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Abstract 10 

Background and Aims The aim of this study is to enhance our knowledge of nitrogen 

(N) cycling and N acquisition in tropical montane forests through analysis of stable N 

isotopes (δ15N).   

Methods Leaves from eight common tree species, leaf litter, soils from three depths and 

roots were sampled from two contrasting montane forest types in Jamaica (mull ridge and 15 

mor ridge) and were analysed for δ15N.   

Results All foliar δ15N values were negative and varied among the tree species but were 

significantly more negative in the mor ridge forest (by about 2 ‰).  δ15N of soils and roots 

were also more negative in mor ridge forests by about 3 ‰.  Foliar δ15N values were closer 

to that of soil ammonium than soil nitrate suggesting that trees in these forests may have a 20 

preference for ammonium; this may explain the high losses of nitrate from similar tropical 

montane forests.  There was no correlation between the rankings of foliar δ15N in the two 

forest types suggesting a changing uptake ratio of different N forms between forest types.   

Conclusions These results indicate that N is found at low concentrations in this ecosystem 

and that there is a tighter N cycle in the mor ridge forest, confirmed by reduced nitrogen 25 

availability and lower rates of nitrification.  Overall, soil or root δ15N values are more useful 

in assessing ecosystem N cycling patterns as different tree species showed differences in 

foliar δ15N between the two forest types.   
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Introduction 

Understanding ecosystem nutrient cycling is important as soil nutrient availability has a 35 

strong effect on plant and microbial growth, performance and community composition 

which, in turn, will affect ecosystem productivity and other biogeochemical processes.  

Understanding nutrient cycling is also important from the point of view of community 

ecology, as variation in nutrients in both space and time may lead to species co-existence 

through partitioning of various aspects of this essential resource (e.g. McKane et al. 2002).  40 

The nature of nutrient limitation in tropical rain forests is still being debated, but a simple 

interpretation of current evidence suggests that lowland forests on old and highly 

weathered soils are more limited by phosphorus whereas montane forests are more limited 

by the supply of nitrogen (N) due to slower N mineralisation rates in the cooler climates 

(Tanner et al. 1998).  Furthermore, with increased N deposition to tropical forests which is 45 

predicted to increase in the future, we need to improve our understanding of tropical forest 

N cycling (Ortiz-Zayas et al. 2006; Phoenix et al. 2007; Hietz et al. 2011) 

 

The N cycle is complex and below-ground controls on N cycling can be difficult to study 

due to the hidden nature of the soil environment.  Stable isotopes are becoming 50 

increasingly important in studies of N cycling as they provide a time-integrated measure of 

ecosystem processes (reviewed in Högberg 1997; Robinson 2001; Evans 2007; Makarov 

2009).  For example, they can identify sources, infer processes, estimate rates, determine 

inputs, and constrain models (Sulzman 2007).  As N cycles among different compartments 

of the ecosystem, many processes can cause isotopic discrimination: therefore examination 55 

of stable N isotope values can be used to shed extra light on ecosystem N cycling.  N 

isotope values of ecosystem compartments can be influenced by multiple factors including 

i) uptake of differing N sources and forms with different isotopic signatures (partly 

mediated by rooting depth), ii) fixation of atmospheric N, iii) fertilisation, iv) isotopic 

discrimination during uptake of N both by the plant and by symbiotic micro-organisms, v) 60 

internal physiological fractionation (associated with uptake, translocation and loss of N), vi) 

changes in N demand, and vii) losses of nitrogen via denitrification and volatilisation 

(Shearer & Kohl 1986; Erskine et al. 1998; Michelsen et al. 1996; Högberg et al. 1996; 

Nadehoffer et al. 1996; Högberg; 1997; Evans 2001, 2007; Robinson 2001; Kohzu et al. 

2003; Hobbie et al. 2005; Houlton et al. 2006, 2007; Craine et al. 2009; Houlton & Bai 2009; 65 

Makarov 2009). 
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The use of N isotopes may be especially helpful in tropical regions where we have less 

information on N cycling and research is often conducted at remote locations with less well 

developed infrastructure to support complex research capacity.  For example, in a 70 

comparison of soil and foliar δ15N values, Martinelli et al. (1999) showed that tropical 

lowland forest leaves and soils were more enriched in 15N relative to temperate forests.  

Because of the loss of isotopically lighter N from the ecosystem via the fractionating 

pathways of nitrification and denitrification, it was suggested that the N cycle was more 

‘closed’ in temperate forests and that gaseous losses of N from tropical lowland forests 75 

were higher.  This was confirmed by Houlton et al. (2006) who used an isotopic approach 

to show high losses of nitrous oxide from tropical forests in Hawai’i. 

 

In this study, we attempt to ascertain differences in the N cycle in two contrasting tropical 

montane forest types in the Blue Mountains of Jamaica; these are the ‘mor ridge’ and ‘mull 80 

ridge’ of Tanner (1977).  The advantage to using this study system is that potential 

differences in N cycling due to climate (e.g. latitude, altitude, rainfall, and temperature) can 

be excluded as the two forest types are within close proximity (< 1 km) to one another 

with minimal differences in climatic characteristics (Tanner 1980).  We aim to examine 

variation in plant δ15N values and relate this to soil δ15N values, N availability, and rooting 85 

depth in the two forest types.   

 

The reason for the formation of the mor ridge forest is not clear but is probably related to 

the chance aggregation of trees with more recalcitrant litter leading to the formation of the 

deep, acidic humus layer and consequently a positive feedback processes that amplified the 90 

development of this forest type.  Previous work (Tanner 1977) suggested a slower rate of N 

mineralisation in this forest type and there may therefore be less nitrate available leading to 

the hypothesis that the mor ridge forest has a more ‘closed’ N cycle and therefore δ15N 

values of both soils and plant material would be more negative.  The goal of this study is to 

determine whether δ15N values can be used as successful indicators of different rates of N 95 

cycling in these differing montane forest types. 

 

Methods 

Study sites The study sites are found at around 1600 m a.s.l. along John Crow ridge in the 

western Blue Mountains of Jamaica at 18° 05′ N, 76° 39′ W and have been described 100 

extensively by Tanner (1977).  There is no comprehensive data on climatic conditions but 
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annual rainfall is estimated at 2500 mm with an annual temperatures range from around 

11˚C to 20 ˚C (Shreve 1914; Tanner 1980).  Whilst the remaining forests in the Blue 

Mountains are generally found on very steep terrain, the sites chosen for this study were 

situated along the Grand Ridge and, as such, were relatively flat.  Two contrasting forest 105 

types were chosen for the study: ‘mull ridge’ which has trees up to 13-15 m tall (Soil pH: 

3.6-4.0; Loss-on-ignition: 25-75 %) was compared with ‘mor ridge’ which is a much more 

stunted forest formation with trees of up to 5-7 m tall found over an acidic, highly organic 

soil (Soil pH: 3.0; Loss-on-ignition: c. 95 %) (Tanner 1977; Stewart 2000; F. Q. Brearley 

unpublished data). 110 

 

Foliar samples In July-August 2006, foliar samples of mature leaves were collected from the 

two forest types.  Samples were collected from mature, sunlit leaves of eight tree species 

from each forest type (three or six samples per species in each forest type) using a long-

handled pruner; these eight species accounted for c. 75-80 % of total basal area in each 115 

forest type (Tanner 1977).  The species were: Alchornea latifolia (Euphorbiaceae), Clethra 

occidentalis (Clethraceae), Clusia havetioides (Clusiaceae; mor ridge only), Cyrilla racemiflora 

(Cyrillaceae), Hedyosmum arborescens (Chloranthaceae; mull ridge only), Lyonia octandra 

(Ericaceae), Pittosporum undulatum (Pittosporaceae), Podocarpus urbanii (Podocarpaceae) and 

Schefflera sciadophyllum (Araliaceae).  Each sample was a composite of a number of leaves 120 

(dependent upon leaf size).  The leaves were dried at 50 º C (Brearley 2009) and the 

petioles and mid-rib removed.  The leaves were then finely ground (Yellowline A10, IKA-

Werke, Staufen, Germany), sealed in air-tight plastic vials, and sent to the University of 

Washington, USA for isotope analyses (see ‘Isotope analyses’ below). 

 125 

Soil and litter samples Six soil samples were collected from depths of 0-10, 10-20 and 20-30 

cm using a metal corer in July-August 2006 from the two forest types (hereafter, ‘bulk 

soils’).  Bulked leaf litter samples were taken from an area of approximately 100 cm2 

immediately adjacent to the holes made by the corer.  Bulk soils and litter were dried at 50 º 

C, finely ground, sealed in air-tight plastic vials, and sent for isotope analyses as above. 130 

 

Soil N availability In May-June 2008 and again in February 2010, five samples of 15 to 20 g 

of fresh soil (from 0-10 cm depth only) were collected from the two forest types and 

shaken within 8 hours of collection with 100 ml of 1 M KCl (1 minute of shaking by hand 

at c. 100 rpm every ten minutes six times) and left to stand overnight (14-16 h) before being 135 
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filtered (filter papers were pre-washed in 1 M KCl and rinsed in deionised water before use) 

and stored in 30 ml vials (with 1 ml of 1 % HCl added).  Ammonium and nitrate were then 

determined on a Dionex ICS-2000 ion chromatography system with a CG16 guard column 

and CS16 separation column for ammonium and an AG18 guard column and AS18 

separation column for nitrate (Dionex (UK), Camberley, Surrey, UK).  To determine soil 140 

moisture content, fresh soils were placed in plastic bags to keep them moist and then dried 

at 105˚C for 24 hours; soil weights were therefore adjusted accordingly.  Nitrogen 

mineralisation and nitrification rates were assessed by incubating three or four c. 100 g 

portions of soil (on which the original ammonium and nitrate concentrations had been 

determined as above) in plastic bags immediately below the surface litter layer for 10 days 145 

(in May-June 2008) after which ammonium and nitrate concentrations were determined 

again.  Mineralisation and nitrification rates were calculated as the difference in mineral N 

concentrations between the end and beginning of the incubations.  PRSTM probes 

(WesternAg Innovations, Saskatoon, Saskatchewan, Canada) were inserted in the soil for 49 

days in April-May 2009 (each of the eight samples consisted of two anion and two cation 150 

probes which were combined for analysis, except for one sample of a single probe of each 

type).  After being taken out of the soil extraneous material was removed; they were then 

washed thoroughly in distilled water and shipped to Canada for analysis. 

 

Soil ammonium and nitrate δ15N values Ammonium and nitrate were captured on acidified filter 155 

papers using a modified diffusion methodology (Brooks et al. 1989; Claudia Schütz, pers. 

comm.) in July-August 2006 and again in May-June 2008.  Twenty g of fresh soil (from 0-

10 cm depth only) was shaken with 100 ml 1 M KCl (1 minute of shaking every ten 

minutes six times) and left to stand overnight (14-16 h) before being filtered into 300 ml 

glass jars.  Fifty mg of MgO (pre-heated at 600°C for 4 hrs) was added to the KCl extract 160 

to convert NH4+ to NH3 which was captured on acidified [10 µl of KH2SO4 (7 % H2SO4, 

22 % KSO4) pipetted on to the paper] squares of 1 cm2 Whatman GF/C filter paper 

elevated above the solution on stainless steel wire.  The KCl extract was then incubated at 

ambient temperature (mean: 18.0 º C, range: 15.3-23.3 º C) for 4 days and swirled gently 

daily.  Filter papers were then removed and dried by placing them in a sealed plastic 165 

container containing silica gel.  New filter papers were placed on the steel wires in the glass 

jars and NO3- remaining in the solution was converted to NH4+ and subsequently to NH3 

by adding 0.04 g of Devarda’s alloy.  After incubation for a further 3 days, the filter papers 

were removed and dried as above.  Filter papers were sealed in plastic vials and sent for 
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isotope analyses.  Any filter papers which had a N content greater than one standard 170 

deviation from the mean N recovery expected as analysed by KCl extraction and ion 

chromatography (see above) were excluded from the subsequent statistical analyses; each 

forest type x N-species combination therefore had between four and seven replicates 

remaining. 

 175 
Root biomass and depth distribution Root biomass (of live and dead roots up to 1 mm diameter) 

was estimated using standard techniques (Brearley 2011) from the same three depths as 

bulk soil samples were taken in both July-August 2006 and May-June 2008.  The 

exponential decrease in root biomass was modelled using the equation of Gale & Grigal 

(1987): 180 

y = 1 – βd  

where y is the cumulative fraction of root biomass to a depth of d cm; with low β values 

representing a steady decline with depth and high β values representing a more rapid 

decline with depth. 

 185 

Isotope analyses Around 1-2 mg of sample (or the whole of a filter paper) was weighed 

accurately into a tin capsule and the δ15N (and % N) value of all the samples were 

determined using a Thermo Finnegan Delta Plus XP isotope ratio mass spectrometer 

(Thermo Finnegan, Bremen, Germany) coupled to a Costech ECS 4010 elemental analyser 

(Costech Analytical, Valencia, CA, USA) at the University of Washington, USA.  The 190 

results are expressed in δ notation whereby δ15N = [(Rsample/Rstandard) – 1] x 1000 when R is 

the ratio of 15N/14N.  Precision of duplicate analyses of standard samples was better than 

0.12 ‰ in all cases.  Comparison to reference material of NIST peach or laboratory 

spinach leaves had a mean difference of 0.12 ‰. 

 195 

Results 

Whilst there was a significant difference between forest types in mean foliar δ15N values, 

with the trees from the mor ridge forest showing more negative mean foliar δ15N values of 

-4.52 ‰ compared with -2.98 ‰ (F1,61 = 24.9, p < 0.001; Figure 1), there was also 

considerable variation in the foliar δ15N values of the seven species sampled from both 200 

forest types (F6,61 =  8.22, p < 0.001; Figure 1), and a strong interaction between species 

and forest type (F6,61 = 2.98, p = 0.013; Figure 1).  As an example, the difference in foliar 

δ15N values in Pittosporum undulatum between the two forest types was about 3.9 ‰ whereas 

Cyrilla racemiflora had a minimal difference between the forest types of only 0.1 ‰ (n.b. 
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Hedyosmum arborescens and Clusia havetiodes were excluded from the above analyses as leaves 205 

were only collected from one forest type; if they are included, the mean values become       

-4.62 ‰ and -2.65 ‰ for mor and mull ridge forests).  Whilst there was a significant effect 

of forest type when all species were combined, these were only actually significant for 

Pittosporum undulatum and Podocarpus urbanii after a Tukey’s test (p < 0.05).  There was no 

correlation between the species rankings of δ15N values in the two forest types (rs = 0.39, p 210 

= 0.34). 

 

There were significant positive correlations between foliar δ15N and % N in both forest 

types (Mor: r = 0.56 p < 0.001; Mull: r = 0.34, p = 0.024; Figure 2a).  Similarly, there were 

positive correlations between foliar δ15N and 10 year diameter (at 1.3 m) growth rates 215 

between 1994 and 2004 (E. V. J Tanner, unpublished data) for both forest types (Mor: r = 

0.36, p = 0.43; Mull: r = 0.62, p = 0.14; Figure 2b) although these were not statistically 

significant (Pittosporum undulatum was removed from this analysis as no individuals of this 

species were present in 1994). 

 220 

Bulk soils (including the litter layer) were significantly more depleted in 15N in the mor 

ridge forests (by about 3 ‰) at all depths (F1,34 = 56.7, p < 0.001; Figure 3); this was 

significant at all depths following a Tukey’s test (p < 0.05)  The bulk soil became 

increasingly enriched in 15N with depth in both forest types (F3,34 = 50.5, p < 0.001; Figure 

3) with the degree of enrichment being similar in both forest types indicated by the lack of 225 

a significant interaction term in the ANOVA (F3,34 = 0.54, p = 0.66; Figure 3).  In addition, 

bulked root samples similarly had lower δ15N values in the mor ridge forest (t12 = 7.68, p < 

0.001; Figure 3).  There was a negative correlation between bulk soil δ15N and % N in both 

forest types (Mor: r = -0.85, p < 0.001; Mull: r = -0.65, p = 0.009). 

 230 

Ammonium was found at greater concentrations, although not always significantly, in the 

mor ridge forest soil than the mull ridge forest soil across all methods and studies (Table 1).  

In contrast, depending upon the method used, values for nitrate varied from being slightly 

greater in mor ridge soil (KCl extractions in 2008) to being fifteen-fold greater in mull ridge 

soil (PRSTM probes; Table 1).  The nitrate:ammonium ratio was always greater (although 235 

never significantly so) in the mull ridge forest soil (Table 1).  Nitrogen mineralisation and 

nitrification were greater in the mull ridge soils (Table 1).  Using the data on soil bulk 

density from Tanner (1977) of 0.1 and 0.45 g cm-3 for mor and mull ridge forest, the 
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amounts of both ammonium and nitrate were greater in the mull ridge forest soil when 

expressed on an area basis (data not shown) and mineralisation and nitrification were both 240 

over an order of magnitude greater in the mull ridge forest soil (Table 1). 

 

Initial statistical tests suggested that year of collection (2006 vs. 2008) did not have an effect 

on δ15N of soil ammonium and nitrate (p > 0.50) and hence both years were considered 

together in subsequent analyses.  Ammonium in the upper soil layers (0-10 cm) was 245 

significantly more enriched in 15N in comparison to nitrate in both forest types (F1,21 = 

36.7, p < 0.001; Table 2) and both ammonium and nitrate in the mor ridge forest soils were 

depleted in 15N relative to the mull ridge forest soils (F1,21 = 4.00, p = 0.058; Table 2).  In a 

separate analysis in which δ15N of ammonium, nitrate and bulk soil (bulk soil data in Figure 

3) were compared, in both forests’ soils, δ15N of ammonium was not significantly different 250 

to δ15N of bulk soil (Tukey’s test, p > 0.40) in contrast to nitrate which was significantly 

depleted in 15N when compared to bulk soil (Tukey’s test, p < 0.001). 

 

The root biomass of live and dead roots up to 1 cm diameter was approximately the same 

in the upper 10 cm of soil in both forest types but there was a more rapid decline in root 255 

biomass with depth in the mull ridge forests (Figure 4) indicated by significantly lower β 

values in the mull ridge forest soil (t16 = 2.34 p = 0.032). 

 

Discussion 

Foliar δ15N and comparisons with other studies 260 

The values for foliar δ15N were, in general, very low (Figure 1) when compared to, for 

example, tropical lowland forests in French Guiana where no leaf sample had a δ15N value 

of less than -0.6 ‰ (Roggy et al. 1999) or in Brazil (Ometto et al. 2006) where the mean 

value was 5.8 ‰ and the lowest value 0.9 ‰.  The values were more similar to those from 

Hawai’ian forests with an overall of mean of -5.1 ‰ (Vitousek et al. 1989).  Indeed, the 265 

foliar δ15N values are comparable to, if not lower than, many samples from temperate 

forests which are considered to be more N limited than tropical forests where the mean 

value for foliage in temperate forests in the compilation of Martinelli et al. (1999) was -2.8 

‰.   

 270 

If we calculate a weighed foliar δ15N average for each forest type [weighted by species basal 

area; data in Tanner (1977)] then the values are -2.94 ‰ for mor ridge forest and -2.36 ‰ 
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for mull ridge forest.  For the mor ridge forest, this is less than the value for the bulked leaf 

litter, suggesting some isotopic discrimination related to foliar N re-absorption in contrast 

to studies by Garten (1993) and Kolb & Evans (2002) who found little evidence for 275 

isotopic discrimination during this process. 

 

Foliage was depleted in 15N relative to the soil as anticipated, due to physiological (or 

mycorrhizal mediated) fractionation during N uptake (Michelsen et al. 1996; Evans 2001; 

Robinson 2001; Amundsen et al. 2003).  The difference between surface bulk soil (0-10 cm) 280 

samples and foliage was 3-4 ‰ as predicted by Amundsen et al. (2003) and Houlton et al. 

(2007).  When the data was compared with the global database of Craine et al. (2009), the 

values were about 3 ‰ lower than might be expected as predicted by climate, foliar N 

concentration and type of mycorrhizal association (J. M. Craine, pers. comm.).  Although 

we might expect, given the hypothesis of N-limitation in these forests, complete uptake of 285 

available N and hence little fractionation.   

 

Mycorrhizas and root symbioses There were no differences in foliar δ15N in relation to 

symbiotic micro-organisms within the roots of the various species.  Whilst the mycorrhizal 

associations of the species found in this montane forest are not known for certain, we can 290 

make informed guesses that most of the species will form arbuscular mycorrhizas (AM).  

Podocarpus urbanii, in addition, has root nodules (F. Q. Brearley, pers. obs.), but, as found by 

other studies (Baylis et al. 1963; Russell et al. 2002), these actually form a housing for AM 

fungi and do not appear to be providing atmospheric N to this species as its foliar δ15N 

values were significantly less than 0 ‰ and fell well within the values for the other species 295 

studied.  The AM status of the nodules of P. urbanii has been confirmed by molecular 

detection of AM fungi using the primers of Helgason et al. (1998) (F. Q. Brearley, unpubl. 

data).  Lyonia octandra is expected to have ericoid mycorrhizas and all other species to have 

AM but there was no difference in foliar δ15N between them: perhaps due to maximal N 

uptake and, hence, minimal isotopic fractionation.  Elbers (1996, in Hafkenscheid 2000) 300 

showed a greater soil fungal hyphal length in the mor ridge forest soil and, therefore, a 

greater reliance on mycorrhizal fungi to supply N in the mor ridge forest may be leading to 

more depleted foliar δ15N values (Brearley et al. 2003; Hobbie et al. 2005). 

 

Rooting depth To examine whether the differing δ15N values might be related to rooting 305 

depth of the trees, soil cores were taken from the two forest types and roots extracted.  
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The more rapid decline in root mass with depth in the mull ridge forests (Figure 4) 

suggested that trees in the mor ridge will be taking soil N from, on average, a slightly 

greater depth than in the mull ridge.  This is corroborated by the results of Stewart (2000) 

who noted that root growth into ingrowth cores in the mor ridge soils was evenly 310 

distributed along the 15.5 cm deep cores, but was mostly in the top third of the core in the 

mull ridge soils.  However, this process would lead to 15N-enriched foliage which is not 

what is seen, suggesting that other factors are cancelling out any potential changes in δ15N 

values due to rooting depth.  A more detailed study of root patterns on a species-by-species 

basis would be helpful to provide more information on patterns of N uptake in these 315 

forests. 

 

Ammonium/nitrate preference In agreement with our study (Table 2), it has often been 

shown that soil nitrate is depleted in 15N relative to ammonium (Garten 1993; Koba et al. 

1998; Miller & Bowman 2002; Schimann et al. 2008; Cheng et al. 2010) and, therefore, 320 

species with a preference for nitrate over ammonium (within a given soil type) would have 

lower δ15N values.  In ecosystems where there was not expected to be a significant loss of 

nitrate, species taking up proportionally more nitrate had more negative δ15N values relative 

to those taking up ammonium (Miller & Bowman 2002).  Indeed, 64 % of the variation in 

N isotope ratios between the co-existing alpine grassland species was explained by their 325 

ammonium:nitrate uptake ratios in the study of Miller & Bowman (2002).  It is 

acknowledged that there may be temporal changes in δ15N values for ammonium and 

nitrate but the lack of significant differences between our two sampling dates suggests a 

consistency of this general pattern in the montane forest soils studied here.  Interestingly, it 

appears that, although nitrate is being produced in these forest soils, and in some cases is 330 

the dominant form of inorganic nitrogen [Table 1; although note that the time between 

sample collection and extraction may have increased nitrate values in the soils; see Arnold 

et al. (2008)], most trees are using nitrogen with an isotopic value closer to that of 

ammonium.  This might explain the somewhat counter-intuitive results of Brookshire et al. 

(2012) who found high losses of nitrate from montane forests that are generally thought to 335 

be N-limited as various aspects of their ecosystem productivity respond to additions of 

nitrogen fertiliser (as urea) (Adamek et al. 2011; Tanner et al. 1990).   

 

In addition, leaves in the mor ridge were closer to the bulk soil δ15N (Figure 1, Table 2) 

suggesting greater ammonium uptake as it has been shown that soil ammonium is 340 
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isotopically more similar to bulk soil N than is soil nitrate, both in this study (Table 2) and 

by Koba et al. (1998).  To test the relative importance of nitrate nutrition, relative to 

ammonium nutrition, in these Jamaican forests it would be helpful to examine leaf nitrate 

reductase activity (e.g. Michelsen et al. 1996; Nadelhoffer et al. 1996; Miller & Bowman 

2002) or conduct a soil 15N labelling experiment. 345 

 

A key question arising from this study is why there was a large change in the species 

rankings of foliar δ15N values between the two forest types?  There was a consistent change 

in soil δ15N values between forest types and thus this would have affected all species 

equally.  We consider it most likely that a change in competitive interactions between the 350 

species in the different forest types – either by changing the depth at which they foraged 

for soil resources or, perhaps more likely, changing uptake of the different forms of N 

available in the soil, led to this change in rankings.  Houlton et al. (2007) showed how a 

number of tropical Hawai’ian plants changed preference for differing N forms with 

increasing rainfall suggesting a strong flexibility in N usage in these species.  The flexibility 355 

of N use strategies in the Jamaican plants remains to be ascertained experimentally but our 

isotope results do suggest some flexibility of N form preference on differing soil types and 

that this flexibility differed between species.  Interestingly, the species with the greatest 

apparent flexibility was Pittosporum undulatum which may be a contributing factor to its 

successful invasion in this area (Goodland & Healey 1996; Bellingham et al. 2005). 360 

 

Soil δ15N and comparisons with other studies 

Bulk soil δ15N values were also low (Figure 3) and, especially for the mor ridge forest, were 

some of the lowest recorded.  Indeed, they are similar to sites which have very young soils 

with minimal N content such as soils developing on glacier forefronts (Hobbie et al. 2005) 365 

or young lava flows (Vitousek et al. 1989).  Brearley et al. (2011) have shown lowland 

tropical soil δ15N values of around 2 ‰ to 6 ‰ across a range of sites and values in 

Brazilian soils were around 8 ‰ in surface horizons, falling to around 11 ‰ at 50 cm 

depth (Ometto et al. 2006).  Our Jamaican δ15N values were more similar to, although still 

lower than, those from other montane tropical forests at 1500 m in Ecuador (2.3 ‰; 370 

Arnold et al. 2009) and 1700 m in Borneo (0.3 ‰; Kitayama & Iwamoto 2001).  The most 

similar values were from ridge soils at 2000 m altitude in Ecuador of -1.3 ‰ (Wolf et al. 

2011). 
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There was considerable enrichment of 15N with depth in both forests (Figure 3) as seen in 375 

other studies (Nadelhoffer & Fry 1988, 1994; Koba et al. 1998; Boeckx et al. 2005; Cheng et 

al. 2010), this being attributed to processes occurring during N mineralisation which favour 

14N as a substrate over 15N, thereby leaving (microbially) 15N enriched products in the soil 

which will form organic matter over time (Nadelhoffer & Fry 1994; Högberg 1997).  

During organic matter formation and stabilisation, the accumulation of 15N-enriched 380 

compounds from decay products will lead to the enrichment of soil 15N over time.  

Enrichment of soil 15N is also achieved by the input of 15N-depleted foliage to upper soil 

layers (Nadelhoffer & Fry 1988) and preferential mineralisation of 15N-depleted 

compounds.   

 385 

δ15N and N cycling rates 

It has been suggested that soil and root δ15N values can be used as an indicator of rates of 

N cycling between sites (Martinelli et al. 1999; Templer et al. 2007).  The soils and roots 

were significantly more depleted in 15N in the Jamaican mor ridge forests (by about 3 ‰) at 

all depths (Figure 3) confirming slower rates of N mineralisation and nitrification (Table 1) 390 

and a more ‘closed’ N cycle.  This includes the litter layer and therefore suggests that there 

is more N available in the mull ridge forest as losses of N from systems with excess N are 

more likely to be fractionating (nitrate leaching and denitrification) compared to more N-

limited systems where losses may be minimal and/or by non fractionating pathways (e.g. 

loss of dissolved organic nitrogen: Perakis & Hedin 2002).  Various studies have shown a 395 

positive correlation between nitrification rates and plant δ15N (Garten 1993; Garten & Van 

Miegroet 1994; Pardo et al. 2006; Templer et al. 2007; Cheng et al. 2010) in broad agreement 

with our study where the mull ridge forests had greater nitrification (and N mineralisation) 

rates (Table 1) and less negative foliar δ15N values (Figure 1).  However, it should be noted 

that there were differences in the absolute values for mineral N values and transformations 400 

obtained by the different studies in Table 1.  There are a number of reasons for this that 

could include the time taken to process samples between collection and extraction (Arnold 

et al. 2008), increased N deposition rates over the 30-year period (not quantified) and 

whether the incubations were conducted in situ or in warmer lowland climates (as in 

Tanner’s 1977 study).  In addition, there may be some issues associated with the use of 405 

PRSTM probes including severing of roots leading to less competition for nitrate, 

nitrification occurring on the probes or uptake of ammonium from the probes. 
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It would be very interesting to compare the δ15N values in this study with those of Tanner 

(1977) to assess if N cycling patterns may have changed in a manner similar to Hietz et al. 410 

(2011) who showed an increase in foliar δ15N values in lowland forests in Panama 

suggesting increased N deposition over a c. 40 year time period.  We may well expect to see 

similar patterns in these Jamaican forests although this has not been directly measured. 

 

A number of authors (Högberg 1997; Pardo et al. 2006; Templer et al. 2007) consider 415 

below-ground (i.e. root) δ15N values to be a better indicator of the relative rates of N 

cycling which concurs with our study, as we found considerable variation in foliar δ15N 

values between species (c. 4 ‰; Figure 1), most likely due  to internal physiological 

fractionation processes which may hide any soil-based variation between sites. 

 420 

Conclusions 

We have shown how δ15N values of soils and roots are more negative in mor ridge tropical 

montane forests of Jamaica suggesting a tighter N cycle and hence this element is suggested 

to be more limiting in this forest type.  δ15N values varied between tree species, and the 

rankings changed between soil types, indicating that the use of foliar δ15N values are less 425 

helpful in assessing N limitation due to the different responses of species to the two soil 

types and the relative uptake of different N forms (which appeared to be a preference for 

ammonium in most cases).  The physiological processes underlying this inter-specific 

variation require further study but are likely to be due to differential preferences/uptake for 

ammonium or nitrate.  It will be valuable to assess how the N cycle is altered in these 430 

tropical montane forests in the future with increasing N deposition. 
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Figure 1 Foliar δ15N values for nine tree species in two contrasting forest types in the Blue 

Mountains of Jamaica.  All values are mean ± standard error. 
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Figure 2 Positive correlations between foliar δ15N and (a) leaf foliar N and (b) tree 

absolute growth rates (AGR) between 1994 and 2004 in two contrasting forest types in the 

Blue Mountains of Jamaica. 
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Figure 3 Bulk soil, root, and leaf litter δ15N values in two contrasting forest types in the 

Blue Mountains of Jamaica.  All values are mean ± standard error. 
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Figure 4 Root biomass (< 1 mm diameter) at thee depths in two contrasting forest types in 

the Blue Mountains of Jamaica and the corresponding β values describing the exponential 

decline with depth.  All values are mean ± standard error. 
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Table 1 Soil nitrogen concentrations and mineralisation rates in two contrasting forest 

types in the Blue Mountains of Jamaica assessed using KCl extractions of fresh soil and in-

situ deployment of PRSTM probes.  Also included are results from two previous studies for 

comparative purposes.  All values are mean ± standard error. 

 Mor Mull  

KCl extractions (μg g-1) - 2008 

Ammonium 0.79 ± 0.31 0.48 ± 0.09 t5 = 0.98, p = 0.37 

Nitrate 0.28 ± 0.25 0.20 ± 0.09 t6 = 0.29, p = 0.78 

Nitrate: Ammonium 0.19 ± 0.13 0.48 ± 0.17 t10 = 1.37, p = 0.20 

KCl extractions (μg g-1) - 2010 

Ammonium 0.80  ± 0.15 0.39  ± 0.05 t8 = 2.67  p = 0.028 

Nitrate 0.55 ± 0.31 1.50 ± 0.56 t8 = 1.49  p = 0.18 

Nitrate: Ammonium 1.07 ± 0.64 4.22   ± 1.55 t8 = 1.88  p = 0.097 

PRSTM probes (μg 10 cm-2 49 days-1) 

Ammonium 15.9 ± 10.0 12.6 ± 5.6 t6 = 0.32, p = 0.76 

Nitrate 7.4 ± 0.83 162 ± 49.0 t4 = 3.15, p = 0.035 

Nitrate: Ammonium 0.98 ± 0.42 26.9 ± 12.0 t4 = 2.08, p = 0.11 

Nitrogen mineralisation (μg g-1 10 d-1) 

Mineralisation 0.25 ± 0.21 1.34 ± 0.53 t5 = 1.67, p = 0.16 

Nitrification 0.01 ± 0.09 1.52 ± 0.35 t5 = 3.61, p = 0.015 

Nitrogen mineralisation (kg ha-1 10 d-1)+ 

Mineralisation 0.025 ± 0.021 0.803 ± 0.119 x 

Nitrification 0.001 ± 0.009 0.912 ± 0.078 x 

Values from Tanner (1977) 

Ammonium (μg g-1) 364 239 - 

Nitrate (μg g-1) 31 17 - 

Nitrate:Ammonium 0.085 0.071 - 

Mineralisation (μg g-1 40 d-1) 88 160 - 

Nitrification (μg g-1 40 d-1) 100 136 - 

Values from Hafkenscheid (2000)* 

Ammonium (μg g-1) 471 235 n.s. 

Nitrate (mg g-1) 6.2 10.6 n.s. 

Nitrate:Ammonium 0.013 0.046 - 

Mineralisation (μg g-1 d-1) -0.33 8.0 n.s. 

Nitrification (μg g-1 d-1) 0.17 0.38 n.s. 

+ n.b. same data as above but converted to different units 

* From ‘moderately developed’ mor ridge forest and ‘poorly developed’ mull ridge forest  
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Table 2 Soil ammonium and nitrate δ15N values (‰) from 0-10 cm depth in two 

contrasting forest types in the Blue Mountains of Jamaica.  Also included are bulk soil δ15N 

values (0-10 cm) from Figure 3.  All values are mean ± standard error. 

 Mor Mull 

Ammonium -5.50 ± 1.27 -0.26 ± 1.51 

Nitrate -14.39 ± 1.05 -12.71 ± 2.36 

Bulk soil -2.40 ± 0.26 0.66 ± 0.41 

 


