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Abstract

In many types of network, the relationship between structure and function is of

great significance. This work is particularly concerned with community struc-

tures, which arise in a wide variety of domains. A simple oscillator model is

applied to networks with community structures and shows that waves of regular

oscillation are caused by synchronised clusters of nodes. Moreover, we demon-

strate that such global oscillations may arise as a direct result of network topol-

ogy. We also observe that additional modes of oscillation (as detected through

frequency analysis) occur in networks with additional levels of hierarchy and that

such modes may be directly related to network structure. This method is applied

in two specific domains (metabolic networks and metropolitan transport), demon-

strating the robustness of the results when applied to real world systems.

A topological analysis is also applied to the real world networks of metabolism

and metropolitan transport using standard graphical measures. This yields a new

artificial network growth model, which agrees closely with the graphical measures

taken on metabolic pathway networks. This new model demonstrates a simple

mechanism to produce the particular features found in these networks.

We conclude that (where the distribution of oscillator frequencies and the interac-

tions between them are known to be unimodal) the observations may be applicable

to the detection of underlying community structure in networks, shedding further

light on the general relationship between structure and function in complex sys-

tems.
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Hierarchical Graphs and Oscillatory Dynamics
CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

The study of complex networks is a vibrant and interesting field with a wide range

of applications [54, 83, 93, 116]. Unravelling the structure of complex networks

gives a significant understanding into many real world systems [116]. Although

complex networks from a wide array of fields have been extensively studied, there

is still much debate on the structure of some of the most important real world net-

works [15, 54, 124, 129, 152], which this work will address. Combining standard

topological analysis with newly derived methods for determining structure will

yield a greater insight into these networks and clarify which of the previous litera-

ture agrees with contemporary data. This work is particularly concerned with the

real world networks of metabolism and underground railway networks, due to the

importance of understanding how these systems function.

Arguably the most important finding presented in this work is a novel method

of deciphering topological hierarchies in networks. These networks consist of
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small groups of highly connected nodes connecting together to form ensembles, in

which there are more connections within the group than to other groups. These en-

sembles are then connected to each other in the same manner, forming a hierarchi-

cal structure.[124]. Networks exhibiting a hierarchical structure are topologically

self similar, a property found in many real world networks, which is described in

detail in Section 2.3. We also describe a new artificial network growth model

which shares the salient features of metabolic networks. Producing a generic

growth model which shares features of a particular real world network allows

for a more in depth study into their properties. This is achieved by allowing for

multiple networks of any size to be generated which share features of the network

under study, which can then be tested. For example, if we wanted to understand

how perturbations affect such a network we could generate multiple artificial net-

works and then perform the particular perturbation under investigation [16]. The

benefit of using an artificial network here is that multiple versions can be gener-

ated of the same size, with the same properties, rather than just the single network

that is under study. These artificial networks can also help in the design of man

made networks [26] in which desirable properties found in a particular network

can be replicated.

This thesis consists of two main topics, usually considered as separate mathemati-

cal fields, which this work will bring together. The first is the topological analysis

of real world networks, in which artificial network growth models are derived

which share many characteristics with these complex networks. The second area

in that of oscillator dynamics, which in this work is used to derive structural prop-

erties of networks by replacing each node with an oscillator. Although these two

2



Hierarchical Graphs and Oscillatory Dynamics
CHAPTER 1. INTRODUCTION

fields may seem unrelated previous work has demonstrated that oscillator dynam-

ics can be used to determine graphical properties [25, 103, 117, 153].

Combining methods from different areas of mathematics has always been fruit-

ful in developing new mathematical techniques [135]. Applying techniques from

fields of research which seem far apart can help to not only shed light on a specific

problem but also help to gain insight into seemingly unrelated problems. In this

work a method using oscillator dynamics is described and applied as a topologi-

cal analysis, giving a new insight into the structure of some real world networks.

This introduction will explain the motivation for the work and how the thesis is

presented.

As well as gaining a more general topological understanding of real world net-

works, this work also pays particular attention to detecting pseudo-hierarchy in

networks. A pseudo-hierarchical network is one with an underlying hierarchical

organisation but with a less regular structure in which modules within the net-

work overlap and contain edges which connect sub-networks of the graph which

would not be connected in a truly hierarchical network. This can be thought of

as a hierarchical network which has been rewired to reduce the regularity of the

structure, as well as the hierarchical properties. Many real world networks are

thought to have this type of composition, such as the networks of neurons in the

brain and the networks of metabolism, which is thought to affect their properties

[124, 163]. The networks of metabolism are one such class of network which

have been suggested to be of this structure, which gives them a particular robust

structure [124].
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In the field of network theory it is often useful to produce an artificial network

growth model which shares the fundamental characteristics of specific classes of

real world networks. A simple growth model can consist of simply adding a node

to a network, connecting to existing nodes according to some probability [14], al-

though many other methods can be used [56, 124]. Previous work has attempted to

categorise networks into different classes which can allow for similarities in their

structure to be uncovered and demonstrate similar constraints on the way in which

they develop [65]. Once similarities between networks are detected, theoretical

network models can be produced which share these characteristics, suggesting

possible mechanisms as to how these complex systems emerge. These character-

istics are usually in the form of graphical measures taken on the networks. The

importance of these models is firstly that it allows for mechanisms in which these

networks may grow to be uncovered. These models also allow for a greater under-

standing of how to control these networks. For example, if a real world network

is said to be scale-free it is drastically affected by targeted attacks, which can then

be used to disrupt or protect the real world network [116]. The reason for this

is due to the structure consisting of few very highly connected nodes with many

less well-connected nodes. By attacking the highly connected nodes the structure

is drastically affected, and therefore the function (This will be explained in more

detail in Section 2.4). These models can also help in the design of artificial net-

works, in that their properties can be easily controlled if they are designed to be

of a certain topological type.

In this analysis a network growth model is derived which agrees more closely

with the structure of certain real world networks. Whilst conducting this analy-

4



Hierarchical Graphs and Oscillatory Dynamics
CHAPTER 1. INTRODUCTION

sis it became clear that standard topological tools, whilst giving a large amount

of information about the network, do not capture the full picture. To address

this problem we conduct a dynamical analysis which allows for the presence of

pseudo-hierarchy to be detected in complex networks. Networks of this nature are

of great importance in current research, being thought to exist in many classes of

complex networks [124]. The dynamical analysis provides a novel method for de-

tecting hierarchies which uses oscillator dynamics to uncover these features which

utilise the global behaviour of a network of oscillators. Although using oscillator

dynamics to uncover topology has been previously performed [133], in this work

a novel method of hierarchy detection is derived which uses a different oscillatory

behaviour to previous methods.

Applying this novel method to real world networks helps to extract information

about these networks and also demonstrates significant differences in their struc-

ture. It should be noted that it is not the aim of this work to dynamically model the

behaviour of particular networks, rather the aim is to uncover structural properties

which influence more general dynamical behaviours.

There are many applications in unravelling the structure of complex networks

which are applicable to various fields. Understanding the structure of metabolic

pathways can help in drug targeting. Similarly in transportation networks the ef-

fects of altering the network can be modelled before being implemented which,

for example, could indicate which subway line to close to cause minimum dis-

ruptions. As well as these network specific applications a more comprehensive

understanding of the structure and properties of networks can also help to uncover
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similarities in how different types of networks have grown, suggesting underly-

ing principles governing their development. It may also be useful to uncover the

differences between man made and natural networks. It is clear, for example, that

biological networks have evolved to be extremely efficient for the task they per-

form [93, 95, 139]. It may therefore be useful to produce man made networks,

such as technological networks with the same underlying principles to help in-

crease their efficiency and robustness.

As well as detecting hierarchy in networks whose local structure is known, the

presence of oscillatory behaviour in networks with an unknown structure can also

be used to determine how these networks are structured. This process would be

very useful in uncovering the structure (or at least, structural properties) of large,

complex networks where the structure can not be determined in a more traditional

manner. For example, in the complex network of neurons in the brain, it is cur-

rently infeasible to actually model the network neuron by neuron due to the vast

number of neurons and connections. By determining the structure of the brain

from the oscillating waves it produces, (i.e. theta, gamma etc.) abnormalities

and changes in development could be detected and related back to a particular

change in network structure. The advantages of this type of detection would be its

non invasive nature, allowing for the naturally produced waves to be detected and

analysed, revealing the network structure.

This thesis covers two different topics, network theory and oscillator dynamics,

each of which will be introduced in more depth in their respective chapters. The

work on oscillator dynamics is used to give a new insight into the more traditional
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approaches from network theory, providing a link between these two areas of

research. We first explore previous work on network theory and its applications to

real world networks. The main areas explored are in measures that can be taken on

networks and in what way they describe a network. Previous work in the field of

oscillator dynamics are then explored with models of oscillators being introduced

and how these can be used to model certain behaviours seen in real world systems.

A topological analysis of the real world networks of metabolism and transporta-

tion networks is then presented. As previous work has shown [123, 129, 37], there

are some disparities in properties found in real world networks and the generative

models suggested to possess similar characteristics. Using these findings a new

generative growth model is derived which agrees with the topological properties

of metabolic pathways. The second analysis chapter derives a new method of

hierarchy detection utilising oscillator dynamics which is first applied to gener-

ated networks to demonstrate its use. This is applied to both regular and irregular

structures to illustrate the robustness of the method. This method is then used to

analyse the real networks described earlier to derive more information about these

complex systems, as well as to further demonstrate the ability of the method to

work in networks exhibiting a degree of noise. The final chapter presents a dis-

cussion and gives some suggestions of further work which may help to develop

this method of detecting structure, as well as further avenues of research in the

topological analysis of networks.

7
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Chapter 2

Review of Modelling Complex Real

World Networks

In this chapter we present an overview of the current research in the field of com-

plex networks. Section 2.1 gives an introduction to network theory and its ap-

plications, leading onto Section 2.2 which details the various graphical measures

used in the analysis of complex networks. The concept of hierarchy in networks is

then explained in Section 2.3. Section 2.4 gives an overview of artificial networks

models leading on to Section 2.5 which gives details of some real world networks.
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2.1 An Introduction to Networks

A complex network is a network which has a structure which is non-trivial. These

are networks which are not globally connected or of a random structure but have

complex topological features controlling their function. Many real world systems

can be modelled using network theory and are usually examples of complex net-

works [21, 33, 134, 149]. Complex networks with similar properties can also

be generated via algorithms, sharing some of the features seen in the real world

networks they are used to model. The advantage of considering such systems in

this way is that it allows for the underlying structure to be investigated. As the

structure of a system directly effects the function this can allow us to understand

why certain behaviour occurs. For example, in epidemiology diseases which are

spread from physical contact can be seen to be dependent on the interactions of

the population, or a network of interactions [21]. This helps us to understand how

and why epidemics occur, and more importantly how best to control them. This

abstraction also allows us to design and test systems before they are created allow-

ing us to determine if, for example, a subway system will be able to cope with the

increased usage as populations increases. This section gives a brief introduction

as to how networks (or graphs) can be used to represent real world systems which

can help to gain an understanding as to how these systems behave [32].

A graph, or network, is an ordered pair, G = (V,E) consisting of sets satisfying

E ⊆ |V |2, in that the elements of E are a two element subset of V [51]. That is

to say, a graph or network consists of nodes representing a particular item in the

system and edges connecting them if a specified relationship occurs between the

9
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two [116]. A simple example of this is that of a social network, where the nodes

represent people and an edge connects two people if they are friends. So, if a

social group consisted of four people where person a is friends with persons b,

c and d, and persons b, c and d were not friends with each other this could be

represented as the network in Figure 2.1:

Figure 2.1: A simple undirected network with nodes labelled. In this example
nodes represent people and an edge connects the two if they are friends.

This undirected network representation is one of the most basic in network the-

ory [116]. In certain situations, further complexity can also be added by using

a directed network, where ab 6⇒ ba. That is to say, a path from a to b does not

imply that there is a path from b to a, with an arrow shown on the edge demon-

strating the direction of the relationship. Social networks are thought by most to

be undirected networks, this is very apparent on social networking websites such

as Facebook, where both parties must agree to be friends for a connection to be

made [98]. However in some cases social networks can be directed, as one person

may consider another person as a friend but the converse may not be true. Making

an alteration to the earlier example in that person a considers d a friend, but d

does not consider a a friend this could be represented as the directed network in

10
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Figure 2.2.

Figure 2.2: A simple directed network with nodes labelled. In this example
nodes represent people and an edge connects the two if they are friends with an
arrow showing the direction of the relationship.

These networks can now be used to represent more complex situations where

connections have a direction. A further example of this is the World Wide Web

[116], where one website may link to another via a hyper-link but the converse

may not be true. In simple networks like these the length of the edges does not

necessarily represent distance, usually the length of the edge does not represent

any particular value and is just chosen to best visualise the network. A classic

example of this is the London underground tube map, where the distances between

stations are chosen for aesthetic reasons, as opposed to their actual distances [67].

This representation allows for the highly concentrated stations at the centre of

London to be spread out so that they can easily be distinguished from one another.

Further information can be added to these simple networks by including values

for the weight of the edges to produce a weighted network. For example, on a

map of railways, where stations and railway lines are represented as nodes and

edges respectively with the weights giving the length of the track. These weights

11
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can also be more abstract, for example, the weight could represent the number

of flights between two airports [100], or in the case of the network of scientific

collaborations the weights represent the number of times a collaboration occurs

[99]. These weighted networks can be both directed and undirected, depending on

the real world system being modelled, as well as the complexity required for the

investigation. In the analysis of weighted networks an important problem is that

of the The Travelling Salesman Problem (TSP) [118]. In this problem the aim is

to find a route which visits each node once and returns to the start in the minimum

distance, inspired by the idea of a salesman having to visit a certain number of

customers and return home. Although a seemingly simple problem no general

method of solution is known and the problem is NP-Hard. Although not part of

this work, the TSP demonstrates the complexity in solving a seemingly simple

problem, and the wide ranging applications of such a solution.

For the purpose of this work unweighted networks will be used due to more tools

being available for their analysis, the reasons for their suitability for each system

being analysed will be explained in Section 2.5.

2.2 Graphical Measures

Once a system has been represented as a network the next step is to apply some

analysis using graphical measures, which can help to derive information about

these systems and allow for a greater understanding of how these systems behave.

When looking at graphical measures, the first step is to convert the network into

12
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a usable form, rather than a representational form. To achieve this an adjacency

matrix is produced which contains all the information relating to the network’s

structure. The adjacency matrix, A = (ai j)n×n of graph G is defined by Equation

2.2.1 [51].

ai j :=


1 if viv j ∈ E

0 otherwise
(2.2.1)

That is to say, the adjacency matrix is an n×n matrix (n rows and columns) with n

being equal to the number of nodes in the network. Element (a,b) is given a value

of 1 if node a is connected to node b, and 0 otherwise. For an undirected network

the matrix is symmetrical (about the leading diagonal), since if a is connected

to b then the converse is true. Directed networks, on the other hand, are usually

asymmetrical. If the adjacency matrix of a directed network is symmetrical, then

it can be represented as an undirected network without loss of complexity. (for

a weighted network the weights are given in the adjacency matrix, as opposed to

values of 1 [81, page 18]). The adjacency matrix, denoted A for the undirected

network in Figure 2.1 is given in Equation 2.2.2.

A1 =



0 1 1 1

1 0 0 0

1 0 0 0

1 0 0 0


(2.2.2)

As the network in Figure 2.1 is undirected matrix 2.2.2 is symmetrical, where

(m,n)=(n,m). For the directed network in Figure 2.2 the adjacency matrix, A, is

13
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given in Equation 2.2.3.

A2 =



0 1 1 1

1 0 0 0

1 0 0 0

0 0 0 0


(2.2.3)

As the network in Figure 2.2 is directed, matrix 2.2.3 is asymmetrical, as node d is

not connected to nodes a (element (4,1)). These matrices convert a network into a

usable form, removing any unnecessary information, such as the relative position

of nodes, to allow for analysis to be conducted. The first measure to be considered

here is the set of degrees of each node in the network. The degree of each node

is the number of edges incident to it. For an undirected network each node has

a single degree, for a directed network each node has an ‘in’ and ‘out’ degree.

The in-degree is the number of edges going into that node and the out-degree is

the number of edges leaving that node [116]. For networks of a small size this is

done by simply counting the number of edges on each node, so for the network

in Figure 2.1 the degree set is D = [3,1,1,1] for nodes a,b,c,d respectively. The

network in Figure 2.2 would have an in-degree of Din = [2,1,1,1] and out-degree

of Dout = [3,1,1,0] (again, for a,b,c,d respectively). As with all graphical mea-

sures, the degree can be calculated from the adjacency matrix. For a directed

network the columns are summed to give the in-degree and the rows are summed

to give the out-degree. The degree sequence can then be taken from the set of

degrees which is the number of nodes having each degree, in ascending order. For

the network in Figure 2.1 the degree sequence would be [3,0,1], i.e. three nodes

of degree one, zero of degree two and one of degree three. The degree distribution

14
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is then usually calculated, which is the probability distribution of the degrees over

the network, in the case of 2.1, this would be [0.75,0,0.25]. These distributions

have been found to follow various forms such as Gaussian, normal, binomial, ex-

ponential and power law [116]. The form which the degree distribution takes can

be used to classify networks into different types with networks following the same

distribution tending to have similar properties. For degree distributions following

a power law the decay rate, γ , of the distribution is usually calculated [14].

Clauset et el [38] have demonstrated a method of detecting the presence of a power

law behaviour in empirical data combining maximum likelihood with goodness-

of-fit test based on the Kolmogorov-Smirnov statistic and likelihood ratios. Their

method in the case of discrete distributions can be outlined as follows, for the

derivation of this method please see [38]. The degree distribution, x, obeys a

power law if it is drawn from the probability distribution

p(x) ∝ x−γ (2.2.4)

where γ is a constant known as the exponent or scaling parameter. It should be

noted that the α is used to denote the exponent by Clauset et el but has been

changed to γ here to be consistent with the literature considered in this work. In

empirical data this usually only applies above some minimum xmin which needs to

be estimated, along with γ to determine if the hypothesis of the degree distribution

following a power law is plausible. To estimate the value of xmin the Kolmogorov-

Smirnov (KS) statistic used, which is the maximum distance between the CDF of
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the data and the fitted model,

D = max
x≥xmin

|S(x)−P(x)| (2.2.5)

Where S(x) is the complementary cumulative distribution function (CDF) of the

observations with value at least xmin. P(x) is the CDF for the power law model

that best fits the data in the region x≥ xmin. The value of xmin which minimises D

is our estimate, x̂min. The estimate for γ is then found by the direct maximization

of the likelihood function,

L =−nlnζ (γ,xmin)− γ

n

∑
i=1

lnxi (2.2.6)

A goodness of fit test is then implemented to test whether the distribution follows a

power law. If a power law distribution is plausible then we have our fitted γ value,

if this is not the case then we can reject the hypothesis that the degree distribution

follows a power law. If a power law is found then the decay rate can then used

to classify networks and also demonstrates the growth rate of the network [116].

For the purpose of this work the decay rate of the degree distribution will not be

considered as it has been demonstrated that the networks under investigation here

do not follow a power law [38]. However, it is important to understand what this

measure is due to it being used extensively in previous work.

The subsequent analysis will only be concerned with undirected networks so the

16
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descriptions of measures will only be explained for this type of network (most of

the measures have to be modified or are unsuitable for directed networks). An-

other measure to be investigated is the eigenvalue spectrum of the laplacian which

has been linked to network structure [106, 121]. The first step is calculating the

laplacian matrix from the adjacency matrix. The laplacian matrix, L, is calculated

as L = D−A, where A is the adjacency matrix and D is the degree matrix [111].

The degree matrix has as many rows and columns as there are nodes. The matrix

is all zeros, except element (n,n) which contains the degree of node n. That is, the

leading diagonal contains the degree of each node in the network with all other

elements being zero. The laplacian for the simple four node network shown in

Figure 2.1 is calculated as follows:

L = D−A (2.2.7)

Ł =



3 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


−



0 1 1 1

1 0 0 0

1 0 0 0

1 0 0 0


=



3 −1 −1 0

−1 1 0 0

−1 0 1 0

−1 0 0 1


,

From this laplacian matrix the eigenvalues are then calculated. From ‘The Alge-

braic Eigenvalue Problem’ [156] the eigenvalues, λ , of matrix A are solutions to

the equation Ax = λx where x is the corresponding eigenvector. In other words,

the eigenvalue problem is the determination of the values of λ for which Ax = λx

has a non-trivial solution [156]. The equation has a non-trivial solution when

det(A−λ I) = 0, which gives the set of eigenvalues, λ . To find the eigenvalues,
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the laplacian matrix is first produced, with λ being taken from each element in the

leading diagonal. The determinant of this matrix is then calculated and solved as

being equal to zero. The solutions of λ give the eigenvalues of the laplacian.

The eigenvalue spectrum contains as many eigenvalues as there are nodes in the

network. There is always at least one zero, with the number of zeros being equal

to the number of components within the network [59]. The lowest non-zero eigen-

value is known as the algebraic connectivity and gives an indication of how con-

nected the network is as a whole as well as the robustness of the network [59]. In

the field of oscillator dynamics, the algebraic connectivity indicates how fast a net-

work will synchronise, due to the speed at which information can spread across

the network [160]. As the spread of information is an important aspect of real

world networks it is an important measure to consider when designing networks

where the speed of information transfer is integral to their design.

Another important measure is the geodesic path length. The geodesic path length

between two nodes in a network is the shortest route from one to the other, in

terms of the number of edges. [31, page 58]. For example, taking the network in

Figure 2.3, the minimum path from node a to node c would be two. Obviously for

larger networks this becomes difficult to ascertain without using some calculations

on the adjacency matrix. It is simple to show that squaring an adjacency matrix

yields a matrix containing all the paths of length two, cubing yields all paths of

three etc. [31, page 200], this is used to find the set of geodesic path lengths.

The adjacency matrix, A, gives all the paths of length one, but as the minimum

path from one node to itself is zero, the leading diagonal is set to zero to give all
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the geodesic lengths of 1, P1. To find the geodesic lengths of two, the adjacency

matrix is first squared to give all the paths of length two, A2. All non zero elements

are then set to one, which gives a matrix containing a value of one for each pair

of nodes that have a distance of two between them. The leading diagonal is set

to zero, as the minimum distance from one node to itself is zero and any element

in P1 which has a value of one is set to zero in the matrix A2 (as these node pairs

have a minimum path of 1 between them) giving P2, the geodesic paths of length

two. This is continued for increasing powers (so for paths of length three where

the adjacency matrix is cubed, the non zero elements are set to one, the leading

diagonal to zero and any non-zero elements in P1 or P2 are set to zero) until Pi is

a zero matrix and therefore the maximum geodesic length is i−1. Each P matrix

is then summed along the row to give a sum vector, which is then summed again.

This value is then halved (as the matrix contains paths from a to b and b to a, which

are the same) to give the number of each geodesic path. These totals can then be

used to calculate the average (mean) and maximum geodesic path lengths as well

as being plotted in ascending order to give the geodesic path length spectrum.

This method is demonstrated in the example below:

Taking the network in Figure 2.3 :
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Figure 2.3: A simple undirected network with five nodes.

The corresponding connectivity matrix is:

A = P1 =



0 0 1 0 0

0 0 1 0 0

1 1 0 1 0

0 0 1 0 1

0 0 0 1 0


(2.2.8)

The leading diagonal is already zero, so this is equal to the geodesic lengths of

one. Squaring the adjacency matrix, A, gives:

A2 =



1 1 0 1 0

1 1 0 1 0

0 0 3 0 1

1 1 0 2 0

0 0 1 0 1


(2.2.9)

All the non zero elements in this matrix are first set to one. The leading diagonal

is then set to zero as the shortest path from one node to itself is zero and any non-
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zero elements from matrix P1 are set to 0 in this new matrix, to give all geodesic

lengths of two:

P2 =



0 1 0 1 0

1 0 0 1 0

0 0 0 0 1

1 1 0 0 0

0 0 1 0 0


(2.2.10)

To calculate the paths of length three, A is cubed:

A3 =



0 0 3 0 1

0 0 3 0 1

3 3 0 4 0

0 0 4 0 2

1 1 0 2 0


(2.2.11)

Matrix A3 then contains all paths of length three and again all non zero elements

are first set to 1. The leading diagonal is then set to zero and all non-zero elements

from the previous networks, P1 and P2 are set to zero in this new matrix, to give

all the geodesic lengths of three:

P3 =



0 0 0 0 1

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

1 1 0 0 0


(2.2.12)

To calculate the paths of length four, A is put to the power of four:
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A4 =



3 3 0 4 0

3 3 0 4 0

0 0 1 0 4

4 4 0 6 0

0 0 4 0 2


(2.2.13)

Matrix A4 then contains all paths of length four and again all non zero elements are

first set to one. The leading diagonal is then set to zero and all non-zero elements

from the previous networks, P1, P2 and P3 are set to zero in this new matrix, to

give all the geodesic lengths of four:

P4 =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


(2.2.14)

As the matrix P4 is all zeros, all geodesic lengths have been found with a maximum

geodesic length of three. To obtain the set of paths from the matrices P1, P2 and P3

each matrix is summed across the rows and then this sum vector is then summed.

This value is then halved giving four minimum paths of length one, four minimum

paths of length two and two minimum paths of length three. Therefore, any node

can be reached from any other by traversing at most three paths.

Another measure to be considered is the clustering coefficient which is a measure

of cliqueness [155]. The problem of finding cliques of given size is known to be

an NP complete problem, where a clique is defined as a subset of the nodes of a

graphs in which every pair of nodes in said subset are connected by an edge [1].
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The problem of finding cliques in a network is related to the problem of finding

hierarchies, in that nodes within one level of a hierarchy will tend to form cliques

with one another, as opposed to with nodes in a different hierarchy. A standard

measure which gives a measure of cliqueness, but does not find the actual cliques

is the clustering coefficient, which is described as follows; If a vertex v has kv

neighbours then at most kv(kv−1)/2 edges can exist between them. Letting cv de-

note the fraction of these allowable edges that occur, c is calculated as the average

of cv over all v [155]. This measure helps to classify networks into different types

and show similarities in the structure and properties between various networks.

Previous work has linked high clustering coefficients with a hierarchical network

structure [124], however the presence of high clustering coefficients alone is not

enough to classify a network as such. All these measures are used to describe the

structure of networks which can help to describe their function. When used to-

gether they can help to build up a picture of a network and allow a suitable model

to be determined, which can provide simple mechanisms to explain how particular

features can be replicated [14].

The clustering coefficient of a network is a measure of transitivity - how the nodes

in the network tend to cluster together. For this analysis a network average global

clustering coefficient [155] is considered, of the form.

< c >=
1
n

n

∑
i=1

ci, (2.2.15)

where n is the number of nodes in the network and
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ci =
2ei

ki(ki−1)
, (2.2.16)

where ki is the degree of node i and en is the number of connected pairs between

the nodes to which node i is connected.

Taking a simple four node network as in Figure 2.4:

Figure 2.4: A simple undirected four node network. This network has all but
one possible connections, with the edge from d to c being the only connection not
present.

The local clustering coefficients are first calculated for each of the respective

nodes, before being averaged. For node a, its neighbours (i.e. the nodes it is

connected to) are b, c and d.
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Figure 2.5: A simple undirected four node network. The red and blue edges
represent edges present in the network. The blue edges connect neighbours of
node a to node a. The red edges show the edges connecting a’s neighbours to
each other, with the dotted line illustrating missing edges.

From Figure 2.5 we see that the neighbours of node a (nodes b, c and d) have

realised two out of the possible three connections (red edges), with the missing

third illustrated with a dotted line. Therefore, the local clustering coefficient of a,

Ca is 2
3 = 0.667.

Figure 2.6: A simple undirected four node network. The red and blue edges
represent edges present in the network. The blue edges connect neighbours of
node b to node b. The red edges show the edges connecting b’s neighbours to
each other, with the dotted line illustrating missing edges.

From Figure 2.6 we see that the neighbours of node b (nodes a, c and d) have

realised two out of the possible three connections (red edges), with the missing

third illustrated with a dotted line. Therefore, the local clustering coefficient of b,
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Cb is 2
3 = 0.667.

Figure 2.7: A simple undirected four node network. The red, black and blue
edges represent edges present in the network. The blue edges connect neighbours
of node c to node c and the red edges show the edges connecting c’s neighbours
to each other. The black edges represent other connections in the network, which
neither connect c to its neighbours or connect c’s neighbours to each other.

From Figure 2.7 we see that the neighbours of node c (nodes a and b) have realised

one out of the possible one connection, in this case there are no further connections

that c’s neighbours could have. Therefore, the local clustering coefficient of c, Cc

is 1
1 = 1.

Figure 2.8: A simple undirected four node network. The red, black and blue
edges represent edges present in the network. The blue edges connect neighbours
of node d to node d and the red edges show the edges connecting d’s neighbours
to each other. The black edges represent other connections in the network, which
neither connect d to its neighbours or connect d’s neighbours to each other.

From Figure 2.8 it can be seen that the neighbours of node d (nodes a and b)
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have realised one out of the possible one connection, in this case there are no

further connections that d’s neighbours could have. Therefore, the local clustering

coefficient of d, Cd is 1
1 = 1.

To calculate the global clustering coefficient these four local clustering coeffi-

cients are averaged, giving C = Ca+Cb+Cc+Cd
4 =

2
3+

2
3+1+1

4 = 10
12 = 0.833. Hence

the global clustering coefficient of the network shown in Figure 2.4 is 0.833.

The final measure to be considered in this work is Q modularity which is used as

a measure of community structure in networks.

Q modularity is defined as [97]:

Q =
1

4m ∑
i j
(Ai j−

kik j

2m
)sis j (2.2.17)

where the expected number of edges between vertex i and j if the edges were

randomly placed is kik j
2m , ki and k j are the degrees of nodes i and j respectively and

m is the total number of edges in the network. Ai j the adjacency matrix, and si = 1

if vertex i belongs to group 1 and si =−1 if it belongs to group 2. The factor of 1
4m

is included to normalise the measure to make it compatible with other measures

of modularity. The partitioning vector, s can be found using various different

algorithm so as to maximise the value of Q. i.e the partitioning which gives the

highest modularity is found. This process is repeated to subdivide the network

into further modules, maximising Q. In the case of this work the eigenvector based

method outlined by Newman [115] will be used. This method has been chosen

as neither the number of modules nor the number of nodes in each module need
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to be known before hand. As well as this clear advantage, this method has also

been shown to yield better results then using greedy algorithms, although does

take more computation time. As the network examined here a relatively small, the

computation time is of no real concern. This optimisation works as follows, taken

from [115]:

The equation in 2.2.17 can be written in matrix form as

Q =
1

4m
sT Bs (2.2.18)

with s being the column vector of si and B the modularity matrix, which is a real

symmetric matrix with elements

Bi j = Ai j−
kik j

2m
(2.2.19)

Taking equation 2.2.18 and writing s as a linear combination of the normalised

eigenvectors ui of B so that s = ∑
n
i=1 aiui with ai = uT

i · s we have,

Q =
1

4m ∑
i

aiuT
i B∑

j
a ju j =

1
4m

n

∑
i=1

(uT
i · s)2

βi (2.2.20)

Where βi is the eigenvector of matrix B corresponding to eigenvector ui. The

eigenvectors are labelled in decreasing order, β1 ≥ β2 ≥ ·· · ≥ βn. We now want to

maximise modularity by choosing the index vector s, which is achieved by choos-

ing the leading eigenvalue and corresponding eigenvector. The network is then

divided into two groups according to the signs of this eigenvector. This process is
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then repeated for each of these groups to divide the network into further modules.

Once a proposed split will not increase the total modularity the corresponding

subgroup is not divided any further, and once no more splits will increase modu-

larity the algorithm is complete. This gives Q in the range of [−1/2, 1] where a

higher value corresponds to a more modular structure.

2.3 Hierarchy in networks

Many real world networks such as the language network, the World Wide Web and

metabolic pathway networks have been shown to have features of a hierarchical

network [123, 124, 17]. A hierarchical network consist of many small groups of

highly connected nodes known as modules. These modules are grouped together

in an ensemble with the modules being less well connected to one another than

within their module. These ensembles of modules can also be connected to other

ensembles, forming a self similar network in which a portion of the network has

similar properties to the network a whole [124]. The modules within a hierarchical

network represent functional entities [92]. In a social network these entities could

be a family within the wider social networks where the family members are highly

connected to one another, compared to the rest of the network. Clearly, in this type

of network entities would overlap, many people in one family may all know many

people in another family.

Networks exhibiting an underlying hierarchy are known as pseudo-hierarchical

networks [147]. These networks have an underlying hierarchical organisation but
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with a less regular structure in which modules within the network overlap and

contain edges which connect sub-networks of the graph which would not be con-

nected in a truly hierarchical network.

Networks with a hierarchical structure can be generated via algorithms which cre-

ate this self-similar modular structure. The model outlined by [123] is explained

in the next section as well as a selection of other important artificial networks.

2.4 Artificial network models

In the analysis of real world networks an important step is producing an artificial

network which shares some features with the network under study, such as high

clustering or low average geodesic path length [140]. These artificial networks

enable us to study how processes spread over the network and give indications as

to how the networks can be made more resilient or can be disrupted [39]. They

can also be used to design networks with similar properties to real world networks

which have some desired features such as fast information spread or robustness

[62].

An important artificial network model is the random network model outlined by

Erdös and Rényi [56]. This random network model is produced by first taking

n nodes and then determining randomly out of all possible edges which edges to

include, with the probability of an edge existing being p. The value of p can be

used to tune the network’s connectivity. Alternatively, the number of edges, e,

to include can be chosen with random pairs of nodes selected until the required
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number of edges is reached. Figure 2.9 shows such a network with n = 200 grown

to have the same number of edges as in Figure 2.11.

Figure 2.9: Erdös and Rényi random network with n=256, e=412. The number
of edges were chosen to be equal to the scale-free network in Figure 2.11 for a
comparison.

Random networks as in Figure 2.9 are known to follow a Poisson degree distri-

bution, with low clustering coefficients, and low average geodesic path lengths

compared to other network growth models [116]. In this specific case, the clus-

tering coefficient is 0.00772 and the degree distribution following a Poisson dis-

tribution. The average and maximum geodesic geodesic path lengths are 4.96 and

11 respectively and the algebraic connectivity is 0.158. Although a very simple

model, it demonstrates the concept of generating a network using a probability

based algorithm and examining how the network changes as it grows. This is an

important aspect of network theory as understanding and perhaps even manipu-

lating how a network grows could be very useful in controlling certain real world

systems.
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One important class of networks is those possessing what is known as a small-

world topology. A network with a small-world topology is one in which the aver-

age geodesic length is small relative to the total number of nodes in the network

[116]. Social networks are one such network said to have this property. This was

demonstrated by Milgram’s social experiments [108]. In these experiments Mil-

gram sent parcels to randomly selected people, which contained instructions to

forward the parcel to a friend who they thought may bring the parcel closer to a

specific individual. The recipient of this parcel would be given the same instruc-

tions, which Milgram was able to monitor via tracer postcards. This resulted in the

parcels passing through chains of friends, showing the distance between people in

the network. This demonstrated that social networks are small-world, with hubs

(popular people) providing short cuts between chains of people with the average

person to person distance being six. This concept has been popularised by the

game Six degrees of Kevin Bacon in which the goal is to connect a particular actor

to Kevin Bacon in as few steps as possible, where an actor is connected to another

if they appeared in the same film [41]. This is exactly the same concept as Mil-

gram’s social network but instead of a generic social network, the network is the

film actor network. Small world networks can be generated using the Watts and

Strogatz model [155]. The model begins with a ring lattice in which each node is

connected to a certain number of neighbours. In the simplest case a ring lattice

consists of a ring of nodes with each connected to one neighbour on each side

forming a ring of nodes, or more connected rings can be formed by connecting

each node to more than one neighbour on each side. From this lattice each node is

taken and each edge is rewired with probability p to a randomly selected node out

of all possible nodes which avoid self loops and double edges. These generated
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networks exhibit the low average geodesic path length and high clustering found

in many real world networks such as the film actor network, the power grid and

the neural network of a nematode worm [155]. Small-world network generated

in this manner can be seen to lie between a fully regular and completely random

structure. By comparing the clustering coefficients of these generated networks,

the transition from regular to small-world networks is quite slight, whereas the

transition from small-world to random networks is large. This demonstrates that

the clustering coefficients can be used to classify networks and compare random-

ness (or regularity) [155].

Figure 2.10: Watts and Strogatz small-world network with n=256, k=4 and
p=0.5.

The Wattz and Strogatz small-world network in Figure 2.10 has a clustering coeffi-

cient is 0.174 with the degree distribution following a Poisson distribution similar

to that of a random graph. The average and maximum geodesic path lengths are

4.64 and 8 respectively and the algebraic connectivity is 0.288.

Another useful measure in network theory is the algebraic connectivity, which

gives an indication as to how connected a network is [59]. Simple networks such
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as rings, stars and fully connected have an algebraic connectivity taking a spe-

cific predictable value. For more complex networks it has been demonstrated that

the algebraic connectivity will be within particular bounds for different types of

networks [59, 111]. This demonstrates that the algebraic connectivity is a use-

ful tool in deciphering the structural properties of a network. As well as the first

non zero eigenvalue, the algebraic connectivity, the whole spectrum of eigenval-

ues can be used to derive more information from a network, with a dynamical

analysis demonstrating that it can also be used to detect hierarchy in artificially

generated networks [34].

Another feature of networks used for classification is the degree distribution. Net-

works where the degree distribution follows a power law are known as scale-free

[46] which are characterised by the presence of hubs in the network. Many real

world networks have been suggested to have a scale-free structure, such as the

World Wide Web [15, 29, 57], social networks [21, 108] and biological networks

[58, 77, 161]. In a scale-free model the probability, P(k), of a node in the network

having k connections follow a power law distribution: P(k) ∼ k−γ [14]. This is

different from a random network, which is known to follow a binomial or Poisson

distribution [56] but is similar to the network Milgram [108] described. Scale-free

networks can be generated using simple algorithms, with the resulting networks

having similar properties to some real world networks [108, 155]. The most com-

monly used algorithm is the Barabási and Albert model of preferential attachment

in which the network is grown by starting with a single node and on each itera-

tion a new node is added where connections are more likely to be made to nodes

with a higher degree [14]. The probability of this new node connecting to an ex-
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isting node i is shown in Equation 2.4.1. By using probability based attachment

the network generated has very similar properties to those of certain real world

networks.

Pi =
Ki

∑ j(K j)
(2.4.1)

where Pi is the probability the new node joins an existing node, i, Ki is the degree
of node i and ∑ j(K j) is the degree sum of all nodes in the network

Figure 2.11: Barabási and Albert scale-free network of preferential attach-
ment with n=256 grown according to Equation 2.4.1

Scale-free networks as in Figure 2.11 follow a power law degree distribution with

higher clustering coefficient and lower average path lengths than those of a ran-

dom network.

In this specific case, the clustering coefficient is 0.042 and the degree distribution

following a power law, with γ = 1.95. The average and maximum geodesic path

lengths are 3.77 and 7 respectively and the algebraic connectivity is 0.272.
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Although, as mentioned earlier, many networks have been shown to be examples

of scale-free networks, some networks are more closely modelled with a hierarchi-

cal model. Algorithms to produce these networks generally begin with a highly (or

fully) connected sub unit repeated numerous times and then connected together,

with this larger unit being copied and connected to others. This produces highly

clustered networks, across which information passes rapidly, making them useful

in man made information networks. Ravasz and Barabási [123] have proposed a

hierarchical model which begins with four nodes being globally coupled, which is

then replicated three times. The central node of the first cluster is then connected

to the outer three nodes of each of the three new clusters. The central node of

each of the four clusters are then all connected to each other. This process is then

repeated, replicating this sixteen node network three times, and connecting them

in the same manner as before. This processes can be repeated to produce large

hierarchical network. Figure 2.12 shows such a network, consisting of 256 nodes.

This hierarchical model produces networks with higher clustering coefficients

than that of a BA scale-free network, a power law degree distribution, a low av-

erage geodesic length and high algebraic connectivity [123]. For a hierarchical

network of 256 nodes, as in Figure 2.12, the Clustering coefficient is 0.801, the

average and maximum geodesic path lengths are 2.88 and 5 respectively and the

algebraic connectivity is 0.360, with the degree distribution following a power law

distribution with γ = 2.39.

Table 2.1 gives a summary of these measures on different artificially generated

networks. Two different sizes of networks are given to demonstrate how these
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Figure 2.12: Barabási and Albert hierarchical network with n=256

variables change as the network size increases. For the Wattz and Strogatz small-

world network, two versions for each size are used, to demonstrate how the prob-

ability used in the model alters the graphical properties.

Network Nodes Maximum Mean Algebraic Clustering γ

Geodesic Length Geodesic Length Connectivity Coefficients
Barabási and Albert Hierarchical 64 3 2.25 0.603 0.833 2.28
Barabási and Albert Hierarchical 256 5 2.88 0.360 0.801 2.39
Wattz and Strogatz Small-World, p=0.2 64 7 3.63 0.346 0.268 NA
Wattz and Strogatz Small-World, p=0.4 64 6 3.37 0.438 0.132 NA
Wattz and Strogatz Small-World, p=0.2 256 11 5.70 0.137 0.313 NA
Wattz and Strogatz Small-World, 0=0.4 256 8 4.64 0.288 0.174 NA
Barabási and Albert Scale-Free 64 5 2.97 0.301 0.0745 1.97
Barabási and Albert Scale-Free 256 7 3.77 0.271 0.0415 1.93
Erdös and Rényi Random, 64 8 3.62 0.239 0.0548 NA
Erdös and Rényi Random 256 11 4.96 0.158 0.00772 NA

Table 2.1: Various measures for different types of networks

These artificial network models have been shown to share features with various

types of real world networks [123, 15] and provide simple mechanisms for how
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particular topological features can be produced. These models can aid in the cre-

ation of man made networks as well as testing their behaviour. The next section

will focus on two particular important real world network, that of metabolic path-

ways and underground railway networks.

2.5 Real World Networks

2.5.1 Introduction

Many real world problems can be represented as a network theory problem, which

allows for information about these systems to be discovered. A simple example

would be representing stations in a railway network as nodes with edges connect-

ing pairs of stations if a track connected the two. This simple representation can

allow for an analysis which will demonstrate weaknesses in the network and sug-

gest improvements in their design [79]. This type of graphical analysis has been

conducted on many real world problems, and has shown that research in fields

which seem very far apart such as the World Wide Web [15, 29, 57], social net-

works [21, 108] and biological networks [58, 77, 161] can all be investigated in a

similar manner. Analysing these networks can shed light on how the systems have

developed and allow predictions to be made about their behaviour. This section

focuses on the previous work on modelling networks and the eventual application

to metabolic pathways and transportation networks as understanding their struc-

ture and behaviour could have many applications in controlling these processes

[65].
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2.5.2 Metabolic Pathway Networks

Metabolic pathways are the set of biochemical reactions which occur within bi-

ological cells, the driving force behind life [128]. The chemical reactions that

occur utilize catalysts and enzymes and allow for the conversion of certain chem-

icals into more useful products. These reactions allow for energy to be extracted

from food as well as the synthesis of molecules required to sustain life [107].

Metabolic pathway networks can be analysed in much the same way as any com-

plex network. They can be converted to an adjacency matrix where nodes rep-

resent chemicals and connected nodes represent chemicals that react together in

some way [77]. Although metabolic pathway networks are usually considered

to be directed networks, it can be argued that undirected networks are a better

representation since reversibility of a reaction is not what determines whether a

reaction will take place [152]. Using this representation Wagner and Fell [152]

compared various metrics for a particular set of metabolic pathways to that of the

random network. The metabolic pathways examined in their analysis were shown

to have a higher standard deviation in degree than random networks of a similar

size, illustrating that the random network does not model these types of network

[152].

It has been suggested that metabolic pathway networks are examples of scale-free

networks, with a degree distribution of 2.2 [77]. An important feature of scale-

free networks is the small network diameter, which makes these networks robust

against accidental failures which is due to the inhomogeneous topology. An ac-

cidental failure can be seen as the random removal of nodes in the network, in a
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scale-free network this randomly selected node will usually be a low degree node

due to the large number of these in the network compared to the number of highly

connected nodes (or hubs). Removing these nodes will not disrupt the network

significantly due to the low number of connections they have [18]. Conversely,

this scale-free structure also gives networks an inherent weakness to targeted fail-

ures, in that knocking out a highly connected hub will drastically affect the net-

work’s functionality. As metabolic pathway networks have been suggested to have

this structure this concept can be applied to drug design and administration. In ef-

fect, knocking out a specific metabolite can completely break down the network’s

functionality, and so target sites for drugs to act can be chosen from a topolog-

ical perspective [77]. This also leads to the idea that the resistance to random

errors of generated scale-free networks manifests itself in metabolic networks as

a resistance to mutation and is a function of the network’s structure [83].

An alternative model to preferential attachment has been proposed which uses

an algorithm of preferential depletion inspired by the rewiring capability of the

brain [129]. This method gives lower decay rates than preferential attachment and

clustering coefficients which are higher and decrease less with system size, both

being features found in metabolic networks [129]. To allow for the high clustering

found in metabolic pathway networks Ravasz and Barabási [123] have proposed a

hierarchical network model (as described in Section 2.4 ). This model is presented

as a more accurate representation of metabolic pathway networks and may exist as

a result of the way in which these systems have evolved over time [124]. Although

fitting some of the metrics, this model does not produce some of the features seen

in these networks such as long chains of metabolites and irregular structures.
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The purpose of analysing metabolic pathways is to obtain as much information

about these fundamental biochemical networks from the vast amounts of data be-

coming readily available, without such analysis the data is of little use. As well as

simply classifying networks, the various tools available can be used to determine

functional modules, in essence finding the networks within the network. This

demonstrates that metabolic networks, and all complex networks for that matter,

need to be investigated as a whole, not just by looking at small parts of the network

as they all interact with each other in some way [65].

The network models described above tend to focus on the idea that metabolic

pathways follow a power law degree distribution. However the work carried out by

Clauset et el [38] (see Section 2.2 for an outline of this method) has demonstrated

that this is not the case. For this reason this work will focus on other graphical

measures to produce a model that fits closely with these attributes.

An application of the many analyses conducted on metabolic pathways is the

ability to classify lifeforms into different groups [104]. By taking various mea-

sures from different metabolic pathways and examining the difference between

discrete groups (ie aerobic and non-aerobic etc.), graphical differences between

these groups become apparent which can then be used to classify any organism.

These comparisons also suggest that species with a more complex lifestyle, where

their environment is more demanding and less static, have developed bigger and

more complex metabolic pathways. This demonstrates the varied amount of in-

formation that can be deduced from these chemical networks.

There are many methods for deriving metabolic pathway networks, one of which

41



Hierarchical Graphs and Oscillatory Dynamics
CHAPTER 2. REVIEW OF MODELLING COMPLEX REAL WORLD NETWORKS

is an energy and mass balance method in which all possible reactions are de-

rived and the more plausible reactions are used [150]. Another method to derive

these networks uses methods from network theory where process graphs (bipartite

directed graphs) are used to derive feasible reaction pathways using a set of ele-

mentary reactions [101]. Other methods include using flux balance analysis and

energy balance analysis to produce network representations of metabolic path-

ways which give an understanding of how these complex systems behave [20].

Although it is important to understand how these pathways can be derived, this

work will use existing metabolic pathways from the BiGG database, a Biochemi-

cal Genetic and Genomic knowledge-base of large scale metabolic reconstructions

[127].

2.5.3 Transport Networks

Historically, the study of transport systems and network theory have always been

intrinsically linked. In fact, the Seven Bridges of Königsberg problem led to the

beginning of graph theory as a mathematical field. In this classic problem one has

to determine whether there exists a walk through the city of Königsberg, where

the land masses are separated be a river, by crossing each of the seven bridges

exactly once [7, 23]. The original problem can be seen in Figure 2.13, with the

seven bridges connecting the different parts of the city.
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Figure 2.13: The Seven Bridges of Königsberg Pictorial representation of the
Seven Bridges of Königsberg problem taken from the Encyclopedia Britannica
[35] (left) along with an abstracted representation of the same problem. In the
abstracted version each land mass is represented by a node, with an edge rep-
resenting each of the seven bridges. The edges are labelled with the bridge they
correspond to. It should be noted that it is typically the nodes in a network that
are labelled, with edge labels defining weights, however in this example it is the
number of bridges that defines the problem.

The importance of the solution to this problem was the abstraction Euler used. By

representing the areas of land as nodes and the bridges as edges connecting them,

Euler simplified the problem while still keeping all the salient features. The sim-

plified network representation of this problem can be seen in Figure 2.13, showing

the four nodes representing the four separate areas of land, with seven edges rep-

resenting the seven bridges. This type of path, in which every edge is traversed

exactly once, is known as a Eulerian path. To determine whether a solution exists,

one has to simply count the degree of each node. For a Eulerian path to exist there

can be at most two nodes of odd degree [81]. This is because all nodes except

the starting and finishing nodes need to be entered and exited the same number

of times, so need to have an even degree. For the seven bridges problem all four

nodes have an odd degree, hence no Eulerian path exists. If a network is deter-

mined to have a Eulerian path the path can be found via various algorithms such as
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Fleury’s or Hierholzer’s algorithms [157]. By identifying the important features

of the problem, in this case the nodes and edges connecting them, a way to tackle

the problem becomes apparent, demonstrating the importance of extracting all the

salient information in a problem.

As transport networks are man-made (although geography does influence their

topology) the underlying network needs to be understood to aid their design. In

this analysis the mass transit networks of underground railways are analysed due

to the fact they are an important feature of many cities around the world. Un-

derstanding more about how they function can help with the design of new un-

derground rail systems, as well as improving older networks. Figure 2.14 shows

maps of two such networks; the London Underground and the New York subway

system.
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Figure 2.14: Underground railway network maps Underground railway maps
for the London Underground (left) and New York Subway (right). Both of these
maps are the standard map used by customers taken from the ‘Transport For Lon-
don’ [146] and ‘Metropolitan Transportation Authority’ [114] websites respec-
tively.
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As with all real world networks the salient information needs to be extracted and

converted to a usable form. Again, this is usually done by producing an adjacency

matrix or a list of connected node pairs. For this analysis the former will be used.

When representing a system of this kind as a network, nodes represent stations

and edges represent a direct connection between pairs of stations. Previous work

has used both weighted and unweighted representations and has demonstrated that

when analysed as weighted networks the networks exhibit high efficiency of in-

formation exchange [93]. It has been shown that underground railway networks

have different topological properties to other real world networks. This is due

to the fact they are not a closed system, stations can also be reached by bus or

walking. This makes the fault tolerance of the network less important, which is

why the global efficiency of information exchange is allowed to be less than that

found in other real world networks which are considered closed systems. Even

with this difference to other real world networks they still have the similarity with

many other networks of being small-world [93, 94, 132]. Networks which are

constrained by geography, such as the power grid network and transport networks

can also exhibit a fractal structure [43]. As these networks do not follow the struc-

ture of other real world networks, a different generative model has been suggested

which grows the network via long chains [8]. This not only gives similar graph

metrics, but in most cases (for example, the London Underground and New York

Subway), also agrees with how these systems are known to develop, in that long

chain of stations were added, originally by separate companies which were even-

tually joined together to make one large system [146]. This would suggest that

railway networks not built in this fragmented manor may not share this structure,

such as railways networks which have been designed as a whole rather than as
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individual sections.

The network structure has also been shown to have a strong correlation with the

number of people using the system [48], with usage increasing with measures

such as directness and connectivity. This suggests that a subway network with

high usage need to have certain topological properties which need to be consid-

ered in their design. Another application in analysing these networks is in finding

possible vulnerabilities in the network. An extreme example of this is in high-

lighting targets that terrorists may attack. It is highly likely that the London tube

bombings of 2005 were chosen using a topological analysis, in which the most

effective targets were chosen to maximise disruption [79].

From the existing research it would seem subway networks are small-world net-

works [93, 94, 132], with the London Underground also being shown to exhibit an

underling fractal structure [43]. Although growth models agree with certain mea-

sures examined in previous work [8] it is not clear whether these models agree

with the fractal structure demonstrated in other studies. Analysing these networks

in more depth with a dynamic analysis could be expected to provide a greater

insight into their structure and therefore how they function.

2.6 Conclusion

In this chapter previous work on the analysis of various real world networks has

been explored, giving an insight into the importance of analysing these complex

systems. It has also been shown that in the current literature there is still some
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uncertainty as to the structure that these networks have.

This chapter has presented previous work on modelling real world networks, be-

ginning with simple networks and graphical measures building up to artificial net-

work growth models used to model these complex networks. Metabolic pathway

networks have been suggested to share properties with a few different topological

models, which have been mainly based on the presence of a power law degree

distribution. However by applying more rigorous testing the existing of a power

law degree distribution has been disproved [38].

Judging by the existing literature, it seems that algebraic connectivity, while used

in network theory has not been applied to metabolic pathways, suggesting they

may be useful in analysing them or developing a more accurate model [28]. The

various investigations into complex biological systems so far give insights into

their evolution [159] and will eventually have many applications [16]. Given their

importance, it seems apparent that a new model for metabolic networks needs to

be produced which provides a more accurate model for these complex networks.

Previous work on transport networks has demonstrated the important applications

in analysing these real world networks [48, 79]. Various studies have demon-

strated that their underlying topological structure has small-world properties, but

being unlike most other real world networks [93, 94, 132]. A more in depth topo-

logical analysis can help gain an insight into how these networks function and can

also help in improving the function of existing networks, as well as in the design

of completely new systems.
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In the following chapter a review of oscillator dynamics will be presented which

will be used in the subsequent analysis to derive graphical features of complex

networks.
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Chapter 3

Review of Synchronisation in

Coupled Oscillator Models

A graphical analysis, as shown earlier gives a great insight into the structure of a

system but does not demonstrate how they behave (although it does give indica-

tions). In this chapter a review on oscillator models is presented which will be

used in Chapter 5 to provide a novel method of hierarchy detection.

3.1 Introduction

An oscillation is the repetitive change in some measure over time. A simple ex-

ample of this would be the tide, over time it goes from being in to being out. Mea-

suring the distance from the point where the sea meets the shore to some fixed

49



Hierarchical Graphs and Oscillatory Dynamics
CHAPTER 3. REVIEW OF SYNCHRONISATION IN COUPLED OSCILLATOR MODELS

Θ

r

Figure 3.1: A phase oscillator The oscillator is depicted as the red circle rotating
around a fixed point along the blue circular path. The position of the oscillator at
a given time is described by the angular co-ordinate, θ (known as the phase).

point would yield a regular oscillation over time. Oscillations occur in many nat-

ural and man made systems from circadian clocks to electronic oscillators [141].

Figure 3.1 shows a simple oscillator which is rotating around a fixed point.

A phase oscillator, as shown in Figure 3.1 is described by it’s phase, θ , which

change over time. If the change in phase over time is known then the frequency,

which is the number of rotations in a certain amount of time, can the be calculated.

The change in the phase over time can be shown as a simple oscillation by taking

the sine of the phase, as in Figure 3.2. From Figure 3.2 the period can be seen as

the distance from one peak (or trough) to the next, with the frequency being the

number of periods occurring within a specific length of time. To analyse such a

signal a Fourier transform is often extremely useful [84].

The Fourier transform takes a signal in the time domain and transforms it to the

frequency domain. This is achieved due to the fact that any signal can be bro-

ken down into an infinite sum of simple sinusoids (sine and cosine functions) of
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Figure 3.2: Change in phase for a single oscillator Sine of the phase from a
single oscillator as in Figure 3.1.

different frequencies, shown in Equation 3.1.1 [84].

F(ν) =
∫

∞

−∞

f (t)(cos(2πν)− isin(2πν))dt (3.1.1)

where ν is the frequency and t is time. Which can be expressed in terms of

exponents using Euler’s identity, e−iθ = cosθ + isinθ , as

F(ν) =
∫

∞

−∞

f (t)e−2πiνtdt (3.1.2)

In the case of signal processing the Discrete Fourier Transform (Equation 3.1.3)

is used as an approximation to the Fourier Transform [151], which is applicable

as both the time and frequency are discrete (assuming the analysis uses a digital

computer).

F(k) =
N−1

∑
n=0

f (n)e−2πink/N , k = 0,1,1, ...N−1 (3.1.3)
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Figure 3.3: Fourier transform for the phase of a single oscillator Fourier trans-
form of the signal in Figure 3.2 showing a strong peak representing the mode of
oscillation.

where N is the number of samples, f (n) is the signal sampled at n and F(k) is

the kth Fourier component. Squaring the series of complex numbers, F(k) give

the power of each component. Plotting this against k, the frequency or mode,

produces a Fourier spectrum [24]. Taking the Fourier spectrum of the signal in

Figure 3.2 yields the profile in Figure 3.3.

From Figure 3.3 it can be seen that the regular oscillation of the signal in Figure

3.2 yields a strong peak in the Fourier spectrum. This single peak represents one

mode of oscillation in the original signal. The modes of oscillation can be thought

of as the number of component signals which the signal is composed of. Taking

a bimodal oscillation, in this case taken from the sum of two cosine functions

(shown in Figure 3.4) and calculating the Fourier transform gives the two peaked

transform shown in Figure 3.5. This demonstrates the ability of the transform to

extract the modes of oscillation, which will also work in noisy signals. In fact,

among the many applications of the Fourier transform is for the removal of noise

from a signal [19]. By breaking down the signal into components the unwanted
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Figure 3.4: Sum of two cosine functions. Time series for function of cos t +
cos10t. This function produces a bimodal oscillation.

noise component can be removed, and can transformed back to the time domain,

using the inverse Fourier transform. Digital signal processing relies heavily on

Fourier transforms, for example in the task of compressing sound signals. One of

the ways this is applied is to take the Fourier transform and then remove any high

frequencies in the signal, which would be inaudible to the human ear [162].

For this analysis the fast Fourier transform will be used [84], which reduces the

computation time and will be computed using MATLAB.

Clearly the behaviour of one oscillator is of little interest. However, various mod-

els have been proposed consisting of coupled oscillators, where the oscillators are

connected in some way [141, 110, 61]. One of the ways in which this is done

is to have the phase of each oscillator being dependent on some function of the

phase of the oscillators which it is coupled to. These types of coupled oscilla-

tors exhibit synchronisation, in which, over time, all the oscillators settle down

to having the same phase and frequency. A classic example of this phenomenon

in the natural world is that of fireflies synchronising their flashing, the emergence
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Figure 3.5: Fourier transform of a bimodal oscillation. Fourier transform of the
signal in Figure 3.4 showing two strong peaks representing the modes of oscilla-
tion. It can be seen that the mode of the second peak is 10 times that of the first,
due to the multiple of t in the equation that produces the bi-modal oscillation.

of which has been modelled using coupled oscillators [110]. Many more natural

synchronisation systems have also been investigated including human reproduc-

tive cycles, sleep cycles and a possible mechanism for formation of memory [141].

This demonstrates that this phenomenon is a large part of the natural world and is

an important field of study. For this analysis the synchronisation model is not used

to demonstrate how a real system behaves but is instead used as a tool to decipher

structure.

3.2 Systems Exhibiting Synchronisation

Arguably the most important oscillator model to exhibit synchronisation is that

of the Hodgkin-Huxley model. Hodgkin and Huxley’s Nobel prize winning work

explained how action potentials arise in the giant axon of the squid [70]. Differ-

ential Equations are used to model how the change in ion concentrations give rise
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to an action potential in nerve cells. In this model the change in potassium and

sodium ions give rise to action potentials. The axon is modelled in terms of the

lipid bilayer, voltage gated ion channels and leak channels. These are represented

as capacitance, electrical conductance and linear conductance respectively. The

system of equations representing this system are shown in Equations 3.2.1, 3.2.2,

3.2.3 and 3.2.4.

I =Cm
dVm

dt
+ ḡkn4(Vm−VK)+ ḡNam3h(Vm−VNa)+ ḡl(Vm−Vl) (3.2.1)

where I is the total membrane current density and Cm is the membrane capacity
per unit area. Vi and gi are the reversal potential and conductance of the ith ion
channel respectively. K, Na and l represent potassium, sodium and leak channels
respectively, with n, m and h being dimensionless quantities and t being time.

dn
dt

= αn(1−n)−βnn (3.2.2)

where n is a dimensionless quantity, t is time and αi and βi are both rate constants
for the ith ion channel.

dm
dt

= αm(1−m)−βmm (3.2.3)

where m is a dimensionless quantity, t is time and αi and βi are both rate constants
for the ith ion channel.

dh
dt

= αh(1−h)−βhh (3.2.4)

where h is a dimensionless quantity, t is time and αi and βi are both rate constants
for the ith ion channel.

From the set of four Equations 3.2.1, 3.2.2, 3.2.3 and 3.2.4 the change in I can

be plotted over time, which allows for a model for an spiking neuron, shown in
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Figure 3.2. This behaviour demonstrates that it is the change in ion concentrations

within the axons which result in an action potential across the cell.
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Figure 3.6: Hodgkin-Huxley model of action potential in squid axons. From
the set of four Equations 3.2.1, 3.2.2, 3.2.3 and 3.2.4 the total membrane current,
I is shown to spike in the same manner as a neuron. This demonstrated that the
differential equations can be used to model how action potentials arise in neurons.

Further work has coupled these neural models together, allowing them to interact

in some way and allow for more complex behaviours to be demonstrated, such

as synchronisation in both the frequency and phase [36, 64, 154]. Although an

important model, many adjustments to the model have been made which greatly

simplify the model yet still allow for certain desirable behaviours. An important

example of this is the FitzHugh-Nagumo model [61]. In this model the four di-

mensional Hodgkin-Huxley model is reduced to two dimensions by combining

variables with similar properties. This reduction drastically simplifies the model,

yet still allows it to model the spiking behaviour observed in neurons (see Equa-

tion 3.2.5).
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dV
dt

= v− V 3

3
−w+ I (3.2.5)

dw
dt

=
1
t
(V +a−bw)

where a and b are positive dimensionless parameters, V is the activation variable,
W is the refractoriness of the system, I is the total membrane current density and
t is time.

The behaviour of the variables v and w from Equation 3.2.5 is shown in Figure

3.2, both variables exhibit regular oscillations.
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Figure 3.7: Time dependent variables v and w of the FitzHugh-Nagumo model
plotted against time. Both v and w from Equation 3.2 exhibit oscillatory be-
haviour.

Combining the variables v and w in Equation 3.2.5 producing a phase portrait
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(Figure 3.2) demonstrates the oscillator-like behaviour exhibited by the model.

The phase portrait of the set of ordinary differential equations converge to a limit

cycle, or an oscillator.
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Figure 3.8: Phase portrait of the FitzHugh-Nagumo model. It can be seen
that the phase portrait of the time dependent variables v and w from Equation 3.2
form a limit cycle, behaving as an oscillator.

Many other models have been proposed which capture the synchronisation phe-

nomenon observed in many real world systems. One method to model and study

synchronisation is using Rössler equations for the oscillators [120]. Equation

3.2.6 shows a single Rössler oscillator.

ẋ =−y− z, (3.2.6)

ẏ = x+ay,

ż = b+ z(x− c),

where x, y and z are dynamical variables defining the phase space of the oscillator

and a, b and c are parameters. [126].
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These oscillators can be coupled together, as in Equation 3.2.7, with the system

being shown to exhibit synchronisation under certain conditions [120].

ẋi =−ωiyi− zi + εX , (3.2.7)

ẏi = ωixi +ayi,

żi = b+ zi(xi− c),

where xi, yi and zi are dynamical variables defining the phase space of oscillator

i, with ε being the coupling strength. a, b and c are parameters of the model, with

values of 0.15, 0.2 and 10 respectively being shown to allow for phase synchroni-

sation, although other values have also been shown to accomplish this. The mean

field is X = N−1
∑

N
1 xi, where N is the number of elements in the ensemble [120].

In the model shown in Equation 3.2.7, wi is chosen from a Gaussian distribution

and the coupling strength is the tunable variable, with the observable variable be-

ing X . These systems have also been used to model metabolic and neural networks

and have helped to gain an insight into the periodic behaviour of metabolism [73].

In such a model the coupling between cells is performed by a metabolite that all

cells produce with models exhibiting the asynchronous as well as synchronous be-

haviour [158], demonstrating how these seemingly abstract systems can be used

to model real world systems.
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Another model which is simpler than the ones described above but can show some

of the dynamical properties described is proposed by Field [60]. The model is

motivated by analogue computers which use cells coupled using patch-cords to

their correct output which may provide a simpler way to analyse these complex

real world systems and could be used to investigate metabolic networks. There

are many ways in which molecular networks can be modelled dynamically and

investigated, the main ones being, biochemical kinetic, generalised models of

regulation, functional object-oriented databases, exchange languages, approaches

based on formal methods and integrated frameworks with GUI [122]. Priami and

Quaglia explain how although these methods are useful, they all have limitations

in describing complex networks and so suggests the process algebra approach

which does not have the same limitations, such as sensitivity to numerical param-

eters. This approach allows for hundreds of experiments to be conducted, in the

form of computer simulations, without using reactants or animals. This can help

to determine which experiments are viable, which can then be carried out as wet

experiments, drastically reducing cost and time (once the system is developed and

tuned). This has many applications such as drug design, gene therapy and envi-

ronmental studies.

Although both the Hodgkin-Huxley and FitzHugh-Nagumo model capture a wide

range of dynamic behaviour observed in real world systems, much simpler mod-

els have been proposed which can capture the collective dynamics of both these

models. The Kuramoto model is one such model which uses coupled oscillators

interacting in a manner which allows for synchronisation to occur [85]. The Ku-
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ramoto model is applied to a network by replacing each node with an oscillator in

which the change in phase is dependent on the phase of the nodes it is coupled to

(Equation 3.2.8). With larger systems, computers are utilised, which, by compar-

ing analytical solutions to those of a computer, have been shown to give accurate

results [86]. Further work has also demonstrated that integration yields accurate

results for the Kuramoto model [4].

∂θi

∂ t
= ωi +

k
N ∑

j=1
sin(θ j−θi), i = 1....N (3.2.8)

where N is the number of nodes in the network, ωi is the natural frequency of

oscillator i, k is the coupling strength between connected oscillators and θi is

some oscillatory phase ∈ [0,2π].

This original model of Kuramoto assumes mean-field interactions. In the absence

of any external noise, the global dynamics are determined by the coupling strength

k, the distribution of natural frequencies σ(ω) and the connectivity within the

underlying network. In general, the coupling strength k acts to synchronise the

oscillators, the wider the distribution of ω , the harder it is for the oscillators to

synchronise and higher connectivity within the graph also serves to cause the os-

cillators to synchronise (i.e. all to all coupling will synchronise more easily than

sparsely coupled networks).

In order to measure the coherence of the oscillators the Kuramoto order parameter

is often used:
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χ =
1
N

∣∣∣∣∣ N

∑
j=1

eiθ j

∣∣∣∣∣ , (3.2.9)

This is the average phase of all oscillators within the network. For a fully syn-

chronised networks χ = 1 and for networks where the phases of all oscillators are

equally distributed around [0,2π], χ = 0. For all other states, χ is in the range

(0,1). This is demonstrated in Figure 3.9, which shows that as the phase of the

nodes move towards synchronisation, the Kuramoto order parameter moves to-

wards 1.
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Figure 3.9: Phase of oscillators and Kuramoto order parameter of three cou-
pled oscillators Phase of the oscillators in a three node network as the model is
iterated through, which can be seen to be synchronising with one another (top).
Order Parameter of the phases of the three oscillators in the top figure, as the
oscillators synchronise the order parameter moves towards one (bottom).

For the analysis conducted in this work the Kuramoto model will be used. This

is mainly due to the fact that the model is relatively simple to implement yet can

demonstrate a wide range of dynamical behaviour. The conclusions drawn using

the Kuramoto model will also be applicable to other oscillator models as their

interacting nature that dictates the behaviours they exhibit, rather than the actual

form of the oscillator.
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3.3 Modelling Systems and Applications

The applications of synchronisation and dynamics, as touched on earlier, are very

wide. One practical application is using these models, in this case from a sys-

tem of Bloch equations, is to interpret anomalies observed in Nuclear Magnetic

Resonance (NMR) experiments [148]. Another neuroscience application is in de-

termining the structure of the brain from the different brain waves which can be

picked up by an EEG [80]. Josic and Rubin explore this idea to use the dynamics

observed on networks to infer their structure which will be a very useful tool in

detecting illness as well as understanding the structure of the huge network of the

brain.

Another area where synchronisation and dynamics can be applied is in under-

standing the circadian clocks which not only control sleep cycles but are also

known to affect metabolic cycles. Huang et al. [74] explain that when people

have a circadian misalignment, for example if they work night shifts, they have

increased incidents of diabetes and heart disease showing the relationship between

circadian clocks and metabolism and the importance of understanding the mech-

anisms of circadian clocks and metabolism. Metabolism synchronisation has also

been observed, Bianchi [22] explains how yeast cells have been shown to synchro-

nise their metabolism with each other, from alkaline phase to acid phase. Another

influence the circadian clock has is on glucocorticoids production, animals with

faulty circadian clock genes have defects in cell proliferation, which is controlled

by glucocorticoids [50]. Dickmeis and Foulkes explain that this effect of the cir-
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cadian clock could be used to improve cancer treatments, as glucocorticoids are

used for certain treatments, administering at certain parts of the circadian clock

could improve treatment. This gives a very important application where under-

standing the dynamics of the circadian clock can have very obvious benefits.

The synchronisation effect seen in oscillator models can also be applied to laser

arrays [4]. The effect being that when an array of lasers are phase locked a large

output power is achieved by a high number of low powered lasers. Similarly,

coupling Josephson Junctions so that they operate in synchrony allows them to

achieve a large power output, due to the fact that power is proportional to the

number of Josephson junctions squared [4]. The benefit of this is that a larger

power is achieved than if they were operating independently.

There has also been some work in the more abstract application of investigating

structure of complex networks. By examining how quickly different nodes in the

network synchronise, clusters within the network can be detected, and so structure

and hierarchy inferred [9]. This method can also be used to find missing links in a

network, which is useful when not all the information is available for the network

[37], for example if the network is a biological one not all the connections may be

known at present.
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3.4 Conclusion

The field of dynamics and synchronisation have been used to uncover the math-

ematical basis behind many complex natural phenomenon. There are various

models which can be used to model the synchronisation effect known to occur

[60, 69, 120, 122], each with its own limitations and advantages. This work will

use the Kuramoto model [85], as it is simple to implement but can still simulate

complex behaviour. There are many applications to this work, some of which are

outlined above, such as understanding epilepsy and improving cancer treatments

and no doubt many more will become apparent as this field is studied in more

depth and applied to more problems.

This chapter has explored some of the previous research in the field of oscillator

dynamics, examining the various oscillator models known to exhibit synchroni-

sation and the applications in this field of research. Chapter 5 will derive a novel

method of detecting topological hierarchies which utilise a particular dynamical

behaviour. This method is applied to various artificially generated network to

demonstrate how the behaviour of the oscillators is used to extract topological

features. The model is also applied to real world networks, giving a deeper under-

standing into the structure of these complex networks than a standard topological

analysis can yield.

In the following chapter a standard topological analysis is performed on real

world networks utilizing the methods outlined in Chapter 2, producing a network

growth model which agrees closely with the topological features of the networks
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of metabolism.
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Chapter 4

Topological Analysis of Real World

Networks

This chapter presents an analysis of the real world networks of metabolism and un-

derground railway networks. This analysis yields a novel network growth model

which captures the structural features of the networks of metabolism. Producing

a network growth model with the same features as these real world networks can

help in the design of man made networks such as transportation networks which

we may want to design with similar properties to networks found in nature [16].

These artificial networks can then also be used to test particular properties, allow-

ing for numerous examples to be tested with the same properties as the system

under investigation [26].
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4.1 Metabolic Pathway Network Analysis

4.1.1 Introduction

The graphical structure of metabolic pathways has been extensively studied [77,

89, 131, 152] and has led to a greater understanding of their functionality [138].

Many of the salient features of such networks have been investigated, particularly

any scale-free nature [15], although this model is currently the subject of some de-

bate [82, 143]. Of particular interest are the high clustering coefficients observed

in metabolic pathways which have previously been explained using concepts of

topological hierarchy [123] and modularity [144].

The once widely accepted notion that metabolic pathways follow a power law

degree distribution [77, 152] has recently been challenged by applying a more

rigorous test for this topological property [38]. This demonstrates that the BA

scale-free model is not an accurate model for these networks, as it is the power

law property that is the main focus of this network model. In this analysis we

will derive a more accurate network model which agrees closely with topological

features found in metabolic networks.

We first conduct a graphical analysis on eight bacterial metabolic pathways, con-

centrating on their clustering coefficients, average (mean) geodesic lengths, maxi-

mum geodesic lengthsand algebraic connectivity. Here microorganisms have been

chosen, as their metabolic pathways are less complex than higher organisms al-

lowing greater illustration of the concept [104]. Further to this, a growth model in
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which the rate of growth decays as a function of network size is used to replicate

some of the structural features of metabolic networks.

4.1.2 Methodology

The purpose of this analysis is to produce a simple network growth model which

has similar characteristics to metabolic pathway networks. The first step in pro-

ducing such a model is to take various graphical measures on these networks and

determine what this suggests about their structure. An artificial network growth

model can then be derived which shares these characteristics.

Microbial metabolic pathways from the following species were considered:

i Escherichia Coli

ii Escherichia Coli iAF1260

iii Escherichia Coli iJR904

iv Helicobacter Pylori

v Methanosarcina Barkeri

vi Staphylococcus Aureus

vii Mycobacterium Tuberculosis

viii Saccharomyces Cerevisiae
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Three formulations of E Coli are chosen to ensure the results are independent

of the methodology used to initially determine the network. E Coli are a gram-

negative bacteria which are considered a model organism in microbiology. They

are commonly found in the intestines of mammals with some strains being known

to cause food poisoning [42]. H Pylori are another gram-negative bacteria which

are commonly found in the stomach of mammals and are known to cause gastric

ulcers [49]. S Aureus are a gram-positive bacteria which are known to cause skin

infections and respiratory disease [44]. M Tuberculosis is another gram-positive

bacteria and is known to infect the lungs [119]. The selection of bacteria were

chosen due to the importance of them in the field of medicine and the large amount

of research on these particular microbes. M Barkeri is an example of an archaea

which is a distinct type of prokaryote to bacteria and has the unusual feature of

showing primitive cellular differentiation [78]. This example was chosen due to

these unusual features and the large amount of research that has been carried out

on this microbe. The final microbe investigated is S Cerevisiae which is a model

eukaryote organism commonly known as yeast [125]. This was chosen due to

the importance it has in modern food production (being used to make bread and

alcohol), as well as the large amount of research that has already been conducted.

The eight metabolic reconstructions are downloaded in SBML format [75] from

the BiGG database [127]. The models were imported to Matlab using libSBML [27].

For this analysis each metabolic pathway is represented as an undirected network

with the adjacency matrix of the network being the boolean representation of the

chemical interactions. For each model, nodes i and j are defined as adjacent if
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metabolite i appears as a reactant and metabolite j as a product, or i as a product

and j as a reactant in any reaction. Although this is a highly simplified represen-

tation this has been shown to be a useful tool in analysing such systems [130].

Note: There are a variety of network constructions available, both including and

excluding sub-cellular compartmentalisation, and with/without considering the

role of water and protons. In this analysis two versions of each of these pathways

will be considered both including and excluding the presence of water, without

compartmentalisation, as this most accurately represents the nature of the bio-

chemical processes within the cells [77, 89, 131, 152]. The results obtained here

are applicable to the other available formulations with some small modification to

the size dependent decay constant α described in Section 4.1.3.

A selection of graphical measures are considered in this analysis, namely the clus-

tering coefficients, average and maximum geodesic length and the algebraic con-

nectivity which are explained in Section 2.2. These measures were chosen as

they give indications as to how fast information is spread through the network.

This is a particular important feature of networks as it helps to deduce how these

networks function. For example, a network with low average geodesic lengths

and high clustering given the connectivity of said network will have a particular

efficiency of information spread. When designing artificial networks it is of par-

ticular importance to replicate or avoid these features to give the network certain

properties.
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4.1.3 Results

The geodesic path length, as mentioned earlier, is the shortest path between any

pair of nodes, in terms of the number of edges that need to be traversed. For

the metabolic pathways investigated here, the average geodesic path length is sur-

prisingly low given both the size of the networks and their average degree being

Dmean = 6.42 in the range of [5.03,8.08]. The average value of Gmean = 2.99, in

the range [2.61,3.43], demonstrates a very strong small-world effect [108]. Con-

versely, the highest of the geodesic path lengths are greater than one would expect,

given the average of these is relatively low. For instance, the H. Pylori metabolic

network with 481 nodes has an average geodesic path length of 2.83 and a max-

imum geodesic path length of 7. For an undirected network of this size, such a

high maximum path length suggests structural qualities not in keeping with other

small-world networks. The clustering coefficients, which give a sense of clique-

ness in the network, were found to vary significantly between metabolic pathways

and Barabási-Albert scale-free networks. For the metabolic pathways investigated

here the clustering coefficients were found to have an average value of c = 0.22

with a range of [0.16,0.32]. The maximum geodesic length was found to have an

average value of Gmax = 7.56 in the range [5,11]. The final measure examined

here is the algebraic connectivity, which demonstrates the global connectivity of

the network and was found to have an average value of λ = 0.25 in the range of

[0.09,0.53]. The results for the measures taken on all these networks can be seen

in Table 4.1.
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Metabolic Pawthay Nodes Maximum Mean Algebraic Clustering
Network Geodesic Length Geodesic Length Connectivity Coefficients
E. Coli with H20 74 5 2.61 0.531 0.263

E. Coli without H20 70 6 2.77 0.278 0.209
E. Coli iAF1260 with H20 1339 7 2.92 0.254 0.261
E. Coli iAF1260 without H20 1335 10 3.43 0.145 0.159
E. Coli iJR904 with H20 764 8 2.87 0.092 0.251
E. Coli iJR904 without H20 752 9 3.32 0.187 0.158
H. Pylori iIT341 with H20 481 7 2.83 0.253 0.247
H. Pylori iIT341 without H20 477 11 3.27 0.139 0.165
M. Barkeri iAF692 with H20 622 8 2.78 0.182 0.286
M. Barkeri iAF692 without H20 608 8 3.16 0.176 0.208
M. Tuberculosis iNJ661 with H20 822 6 2.62 0.329 0.317
M. Tuberculosis iNJ661 without H20 818 9 3.15 0.185 0.218
S. Aureus iSB619 with H20 653 6 2.77 0.441 0.253
S. Aaureus iSB619 without H20 629 7 3.17 0.301 0.167
S. Cerevisiae iND750 with H20 755 6 2.82 0.348 0.254
S. Cerevisiae iND750 without H20 751 8 3.30 0.204 0.166

Table 4.1: Various measures for different examples of metabolic pathway net-
works

A Size Dependent Generative Model

In this section we modify the BA model of preferential attachment to allow for the

high clustering and low average path lengths found in the networks of metabolism.

Although the BA model (Equation 2.4.1) does not provide good fits to the metabolic

networks, a generative model using preferential attachment would seem to have

much to offer when considering the growth of metabolic networks. Here metabo-

lites which are present in higher numbers of reactants will be more likely to react

with a new metabolite joining the network.

As such, a generative model similar to the BA model appears as a strong candidate

for describing some of the features which develop in the growth of metabolic

networks. However, as a variety of studies have demonstrated [123, 124, 129],

the scale-free model alone is not sufficient to fully describe the networks when a

range of metrics are considered.
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By taking the BA model and simply increasing the probability of making a con-

nection it was found that although this produced the high clustering found in these

networks the average geodesic path length became significantly lower. The al-

gebraic connectivity was also found to be significantly higher than found in the

metabolic pathways. Here we present a model with non-static growth that allows

for the high clustering yet also agrees with the algebraic connectivity and average

geodesic path length found in the metabolic pathway networks.

Networks are grown according to the following:

Pi =
Ki

∑ j(K j)
× α

n
(4.1.1)

where Pi is the probability the new node attaches to the existing node, i, Ki is the
degree of node i, ∑ j(K j) is the degree sum of all nodes in the network, n is the
number of nodes and α is a constant.

Such a model will produce a globally connected network for n2 + 1 ≤ α . For

n2+1 > α the preferential attachment model prevails, however, the probability of

attachment is initially high. As the network grows and ∑ j ∼ α , new nodes attach

in a manner identical to the original BA model and for ∑ j > α the network ceases

to grow any further. (Note, this model assumes that nodes are not self connected

and restricts the probability of any new attachment to P≤ 1, for n2 +1≤ α).

The effect of modifying the BA model has two effects: Firstly, the probabilities

of attachment are not static and are rescaled as each new node enters the network.

Secondly the probability that any new node will attach is decreasing as the net-

work grows. Figure 4.1 shows the total number of edges in the network as nodes
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are added to the network for the size dependent model along with the original

BA model. It can be seen that for the size dependent network connections are

made rapidly at the start which then begins to slow whereas the BA model makes

connections in a linear fashion.

0 50 100 150 200 250 300 350 400
0

100

200

300

400

500

600

Nodes

E
dg

es

Figure 4.1: Total number of connections as network growth model is iterated
through. The red line shows the total number of edges as nodes attempt to be
added to the network for the size dependent model in Equation 4.1.1 with α = 125
grown to 250 nodes. The blue line shows the standard BA scale-free model also
grown to 250 nodes.

The size to which any network will grow in finite time, is essentially determined

by the value α . When n > α , the probability of new nodes attaching is very small

and these new nodes form no edges with existing nodes, thereby not joining the

network. Simulations were conducted until the network had grown to a specified

size, attempting to attach new nodes until this was successful.

Repeated simulations for networks grown according to Equation 4.1.1 were per-

formed for varying values of the constant α . Figures 4.2, 4.3, 4.4 and 4.5 show

how graphical measures vary for a high α value of twice the network size and a

low α value of a tenth of network size along with the metabolic pathway networks.
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Figure 4.2: Clustering coefficients for metabolic and artificially generated net-
works. Clustering coefficients for metabolic pathway networks (circles) and
those of artificially generated size-dependent networks with both high (red) and
low (blue) α values. It can be seen that the metabolic pathways mostly fit well
within the upper and lower bounds for the artificially generated network

It can be seen that the measures considered do not show a correlation with the net-

work size. It can also be seen that the range of values the clustering coefficients

and algebraic connectivity can take in the metabolic pathways is more varied than

that of the average and maximum geodesic path lengths, which is echoed in the

range of values the artificial model can take for high and low α values. These fig-

ures demonstrate that the range of values found for these networks fit within the

bounds of a high and low α value for the artificial network model. This shows that

the artificial model can be tuned to fit the various measures considered providing

an artificial network model with similar topological features to these real world

networks.
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Figure 4.3: Maximum geodesic path lengths for metabolic and artificially gen-
erated networks. Maximum geodesic length for metabolic pathway networks
(circles) and those of artificially generated size-dependent networks with both
high (red) and low (blue) α values. It can be seen that the metabolic pathways
mostly fit well within the upper and lower bounds for the artificially generated
network
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Figure 4.4: Average geodesic path lengths for metabolic and artificially gener-
ated networks. Average geodesic length for metabolic pathway networks (cir-
cles) and those of artificially generated size-dependent networks with both high
(red) and low (blue) α values. It can be seen that the metabolic pathways mostly
fit well within the upper and lower bounds for the artificially generated network

The overall effect of such a size dependent modification to the original BA model

is to initially produce a highly connected ‘hub’ which then grows via preferential

attachment giving rise to high clustering coefficients and a very strong small-

world effect resulting in low average geodesic path lengths. In the size dependent
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Figure 4.5: Algebraic connectivity for metabolic and artificially generated
networks. Algebraic connectivity for metabolic pathway networks (circles)
and those of artificially generated size-dependent networks with both high (red)
and low (blue) α values. It can be seen that the metabolic pathways mostly fit well
within the upper and lower bounds for the artificially generated network

model initially as n is small the probability of attachment is higher than the BA

model and more highly connected nodes are formed. This initial component of

highly connected nodes serves as the seeds for clusters with nodes continuing to

connect to these with high probability throughout the growth. After this initial

surge the new nodes still attach to a large number of others before this drops

which produces a more highly clustered model than from the original BA scale-

free model.

It is straightforward to amend the size dependent model 4.1.1 such that no glob-

ally connected initial stage occurs by rescaling the size dependent modification

in Equation 4.1.1 to C/n+
√

α . This produces a network which has a more pro-

nounced scale-free structure, while retaining the high clustering coefficients of the

original formulation.
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4.1.4 Example - S. Aureus

In order to demonstrate the similarities between the metabolic pathways and the

size dependent network growth model a specific comparison is now provided. It

should be noted that all of the networks considered in this study were analysed

at this level with each showing a strong similarity with the model. The analysis

on the bacterium Staphylococcus Aureus gives the results of a metabolic network

consisting of 629 nodes, a clustering coefficient of c= 0.167, algebraic connectiv-

ity of λ = 0.301, a maximum geodesic length of 7 and an average geodesic length

of 3.17. Comparing this to a BA scale-free network of the same size, averaged

over 100 trials gives a clustering coefficient of c = 0.018, algebraic connectivity

of λ = 0.150, a maximum geodesic length of 9.70 and an average geodesic length

of 4.35. Clearly this scale-free model does not fit any of the graphical measures

well.

In order to produce a size dependent network as defined in Equation 4.1.1 the

network size is fixed to that of the specific network being modelled and the value

of α is tuned to allow the four measures considered to agree with that found in

the metabolic pathways. Essentially the model is fitting four graphical measures

using one parameter, α for a network of a specific size.

The (mean) average values for 100 trials of a network of 741 nodes, generated

according to Equation 4.1.1 with α = 450 are: clustering coefficient of c = 0.160,

algebraic connectivity of λ = 0.320, maximum geodesic path length of Gmax =

7.80 and mean geodesic length of Gmean = 3.20. The distribution of geodesic

lengths over the whole of the S Aureus network and an example size dependent
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network are shown in Figure 4.6 in addition to the degree distributions.

Figure 4.7 shows a graphical representation of the BA model, S. Aureus and the

size dependent growth model to give an understanding of the structure of these

network. It should be noted, however, that here are many possible methods for

drawing these networks and using these to compare networks structure is of little

use for networks of this complexity.
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Figure 4.6: Degree distributions and geodesic path length spectrum.
Geodesic lengths (left) and degree distribution plots (right) for S Aureus (middle),
a scale-free network (top) and size dependent network (bottom) all of 741 nodes.
Note the geodesic distribution for the size dependent network matches closely the
metabolic network. The degree distribution for the metabolic network is not en-
tirely scale-free due to fewer nodes of degree 1 and 2 than would be expected. The
size dependent growth model demonstrates a degree distribution which is in many
respects closer that of the metabolic pathways.
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Figure 4.7: Graphical representations of various networks Graphical repre-
sentations of artificially generated Barabási Albert scale-free network (741 nodes,
top), S Aureus (741 nodes, middle) and artificially generated size dependent net-
work (741 nodes, bottom). All Figures are generated using the Mathematica
spring embedding algorithm.
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4.2 Mass Transit Network Analysis

The final real world network to be examined is that of transportation, specifically

mass transit networks, or underground railway networks. Underground railway

networks are a feature of many developed cities. Understanding the structure of

these networks can demonstrate important properties that these systems exhibit,

from resistance to attacks, to providing the simplest way to increase connectivity.

In this work the underground railway networks of New York and London will be

examined, due to the differences in their geography. To analyse these networks an

adjacency matrix first needs to be produced from the maps (see Figure 2.14). In

the adjacency matrix two stations are considered connected if there exists a direct

train connecting the two of them, and are given a value of one, and zero otherwise.

From the two adjacency matrices measures can be taken on the network, as well as

producing network images with all the geographical features removed (Figure 4.8

shows representations using spring algorithms in Mathematica). In the original

maps some of the underlying geography has been removed, which allows the user

to differentiate stations at the compacted centre, but the rough position of stations

remains in the map.

The first step in analysing these networks is to calculate simple metrics which are

given in Table 4.2.

The degree distributions (Figure 4.9) show that both these networks have a sim-

ilar structure. With their low clustering and high average geodesic path length

(Table 4.2) these networks would not seem to fall into any of the usual network
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Table 4.2: Various measures for two underground railway networks
Measure London Underground New York Underground
Nodes 353 422
Maximum Geodesic Length 34 49
Mean Geodesic Length 11.8 16.7
Algebraic Connectivity 0.01 0.004
Clustering coefficient 0.024 0.02

categories. Having higher average paths than a random network of a similar con-

nectance and higher average geodesic path lengths than the BA scale-free model.

Similarly, they would not fit with the size dependent networks described here.

A more in depth analysis will demonstrate certain topological properties that a

standard network analysis can not detect, which will be explored in Chapter 5.
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Figure 4.8: Graphical representations of two underground railway networks.
The London Underground (top) and New York Metro (bottom) networks, presented
as non spatially-arranged graphs. Note the presence of two central clusters in the
New York graph, which represent the concentration of stations in South Manhattan
and Brooklyn. Both of these networks representations were generated using the
Mathematica spring algorithm.
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Figure 4.9: Degree distribution for transport networks. Degree distributions
for London (left) and New York (right) subway networks.

4.3 Conclusion

In this analysis the structure of metabolic pathway networks have been investi-

gated to give a network growth model which agrees with their topological prop-

erties. This investigation has demonstrated that metabolic networks of microor-

ganisms are more accurately modelled with a network growth model in which

network size is a modifying factor. Due to the size dependent networks having a

densely connected cluster, these networks will have an increased resilience to tar-

geted perturbations than that of the BA model, which are known to be drastically

effected by this type of network attack [116]. This suggests that the structure

of metabolic pathways gives them a greater resilience to node removal than if

they were examples of scale-free networks, modelled by preferential attachment.

Other representations of the metabolic pathways can also be modelled using an

adjusted version of the growth model. The compartmentalised versions of the

pathways could be modelled via smaller size dependent networks, joined together
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to form highly clustered networks, representing the sub-cellular compartmentali-

sation seen in these formulations.

This network growth model can allow for man made networks to be produce

which share the properties of these biological networks, for example the low av-

erage geodesic path length found in these networks is known to allow for the

rapid transmission of information across the network [116]. This is also useful in

testing how information will spread across the network, and in deducing how the

topological properties are related to the actual properties of the networks [140].

This network growth model allows for various graphical measures to be estimated

for other metabolic pathway networks. Comparing this to the measures taken on

the actual network can then help in discovering similarities between them or in

detecting networks which are actual very different from a topological perspective.

Analysing the structure of these real world complex networks has yielded an in-

sight in to their properties and how they may function. Although an important step

in understanding these networks, further insight can be gained by adding greater

complexity to these representations by allowing the nodes to perform some func-

tion. This is addressed in this next chapter and it is this extension in the analysis

will help to facilitate a greater understanding as to how these networks function in

a more global sense.
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Chapter 5

Detecting Topological Hierarchy

Using Coupled Oscillator Models

In this chapter a novel method of hierarchy detection is derived in which the nodes

are replaced by oscillators which interact with their neighbours. This has the af-

fect of the network structure influencing the behaviour of the ensemble of oscil-

lators, which allows for topological properties to be deduced [25, 103, 117, 153].

5.1 Introduction

The problem of relating the structure of a network to the dynamical behaviour it

supports is of significant interest in many domains. Many different systems may
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be represented as networks of connected entities, from friends communicating via

social media [21, 108], to groups of neurons [155] and chemical reactions [77].

The fundamental issue addressed here is how to link the observed dynamics of a

system to certain properties of its underlying network structure. The hope is that,

by deepening our understanding of how particular types of network behave (in a

global sense) over time, the structure of a network with a similar structure may be

predicted. In addition, studying the recurring features of complex networks from

a number of different disciplines, may help to gain a deeper, more over-arching

theoretical understanding of network dynamics.

Early work in this area focused on the development of model systems, which were

used to analytically study the onset of certain behaviours (such as oscillations)

[87, 110] (see also [4, 142] for reviews). These model systems have been suc-

cessfully applied in a number of different disciplines, including chemistry [101],

ecology [113] and sociology [21]. Of particular interest are networks which pos-

sess some form of community structure [63, 66, 73, 92, 136]; These are generally

characterised as having groups of nodes that are tightly knit (i.e. highly connected)

with less dense connections existing between these groups [116]. Such structures

are interesting because many ‘real world’ networks (e.g. social, biological, tech-

nological) are naturally partitioned into sets of loosely-connected ‘communities’,

or ‘modules’ [102, 115, 124, 137, 163].

Moreover, this analysis is not restricted to networks which are static (i.e. the pos-

sibility that connections are added and removed and nodes update their state is

also considered) since such structures capture the fact that links between individ-
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ual nodes - and the properties of nodes - may change over time. Recent work [30]

on community structure in dynamic networks has shown that allowing nodes to in-

fluence the state of other nodes facilitates the spontaneous emergence of dynamic

equilibrium (that is, the community structure of the network remains stable, even

as group composition changes over time) [96].

The idea of nodes influencing one another leads naturally to the notion of syn-

chronisation. The ability of connected dynamic elements to synchronise their be-

haviour through interaction is ubiquitous (see [141] for a general introduction) and

has profound implications for a wide variety of systems. For the purpose of this

analysis, the situation where the connected elements are oscillators [110] is of par-

ticular interest, as their synchrony is observed in many settings, from the human

heart [71] and brain [55], to insect locomotion [40] and novel forms of compu-

tation [10]. Previous work [9] has established a strong correlation between the

connectivity of groups of nodes and the time required for oscillators to synchro-

nise. However, given that full synchronisation does not (and, indeed, should not)

occur in many networks (for example, the abnormal synchronisation in neurones

is known to be a feature of epilepsy [96]) the possible relationship between struc-

ture and dynamical behaviour for oscillator networks where the coupling between

oscillators is weak enough and the connectivity in the graph is sparse enough,

such that synchronisation does not occur is considered. This chapter precisely

addresses this question.

Network topology has a strong effect on the observed dynamics of oscillator net-

works [25, 103, 117, 153]. Previous work has mainly focused on whether a net-
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work will synchronise, relating this to graphical measures such as the eigenvalues

of the laplacian [117] or clustering coefficients [105]. This work suggests that the

ability of an oscillator network to synchronise is enhanced by homogeneity in the

distribution of connections [117].

Many complex networks have been shown to demonstrate periodic dynamics.

Neural systems, for example, display modes of oscillation at particular frequen-

cies and this has in turn been linked to the hierarchical organisation of the brain

network itself [32].

In coupled oscillator networks with all-to-all coupling, oscillating waves of syn-

chronization have been observed in systems with bimodal and trimodal frequen-

cies [3, 5] and in systems of interacting populations of oscillators [112]. Such

oscillations may also be observed in globally coupled oscillators, where there is

both an excitatory and inhibitory component to the interactions, as observed in

[11, 12]. However, in each of these cases the global oscillations are in some way

attributable to the individual nodes in the network and not to the network structure

itself.

In this chapter we demonstrate how the community structure of a complex net-

work may actively drive periodic dynamics and that such periodic dynamics oc-

cur in real world networks. Section 5.2 demonstrates a new method of detecting

hierarchy in networks using oscillator dynamics. This method is then applied to

artificial networks with both two and three levels of hierarchy. The effects of de-

caying this hierarchical structure on the observed dynamics are also investigated,

demonstrated the suitability of this method in detecting underlying hierarchy. The
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final part of this analysis applies the method to the networks of metabolism and

mass transit networks, with two examples from each, one with an underlying hi-

erarchy and one without, demonstrating that this method can be used to determine

pseudo-hierarchy in networks. This chapter is concluded with a discussion and

suggestions for further work.

5.2 Methodology

In order to investigate the relationship between network structure and dynamics,

a model system that is broadly applicable, but which supports a wide range of

dynamical behaviours is required. This model also needs to be able to measure

the global network dynamics in a way that readily admits analysis. The well-

established Kuramoto model [85, 87, 88] meets all of these requirements and is

widely used in related work [13, 47, 52, 72]. Please see Section 3.2 for an outline

of this model.

The model describes a system of coupled oscillators described by ordinary dif-

ferential equations (ODEs) where interaction terms between oscillators are con-

nected according to the specific network topology. As the model is iterated over,

the phase of each node is altered according to Equation 3.2.8 (Section 3.2).

Motivated, in part, by the realisation that many naturally-occurring networks have

complex topologies, recent studies have been extended to systems where the pat-

tern of connections is local but not necessarily regular [109]. Due to the com-

plexity of the analysis, further assumptions have generally been introduced. For
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example, it is usually assumed that the oscillators are identical. Obviously, there-

fore, in the absence of disorder, (i.e. if ωi = ω, ∀i) there is only one attractor

of the dynamics: the fully synchronised regime, where θi = θ ,∀i. This scenario

suggests that, starting from random initial conditions, a complex network with

a non-trivial connectivity pattern will exhibit the following behaviour: first, the

highly interconnected units that form local clusters will synchronise; second, in a

sequential process, increasingly large synchronised spatial structures will emerge,

until, finally, the whole population is synchronised [9]. However, for many dy-

namical complex networks, synchronisation is neither realised nor desirable. In

these instances, weakly coupled oscillators may display partial synchronisation

or clustering, but not full synchronisation. More formally, Equation 3.2.8 can

give rise to a variety of dynamical behaviours. For strongly coupled networks

(those with high connectivity and coupling strength k) the phases of all oscillators

quickly synchronise. With weak coupling, the oscillators appear to move ran-

domly. Between these regimes, partial synchronisation is observed, where some

oscillators are synchronised and others form clusters, but no global synchroni-

sation is evident. For this analysis the Kuramoto order parameter is used as a

measure of coherence over the network as a whole, Equation 3.2.9 Section 3.2

[85].

Section 5.2 demonstrates a novel method of detecting hierarchy in networks by

observing the behaviour of oscillators coupled according to the adjacency matrix

of said network. This will detail the methodology and how it is implemented,

which can be outlined as follows:
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• The adjacency matrix of the network under analysis is taken with each node

being considered an oscillator.

• The natural frequency, ω , of the oscillator are normally distributed with a

standard deviation of σ(ω).

• For a range of incremental values of σ(ω), for example 0.001 to 0.1 in

increments of 0.001, a simulation is ran.

• On each simulation, the initial phase of each oscillator is randomly dis-

tributed in the range of 0 to 2π .

• In each of these simulations the range of coupling strengths to be searched

through are chosen, for example 0.001 to 1 as well as the number of itera-

tions for which the simulation will run, typically 20000+.

• On each of these iterations, the coupling strength is increased incrementally

within this range. The change in phase of each oscillator calculated accord-

ing to Equation 3.2.8 as well as the Kuramoto order parameter ( Equation

3.2.9).

• From each simulation the Kuramoto order parameter, χ , can then be plotted.

The range of coupling strengths, K, for which long range oscillations can

be found for each σ(ω) value, if they are present.

• Using the particular value of K and σ(ω) a single simulation is ran, but with

a fixed coupling strength through the iterations. The behaviour of the nodes

over time can be seen by plotting the Kuramoto order parameter.
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• The Fourier transform can then be performed on this signal to determine the

modes of oscillation.

Results

The results of the experimental investigations are now presented. The over-arching

aim is to show how global oscillatory behaviour may be related directly to the

community structure of the underlying complex network.

Artificial networks

The first networks to be analysed are from two classes of graph; those with and

those without any community structure. For example, consider the typical com-

munity structured graph in Figure 5.1. Given weak coupling, the dynamics of such

a graph allow for the possibility of synchronisation within the smaller globally

connected clusters, while the entire graph remains only partially synchronised.
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Figure 5.1: Example graph with community structure (one level of hierarchy).
For such a network there exist parameter regimes where the smaller, globally con-
nected sub-graphs may synchronise but the network as a whole does not (partial
synchronisation or clustering).

As such, any global measure of synchronisation appears to oscillate (Figure 5.3)

the oscillation being dependent upon the differences in the frequencies of oscilla-

tions between each of the clusters. These oscillations are present irrespective of

the sampling interval used or even if the samples are irregularly spaced, demon-

strating that the oscillations are not an artefact of the sampling procedure.

Figure 5.3 shows the Kuramoto order parameter oscillating between relatively

low levels of synchronisation and almost full synchronisation. It should be em-

phasised, though, that the internal frequencies of the oscillators, ω , have been

specifically selected in order to demonstrate such dynamics and that this will not

occur in all cases. These values are chosen from the oscillating region found by

varying the coupling strength as the model is iterated through, shown in Figure

5.2.

In graphs without any community structure, no discernible oscillation above that

of the natural frequency of the oscillators are observed. Figure 5.4 shows the
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Figure 5.2: Change in qualitative behaviour as measured by the Kuramoto
order parameter, χ , for varying coupling strength (k). For the hierarchical
network shown in Figure 5.1 with σ(ω)=0.013.

change on behaviour of the Kuramoto order parameter for varying coupling strengths

for a complete (fully connected) and an Erdös and Rényi random network [56].
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Figure 5.3: Simulation and Fourier transform for the network in Figure 5.1.
Time series for Kuramoto order parameter, χ (top), showing oscillatory dynamics
for a network of Kuramoto oscillators coupled as in Figure 5.1 along with its
corresponding Fourier transform (bottom). The coupling strength k = 0.2 and
the frequencies are normally distributed with standard deviation σ(ω) = 0.02.
Note, for such parameter values it is possible to observe full synchronisation or
oscillating dynamics as shown above depending on the individual frequencies of
the oscillators. The example demonstrated here, although fairly typical, is not the
only observable dynamics for such a network.
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Figure 5.4: Change in qualitative behaviour as measured by the Kuramoto
order parameter, χ , for varying coupling strength (k). For a complete network
with σ(ω)=0.066 (top) and of a random network, σ(ω)=0.036 (bottom).
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Figure 5.4(a) (top) shows a chaotic region where k is between 0 and 0.12 and then

a region of short range oscillation before the network synchronises. This short

range oscillation is cause by a single node not being synchronised with the rest

of the system and oscillating its phase past the synchronised population, due to

its initial frequency. Figure 5.4(b) (bottom) shows the change on behaviour of the

Kuramoto order parameter for varying coupling strengths for a random graph, the

same size as Figure 5.4(a) which shows similar behaviour. This demonstrates that

oscillating behaviour occurs in networks of various classes, caused by a single

node oscillating freely past the synchronised cluster. This short range oscillatory

behaviour is not typical for random and globally coupled networks which mostly

just move from chaos to synchronisation, however it is important to demonstrate

that oscillating behaviour can occur in most types of graph, the type of oscillation

produced is a feature that can be used to determine hierarchy.

The oscillatory behaviour in Figure 5.3 is caused by clusters synchronising due

to the hierarchical nature of the network. This in contrast to the much studied

Chimera states in which a part of the network synchronises with the remaining

nodes remaining incoherent [2, 90, 91]. This clustered synchronisation can be

demonstrated by observing the phase of each oscillator as the model is iterated,

shown in Figure 5.5. It can be seen that most of the nodes have synchronized into a

large cluster in which the phases of the nodes are all synchronised relative to each

other, with a second cluster which also have their phases synchronised relative

to one another. The oscillating behaviour can be seen to be caused by the phase

of one cluster oscillating in relation to the phase of the other. This behaviour is

determined by the topology of the network, in which the connectivity determines
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whether clustered synchronisation will occur. This demonstrates that this large-

range oscillation, caused by sub-populations forming, can be used to determine

the presence of hierarchy in a network.

Figure 5.5: Oscillators phase as the Kuramoto model is iterated through.
Phase of nodes during Kuramoto model. Two clusters have formed, the twenty
nodes on the right have synchronised with each other, as have the 5 nodes on
the right, but the two clusters remain unsynchronised to each other, causing the
regular oscillation seen in Figure 5.3.
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In order to demonstrate that the oscillating dynamics shown above are not simply

an artefact of network symmetry, the original network is perturbed by repeatedly

adding random connections. Figure 5.6 demonstrates the structural stability of

the modal dynamics when the network structure is no longer symmetric, but the

community structure is retained.
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Figure 5.6: Kuramoto simulation for increasingly perturbed hierarchical net-
work. Time series of Kuramoto order parameter, χ , for increasingly per-
turbed hierarchical network of Kuramoto oscillators. New links are highlighted
by arrows, demonstrating the robustness of dynamics to symmetry breaking, with
k = 0.2,σ(ω) = 0.02. Each simulation uses the same initial conditions and os-
cillator frequencies as in Figure 5.3. Similar observations occur whether the sim-
ulations are conducted as individual runs (as shown here) or with the network
structure being perturbed as the simulation is performed. Note: Although the
time series for the third and forth network (left to right) appear very similar they
are simulations from their respective graphs.
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Figure 5.7: Kuramoto simulations for rewired hierarchical networks. Time
series for Kuramoto order parameter, χ , for various networks of coupled Ku-
ramoto oscillators. Each network has been rewired using the Xswap rewiring
algorithm which maintains the degree of each node. Two pairs of edges have been
rewired from one graph to the next from left to right and it can be seen that the
oscillating behaviour begins to break down as the hierarchical structure is de-
creased. k = 0.2,σ(ω) = 0.02. Again the same initial conditions and internal
oscillator frequencies are used as in Figure 5.3.

Figure 5.6 demonstrates that the global oscillations observed are not due to sym-

metry of the graph structure. Although the asymmetric graphs no longer pro-

duce strong regular oscillations, the dynamics are not significantly affected by

symmetry-breaking through the addition of connections. For this particular graph,

it is possible to add a further 5 connections before the onset of global synchroni-

sation.

Figure 5.7 shows another example of network rewiring, in this case using the

Xswap algorithm [68], in which the network is randomised, with the degree of

each node remaining constant. This is achieved by randomly selecting a pair of

edges in the network, (i, j) and (k, l). If (i, l) = (k, j) = 0 then (i, j) = (k, l) = 0

and (i, l) = (k, j) = 1. It should be noted that in the unperturbed network the
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nodes are self connected, so on some iterations these edges are swapped. The

oscillations break down as the network is randomised demonstrating that it is the

overall graphical structure that causes this behaviour.

To further develop the study of non-symmetric networks, an idealised network

of oscillators arranged such that three highly coupled sub-networks of oscillators

are connected via a sparse network of random connections are considered. For

the following analysis, a network consisting of subgraphs of 45 oscillators with

approximately 130 connections within each cluster is generated.

The effect of varying coupling strength, k, is investigated using standard tech-

niques of increasing the coupling strengths as the model is iterated through. Figure

5.8 shows a typical example of the behaviour of the Kuramoto order parameter,

χ as the coupling strength is increased from an initial value of k = 0 to k = 1.

Here, the initial phases of the oscillators are drawn from a uniform distribution,

θi ∈ [0,2π]. At each iteration of the simulation the value of k is increased in

small increments, typically of around 2×10−6 for networks with varying random

additional connections (see Figure 5.8).
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Figure 5.8: Change in qualitative behaviour as measured by the Kuramoto or-
der parameter, χ , for varying coupling strength (k) for networks composed
of clustered random networks Each network contains 3 clusters of 45 randomly
connected nodes with approximately 130 connections in each cluster. Here the fre-
quencies are normally distributed with σ(ω) = 0.01. (Left: 50 additional random
connections over the whole network; Middle: 100 additional connections; Right:
150 additional connections. Note: The oscillatory regions indicate the parameter
regimes where oscillatory behaviour will be observed..
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Figure 5.9: Kuramoto simulations for networks of clustered random networks
Time series for Kuramoto order parameter, with k = 0.4 (left), 0.1 (middle), and
0.06 (right) showing multi-modal dynamics. The simulations are for networks de-
scribed in Figure 5.2 and the parameter values taken from the oscillating regions.

In common with networks lacking community structure, these networks synchro-

nise above a critical coupling strength and for small values of k, the oscillators are

incoherent. In the first example there exists a specific region for k ∈ [0.23,0.6] for
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which the Kuramoto order parameter, χ , appears to oscillate between the ordered

and disordered state. Figure 5.9 shows the time series of the Kuramoto order

parameter for the three networks described above, with a distribution of internal

frequencies of 0.01 and respective coupling strengths of 0.4 (left), 0.1 (middle)

and 0.06 (right).

A more complex network, which displays an additional level of hierarchy is now

considered (Figure 5.10). For optimised parameter values of σ(ω) = 0.0012, k =

0.12 multi-modal oscillations of the Kuramoto order parameter, χ , are observed,

within a range of 0.1 to 0.5 (Figure 5.2). A Fourier spectrum of this time series

demonstrates two modes of oscillation, at modes 22 and 46, with strong echoes

at modes 66 and 93 (Figure 5.2). The relationship between these oscillating

modes strongly mirrors the graphical structure of the network, in that the two

levels of hierarchy cause a bimodal oscillation and therefore two peaks in the

Fourier spectrum.
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Figure 5.10: Hierarchical network with two levels of hierarchy This network
consists of five copies of the network in Figure 5.1 to produce two levels of hi-
erarchy. For such a network there exist parameter regimes where the smaller,
globally connected sub-graphs may synchronise but the network as a whole does
not (partial synchronisation or clustering).
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Figure 5.11: Kuramoto simulation for a network with two levels of hierarchy
With σ(ω)=0.0012, k=0.12, showing bimodal oscillations.
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Figure 5.12: Fourier transform of signal in Figure 5.2 Two peaks can be seen
at mode=23 and mode=47, followed by their respective echoes at mode=70 and
mode=94 demonstrating a bi-modal oscillation

‘Real world’ networks

In the previous section, the feasibility of using a global order measure to detect

community structure in artificial networks has been established. This approach is

now validated against two classes of ‘real world’ network, both of which present

examples that may or may not possess community structure.

In order to provide a metric for comparison, the standard measure of Q modular-

ity [97] is used. The measure Q is in the range [−1/2, 1] and gives a measure of

community structure. It is defined as the proportion of the edges that fall within

any cluster, minus the expected proportion if such edges were distributed at ran-

dom, outlined in Section 2.2. Other metrics for determining such modularity have

also been proposed (see [6], for example) however for this analysis the most well

known is used (the MATLAB program to calculate Q modularity was downloaded

from VisualConnectome [45]).
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Human metabolic network

The metabolic pathwaynetwork of a cell or microorganism describes the connec-

tions between various cellular processes that are essential for sustaining function

[77]. Metabolic networks often exhibit strong community structure [123, 76, 145]

and existing examples are usually examples of pseudo-hierarchical networks,

in that their structure is not fully hierarchical [147]. In this section this new

method of hierarchy detection is used to correctly identify community structure in

metabolic networks.

The metabolic pathway networks used are in SBML format [75], taken from the

BiGG database [127]. These are imported to MATLAB using libSBML [27]. In

this analysis, the Homo Sapiens Recon 1 (human) metabolic network is used, as

this is perhaps the most interesting example available. Similar results have been

observed on other metabolic networks formulated in a similar manner.

In order to establish a relationship between community structure and dynamics,

two versions of this network are considered. The first comprises the global con-

nectivity matrix of all chemical reactants in the cell, a connection being present

if two or more components are involved in a known reaction (water and ATP are

excluded, as these occur in almost all reactions). The second formulation of the

metabolic network partitions reactions into sub-cellular networks, each represent-

ing different regions of the cell (nucleus, golgi bodies, etc.) which are connected

in turn by reactions. Graphical representations of these networks are shown in

Figure 5.13.
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1

Figure 5.13: Graphical representations of two versions of the same human
metabolic network. Left: Non-partitioned representation of human metabolic
network. Right: Partitioned representation of human metabolic network in which
the network is partitioned into sub-cellular networks. The Mathematica spring
algorithm is used to display the network structures, it can be seen that the two
versions have a very different structure.

From a graph theoretical perspective, these two networks are very similar. Stan-

dard graph metrics such as the clustering coefficient, mean and maximum geodesic

path length do not distinguish between the two. Furthermore, the eigenvalue spec-

trum (as described in [9]) also shows no discernible difference.

The main difference between these two networks lies in the values for Q mod-

ularity, with the compartmentalised version having a value of Q = 0.41 and the

non-compartmentalised version having a value of Q = 0.29. Due to the higher

modularity of the compartmentalised version, regular oscillations would be ex-

pected when using this representation.

Simulations for optimised coupling strengths and frequency distributions are con-
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ducted on both forms of the metabolic network. The coupling strength, as before,

is taken from Figure 5.14.
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Figure 5.14: Change in qualitative behaviour as measured by the Kuramoto
order parameter, χ , for varying coupling strength (k). For the decompartmen-
talised (top) and compartmentalised (bottom) Homo Sapien metabolic pathway
networks both with frequency deviation, σ(ω) =0.02
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Figure 5.15: Kuramoto simulation and corresponding Fourier transform for
the network on the left in Figure 5.13. Kuramoto simulation (top) of decom-
partmentalised version of Homo Sapiens with σ(ω)=0.02, k = 30.63. As no re-
gion of oscillation was found by increasing the coupling strength as the model is
iterated through, the variables were chosen to be the same as that in Figure 5.16
for a comparison. The Fourier transform (bottom) shows no strong peaks, due to
the irregularity of the signal

For the non-partitioned network, multi-modal oscillations in the Kuramoto order

parameter are not observed. However, for the partitioned network strong modal

dynamics are observed (See Figures 5.15 and 5.16 for a comparison) which is

consistent with the results for Q modularity. This demonstrates that this method of

community detection is a viable method for use on complex real-world networks,

where the underlying structure is not as regular as those formed using generative

models.
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Figure 5.16: Kuramoto simulation and corresponding Fourier transform for
the network on the right in Figure 5.13. Kuramoto simulation (top) of compart-
mentalised version of Homo Sapiens with σ(ω)=0.02, k = 30.63. These variables
were chosen from the oscillating region shown in Figure 5.14. The Fourier trans-
form (bottom) shows a strong peak at mode=7, followed by an echo at mode=15.

Transport networks

Structurally, these networks are significantly different from the previous exam-

ples. Notably, there exist many long chains, the overall graph connectivity is

low and there exists very few ‘small-world’ effects (see Section 4.2). As such,

these networks present a novel challenge, over and above that offered by both the

artificially-generated networks and the metabolic networks.

As before, numerical simulations are run in order to optimise model parameters,

114



Hierarchical Graphs and Oscillatory Dynamics
CHAPTER 5. DETECTING TOPOLOGICAL HIERARCHY USING COUPLED OSCILLATOR MODELS

in an attempt to maximise any oscillatory dynamics. On the London network, a

small amount of oscillatory behaviour is observed, although the amplitude of such

oscillation is small - the maximum observed oscillation has an amplitude of 0.05.

The resulting Fourier spectrum has a peak strength of 2.8×106 (Figure 5.17).
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Figure 5.17: Kuramoto simulation (top) and Fourier transform (bottom) for
the London underground nework. With σ(ω)=0.0021, K=3.6. These values
were chosen to maximise the oscillatory behaviour.

On the other hand, experiments on the New York network yield a significantly

more pronounced oscillation, which displays very strong periodicity. The primary

oscillatory mode has a strength of 8.5× 107 - and a strong echo. A second os-

cillatory mode is also observed (Figure 5.18). In order to demonstrate that this

oscillating behaviour is indeed caused by the underlying hierarchy of the network,
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Figure 5.18: Kuramoto simulation (top) and Fourier transform (bottom) for
the New York subway network. With σ(ω)=0.0028, K=6.5. These values were
chosen to maximise the oscillatory behaviour.

the New York subway network was rewired using the Xswap algorithm previously

described. We observe that as the network is rewired and the modularity reduced

to below Q ≈ 0.4, oscillations no longer occur. As the Xswap algorithm main-

tains the degree distribution of the network but reduces modularity, this precisely

demonstrates that modularity directly causes the oscillations in the Kuramoto or-

der parameter of the phase.
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Conclusion

This chapter has demonstrated a robust and structurally stable relationship be-

tween form and function in complex networks whereby global oscillations are

shown to be a factor of network topology. Modal oscillations in a measure of

global synchronisation are observed which can be directly related to the structure

of the network itself. As this method relies on the overall behaviour of the network

it allows for the presence of an underlying hierarchical structure to be detected in

complex networks.

By applying the method to two types of real world networks - whereby examples

exist with significantly different community structures but with similar underlying

topology, this method is also shown to work on realistic, more irregular structures.

The breakdown in oscillatory behaviour when networks are rewired (with the de-

gree of each node remaining constant) has also been demonstrated. This confirms

that network modularity drives oscillations, as reducing the degree of modularity

causes these oscillations to break down. It should be noted, however, that for the

real world examples given, the underlying dynamics of the nodes on the network

(chemical reactions and subway trains) are considerably more complex than the

simple Kuramoto oscillators used to demonstrate the principle. As such, it is not

possible to directly attribute any observed oscillatory dynamics in such systems to

the network structure alone.

Many real world networks (e.g. Transport, the brain) are examples of pseudo-
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hierarchical networks, in that their structure is not fully hierarchical [147]. In the

particular example of the brain, for instance, multi-modal oscillations (observed

as Gamma (> 30(Hz) Beta (13−30Hz) and Alpha (8−12Hz) waves etc. in EEG

measurements) may attribute to structural hierarchies in the neural connectivity.

As such, for systems where the dynamics of the individual elements of a com-

plex network are known to be unimodal and the interactions between them are

likewise, global observations of oscillatory behaviour may give some indication

as to underlying structures and network connectivity, yielding novel methods of

community detection.
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Chapter 6

Discussion

In this thesis an analysis on real world networks has been presented which has

given significant insight into their structure. The main contributions of this thesis

are:

• A graphical analysis has been conducted on the real world networks of

metabolism and underground rail networks, demonstrating common fea-

tures of each type of network.

• A novel network growth model has been described which closely matches

the features seen in the metabolic networks investigated.

• A novel method of hierarchy detection has been derived which can be used

to perform a more in depth analysis on networks.

• This novel method has then been applied to the networks of metabolism and
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underground railway networks, demonstrating the durability of this method

in detecting hierarchy in real world networks, as well as giving an insight

into their specific structure.

The graphical analysis has demonstrated that the metabolic networks investigated

are more accurately modelled as networks which are restricted in their growth by

the number of nodes in the network. This size dependent model has the advantage

over other growth model, such as the BA scale-free model, in that networks can be

grown to the same size which have different topological properties, a feature seen

in many of the real world networks analysed. This allows for a network model

which can be tuned to fit with specific real world networks using a variable which

in this work has been arbitrary but could be expanded on to be related to some

property of the network. In the case of the metabolic pathways the type of network

representation can indicate which value this variable should take, producing a

more accurate network model. For example, if the particular representation used

is known to increase the clustering observed in the network (such as in the case

of compartmentalised representations) then a higher value for this constant can be

used to give a more appropriate network model.

Further work in this area would be in expanding the model to also produce weighted

and directed networks which would allow for a more complex network representa-

tion to be modelled. As recent work has demonstrated that many networks thought

to be scale-free are not of this class it would also be worthwhile to test if they have

the characteristics of the size dependent model described here.
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One of the advantage of having a network growth model which fits closely with

the graphical measures found in certain networks is that it allows for man made

networks to be designed to have similar features. As structure directly effects

the behaviour of networks we can emulate a particular desirable behaviour. For

example, the high clustering and low mean geodesic length allows for information

to travel efficiently through the network, which can now be emulated in man made

networks by using this network growth model. The artificial network model can

also be used to test how the networks behave under certain conditions, such as

targeted removal of nodes. Rather than just testing the actual networks, we can

also generate artificial networks of the same size with a similar structure to allow

for more comprehensive analysis.

The second part of this work was in the field of oscillator dynamics, in which the

Kuramoto model was applied to networks to reveal hierarchical structures. This

method of hierarchy detection utilises the dynamic behaviour observed in these

networks, which is caused by the underlying structure. This method was first ap-

plied to artificial networks to demonstrate the concept in networks with known

hierarchy. By using networks with a known structure the dynamical effects ob-

served on the network can be related to the structure. In order to test the robustness

of this method it was applied to networks which are constructed from clusters of

randomly generated networks. The importance of this step was due to the fact

that real world networks do not tend to be regular, but have an inherit randomness

to them so any method of detecting hierarchy in real world networks needs to be

capable of detecting an underlying hierarchy (or pseudo-hierarchy). The method

was also applied to increasingly perturbed networks which as well as demonstrat-

121



Hierarchical Graphs and Oscillatory Dynamics
CHAPTER 6. DISCUSSION

ing that the method is suitable for detecting pseudo-hierarchy, also shows how the

dynamic behaviour breaks down as the structure breaks down. In contrast to pre-

vious research, this method has also been applied to real world networks which

demonstrates its ability to detect underlying structural properties of complex net-

works, allowing for a wider range of applications. By using examples from both

biological and man made networks where there is some indication as to possible

differences in their structure this dynamical behaviour can be seen to be a direct

cause of topology.

An important advantage of this method of hierarchy detection is the fact it can be

used to determine topological properties without knowing the network structure.

In effect, if a network has an oscillating output this could be attributed to an under-

lying hierarchical structure. One example where this method may be of particular

importance is in neurology. As the brain is known to exhibit regular waves of

oscillation these may be attributed to the structure of the brain itself. This would

allow for abnormalities in these oscillating waves to be directly linked to the phys-

ical structure of the brain, allowing for the detection of certain illnesses from the

brain waves exhibited. For example, in the case of epilepsy where the seizures

are known to be caused by abnormal synchronisation of neurons [96], it may be

possible to attribute these to a specific problem in the topological structure of the

brain. Many real world network have been classified as scale-free networks, how-

ever they may exhibit the hierarchical properties seen in the network examined

here. One example where this may be the case is in social network, although pref-

erential attachment may seem a viable method for creating networks with similar

properties it is probable that they will have an underlying hierarchy, due to the

122



Hierarchical Graphs and Oscillatory Dynamics
CHAPTER 6. DISCUSSION

way these network develop, when someone joins a social network they tend to

be joining their own social network with that of the new acquiescence, creating a

highly modular network. This could be easily tested for by taking a large sample

of a social media network and applying the method described here, which would

allow for the structure to be detected. This would not only be helpful in our un-

derstanding of how these networks are structured but could also have applications

in epidemiology. By having a better understanding of the structure of a social net-

work we can gain a deeper understanding as to how many diseases spread across

these networks and how best to control this.

The results from both sides of the investigation have demonstrated that some of the

networks investigated, namely the compartmentalised versions of the metabolic

pathways, showed properties of being both size dependent networks and having

an underlying hierarchical structure. This would suggest that a more accurate

network model for these networks would be small size dependent networks grow-

ing and then coalescing with other networks to form networks with a hierarchical

structure as well as having size dependent features. Another important finding

was that the network representation format used for the metabolic pathways has a

dramatic effect on the structure they posses. This can lead to the same metabolic

pathways being classified as different topological structures which can drastically

alter our understanding of how they behave. This demonstrates the importance of

using the appropriate representations when analysing these biological networks.

The underground railway networks were not found to be examples of size depen-

dent networks, or any other standard networks models. This is not a surprising

result as these networks began as separate single lines which have since been
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joined up, very different from standard network models. A dynamical analysis

did reveal that the two different underground railway systems investigated have a

very different topological structure, probably down to differences in the underly-

ing geography of their location.

The motivation for this work was to derive a method of hierarchy detection which

could be used for the pseudo-hierarchical real world networks which exists in

many fields. Further work in this area should focus on deriving a measure for this

type of hierarchy, building on the method described for detection. If a general

measure of hierarchy could be determined, the differences in how these networks

function could be inferred, which may help to explain differences in their func-

tionality. Deriving more information from these oscillatory patterns may also be

possible, such as the size of clusters and the strength of their connection to one

another which could help to develop this method into a more useful tool. In some

real world networks too much complexity is lost when using unweighted undi-

rected representations. Further work would be in developing this method to also

be applicable to weighted directed networks which could be achieved by having

individual coupling strengths for each connection.

This analysis has demonstrated a new network growth model which shares fea-

tures of metabolic pathway networks, and may be applicable to others. This gives

a great insight into how these networks develop and how their growth may be

constrained. Deriving a novel method of hierarchy detection has not only given

more insight into the networks examined here but also allows for the presence of

hierarchy to be detected in any real world networks, allowing for a more concrete
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view on the structure of many complex networks previously examined in more

standard topological ways.
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