
Molecules 2014, 19, 17221-17255; doi:10.3390/molecules191117221 
 

molecules 
ISSN 1420-3049 

www.mdpi.com/journal/molecules 

Review 

Diversity-Oriented Synthetic Strategies Applied to Cancer 
Chemical Biology and Drug Discovery 

Ian Collins 1,* and Alan M. Jones 2,* 

1 Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research,  

London SM2 5NG, UK 
2 Division of Chemistry and Environmental Science, School of Science and the Environment,  

Faculty of Science and Engineering, Manchester Metropolitan University, John Dalton Building, 

Chester Street, Manchester M1 5GD, UK 

* Authors to whom correspondence should be addressed: E-Mails: ian.collins@icr.ac.uk (I.C.); 

A.M.Jones@mmu.ac.uk (A.M.J.); Tel.: +44-(0)20-8722-4317 (I.C.); +44-(0)16-1247-6195 (A.M.J.). 

External Editor: Eamon Comer 

Received: 22 August 2014; in revised form: 13 October 2014 / Accepted: 17 October 2014 /  

Published: 27 October 2014 

 

Abstract: How can diversity-oriented strategies for chemical synthesis provide chemical 

tools to help shape our understanding of complex cancer pathways and progress  

anti-cancer drug discovery efforts? This review (surveying the literature from 2003 to the 

present) considers the applications of diversity-oriented synthesis (DOS), biology-oriented 

synthesis (BIOS) and associated strategies to cancer biology and drug discovery, 

summarising the syntheses of novel and often highly complex scaffolds from pluripotent or 

synthetically versatile building blocks. We highlight the role of diversity-oriented synthetic 

strategies in producing new chemical tools to interrogate cancer biology pathways through 

the assembly of relevant libraries and their application to phenotypic and biochemical 

screens. The use of diversity-oriented strategies to explore structure-activity relationships in 

more advanced drug discovery projects is discussed. We show how considering appropriate 

and variable focus in library design has provided a spectrum of DOS approaches relevant at 

all stages in anti-cancer drug discovery. 

Keywords: diversity-oriented synthesis (DOS); biology-oriented synthesis (BIOS); cancer; 

chemical tools; drug discovery 
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1. Introduction 

Diversity-oriented synthetic (DOS) approaches can provide new chemical tools to help shape our 

understanding of complex cancer biology, and a platform for the identification and progression of  

anti-cancer drug leads. The DOS approach is undergoing resurgence in terms of its application to 

medicinal chemistry due to the architecturally complex products that result. These can have high  

non-aromatic carbon (fraction of sp3 hybrid atoms; Fsp3) and chiral content, which have been less 

common features of hit generation libraries to date [1]. More diverse and complex scaffolds are seen as 

one way to extend the reach of drug discovery to biomolecular interactions that have been viewed so far 

as less tractable for small molecule modulation, such as highly conformationally flexible proteins, 

protein-protein interactions [2], and protein-nucleic acid recognition sites. 

One of the original aims of DOS was to populate undeveloped chemical space using inventive yet 

simple to perform reactions to generate novel chemical scaffolds. This would allow the exploration of 

new areas of structural space to discover new biologically active molecules primarily as tools for 

chemical genetics, but also to provide a new chemical pool for drug discovery [3]. However, DOS does 

not exist in isolation to other strategies for making, identifying and refining biologically active  

small molecules. Other approaches to discovering biological active small molecules such as: virtual  

screening [4,5]; pharmacophore modelling [6]; fragment-based approaches [7]; and network-based 

approaches [8] are also important in both the early discovery phase and later optimisation of lead 

compounds. However, cross-fertilisation between DOS, the above approaches and other more 

established approaches has been fruitful, and it is possible to view the current position as a spectrum of 

design strategies that varies by the prominence given to skeletal structural diversity [9–14] (Figure 1). 

Figure 1. The spectrum of diversity-oriented approaches applied to make, find and improve 

biologically active small molecule chemical tools and drug leads. 

 

At one extreme DOS may aim to maximise the structural diversity of the compounds made and to 

populate structural space or achieve complexity that has been under-represented in conventional libraries. 
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The availability of compounds with new structural types and greater complexity may be especially 

relevant for tackling molecular targets or interactions that have so far proved resistant or difficult to find 

small molecule modulators for, in currently explored chemical space. In anti-cancer drug discovery, 

specific modulators of protein-protein or protein-nucleic acid interactions might be considered in this 

context. Unbiased approaches to DOS library design that maximise diversity and complexity have the 

disadvantage that the likelihood of encountering bioactivity with the compound library in any given 

screen is unknown and possibly very low, and may require very large libraries to mitigate this.  

On the other hand it is possible to consider constraints to the diversity during the forward synthesis 

design stage to provide a varying level of focus to the DOS libraries, with the aim of tailoring them to 

increase the likelihood of hits in specific screening settings or against selected molecular targets.  

A potential disadvantage of applying existing knowledge is to gravitate towards what has been explored 

previously, and potentially to restrict the possibility of new findings or of overturning unhelpful dogma, 

compared to an unbiased approach. 

When considering DOS applied to drug discovery, the ultimate need is to find bioactive compounds 

compatible with the environment of the human body that are stable to metabolising enzymes and balance 

the conflicting physicochemical demands of water solubility and lipid membrane permeability required 

for a drug molecule to penetrate tissues and cells. Thus the physicochemical property ranges associated 

with bioavailability, regardless of biological target, are useful constraints to apply to DOS library design 

in the context of medicinal chemistry and drug discovery. Likewise, physicochemical properties or 

functional groups associated with higher probability of organism-level toxicity could usefully be  

avoided [14,15]. 

Similarity to known bioactive molecules, such as endogenous metabolites, natural products, 

xenobiotic drug molecules or chemical tools, is one way to select scaffolds for more focussed DOS 

approaches to tackling specific targets or mechanisms. Thus, Biology-Oriented Synthesis (BIOS) as 

proposed by Waldmann and colleagues [12,13] identifies promising groups of scaffolds for DOS 

elaboration from analysis of the scaffolds of known bioactive compounds. The selection can be of varied 

stringency and applied at different levels in the scaffold analysis, and is therefore compatible with the 

idea of chemical-diversity driven DOS [16]. At the extreme of the spectrum of limitations on skeletal 

diversity that may be considered, this approach becomes analogous to the privileged structure strategy 

familiar to medicinal chemists [17,18] which typically involves substituent decoration of single scaffolds 

selected for their propensity to show particular bioactivities. In this context, it is interesting to note that 

the most obvious perceived chemical structural diversity may not always coincide with diverse 

biological behaviour, and that skeletal, substituent and stereochemical diversity must all be considered. 

At the highest structural resolutions available to molecular engineers in organic chemistry—the addition, 

removal or replacement of a single atom or the inversion of a single stereocentre—minimal changes may 

result in quite profound changes in biological activity despite high apparent similarity in the structural 

framework. Likewise, apparently structurally diverse compounds may converge on the same 

bioactivities [17,19]. The techniques of DOS may also be applied to expand scaffold diversity from 

single starting points within medicinal chemistry projects. This could be of particular importance when 

an initial hit lacks novelty or target specificity, or in structure-based drug discovery when the first 

scaffold discovered lacks synthetically tractable vectors to explore regions of interest in the binding site. 
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The organisation of material in this review will follow the broad pattern in Figure 1; starting with 

chemical probe discovery from DOS libraries put through screens directly tackling phenotypes or classes 

of interactions relevant to cancer. We will then survey the applications of DOS to anti-cancer drug 

discovery where a broad initial approach is taken, such as to construct a diverse screening library. 

Finally, we will discuss more tightly targeted drug discovery, where a single start point with specific 

activity is expanded and explored through DOS. 

2. DOS as a Source of New Chemical Tools for Cancer Biology 

Compound libraries generated by DOS are well established sources of new, biologically active 

chemical tools [9]. An overview of the typical work-flows for the application of DOS libraries to cancer 

biology research and drug discovery is shown in Figure 2. Many, but by no means all, of the biological 

attributes of cancer can be observed in cells grown in culture. In vitro phenotypic screens are readily 

conducted with human cancer cell lines, and this may be a factor in the observed high frequency with 

which DOS approaches have been applied to tackle cancer biology questions in the past decade. 

Phenotypic screens in cancer have often been focussed on general and potentially non-specific endpoints, 

such as cytotoxicity or anti-proliferative effects, which can limit interpretation of the mode of action of 

hit compounds [20]. Increasingly, the screening endpoints are related to more specific changes in cell 

morphology, behaviours such as motility and invasiveness, or to informative mechanistic readouts, e.g., 

arrest in specific phases of the cell cycle or evidence of apoptotic cell death. Pathway-driven reporter 

gene assays are widely used to identify inhibitors targeting specific signalling pathways in the cell, while 

synthetic lethal screens which combine RNA interference with small molecules in the cancer cell, can 

inform on the effects of modulating combinations of targets. Single cell imaging allows changes in the 

cell architecture to be probed, e.g., mitotic spindle disruption, or single molecules to be tracked, e.g., by 

following intracellular re-localisation of labelled proteins. Medium-to-high throughput phenotypic 

screening at the small organism level extends the range of potential phenotypes that can be seen and 

modulated by small molecules. For example angiogenesis, a key hallmark of cancer is readily observed 

in zebra-fish embryos. 

The contemporary approach to small molecule cancer drug discovery aims to intervene in the function 

of specific molecular targets, usually proteins, based on an understanding of the genetic and epigenetic 

changes that lead to cancer. These molecular targets may be mutated oncogenic proteins with a gain of 

function that drives malignancy, proteins that are dis-regulated as a result of oncogenic changes elsewhere 

in signalling networks, or epigenetic modifiers of gene product expression [21,22]. Additionally, rapidly 

proliferating cancer cells co-opt a number of non-oncogenic stress response pathways in order to survive, 

for example to mitigate DNA damage due to genomic instability or to chaperone and stabilise poorly 

folded oncogenic proteins [21,23]. Thus, as well as identifying and characterising desirable phenotypic 

changes induced by small molecule tool compounds, an understanding of the precise molecular targets 

of the compounds is required. The order in which these activities occurs can vary but both phenotypic 

and target functional assays are needed to derive well characterised chemical tools for cancer biology 

research from DOS approaches.  
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Figure 2. The application of DOS screening libraries to the discovery of new chemical tool 

compounds for cancer biology research and anticancer drug discovery. 

 

The importance to cancer biology research of chemical tools discovered through DOS is illustrated 

by tubacin (1; Figure 3), one of the earliest reported molecules to be identified through phenotypic 

screening of an explicit DOS library [24,25]. In the decade since its discovery, this selective histone 

deacetylase (HDAC) 6 inhibitor has been widely and increasingly used in biological studies to elucidate 

the role of HDAC6 and tubulin acetylation in the biology of cancer and other diseases, as shown by a 

recent citation search of the Chemical Abstracts database where approximately 100 primary publications 

were identified using tubacin as a chemical tool (Figure 4). 

Figure 3. Structures of tubacin and histacin HDAC inhibitors. 
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Figure 4. Primary journal reports identified from the Chemical Abstracts database as citing 

the use of tubacin as a chemical tool in biological studies. Data for 2014 is for the first  

6 months [26]. 

  

In the discovery of tubacin a library of 7392 1,3-benzodioxanes was constructed by DOS on solid 

support where the library components were biased towards deacetylase inhibition through the inclusion 

of terminal zinc-binding motifs (ortho-anilide, hydroxamic acid, carboxylic acid) attached to long chain 

spacers similar to those found in the prototypic natural product HDAC inhibitors trichostatin A and 

trapoxin [27]. The library was screened in parallel in two cell-based assays to identify molecules that 

caused selective inhibition of either nuclear or cytoplasmic deacetylase function, monitored by histone 

and α-tubulin acetylation, respectively [24]. Tubacin (1) was identified as the first known selective 

inhibitor of α-tubulin deacetylation, while histacin (2, Figure 3) was found to be a selective inhibitor of 

histone deacetylation. Subsequent analysis of tubacin’s mechanism of action showed that the compound 

inhibited the class II HDAC6 isoform and reduced cell motility and migration [25]. 

A very different DOS library based on scaffold diversity was applied to the discovery of novel 

macrocyclic HDAC inhibitors [28]. A build-couple-pair synthetic strategy was used to construct all 8 
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HDAC inhibition, resulting in the identification of the 9-membered lactam BRD-8430 (7) as a selective 

inhibitor of HDAC1 (IC50 69 nM) [29] with some activity against HDAC2 and three isoforms. Using 

BRD-8430 and other HDAC inhibitors with different selectivity profiles, in parallel with combinatorial 

RNAi studies, the authors showed that dual inhibition of HDAC1 and 2 decreased viability and induced 

differentiation of neuroblastoma cell lines. The biology of isoform-selective inhibition of HDACs is a 

topic of current interest in cancer research [30], to which DOS-derived ligands are making  

substantial contributions. 

Scheme 1. DOS of macrocyclic HDAC2 inhibitors and the structures of isoform selective 

HDAC inhibitors. 
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in yeast cells (IC50 42 µM). Rapid exploration of the structure-activity relationships (SAR) around 8 was 

possible using the DOS route with solid phase synthesis on alkylsilyl macrobeads. A stereospecific 

hetero-Diels-Alder reaction catalysed by a Cu-bisoxazoline (BOX) ligand system installed the core 

scaffold, followed by palladium-catalysed allyl group deprotection, amide bond coupling and  

fluoride-mediated silyl polymer support deprotection, leading to haptamide B (9) with improved potency 

(Kd 330 nM; IC50 24 µM). Although the mechanism of inhibition was not determined, whole-genome 

transcription profiling showed that 9 selectively inhibited transcription regulated by the family of 

Hap2/3/4/5p transcription factors. 

Scheme 2. DOS of dihydropyrancarboxamides and structures of inhibitors of HAP-family 

transcription factors. 

 

An alternative strategy for modulating transcription is to target signalling pathways upstream of the 

transcription factors themselves. This was demonstrated for macrocyclic inhibitors of the extracellular 

protein sonic hedgehog (Shh) which regulates downstream activation of the Gli family of transcription 

factors, important in embryo development and some cancers [33]. Although inhibitors of Shh signalling 

had previously been identified in phenotypic screens, none were known to target the protein directly. A 

DOS library of 10,000 compounds was screened for binding to recombinant Shh leading to the  

13-membered macrocyclic ligand 10 (Figure 5; Kd 9 µM) which inhibited Shh-activated, Gli transcription 

factor-dependent reporter gene expression in cultured fibroblasts. Structure-activity studies identified 

the 12-membered analogue robotnikinin (11; Kd 3.1 µM) with increased dissociation time from Shh. 

Studies in engineered and primary human skin cells suggested that robotnikinin acted by inhibiting 

formation of the complex between Shh and its extracellular binding partners with its transmembrane 

receptor, Patched. 

The Wnt proteins are another group of extracellular proteins that initiate signalling cascades that can 

lead to transcriptional activation and are important in carcinogenesis and cell differentiation. A small 

BIOS-derived library of 91 substituted oxepanes and oxepane-containing frameworks was designed, 

based on recognition of the oxepane ring as a privileged scaffold embedded in diverse natural products 

with varying biological activity [34]. 
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Figure 5. Structures of macrocyclic inhibitors of sonic Hedgehog extracellular signalling protein. 

 

Diels-Alder cycloadditions to intermediate 6-vinyl-2,3,4,7-tetrahydrooxepines were used to diversify the 

core scaffold. The compounds were screened in a cell reporter assay sensitized to detect stimulation of 

Wnt3a-dependent transcription. Pathway activators that acted synergistically with the presence of the 

Wnt3a isoform were detected, and subsequent SAR studies identified the activator wntepane 1 (12; 

Scheme 3; ED50 1.8 µM). An affinity probe based on 12 linked to biotin was used to capture potential 

targets and reversible binding to the Wnt membrane receptor Vangl1 was demonstrated, the first time a 

tool molecule targeting this protein was reported. 

Scheme 3. BIOS and structure of an activator of Wnt signalling. 

 

The rearrangement of cell architecture during mitosis lends itself to high-content phenotypic screens, 

as shown by the identification of the spirooxindole 13 (Scheme 4) [35]. The starting point for this BIOS 

approach was the recognition of the spirooxindole motif in many bioactive compounds, including the 

tubulin polymerization inhibitor spirotryprostatin B. A highly enantioselective, copper-catalyzed 1,3-dipolar 

cycloaddition of glycine ester E-imines and benzylidene- or alkylidene-oxindoles was developed to 

construct a small library of 3,3'-pyrrolidinyl spirooxindoles. The general use of catalytic enantioselective 

1,3-dipolar cycloadditions of azomethine ylides in BIOS has been highlighted and reviewed [36]. 

Changing the Lewis-acid catalyst to silver acetate and using a stereochemically pure Z-imine starting 

material gave racemic products with a different stereochemistry in the pyrrolidine ring. The analogue 13 

was identified from a screen of 39 compounds as the only hit that caused mitotic arrest, evidenced by 

changes in cell morphology and DNA content as well as effects on proliferation. Despite the scaffold 
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similarity to known spirooxindole inhibitors of p53-MDM2, 13 was not an inhibitor of this protein-protein 

interaction. Rather, 13 was found to interfere with microtubule organization and nucleation centre 

distribution, but without the direct effects on microtubule polymerization seen with spirotryprostatin B. 

Consistent with this, in HeLa human cancer cells 13 caused multipolar spindle formation, lagging 

chromosomal separation and mitotic arrest. This example nicely illustrates some of the strengths and 

potential challenges of applying diversity-oriented approaches to chemical probe identification. Firstly, 

the BIOS logic focusses the chemical space explored to efficiently identify new compounds with 

bioactivity in cells, and the 1/39 hit rate (2.6%) contrasts with other examples discussed above where 

libraries of several thousands of more structurally diverse compounds were screened to identify hits. 

However, despite high scaffold similarity to known bioactive compounds the spirooxindole 13 has a 

cellular phenotypic profile that would not necessarily be predicted from the biology of the known 

compounds. As the precise molecular target(s) of the compound are not automatically recovered from 

the phenotypic screen, further work would be required to credential the molecule for use as a chemical 

tool, but this example also clearly shows the advantage of high-content phenotypic screens in providing 

in-depth characterisation and differentiation of the hit molecules. 

Scheme 4. BIOS of spirooxindole inhibitors of microtubule organization.  

 

The privileged spirooxindole ring system was used as inspiration for a DOS library by the research 

groups of Zhang and Shi [37]. The 1,3-dipolar cycloaddition reaction between a range of electron 

deficient alkynes and isatin-derived azomethine ylides afforded 36 spirooxindole-based 2,5-dihydropyrrole 

compounds in good to excellent yield (Scheme 5). Several compounds exhibited modest cytotoxic 

effects in vitro in MCF-7 cells (up to 28% inhibition at 100 µg/mL). The possible mechanism of the 

cytotoxicity of this compound was investigated using Hoechst 33 324 staining to determine whether the 

cytotoxic effects were related to cell apoptosis. A dose-dependent response was found by flow cytometry 

studies indicating that the observed cytotoxicity was due to cell apoptosis. To elucidate the mechanism 

of apoptosis the levels of the signalling kinases ERK1/2, p38 and JNK and their respective phosphorylation 

states was measured. Levels of p38 and pJNK increased after 30 minutes, followed by pERK1/2 after  

1 h, and remained high for 8 h post treatment. Separate pre-treatment of MCF-7 cells with a MEK1, 

ERK1/2 or JNK inhibitor, respectively, did not affect the apoptotic response and it was concluded that 

compound 14 acted on MCF-7 cells through the MAPK pathway. 
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Scheme 5. A three-component reaction to a 2,5-dihydropyrrole spirooxindole-based library. 

 

Waldmann and Kumar used a natural product-inspired synthetic cascade to prepare a BIOS library 

and identified modulators of centrosome integrity [38]. An elegant cascade sequence of twelve steps was 

used to prepare tetracyclic indoloquinolizines resembling the structure of polycyclic indole alkaloids 

(Scheme 6). Electron deficient 3-formyl chromones and alkynes treated with triphenylphosphine, acting 

as a pseudo organocatalyst, underwent a [4 + 2] annulation to afford a range of benzopyrones. Reaction 

of the benzopyrones with tryptamines resulted in aminals via a regioselective SN2'-type addition that 

opened the chromone ring and liberated the phenol. The aminals underwent conjugate re-addition of the 

phenol, followed by SN2'-type retro-Michael reaction and pyran ring opening to generate an enamine, 

which in turn cyclised on to the proximal carbonyl group to install a dihydropyridine ring. The para 

relationship between the dihydropyridine nitrogen and chromone oxygen led to a second chromone  

ring-opening and regenerated the phenolic group. Rotation around the acyl-pyridinium C-C bond 

allowed the newly generated phenol to intercept the pyridinium ring at the C2 position, generating 

intermediates 15 that could be isolated. Aza-Claisen rearrangement and subsequent ring-opening 

revealed a system with the substituents arranged to undergo a Pictet-Spengler cyclisation. The 

tetrahydrocarboline generated, underwent an Aza-Michael addition followed by retro-Michael addition 

and another chromone ring-opening to afford the final indoloquinolizine products. The focussed 

collection was screened for modulation of cell division using a phenotypic screen in BSC-1 cells. 

Compound 16 led to the accumulation of rounded cells with condensed DNA, a feature of mitotic cells, 

and also had the effect of inducing three daughter cells during mitosis in HeLa and U2OS cells 

overexpressing tubulin. The SAR generated from the initial 26 indoloquinolizines suggested groups 

pendant from the R5-position would not be detrimental to activity and allowed a linker to be placed to 

immobilize the active compound to Sepharose beads. Pull down experiments with this affinity probe 

(compared with a negative control) in HeLa cells lysates led to the conclusion that 16 reversibly bound 

to the centrosomal protein NPM (and Crm1) and U2 small ribonuclear protein. The affinities (Kd) for 

binding to His-NPM and Crm1 were determined using a fluorescent probe (a derivative of 16, not shown) 

as 25 and 9 µM, respectively. HeLa cells treated with 16 at 50 µM demonstrated partial inhibition of 

nuclear export, consistent with Crm1 targeting. Cytotoxicity assays showed 16 to be significantly less toxic 

than leptomycin B, a known nuclear export inhibitor. Thus the application of a BIOS approach led to a 

novel inhibitor of centrosome-associated proteins NPM and Crm1 in cells and further analysis revealed 

the effects of 16 on centrosome and spindle integrity, chromosome defects, M stage cell cycle arrest and 

ultimately, apoptosis. 
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Scheme 6. Cascade synthesis of a BIOS library of indoloquinolizines. 

 

A high-content phenotypic screen for antimitotic activity was also applied to a structurally diverse 

DOS library constructed using rhodium-catalyzed carbene formation and insertion chemistry [39]. 

Phenyl diazoester 17 was the starting point for the synthesis of a sub-library of scaffolds through 

intermolecular cyclopropanation of alkenes, alkynes and allenes (Scheme 7). The styryl diazoester 18 

underwent tandem cyclopropanation-Cope rearrangement with cyclopentadiene to give the 

bicyclo[3.2.1]octadiene 19. In turn, divergent reactions of 19 through Suzuki couplings, alkene 

epoxidation or hydroxylation, metathesis and oxidative alkene cleavage generated a library of  

35 compounds covering 10 distinct scaffolds. Chemoinformatic analysis demonstrated a significant shift 

in the DOS library towards more spherical shapes (as defined by principal moments of inertia) compared 

to a collection of known drugs. In U2OS human osteosarcoma cells, two bicyclo[3.2.1]octadienes caused 

mitotic arrest and follow up synthesis of reduced analogues identified the S-enantiomer of dosabulin 

(20) as a more potent inhibitor of mitosis (EC50 1.2 µM) that caused cell death through apoptosis. 

Confocal microscopy showed disruption of the tubulin network in cells treated with (S)-20 and the 

compound was an inhibitor of tubulin polymerization in vitro. Competition studies indicated that (S)-20 

was not binding to the vinblastine site on tubulin, but was binding near or in allosteric relation to the 

colchicine binding site. 

One strategy to enable easier deconvolution of the molecular targets of a probe compound identified 

in phenotypic screening is to use the concept of synthetic lethality in the design of the cellular screening 

approach. Here a specific genetic modification or chemical inhibitor is introduced that, although  

itself inadequate to perturb the phenotype, renders the cells sensitive to additional inhibition of  

compensatory pathways. 
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Scheme 7. Rhodium carbenoid methodology used for DOS leading to identification of 

inhibitors of tubulin polymerization. 

 

Screening is carried out in the absence and presence of the specific inhibitor or genetic modification. 

Compounds in the screen that give a phenotypic change under the “synthetic lethal” conditions may be 

more rapidly associated with their molecular targets if genetic analyses of the compensatory pathways 

are carried out in parallel [40]. This was exemplified for the discovery of inhibitors of glucose transport 

from a DOS library [41]. The switch between oxidative phosphorylation to glycolysis as the primary 

metabolic source of ATP for cell energy requirements is a long-recognized phenomenon of cancer cells 

(the Warburg effect) and of major interest for anti-cancer drug discovery [42]. A 955-member DOS library 

of stereochemically pure monocyclic and fused pyrrolidinones was assembled from tandem 

intermolecular Michael addition—intramolecular amidation starting from β-keto esters and primary amines 

(Scheme 8). The pyrrolidinone core was selected based on its widespread occurrence in bioactive natural 

products and drugs. The library was screened in highly glycolytic A549 human lung cancer cells in the 

presence of the cytochrome c reductase inhibitor, antimycin D which suppresses oxidative phosphorylation 

and sensitizes the cells to inhibitors of glucose metabolism or glucose uptake. Two compounds 21 and 

22 were identified that inhibited ATP production in the presence of antimycin D but not when given as 

single agents. By profiling the compounds in a panel of cancer and non-tumorigenic cell lines with 

different dependencies on glycolysis versus oxidative phosphorylation, it was observed that the compounds 

gave a similar pattern of activity to known inhibitors of glucose uptake. Follow up studies demonstrated 

that 21 and 22 were inhibitors of the glucose transporter GLUT1 (Ki 1.2 and 0.8 µM, respectively). 
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Scheme 8. Identification of inhibitors of glucose uptake from a DOS library of pyrrolidinones. 

 

Phenotypic screens can be defined to target modulating ligands to specific pathways, as illustrated in 

the discovery of marpin (23; Figure 6) from a cell-based assay for inhibitors of hydroxyurea-induced 

phosphorylation of the DNA damage response protein, checkpoint kinase 1 CHK1 [43]. CHK1 is 

phosphorylated and activated in response to DNA damage, resulting in cell cycle arrest and damage 

repair, providing an intrinsic resistance mechanism to conventional DNA-targeted chemotherapy. 

Marpin (IC50 7.7 µM) originated in a library of skeletally diverse cyclic scaffolds prepared from the 

carbocylization and cyclocarbonylation reactions of allene-ynes and ene-allenes. The compound 

sensitized p53-deficient cells to DNA-damaging agents but was not an inhibitor of ATR, the upstream 

activator of CHK1. The mechanism of action is possibly covalent through Michael addition reactions 

since reduction of the exocyclic alkene to a pendant methyl group reduced activity by more than  

ten-fold. To identify the molecular target(s), an affinity resin based on marpin was used to pull down 

candidate proteins, although the identities of these have not yet been disclosed. 

Figure 6. Structure of an inhibitor of DNA-damage response protein activation. 

 

Angiogenesis is a hallmark behaviour of cancer that can be easily interrogated through phenotypic 

screens in zebrafish embryos. The groups of Arya and Kitambi have made a systematic study of the 

preparation of DOS libraries of macrocycles and their assessment as anti-angiogenic agents [44–47]. 

The choice of macrocyclic scaffolds was driven by their ubiquity in bioactive natural products, including 

those able to modulate protein-protein interactions, and by the relative paucity of this scaffold type in 

medicinal chemistry approaches [48]. The bi-functional building blocks 24 and ent-24 (Scheme 9), 
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accessed through Sharpless asymmetric epoxidation, were elaborated by amide couplings and 

macrocyclised either through intramolecular Heck coupling or by RCM to give 17- or 14-member rings, 

respectively [45,46]. Varying the order of introduction of the building blocks allowed for scaffold 

variation in each case, and replacement of the alkylamine or nitro groups of 24 by hydroxyl groups gave 

further diversity. A similar amide coupling and RCM strategy was applied to stereochemically diverse 

carbohydrate-derived stereo-tetrads to prepare 14-membered glycohybrid macrocycles, e.g., 27 [44]. 

Ring closing metathesis was also the key step in the construction of a 39-membered library of 

macrocycles based on the tri-functional aminoindoline 25 [47]. Here, the additional substitution points 

on the core allowed for the formation of fused or bridged macrocycles. A number of compounds were 

identified as inhibitors of angiogenesis and/or cell motility during early development of zebrafish 

embryos, including 26 and 27 which completely inhibited angiogenesis at 2.5 µM concentrations, 

although the molecular targets have not yet been reported. 

Scheme 9. DOS macrocyclic libraries and the structures of macrocyclic angiogenesis inhibitors. 

 

A novel base-mediated rearrangement of α-acyloxyacrylamides produced in a Passerini-like  

multi-component reaction was used to prepare a DOS library of five-membered heterocycles from which 

angiogenesis inhibitors were identified (Scheme 10) [49]. Starting from three isocyanides and three 
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arylacetic acids, a set of 27 compounds was made where production of two scaffolds was controlled by 

the strength of the base used. Triethylamine gave the product of migration of the O-acyl group to 

nitrogen, followed by intramolecular aldol condensation. In contrast, the stronger alkoxide base gave the 

product of enolate attack on the amide after the initial migration. Compound 28 inhibited angiogenesis 

in human endothelial progenitor cells (IC50 5.2 µM). 

Scheme 10. A multi-component reaction and divergent rearrangement leads to inhibitors  

of angiogenesis. 

 

DOS concepts have been applied to prepare libraries around scaffold types inspired by the regular 

repeating motifs of natural biopolymers, specifically peptides and polyketides [50–52]. These scaffolds 

may offer peptidomimetic approaches to the inhibition of protein-protein interactions, such as those 

involved in the regulation of apoptotic cell death. A set of 5120 peptoid oligomers of N-alkyl glycines 

generated inhibitors of the apoptosome-mediated activation of procaspase 9, detected in an in vitro assay 

that recapitulated the procaspase-cleavage activity of the complex formed by the proteins rApaf-1, 

cytochrome c and procaspase-9 with dATP [51]. While the initial trimeric hits were highly lipophilic, 

modification with terminal polar substituents produced more aqueous soluble analogues, e.g., 29 (IC50 

ca. 10 µM; Figure 7). A fluorescence-labelled derivative of 29 was used to show that the peptoid bound 

tightly to rApaf-1 in vitro (Kd 57 nM), but not to other proteins in the complex, and in a  

non-competitive manner with cytochrome c. To investigate the effects of the peptoid in cells,  

cell-penetrating derivatives such as the cyclo-peptoid 30 were necessary, since the intrinsic membrane 

permeability of 29 was low. Compound 30 selectively inhibited mitochondria-mediated apoptosis in 

several human cancer cell models at 5–10 µM concentrations. Chiral oligomers of pentenoic amides 

(COPA) that bridge peptoid and polyketide structures are another conformationally constrained scaffold 

for DOS from which compounds binding to the p53 DNA binding domain in vitro were identified [52]. 

Figure 7. Peptoid inhibitors of the mitochondrial apoptosis complex protein Apaf-1. 

 

The foregoing discussion has concentrated on the development of small molecule, targeted 

modulators of biological activity relevant to cancer, but DOS may also be applied to make other 

functional materials for biomedical research. Chang and colleagues have described a diversity oriented 
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fluorescence library approach (DOFLA) in which a set of 557 molecules containing the rosamine and 

BODIPY fluorophores was screened against the National Cancer Institute’s panel of 60 human cancer 

cell lines (NCI 60) using automated fluorescence microscopy [53,54]. Data on the fluorescence 

phenotypes of the treated cancer cells was collected and clustered according to the change in 

fluorescence intensity over time. Although the fluorescence probes had limited core scaffold diversity 

(Figure 8) [55,56] their fluorescent phenotypes were diverse, and the clustered data from 37 probes 

differentiated between the nine tissues of origin of the 60 cell lines with 98% accuracy. In some cases 

the probes were highly selective, e.g., 31 gave strong fluorescence in only one of the 60 cell lines (KM12 

colon cancer cells). 

Figure 8. Diversity oriented fluorescence library approach (DOFLA) for differentiating 

between cancer cell lines from different tissues of origin. 

 

3. DOS Applied to Cancer Drug Discovery Screening Strategies 

In the years since the popularisation of DOS, the utility of the approach to probe biological space has 

been established and increasingly the emphasis has been towards more direct applications in drug 

discovery including, but not limited to, cancer research. [3,9–15]. In the following sections we show 

how DOS strategies have evolved as they are applied to specific medicinal chemistry challenges, from 

screening efforts to identify bioactive scaffolds, through the incorporation of privileged structure 

information and ultimately to highly targeted drug discovery. 

A number of groups have identified biologically active compounds from DOS libraries using simple 

phenotypic endpoints such as cancer cell cytotoxicity or inhibition of cancer cell migration. The lack of 

knowledge of the molecular target often precludes further work on such compounds, but it is nonetheless 

a first step in demonstrating bio-compatibility for scaffold types not previously or widely explored, and 

the utility of the DOS transformations that make them. Three-component reactions (3-CR) have proved 

popular in preparing DOS libraries, such as the one-pot acid-catalysed 3-CR between a range of 

aldehydes, amines and alkyl/aryl phosphites leading to cytotoxic α-aminophosphonates [57], or novel 

cytotoxic 1,4-thiazepan-3-ones also made using a 3-CR [58]. The click-chemistry cycloaddition of 

azides and alkynes is a synthetic transformation that produces triazole scaffolds with physicochemical 

properties consistent with cellular activity, as shown by antiproliferative carbohydrate-cyclopamine 

conjugates [59] and cytotoxic 14, 15 and 16-membered macrocylic glyco-conjugates [60]. 

The research groups of Fenteany and Kwon elegantly demonstrated the potential of the original DOS 

approach with a succinct synthesis of 91 heterocyclic structures containing 16 unique molecular 

architectures [61]. The route incorporated the three tenets of DOS: scaffold; stereochemical; and 

substituent diversity (Scheme 11). A high yielding phosphine-catalysed cycloaddition was used with 

electron-deficient allenoates to generate either pyrrolines or tetrahydropyridines, depending on the 
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allenoate substituent pattern. Subjection of the products to a Tebbe reaction installed diene functionalities in 

good yield. The diene was then intercepted with a diverse range of dienophiles by Diels-Alder reaction 

in generally modest to good yields, to generate a collection of 16 unique chemical scaffolds. It was found 

that the pyrrolines underwent cycloaddition to generate a single diastereomeric product while the 

tetrahydropyridines yielded a range of diastereoselectivities (up to 10:1). The library was screened for 

the inhibition of cell migration, one of the hallmark behaviours of invasive solid tumours, using  

MDA-MB-231 human breast cancer cells. Three of the sixteen scaffolds weakly inhibited cell migration 

in a concentration dependent manner at concentrations below cytotoxic levels (IC50 = 15–43 µM). It was 

also noted that analogue 32 prevented the invasion of MDA-MB-231 cells through the extracellular 

matrix, albeit at micromolar concentrations. 

Scheme 11. Branched reaction pathway to a DOS library of bicyclic and tricyclic compounds. 

 

An alternative to the sometimes high risk approach of screening large collections of compounds from 

DOS libraries, by which many of the early chemical tool compounds were identified but which has a 

low hit rate, is to pre-select and concentrate on motifs that are known to possess a degree of bioactivity. 

When suitable protein target structures are available, virtual screening offers the opportunity to  

pre-screen potential DOS libraries before synthesis and to guide design, or to focus screening resources 

on sub-sections of available libraries. This is illustrated in several reports applying DOS to the discovery 

of new Bcl-family inhibitors. NMR screening of small molecules and fragments to generate SAR and 

design drug candidates is well established for Bcl-2/Bcl-XL [62], and these techniques have also been 

applied to evaluate DOS libraries. A substituent-diversity library of 105 compounds was designed 

around a tetrahydroaminoquinoline core scaffold 33 (Scheme 12) [63]. Using a strategy of orthogonal 

protection/deprotection the core scaffold was attached to an alkylsilyl macrobead support. Three points 

of substituent diversity (quinolinamine, amino and hydroxyl functionality) were reacted sequentially 

with various acylating groups and then cleaved from the resin with HF-pyridine. The 105-member 

library was analysed by in silico screening against both the Bcl-XL and Bcl-2 protein structures, but 

confirmation of virtual hits by NMR screening with the Bcl-XL protein was not possible due to solubility 

issues. Removal of protecting groups from the original tetrahydroaminoquinolines gave moderately 

soluble scaffolds for NMR screening that possessed very weak affinity (Kd 0.2–10 mM) for both the 

Bcl-XL and Mcl-1 proteins. Another round of focussed diversity substitution gave a further nine 

structures; in particular the biphenyl derivative 34 was found to bind weakly to Bcl-XL (Kd 70 µM and 

Mcl-1 (Kd 25 µM). The interaction with the relatively unexplored Mcl-1 target was validated using  
15N-1H HSQC NMR spectroscopy. 
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Scheme 12. DOS route to a tetrahydroaminoquinoline-derived library. 

 

The research groups of Bifulco and Basso have also investigated the interactions of a DOS library 

with the anti-apoptotic protein Bcl-XL [64]. A virtual library of compounds possessing skeletal, 

stereochemical and substituent diversity was generated from a pluripotent oxabicylic β-amino acid that 

underwent an Ugi multicomponent reaction with a range of aldehydes, isocyanides and alcohols. 

Scaffold diversity generating Diels-Alder, ring-opening metathesis (ROM) or RCM reactions were 

enumerated virtually, and further substitution of the structures was explored, for example using Suzuki 

couplings. The virtual library generated possessed seven distinct architectures and these compounds 

were interrogated for potential bioactivities using in silico screening against the BH3 binding groove of 

Bcl-XL and through a NMR-based binding assay of selected compounds. Information from the virtual 

and NMR screens informed the design of a second round of compounds, but competitive displacement 

assays with the fluorescent derivative of the native Bak peptide (Kd 120 nM) did not show appreciable 

displacement with any of the compounds prepared. 

In contrast to the two preceding focused DOS library approaches, Infinity Pharmaceuticals adopted a 

large screening library programme and applied this to Bcl-2 and Bcl-xL. Cytisine, a nicotinic receptor 

antagonist and phosphatase inhibitor was used as the starting point for natural product inspired DOS and 

a 15,000-member library was prepared (Scheme 13) [65]. A Horner-Wadsworth-Emmons reaction gave 

α,β-unsaturated esters followed by a [3 + 2] cycloaddition of glycine-derived azomethine ylides to yield 

the key cycloadducts. These were converted into two core scaffolds (and their enantiomers) using 

identical protocols of palladium-catalysed allyl deprotection and ester reduction. The free alcohols were 

converted to mesylates and cyclisation of the pyridine nitrogen afforded the new ring junction. Removal 

of the acetal protecting groups and oxidative cleavage of the resulting diols gave the free primary 

alcohols for attachment of the core scaffold to silicon-functionalised Lanterns (an encapsulated solid 

support) [66]. While on the Lanterns the methyl esters were converted into the main library of amides, 

acids and alkyl ethers, and the pyrrolidine nitrogens were alkylated, with the final step being  

fluoride-mediated cleavage of the library products from the resin. The library was screened at 10 mM 

for binding affinity against Bcl-2 and Bcl-xL using a fluorinated-BH3 peptide displacement assay. The 

hit rate for the library was 1.1% for Bcl-2 and 0.2% for Bcl-xL. Several compounds exhibited selectivity 

for Bcl-2 over Bcl-xL with the most potent example ca. Kd 1 µM.  
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Scheme 13. Synthetic route to a cytisine-inspired pyridone library. 

 

Waldmann’s group have applied the BIOS approach to prepare four distinct collections of compounds 

based on natural products and medium-sized rings, which were assayed for protein phosphatase 

inhibition [67]. The natural product inspiration was assessed against the criteria of structural classification of 

natural products (SCONP) as a pre-validation of the library plan. In total 2383 compounds were screened 

for phosphatase inhibition and details for one of the four scaffolds are shown in Scheme 14. 

Indoloquinolizidines were prepared by the reaction of tryptophan-derived imines with a range of 

aldehydes, followed by Lewis acid-mediated, tandem Mannich-Michael reaction with electron-rich 

dienes in modest diastereoselectivity, and a Pictet-Spengler-type reaction to generate the core scaffold. 

Finally, the indole was functionalised by N-acylation and the products were cleaved from the solid 

support with acid. The indoloquinolizidine library was based on the yohimbane alkaloids which showed 

phosphatase inhibition (22–64 µM inhibitors of Cdc25A). The 450 diastereomerically pure library 

components contained two weak inhibitors of Cdc25A but most interestingly, 11 compounds showed  

<10 µM inhibition of the phosphatase MptpB (e.g., 35; IC50 1.1 µM), and 9 of the 11 compounds did not 

inhibit any other phosphatases at concentrations up to 100 µM. These are the first reported inhibitors of 

MptpB and structural simplification to tricyclic and bicyclic indole derivatives identified nanomolar 

inhibitors, such as 36 (IC50 400 nM). 

Scheme 14. Synthesis of a natural product inspired library of protein phosphatase inhibitors. 
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Also taking a privileged scaffold approach based on indoline alkaloids, Arya and co-workers designed 

a skeletally diverse DOS screening library that provided inhibitors of focal adhesion kinase (FAK), a 

protein involved in tumorigenesis and metastasis [68]. N-Alloc-protected 2-formylindolines or 

homologues were functionalised by addition of allylic or homoallylic Grignard reagents under  

Felkin-Anh control (Scheme 15). After alcohol protection, the resulting proximal vinyl groups were 

reacted by RCM to afford 6-, 7- and 8-membered rings fused to the indoline scaffold. Compound 37 

inhibited FAK activity (30% inhibition at 30 µM) but its mode of action (ATP-competitive or allosteric) 

was not determined, although docking studies suggested an ATP-site inhibitor. In a cell proliferation 

assay 37 had a cytotoxicity of 39 µM and reduced expression of FAK autophosphorylation on pY397. 

The inhibitor also reduced MDA231-M cell invasion and motility, which may at least in part be due to 

FAK inhibition. 

Scheme 15. DOS route to tricyclic indolines. 

 

The Winssinger group has identified kinase activity within a DOS library of pochonin analogues [69]. 

The pochonin class of natural products is exemplified by radicicol (38; Scheme 16) a 20 nM  

ATP-competitive inhibitor of the chaperone HSP90. Other members of the family are inhibitors of 

protein kinases, despite the significant differences in protein fold and cofactor conformation between 

kinase and HSP90 ATP-binding pockets. The core macrocycle was appended with five points of 

diversity. The synthesis involved an optional chlorination at the 5-position of the resorcinol acid starting 

material and a solid-supported Mitsunobu reaction to esterify the acid group with enantiomerically pure 

homoallylic alcohols. Protection of the two phenolic groups with the EOM group allowed deprotonation 

of the tolyl group with LDA and reaction of the anion with an α,β-unsaturated Weinreb amide. The final 

ring-closing step was performed using Grubbs II-mediated RCM. Further derivatisation of the 

macrocycles followed, including ketone reduction and acylation of the resulting alcohol to form dienes, 

conjugate addition to the α,β-unsaturated ketone, and reduction, epoxidation or dihydroxylation of the 

non-conjugated double bonds. Removal of the EOM protecting groups allowed the option of phenolic 

O-derivatisation. In total 113 macrocycles were prepared and 84 compounds were screened at 10 µM 

against a panel of 24 kinases. A hit rate of 14% was found with 12 compounds demonstrating >50% 

inhibition of at least one enzyme, of which 8 showed modest inhibition on titration (IC50 8–50 µM). 

Further developments of resorcyclic macrolactone scaffolds preserving the reactive enone functionality 

have led to a number of irreversible kinase inhibitors that target specific cysteine residues, including 

VEGFR kinase inhibitors with in vivo efficacy [70]. 
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Scheme 16. Synthetic route to pochonin-inspired macrocyclic kinase inhibitors. 

 

A ligand-free Suzuki coupling reaction was developed for the synthesis of conformationally restricted 

cyclopropanes with three-dimensional diversity [71]. Combining the concepts of DOS and  

fragment-based drug design (FBDD) led to library of 90 compounds that were screened against a panel 

of 20 kinases (Scheme 17). The rigid geometry of the cyclopropanes allowed the placement of aryl 

fragments, chosen as potential kinase hinge-binding motifs, in distinct geometrical locations, giving 

chiral products enriched in sp3-carbons, an often under-represented feature for screening libraries as 

discussed in the introduction. The enantiomeric cyclopropane vinyl iodides were reacted with a range of 

aryl boronic acids followed by oxidation of the free alcohol to the carboxylic acid using sequential  

Dess-Martin and Pinnick reactions. A second round of substituent diversity was achieved through amide 

formations using solid-supported DCC, followed by MOM deprotection. The kinase screening panel 

results indicated that the regiochemistry of the cyclopropane substituents determined the kinase 

inhibitory activities, with modest inhibition of FLT3, JAK3, PDGFRα, and TRKA (20%–50% inhibition 

at 10 µM) observed, for example. 

Scheme 17. Synthetic route to a cyclopropane-containing library of potential kinase inhibitors 

 

Park and co-workers have developed a branching DOS library inspired by natural products containing 

the privileged benzopyran ring system [72,73]. The DOS strategy involved balancing two seeming 

opposites: biased incorporation of privileged structures and unbiased diversity. In total, 22 unique core 

structures were prepared with limited appendage diversity; this enabled the side-by-side evaluation of 

core structural diversity. From a 3- or 4-(pseudo)halo substituted benzopyran, three key reactions were 

performed to generate the diastereo-enriched library; Diels-Alder cycloaddition, click chemistry, and 

palladium-catalysed cross-coupling. In particular, Stille cross-coupling followed by endo-favoured 

CO2H

OH

HO

X
X = H or Cl

(i) Mitsunobu

(ii) Protection

EOMO

EOMO

X

O

O R1

*

* = R or S

N

O

O

LDA, THF
Amberlite IRC-50

EOMO

EOMO

X

O

O R1

O

OH

HO

X

O

O R1

O

(ii) derivatisation
and deprotection

(i) Grubbs-II
OH

HO

Cl

O

O

O

Me

O

Radicicol 38reduction,
acylation,
oximation

conjugate
addition,
reduction

epoxidation,
dihydroxylation

Mitsunobu,
alkylation



Molecules 2014, 19 17243 

 

 

Diels-Alder cycloaddition generated steroid-like tetracycles (Scheme 18). U-shaped structures were 

generated by hydrogenation while DDQ-mediated oxidation gave flat aromatic systems. Comparison of 

examples 39 and 40 highlighted the power of three-dimensional architectures to provide differential 

biological activity: A viability assay in A549 lung carcinoma cells demonstrated the cytotoxicity of 39 

(1.0 µM) versus 40 (63.9 µM). Using a cell-based reporter assay in LNCaP human prostate 

adenocarcinoma cells, screening of a 2000-member benzopyran DOS library, followed by focussed 

screening of 19 second-round derivatives identified P01F01 (41) as an antagonist of the androgen 

receptor [73,74]. The compound was also shown to inhibit transcription mediated by androgen receptor 

mutants that are resistant to inhibition with conventional antagonists such as bicalutimide. 

Scheme 18. DOS of privileged benzopyran containing polycycles and identification of an 

androgen receptor antagonist. 

 

Pappo has described a DOS-type approach to coumestrol-based selective oestrogen receptor (ER) 

modulators [75]. A FeCl3/O2 oxidative coupling reaction between β-keto esters and phenols was used to 

prepare a range of benzofurans, followed by deprotection and lactonisation to afford the coumestans. 

Initial in silico studies suggested a binding mode in the ER active site. This was confirmed biologically 

by screening of the compound collection against the breast cancer cell lines, MCF-7 (oestrogen 

dependent) and MDA-MB-321 (oestrogen independent). The most potent compound prepared inhibited 

MCF-7 cell proliferation (IC50 9 nM) and initial SARs were identified. 

4. DOS Applied to Specific Molecular Starting Points in Cancer Drug Discovery 

DOS has been applied in drug discovery to populate a chemical library with diverse modifications 

starting from specific molecules with known bioactivity. The macrocyclic Sonic Hedgehog (Shh) 
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signalling pathway inhibitor, robotnikinin (11; Figure 5) was discovered from a screening campaign of 

a DOS library, as discussed above. A range of diverse robotnikinin analogues were prepared via a  

build-couple-pair strategy (Scheme 19) [76]. Interestingly, this led to a series of compounds that 

inhibited Shh signalling by an alternative mechanism to robotnikinin. Using a protecting group strategy 

various alkenoic groups were attached to either amino alcohols or diamines, with variations to both the 

linker lengths and side chains, and the synthesis of the macrocycles was completed by RCM. SARs were 

established from inhibition studies using a Shh-induced C3H10T1/2 alkaline phosphatase assay 

compared to the known inhibitor cyclopamine (IC50 600 nM). Robotnikinin (11) was weakly active  

(IC50 > 25 µM) but reversing the positions of the macrocycle oxygen and nitrogen led to a more potent 

inhibitor (IC50 5 µM). A systematic exploration of simple structural changes led to the following 

observations: methylation of the macrocyclic nitrogen was tolerated; inversion of the 2-position 

stereochemistry ablated activity; 11-position substitution was acceptable; the minor product of the RCM, 

the Z-olefin, was more active than the E-olefin; the 6-substituent needed to be lipophilic; truncated 

analogues were inactive suggesting a large pharmacophore; and finally, a 4-chlorophenyl group at the 

2-position was most potent, at 400–600 nM depending on the assay format, leading to BRD-6851 (42). 

This compound and others blocked the Shh pathway by inhibiting the GPCR, Smoothened (Smo). 

Competition studies with the Smo agonist purmorphamine, and retention of activity in cell lines lacking 

the Shh receptor Patched suggested that 42 was a Smo antagonist, a completely different mode of Shh 

pathway inhibition from robotnikinin, the starting point of the DOS library. 

Scheme 19. DOS route to robotnikinin-derived analogues and the structure of the Smo 

antagonist BRD-6851 (42). 

 

A DOS approach was used to identify the first isoform-selective phospholipase D (PLD) inhibitors [77]. 

PLD is responsible for the synthesis of phosphatidic acid, a secondary messenger implicated in both 

GPCR and tyrosine receptor kinase signal transduction pathways, and inhibition of PLD blocks  

breast cancer cell metastasis. A previously published inhibitor, the psychotropic compound halopemide  

(43; Scheme 20), was the starting point for a DOS library to develop dual-PLD1 and PLD2, and also 

isoform selective PLD inhibitors. Using a diversity-oriented approach to explore SAR, halopemide was 

dissected into modular sections and a 263-member library was prepared using three alternate scaffolds, 

three linkers and 30 amide caps. The entire library was screened at a single concentration against PLDs 
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and 30 compounds were followed-up based on activity, selectivity and structural diversity. Remarkable 

isoform specificity for both PLD1 and PLD2 was found in vitro, with central scaffold rather than 

appendage diversity the key driver of selectivity, although (S)-methyl groups on the linker conferred 

PLD1 selectivity to otherwise dual PLD1/2 inhibitors. Cellular activity against PLD isoforms was also 

demonstrated for several compounds from the DOS campaign but most importantly, the inhibitors were 

shown to block invasion in breast cancer cell lines (MDA-231, 4T1 and PMT). siRNA knockdown 

studies confirmed the cell invasion blocking effects were due to either dual PLD1/2 or selective PLD2 

inhibition but not selective PLD1 inhibition. 

Scheme 20. DOS-type exploration of SAR for PLD1/2 inhibitors derived from halopemide. 

 

A screen of compounds with similar structures to 15-deoxyspergualin and NSC 630668-R/1 identified 

amongst others, Mal3-101 (47; Scheme 21) as an inhibitor of J-chaperone-stimulated HSP70 ATPase 

activity [78]. Hsp70 is a molecular chaperone with pro-survival properties in relation to misfolded 

proteins and is often up-regulated in cancer cells. HSP70 is a validated and promising target in cancer 

therapy but to date very few modulators have been identified. The synthesis of 47 was accomplished via 

two MCRs; a Biginelli reaction to prepare the dihydropyrimidinone core, then an Ugi reaction under 

microwave irradiation to complete the synthesis. Mal3-101 was used as the inspiration for a DOS-like 

library [43] to prepare near-analogues (all retaining the dihydropyrimidinone core) with improved  

anti-proliferative activity, anti-malarial activity, and SV40 activity. 

Sphingosine kinase (SphK) is a cancer target which plays a role in cell survival. The Santos research 

group was inspired by FTY720 (48; Scheme 22), an immunomodulatory drug that is phosphorylated by 

SphK to generate a sphingosine 1-phosphate mimic [79]. A DOS library was generated where the key 

diversity point came from the divergent reactivity of the cyclohexanone 49 to generate novel head 

groups. Amino head groups were identified as hits when the compound collection was screened at  

100 µM against SphK1 and SphK2. Following a second round of synthesis focussed on amino variants, 

quaternary ammonium salts proved to be the most potent (e.g., 50; Ki 8 µM) with approximately 3 to  

4-fold selectivity for SphK1 over SphK2. 
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Scheme 21. A tandem multi-component reaction route to analogues of the HSP70  

inhibitor Mal3-101. 

 

Scheme 22. Diversity strategy for head group variation of sphingosine kinase inhibitors. 

 

There have been two reported DOS approaches applied to explore the SAR of allosteric Akt  

inhibitors [80,81]. The PI3K-Akt signalling pathway is often up-regulated in cancers and regulates 

diverse functions including cell growth, proliferation, motility and survival. The Merck approach started 

with the evolved hit quinoxaline 51 (Scheme 23) [80] and involved the assembly of four skeletally 

diverse pyridine-containing scaffolds from common precursor 52. The library was screened for Akt1 

and Akt2 inhibition and compound 53, an example of the pyridopyrimidine scaffold, was a potent Akt1 

inhibitor in vitro and in cells (IC50 18 nM and 227 nM, respectively). Importantly, 53 had a >10-fold 

selectivity window over the isoforms Akt2 and Akt3, and other AGC-family kinases SGK, PKA, and 

PKC. In a pharmacokinetic study in dog the compound had a long half-life and low clearance. 

Researchers at Astra-Zeneca began with the clinical candidate MK-2206 and the DOS approach centred 

on different ring fusions around a core pyridine [81], ultimately leading to a simpler core scaffold with 

low clearance and very high free drug concentrations in plasma. 
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Scheme 23. DOS approach to identify alternative scaffolds for allosteric Akt inhibitors. 

 

5. Conclusions 

The examples collected above clearly show that diversity-oriented approaches can deliver useful  

new chemical tools for cancer biology, and can be productively applied to early drug discovery. While 

the importance of skeletal, stereochemical and substituent diversity remains fundamental, the field has 

evolved as DOS strategies have been used in the context of drug discovery. The discovery of chemical 

probes through screening of large libraries whose components cover areas of previously unexplored 

chemical space is now well established, and has generated important pharmacological tools for cancer 

biology. The challenges in this approach include the relatively low probability of finding hits for a given 

target or phenotype in an unbiased collection, necessitating large library size, and the substantial effort 

required to fully characterize the molecular target(s) of compounds identified through some phenotypic 

screens. As illustrated in this article, there are still molecules eliciting interesting phenotypes in cancer 

cells for which specific molecular targets have not been identified. Small molecule probes or tool 

compounds are of limited use for further biological research without knowledge of their targeted 

interactions and their selectivity [82]. However, it is clear that higher content phenotypic screening or a 

combination of phenotypic and biochemical screening can go a long way to address these problems and 

provide well-credentialed chemical tools from DOS libraries. An early grand challenge laid down in 

chemical genetics was to identify a chemical probe for every human gene product [83]. A recent analysis 

suggested that, for 58 very well evidenced cancer driver genes less than half had sub-micromolar potent 

small molecule modulators identified, including targets with three-dimensional structures available [84]. 

Thus despite rapid advances in the past decade there are many potential cancer drug targets for which 

small molecule modulators are still unknown [85], and this currently barren probe space undoubtedly 

extends to other disease areas. There is much to be done, and diversity oriented strategies have the 

potential to make major contributions. 

In the context of target-specific medicinal chemistry, various means of defining the chemical space 

to be explored by DOS-like strategies have proved successful. This is most frequently performed at the 
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level of skeletal diversity. Although this would seem to contradict the original precepts of structural 

diversity-led synthesis, the creative tension between simultaneously achieving greatest structural 

diversity, greatest biological relevance and physiological compatibility is leading successfully to new 

biologically active molecules. Many recent applications therefore describe using privileged structures, 

inspiration from natural products or concepts of drug-likeness to pre-populate chemical-biological space. 

Interestingly, as seen with some examples of both the DOS and BIOS approaches, this does not always 

guarantee the targeted bioactivity of the starting point(s) will be faithfully recapitulated in the expanded 

libraries. The distinction between DOS and established medicinal chemistry strategies becomes 

increasingly blurred as greater focus is placed on specific starting points for library design and the number 

of diversity points decreases, or scaffold diversity gives way to purely substituent variation. 

Importantly, the new chemical space accessible through DOS can provide molecules that interact with 

less tractable targets or with targets with little pedigree for modulation by small molecules, as evidenced 

by the identification of protein-protein interaction inhibitors and modulators of transcription factors. For 

the purposes of drug discovery, access to new chemical space needs to be balanced with the danger of 

“molecular obesity” inherent in any synthetic strategy that builds up molecular size and lipophilicity, 

particularly relevant to DOS when substituent variation is the major component of diversity [86]. 

Analysis of the size and calculated lipophilicities of seventeen of the DOS- and BIOS-derived tool or 

lead compounds highlighted in this review, for which target-specific Kd, Ki or biochemical IC50 from 

cell-free assays were reported, is informative; with the caveat that this is a limited survey of one disease 

area and only the most potent compounds in each report where this data was available are included. 

Limitations aside, this snap-shot (Figure 9) shows half of the compounds occupying physicochemical 

property space at or above the upper bounds typically associated with drug-likeness (e.g., cLogP > 5, 

MW > 500). On the other hand, in at least half of these examples of DOS outputs these properties can 

be reconciled; compound libraries that balance diversity, novelty and control of physicochemical 

properties are highly desirable [87]. The range of potencies in Figure 9 indicates some molecules would 

be considered as early hit matter (pKd or pIC50 < 6) requiring substantial improvement to generate fully 

developed probe molecules or useful drug discovery leads, while others are potentially more immediately 

useful chemical tools [82]. 

The use of cell-based screening provides an initial assurance that the physicochemical behaviours of 

molecules identified as hits are compatible with cellular activity. Drug-likeness also concerns the 

physicochemical property ranges compatible with bioavailability in whole organisms and these 

considerations often concentrate on the aqueous solubility, lipid permeability and propensity for 

metabolism or active transport that govern oral bioavailability. These features may be less immediately 

relevant for chemical tools intended for early cell biology studies, but higher molecular size and 

lipophilicity are also associated with a greater risk of promiscuous activity [88]. The selectivity of 

putative chemical tools is one of the most important determinants of the reliability of biological findings 

derived from their use [82]. 

Some of the most recent reports show how DOS strategies allow rapid exploration of a large space 

around single, well defined chemical leads, to enable medicinal chemistry or chemical biology studies. 

The integration of in silico screening against specific targets and virtual library enumeration should be 

a powerful combination to guide and maximize the contributions of DOS to the discovery of targeted 

anti-cancer therapeutics. Recent publications suggest that DOS may be applicable in fragment-based 
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drug discovery [71,89,90] and it would be expected that the trend to incorporate DOS with other 

medicinal chemistry strategies in anti-cancer drug discovery will continue productively. 

Figure 9. A graph of clogP vs. molecular weight for 17 compounds summarised in this 

article and identified as chemical endpoints for which Kd, Ki or IC50 determinations against 

specific targets in cell-free assays were reported. The size of the circles is proportional to 

pKd or pIC50, where pKd = −log10 (Kd) (range from 4.6 to 7.3). 
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