a line from −∞ to ∞, ∆(·) is a

Dirac delta function, r is a radius and θ = kπ/6 where k = 0,1,2,3,4,5. In its discrete

form, a Radon transform is the summation of pixel intensities along line of different
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Figure 3.10: An illustration of CNN architecture. Convolution, max-pooling and non-
linear operators are three key modules to form a CNN. Note that this figure was redrawn
from Zhou et al. (2013).

directions and it is concatenated into a single feature vector. It produces a feature

vector of 3920 units (Günay and Nabiyev, 2013). Finally, the age of vector j could be

estimated by regression function such as linear regression (Günay and Nabiyev, 2013).

Their results showed that a high resolution dataset, FERET achieves a higher MAE of

6.98 than a low resolution dataset, FGNET, with a MAE of 6.18. This indicates RRT

features might not a reliable representation for age estimation.

3.2.1.2 Face++

Face++ is an online tool for facial landmark detection (Zhou et al., 2013; Inc., 2013).

In addition, it provides additional prediction for facial analysis such as gender, age,

race and expression. Face++ utilised a deep learning approach, Convolutional Neural

Networks (CNN), with two advantages, geometric constraints among facial points are

implicitly utilised and huge amount of training data can be leveraged. CNN design is

a four-level convolutional network cascade, which tackles the problem in a coarse-to-

fine manner. The network takes the raw pixels as input and performs regression on

the coordinates of the desired points. CNN is a composition of multiple linear and

non-linear operators. The first operator is the convolution layer which filters the multi-

channel image signal. The second operator is max-pooling which reduces the size of

the image. Third is a non-linear operator of unshared convolution layer where different

positions are computed, so the layer is local-receptive rather than convolutional. CNN is

illustrated in Figure 3.10. Convolution, max-pooling and non-linear operators are three
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Figure 3.11: Flow chart of BIF descriptor.

key modules to form a CNN. It could be extended to a multi-layer CNN by repeating

the operators needed. The output vector is represented by pixel values of all the image

patches after unshared convolution layer.

According to Fan et al. (2014), FACE++ can be extended to the traditional tasks of

face analysis such as gender analysis by a Look-Up-Table (LUT) approach. It identifies

the gender on same bin that share common attributes in LUT table. They claimed that

a classification accuracy of 96.8% is achieved on gender classification. In this work,

FACE++ is applied as a benchmark algorithm for face age estimation. The performance

of FACE++ is described in Chapter 5.

3.2.1.3 Bio-inspired Features

Recently, Bio-inspired Features (BIF) (Riesenhuber and Poggio, 1999) have shown

good performance for age estimation (Guo et al., 2009a,b), as well as object category

recognition (Serre et al., 2005; Mutch and Lowe, 2008) and face recognition (Meyers

and Wolf, 2008). A specially-designed BIF with two layers: the simple layer S1 and

complex layer C1 as shown in Figure 3.11.

The S1 layer contains a set of Gabor filters with parameters designed based on

visual cortex models (Serre et al., 2005), and it is defined as

G(x,y) = exp

(
−x′2 + γ2y′2

2ζ2

)
× cos

(
2π

χ
x′
)

(3.21)

where x′ = xcosθ+ ysinθ and y′ = −xsinθ+ ycosθ are the rotations of the Gabor

filters for angle θ which varies between 0 and π. The aspect ratio is fixed as γ = 0.3, the

effective width ζ, the wavelength χ as well as the filter sizes ŝ were adjusted accordingly

as Table 1 in Guo et al. (2009a). The orientation θ varies from 0 to π uniformly with

different intervals, resulting in different numbers of total orientations, such as 4, 6, 8,

10, and 12.

The C1 layer contains some non-linear operations including the “MAX” (maximum)

pooling and an “STD” (standard deviation) operation (Guo et al., 2009a), in order to

have some invariance to translation, rotation, and scaling, as well as a characterisation
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of the aging details. The “STD” is defined as

STD =

√√√√ 1
N̂S× N̂S

N̂S×N̂S

∑
i=1

(Fi− F̄)
2 (3.22)

which reveals the variability in the data within a neighborhood N̂S× N̂S of S1 units,

where Fi is the maximum value of two consecutive S1 units in the same scale band S

(there are 8 bands in total but using different filters) at pixel index i,

Fi = max
(

x j
i ,x

j+1
i

)
(3.23)

where x j
i and x j+1

i are the filtered values with scales j and j+1 at position i. F̄ is the

mean value of the filtered values within the neighbourhood N̂S× N̂S. The pooling of the

“MAX” operation over two consecutive scales (i.e., in the same scale band) increases

the tolerance to 2D transformations, such as scale changes with a small amount. The

“MAX” operation merges two filtered images using filters of the same orientation but

different scales into one, and then the “STD” operation is performed on the merged

image within a neighbourhood N̂S× N̂S. According to Guo et al. (2009a), the original

model of the second “MAX” can tolerate more shift and size changes, but it cannot

reveal the variability in the data. For age estimation, the description of local variability

in data might be important for subtle age variation, such as wrinkles.

In order to estimate the face age, Guo et al. (2009a) applied the linear SVM for age

classification and SVR for age regression. In this work, the BIF representation is used

for age regression and it is defined as

BIF =
[
C1STD

1 ,C1STD
2 , · · · ,C1STD

n
]

(3.24)

where n is the feature dimension of BIF representation.

3.2.1.4 Kernel-based Local Binary Pattern

The current state-of-the-art method for local-based age estimation is proposed by Ylioinas

et al. (2013). The method is based on KLBP. It generates the sign and magnitude fea-

tures through the face patches as shown in Figure 3.12. They claimed that the sparse

nature of LBP representation is improved by the proposed kernel estimator. However,

this method is not yet tested on FERET.

According to Ylioinas et al. (2013), the step before representing a face image is to
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Figure 3.12: Flow chart of KLBP descriptor.

first align them to reduce the effect of scale, rotation, translation variations. Hence, to

get rid of the most of the variation, clearly visible in the images of Figure 2.1, all face

images are geometrically normalised by a similarity transformation with respect to both

eyes and corners of the mouth. Once normalised, local features are extracted from

uniformly distributed patches across the face. A face image is first divided into a set of

L overlapping patches of a size 13×13 pixels, each patch overlapping its vertical and

horizontal neighbours by 4 units. With a face image of size 76×76, this results L = 64
patches. In a particular patch, it is decomposed into two complementary components,

sign and magnitude. The sign component is coded using the conventional LBP operator

defined as

LBPS
P,R =

P−1

∑
p=0

T(gp−gc)2p (3.25)

where gc corresponds to the grey value of the center pixel (xc,yc), gp refers to grey

values of P equally spaced pixels on a circle of radius R, and T defines a thresholding

function with T(x) = 1 if x ≥ 0 and T(x) = 0 otherwise. The magitude component is

defined as

LBPM
P,R =

P−1

∑
p=0

T(m̂p, ĉ)2p (3.26)

where m̂p is the magnitude of local pixel difference and ĉ a predetermined threshold

value of LBP usually set as the mean value of local pixel differences in the whole image.

As the magnitude operator encodes the difference in local pixel intensities, it gives

a measure of contrast. The key idea of LBP is to gain more comprehensive image

representation by combining these two complementary descriptions.

According to Ylioinas et al. (2013), kernel method proposed by Aitchison and Aitken

(1976) is more suitable for estimating the probability distribution of LBP-like random
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variables. The kernel is given by

Kĥ

(
l̂|l̂′
)
= ĥP−d̃(l̂,l̂′) (1− ĥ

)d̃(l̂,l̂′) (3.27)

where l̂ and l̂′ are both P-dimensional binary variables, d̃ is the Hamming distance be-

tween them, and ĥ is a bandwidth parameter. Finally, using the given kernel instead of

a histogram, KLBP pattern is a concatenation of both sign and magnitude components

of LBP after multiplication with the kernel as

KLBP =
[
LBPS

1,P,R ∗Kh,LBPM
1,P,R ∗Kh · · · ,LBPS

n,P,R ∗Kh,LBPM
n,P,R ∗Kh

]
(3.28)

where n is the total number of KLBP features. The age is estimated using the KLBP

features and a SVR with a non-linear radial basis function.

3.2.2 Global Feature Representation

In this section, different global feature representations are discussed.

3.2.2.1 Principal Component Analysis

PCA is an orthogonal linear transformation that projects the data into a new coordinate

system with greatest variance as principal component, the second greatest variance

on the second coordinate, and so on (Jolliffe, 2002). According to Cootes and Taylor

(2001), there is a quicker way of calculating PCA when there are fewer samples than

dimensions. Suppose we wish to apply a PCA to vectors, xi (xi ∈ D), from nD to sD,

where s < n. The covariance matrix is n× n, which may be very large. However, we

can calculate its eigenvectors and eigenvalues from a smaller s× s matrix derived from

the data. Because the time taken for an eigenvector decomposition goes as the cube of

the size of the matrix, this can give considerable savings. Subract the mean from each

data vector and put them into the matrix D

D = [(x1− x̄) | . . . |(xs− x̄)] (3.29)

The covariance matrix can be written

S =
1
s

DDT (3.30)
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Figure 3.13: PCA projection of FGNET shape points. There are 1002 instances on
FGNET where each instance consists of 68 landmarks. The landmarks in an instance
are represented by (x,y) and it is sorted into a single vector with 136 units. Based on
this vector, the mean, covariance, eigenvector and eigenvalues are calculated. Label
shows the subject identity in FGNET and the legend presents the age of each subject.
Axis-x and -y are first and second principal components. Instance of 6 is far away from
the main cluster because it is the largest image compared to others.

Let T be the s× s matrix

T =
1
s

DT D (3.31)

Let ei be the s eigenvectors of T with corresponding eigenvalues ϕi, sorted into

descending order. It can be shown that the s vectors D · ei are all eigenvectors of S
with corresponding eigenvalues ϕi, and that all remaining eigenvectors of S have zero

eigenvalues. Note that D ·ei is not necessarily of unit length so may require normalising.

Figure 3.13 presents a PCA projection of FGNET shape points of 68 landmarks.

It is noticed that the 6th object is far away from the main cluster and this object is the
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Figure 3.14: An illustration of AGES. Each row shows the same subject and each
column represents a chronological age. The main idea of AGES is to reconstruct the
empty space (dotted rectangle) by the known subspace (the images). Note that this fig-
ure was redrawn from FGNET and the images were sorted randomly for the illustration
purpose.

largest image size in FGNET where the resolution is 639× 772 compare to the rest

where the resolution is around 400× 400. It is one of the greatest benefit of PCA on

analysing the data.

PCA has been widely used in facial analysis. Buchala et al. (2005) applied it to

encode different properties of face such as gender, ethnicity, age and identity. Geng

et al. (2007) used PCA to construct a subspace of missing images and then predict the

age of unseen image based on PCA reconstruction. It is elaborated in the next section.

3.2.2.2 Aging Pattern Subspace

Geng et al. (2007) proposed an automatic age estimation method named AGES. A

representative model for the aging patterns can be built up by the information theory

approach of coding and decoding. One widely adopted technology is using PCA to

construct a subspace that captures the main variation in the data set (Jolliffe, 2002).

The basic idea of AGES is to model the aging pattern, which is defined as the se-

quence of individuals face images sorted in time order, by constructing a representative

subspace as shown in Figure 3.14. The projection in the subspace is computed by

y = WT (ρ−µ) (3.32)
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where µ is the mean vector of ρ and WT = W−1 is the transpose of transformation

matrix, W, which is composed by the orthogonal eigenvectors of the covariance matrix

of ρ. The difficulty is that the aging pattern vector ρ is highly incomplete. Note that, the

vector ρ is initialised by filling in the known appearance model parameters according

to age. Based on the characteristics of aging patterns, an Expectation Maximization

(EM)-like algorithm is proposed here to learn a representative subspace.

Suppose the training set has N aging pattern vectors D =
{

ρ1, · · · ,ρN
}

. Any sam-

ple in this set can be written as

ρk = {ρa
k ,ρ

m
k } (3.33)

where ρa
k are the available features and ρm

k are the missing features of ρk. Suppose the

transformation matrix is W, the projection yk of ρk in the subspace can be calculated

by Eq. (3.32) and the reconstruction of ρk is calculated by

φk = µ+Wyk (3.34)

φk can also be written as φk =
{

φa
k ,φ

m
k

}
, where φa

k is the reconstruction of ρa
k and

φm
k is the reconstruction of ρm

k . It is well known that standard PCA can be derived by

minimizing the mean reconstruction error (residuals) of the data set D in the subspace.

With the presence of the missing features ρm
k , the goal is changed into finding a W that

minimizes the mean reconstruction error (ε̄) of the available features

ε̄
a =

1
N

N

∑
k=1

(ρa
k−φ

a
k)

T (ρa
k−φ

a
k) (3.35)

In case the number of missing features in different instances is highly uneven, Eq. (3.35)

should be normalised by the dimensionality of the missing part. This is equivalent to a

preprocess of dividing each instance by its missing dimensionality.

3.2.2.3 Facial Appearance Model

FAM establish a compact parameterisation of object variability, as learned from a train-

ing set by estimating a set of latent variables (Cootes and Taylor, 2001; Stegmann

et al., 2003; Matthews and Baker, 2004). It decouples and models two parts of an ob-

ject: shape and texture. The shape is a vector formed by concatenating the position

elements of the labelled landmarks, while the texture means the measure of pixels,

which is usually represented by intensities or colours. Figure 3.15 shows an example of
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Figure 3.15: A combined appearance model. Each column shows different levels of
image resolution and each row presents different modes of model. Note that this figure
was redrawn from MORPH using am tools of Cootes and Taylor (2001).

a combined appearance model where each column shows different levels of image res-

olution and each row presents different modes of model. Also, a training set of images

with correspondingly labelled landmarks is required for model training. A face image

with labelled landmarks is shown in Figure 3.16. Further, given a suitable warp function

a dense (i.e. per-pixel) correspondence is established between training objects, thereby

enabling a proper modelling of texture variability. By exploiting prior knowledge of the

nature of the optimization space, these models of shape and texture can be rapidly

fitted to unseen images, thus providing image interpretation through synthesis.

Variability is modelled by the means of a PCA where an eigen analysis of the dis-

persions of shape and texture. Given N training samples for an object class and let

each sample be represented by a set of P landmarks. The shape samples are aligned

to a common mean shape (or shape-free patch) using Generalised Procrustes Anal-

ysis (GPA) (Goodall, 1991; Cootes and Taylor, 2001) where all effects of translation,

rotation and scaling are removed. The alignment of each shape is the sum of distances
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Figure 3.16: Landmark points. The left image is based on 68 landmark points of FGNET
and the right image is based on 83 landmark points of FACE++. Both images were
redrawn from FGNET and FERET.

of each shape to the mean as

D = ∑ |xi− x̄|2 (3.36)

where D is the Procrustes distance and x is a set of n landmark points {(xi,yi)} of a

single example. It is poorly defined unless constraints are placed on the alignment of

the mean (for instance, ensuring it is centred on the origin, has unit scale and some

fixed but arbitrary orientation) (Cootes and Taylor, 2001).

In the next step, the texture samples are then warped into correspondence using a

Piece-wise Affine Warping (PAW) (see Section 3.4.2) and subsequently sampled from

this shape-free reference. Let s and t denote a synthesized shape and texture of an

image in the reference frame and let s̄ and t̄ denote the corresponding sample means.

New instances are now generated by adjusting the principal component scores, bs and

bt in

s = s̄+Φsbs (3.37)
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t = t̄+Φtbt (3.38)

where Φs and Φt are matrices of column eigenvectors of the shape and texture disper-

sions estimated from the training set. To obtain a combined shape and texture param-

eterization, c, the values of bs and bt over the training set are combined into

b =

[
Wsbs

bt

]
=

[
WsΦ

T
s (s− s̄)

ΦT
t (t− t̄)

]
(3.39)

A suitable weighting between pixel distances and pixel intensities is carried out through

the diagonal matrix Ws. To make the normalised measures of pixel distance and pixel

intensities commensurate, the shape principal component scores are typically weighted

by the square root of the ratio between the sums of the texture and shape eigenvalues.

To recover any correlation between shape and texture the two eigen-spaces are

usually coupled through a third principal component transform as

b = Φcc =

[
Φc,s

Φc,t

]
c (3.40)

where c is a combined appearance model parameters that generates new object in-

stances by

s = s̄+ΦsW−1
s Φc,sc (3.41)

t = t̄+ΦtΦc,tc (3.42)

To regularize the model and improve speed and compactness, Φs, Φt and Φc are trun-

cated, usually such that a certain amount of variance in the training set is preserved.

This eventually results in k (k < N) combined modes where N is the total images of

training set. Details of FAM can be found in Cootes and Taylor (2001).

3.3 Estimation Algorithms

In this section, different methods of classification and regression are discussed.
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Figure 3.17: An illustration of SVM hyperplane. Different colors show the objects of dif-
ferent class. Support vectors contribute to a hyperplane separation where a maximum
margin is determined. This figure was redrawn from the article of Selamat et al. (2009).

3.3.1 Classification

In this section, two classification methods, SVM and MLP, are described.

3.3.1.1 Support Vector Machine

A SVM is a statistical classification method proposed by Cortes and Vapnik (1995).

Based on the principle of Structural Risk Minimization (SRM) principle, SVM tries to

find a separating hyperplane with maximum margin to separate the positive examples

and negative examples from the training data sets. It makes decisions based on the

support vectors that are selected as the only effective elements from the training set.

SVMs belong to the general category of kernel methods (Smola and Schölkopf, 1998;

Shawe-Taylor and Cristianini, 2004; Ben-Hur and Weston, 2010). A kernel method is

an algorithm that depends on the data only through dot-product. When this is the case,

the dot-product can be replaced by a kernel function which computes a dot-product

in some possibly high dimensional feature space. This has two advantages: (1) the

ability to generate non-linear decision boundaries using methods designed for linear

classifiers. Second, the use of kernel functions allows the use of a classifier to the

data that have no obvious fixed-dimensional vector space representation. For example,

the features of facial image analysis such as face recognition, face age estimation and

facial expression recognition. Figure 3.17 shows SVM finds the hyperplane, which is
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separated from the positive and negative training examples with a maximum margin.

The examples that are close to the hyperplane are called support vectors, which are

marked with arrows.

Given a training set of instance-label pairs, (x1,y1), . . . ,(xn,yn), where (xi) ∈ ℜd

and yi ∈ {−1,+1}. ℜd is a real number in d-dimension and yi is a class label. SVM

requires the solution of the following optimization problem,

minimize
w,b,ξ

1
2

wT w+ k̃
n

∑
i=1

ξi (3.43a)

subject to: yi
(
wT M (xi)+ b̂

)
≥ 1−ξi, ξi ≥ 0 (3.43b)

where training vector (xi are mapped into a higher dimensional space by the vector

function M, b̂ is a bias, w is a linear combination of the training vector xi, ξ≥ 0 are slack

variables that allow an example to be in a margin error (0≤ ξi≤ 1) or to be misclassified

(ξi > 1) and the constant k̃ > 0 sets the relative importance of maximizing the margin

and minimizing the amount of slack. This formulation is called the soft-margin SVM

and it was introduced by Cortes and Vapnik (1995). SVM finds a linear separating

hyperplane with the maximal margin in this higher dimensional space. Furthermore,

κ
(
xi,x j

)
≡ M (xi)

T M
(
x j
)

is called the kernel function. There are four basis kernels

used in SVM: linear, polynomial, Radial Basis Function (RBF), sigmoid. Each of the

kernel is defined as:

κlinear
(
xi,x j

)
= xT

i ·x j (3.44a)

κpolynomial
(
xi,x j

)
=
(
ω ·xT

i ·x j + ς
)d̂

,ω > 0 (3.44b)

κRBF
(
xi,x j

)
= exp(−ω·‖xi−x j‖2),ω > 0 (3.44c)

κsigmoid
(
xi,x j

)
= tanh

(
ω ·xT

i ·x j + ς
)

(3.44d)

where ω is a constant to adjust the width of the Gaussian function, ς is the coefficient,

d̂ is the degree of polynomials. In testing, the classification is given by

f (x) = sign
(
w ·x+ b̂

)
(3.45)

for any new data point x. If the training data are non-separable, slack variables ξ can

be used.
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Figure 3.18: MLP architecture. Note that this figure was redrawn from the article of
Selamat et al. (2009).

3.3.1.2 Multi-layer Perceptron

Figure 3.18 shows the example of architecture of MLP (Selamat et al., 2009). It has

been applied by numerous studies as in Rumelhart et al. (2002); Lanitis et al. (2004);

Takimoto et al. (2007); Dehshibi and Bastanfard (2010). According to Takimoto et al.

(2007), MLP consists of at least three layers: one input layer p̆, one hidden layer q̆ (or

more) and one output layer r̆. Total nodes of an input layer is according to the number

of selected facial feature, s. If the feature size, s, is 55 then the number of input layers

will be set correspondingly. The output layer consists 1 unit only which is the age range

from 12 to 68 years. The input values to the MLP are represented by i1, i2, ..., is, and

normally it is scaled using a min-max normalisation. Adoption of the weight between

hidden q̆ and input p̆ layers is given by,

Wq̆p̆(`+1) =Wq̆ p̆(`)+∆Wq̆p̆(`+1) (3.46)

∆Wq̆p̆(`+1) = ηϖq̆Op̆ + k̂∆Wq̆p̆(`) (3.47)
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ϖq̆ = Oq̆(1−Oq̆)∑
r̆

ϖr̆Wr̆q̆ (3.48)

where ` is the iteration number, η is a learning rate, k̂ is a momentum rate, Ωp̆ is the

output units of p̆, Ωq̆ is the output units of q̆, Ωr̆ is the output units of r̆, Wq̆p̆ is a q̆

weight to the unit p̆, Wr̆q̆ is a r̆ weight to the unit q̆, ϖq̆ is the generalised error through

a layer q̆, and ϖr̆ is the generalised error through a layer q̆ and r̆. Note that the first

transfer function at hidden layer q̆ is given by,

netq̆ = ∑
q̆

Wq̆ p̆Op̆ +Ωq̆ (3.49)

Oq̆ = f
(
netq̆

)
= 1/

(
1+ e−netq̆

)
(3.50)

where netq̆ is the first transfer function at hidden layer q̆ and Ωq̆ is a bias on hidden unit

q̆. Adaptation of the weights between output and hidden layers is given by,

Wr̆q̆ (`+1) =Wr̆q̆ (`)+∆Wr̆q̆ (`+1) (3.51)

∆Wr̆q̆ (`+1) = ηδr̆Oq̆ + k̂∆Wr̆q̆ (`) (3.52)

δr̆ = Or̆ (1−Or̆)(`r̆−Or̆) (3.53)

Then the output function at the output layer r̆ is given by,

netr̆ = ∑
r̆

Wr̆q̆Oq̆ +Ωr̆ (3.54)

Or̆ = f (netr̆) = 1/
(
1+ e−netr̆

)
(3.55)

where netr̆ is the second transfer function at output layer r̆ and Ωr̆ is a bias on output

unit r̆. The output values to the MLP are represented by a real value which are cor-

responding to the age of a person. Table 3.1 shows the parameters of MLP given in

Takimoto et al. (2007). The input node, hidden node and output node are 55, 30, and

1, respectively; learning cycle is 20000; and step size is between 0.1 and 0.3.
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Table 3.1: Parameter settings of MLP derived from Takimoto et al. (2007).

Description Value
Function Backpropagation
Input Node 55
Hidden Node 30
Output Node 1
Epochs 20000
Step Size 0.1 - 0.3

3.3.2 Regression

In this section, two regression methods, quadratic regression and SVR with Sequential

Minimal Optimization (SMO) optimization, are explained.

3.3.2.1 Quadratic Regression

Quadratic regression is the simplest algorithm to consider when value of the target

function is numeric such as face age (Lanitis et al., 2002). The basic idea of quadratic

function is to express the target as a linear combination of the attributes with predeter-

mined weights. Given the extracted features for each face age, a regression function

is often used to characterise the relationship between the extracted features x and the

age labels A as

A(x) = f (x) (3.56)

A typical choice of the regression function f is the Quadratic Model (QM). For example,

Lanitis et al. (2002) proposed to use the QM function for age regression as

Â(x) = w0 +wT
1 x+wT

2 x2 (3.57)

where x and x2 are the extracted feature vector, Â is the predicted age of input x, w0 is

the offset, w1 and w2 are weight vectors.

The model parameters are optimized by minimizing the difference between the ac-

tual ages of the individuals, A, and the ages estimated using Eq. (3.57), i.e., ||A− Â||.
The loss function usually corresponds to a Least Square Estimation (LSE) criteria. How-

ever, there are some disadvantages for the QM method (Guo et al., 2008a): (1) the

aging is a complex non-linear regression problem, especially for a large span of years,

i.e., 0-90. The simple quadratic function may not model properly the complex aging
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Figure 3.19: Linear SVR model. (a) ε-insensitive loss function where the horizontal
and vertical axes are x and f (x). Using a small ε is preferable when a large number
of outliers are present. (b) An illustration on how support vectors lay in between +ε

and −ε and the slack variable ξ from a particular instance x. Note that this figure was
redrawn from the article of Smola and Schölkopf (2004).

process; (2) the LSE is sensitive to outliers that come from incorrect labels in collecting

a large image dataset; (3) the LSE may not generalize well for unseen examples which

may increases the error for age prediction.

3.3.2.2 Support Vector Regression

The basic idea of SVR is to find a function f that has most ε deviation from the actually

obtained target yi for the training data xi. In other words, errors are less important as

long as they are less than ε. Figure 3.19 depicts the situation graphically. Only the

points outside the shaded region contribute to the regression function, as the devia-

tions are penalised in a linear fashion. As stated by Guo et al. (2008a), this property

determines SVR to be less sensitive to outliers than the quadratic function.

First, a notion of a linear SVR is defined. Consider the problem of approximating the

set of data D = {(x1,y1) , . . . ,(xn,yn)} where xi ∈ℜd and yi ∈ℜ (yi is a real number

instead of class), a linear function (Guo et al., 2008a) is defined as

f (x) = 〈w,x〉+ b̂ (3.58)

where b̂ is a bias, 〈·〉 denotes the dot product. The optimal regression function (Vapnik,

1998) is given by
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minimize
w,ξ

1
2

∥∥w2∥∥+ k̃
n

∑
i=1

(
ξ
+
i +ξ

−
i
)

(3.59a)

subject to:

yi−〈w,xi〉− b̂≤ ε+ξ
+
i

〈w,xi〉+ b̂− yi ≤ ε+ξ
−
i

where ξ
+
i ,ξ

−
i ≤ 0

(3.59b)

where constant k̃ > 0 determines the tradeoff between the flatness of f and data devia-

tions, and ξ
+
i ,ξ

−
i are slack variables to cope with otherwise infeasible constraints on the

optimization problem of Eq. (3.59). k̃ is a penalty factor where a high penalty for non-

separable points may lead to over-fitting and vice versa (Alpaydin, 2014). Therefore, in

practice, k̃ should be selected through a separate validation set or it can be determined

through the technique of cross-validation. A ε determines the level of correctness of

the approximated function (Cherkassky and Ma, 2003). It depends on the ground truth

in the training set. If ε is larger than the range of the ground truth, a bad result would

be expected. If ε is zero, the over-fitting would occur. Therefore, ε must be chosen to

reflect the data in some way such as grid search.

According to Guo et al. (2008a), the linear regression cannot model the complex

aging process. Therefore, a non-linear regression function may be required in practice

to adequately model the data. It can be obtained using kernels such as polynomials and

RBF functions as Eq. (3.44). Given the kernel mapping, the solution of the non-linear

SVR is obtained by

〈w,x〉=
n

∑
i=1

(ρi−ρ
∗
i )κ
(
xi,x j

)
(3.60)

where ρi and ρ∗i are Lagrange multipliers. The target is predicted as

f (x) =
n

∑
i=1

(ρi−ρ
∗
i )κ
(
xi,x j

)
+ b̂ (3.61)

In the non-linear case, the optimization problem corresponds to finding the flattest or

linear regression function in the higher dimensional feature space instead of input space

(Guo et al., 2008a).

According to Platt et al. (1999), SMO does not require extra matrix storage except

the amounts of memory required to store 2×2 matrices required by SMO. Traditional

quadratic programming algorithms are not suitable for large size problems because of

the following reasons (Shevade et al., 2000). First, they require that the kernel matrix
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Figure 3.20: Different training methods of SVM: Chunking, Osuna’s algorithm and SMO
The horizontal thin line shows the training set, the thick boxes present the Lagrange
multipliers being optimized at each iteration. A given group of three lines corresponds
to three training iterations where the first iteration at the top. Note that this figure was
redrawn from the article of Platt et al. (1999).

κ
(
xi,x j

)
be computed and stored in memory. This requires extremely large memory.

Second, these methods involve expensive matrix operations when decomposing a large

sub-matrix of the kernel. Third, coding of these algorithms is difficult. Tsang et al.

(2005) also claimed that SMO is very efficient in terms of both time and space, it often

converges in a small number of iterations.

SMO is an iterative algorithm for solving the optimization problem by operating on

a fixed size subset of the training set at a time. SMO breaks this problem into a se-

ries of smallest possible sub-problems, which are then solved analytically. Figure 3.20

shows different training methods of SVM such as Chunking (Cristianini and Shawe-

Taylor, 2000), Osuna’s algorithm (Osuna et al., 1997) and SMO (Shevade et al., 2000).

For chunking, a fixed number of samples are added at each iteration, Thus, the num-

ber of samples of training per iteration tends to grow. For Osuna’s algorithm, a fixed

number of samples are optimized at each iteration and the same number of samples

is added to and discarded from the problem at every step, and it is still not very effi-

cient. SMO algorithm puts chunking to the extreme by iteratively selecting working sets

of size two and optimizing the target function with respect to them. One advantage

of using working sets of size two is that the optimization sub-problem can be solved

analytically. The chunking process is repeated till all the training samples satisfy KKT
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conditions. Because of the linear equality constraint involving the Lagrange multipliers

ρi, the smallest possible problem involves two such multipliers. Then, for any two mul-

tipliers ρ1 and ρ2, the constraints are reduced to 0≤ ρ1,ρ2 ≤ k̃, where k̃ is a constant.

Details of SMO can be found at Platt et al. (1999); Shevade et al. (2000).

Several kernel functions are available for nonlinear transformation of the input space,

such as linear, polynomial, RBF and universal Pearson VII function based kernels

(PUK). A kernel method is an algorithm that depends on the data only through dot-

products (Ben-Hur and Weston, 2010). It is replaced by the kernel functions which

calculate the variations in a high dimensional space. Therefore, it extends the ability of

a linear classifier to generate non-linear decision boundaries and apply a classifier to

data that have no obvious fixed-dimensional vector space representation, for example,

data in bioinformatics and facial wrinkle patterns. Let xi,x j ∈ℜN denote input vectors

of SVM, the PUK kernel, κpuk, is defined as,

κpuk
(
xi,x j

)
=

1[
1+
([

2
√∣∣xi−x j

∣∣2√2(1/ω)−1
]
÷σ

)2]ω (3.62)

where the parameters ω and σ control the half-width and the tailing factor of the peak of

the Pearson VII function. In this way, the PUK kernel will lead to a symmetric matrix with

ones on the diagonal and all other entries ranging between the values 0 and 1 for any

arbitrary pair of
(
xi,x j

)
. The PUK kernel is robust and has an equal or even stronger

mapping power as compared to the standard kernel functions, which leads to an equal

or better generalisation performance of SMO (Zhang and Ge, 2013).

3.4 Face Alignment Techniques

In this section, the fundamental theory of geometric transformation is discussed.

3.4.1 Affine Transformation

In a 2D geometric transformation, any points (x,y) in the space could be transformed

into a new set of coordinates (x′,y′) using translation, rotation and scaling as shown in

Figure 3.21. Instead of applying a transformation to every point in every line that makes

up an object (normally is a triangle), the transformation is applied only to the vertices of

the object and then new lines are drawn between the resulting endpoints. Translation is
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Figure 3.21: Affine transformation of a triangle.

moving an object from one location to another with a translation factor T̃ as x′

y′

1

=

 1 0 T̃x

0 1 T̃y

0 0 1


 x

y

1

 (3.63)

where
[

x y 1
]T

is named as homogeneous coordinates and the [3×3] is a trans-

formation matrix. Scaling is changing the size of an object with a scale factor s̃ as x′

y′

1

=

 s̃x 0 0
0 s̃y 0
0 0 1


 x

y

1

 (3.64)

If the scaling factors are less than one, the object will appear smaller. If the scaling

factors are greater than one, the object will appear larger. If s̃x = s̃y = 1, the object is

unchanged. Rotation is a transformation that causes a point x to be moved relative to

a central point, without changing the distance of x from that point. It is defined as x′

y′

1

=

 cosθ −sinθ 0
sinθ cosθ 0

0 0 1


 x

y

1

 (3.65)

where θ indicates how many degree of rotation is desired and the range is between
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0 ≤ θ ≤ 2π. A series of transformations are feasible by multiplying the transformation

matrices together as a composite transformation. The order of the multiplication se-

quence is important. Suppose we wish to first rotate an object by θ, translate it by(
T̃ x, T̃ y

)
, and finally scale it by (s̃x, s̃y), the composite transformation is defined as

 x′

y′

1

=

 s̃x 0 0
0 s̃y 0
0 0 1


 1 0 T̃x

0 1 T̃y

0 0 1


 cosθ −sinθ 0

sinθ cosθ 0
0 0 1


 x

y

1

 (3.65a)

=

 s̃x cosθ −s̃x sinθ s̃xT̃x

s̃y sinθ s̃y cosθ s̃yT̃y

0 0 1


 x

y

1

 (3.65b)

3.4.2 Piece-wise Affine Warping

PAW is a method to project each pixel of image I into a new image I′ so that a set of

n control points {xi} are mapped to new positions, {x′i} (Cootes and Taylor, 2001). A

continuous vector valued mapping function F is defined as

F(xi) = x′i ∀i = 1, . . . ,n (3.66)

In practice, in order to avoid holes and interpolation problems, it is better to find the

reserve map, F′, taking {x′i} into {xi}. For each pixel in the target warped image, I′ we

can determine where it came from in I and fill it in. In general F′ 6= F−1, but is a good

approximation. Note that F can be decomposed as

F(x) =
n

∑
i=1

fi (x)x′i (3.67)

where the n continuous scalar valued functions f i each satisfy

fi
(
x j
)
=

{
1 if i = j

0 otherwise
(3.68)

and this ensures

F(xi) = x′i (3.69)

The simplest warping function is to assume each f i is linear in a local region
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Figure 3.22: Warping between a shape and the mean shape using PAW. Note that this
figure was redrawn from FERET.

and zero everywhere else. For instance, in the one dimensional case (where each

x is a point on a line), suppose the control points are arranged in ascending order

(xi < xi +1). If F maps a point x which is half way between xi and xi+1 to a point

halfway between x′i and x′i+1. This is achieved by setting

fi (x) =


(x− xi)/(xi+1− xi) if x ∈ [xi,xi+1] and i < n

(x− xi)/(xi− xi−1) if x ∈ [xi−1,xi] and i > 1
0 otherwise

(3.70)

where the control points in the region is between x1 and xn.

In 2D dimensions, a triangulation (i.e., Delauney) can be used to partition the convex

hull of the control points into a set of triangles. To the points within each triangle,

an affine transformation which uniquely maps the corners of the triangle to their new

positions in I′ (as shown in Figure 3.22). Suppose x1, x2 and x3 are three vectors of

such a triangle. Any internal point can be written as

x = x1 +b(x2−x1)+ c(x3−x1) (3.71a)

= ax1 +bx2 + cx3 (3.71b)

where a = 1− (b+ c) and so a+b+c = 1. For x to be inside the triangle, 0 < a,b,c <

1. Under the affine transformation, this point simply maps to

x′ = F(x) = ax′1 +bx′2 + cx′3 (3.72)

To generate a warped image we take each pixel, x′ in I′, decide which triangle it belongs
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to, compute the coefficients a,b,c giving its relative position in the triangle and use them

to find the equivalent point in the original image, I.

3.4.3 Shape-free Patch

According to Cootes and Taylor (2001), a simple iterative approach could be used for

aligning the shapes as following steps:

i. Translate each example so that its centre of gravity is at the origin where the

origin is (0,0).

ii. Choose one example as an initial estimate of the mean shape and scale so that

|x̄|= 1.

iii. Record the first estimate as x0 to define the default reference frame.

iv. Align all the shapes with the current estimate of the mean shape.

v. Re-estimate mean from aligned shapes.

vi. Apply constraints on the current estimate of the mean by aligning it with x0 and

scaling so that |x̄|= 1.

vii. If not converged, return to step iv.

where x is a set of n landmark points, {(xi,yi)} of a single example. Note that the

convergence is declared if the estimate of the mean does not change significantly after

an iteration. In this work, the tangent space is applied as constraints to transform each

shape to the mean so as to minimize D . The tangent space to xt is the hyperplane of

vectors normal to xt , passing through xt . All the vectors x such that (xt−x) · xt = 0,

or x · xt = 1 if xt = 1. This leads to the corners of shape varying along a straight

lines, orthogonal to the lines from the origin to the corners of the mean shape. This

preserves the linear nature of the shape variation. The simplest way to achieve this is

to align the shapes with the mean, allowing scaling and rotation, then project into the

tangent space by scaling x by 1/(x · x̄). Alternative approach can be found in Cootes

and Taylor (2001) for reducing the non-linear variation in the point positions.
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3.5 Scientific Measurements

For wrinkle detection, the objective quantification includes Jaccard Similarity Index (JSI)

(Jaccard, 1901) and an accuracy of wrinkle detection (ACC). Since the subjective age

estimation is biased and costs expensive manpower, the evaluations for age estimation

are usually objective tests, evaluated quantitatively, and set up with either individual

images or age groups (Miyamoto et al., 2005). This evaluation task often adopts two

measures, Mean Absolute Error (MAE) and Cumulative Score (CS) , with the protocol

of cross validation or Leave One Person Out (LOPO) approach (Geng et al., 2006; Guo

et al., 2008a).

3.5.1 Jaccard Similarity Index

The segmentation results can be assessed using JSI to measure the overlap between

the computerised method with manual annotation. In this context, JSI is used (Jaccard,

1901) to measure the reliability of wrinkle detection method. The Jaccard index J is

calculated by the intersection of A and B divided by the union of A and B. A and B are

annotations of two different coders, respectively.

J (A,B) =
|A∩B|
|A∪B|

(3.73)

3.5.2 Accuracy of Wrinkle Detection

In order to validate the correctness of the proposed method, ACC is defined as

ACC =
N

∑
i=1

wi, wi =

1 if JSIi > 40%

0 otherwise
(3.74)

where N is the total number of images in the experiment and w is true if JSI > 40%.

Any overlap between A and B larger or equal to 40% is considered as correct detection

(Real, 1999; Drukker et al., 2002).
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3.5.3 Mean Absolute Error

A MAE is defined as the average of the absolute errors between the estimated age

labels and the ground truth age labels, that is,

MAE = ∑
N
k=1 (|Ak−Bk|/N) (3.75)

where Bk is the ground truth age for the k-th test image, Ak is the estimated age, and N

is the total number of test images.

3.5.4 Cumulative Score

A CS, is defined as

CS( j) = Ne≤ j/N×100% (3.76)

where Ne≤ j is the number of test images on which the age estimation makes an ab-

solute error no higher than j years. As a classification problem, the age estimation

performance can also be revealed by the classification accuracy.

CS( j) can be viewed as the classification accuracy, which, like in face recognition,

might be a more important criterion than the average performance MAE for practical

applications. Here, in the age estimation field, both CS and MAE are used as metrics

since different methods, datasets, and systems may be biased or unbalanced for evalu-

ation. For example, if the ordinal label is available in a large training data set with dense

distribution of different ages, CS could be the best way to reflect the performance. But,

if the training data are not dense, i.e., there are a lot of missing data or missing ages,

MAE could be very useful to measure the performance.

3.5.5 Cross Validation

k-fold cross validation is the statistical practice of partitioning a sample of data into

subsets such that an analysis is initially performed on a single subset, while the other

subset(s) are retained for subsequent use in confirming and validating the initial analysis

(Kohavi, 1995; Geisser, 1993). The first subset is used as a testing set and the other

subset(s) are applied as training set. Then, the second subset is used as a testing

set and the rest is implemented as training set, and so on. A collection of images -

dataset (D) is used in that method by randomly split it into k mutually exclusive subsets
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(named as fold), D1,D2, ...,Dk of approximately equal size. For example, 10-fold cross-

validation is implemented for estimating a MAE as,

MAE10 =
1
k

k

∑
i=1

MAEi (3.77)

where k = 10 and MAEi is the result of a particular Di. LOPO is similar to cross vali-

dation but instead of dividing a dataset into number of subsets, it replaces k with a total

number of images (N).

3.6 Benchmark Datasets

In this section, five datasets including Bosphorus (Savran et al., 2012a), FGNET (FGNET

aging dataset, accessed on September 2012), MORPH (Ricanek and Tesafaye, 2006),

FERET (Phillips et al., 2000), PAL (Minear and Park, 2004) are discussed.

3.6.1 Bosphorus

In order to evaluate the potential 3D modality for facial expression analysis, Savran et al.

(2012a) prepared an extensive facial expression dataset, called Bosphorus, where 3D

faces were acquired with a structured light system and the companion 2D face images

with a normal light camera. The image acquisition was done under good illumination

conditions and without any background clutter. The colour images have 1600× 1200
resolution. Their dataset contains 105 subjects enacting a large repertoire of expres-

sions, and displaying systematic head poses (13 fixed rotations including yaw, pitch and

cross rotations) and occlusions (beard, moustache, glasses, hand, hair, etc.), resulting

in a total of 4666 number of face scans. The facial expressions were instructed by the

experimenter and the ground-truth Facial Action Coding System (FACS) (Ekman and

Friesen, 1977; Ekman et al., 2002) annotations were obtained by one certified FACS

coder. The limitation of using only one FACS coder does not allow for inter-coder re-

liability of their coding. Some of the characteristics of the dataset are as follows: The

majority of the subjects are aged between 25 and 35, mostly Caucasian, and the cohort

consists of 60 men and 45 women in total. They employed 29 professional actors and

actresses for acting the expressions while the rest were recruited from students and

staffs. They selected 25 action units, split between seven lower action units and 18

upper facial action units, and tested them over 2902 neutral and expression samples
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Figure 3.23: Bosphorus samples (Savran et al., 2012a). Top and bottom row shows
a female subject and a male subject of same person with different expressions and
poses, respectively. The label of each image describes the expression (Neutral / Fear /
Happy) and pose angle.

in the dataset. They also included the pitch, yaw and roll statistics using 22 landmark

points.

3.6.2 FGNET

FGNET comprises 1002 images of 82 subjects (6-18 images per subject) in the age

range 0-69 years (FGNET aging dataset, accessed on September 2012) . The dataset

also provides 68 landmark features that were identified manually, on all the face im-

ages. In addition, the following meta-information is available for all the images in the

dataset namely: image size, age, gender, spectacles, hat, mustache, beard, horizon-

tal pose and vertical pose. Since the images were retrieved from real-life albums of

different subjects, the face images involve all possible variations including illumination,

pose, expression, beards, moustaches, spectacles, etc (Zhou et al., 2005). Figure 3.24

illustrates some samples of the type of variation seen in FGNET. Based on human

observation, the first and second row are clear images but the last row is considered as

blurred images which do not have sufficient texture information such as wrinkles.
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Figure 3.24: FGNET samples (FGNET aging dataset, accessed on September 2012).
Top row shows a male subject of same person at different age, mid row also the same
but the subject is a female and bottom row presents different subjects with poor image
quality. The label of each image describes the age, colour property (Greyscale / Color),
Moustache or Non-moustache, Spectacles or SpectacleLess.

3.6.3 FERET

FERET is a comprehensive dataset that addresses multiple problems related to face

recognition. (Phillips et al., 2000). It consists of 2366 images of 994 subjects that

presents multiple problems related to face recognition such as illumination variations,

pose variations, and facial expressions. Moreover, it consists of a few hundred age-

separated face images of subjects with the age difference of 18 months or more and

the age range is between 10 and 70. Batool and Chellapa Batool and Chellappa (2015)

claimed that FERET is a low resolution dataset like FGNET. However, due to wrinkle

extraction requiring decent resolution, we assess the performance of proposed algo-

rithm on FERET, the highest resolution amongst the benchmark datasets. Figure 3.25

illustrates the samples of FERET which involve the difference in age, gender and eth-

nicity.
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Figure 3.25: FERET samples (Phillips et al., 2000). Top and bottom of same column
shows the face images of same subject at different ages. The label of each image
describes the gender (Male / Female), approximate age in 2014 and race (White /
Black / Asian).

3.6.4 MORPH

The publicly available dataset of MORPH was collected by the Face Aging Group at

the University of North Carolina at Wilmington for the purpose of face biometrics appli-

cations. This longitudinal dataset records individuals metadata, such as age, gender,

ethnicity, height, weight, and ancestry, which is organized into two albums (Albert and

Ricanek Jr, 2008; Ricanek and Tesafaye, 2006). In the latest version on 20152, it con-

tains 55,000 unique images of more than 13,000 individuals, spanning from 2003 to

late 2007. Ages range from 16 to 77 with a median age of 33. The average number of

images per individual is 4 and the average time between photos is 164 days, with the

minimum being 1 day and the maximum being 1681 days. The standard deviation of

days between images is 180. Figure 3.26 shows the samples from MORPH.

3.6.5 PAL

Faces constitute a unique and widely used category of stimuli. In spite of their impor-

tance, there are few collections of faces for use in research, none of which adequately

represent the different ages of faces across the lifespan. The lack of age range repre-

sentation has limited the majority of researchers to using predominantly young faces as

stimuli even when their hypotheses concern both young and old participants. Minear

2MORPH Non-Commercial Release Whitepaper, http://www.faceaginggroup.com
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Figure 3.26: MORPH samples (Ricanek and Tesafaye, 2006). Top and bottom row
shows the face images of two different subjects at different ages. The label of each
image describes the gender (Male / Female), age and race (African / European).

Figure 3.27: PAL samples (Minear and Park, 2004). The label of each image describes
the gender (Male / Female), approximate age in 2014 and race (African-American /
Caucasian / Other).

and Park (2004) from PAL collected a dataset of 576 individual faces ranging from ages

18 to 93. It was developed to be more representative of age groups across the lifespan,

with a special emphasis on recruiting older adults. The resulting dataset has faces of

218 adults age 18-29, 76 adults age 30-49, 123 adults age 50-69, and 158 adults age

70 and older. This will allow researchers interested in using facial stimuli access to a

wider age range of adult faces than has previously been available. In this work, only

neutral faces are used for the experiments due to profile faces might not have enough
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wrinkle information.

3.7 Summary

The techniques, measurements and datasets described in this chapter provide the ba-

sis for contributions in later chapters. In the next chapter, two novel methods for wrinkle

detection are described. Then, the subsequent chapters describe the novel feature

representations and age estimation methods.
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Chapter 4

Novel Methods of Wrinkle Detection

This chapter proposes two novel methods of wrinkle detection. First, hu-

man performance for wrinkle detection is explained. Second, the proposed

HHF which integrates the directional gradient and Hessian matrix in dis-

covering the ridge and valley pattern is described. Third, the proposed HLT

that discovers the wrinkle connectivity through the neighbourhood pixels is

presented. Finally, it provides an insight of the strength and weakness of

each method which could be explored in the future.

4.1 Human Performance for Wrinkle Detection

Aging as a natural phenomenon affects different parts of the human body under the

influence of various biological and environmental factors. Based on literature review,

humans rely on a number of facial features to predict the face age, i.e., face shape,

hair, moustache, beard, mole, scar and wrinkle. The most pronounced changes that

occur on the face is the appearance of wrinkles, which are the focus of this research.

Accurate wrinkle detection automatically is an important task in face analysis. Some

have been proposed in the literature, but the poor localisation limits the performance

of wrinkle detection. It will lead to false wrinkle detection and consequently affect the

processes such as age estimation and clinician score assessment. Prior to developing

a robust algorithm, it is important to understand how human perform wrinkle detection.

In this section, three coders have been instructed to annotate the wrinkles of 2D

forehead images manually. A dataset namely FORERUS was created for this experi-

ment where 100 forehead images were randomly selected and cropped from Bosphorus

(Savran et al., 2012b).
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Figure 4.1: FORERUS samples. The dotted lines show the portion of forehead image
cropped from the original facial image and it is used for wrinkle detection analysis. Both
face images were from Bosphorus (Savran et al., 2012b).

4.1.1 Dataset Preparation

In order to assess the performance of the wrinkle detection algorithm, images were

selected from Bosphorus (Savran et al., 2012b). This dataset consists of 106 subjects

and the 2D face images were acquired under good illumination conditions with a normal

light camera. According to Batool and Chellappa (2012), wrinkles are more obvious on

forehead in most of the images. Therefore, the same procedure is repeated by manually

cropping the forehead images from Bosphorus. For each image, forehead was manu-

ally cropped with a rectangle selector as the dotted lines shown in Figure 4.1. Rectangle

size varied from one to another due to different face shapes exist in dataset. This ex-

periment validates the performance of the proposed algorithms in detecting wrinkles

compared to the human annotations on different images. Thus the image size normali-

sation is not included in the preprocessing step. In total, 100 random forehead images

are cropped from Bosphorus and each forehead image is annotated with hand labelling

as the ground truth. This dataset is named as FORERUS. Three coders have been

instructed to do the annotation in Matlab under a controlled environment as illustrated

in Figure 4.2(c) (Microsoft Windows 7 Enterprise 64-bit SP1, Intel Core i7-3770 CPU

@ 3.40GHZ, 8.0GB RAM, NVIDIA Quadro 200, lab with similar lighting conditions). To

prevent the bias from the use of software, the annotators were allowed to practise on

the annotation software for 10 minutes. They were instructed to annotate the interior

centre line of the wrinkle, which is defined as the deepest wrinkle area. Center line of a

wrinkle means the deepest wrinkle area. The reason for this is to minimise the factors

such as lighting, screen size and the noise interference while annotating the wrinkles.
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Figure 4.2: Illustration of the working environment settings for human annotation. (a)
Original image. (b) Four lines drawn by human annotation in a binary mask. (c) An
illustration of how the coder performs the wrinkle annotation in Matlab.

One pixel line was used for each human annotation. Figure 4.2(b) illustrates the mask

of human annotation.

In this work, the expansion threshold of nine pixels is utilised when calculating a

JSI. From the experiment, it is noticed that nine pixels produced the best overlapping

in between the ground truth and estimated line. A small number of pixels will fail to hit

the estimated line and large number of pixels will bias the result due to certain wrinkles

being close to each other. Figure 4.3 illustrates an example of how the annotation is

expanded with nine pixels to top and bottom from its original location. Assume coder

A is the prediction and coder B is the ground truth. The white area in Figure 4.3(b) is

an annotation expansion of coder A and it is represented by the blue and green lines

in Figure 4.3(c). Note that, only prediction line is expanded when calculating a JSI to

prevent over segmentation.
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Figure 4.3: Pixel overlapping between coders. (a) Original image. (b) Annotation of
coder A (or white area) has expanded nine pixels to top and bottom from its original
location as shown in (c) as blue and green line. Pink line represents the annotation
of coder B or the ground truth. (c) Blue line represents the false alarm and green line
shows the true prediction. The image JSI is 85.26%.

4.1.2 Experimental Results of Human Annotation

Figure 4.4 shows the intra-coder reliability within coders. A round shape plot indicates

the annotation is highly consistent. First, the coders annotated the complete set of

images on the first day, and then they were asked to repeat the annotation on 30% of the

images on the second day. The intra-coder reliabilities of coders A, B and C in terms of

average JSI are 82.55%, 78.99% and 74.56%, while the Standard Deviation (STD)s are

8.58%, 11.28%, 10.45%, respectively. The intra-coder reliability of coder C is the lowest

but the performance of coder B is the most inconsistent. From the human annotation

result, wrinkle annotation is not only a laborious and time-consuming task, but it is also

a difficult perceptual task with low consistency within the same annotator.

In addition to intra-coder reliability, inter-coder reliability is a measurement of con-

sistency among coders. Table 4.1 illustrates the JSI statistics between coders A, B and

C. Overall, the accuracy of inter-coder reliability between coders is 94%. These results

showed that human annotation is often subjective. Moreover, it is time consuming if

human annotation involves a large dataset. Therefore, an automatic wrinkle detection

is needed to speed up and automate the annotation.

Figure 4.5 shows the samples of human annotation between three coders. It is ob-

served that coder B did not annotate certain lines of all images as wrinkles but coder A

did annotate it such as img i, ii and iv. Such contradictions resulted in the variations of
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Figure 4.4: Intra-coder reliability of 30% dataset. Angle represents image number and
radius illustrates the JSI percentage.

Table 4.1: Inter-coder reliability of human annotation.

Coders Mean STD Min Max ACC
A vs B 67.28 14.10 18.41 94.88 99.00
A vs C 75.46 13.59 33.98 96.69 97.00
B vs C 61.46 16.92 23.05 98.34 86.00

annotation and hence yielded different JSI results. Moreover, this result demonstrates

the difficulty of wrinkle localisation and the high technical challenge for automatic wrin-

kle detection. Therefore, two novel methods, HHF and HLT are proposed to automati-

cally perform the wrinkle detection as follows.
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Figure 4.5: Human annotation on FORERUS images. Each row shows an original
image (left) and annotated image of three coders (right). Red line represents coder A,
green line is coder B and blue line is coder C. img i, ii, iii, iv, v mean different images.
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4.2 Novel Algorithm of Hybrid Hessian Filter

A Hybrid Hessian Filter (HHF) is proposed to segment the wrinkles using the directional

gradient and a ridge-valley Gaussian kernel. The proposed filter is conceptually simple,

however, it significantly increases the true wrinkle localisation when compared with the

conventional methods.

Wrinkles are considered as stochastic spatial arrangements of line segment se-

quences, reasonably similar with those in retinal blood vessels. A wrinkle should not

be confused with edges. An edge is the border between two areas while a wrinkle is a

line that is either darker or lighter than their neighbourhood. Therefore, edge detection

methods such as Canny and Sobel are not suitable for wrinkle detection because it will

produce wrinkle boundaries and not a wrinkle.

In this section, the multi-scale second order local structure of an image is explored.

According to Frangi et al. (1998), a vesselness measure is obtained on the basis of all

eigenvalues of the Hessian. The eigenvalues of the Hessian matrix evaluated at each

point quantify the rate of change of the gradient field in various directions. The eigen-

values are independent vector measures by the components of the second derivatives

of the field at each point (x,y). A small eigenvalue indicates a low change rate of the

field in the corresponding eigen-direction, and vice versa (Frangi, 2001). Although both

vessel and wrinkle present similar curve patterns, the underlying image quality is differ-

ent. The vessel image was captured by the TopCon TRV-50 fundus camera at a 35◦

Field Of View (FOV), which were digitized with 24-bit grey-scale resolution and a spatial

resolution of 700×605 pixels. In contrast, the original image of wrinkles were acquired

using a standard camera with the image resolution of 1600× 1200. Higher resolution

images contain more properties but also noise. Therefore, the proposed method has

to deal with the pepper noise and illumination without damaging the region of interest.

In addition, a retinal scan involves using a low-intensity light source through an optical

coupler to scan the unique patterns of the retina (Liu and Silverman, 2001). Retinal

scanning can be quite accurate but does not require the user to look into a recepta-

cle and focus on a given point. As a result, these images present constant intensity

across the dataset. In contrast to retinal vessels images, skin images present differ-

ent challenges. Skin surface consists of pores, hair and pigmentation signal, among

these attributes wrinkles present significant variations such as curve pattern, length,

thickness and orientation with varied waviness and roughness.

Figure 4.6 shows the proposed HHF for wrinkle detection. The main difference
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Figure 4.6: Process flow of HHF. (a) Original image was cropped from Bosphorus
(Savran et al., 2012b). (b) Colour image was converted into grey-scale image. (c)
Gaussian filter was used to derive the directional gradient from grey-scale image. (d)
FRF was applied on directional gradient image to approximate the structure around
each pixel at certain scale. (e) Image vectors less than zero was preserved as ridge-
like pattern. (f) Ridge image was thresholded in a degree that only wrinkle-like patterns
are extracted. (g) The overlapping between coder annotation (red line) and method
estimation (blue line). (h) JSI was calculated based on the intersection area only (green
line).

between HHF and FRF is the use of gradient image in HHF and a ridge-valley Gaussian

kernel. This ensures the direction of interest is highlighted before the processing of

Hessian filter. Given a 2D forehead image I as illustrated in Figure 4.6(a), it is converted

into grey-scale as shown in Figure 4.6(b). The directional gradient (Gx,Gy) is computed

from the grey-scale image and the Gy is illustrated as in Figure 4.6(c). Let Gy denoted

as I , due toI emphasizes the y-variation (or horizontal line in the forehead image), it is

used as the input for calculating the Hessian matrix H . The Hessian matrix H at scale

ϑ is defined as

H (x,y,ϑ) =

[
a b

b c

]
(4.1)

where a, b and c are the outputs of second derivative (Frangi, 2001). Each approxi-

mates the convolution of I by the Gaussian kernels G1 (ϑ), G2 (ϑ) as

Ha (x,y,ϑ) = I (x,y)∗G1 (i, j,ϑ) (4.2)

101



Chapter 4. Novel Methods of Wrinkle Detection

0
5

10
15

20
25

30
35

40
45

0

10

20

30

40

50

−7

−6

−5

−4

−3

−2

−1

0

1

2

3

x 10
−5

(a) G1

0
5

10
15

20
25

30
35

40
45

0

10

20

30

40

50

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x 10
−5

(b) G2

0
5

10
15

20
25

30
35

40
45

0

10

20

30

40

50

−7

−6

−5

−4

−3

−2

−1

0

1

2

3

x 10
−5
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1

Figure 4.7: Gaussian kernels G1, G2 and GT
1 where ϑ = 7. In this work, ϑ∈ {1,3,5,7}

for deriving different sizes of wrinkle.

Hb (x,y,ϑ) = I (x,y)∗G2 (i, j,ϑ) (4.3)

Hc = [Ha]
T (4.4)

The second derivative of a Gaussian kernel at scale ϑ generates a probe kernel

that measures the contrast at the selective scale in the direction of the derivative. They

are given by

G1 (i, j,ϑ) =
1

2πϑ4

[
M 2

i, j

ϑ2 −1

]
e
−M 2

i, j+N 2
i, j

2ϑ2 (4.5)

G2 (i, j,ϑ) =
1

2πϑ6

[
Mi, jNi, j

]
e
−M 2

i, j+N 2
i, j

2ϑ2 (4.6)

where M and N are the kernels with vertical and horizontal directions as

Mi, j =−3ϑ+ i−1 (4.7)
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Figure 4.8: HHF variables at different scales. Each row shows different variables of
HHF and each column is one of the scales, ϑ. It is observed that H a, λ2 and E show
the lines of interest. A multi-scale detection presents a different kind of lines. This
implies different sizes of wrinkles can be detected by HHF.

Ni, j =−3ϑ+ j−1 (4.8)

where the range of i and j is [−3ϑ,3ϑ]. Figure 4.7 shows the Gaussian kernels G1,

G2 and GT
1 where ϑ = 7. Since wrinkles are similar to the patterns of ridge and valley,

the Gaussian kernels are designed in the same way. To categorize the texture pattern,

eigenvalues λ1 and λ2 of the Hessian at specific scale and coordinates are given by

λ1 =
1
2

[
Ha +Hc +

(√
(Ha−Hc)

2
+4H 2

b

)]
(4.9)

λ2 =
1
2

[
Ha +Hc−

(√
(Ha−Hc)

2
+4H 2

b

)]
(4.10)

The similarity measures R and S are given by

R =

(
λ1

λ2

)2

, λ2 6= 0 (4.11)
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Figure 4.9: HHF values at different scales and orientations of Figure 4.6(a). Top row is
the HHF optimum values selected from different scales. Mid-row is where the scale of
optimum is selected. Bottom is where the orientation of optimum is selected.

S = λ
2
1 +λ

2
2 (4.12)

The curvilinear likeliness measure E is defined as

E (x,y,ϑ) =


0 if λ2 < 0

e
− R

2β2
1

[
1− e

− S
2β2

2

]
otherwise

(4.13)

In this work, the kernel scale, ϑ, is set as 1, 3, 5, 7; β1 controls the sensitivity of the

filter to the curve deviation R and the default value is 0.5; β2 depends on the greyscale

range of the ridge of interest and controls the sensitivity of the filter to the similarity

measure S and the default value is 15 (refer to Frangi (2001)). If a ridge is analyzed at

different scales ϑ, the response of the filter Emax will be the maximum of all scales if it
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4.2. Novel Algorithm of Hybrid Hessian Filter

approximately matches the filter scale and it is defined as,

Emax (x,y) = max
ϑmin6ϑ6ϑmax

[E (x,y,ϑ)] (4.14)

where ϑmin and ϑmax are the minimum and maximum scales at which relevant structure

are expected to be found (as shown in Figure 4.6(d)). λ1 and λ2 highlights the data of

interest and discards noisy patterns (Frangi, 2001). Figure 4.8 illustrates HHF variables

at different scales. It is noticed that λ2 presents a pattern of interest where wrinkles

are highlighted in a ridge and valley curve. This indicates that λ2 is a key indicator of

wrinkle location. In all scales, if λ2 appears to be negative, then the wrinkle is detected.

Moreover, if E appears exactly as zero at all scales, then the wrinkle is detected as well.

Figure 4.9 shows the HHF values at different scales and orientations. It is observed that

the HHF output generates a high range of values where wrinkles lie. Most of them are

found at similar scale but different angles. This implies a multi-scale filtering is very

useful for different sizes of wrinkles. Once the similarity is derived from the Eq. (4.14),

the wrinkle-like pattern is preserved. The initial wrinkle mask W is generated as shown

in Figure 4.6(e) and it is defined as

W (x,y) =

0 if Emax (x,y)> 0

1 otherwise
(4.15)

Next, each region of interest (8-connected pixels) is filtered by an area threshold

where regions less than 250 pixels are removed and the output is the estimated fore-

head wrinkle as shown in Figure 4.6(f). Note that the area threshold is based on the

initial image resolution and it is empirically determined. A small image might need a

lower threshold and vice versa.

Figure 4.6(g) illustrates the overlapping between human annotation and predicted

wrinkle of HHF. A polynomial fitting is implemented on the predicted wrinkle to localize

the center line of the wrinkle and it is used for calculating a JSI denoted as Eq. (3.73).

Figure 4.6(h) shows how a JSI is calculated, red represents the human annotation

or ground truth, blue means the false detection and green is the true detection.

Figure 4.10 demonstrates the pseudo code of HHF. The novel idea is to segment

wrinkles using a ridge-valley Gaussian kernel on the directional gradient (as step 3 and

5 in the Figure 4.10). Given a grey-scale image I, the directional gradient is computed,

giving (Gx,Gy). Since Gy represents changes in the y-direction, it is suitable for hori-

zontal line detection, and it is used to calculate the Hessian matrix H at a specific scale
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1: BEGIN
2: I = ImageAcquisition()
3: (Gx,Gy) = ImageGradient(I)
4: for ϑ = FirstScale : step : LastScale do
5: H a,b,c = GaussianConvolution(Gy,ϑ)
6: λ1,2 = TextureOrientation(H a,b,c)
7: R =CurveDeviation(λ1,2)
8: S = SimilarityMeasure(λ1,2)
9: E =CurvelinearLikeliness(R ,S)

10: end for
11: Emax = Maximum(E ,ϑ)
12: W = T hresholding(Emax)
13: return W
14: END

Figure 4.10: Pseudo code of HHF.

ϑ. Let I = Gy, each of the approximations H a,H b,H c in a particular position, (x,y),

is the convolution between I and a Gaussian kernel, G. Then, the eigenvalues λ1,2

of H are derived from each approximation in order to determine the texture orienta-

tion. After that, both curve deviation R and a similarity measure S are computed from

λ1,2. Then, the curvilinear likeliness E at specific ϑ is calculated from R and S . Next,

the approximation, Emax, is computed from the maximum response of the filter at all

scales. Finally, the output, W , is produced by assessing on each pixel where W = 1 if

Emax ≤ 0, and vice versa.

4.3 Novel Algorithm of Hessian Line Tracking

In this section, Hessian Line Tracking (HLT) is proposed to overcome the weakness of

HHF. The proposed HLT is composed of Hessian seeding and directional line tracking.

It is an extension of a Hessian filter; however it significantly increases the accuracy of

wrinkle localisation when compared with existing methods.

HHF is capable of estimating the presence of the ridge and valley patterns. How-

ever, the relationship between wrinkle pixels with those surrounding them has not pre-

viously been explored. Both current and adjacent pixels within the same line (wrinkle)

should have the same value or less. Therefore, the main focus of this experiment is to

introduce a new method, HLT, which has the capacity to track wrinkle lines based on

neighbourhood properties. HLT was inspired by a multi-scale retinal vessel segmenta-

tion technique, which uses line tracking, proposed by Vlachos and Dermatas (2010).
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4.3. Novel Algorithm of Hessian Line Tracking

Figure 4.11: Multi-scale tracking. ŝ is the scale of tracking. Red is the current pixel,
green is the candidate pixel and blue is the background pixel.

However, they used the green channel as starting pixels or seeds for line tracking. This

is not suitable for this work as the green channel is a weak representation of skin colour.

The initialisation step is crucial in HLT because too many seeds will lead to over seg-

mentation and too few seeds will cause under segmentation. Therefore, the ridge areas

of HHF were selected as seeds for HLT.

Several image processing modules are implemented in HLT: seed extraction by

HHF provides the most appropriate pixels as starting points, line tracking at multiple

scales determines the confidence of each pixel belonging to a wrinkle line, and post

processing removes outliers. It is worth mentioning that HLT is applied to all seeds at

multiple scales. The total number of scales, Ξ, is selected based on the size of wrinkles

to be detected and also the resolution of the original image. The scale will be increased

if the wrinkle width is larger or the resolution is higher, and vice versa. Figure 4.11

presents the multi-scale tracking of the same pixel with scales of 1, 2 and 3. In this

study, initial scale ŝ is 1, in step of 1, and the last scale is 10.

First, a grey-scale image I is selected from the dataset and HHF is performed upon

it. As described in the previous section, the HHF output is defined as W and it is

divided to ridge and valley areas. Figure 4.12 illustrates an ideal wrinkle profile from

non-wrinkle area to wrinkle area. The ridge is the area of interest as tracking always
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Figure 4.12: Ideal wrinkle profile. Valley area presents the wrinkle while ridge area
shows the non-wrinkle area.

takes place from bright to dark areas. Therefore, the inverse of W is denoted as

Winv =

{
1 if W = 0
0 otherwise

(4.16)

.

Assume I(x,y) is thresholded by the W inv as

Inew (x,y) =

{
Iold (x,y) if Winv = 1
0 otherwise

(4.17)

where the pixel value of I is preserved if the logical value of W inv is true and vice versa.

Let hp,r̂(x,y) be denoted as a set of candidates pixels to a particular center pixel or

seed, sds (sds ∈ Inew), where p represents the number of sampling points and r̂ is the

radius of the neighbourhood. These sampling points, h, lie at Cartesian coordinates as,

(xθ,yθ) = (x+ r cosθ,y+ r sinθ) (4.18)

where θ∈ {0◦,180◦,45◦,225◦,135◦,315◦} and (xθ,yθ)∈ hp,r̂ and r̂ is unity by default.

In this work, (p, r̂) = (6,1) where tracking of vertical directions are excluded. Therefore,

each time a seed is derived, there are six elements in h. Figure 4.13 illustrates the

cross-sectional profile of different orientations. Let p1 denote the first background pixel

located ŝ pixel(s) away from the candidate pixel and let p2 as the second background
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Figure 4.13: Cross-sectional profile. Red is the current pixel, green is the candidate
pixel and blue is the background pixel.

pixel located ŝ pixel(s) away from the candidate pixel but in the opposite direction. The

cross-sectional profile V at a particular scale, ŝ, is estimated as

V (xθ,yθ, ŝ) = I(p1, ŝ)+ I(p2, ŝ)− I(x,y, ŝ)− I(xθ,yθ, ŝ) (4.19)

where ŝ ∈ {1,2, . . . ,Ξ} and Ξ is the total number of scales, in this case Ξ = 10. Note

that I(x,y, ŝ) is the current pixel or seed while I
(
xθ,yθ, ŝ

)
is the candidate pixel. If the

current and candidate pixels belongs to the set of wrinkles, the cross-sectional profile V
has a large positive value. If the current and candidate pixels belongs to the non-wrinkle

pixels, V has a negative value or is near to zero. The winner pixel z with a maximum

positive cross-sectional profile, exceeding a predefined positive threshold t, is defined

as

z = argmax
h

({V (xθ,yθ, ŝ)}> t) (4.20)

where z could be one of the elements of h or z could be null if none is larger than t.

t is an important threshold in identifying the intensity difference between the current

pixel and the candidate pixel relative to the background pixels. The default value of t is

9, which is the best threshold that has been empirically explored for FORERET. Note

that z,p1,p2 refer to a particular coordinates, (x,y). If z is not null, then the confidence
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Figure 4.14: Hessian line tracking. (a) Original image I, (b) Seeds sds, (c) confidence
array C , (d) initial wrinkle map B , (e) wrinkle map after post processing of filtering, (f)
inter-coder reliability results where red is ground truth, green is true positive and blue is
false positive.

array, C , is increased by one as

Cnew (x,y) =

{
Cold (x,y)+1 if z 6= null,(x,y) = w0

Cold (x,y) otherwise
(4.21)

where the next pixel to be tracked is I(z). If z is null, the next candidate pixel is drawn

from the seeds. Note that the tracked pixel is unique from candidate pixels, otherwise

the tracking will be redundant. Once multi-scale line tracking is completed for all scales

ŝ, the initial wrinkle map B is generated by consulting the confidence array as

B (x,y) =

1 if Cnew (x,y)≥ Ξ

0 otherwise
(4.22)

where Ξ is the total number of HLT scales and Ξ = 10. B is true if C new is greater

than or equal to amount of scales, Ξ. If the wrinkle width is of particular interest, it can

be estimate from a predefined scale. In other words, Ξ can be defined according to

the width preference. For example, large Ξ is preferred for the coarse wrinkles and a

smaller one for the fine wrinkles.
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1: BEGIN
2: I = ImageAcquisition()
3: W = HybridHessianFilter(I)
4: sds = Inverse(W )
5: for ŝ = InitScale : step : FinScale do
6: for k = 1 : length(sds) do
7: (x,y) = sds(k)
8: [h,p1,p2] = Neighborhood(x,y, ŝ)
9: V (h) =CrossSectionalPro f ile(h,p1,p2)

10: θ = argmax
h

{
V (h1) : V (h6)> t

}
11: if θ! = null then
12: C new(x,y) = C old(x,y)+1
13:

(
xθ,yθ

)
= (x+ r cosθ,y+ r sinθ)

14: while
(
xθ,yθ

)
/∈ sds do

15: Repeat from step 9
16: end while
17: end if
18: end for
19: end for
20: for all (i, j) in C new do
21: if C new (i, j)>= Ξ then
22: B (i, j) = 1
23: else
24: B (i, j) = 0
25: end if
26: end for
27: Bmf = MedianFiltering(B)
28: Bdf = DirectionalFiltering(Bmf)
29: X = AreaT hresholding(Bdf)
30: return X
31: END

Figure 4.15: Pseudo code of HLT.

Figure 4.14 shows the outputs of HLT, while (a), (b) and (c) illustrate the original

image I, seeds sds and confidence array C , respectively. Due to noise, and very rarely,

some non-wrinkle pixels can be tracked in all scales and erroneously are considered

as part of the wrinkle map. As a final step, post processing is required to reduce the

presence of noisy pixels from the wrinkle map. This involves median filtering, directional

filtering and area filtering. Median filtering is used to remove pepper noise pixels that

do not belongs to any wrinkles. A 3× 3 median filter is applied to B and the output is
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Figure 4.16: Examples of FORERET images. Top row shows the original image
cropped from FERET. Bottom row shows the human annotation (red) and automatic
wrinkle detection using HLT (blue). Each column represents the same image.

Bmf. After median filtering, some noise may still remain. The binary image Bmf is trans-

formed using four morphological openings with line structuring elements oriented in four

different directions 0◦, 45◦, 90◦ and 135◦. These line structuring elements use a length

of 3 pixels to preserve only wrinkle-like structures with a length equal or larger than

3 pixels. Bdf is derived using the logical OR of the four directional filtering responses

and is shown as Figure 4.14(d). Next, area thresholding is used to remove spots or

roundish marks with a size lower than 250 pixels. In the end, wrinkles, X , are detected

as illustrated in Figure 4.14(e) and the center line of each wrinkle is used for validation

as presented in Figure 4.14(f). Figure 4.15 depicts a summary of HLT pseudo-code.

4.4 Experimental Results

Two datasets, FORERUS and FORERET, were used for performance assessment of

automatic wrinkle detection. Coders were given the FORERUS images and they per-

formed wrinkle annotation by saving the wrinkle mask in the Matlab logical format. Two

of them are computer scientists (denoted as A and B) and third coder is an experienced

beauty therapist (denoted as C). Meanwhile, another dataset namely FORERET was

created using the same procedure as described in Section 4.1.1. It was randomly se-

lected from FERET as the image resolution is about half of Bosphorus. The annotation

is based on coder A only. Figure 4.16 shows the examples of FORERET images. Mea-

surements of JSI and ACC were used for performance assessment of automatic wrinkle

detection. There are two experiments in this section. First, performance assessment

is validated on FORERUS. It is followed by the second experiment on FORERET. The

last section discusses the work.
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Figure 4.17: JSI of automatic wrinkle detection versus benchmark of coder A, B and C.

4.4.1 Performance Assessment on FORERUS

Figure 4.17 presents the results of wrinkle detection using state-of-the-art methods

CLM (Cula et al., 2013), FRF (Frangi, 2001), the proposed methods, HHF and HLT.

Overall, it is found that HLT performs better than CLM, FRF and HHF with an accuracy

of 84% and STD 2.16%. The accuracies of CLM, FRF and HHF are 54.33%, 63.33%

and 77.00% with STD 3.40%, 4.50% and 4.08%, respectively.

Figure 4.18 shows some results of wrinkle detection using HHF and HLT. The first

row is the original image, the second row is the output of HHF and the last row is the

HLT output. Figure 4.18(a) shows that HHF achieves a JSI of 58.07% while HLT has

87.72%; Figure 4.18(b) shows that HHF has a JSI of 40.07% while HLT has 63.59%;

Figure 4.18(c) illustrates that HHF has a JSI of 3.54% while HLT has 50.28%; and

Figure 4.18(d) depicts that HHF scores 34.34% while HLT is 87.45%.

On coarse wrinkles (as in Figure 4.18(a) and Figure 4.18(b)) both HHF and HLT
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Figure 4.18: HHF vs HLT of different FORERUS images. Green is a hit on ground truth,
red is a miss and blue is a false alarm. The first row is the original image, the second
row is the output of HHF and the last row is the HLT output. (a) JSI of HHF is 58.07%
and HLT is 87.72%. (b) JSI of HHF is 40.07% and HLT is 63.59%. (c) JSI of HHF is
3.54% and HLT is 50.28%. (d) JSI of HHF is 34.34% and HLT is 87.45%.
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Figure 4.19: Wrinkle detection accuracy between HHF and HLT. In 100 images, HLT
achieved accuracy of 79% while HHF only hit 49%.

manage to detect the line with the JSI greater then 40%. However, on a fine wrinkle (as

in Figure 4.18(c) and Figure 4.18(d), HHF performs poorly with JSI below 40% but HLT

still perform well in both cases with JSI of 50.28% and 87.45%, respectively.

4.4.2 Performance Assessment on FORERET

In this section, the performance of wrinkle detection is validated by comparing CLM,

FRF, HHF and HLT on FORERET images. Figure 4.19 shows the accuracy of wrinkle

detection. In 100 images, results showed that HLT achieves better than others with

accuracy of 79%, where HHF is 49%, FRF is 30% and CLM is 21%, while STD are

17.28%, 23.50%, 27.05% and 23.46%, respectively. Figure 4.20 illustrates the results

of wrinkle detection. For coarse wrinkles, both HHF and HLT achieved a good JSI over

75% as shown in Figure 4.20(a). However, HHF is not as reliable as HLT where coarse

wrinkles appear as shown in Figure 4.20(b). For fine wrinkles, HLT performs better than

HHF in both cases as shown in Figure 4.20(c) and (d). Overall, HLT outperforms than

others on FORERET images. Hence, it is used to extract the wrinkles in the following

experiments.

A Student’s t-test was performed between HHF and HLT, assessing the null hy-

pothesis that there is no difference between HHF and HLT. This found that t = 2.40,

d. f . = 198, P = 0.02, mean difference is 6.91, standard error difference is 2.88, up-

per of 95% confidence is 1.22 and lower is 12.60. As P < 0.05, the null hypothesis is

rejected. In other words, there is a significant difference between HHF and HLT.
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Figure 4.20: Wrinkle detection results of FORERET images. Green is a hit on ground
truth, red is a miss and blue is a false alarm. The first row is the original image, the
second row is the HHF output and third row is the HLT output. Each column refers to
the same image.

4.4.3 Discussion

Experimental results showed that HHF is capable of detecting the wrinkles compared

to CLM and FRF. One reason for this might be that in HHF the directional gradient

has greatly smoothed the image and preserved the data of interest. Cula et al. (2013)

argued that red channel of image and histogram equalisation will strengthen the wrinkle

image, but the CLM result was poor. Histogram equalisation is good when the histogram

of the image is confined to a particular region, but it is not useful on certain images
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which have large intensity variations where the histogram covers a large region.

Wrinkles usually show a large variability in length, width and pattern in either differ-

ent images and within the same image which challenging the development of automatic

wrinkle detection. Therefore, a second novel algorithm, HLT, has been proposed. This

method is based on seed extraction by HHF and HLT to overcome the weakness of

HHF and capture wrinkle variability in the whole image. The number of seeds affects

the robustness of the confidence array. If a small group of seeds is selected from

the image, the detection accuracy may decrease because the seeds affect the wrinkle

tracking probability. On the other hand, the selection of an excessive number of seeds

may increase the false positive rate. Therefore, a pre-processing step must be under-

taken in order to ensure that the seeds are representative, sufficient and minimal. HHF

highlights potential wrinkle pixels based on a Gaussian distribution between ridge and

valley curves. It is found that a wrinkle pattern was similar to the valley sequence. How-

ever, the ridge distribution in relation to wrinkles had not the previously been explored.

Therefore, in this study, ridge distribution is proposed as the seed for HLT and results

showed that it is a robust method for wrinkle detection.

Originally, a line tracking method was proposed by Vlachos and Dermatas (2010),

but had some drawbacks if in the context of wrinkle detection. First, the tracking involved

all neighbourhood pixels. It computed the confidence array in all directions which is not

ideal for directional wrinkles. If the target of interest is a horizontal wrinkle, the tracking

should exclude vertical tracking where the noises like hair might appear. Therefore,

both 90◦ and 270◦ in HLT are excluded from the tracking process with the assumption

that the major orientation of forehead wrinkles is horizontal. In addition, the exclusion

of the current or reference pixel in calculating the cross-sectional profile parameter V
is not appropriate. It is important to show the relationship between the current and

candidate pixels. If both have similar intensity and darker than the background pixels,

both pixels are highly similar and possibly belong to a wrinkle. Therefore, the calculation

of the cross-sectional profile parameter has been modified by including the current pixel.

Thirdly, threshold t is modified for noise adaptation. By default, the value is set to 7 for

all cases. However, this value is not appropriate for all kinds of background. If specular

light reflection is too strong, it will lead to over segmentation, otherwise, if the image

is too smooth or the wrinkle to be detected is too fine, then under segmentation would

happen. In order to reduce both problems, in HLT, an adaptive threshold is introduced.

If the largest area of connected pixels in the initial wrinkle map is higher than 10% of

the image size, then the threshold is set to a higher value of 15 to reduce the search
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space. If an empty map is generated, then the threshold is set to a lower value of 3.

These parameters were tested in FORERET. For other datasets, it was necessary to

adjust the parameters according to the resolution and lighting conditions.

Although the overall performance of HLT is better than HHF, there are a few issues

to be addressed. On 18 out of 100 images, HHF performed better than HLT. A few even

decreased the JSI of HLT detection lower than 40%. These images have a mixture

of coarse and fine wrinkles. Moreover, three images with fine wrinkles resulted zero

detection with either method. This issue was caused by the nature of the image where

the line is not very clear and even the coders achieved low inter-coder reliability on these

images. A topology data analysis could be investigated for different types of wrinkles.

In addition, JSI measurement is limited to line-based validation; additional computation

concerning features such as wrinkle depth, length and width can be added in the near

future. Moreover, this experiment can be extended to detect the wrinkles on the face

especially around the eye corner (crows’ feet) and mouth corner.

4.5 Summary

In this chapter, two novel methods of wrinkle detection, HHF and HLT, are described.

HHF is capable of detecting the ridge and valley patterns, while HLT extends it by ex-

ploring the neighbourhood relationship for multi-scale tracking. From the experimental

results, HLT outperformed HHF, FRF and CLM for wrinkle detection where the relia-

bility is as close as human annotation. From a preliminary study in Appendix C, the

findings showed some evidence backing the use of wrinkles to predict face age. Thus,

in the following chapters, HLT is utilised as a wrinkle extractor for face age estimation.

A relationship between the detected wrinkles and facial aging is investigated. Wrinkles

are extracted and presented in a compact pattern where different regression methods

are implemented to predict the face age. A feature pattern, MWP, is proposed and

discussed in details in the next chapter.
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Chapter 5

Multi-scale Wrinkle Patterns

In order to detect different types of wrinkles, this chapter introduces a novel

feature descriptor, MWP, based on the wrinkle statistics, to predict the face

age. It involves image resizing, wrinkle extraction using HLT, feature repre-

sentation as MWP and age estimation using SVR. Benchmark algorithms

FACE++, BIF and KLBP are compared to MWP. The performance is ac-

cessed by two measurements, MAE and CS.

5.1 Introduction

Wrinkles are interesting features which can be embedded in several image-based appli-

cations related to human skin. However, wrinkle-based age estimation research has not

been widely addressed. Figure 5.1 illustrates an example of face wrinkle variety. Fig-

ure 5.1(a) is the original image and Figure 5.1(b) is the wrinkle detection output of the

full face where red shows a high confidence array as wrinkles in HLT. It is noticed that

forehead, crows’ feet, lower eyelid and nasolabial regions present wrinkles coarser than

other regions. Figure 5.1(c) is a cropped forehead image of Figure 5.1(a), Figure 5.1(d)

is the result of HLT detection with 50 regions detected as wrinkles, and Figure 5.1(e)

is the half size image of Figure 5.1(c) where only 9 regions found as wrinkles. This

implies that the different sizes of image demonstrates different amounts of wrinkles.

Therefore, it is interesting to find out how the multi-scale wrinkles would contribute to

the performance of age estimation.

Conventionally, Cula et al. (2013) proposed the wrinkle features using edge de-

tector. However, the extracted wrinkles were not validated against the ground truths.
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Figure 5.1: Different kind of face wrinkles. (a) original image; (b) wrinkle detection
output of the full face where red shows a high confidence array as wrinkles in HLT; (c)
cropped forehead image as black dotted line in (a); (d) 50 regions detected as wrinkles;
(e) half size image of (c) and 9 regions found as wrinkles. Note that this figure was
redrawn from FERET.

Frangi (2001) proposed a vessel enhancement filter for examining the multi-scale sec-

ond order structure of an image. However, their filter is not reliable for wrinkle detection.

Batool and Chellappa (2015) proposed a fast detector of facial wrinkles based on Gabor

features using image morphology and geometric constraints. However, the proposed

detector cannot deal with different types of wrinkles because a predefined threshold

only suitable for either coarse, medium or fine wrinkles.

In this section, a novel feature representation, Multi-scale Wrinkle Patterns (MWP),

is proposed for face age estimation. It extracts the features from the local patches

without an extensive geometric modelling. First, facial landmarks are located using

120



5.2. Multi-scale Wrinkle Patterns Algorithm

Figure 5.2: Flow chart of MWP. It consists of four steps: image resizing, wrinkle detec-
tion, ROI masking and pattern representation. Note that 1.00x means the original size
of FERET image and 0.50x presents the half size of 1.00x. Ten regions of wrinkle tem-
plate are forehead, glabella, upper eyelids, crows feet, lower eyelids, cheeks, nasolabial
grooves, upper lids, marionette and lower lips.

the Face++ detector and then the face is normalised using a linear transformation. Af-

ter that, the face wrinkles are extracted by HLT. A wrinkle template which consists of

ten predefined wrinkle regions is manually created and the wrinkles are constructed

into a robust feature representation using MWP. Finally, the age is estimated by imple-

menting SVR. The performance of algorithms are assessed using MAE on FERET. It is

observed that MWP produces a comparable MAE to KLBP but with lower computational

cost than KLBP.

5.2 Multi-scale Wrinkle Patterns Algorithm

Figure 5.2 demonstrates the proposed Multi-scale Wrinkle Patterns (MWP). It consists

of four steps: image resizing, wrinkle detection, ROI masking and wrinkle pattern rep-

resentation.

5.2.1 Image Resizing

Given a warped image I, it is scaled with different ratios r̂ ∈ {r̂1, r̂2, . . . , r̂τ} where τ

indicates the total number of ratios. In this case, τ = 4 and r̂ ∈ {1.00,0.75,0.50,0.25}
where r̂ = 1.00 represents the original image and r̂ = 0.50 represents half size of
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the original image. For each scale, the directional gradient (Gx,Gy) of I is computed

from the greyscale image. Gy emphasizes a y-variation and it is used as the input for

calculating the Hessian filter, H . After Gy is convoluted by H , a logical mask, W is

generated as Eq. (4.15). Due to the HLT detection focuses on ridge area, W inv is used

as the seeds (see Section 4.3).

5.2.2 Wrinkle Detection

First, a seed, sds, is drawn from W inv. Then, candidate pixels h and background pixels

p1,p2 are derived from it with ŝ = 1 and θ = 0◦. Cross-sectional profile V
(
xθ,yθ, ŝ

)
is

computed as Eq. (4.19). After that, the computation is repeated on different degrees in

order to determine the winning pixel z. The confidence array C is incremented by one if

a winning pixel is found. Next, the tracking continues with either winning pixel or a seed

drawn from W inv. Once the tracking is completed for the whole image, ŝ is increased

to the next scale and the calculation continues until the last scale. Finally, the initial

wrinkle map X is generated by validating the confidence array C as Eq. (4.22). Details

of wrinkle detection are given in Section 4.3.

5.2.3 Region of Interest Masking

In order to extract the wrinkle from a specific region, a standard wrinkle template (as

shown in Figure 5.3a) is utilised to normalise the face. A mean face is generated

from FERET where each face region in the template corresponds to a specific mus-

cle underneath the skin (Ekman et al., 2002). When human ages, a continuous muscle

movements on a particular region forms a variety of wrinkles including coarse and fine

wrinkles. Therefore, a standard template is used for face alignment and region masking

in the following experiments.

Figure 5.3a illustrates the wrinkle template or mask with ten predefined wrinkle re-

gions and fixed coordinates for eyes and mouth. It was cropped and scaled for illus-

tration purposes and the original size of this image is 512 x 768 pixels which is the

same size as FERET images. These regions have been identified and created manu-

ally through the review (Aznar-Casanova et al., 2010; Choi et al., 2011). The margins

of top, bottom, left and right are 70.5, 209.5, 50.5 and 56.5 pixels, respectively. The

distance between A and B is 218 pixels, A and C is 236.6 pixels, B and C is 237.49

pixels. Numbers 1 to 10 mean the wrinkle regions of forehead, glabella, upper eyelids,

crow’s feet (or eye corners), lower eyelids (or eyebag), cheeks, nasolabial grooves (or
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(a) Wrinkle template
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(b) FERET image

Figure 5.3: Wrinkle template and Face++ landmarks. (a) Wrinkle template with ten pre-
defined wrinkle regions and fixed coordinates of eyes and mouth. The wrinkle regions
are forehead (1), glabella (2), upper eyelids (3), crow’s feet (4), lower eyelids (5), cheeks
(6), nasolabial grooves (7), upper lips (8), marionette (9) and lower lips (10). Symbols
A, B and C are fixed coordinates used for face normalisation. (b) Result of the Face++
detector (Zhou et al., 2013). White landmarks are detected by the Face++ detector and
the red labels represent the center of the eyes and mouth. Note that this image was
redrawn from FERET (Phillips et al., 2000).

nasolabial folds), upper lips, marionette and lower lips; the corresponding areas are

15745, 6437, 1475, 4169, 9417, 21759, 9216, 2298, 7376 and 7403 pixels; the corre-

sponding notations are Z1 to Zν where Zi is a binary image and ν = 10. Due to the

area sizes being fixed, a standard feature vector will be produced either in training or

testing data. The center coordinates of left eye, right eye and mouth are (145, 247),

(363, 247) and (254, 457), respectively.

Prior to perform the face alignment, a set of face landmarks is needed. These

landmarks must be obvious and easily identified from a shape. For instance, eyes and

mouth could be considered good landmarks for face alignment. Therefore, in this work,

the center landmarks of eyes and mouth are used for performing the local transforma-

tion. First, a face image is detected by the Face++ detector (Zhou et al., 2013) and a

123



Chapter 5. Multi-scale Wrinkle Patterns

total of 83 landmarks are obtained as shown in Figure 5.3b. Only six landmarks are

used for estimating the center of left eye, right eye and mouth, others are discarded.

The center of left eye is averaged from the landmarks of 21 and 25, the center of right

eye is averaged from the landmarks of 67 and 71, the center of mouth is averaged from

the landmarks of 46 and 48. Symbols A, B and C (as Figure 5.3a) correspond to the

center of left eye, center of right eye and the center of mouth, respectively. Due to the

limitations of the Face++ detector, it is observed that a small number of detection errors

which were identified and corrected manually.

Based on the fixed three points (symbols A, B and C), each face image is nor-

malised to the mask (as shown in Figure 5.3a) using a piecewise affine warping (see

Section 3.4.2). With consistent area size for the ten face regions, all regions are used to

construct the wrinkle patterns, which produce a standard feature vector subsequently

used for training and testing. From the wrinkle map X and region of interest Zi, the

wrinkle image Y i of a particular region, i, is defined as

Yi (x,y) =

I(x,y) if X (x,y)∩Zi (x,y) = 1

0 otherwise
(5.1)

5.2.4 Pattern Representation

Let MWP =
{
f1, f2, . . . , fψ,g1,g2, . . . ,gψ

}
, where ψ = τ× ν. Note that, in this work,

total image scale, τ = 4, and total wrinkle regions, ν = 10. The wrinkle intensity fi of

one particular region, i, is defined as

fi = log
wt

∑
x=1

ht

∑
y=1

Yi (x,y) (5.2)

where wt and ht are the width and height of Y . The wrinkle density gi of one particular

region, i, is defined as

gi =
area1 (i)
area2 (i)

(5.3)

where area1 is the wrinkle area found in a particular region i and area2 is the area of

region i.
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Table 5.1: MAE of different age groups.

Age Group 10-19 20-29 30-39 40-49 50-59 60-70
Total images 34 847 483 413 171 52
FACE++ (Zhou et al., 2013) 11.06 7.18 5.57 8.09 6.98 3.56
BIF (Guo et al., 2009a) 7.85 3.99 4.07 4.85 5.36 6.46
KLBP (Ylioinas et al., 2013) 7.59 3.81 3.63 3.93 4.48 7.40
Proposed MWP 8.59 3.35 3.93 4.10 4.92 9.31

Figure 5.4: Cumulative score of age estimation on FERET. It is a comparison between
MWP, KLBP, BIF and FACE++.

5.3 Experimental Results

Batool and Chellappa (2015) claimed that FERET is a low resolution dataset like FGNET.

However, due to wrinkle extraction requiring decent resolution, the performance of pro-

posed algorithm is assessed on FERET, the highest resolution amongst the benchmark

datasets such as FGNET and MORPH. In addition, FERET consists of a few hundred

age-separated face images of subjects with the age difference of 18 months or more

and the age range is between 10 and 70. 2000 samples of FERET were randomly

selected from the original dataset to compare the performance of three age estimation

algorithms - this includes the benchmark algorithms, namely BIF and KLBP, and the

proposed MWP. The evaluation protocol was a 10-fold cross validation, where both

training and testing sets are disjoint. This section presents three experimental results:

automatic age estimation on FERET, the effect of gender on face wrinkle and the effect

of facial expression against face wrinkle.
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Table 5.2: Comparison of MAE results on FERET. Note that Face++ results were
calculated by replacing the fail detection with ground truth and STD means standard
deviation.

Method Face++ BIF KLBP MWP
MAE 6.94 4.42 4.01 4.02
STD 5.38 3.77 3.23 3.74

5.3.1 Age Estimation using MWP on FERET

Table 5.1 shows MAE results of different age groups of FERET. It is noticed that KLBP

has the lowest MAE on the majority of age groups apart from age group of 20-29 (by

MWP) and age group of 60-70 (by FACE++). Table 5.2 presents the comparison of MAE

results on the state-of-the-art methods. The MAEs of FACE++, BIF, KLBP and MWP

are 6.94 (±5.38), 4.42 (±3.77), 4.01 (±3.23) and 4.02 (±3.74), respectively. KLBP is a

superior method in representing local features with the lowest MAE, at 4.01. However,

MWP produced a comparable MAE of 4.02 with lower computational cost where it only

requires 80 features compared to KLBP with 32768 features. This is supported by the

fact that MWP only takes 11.7 seconds to train the model instead of 891.6 seconds

by KLBP. Figure 5.4 illustrates the comparison of CS measurements for FERET using

BIF, KLBP, Face++, and MWP. It is observed that MWP achieves the best score for the

error level below 5 years but KLBP performs slightly better for 5 years and above. This

indicates MWP is suitable for age estimation due to the importance of low error levels

(Geng et al., 2007). Based on these results, it is believed that wrinkle features can be

used as a key indicator for face age estimation on images with decent resolution.

5.3.2 The Effect of Gender on Wrinkle Patterns

In FERET, there are 1447 images of males and 919 images of females. MWP was

applied to each category for validating the effect of gender for age estimation. Figure 5.5

illustrates the MAE results using MWP between gender and the number of images.

Overall, the performance of female result is slightly lower than male with a MAE of

3.93 and 4.13, respectively. There are no notable differences between genders in the

majority of age groups. However, due to the small sample size particularly in age groups

of 10-19 and 60-70, the result produced a high MAE. Further investigation between

genders should consider a larger dataset.
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Figure 5.5: MAE results based on gender using MWP.

Table 5.3: Confusion matrix of human identification on FERET.

Coder A - Expression A - Neutral
B - Expression 1437 238

B - Neutral 137 554

5.3.3 The Effect of Expression on Wrinkle Patterns

In order to validate the effect of expression on wrinkle patterns, FERET was classi-

fied into two categories, neutral and expressive faces, by two FACS coders. Then,

age estimation was validated independently on each category using the MWP features.

Table 5.3 presents the confusion matrix of human identification by two FACS coders.

Based on the result of Coder A, there were 792 images of neutral and 1569 images of

expression, while for coder B, there were 691 images of neutral and 1675 images of ex-

pression. Human identification correctness of classifying the images into two categories

was 84.15%. In the next experiment, results of coder A were used for performance as-

sessment. Figure 5.6 illustrates the MAE results based on neutral and smile categories.

Overall, a smile group performed better than a neutral group with a MAE of 4.77 and

5.19, respectively. A separate group of smile or expression produced a higher MAE

than a mixed group (MAE = 4.02). This shows that MWP is highly affected by the facial

expression.
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Figure 5.6: MAE results based on expression using MWP.

5.3.4 Discussion

The idea of this work is based on the facial wrinkle distribution on the predefined wrinkle

regions. It is useful to identify a simple yet powerful pattern from wrinkles. However,

there are few issues that affect the performance of MWP. First, the wrinkle template

adaptability is not universal. Although it has been set to a mean face of a dataset, some

faces still cannot fit the template very well due to large variations of cranial ratio and

occlusions such as hair and moustaches. Second, there are false detections of the

Face++ detector in a few images. Although the majority were identified and corrected

manually, there are some cases with minor errors in alignment. Finally, the performance

of age estimation are highly dependent on a robust wrinkle pattern. Even though wrin-

kles are highly associated with aging, some individuals have less wrinkles than others.

In general, wrinkle representation is affected by other factors such as facial expres-

sions and cosmetic treatment. In order to assess the factors, FERET is divided into

different subsets based on gender and facial expression. Two experiments showed that

wrinkle patterns are affected by gender and facial expression. Currently, no dataset

contains a comprehensive information with age, gender and facial expression. Manual

identification of facial expression was performed by FACS coders. It was time consum-

ing and costly. Thus, these factors remain as a challenging issue for future research.
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5.4 Summary

In this chapter, a novel method, MWP, is proposed as a feature descriptor for face age

estimation. By deriving wrinkles with the multi-scale filters across ten face regions,

wrinkle patterns are generated. They are used to train the classifier and then predict

the face age. It is particularly useful when dealing with the images of high resolution

and frontal. Experiment results showed the evidence that MWP features able to predict

the face age on high resolution images like FERET with the strengths of lower computa-

tional cost and better cumulative score at a low error level. With the further improvement

of wrinkle detection by HLT, the wrinkle patterns are better represented. Although the

proposed MWP is limited to high resolution images, additional fusion concerning face

shape and appearance is discussed in the next chapter.

129



Chapter 6

Wrinkle Pattern Models

This chapter investigates the use of appearance model parameters and

different local descriptors for face age estimation. A hybrid pattern, with

FAM and MWP as complementary to each other, is demonstrated. Then,

a comprehensive hierarchical age estimation method is investigated by a

multi-layer age regression approach.

6.1 Introduction

According to Choi et al. (2011), FAM was designed for face modelling, individual char-

acteristics such as the identity variation are reflected stronger than the aging attributes

in the FAM parameters. In addition, some crucial aging features such as wrinkles and

skin textures are removed from the FAM parameters during dimension reduction by

PCA (Cootes et al., 2001). Figure 6.1 shows a comparison between original and re-

constructed face images of FAM. It is noticed that the reconstructed image does not

sufficiently express the facial aging features such as wrinkles and skin textures. For

example, the wrinkles around the eyes, cheeks and mouth of the reconstructed image

are reduced or removed. These differences are more obvious on the old subject. This

implies that facial aging features cannot be well represented by FAM particularly for

older subjects. Therefore, local descriptors are needed to compensate the weakness

of FAM.

In Chapter 5, a novel feature representation, MWP, was proposed for face age es-

timation. It extracted and represented the face wrinkles into a robust aging pattern.

Experimental results showed that wrinkle features has the potential for face age esti-

mation. However, such features are limited by two factors. First, people age differently,
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Figure 6.1: A comparison between original and reconstructed face images of FAM. Top
row is a male subject of 60 years old and bottom row is a female subject of 30 years old.
It appears that wrinkles (dotted green line) are removed on the reconstructed images.
For differential image, black means no difference and white presents the differences.
Note that this figure was redrawn from FERET.

some with more wrinkles compared to others. Second, wrinkle features only describe

the texture difference between adults and consequently these features are not suitable

for child age estimation. For these reasons, a combination with global features will

improve the performance of wrinkle features for face age estimation. FAM is the com-

plementary of MWP where the face shape and appearance are well defined. There-

fore, this chapter presents two novel age estimation methods: a novel hybrid feature

representation, HAP, and a novel hierarchical estimation method, MAR, for face age

estimation.

In the next section, a hybrid pattern using FAM and MWP is described in Section 6.2.

Next, a hierarchical model, MAR, using FAM and different local descriptors is explained

in Section 6.3. It is followed by the experimental results for face age estimation in

Section 6.4. Finally, a discussion and summary of the work are presented.
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Figure 6.2: An illustration of HAP patterns. First, the features of a warped image (input)
are extracted by FAM and MWP. Then, a hybrid pattern is constructed from FAM and
MWP as FAM+MWP. The graph of FAM+MWP demonstrates the normalised feature
values and the colour bar shows the actual age of each instance. There are approxi-
mately 500 instances and 435 features used for this illustration. 1.00x means the origi-
nal size of input and 0.50x shows the half size of input, and so on. Note that this figure
was redrawn from FERET.

6.2 Hybrid Aging Patterns

Chen et al. (2011) explored the facial feature fusion and model selection for age esti-

mation. They found that the feature fusion with model selection can achieve significant

improvement for age estimation. However, their results were only tested on FAM and

LBP. LBP is a texture descriptor but not designed for facial wrinkle. Therefore, an ex-

pansion to the similar idea but a better feature representation is proposed to overcome

the limitation. A novel feature representation, Hybrid Aging Patterns (HAP), is proposed

for face age estimation. It is a combination of FAM and MWP as shown in Figure 6.2.

FAM is capable of representing the face appearance in a set of hidden parameters while

MWP is good of describing the facial wrinkles.

As described in Section 3.2.2.3, FAM is a generative parametric model that consists

of shape, texture and combined appearance of a human face. It is a model where PCA

is used to project high dimension of face shapes and textures into a low dimension

of principal component parameters. Manual landmark annotations (FGNET) and auto-

matic detected landmarks (by FACE++ detector) were used to produce a FAM model.

The pertinent equations of FAM parameters are repeated here for convenience. Let s
and t denote a synthesized shape and texture of a face image in the reference frame,
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and let s̄ and t̄ denote the corresponding sample means. New instances are now gen-

erated by adjusting the principal component scores, bs and bt in

s = s̄+Φsbs (6.1)

t = t̄+Φtbt (6.2)

where Φs and Φt are matrices of column eigenvectors of the shape and texture disper-

sions estimated from the training set. To obtain a combined shape and texture param-

eterisation, c, the values of bs and bt over the training set are combined into

b =

[
Wsbs

bt

]
=

[
WsΦ

T
s (s− s̄)

ΦT
t (t− t̄)

]
(6.3)

A suitable weighting between pixel distances and pixel intensities is carried out through

the diagonal matrix Ws. To make the normalised measures of pixel distance and pixel

intensities commensurate, the shape model scores are typically weighted by the square

root of the ratio between the sums of the texture and shape eigenvalues.

To recover any correlation between shape and texture, the two eigen-spaces are

usually coupled through a third principal component transform as

b = Φcc =

[
Φc,s

Φc,t

]
c (6.4)

and b is the FAM features of each image as FAM = {b1,b2, · · · ,bn} where bi ∈ b and

n is the total number of FAM features of each image.

Let MWP features of each image as MWP = {c1,c2, · · · ,cm} where m is the total

number of MWP features of each image and ci is defined as Eq. (5.2) and (5.3). As

a result, HAP of each image is defined as HAP = {b1,b2, · · · ,bn,c1,c2, · · · ,cm} where

m+n is the total number of HAP features of each image.

Let A as the predicted age of each image and it is defined as

A = f (HAP) (6.5)

where f (·) is an estimation function by SVR (see Section 3.3.2.2) and the input is HAP.

FAM builder configurations1 of each dataset are given in Appendix D.

1Note that the resolution for each dataset is different, therefore the model reduction factor in Ap-
pendix D is defined according to the dataset resolution.
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Figure 6.3: Flow chart of MAR. It consists of two layers: layer X and Y. The layer X is
the parameters of FAM while the layer Y is the features of local descriptor. First, SVR
0 estimates the age of input using FAM parameters. Then, the predicted age of layer
X is used to select an age group of layer Y. Each age group has a fixed range of ages.
If age group 3 is selected , then SVR 3 is used to train the local features in age group
3 and finally predict the age of input in the layer Y. The output of both layers is a real
number (predicted age) instead of a class. Dotted arrow indicates only one of the age
groups will be selected. Note that this figure was redrawn from FERET.

6.3 Multi-layer Age Regression

Traditionally, age estimation is a single-layer process where the face age is predicted

in one way by a set of features. This design is simple but it cannot deal effectively

with something complex like the human face. Han et al. (2015) claimed that a hierar-

chical age estimation is a coarse-to-fine estimation. Others (Choi et al., 2011; Thukral

et al., 2012) also found that a hierarchical approach is more effective than a single-layer

estimation. Therefore, a MAR is proposed to enhance the performance of face age

estimation by combining both global and local features into a hierarchical model.

The proposed MAR consists of two layers, layer X and Y as shown in Figure 6.3.

In the layer X, features are represented by the FAM parameters, while in the layer Y,

features are represented by a local descriptor such as BIF, KLBP and MWP. Moreover,
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FAM parameters are repeated in the layer Y as a local descriptor in order to validate

the performance of using FAM only. This results four methods of MAR: AAM-AAM,

AAM-BIF, AAM-KLBP and AAM-MWP. They are assessed against the single-layer

predictions using AAM, BIF, KLBP and MWP.

Let AX as the predicted age of layer X and the prediction is defined as

AX = f (b) (6.6)

where f (·) is a estimation function by SVR. In the layer Y, a between-group classifica-

tion is implemented based on AX. Let the sorted local features in different age groups

as {G1,G2, · · · ,Gn} where n is the total number of age groups of each dataset and AY

as the predicted age of layer Y. The prediction is defined as

AY =



f1 (G1, f) if AX < â1

f2 (G2, f) if â1 ≤ AX < â2

f3 (G3, f) if â2 ≤ AX < â3

f4 (G4, f) if â3 ≤ AX < â4

f5 (G5, f) if â4 ≤ AX

(6.7)

where f i is one particular SVR model, Gi is the training set, f is the testing set of an

input image, and both Gi and f are the same feature selected from either FAM, BIF,

KLBP or MWP.

In Figure 6.3, SVR 0 estimates the age of input using FAM parameters. Then, the

predicted age of layer X is used to select an age group of layer Y. Each age group

has a fixed range. If age group 3 is selected, then SVR 3 is used to train the local

features in age group 3 and finally predict the exact age of input in the layer Y. Based

on such design, the age of a face image is estimated by a coarse-to-fine approach

where the first layer focuses on using regression to predict the age, which will then be

used in selecting an age group, while the layer Y concentrates on predicting the exact

age within the group.

6.4 Experimental Results

In this work, four descriptors, BIF, KLBP, MWP and FAM are evaluated on four datasets:

FGNET (with 1002 images), MORPH (with 2000 images of random selection), FERET

(with 2366 images) and PAL (with 576 images). Figure 6.4 shows the age distribution of

different datasets. Table 6.1 presents the summary of the experimental datasets which
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Figure 6.4: Age distribution of different datasets.

includes collection environment, collection era, image type, image size, image compres-

sion technique, available annotation, pose, total images used in this work, population

trend, evaluation protocol and subset description. For FGNET, a LOPO approach and

68 landmark points are used as the evaluation protocol while the remaining datasets

are based on 10-fold cross validation and 83 landmark points of FACE++ detector. Due

to the majority of FGNET research using 68 points in the experimental setup, same

landmark is used in the following experiments for a fair comparison. Both training and

testing datasets are disjoint. In FAM modelling, 95% of the coefficients are preserved

during the dimension reduction by PCA as the training set. FAM fitting is not consid-

ered in this experiment as the fitting error might increase the estimation error (Choi

et al., 2011). Due to the dimension difference in each dataset, the SVR parameters are

varied from a grid search approach (Ylioinas et al., 2013).

This section describes two experimental results of face age estimation on four dif-

ferent datasets. First, it is a comparison between HAP with the state of the art. Second,

a comprehensive analysis is presented using MAR in terms of the performance as-

sessment, computation time, reliability of age group classification and the performance

using soft boundary assessment.
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6.4. Experimental Results

Table 6.1: Summary of the experimental datasets. Note that ∗∗ means 2 student
unions, a mall, & 2 citizen festivals; JPEG stands for Joint Photographic Experts Group;
and PPM indicates Portable Pixmap Format.

Property FGNET FERET MORPH PAL

Collection
Environment

Personal
photos

Over the
course of 15
sessions

Real-world
conditions

∗∗

Collection
Era

Unknown ≈1993-1996 ≈2003-2007 Unknown

Digital, Paper
Scan

Unknown Digital Digital & Scan Digital

Image Size
Mostly
≈ 400×500

512×768
200×240 &
400×480

640×480

Compression JPEG PPM JPEG Bitmap, JPEG
Annotation 68 points None None None

Frontal Pose Uncontrolled
Frontal &
Profile

Uncontrolled
Frontal &
Profile

Source Public Public Public Public
Total Used in
Experiment

1002 2366 2000 576

Population
Trend, [age
range]

>50% are
ages 0-13,
[0-69]

Highly uneven,
[10-70]

Even, [16-55] [18-93]

Evaluation
Protocol

LOPO
10-fold cross
validation

10-fold cross
validation

10-fold cross
validation

Subset
Disjoint

Yes Yes Yes Yes

6.4.1 Performance Assessment using Hybrid Aging Patterns

In order to compare the performance of the proposed method with other hybrid patterns,

FAM+BIF and FAM+KLBP are experimented. Table 6.2 shows the experimental results

of age estimation using hybrid features on different datasets compared to single feature

representation (FAM, BIF, KLBP and MWP). Overall, a combination between FAM

and MWP (FAM+MWP) achieved the best MAE on FERET and this demonstrated that

wrinkle patterns are reliable features for face age estimation. Results showed that on

FGNET, FAM achieves the lowest MAE of 5.39; on FERET, FAM+MWP scores the

lowest MAE of 3.02; on MORPH, FAM+KLBP achieves the lowest MAE of 3.67; and on

PAL, BIF hits the lowest MAE of 5.94. It is noticed that the hybrid features of FAM+BIF
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Table 6.2: Experimental results of age estimation using hybrid features on different
datasets. Bold indicates the lowest MAE of each dataset.

Method FGNET FERET MORPH PAL

FAM 5.39 (±5.63) 3.34 (±3.26) 3.99 (±3.28) 6.96 (±5.92)
BIF 5.59 (±5.59) 3.57 (±3.26) 3.98 (±3.20) 5.94 (±4.60)
KLBP 6.09 (±6.09) 3.91 (±3.24) 4.02 (±3.22) 6.10 (±5.18)
MWP 7.34 (±7.54) 4.16 (±3.83) 5.16 (±4.35) 7.65 (±6.61)
FAM+BIF 5.49 (±6.22) 6.54 (±5.68) 7.82 (±6.01) 16.93 (±11.49)
FAM+KLBP 6.06 (±6.16) 4.01 (±3.20) 3.67 (±2.94) 6.08 (±5.08)
FAM+MWP 5.66 (±5.88) 3.02 (±2.92) 3.68 (±2.98) 6.50 (±5.25)

have the highest MAEs in FERET, MORPH and PAL datasets. It may due to the conflict

of feature values between FAM and BIF in a single feature representation. The overall

results also demonstrated that the FAM+MWP is more consistent compared to others.

6.4.2 Performance Assessment using Multi-layer Age Regression

Table 6.3 shows a comprehensive analysis of face age estimation with and without

MAR. For FGNET and FERET, ages are divided into five groups where â1 = 15, â2 =

35, â3 = 45 and â4 = 55; for MORPH, â1 = 18, â2 = 28, â3 = 38 and â4 = 48; for PAL,

â1 = 20, â2 = 40, â3 = 60 and â4 = 80. These parameters were determined based on

the age range of dataset.

In a comparison within each dataset, results showed that the lowest MAE of FGNET

is 5.39 (±5.63) by FAM; FERET is 3.00 (±4.14) by FAM-FAM; MORPH is 3.98 (±3.20)

by BIF; and PAL is 3.43 (±2.71) by FAM-BIF. Overall, FAM, FAM-FAM, BIF, FAM-BIF

scored the best MAEs in the datasets of FGNET, FERET, MORPH and PAL, respec-

tively.

In a comparison between age groups, the lowest and the highest MAEs of each

dataset are: FGNET - 3.29 (±4.15) and 38.77 (±10.00); FERET - 2.51 (±2.68) and

10.85 (±5.25); MORPH - 3.19 (±2.50) and 10.93 (±6.59); PAL - 0.51 (±0.11) and

10.42 (±6.51), respectively. Two of the lowest MAEs were scored by FAM-FAM, one by

FAM-BIF and another by KLBP.

The lowest MAE of each method is obtained on FERET dataset and it is listed as

follows: FAM has a MAE of 3.34 (±3.26), BIF is 3.57 (±3.26), KLBP is 3.91 (±3.24),

MWP is 4.16 (±3.83), FAM-FAM is 3.00 (±4.14), FAM-BIF is 3.28 (±4.02), FAM-KLBP

is 3.29 (±4.07) and FAM-MWP is 3.36 (±4.14). Overall, results showed that MAR
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Table 6.3: Experimental results of face age estimation in a single-layer processing.
Bold - the lowest MAE within one particular dataset, italic - the lowest MAE of each
method, and the underlined values present the highest and lowest of MAE of age group
of each dataset.

Dataset (number

of images)

MAE (STD)

FAM BIF KLBP MWP

FGNET (1002) 5.39 (5.63) 5.59 (5.97) 6.09 (6.43) 7.34 (7.54)

yi < â1 (545) 3.79 (3.42) 3.80 (3.29) 4.17 (3.36) 4.84 (4.09)

â1 ≤ yi < â2 (355) 4.94 (3.84) 5.05 (3.93) 5.18 (4.25) 6.62 (5.02)

â2 ≤ yi < â3 (61) 10.76 (5.52) 11.92 (6.10) 14.34 (4.90) 17.76 (5.48)

â3 ≤ yi < â4 (30) 19.73 (7.39) 21.90 (7.01) 25.27 (6.90) 28.52 (7.40)

â4 ≤ yi (11) 30.15 (7.75) 32.22 (7.93) 32.74 (8.88) 38.77 (10.00)

FERET (2366) 3.34 (3.26) 3.57 (3.26) 3.91 (3.24) 4.16 (3.83)

yi < â1 (38 ) 8.98 (4.09) 9.82 (3.44) 8.64 (4.20) 9.30 (5.18)

â1 ≤ yi < â2 (1579) 2.86 (2.67) 3.04 (2.72) 3.44 (2.76) 3.76 (3.40)

â2 ≤ yi < â3 (474) 2.99 (2.54) 3.58 (2.98) 3.92 (3.18) 4.01 (3.59)

â3 ≤ yi < â4 (209) 4.72 (3.61) 4.82 (3.81) 4.94 (3.65) 5.00 (4.17)

â4 ≤ yi (66) 9.54 (6.74) 8.37 (5.52) 9.14 (4.70) 9.33 (6.34)

MORPH (2000) 3.99 (3.28) 3.98 (3.20) 4.02 (3.22) 5.16 (4.35)

yi < â1 (100) 6.74 (5.21) 5.80 (4.58) 6.67 (4.04) 10.93 (6.59)

â1 ≤ yi < â2 (500) 3.91 (3.03) 3.99 (2.96) 3.93 (2.92) 4.93 (4.19)

â2 ≤ yi < â3 (500) 3.44 (2.87) 3.47 (2.72) 3.19 (2.50) 4.53 (3.42)

â3 ≤ yi < â4 (500) 3.65 (2.91) 3.88 (3.07) 3.96 (2.93) 4.94 (3.72)

â4 ≤ yi (400) 4.48 (3.48) 4.25 (3.56) 4.57 (3.97) 5.07 (4.61)

PAL (576) 6.96 (5.92) 5.94 (4.60) 6.09 (5.09) 7.65 (6.61)

yi < â1 (32) 6.75 (4.65) 4.96 (3.88) 5.27 (4.53) 4.84 (4.38)

â1 ≤ yi < â2 (234) 7.13 (6.52) 5.01 (4.06) 5.62 (4.91) 6.53 (6.81)

â2 ≤ yi < â3 (60) 6.17 (5.58) 7.06 (4.89) 6.66 (5.28) 10.19 (7.22)

â3 ≤ yi < â4 (197) 6.32 (4.99) 5.95 (4.41) 5.90 (4.72) 8.08 (6.34)

â4 ≤ yi (53) 9.68 (6.73) 9.29 (5.75) 8.76 (6.42) 9.76 (5.52)

Continued on the next page. . .
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Table 6.3: Continued from the previous page. Experimental results of face age estima-
tion with MAR. Bold - the lowest MAE within one particular dataset, italic - the lowest
MAE of each method, and the underlined values present the highest and lowest of MAE
of age group of each dataset.

Dataset (number

of images)

MAE (STD)

FAM-FAM FAM-BIF FAM-KLBP FAM-MWP

FGNET (1002) 5.48 (6.67) 5.49 (6.61) 5.79 (6.67) 6.19 (6.85)

yi < â1 (545) 3.29 (4.15) 3.20 (3.68) 3.54 (3.73) 3.97 (3.73)

â1 ≤ yi < â2 (355) 5.06 (4.13) 5.16 (4.15) 5.36 (4.31) 5.53 (4.46)

â2 ≤ yi < â3 (61) 13.70 (5.24) 14.07 (5.40) 14.46 (5.56) 15.36 (5.70)

â3 ≤ yi < â4 (30) 22.91 (7.99) 23.29 (8.36) 23.48 (8.17) 24.90 (8.80)

â4 ≤ yi (11) 34.38 (7.39) 34.14 (7.65) 34.56 (8.52) 34.93 (8.18)

FERET (2366) 3.00 (4.14) 3.28 (4.02) 3.29 (4.07) 3.36 (4.14)

yi < â1 (38 ) 10.46 (5.19) 10.85 (5.25) 9.86 (4.80) 9.63 (5.03)

â1 ≤ yi < â2 (1579) 2.51 (2.68) 2.87 (2.72) 3.01 (2.88) 3.11 (3.02)

â2 ≤ yi < â3 (474) 2.75 (5.31) 2.95 (5.07) 2.60 (4.94) 2.65 (5.06)

â3 ≤ yi < â4 (209) 3.85 (4.80) 3.86 (4.42) 3.86 (4.74) 3.79 (4.71)

â4 ≤ yi (66) 9.41 (8.45) 9.24 (8.24) 9.39 (8.28) 9.32 (8.15)

MORPH (2000) 4.18 (3.63) 4.06 (3.55) 4.06 (3.47) 4.08 (3.51)

yi < â1 (100) 5.42 (5.45) 5.39 (5.19) 5.35 (5.05) 5.77 (5.46)

â1 ≤ yi < â2 (500) 3.76 (3.38) 3.73 (3.32) 3.80 (3.24) 3.77 (3.10)

â2 ≤ yi < â3 (500) 3.91 (3.31) 3.74 (3.20) 3.74 (3.11) 3.85 (3.22)

â3 ≤ yi < â4 (500) 4.04 (3.32) 4.05 (3.35) 3.96 (3.31) 3.93 (3.32)

â4 ≤ yi (400) 4.92 (3.96) 4.58 (3.87) 4.61 (3.75) 4.53 (3.77)

PAL (576) 6.72 (6.64) 3.43 (2.71) 6.33 (6.28) 6.63 (6.65)

yi < â1 (32) 5.31 (2.67) 0.51 (0.11) 4.53 (2.50) 4.34 (2.06)

â1 ≤ yi < â2 (234) 5.73 (7.06) 3.18 (2.60) 5.15 (6.67) 5.47 (6.95)

â2 ≤ yi < â3 (60) 8.00 (7.19) 4.77 (2.77) 7.81 (6.20) 7.82 (7.00)

â3 ≤ yi < â4 (197) 6.83 (6.09) 3.95 (2.85) 6.63 (5.80) 7.00 (6.23)

â4 ≤ yi (53) 10.05 (6.50) 2.83 (1.62) 9.82 (6.32) 10.42 (6.51)
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Table 6.4: Computation time (in seconds) for age regression by SVR.

Method FGNET FERET MORPH PAL Average
FAM 72.45 168.32 91.47 3.70 83.99
BIF 955.62 4701.11 1869.89 44.15 1892.69

KLBP 4005.18 15660.85 5559.93 184.40 6352.59
MWP 32.11 82.17 30.37 2.32 36.74

FAM-FAM 89.82 205.00 100.25 6.81 100.47
FAM-BIF 520.96 714.61 222.29 23.73 370.40

FAM-KLBP 516.39 2011.61 652.91 87.70 817.15
FAM-MWP 88.25 189.85 95.95 6.06 380.11

improves MAE significantly compared to the existing methods.

Although MAE of FAM-FAM is lower than others, the results are comparable. For

example, the results of FERET showed that FAM-FAM hits a MAE of 3.00 compared

to FAM-MWP is 3.36, FAM-BIF is 3.28 and FAM-KLBP is 3.29; the results of MORPH

showed that FAM-MWP achieves a MAE of 4.08 compared to FAM-FAM is 4.18, FAM-

BIF is 4.06 and FAM-KLBP is 4.06. These results showed that wrinkle patterns are as

good as state of the art for face age estimation.

6.4.2.1 Computation Time of Age Estimation

Table 6.4 illustrates the computation time (in seconds) for age regression by SVR.

These results were based on the settings of Table 6.3. It involved both training and

prediction times of SVR. Results showed that MWP demonstrates the fastest perfor-

mance for age regression with 36.74 seconds, compared to FAM is 83.99 seconds, BIF

is 1892.69 seconds, KLBP is 6352.59 seconds, FAM-FAM is 100.47 seconds, FAM-BIF

is 370.40 seconds, FAM-KLBP is 817.15 seconds, and FAM-MWP is 380.11 seconds.

This correlates with the total number of features of each method where FAM is around

300 units, BIF is 7464 units, KLBP is 32769 units and MWP is the lowest with 160 units.

6.4.2.2 Age Regression versus Age Group Classification

Figure 6.5 shows the age group classification in MAR. In the first layer, features are

sorted into a specific age group based on the ground truth. The output of layer X is

an age group instead of the predicted age as shown in Figure 6.3. Figure 6.6 and Ta-

ble 6.5 show a Receiver Operating Characteristic (ROC)2 curve and confusion matrix

2The underlying population curve is theoretically given by varying the cut point used to determine the
values of the observed variable to be considered abnormal and then plotting the resulting sensitivities
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Figure 6.5: An illustration of age group classification in MAR. It consists of two layers:
layer X and Y. Layer X is the parameters of FAM. Layer Y is the features of the local
descriptor. Dotted arrow indicates only one of the age groups will be selected. Note
that this figure was redrawn from FERET.

Table 6.5: Confusion matrix for age regression versus age group classification on
MORPH. Left: ROC of SVR regression. Right: ROC of SVM classification. Age group
classification was performed by SVM model with a grid search parameters.

Ground Truth
Prediction

SVR Regression SVM Classification
G1 G2 G3 G4 G5 G1 G2 G3 G4 G5

G1 23 68 8 1 0 0 60 6 34 0
G2 26 321 152 1 0 0 287 81 132 0
G3 1 83 351 63 2 0 100 205 195 0
G4 0 7 153 275 65 0 15 88 396 1
G5 0 0 7 162 231 0 2 5 383 10

for the comparison between age regression (Figure 6.3) and age group classification

(Figure 6.5) on MORPH. SVR regression results were better than the age group clas-

sification. For example, if an instance is predicted as 15.4 years old, then it belongs to

G1 where the G1 range is lower than 18, and so on. For SVM classification, the training

and testing sets were sorted according to the predefined age groups. Evaluation was

based on a 10-fold cross validation. Overall, SVR regression performed slightly better

than SVM classification with a classification accuracy of 60.05% and 44.90%. For the

ROC curve, it is noticed that G1 and G5 are accurately predicted in SVR regression

against the corresponding false positive rates. The curve would then pass through the point (0,1) on the
unit grid. The closer an ROC curve comes to this ideal point, the better its discriminating ability. A test
with no discriminating ability will produce a curve that follows the diagonal of the grid (Hanley and McNeil,
1982; DeLong et al., 1988).
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Figure 6.6: ROC curve for age regression versus age group classification. SVR re-
gression was based on MORPH results of Figure 6.3. Age group classification was
performed by SVM model with a grid search parameters.

compared to SVM classification. A low classification accuracy of these groups will yield

a marginal error of age estimation. This implies that age regression is more reliable

than age group classification especially in a multi-layer age regression.

6.4.2.3 Soft Boundary Assessment

A hard boundary is a fixed range where â1, · · · , â5 of Eq. (6.7) are set as the same for

both training and testing stages. A soft boundary is a range where the training stage

includes a wider range than the testing stage (Choi et al., 2011). In other words, the

Eq. (6.7) can be redefined as,

AY =



f1 (G1, f) if AX < â1 +∆

f2 (G2, f) if â1−∆≤ AX < â2 +∆

f3 (G3, f) if â2−∆≤ AX < â3 +∆

f4 (G4, f) if â3−∆≤ AX < â4 +∆

f5 (G5, f) if â4−∆≤ AX

(6.8)

where ∆ is a fixed range in year(s). This results an overlapped group where more

training samples are learned in a particular group. For example, if an image of a 16 year-

old subject is misclassified to the group of 20-30 in the layer Y, the resulting estimation

error will be very large (MAE > 5 years). If an overlapped group of 15-35 is used, the

result could be improved. Due to an overlapping group only used in the training stage,
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Table 6.6: A comparison between hard and soft boundaries on FERET dataset with a
fixed range of five years old.

Approach FAM-FAM FAM-BIF FAM-KLBP FAM-MWP
Hard Boundary 3.00 3.28 3.29 3.36
Soft Boundary 3.00 3.12 3.22 3.36

this does not introduce label ambiguity during group selection in the testing stage. In

addition, Han et al. (2015) also claimed that a hierarchical model without using an

overlapped group leads to a higher MAE.

Table 6.6 shows a comparison between hard and soft boundary on FERET with a

fixed range of 5 years old. Results showed that the soft boundary of FAM-BIF and FAM-

KLBP improves the MAEs slightly from 3.28 and 3.29 to 3.12 and 3.22, respectively.

Others remain the same. This experiment recommends that a soft boundary is better

than a hard boundary in a hierarchical age estimation.

6.5 Discussion

In HAP, a combination between FAM and local descriptors is proposed. Experimental

results showed that FAM+MWP performs better than others on FERET with a MAE of

3.02. This implies that FAM+MWP is a robust feature representation where it comple-

ments each other for a reliable face age estimation. It is noticed that HAP achieves a

good performance on FERET and MORPH where both datasets have a better resolu-

tion and the dataset sizes are larger than others. This implies that a high resolution

dataset and a large dataset are important factors of face age estimation.

In MAR, the first layer is trained by FAM parameters instead of a local descriptor.

There are two reasons of this design. First, FAM is a comprehensive model which

comprises both shape and texture, while a local descriptor is based on texture analysis

only. Thus, FAM is considered more representative than local descriptor. Second, in a

single-layer processing, MAE of FAM is lower than local descriptors in most cases (refer

to Table 6.3), with the lowest MAE of 5.39 on FGNET, 3.34 on FERET. This indicates

that FAM is more suitable than the local descriptors.

This chapter demonstrates that age regression is more feasible than age group

classification. Imagine a face image with an age of 10 years old and a model is trained

by FGNET images. This image should be predicted as the first age group (age < 15)

or the second age group. However, an age group classification model might predict this
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image as the fourth group or last group. Consequently, this prediction results a large

error between the predicted age and the ground truth. Such an error can be reduced

by a regression model where the prediction is a real number instead of a group and

normally it is close to the ground truth.

It is observed that the number of training images affect the performance of age

estimation. For FERET, there are 38 images in the first age group (age < 15) and 66

images in the last age group (55 ≤ age). MAE results of these groups are higher than

other groups. Same goes for MORPH where the age group (age < 18) suffered a high

MAE compared to other groups.

Age range of a particular age group also influences the performance of age estima-

tion. There are two factors when considering an age range: the nature of features used

and the total number of images available in a group. Tsukahara et al. (2007) found that

wrinkles appear in various facial sites with the age as low as 10 years and above. How-

ever, Mark et al. (1980) claimed that, under normal circumstances, wrinkling does not

begin prior to the 30th years. These reviews show the conflict in deciding an age range.

Although the results seem promising, but still this issue remains an open question for

future research.

6.6 Summary

This chapter outlines a hybrid pattern, HAP, and a novel hierarchical approach, MAR,

for age estimation. HAP is a combination of FAM and MWP, while MAR is achieved by

a multi-layer age regression where the estimation is divided into two different stages.

Experiments were performed on four different datasets: FGNET, FERET, MORPH and

PAL. Overall, estimation results showed that FAM-FAM (MAR approach) outperforms

with a MAE of 3.00 and FAM+MWP (HAP approach) achieves a comparable MAE of

3.02 on FERET. This demonstrates that wrinkle patterns are robust features for age

estimation.

145



Chapter 7

Conclusion

This chapter summarises the original contributions made by the thesis to

the research area of face age estimation. It also highlights possible future

improvements and directions of research related to the work presented.

The contributions of this thesis are described, their relative merits are dis-

cussed and future work is proposed.

7.1 Introduction

Age estimation is a core technology in various applications for facial image analysis,

especially in face recognition. This is a challenging task due to the complexity in hu-

man face modelling. There are a tremendous number of face images emerging ev-

eryday. The problem is further aggravated with the lack of a complete chronological

aging dataset. In this work, different methods for face age estimation are investigated

to improve the performance. This thesis proposed two novel wrinkle detection methods

(HHF and HLT), two novel feature representations for age estimation (MWP and HAP)

and one novel age estimation method (MAR).

In general, wrinkles appear when a person ages. The amount of wrinkles become

larger and the wrinkle depth appears deeper. In this work, different methods are pro-

posed for wrinkle detection and face age estimation. First, HHF identifies the ridge and

valley patterns of wrinkle images using a second order derivative. It is a combination

between a directional gradient and a Hessian filter where the eigenvalues of Hessian

are explored for wrinkle segmentation. Second, HLT extends the HHF method by look-

ing into the relationship between potential wrinkle pixels and its neighbourhood. It is a

multi-scale tracking on different orientations and scales. Third, MWP is proposed as a
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Table 7.1: Research objective versus outcome.

No. Objective Outcome

1

To explore a novel method for
wrinkle detection where the pattern
is an arbitrary curve and
discontinuous.

Two novel methods, HHF and HLT,
are proposed.

2

To investigate the use of
discriminative features such as
wrinkles and face manifolds, for
facial aging estimation.

Three novel methods, MWP, HAP
and MAR, are proposed.

3
To evaluate the proposed methods
using the benchmarks and human
judgement.

The experiments are validated on
five different datasets named as
Bosphorus, FGNET, FERET,
MORPH and PAL. The
performance are measured by JSI,
MAE and CS.

feature representation of face age where the wrinkle location, intensity and density are

take into consideration. However, MWP is a local feature and it has the limitations in

outlining the face shape and appearance as in FAM model. Therefore, a hybrid pattern,

HAP and a hierarchical model, MAR, are proposed for face age estimation in order

to compensate the weakness in both global and local features. Experimental results

showed that HAP and MAR performed better than using state-of-the-art algorithms.

The following is a summary of research findings.

7.2 Research Findings

Table 7.1 shows the objectives of this work and the corresponding research outcomes.

The first objective is to explore a novel method for wrinkle detection where the pattern

is an arbitrary curve and discontinuous. This objective is achieved by two proposed

methods, HHF and HLT.

In Section 4.2, an automatic wrinkle detection method, HHF, is proposed. Tradition-

ally, the objective quantification was missing to validate the wrinkle detection accuracy.

Such implementation requires significant user interactions where results are subjective,

depending on user’s expertise. This work contributes to the groundwork of automated

wrinkle detection using a new approach with objective quantification, which will bring
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advancements to the research in facial aging, cosmetics and soft biometrics. The pro-

posed HHF is based on the directional gradient and Hessian matrix. This matrix is

computed for all pixels of the image. Eigenvalues of the Hessian matrix indicate that

a point belongs to a ridge or valley pattern. HHF is compared with CLM and FRF.

Experimental results demonstrated that HHF outperforms state-of-the-art methods with

an average JSI of 75.67%. Although there is a gap between human observation and

automatic wrinkle detection, the proposed HHF significantly increases the number of

true detection and wrinkles can be located more accurately.

In Section 4.3, a novel method, HLT, is proposed to improve HHF. It begins with a

group of seeds, extracted from the ridge area of the Hessian matrix. Then, a multi-scale

tracking is applied recursively to all seeds. Once completed, each pixel confidence is

validated over the scales to produce an initial wrinkle map. Finally, post-processing in-

cludes median filtering, directional filtering and area thresholding are applied for noise

reduction. In the experimental setup, three coders were instructed to annotate the

wrinkle manually on 100 cropped forehead images from Bosphorus. As an assess-

ment of manual annotation, both intra- and inter-coder reliability achieved accuracies

of 94% and above, demonstrating that the manual annotation is reliable between and

within coders. In the performance assessment against benchmark algorithms, HLT per-

forms better than CLM, FRF and HHF with accuracies of 84.00%, 54.33%, 63.33% and

77.00%, respectively. Such performance is close to that of manual annotation. HLT is

a superior method that explores wrinkle connectivity in addition to the curve and valley

pattern.

The second objective is to investigate the use of discriminative features such as

wrinkles and face manifolds, for facial aging estimation. This objective is achieved by

three proposed methods, MWP, HAP and MAR. Wrinkles are important features which

can be embedded in several image-based applications related to human skin. However,

wrinkle-based age estimation research has not been widely addressed. In Chapter 5, a

novel method based on MWP, is proposed for face age estimation. This directly extract

the features from local patches without extensive geometric modelling. First, facial

landmarks are located by a Face++ detector and then the face is normalised using

a linear transformation. A wrinkle template which consists of ten predefined wrinkle

regions is created. Then, for each region, wrinkles are detected using HLT and the input

patterns are constructed by MWP. Finally, the age is estimated by implementing SVR.

The performance of the algorithms is assessed using MAE on FERET. It is observed

that MWP produces a comparable MAE value to KLBP but with lower computational
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cost than KLBP. Therefore, it is concluded that wrinkles can be used as a aging pattern

for face age estimation.

Third objective is to evaluate the proposed methods using the benchmarks and hu-

man judgements. The experiments of this work are tested on four different datasets:

FGNET, FERET, MORPH and PAL. Results are validated using standard measure-

ments of JSI, MAE and CS. In Chapter 6, a novel feature representation, HAP, and

a novel age estimation method, MAR, are proposed for face age estimation. It makes

use of the strength of global feature (FAM) in representing the shape and appearance

of face and benefits local features (BIF, KLBP and MWP), which is advanced in local

representation. Results showed that the proposed MAR achieves the lowest MAE of

3.00 while HAP scores a comparable MAE of 3.02 on FERET. For full results, refer to

Appendix A.

7.3 Future Work

This section suggests further improvement on the proposed methods and highlights the

potential application areas.

7.3.1 Wrinkle Analysis

Although two methods, HHF and HLT are proposed for wrinkle detection, there is still

room for improvement. The experimental datasets have a mixture of coarse and fine

wrinkles. It is noticed that some fine wrinkles were filtered out. This issue could be

caused by the nature of the image where the line is not very clear and even coders

achieved low inter-coder reliability on these images. If wrinkle amount or density is

one of the features, then this might lead to a poor age estimation. Due to majority

of the wrinkles orientation are horizontal, this thesis is only focusing on the horizontal

lines. Future work involves investigation on the impact of vertical lines on face age

estimation. In addition, the issues such as over-segmentation, sensitivity to the fine

wrinkles, second order structure of Hessian matrix and the distribution of ridge likeliness

could be explored.

The potential use of wrinkles in the soft biometric applications, e.g., face verifi-

cation in the presence of age progression. Aging variation poses a serious problem

to automatic face recognition system. As the demand for automatic recognition and
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surveillance systems is increasing in the last few decades, it would be interesting to ex-

plore how wrinkle features could contribute to this field. In cosmetology, dermatologists

are interested in locating and removing face wrinkles in order to achieve skin rejuvena-

tion. Currently, most systems require expert intervention to manually locate and identify

wrinkles. Such process is time-consuming and prone to human error. Therefore, an

automatic wrinkle quantification system will aid to human decision in cosmetology.

7.3.2 Feature Representation of Face Age

The appearance of wrinkle is affected by other factors such as facial expressions and

cosmetic treatment. Wrinkles are highly associated with facial expression. It is worth

investigating the expression effect on wrinkle and how it would affect the performance

of age estimation. Even though wrinkles are highly associated with aging, it is observed

that some individuals have less wrinkles than others. Wrinkle growing pattern and its

rates are still not well understood. A relationship between wrinkle and aging should

be studied in order to comprehend the difference across age. This pattern is really

important in designing a typical aging representation especially for face age estimation.

Moreover, different ethnicities and genders might present different types of skin texture.

Review showed that a human estimation of facial images of different nationalities, the

variance generally tended to be larger. Therefore, the impact of skin texture difference

for age estimation is a potential research area. In addition, there is a new trend for age

estimation under unconstrained imaging conditions. It would be interesting to see how

wrinkle-based pattern can be used under such a challenging condition.

In this work, wrinkle intensity and density were used for feature representation, it can

be extended to other measurements such as wrinkle depth, length and width. A curve

fitting algorithm and shape modelling in relation to muscle movement and a patch-based

representation of found wrinkle in grey-scale values and its orientation could be studied

as well. It is observed that face alignment with a global transformation might produce a

better result than a local transformation. However, a better way is needed to cope with

the distortion after a global transformation. Moreover, it is worth to explore other aging

signatures such as spots, freckle and pigments. Although these signs are less common

than wrinkles, but it would definitely contribute to a prominent aging representation.
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7.3.3 Face Synthesis

Face synthesis renders a face image aesthetically with natural aging and rejuvenat-

ing effects on the individual face. It is often implemented by first building a generic

face model. Typically, there are two common categories of face models: empirical

knowledge-based (with subclasses of geometry based and image based) and statisti-

cal learning-based (appearance-based). Geometry-based model generates automatic

facial animations with active contours and anthropometric growth. They are mainly de-

signed for non photo-realistic rendering. It digitises facial mesh through geometric units

representing face muscles, tissues, and skin in either 2D or 3D. Image-based mod-

els focus on generating photo-realistic face images from other images rather than from

geometric primitives. A heuristic technique generates texture details on the given face

images to simulate human traits, e.g., face skin rendering with creases and aging wrin-

kles. Appearance-based models consider both shape and texture rendering to achieve

highly realistic results. The shape and texture are both vectorised for image representa-

tion. Instead of heavily using empirical knowledge like previous two models, this kind of

model usually uses a statistical learning to build a model. In addition, it can be extended

to face wrinkle modelling for producing a realistic face.

7.4 Concluding Remarks

This thesis has presented a collection of work aimed at bridging a gap between state-of-

the-art methods for face age estimation. This has included: (i) exploring novel methods

for wrinkle detection of a 2D face image; (ii) presenting novel wrinkle features as a

aging pattern for face age estimation; (iii) enhancing the face age estimation using a

combination pattern between global and local features. Each of these contributions has

been tested with different methods, measurements and datasets. Experimental results

showed that face age estimation using wrinkle patterns is feasible on a good resolution

dataset such as FERET.
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P. Meyer-Marcotty, H. Böhm, C. Linz, J. Kochel, A. Stellzig-Eisenhauer, and

T. Schweitzer, “Three-dimensional analysis of cranial growth from 6 to 12 months

of age,” The European Journal of Orthodontics, pp. 1–8, 2013.

E. Meyers and L. Wolf, “Using biologically inspired features for face processing,” Inter-

national Journal of Computer Vision, vol. 76, no. 1, pp. 93–104, 2008.

T. Michaud, V. Gassia, and L. Belhaouari, “Facial dynamics and emotional expressions

in facial aging treatments,” Journal of cosmetic dermatology, vol. 14, no. 1, pp. 9–21,

2015.

M. Minear and D. C. Park, “A lifespan database of adult facial stimuli,” Behavior Re-

search Methods, Instruments, & Computers, vol. 36, no. 4, pp. 630–633, 2004.

N. Miyamoto, Y. Jinnouchi, N. Nagata, and S. Inokuchi, “Subjective age estimation sys-

tem using facial images - how old we feel compared to others,” in IEEE Int. Conf. on

Systems, Man and Cybernetics, vol. 4. IEEE, 2005, pp. 3449–3453.

J. Mutch and D. G. Lowe, “Object class recognition and localization using sparse fea-

tures with limited receptive fields,” International Journal of Computer Vision, vol. 80,

no. 1, pp. 45–57, 2008.

K. Negishi, S. Wakamatsu, N. Kushikata, Y. Tezuka, Y. Kotani, and K. Shiba, “Full-face

photorejuvenation of photodamaged skin by intense pulsed light with integrated con-

tact cooling: initial experiences in Asian patients,” Lasers in surgery and medicine,

vol. 30, no. 4, pp. 298–305, 2002.

M. L. Ngan and P. J. Grother, “Face recognition vendor test (FRVT) - Performance of

automated age estimation algorithms,” NIST Interagency/Internal Report (NISTIR),

vol. 7995, pp. 1–31, 2014.

164



BIBLIOGRAPHY

J. Nip, S. B. Potterf, S. Rocha, S. Vora, and C. Bosko, “The new face of pigmentation

and aging,” in Textbook of Aging Skin. Springer, 2010, pp. 509–521.

T. Ojala, M. Pietikainen, and D. Harwood, “Performance evaluation of texture measures

with classification based on Kullback discrimination of distributions,” in Proceedings

of the 12th IAPR International Conference on Pattern Recognition, no. 1, 1994, pp.

582–585.

E. Osuna, R. Freund, and F. Girosi, “An improved training algorithm for support vector

machines,” in Neural Networks for Signal Processing [1997] VII. Proceedings of the

1997 IEEE Workshop. IEEE, 1997, pp. 276–285.

A. O’Toole, T. Vetter, H. Volz, E. Salter et al., “Three-dimensional caricatures of human

heads: distinctiveness and the perception of facial age,” Perception, vol. 26, pp. 719–

732, 1997.

A. O’Toole, T. Price, T. Vetter, J. Bartlett, and V. Blanz, “3D shape and 2D surface

textures of human faces: the role of “averages” in attractiveness and age,” Image

and Vision Computing, vol. 18, no. 1, pp. 9–19, 1999.

N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. on

Systems, Man, and Cybernetics, vol. 9, no. 1, pp. 62–66, 1979.

G. Panis, A. Lanitis, N. Tsapatsoulis, and T. F. Cootes, “Overview of research on facial

ageing using the FGNET ageing database,” IET Biometrics, May 2015.

E. Patterson, A. Sethuram, M. Albert, K. Ricanek, and M. King, “Aspects of age variation

in facial morphology affecting biometrics,” in First IEEE International Conference on

Biometrics: Theory, Applications, and Systems. IEEE, 2007, pp. 1–6.
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Appendix A

Review of Detailed Age Estimation

Descriptor Authors Method Description MAE

FGNET Lanitis et al. (2004) AAS 14.83

Lanitis et al. (2002) WAS 8.06

Ju and Wang (2009) LBP 6.85

Geng et al. (2006) AGES 6.77

Geng et al. (2007) AGES-LDA 6.22

Geng et al. (2008) KAGES 6.18

Günay and Nabiyev (2013) Radon Features 6.18

Alnajar et al. (2012) Soft Encoding 6.14

Suo et al. (2008) TGPC 5.97

Zhou et al. (2005) IBR, Haar-like features 5.81

Kou et al. (2012) PCA+DFT 5.72

Proposed HAP AAM+BIF 5.49

Proposed MAR AAM-AAM 5.48

Günay and Nabiyev (2015) AAM+2D-DCT 5.39

Geng et al. (2011) M2SA 5.36

Yan et al. (2009) SSE 5.21

Ylioinas et al. (2013) KLBP 5.09

Kilinc and Akgul (2012) Geometric+LGBP 5.05

Guo et al. (2008) PFA 4.97

Ruiz-Hernandez et al. (2010) BGRM 4.96

Yan et al. (2008b) RPK 4.95
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Suo et al. (2009) mkNN 4.93

Zhang and Yeung (2010) MTWGP 4.83

Guo et al. (2009a) BIF 4.77

Duong et al. (2011) AAM-LBP 4.74

Choi et al. (2011) GLA 4.66

Cai et al. (2015) DGPLVM 4.64

Chang et al. (2011) OHR 4.48

Chao et al. (2013) LPP 4.38

Tian and Chen (2015) CA-AAM 4.37

Wang et al. (2015) CNN 4.26

Weng et al. (2013) MFOR 4.25

Luu et al. (2010) Spectral Regression-AAM 4.25

Luu et al. (2011) CAM 4.12

Chen et al. (2010)
PCA+LPP+sequential

selection
4.04

Li et al. (2015) SFCS-BIF 3.76

Thukral et al. (2012) A Hierarchical Approach 3.40

El Dib and El-Saban (2010) Enhanced BIF 3.17

FERET Günay and Nabiyev (2013) Radon Features 6.98

Zhou et al. (2013) Face++ 6.94

Proposed HAP AAM+MWP 3.02

Proposed MAR AAM-AAM 3.00

MORPH Günay and Nabiyev (2013) Radon Features 6.65

Kilinc and Akgul (2012) Geometric+LGBP 6.28

Ruiz-Hernandez et al. (2010) BGRM 6.19

Yang et al. (2014) WMIR 5.44

Li et al. (2015) SFCS-BIF 5.31

Fernández et al. (2015) HOG 4.83

Wang et al. (2015) CNN 4.77

Tian and Chen (2015) CA-AAM 4.69

Cai et al. (2015) DGPLVM 4.66

Weng et al. (2013) MFOR 4.20

Proposed MAR AAM-BIF 4.06

Huerta et al. (2015) CNN 3.88
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Proposed HAP AAM+KLBP 3.67

PAL Choi et al. (2010) GHPF 8.44

Chen et al. (2011) LBP 7.70

Yang et al. (2011) Gabor 7.10

Yang et al. (2011) AAM 6.29

Chen et al. (2010)
PCA+LPP+sequential

selection
6.25

Proposed HAP AAM+KLBP 6.08

Luu et al. (2011) CAM 6.00

Yang et al. (2011) AAM-Gabor 5.88

Chen et al. (2011) AAM-LBP-2 5.65

Proposed MAR AAM-BIF 3.43

Note: IBR - Image-Based Regression; OHR - Ordinal Hyperplanes Ranker; WAS -

Weighted Appearance Specific; AAS - Appearance and Age Specific; LDA - Linear

Discriminant Analysis; RUN - Ranking with Uncertain Labels; RPK - Regression

with Patch-Kernel; LARR - Locally Adjusted Robust Regression; PFA - Probabilistic

Fusion Approach; KAGES - Kernel AGES; MSA-Multilinear Subspace Analysis;

SSE - Synchronized Submanifold Embedding; mkNN - learned Metric with

K-Nearest Neighbour; LLD - Learning from Label Distributions; M2SA - Multilinear

Subspace Analysis With Missing Values; MTWGP - Multi-TaskWarped Gaussian

Process; LPP - Locality Preserving Projection; TGPC - Topological, Geometric,

Photometric and Configural features; GLA - Gabor, LBP and AAM-based features;

DGPLVM - Discriminative Gaussian Process Latent Variable Model; DCT - Discrete

Cosine Transform; SFCS - Stacked Features Composition and Selection; CAM -

Contourlet Appearance Model; BGRM - Binary Gaussian Receptive Maps; CA -

Cumulative Attribute; MFOR - Multi-Feature Ordinal Ranking; WMIR -

Witness-based Multiple-Instance Regression; GHPF - Gaussian High Pass Filter;

LGBP - Local Gabor Binary Patterns; DFT - Discrete Fourier Transform; CAM -

Contourlet Appearance Model; HOG - Histogram of Gradient.
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Review of Age Groups Classification

Authors Dataset Method Group Accuracy

Kwon and da Vitoria Lobo
(1999)

unknown AM, Snakes
Baby, Adult,

Senior
100%

Horng et al. (2001) unknown AM 4 classes 85.96%

Iga et al. (2003) unknown AM 5 classes 58.4%

Ueki et al. (2006) WIT-DB APM 11 classes
50% (M), 43%

(F)

Takimoto et al. (2006) HOIP APM 6 classes
57.3% (M),
54.7% (F)

Geng et al. (2006) FGNET AGES 14 classes
40.92% (hit

rate)

Guo et al. (2009b) unknown APM (BIF) 3 classes 89.7%

Gao and Ai (2009) unknown
Gabor features +

LDA
4 classes 86.64%

Shan (2010) unknown
boosted LBP +

SVM
7 classes 50.3%

Tang and Lu (2010) unknown
LBP + SVM +
fuzzy integral

4 classes 80.23%

Lanitis (2010) FGNET Head Movements 3 classes 65.00%

Dehshibi and Bastanfard
(2010)

IFDB
seven facial ratios
and three wrinkle

areas
4 classes 91.00%

Li et al. (2014)
FGNET,
MORPH

LBP + ASM 4 classes 82.00%

Note: Age groups classification on various datasets. AM - Anthropometric Model; APM - Appearance
Model; ASM - Active Shape Model; M - Male; F - Female; LDA - Linear Discriminant Analysis; IFDB -
Iranian Face DataBase.
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A Preliminary Study of Face Age

Estimation

This appendix presents a preliminary study for face age estimation using

wrinkle patterns as shown in [PUB4]. It involves a preprocessing step for

finding the mean shape, threshold detection for determining the Canny pa-

rameters, wrinkle extraction using Canny edge detector, and age group

classification using a MLP.

C.1 Introduction

Research related to age estimation using face images has become increasingly impor-

tant due to its potential use in various applications such as age group estimation in

advertising and age estimation in access control. In contrast to other facial properties,

age variation has several unique characteristics which make it a challenging task. As we

age, the most pronounced facial change is the appearance of wrinkles (skin creases),

which is the focus of aging research in cosmetic and nutrition studies. In this prelimi-

nary study, a method named as Local Wrinkle-based Extractor (LOWEX) is proposed

for feature representation. This method detects and classifies facial age groups based

on wrinkles. First, each face image is divided into several convex regions where wrin-

kles are distributed. Second, these regions are analysed using a Canny filter and then

concatenated into a feature vector. Finally, the face is classified into an age group using

a supervised learning algorithm, MLP. Results showed that the proposed LOWEX has

a classification accuracy of 80% on FGNET dataset. This investigation showed that the

wrinkle patterns have great potential for age estimation. At the end, the advantages
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Figure C.1: Information flow of LOWEX for a single individual. The first row shows
the original image, 2nd row presents the converted image in grey-scale, 3rd row is the
shape-free patches, 4th row is the illustration of threshold detection and the last row is
the result of canny thresholding. Note that this figure was redrawn from FGNET.

and challenges of using wrinkles are discussed.

C.2 Local Wrinkle-based Extractor

This section presents the LOWEX algorithm which extracts wrinkles of interest from

the facial images. Using the wrinkles patterns, a MLP classifier is implemented to

predict the age groups. Figure C.1 illustrates the flow of the proposed LOWEX. It

consists of four steps: grey-scale conversion, mean shape warping, threshold detection

and Canny thresholding. First, all images are converted to a grey-scale level (Ig) for

reducing dimensionality and avoiding issues concerning colour balance. The shape is

then modelled based on manually labelled landmarks. For 2D image, the shape, s,

is represented by n landmarks, (xi,yi), as s = (x1,x2, . . . ,xn,y1,y2, . . . ,yn)
T , {s} ∈
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D where n is the total number of landmarks and D is the dataset. The shapes are

normalised by the GPA where all the similarity is removed. Subsequently, the images

in the training set are warped to the mean shape s̄ to produce a shape-free patch (see

Section 3.4.3). From the mean shape, a set of triangular regions, denoted as Zk (k

is the index of each region) which reflects to the wrinkle growing region is identified,

as suggested by Kwon and da Vitoria Lobo (1999). In each triangle, a square image

is cropped, denoted as Q k with the size l× l and its centre point is equivalent to the

centroid of Q k. There are two reasons a square image is applied for threshold detection:

avoid noise around the triangle corners and allow derivation of stable thresholds for

wrinkles. If the l value is either too large or too small, it will exceed the ROI or lost

the focus of detection. Hence, the l value is set as 20 pixels. In the next step, the

Otsu algorithm is applied to each Q k in order to discover an appropriate threshold,

t1,k and t2,k, for that region. The Otsu algorithm is a global thresholding technique

where a threshold can make the value of interclass variance the highest among all

the possible values (see Section 3.1.1.4). Finally, Canny edge detection, f , with the

detected thresholds (see Section 3.1.1.2) is utilised as

Wk = f
(
Zk, t1,k, t2,k

)
(C.1)

where W is the detected edges (wrinkles) of each region. Length, g, and amount, u, of

W are combined into a feature pattern as

f = [g1,gk, · · · ,gm, u1,uk, · · · ,um], {gk,uk} ∈Wk (C.2)

where m is the total number of regions and k ≤ m.

C.3 Age Group Classification

In this experiment, a similar architecture of MLP as described in Section 3.3.1.2 is

adopted. Total nodes of input layer is according to the feature size, s, used for capturing

input patterns. If the feature size, s, is 24 then the total number of input layer will be set

correspondingly. In this work, s = m∗2. Usually, the total number of hidden layer is 1/2
or 1/3 of input layer. In this experiment, it is set as s/2. The output layer consists of

2 units which is based on the number of classes needed. The input values to the MLP

are represented by i1, i2, ..., is, where input is normalised between -1 and 1. The output

values to the backpropagation neural network are represented by binary codes, [0,1]
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Table C.1: MLP parameters in WEKA.

Description Value
Function Backpropagation
Input Node s
Hidden Node s / 2
Output Node Group A / Group B
Learning Rate 0.3
Momentum Rate 0.2
Epochs 500
Features Normalised -1 to 1
Output Normalised -1 to 1

and [1,0], which correspond to the age groups of young and old.

Table C.1 shows the MLP parameters used in this experiment. The input node,

hidden node and output node are s, s/2, and 2, respectively; learning rate is 0.3; mo-

mentum rate is 0.2; epochs is 500; input and output are normalised between -1 and 1.

These parameters were determined through a grid search approach (Hsu et al., 2003)

and it is implemented in open source software Waikato Environment for Knowledge

Analysis (WEKA) with classifier “MultilayerPerceptron” (Hall et al., 2009).

C.4 Experimental Settings

The FGNET dataset was used to evaluate the performance of the proposed method

(see Section 3.6.2 for dataset description). All individuals in the dataset have more

than one image included with different ages. Each image has 68 annotated facial fea-

ture points; these were used for the shape normalisation. According to Albert et al.

(2007), normal aging of the facial soft tissues begins in the 20’s with the fine facial lines

appearing horizontally across forehead, vertical lines emerging between eyebrows, and

faint lines developing around the outer corners of the eyes. With this in mind, the ex-

periment set was divided into two groups: group A was between age 0 and 20 while

group B was above 20 years old. In the experiment 1 and 2, 20 images were selected

from FGNET for group A and another 20 images for group B, all of which had frontal

pose and clear texture. In the experiment 3, these images were used as the training set

and the remaining images of FGNET were used for testing. A 10-fold cross validation

was performed to evaluate the performance of the age group classification. For ROI

extraction, all 68 facial feature points were used to produce the shape-free patches.
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In order to evaluate the performance of age group classification, measurements

such as precision, recall and F1-measure are defined as,

Precision =
TP

TP+FP
(C.3)

Recall =
TP

TP+FN
(C.4)

F1 =
2×Precision×Recall

Recall+Precision
(C.5a)

=
2×TP

2×TP+FP+FN
(C.5b)

where TP, FP, FN are true positive, false positive and false negative. If both ground

truth and predicted answer are yes, then it is a TP. If the ground truth is yes and

predicted answer is no, then it is a FP. If the ground truth is no and predicted as yes,

then it is a FN. Otherwise, it is a true negative (TN).

The precision describes the probability that an estimated object (randomly selected)

is relevant to a desired group. The recall describes the probability of a relevant object

being classified correctly. F1 describes the average between precision and recall which

is often used in characterizing performance (Yap, 2008).

C.5 Experimental Results

This experiment used a Canny edge detector to find the wrinkles in the region of in-

terest. The output of Canny edge detection is a binary image in which the true values

represent the edges. In Matlab, either the thresholds of the Canny function be defined or

the default threshold is used. Figure C.2 shows the effects of using different thresholds

of the Canny method. The first row shows a 17-year-old participant with no wrinkles

on face, while the second row shows a 22 year-old participant with some noticeable

wrinkles. It is observed that the Canny function with threshold detection performs better

than Canny with default threshold. A default threshold might not suitable for different

sizes of wrinkles where it may extract excessive amounts of detail. The experiment

showed that an adaptive method like the Otsu algorithm decides a better threshold for

wrinkle detection. (Otsu, 1979).

181



Appendix C: A Preliminary Study of Face Age Estimation

Figure C.2: Comparison between manual threshold and automatic threshold detection
for Canny edge detection. Note that this figure was redrawn from FGNET.

Figure C.3: Center point versus triangle region. Green is the area of interest for thresh-
old detection. Note that this figure was redrawn from FGNET.

In Experiment 1, threshold detection by centre point region (c̃k) was compared with

that from the whole region (Zk). Figure C.3 shows the different areas (green area)

used for threshold detection. Table C.2 shows the comparative results for centre point

and triangle region threshold determination. The classification accuracy for triangle

threshold is 67.50% and it is improved by centre point threshold to an accuracy of

80%. It seems that triangle threshold is less consistent due to noise around the triangle

corners which diverts the Otsu algorithm from finding appropriate threshold. Results

showed that a centre point threshold which focuses on the wrinkle area gives a better

result than using the whole region.
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Table C.2: Experiment 1, a comparison of threshold type.

Threshold Type Group A Group B Accuracy
Centre Point 16 16 80.00%
Triangle 13 14 67.50%

Figure C.4: Different wrinkle region amount. Note that this figure was redrawn from
FGNET.

In Experiment 2, effects of ROI size were considered. In general, facial wrinkles are

created by repeated facial muscular movements and expressions, therefore it formed

increasingly as the person gets older. It was assumed that the amount of wrinkles is

a cue that strengthens the feature for discriminating the age groups. The experiment

settings are the same as Experiment 1 but the number of ROI was increased from 6 to

12, which included the eye bag area. Figure C.4 presents the different ROI used in this

test.

Table C.3 shows the experimental results of using different amount of ROIs. Results

showed that the region amount affects the age group classification where 12 ROIs hits

an accuracy of 82.50% compared to 6 ROIs with an accuracy of 80.00%.

In Experiment 3, age group classification was performed on the whole FGNET

dataset. The selected 40 images from Experiment 1 were used as a training set and

the remaining images of FGNET as the test set. Other settings were same as Exper-

iment 1. Table C.4 illustrates the detailed accuracy by class. Overall, the F1-measure

of group A was 0.731 and group B was 0.466. This implies that 618 of 962 samples

were correctly classified. It was expected that the classification performance might drop

significantly due to the very poor quality and imbalanced nature of the FGNET images.

183



Appendix C: A Preliminary Study of Face Age Estimation

Table C.3: Experiment 2, variation in numbers of ROIs.

Threshold Type Group A Group B Accuracy
6 ROIs 16 16 80.00%
12 ROIs 16 17 82.50%

Table C.4: Experiment 3, detailed accuracy by class.

Description Group A Group B
TP Rate 0.678 0.551
FP Rate 0.449 0.322
Precision 0.793 0.403
Recall 0.678 0.551
F1-measure 0.731 0.466

C.6 Discussion

Overall, although the accuracy is reasonable, there are a number of issues to be inves-

tigated. For the experimental set-up, the age groups were divided into two groups, one

is between age 0 and 20 and others are above 20. This arbitrary choice of cut-off point

between age groups makes for a highly unbalanced dataset. It would be interesting if

the set-up could be narrowed into a smaller age interval, say 10 years old. Second, it

has been noticed that the manual selection of higher quality images for the training set

makes it unrepresentative of the data as a whole. Statistical test would be a better way

to show that this dataset is uniform. Third, a validation on the correctness of wrinkle de-

tection is needed. It is well known that the Canny edge detector extracts the boundary

of an object. It would be good to see a validation between human annotation and pre-

diction by the edge detector. Fourth, FGNET is a noisy dataset where most of the face

wrinkles are distorted due to the poor image quality. A better resolution is important

for local feature analysis. Therefore, different datasets should be used for validating

the wrinkle analysis. Fifth, face age estimation is a complex modelling process which

involves many parameters such as ethnicity, gender and expression. Thus, the use of

wrinkles as key features for predicting the face age is an interesting area to be explored.

C.7 Summary

In this appendix, a local feature representation namely LOWEX is explored for age es-

timation. Features produced by LOWEX are wrinkle length and amount. Then, a MLP
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is designed to classify the age groups based on the feature descriptor. Results showed

that the proposed method produces an effective feature descriptor for age group classi-

fication with high accuracy. This experiment demonstrated that wrinkle pattern is a key

feature in discriminating between young and old people. However, it is observed that

the Canny edge detector only segments the wrinkle boundary instead of wrinkle itself.

It might affect the performance of age group classification which depends on wrinkle

statistics. Therefore, it would be interesting to see how wrinkles can be extracted accu-

rately and further used for detailed age estimation.
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AAM Builder Configuration

The AAM-API is a free, open-source, C++ implementation of the AAM framework tar-

geted for education, further AAM research and for pure analysis and segmentation pur-

poses. AAM-API details can be found at Stegmann (2003). The builder configuration of

each datasets is depicted as follows.

FGNET

#############################################################################

#

# Active Appearance Model Builder Configuration File

#

#############################################################################

3 # Model reduction [1-n] (reduction factor = 1/x)

3 # Model expansion [0-n] (pixels along the point normal)

1 # Use convex hull [0|1] (off/on)

1 # Verbose mode [0|1] (off/on)

1 # Write registration movie [0|1] (off/on)

1 # Write variance image [0|1] (off/on)

1 # Produce model documentation [0|1] (off/on)

186



Appendix D: AAM Builder Configuration

1 # Use tangent space projection [0|1] (off/on)

1 # Training method [ 0=PC Regression, 1=Jacobian (recommended) ]

95 # Shape model truncation (percentage [0-100], -1=parallel analysis)

95 # Texture model truncation (percentage [0-100], -1=parallel analysis)

95 # Combined model truncation (percentage [0-100], -2=no combined model)

1 # Subsampling of the training set (during training) [1-n]

1 # Warping method [ 0=benchmark, 1=software, 2=hardware (requires OpenGL) ]

FERET

#############################################################################

#

# Active Appearance Model Builder Configuration File

#

#############################################################################

5 # Model reduction [1-n] (reduction factor = 1/x)

3 # Model expansion [0-n] (pixels along the point normal)

1 # Use convex hull [0|1] (off/on)

1 # Verbose mode [0|1] (off/on)

1 # Write registration movie [0|1] (off/on)

1 # Write variance image [0|1] (off/on)

1 # Produce model documentation [0|1] (off/on)

1 # Use tangent space projection [0|1] (off/on)
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1 # Training method [ 0=PC Regression, 1=Jacobian (recommended) ]

95 # Shape model truncation (percentage [0-100], -1=parallel analysis)

95 # Texture model truncation (percentage [0-100], -1=parallel analysis)

95 # Combined model truncation (percentage [0-100], -2=no combined model)

1 # Subsampling of the training set (during training) [1-n]

1 # Warping method [ 0=benchmark, 1=software, 2=hardware (requires OpenGL) ]

MORPH

#############################################################################

#

# Active Appearance Model Builder Configuration File

#

#############################################################################

3 # Model reduction [1-n] (reduction factor = 1/x)

3 # Model expansion [0-n] (pixels along the point normal)

1 # Use convex hull [0|1] (off/on)

1 # Verbose mode [0|1] (off/on)

1 # Write registration movie [0|1] (off/on)

1 # Write variance image [0|1] (off/on)

1 # Produce model documentation [0|1] (off/on)

1 # Use tangent space projection [0|1] (off/on)

1 # Training method [ 0=PC Regression, 1=Jacobian (recommended) ]
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95 # Shape model truncation (percentage [0-100], -1=parallel analysis)

95 # Texture model truncation (percentage [0-100], -1=parallel analysis)

95 # Combined model truncation (percentage [0-100], -2=no combined model)

1 # Subsampling of the training set (during training) [1-n]

1 # Warping method [ 0=benchmark, 1=software, 2=hardware (requires OpenGL) ]

PAL

#############################################################################

#

# Active Appearance Model Builder Configuration File

#

#############################################################################

2 # Model reduction [1-n] (reduction factor = 1/x)

3 # Model expansion [0-n] (pixels along the point normal)

1 # Use convex hull [0|1] (off/on)

1 # Verbose mode [0|1] (off/on)

1 # Write registration movie [0|1] (off/on)

1 # Write variance image [0|1] (off/on)

1 # Produce model documentation [0|1] (off/on)

1 # Use tangent space projection [0|1] (off/on)

1 # Training method [ 0=PC Regression, 1=Jacobian (recommended) ]

95 # Shape model truncation (percentage [0-100], -1=parallel analysis)
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95 # Texture model truncation (percentage [0-100], -1=parallel analysis)

95 # Combined model truncation (percentage [0-100], -2=no combined model)

1 # Subsampling of the training set (during training) [1-n]

1 # Warping method [ 0=benchmark, 1=software, 2=hardware (requires OpenGL) ]
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