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Abstract
Solving complex real-world problems often involves the simultaneous opti-

misation of multiple conflicting performance criteria, these real-world problems

occur in the fields of engineering, economics, chemistry, manufacturing, physics

and many more. The optimisation process usually involves some design challenges

in the form of the optimisation of a number of objectives and constraints. There

exist many traditional optimisation methods (calculus based, random search,

enumerative, etc...), however, these only offer a single solution in either adequate

performance in a narrow problem domain or inadequate performance across a

broad problem domain.

Evolutionary Multi-objective Optimisation (EMO) algorithms are robust op-

timisers which are suitable for solving complex real-world multi-objective opti-

misation problems, as they are able to address each of the conflicting objectives

simultaneously. Typically, these EMO algorithms are run non-interactively with

a Decision Maker (DM) setting the initial parameters of the algorithm and then

analysing the results at the end of the optimisation process. When EMO is

applied to real-world optimisation problems there is often a DM who is only in-

terested in a portion of the Pareto-optimal front, however, incorporation of DM

preferences is often neglected in the EMO literature.

In this thesis, the incorporation of DM preferences into EMO search methods

has been explored. This has been achieved through the review of EMO litera-

ture to identify a powerful method of variation, Covariance Matrix Adaptation

(CMA), and its computationally infeasible EMO implementation, MO-CMA-ES.

A CMA driven EMO algorithm, CMA-PAES, capable of optimisation in the

presence of many objectives has been developed, benchmarked, and statistically

verified to outperform MO-CMA-ES and MOEA/D-DRA on selected test suites.

CMA-PAES and MOEA/D-DRA with the incorporation of the novel Weighted

Z-score (WZ) preference articulation operator (supporting a priori, a posteriori

or progressive incorporation) are then benchmarked on a range of synthetic and

real-world problems. WZ-CMA-PAES is then successfully applied to a real-world

problem regarding the optimisation of a classifier for concealed weapon detection,

outperforming previously published classifier implementations.
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Chapter 1

Introduction

This chapter is an introduction to the thesis entitled “Preference Focussed Many-

Objective Evolutionary Computation”, beginning with a description of the moti-

vation for the research direction in Section 1.1, followed by an outline of the thesis

in Section 1.2, and concluding with a listing of the contributions and research

objectives in Section 1.3.

1.1 Motivation

Solving complex real-world problems often involves the simultaneous optimisation

of multiple conflicting performance criteria, these real-world problems occur in

the fields of engineering, economics, chemistry, manufacturing, physics, and many

more. Typically the optimisation process involves some design challenges in the

form of the optimisation of a number of objectives and constraints. There exist

many traditional optimisation methods (calculus based, random search, enumer-

ative, etc...), however, these only offer either adequate performance in a narrow

problem domain or inadequate performance across a broad problem domain. The

result of such traditional optimisation methods is often a single solution, and in

1
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the presence of multiple conflicting objectives it is highly likely that this solution

is bias towards a certain subset of objectives. An ideal solution to a real-world

optimisation problem is an approximation set which contains multiple trade-off

solutions that satisfy the Decision Maker (DM)’s preferences.

One approach to solving complex real-world problems is to use Evolutionary

Multi-Objective Optimisation (EMO) algorithms to address each of the conflict-

ing objectives simultaneously. EMO algorithms are robust optimisers which are

suitable for solving multi-objective optimisation problems due to being popu-

lation based, therefore being able to generate and exploit more than a single

solution per iteration of the optimisation process. In addition, EMO techniques

do not require any auxiliary or derivative information regarding the problem, do

not require aggregation of multiple objectives into a single objective, and are less

susceptible to the shape or continuity of the Pareto-optimal front. Typically,

these EMO algorithms are run non-interactively with a DM setting the initial

parameters of the algorithm and then analysing the results at the end of the

optimisation process (which can often take hours or days to complete). This

approach has been common since the late 1990s (e.g. in [1, 2, 3, 4, 5]) and will

lead to an approximation set of potential solutions distributed across the whole

Pareto-optimal set in a single algorithm execution [6].

Whilst classical EMO techniques produce promising results when applied to

problems of multiple objectives (involving three or less problem objectives), ap-

plying these classical techniques to complex real-world problems of many objec-

tives negatively impacts the behaviour of the EMO process, resulting in poor

performance and delayed convergence. One research direction is to consider the

use of a performance indicator [7] (e.g. the hypervolume indicator) as an al-
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ternative to the commonly employed Pareto dominance concept which widely

governs the selection process of many EMO algorithms, because it has been sug-

gested that Pareto dominance struggles to produce a strong selection pressure

towards the Pareto-optimal front in the presence of many objectives (e.g. in

[8, 9, 10, 11, 12, 13, 14]). In these many-objective cases, the DM is usually more

interested in a sub-region of this solution space that satisfies some domain specific

criteria. A good EMO algorithm satisfies goals of convergence proximity, diver-

sity preservation, and pertinence to a DM’s Region of Interest (ROI) adequately,

giving the DM knowledge of the trade-off of solutions within their ROI.

It is therefore desirable to use EMO techniques combined with the incorpora-

tion of DM preferences through preference articulation methods. Such a combi-

nation would be capable of solving complex real-world many-objective problems

and arrive at approximation sets that offer adequate proximity, diversity, and

pertinence, whilst reducing the computational cost of the optimisation process so

that it does not take an infeasible amount of time to complete the search.

In this thesis, research is presented for enhancing the state of the art in the

field of EMO. This is achieved by reviewing the Multi-Objective Covariance Ma-

trix Adaptation Evolution Strategy (MO-CMA-ES), an existing multi-objective

implementation of a powerful method for problem variable variation (Covari-

ance Matrix Adaptation (CMA)), which is not feasible past the optimisation of

four objectives (due to computational cost), and then developing a new CMA

driven EMO algorithm under the name Covariance Matrix Adaptation Pareto

Archived Evolution Strategy II (CMA-PAES-II), with the capability to optimise

in the presence of many objectives. A new and novel method of preference ar-

ticulation (the Weighted Z-score (WZ) preference articulation operator) is then
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developed and incorporated into CMA-PAES-II and the Multi-Objective Evolu-

tionary Algorithm Based on Decomposition with Dynamical Resource Allocation

(MOEA/D-DRA) (a well-regarded EMO algorithm), and a series of test cases and

real-world optimisation problems are used to demonstrate the advantages of the

WZ preference articulation operator. A real-world optimisation problem involv-

ing the optimisation of an Artificial Neural Network (ANN) for the classification

of radar signals for the purpose of concealed weapon detection is then optimised,

using the Weighted Z-score Covariance Matrix Adaptation Pareto Archived Evo-

lution Strategy (WZ-CMA-PAES) (an implementation of CMA-PAES-II with the

incorporation of the WZ preference articulation operator).
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1.2 Outline of Thesis

In Chapter 2, a review of evolutionary computation literature is presented, with

conceptual emphasis on the use of evolutionary algorithms to solve multi-objective

problems. The chapter begins with a brief history of the field of evolutionary

computation, before moving onto an introduction to evolutionary algorithms,

multi-objective optimisation, and EMO. There is an introduction to diversity

preservation and preference articulation, followed by the description of a selection

of state of the art EMO algorithms. The chapter concludes with an introduction

to objective functions, a description of a selection of multi-objective test suites,

and an introduction to EMO performance assessment methods.

In Chapter 3, the development of a new algorithm named the Covariance Ma-

trix Adaptation Pareto Archived Evolution Strategy (CMA-PAES) is described,

which is intended by design for fast convergence within a small function evalua-

tion budget. This algorithm builds upon existing EMO algorithms and concepts

in the EMO literature (e.g. CMA and Adaptive Grid Algorithm (AGA)) and is

shown to perform comparably to MO-CMA-ES (another CMA driven algorithm)

without the computational inefficiency which comes from relying entirely on the

hypervolume indicator as a selection criterion. The development of a multi-

tier variant of CMA-PAES, named the Multi-tier Covariance Matrix Adaptation

Pareto Archived Evolution Strategy (m-CMA-PAES), is also described and shown

to outperform MO-CMA-ES on a selection of difficult multi-objective synthetic

test functions with complex Pareto-optimal sets.

In Chapter 4, CMA-PAES-II is described, combining design elements from

CMA-PAES and m-CMA-PAES in combination with new concepts such as In-
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dicator Based Conformation (IBC), sigma restart, and an improved AGA, to

develop an algorithm designed specifically for the optimisation of many-objective

problems. The algorithm is benchmarked against the popular and CEC2009 com-

petition winning MOEA/D-DRA on a selection of many-objective synthetic test

problems ranging from two to ten objectives. MO-CMA-ES is no longer consid-

ered in the comparison due to its infeasible computational cost on test problems

consisting of greater than three objectives.

In Chapter 5, a novel method of preference articulation for EMO is introduced.

This method, named the WZ preference articulation operator, is shown to provide

improved performance in both the rate of convergence and pertinence in the

solutions an EMO algorithm produces. As a demonstration, it is incorporated

into two state of the art EMO algorithms and shown to improve both algorithms

in the presence of DM preferences, through the pairwise statistical comparison

of results from their execution on a selection of synthetic test problems and one

real-world problem.

In Chapter 6, the WZ preference articulation operator is incorporated into

CMA-PAES-II and used to optimise the architecture of an ANN used for con-

cealed weapon detection in a two-objective, five-objective, and seven-objective

problem. The chapter introduces the field of concealed weapon detection, and

suggests a method for encoding and decoding the problem for use by the op-

timisation process. The results of the two-objective problem are compared to

previously published results and shown to offer an improvement in performance

of the classification of items of threat. The chapter then moves onto experiments

on the detection and classification of multiple types of threat.
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Finally, Chapter 7 presents a number of conclusions that have been drawn

from the research presented in this thesis and suggests a number of directions for

future work.
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1.3 Contributions and Objectives

Publications and presentations resulting from the pursuit of achieving the re-

search aims and objectives defined in Section 1.3.1 are:

• Journal Article Shahin Rostami; Dean O’Reilly; Alex Shenfield; Nick

Bowring, “A Novel Preference Articulation Operator for the Evolutionary

Multi-Objective Optimisation of Classifiers in Concealed Weapon Detec-

tion”, DOI: 10.1016/j.ins.2014.10.031, Volume 295, 20 February 2015, Pages

494520, Information Sciences, Elsevier.

• Conference Paper Shahin Rostami; Alex Shenfield, “CMA-PAES: Pareto

archived evolution strategy using covariance matrix adaptation for Multi-

Objective Optimisation.” Computational Intelligence (UKCI), 2012 12th

UK Workshop on. IEEE, 2012.

• Conference Paper Shahin Rostami; Peter Delves; Alex Shenfield, “Evo-

lutionary Multi-Objective Optimisation of an Automotive Active Steering

Controller”, DOI: 10.13140/2.1.1202.6240 Conference: Manchester Metropoli-

tan University Research Symposium 2013.

• Seminar Presentation “Evolutionary Algorithms in Control Systems En-

gineering”, 2011 16th November, Seminar, University of Manchester.

• Poster Presentation Shahin Rostami; Alex Shenfield, “Adaptive Grid

Archiving Combined with the Covariance Matrix Adaptation Evolution

Strategy”, Conference: Manchester Metropolitan University Research Sym-

posium 2012.
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The main contributions of this thesis resulting from the pursuit of achieving

the research aims and objectives defined in Section 1.3.1 are:

• Development of CMA-PAES, a fast converging EMO algorithm.

This EMO algorithm is inspired by the Pareto Archived Evolution Strategy

(PAES) algorithm structure, the AGA method for diversity preservation,

and the CMA scheme for variation, with the aim to be light in compu-

tational cost, simple in structure, and provide a fast rate of convergence.

CMA-PAES has been shown to outperform MO-CMA-ES in this thesis in

regards to the quality of the final approximation set paired with the low

computational cost of the algorithm overhead. CMA-PAES has been pub-

lished in [15] where it is shown to outperform the Nondominated Sorting

Genetic Algorithm II (NSGA-II) and PAES, and has been successfully ap-

plied to the optimisation of an automotive active steering controller in [16].

A multi-tier variant of CMA-PAES (m-CMA-PAES) is also developed as

an EMO algorithm intended for the optimisation of problems containing

complex Pareto-optimal sets, by combining a non-elitist AGA based selec-

tion scheme with the efficient strategy parameter adaptation of the elitist

Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES).

• Development of CMA-PAES-II, a robust many-objective EMO

algorithm. This EMO algorithm builds upon the work in CMA-PAES

and m-CMA-PAES combined with the new IBC mechanism, sigma restart,

and improved AGA. Unlike MO-CMA-ES, CMA-PAES-II allows for the

use of CMA in EMO with a computational cost that does not restrict it to
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execution on computing clusters or problems consisting of fewer than four

objectives.

• Development of the algorithm agnostic1 and novel WZ Preference

Articulation Operator. The operator has the flexibility of being incor-

porated a priori, a posteriori or progressively, and as either a primary or

auxiliary fitness operator. The two-phase operator has demonstrated the

ability to successfully direct the optimisation process closer in proximity

to a DM’s expressed ROI, and then proceed to minimise solutions within

it. This reduces the computational cost of the optimisation process by re-

ducing the scope of the search-space exploration and produces pertinent

optimisation sets.

• Incorporation of preference articulation techniques into state of

the art EMO algorithms. In this thesis the WZ preference articulation

operator has been incorporated into MOEA/D-DRA and CMA-PAES-II,

which has shown to improve their performance and the quality in the final

approximation set when searching in the presence of DM preferences.

• Successful optimisation of classifiers used for concealed weapon

detection. Weighted Z-score Multi-Objective Evolutionary Algorithm

Based on Decomposition with Dynamical Resource Allocation (WZ-MOEA/D-

DRA) and WZ-CMA-PAES are successfully applied to a real-world opti-

misation problem regarding the optimisation of a classifier for concealed

1An operator can be referred to as algorithm agnostic if it has been designed to be easily
incorporated into any optimisation framework or algorithm.
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weapon detection, producing better results than previously published clas-

sifier implementations. With the confidence instilled from the successful

optimisation of the existing solution, new solutions were designed to allow

the classification of radar signals into categories of threat objects (e.g. gun,

knife, or explosive), which has produced a classifier which would allow for

a better response to the detection of a concealed weapon.

Additional contributions that have arisen as a result of this research but are

not included in this thesis are:

• Creation of the “EMOLibrary” Evolutionary Multi-Objective Op-

timisation Toolbox for MATLAB. The EMOLibrary provides many

features that can be utilised in the design of new EMO algorithms, imple-

mentation of existing EMO algorithms, or conducting pairwise comparisons

of EMO algorithms. The library was inspired by [17] which lacks modern

features since it was released in 1994. Features of the EMOLibrary include:

– Performance Metrics, such as the hypervolume indicator, spread,

epsilon indicator, generational distance, and inverted generational dis-

tance.

– Selection/Sorting Operators, such as non-dominated sorting, the

contributing hypervolume indicator, AGA, and the WZ preference ar-

ticulation operator.

– Test Problems, such as problems from the following test suites:

ZDT, DTLZ, WFG Toolkit, CEC09, and ELLI/CIGTAB test func-
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tions. The objective function used for the design of lateral stability

controllers (LATCON) for aircraft is also included.

– Parameter Settings, such as problem boundary defaults, suggested

reference points, test cases for benchmarking of preference articulation

techniques, problem encoding and decoding, problem dimensionality

defaults, variable initialisers, and weight generators.

– True Pareto-optimal Fronts for the following test suites: ZDT,

DTLZ, WFG Toolkit, and CEC09, with the ability to retrieve the

portion of the true Pareto-optimal front within a defined ROI.

• Successful Evolutionary Multi-Objective Optimisation of an Au-

tomotive Active Steering Controller. The presented work [16] in-

vestigates the use of EMO to optimise the performance of a closed loop

feedback Proportional Integral (PI) vehicle yaw controller on a non-linear

vehicle. This is done by comparing results against traditional empirical tun-

ing methods relating to rise time, settling time, overshoot, and steady-state

error. The EMO application showed improvement on the original control

tuning and also brought to light the difficulty control engineers face with

objective interaction for complex problems.

1.3.1 Research Objectives

With the motivation described in Section 1.1, a number of aims and objectives

were defined to guide the direction of work throughout the duration of this re-

search. This thesis claims to have achieved every aim and objective in the chapters

following. A listing of the aims and objectives are as follows:
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Research Aim

To investigate the incorporation of decision maker preferences into multi-objective

evolutionary search methods, so as to improve the quality of final solutions pro-

duced by the optimisation process.

Research Objectives

1. To produce a critical review of the field of evolutionary computation with

a particular emphasis on using evolutionary computation methods to solve

multi-objective problems.

2. To develop and benchmark a state of the art evolutionary multi-objective

optimisation algorithm for solving real-world engineering problems, and to

provide a basis for incorporating decision maker preferences by enhancing

the preservation of diversity across the entire approximation set.

3. To develop a novel algorithm for focussing on regions of interest in multi-

objective search spaces.

4. To evaluate the effectiveness of incorporating decision maker preferences

into current state-of-the-art evolutionary optimisation routines, using sta-

tistically rigorous analysis.

5. To benchmark the new algorithms using synthetic test suites and real-world

optimisation problems.





Chapter 2

Review of Evolutionary
Multi-Objective Optimisation

The evolutionary computation literature is a rich source of knowledge which has

been expanded upon every year since it was established as a field of research. In

this chapter, a review of the literature within the field of evolutionary computa-

tion is presented with conceptual emphasis on the use of evolutionary algorithms

to solve multi-objective problems.

The chapter begins with a brief historical overview of the field of evolutionary

computation in Section 2.1. Section 2.2 provides a description of evolutionary

algorithms, followed by an introduction to multi-objective optimisation (Section

2.3) and Evolutionary Multi-Objective Optimisation (EMO) (Section 2.4). The

concept of diversity preservation is introduced in Section 2.5, followed by the

concept of preference articulation in Section 2.6. Section 2.7 describes a selection

of EMO algorithms considered to be state of the art which are relevant to this

thesis. Section 2.8 describes the purpose of objective functions, followed by an

overview of multi-objective synthetic test suites. The chapter is concluded with

Section 2.10 on methods of EMO performance assessment.

15
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2.1 History of Evolutionary Computation

Evolutionary Computation (EC) refers to a methodology concerning adaptive

search and optimisation techniques, derived from the mechanics of natural selec-

tion [18] and modern biological genetics [19]. EC is a sub-field of Computational

Intelligence (CI) alongside other biologically inspired computing techniques such

as Artificial Neural Networks (ANNs) and Artificial Immune Systems (AISs).

EC is an interdisciplinary field, bringing together theories of evolutionary biol-

ogy, computation, mathematics, and physics.

The emergence of EC can be traced back as far as the early 1930s, when

the American geneticist Sewall Wright visualised evolution as a search through

a landscape of gene combinations graded by their adaptive values [20]. This was

later referred to as a “fitness landscape”, containing multiple peaks and valleys

representing the fitness of individuals [21]. This provided mathematicians and

computer scientists with the notion that evolution is a form of optimisation, and

harnessing such an optimisation technique within a computer could potentially

solve complex optimisation problems, which traditional algorithms would struggle

with.

With evolution portrayed in a manner that was appealing to computer scien-

tists, early contributions were made using computers combined with evolutionary

approaches. This dates back as far as the 1950s with work concerning evolution-

ary robotics [22], an evolutionary method for increasing industrial productivity

[23], and evolving sets of machine language instructions to create a learning ma-

chine [24, 25]. However, due to the unavailability of powerful computers to the

broader scientific community, the field remained unexplored by many.
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During the 1960s, the field began to grow exponentially as a result of in-

expensive - yet powerful - computers increasing in availability to the scientific

community. This led to the pioneering work by three independent groups, each

with unique yet related ideas. Ideas of solving real-valued optimisation problems

using the evolutionary process were considered by [26] and [27]. These ideas re-

sulted in the formation of a set of algorithms named Evolution Strategies (ES).

Simultaneously, an evolutionary framework named Evolutionary Programming

(EP) was introduced in [28] and was originally intended to evolve Finite State

Machines (FSMs). However, since its introduction to the field, expansion and

refinement of the framework has opened the application of EP to problems well

beyond evolving FSMs. Holland, inspired by evolutionary processes, proposed a

general model of adaptive processes [29]. This led to an initial set of reproductive

plans, which formed the basis of what is today referred to as the simple genetic

algorithm.

The same basic process involving a fixed-size population of solutions, stochas-

tic events of recombination, and the concept of solution fitness could be recognised

in the manifestation of ideas from each of these groups. However, it wasn’t until

the early 1970s that it became evident that these parameters and their associ-

ated rates made a significant impact on the convergence of these algorithms when

implemented [30]. This notion was expanded upon by [31] with an investigation

into the alteration of parameters and the possible stochastic side-effects. It was

concluded that the slight variation of these parameters could provide a more ro-

bust overall search at the expense of a slower initial response. This resulted in

an overall improvement in the performance of Genetic Algorithms (GAs).
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Throughout the 1970s and 1980s the individual models (ES, EP and GA)

were developed individually by their respective groups, until the early 1990s.

Representatives of each group had begun attending Evolutionary Algorithm (EA)

conferences, where they discussed their viewpoints and challenged each others

ideas. These interactions resulted in an agreement on the term Evolutionary

Computation as the name to unify the general field, as well as the hybridisation

of the ideas between the three models [32, 33].

Since the late 1990s and the 21st century many developments in the field

have been made. Some of these developments have been made in the form of new

EMO algorithms such as the Pareto Archived Evolution Strategy (PAES) [34], the

Nondominated Sorting Genetic Algorithm II (NSGA-II) [35], the Multi-Objective

Covariance Matrix Adaptation Evolution Strategy (MO-CMA-ES) [36], and the

Multi-Objective Evolutionary Algorithm Based on Decomposition (MOEA/D)

[37]. With the development of so many new EMO algorithms, it became necessary

to have a standard set of synthetic test functions to allow for the assessment of

their performance, this resulted in multi-objective test suites such as ZDT [38],

DTLZ [39], and WFG [40].

More recently, hybrid EAs have been realised through embedding local search

into the framework of EAs. Memetic Algorithms (which also go under the name

Hybrid EAs or Cultural Algorithms), are inspired not only by Darwinian princi-

ples of natural evolution, but also by Dawkin’s notion of a meme [41]. A meme,

analogously to a gene, defines the basic unit of cultural transmission or imita-

tion. Memetic algorithms have shown promise in solving single-objective and

multi-objective problems [42]. Hyper-heuristics are a methodology in search and

optimisation which are concerned with choosing an appropriate heuristic or algo-
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rithm in any given optimisation context [43], and can operate on meta-heuristics.

Hybrid algorithms, memetic algorithms, and hyper-heuristics, all indicate the

benefits of using an approach which aim to combine existing algorithms and

heuristics such that a more general approach can be taken to optimisation.

2.2 Evolutionary Algorithms

EAs are a powerful class of stochastic optimisation techniques that incorporate

some of the principles of natural selection and population genetics to converge

towards global optima [44]. They provide an iterative and population-based ap-

proach to optimisation that is capable of both exploring the search space of a

problem and exploiting promising solutions found in previous generations. Typi-

cally the exploration of the search space is performed by using variation operators

(such as mutation), which introduce an element of stochasticity into the optimi-

sation process and aim to prevent premature convergence to local optima. In

contrast, exploitation of promising solutions from previous generations is per-

formed using a selection operator (and in part, recombination operators) that

ensures preference is given to solutions that are considered fittest from the pre-

vious generation.

The robustness of EAs to multi-modal search landscapes containing many lo-

cal optima (and other difficulties present in multi-objective search spaces) and

the direct use of objective function information (rather than auxiliary knowl-

edge such as derivative information) ensures that EAs are effective when applied

to many problem types in which conventional optimisation methods may have

difficulty, this is put in perspective in Figure 2.1.
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In regards to EAs, there are many different algorithms which exist for the

purpose of optimisation, and there exists no “best” algorithm. This is shown in

the No Free Lunch (NFL) theorem described in [45], such that if algorithms are

averaged over all possible optimisation problems, no algorithm has a performance

advantage over any other. This theorem has be confirmed to hold for EAs [46].

The population-based nature of EAs helps to ensure that they are resilient

when faced with noisy search spaces, as each generation contains more informa-

tion about the shape of the fitness landscape than would be available to conven-

tional, non-population based methods such as hill-climbing [47].

Figure 2.1: “A mythical effectiveness index is plotted across a problem contin-
uum for a specialised scheme, an enumerative scheme, and an idealised robust
scheme.”
David E. Goldberg. Genetic Algorithms in Search, Optimisation & Machine
Learning, 1989. [44]

The execution life-cycle of a general and basic EA is shown in Figure 2.2.

The optimisation process begins by generating an initial population of random
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candidate solutions, which are then evaluated using problem specific objective

functions and assigned fitness values based on the objective values and other

potential indicator values which may be considered. The fitness values of the

population solutions are then checked to identify whether any of the current

solutions satisfy the termination criteria to terminate the optimisation process,

otherwise the process will continue onto the selection of the fittest individuals

from the current population, in order to exploit the genetic information contained

within the best current solutions. The selected candidate solutions are then used

for recombination to exploit the best solution information, and mutation to allow

for exploration of the search space beyond the available solution information

present in the population and attempts to prevent the possibility of getting stuck

in a local optima.

Initialize Population

Evaluate Population

Mutation

Recombination

Selection Terminate Search

Terminate Search Yes

No

Figure 2.2: General execution life-cycle diagram of a basic Evolutionary Algo-
rithm.
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2.2.1 Genetic Algorithms

A Genetic Algorithm is a single-objective optimisation algorithm which operates

using a large population of solutions [44]. These solutions are encoded as a string

of real numbers or traditionally as a binary bit string (sometimes referred to as

a chromosome), an example of a binary chromosome is illustrated in Figure 2.3.

Parent 1 1 0 1 1 1 0 1 1 0 0 Parent 2

Offspring 1 1 0 1 0 0 0 1 1 1 0 Offspring 2

Mutated Offspring 2 0 1 1 1 1

Figure 2.3: An example of a binary encoded chromosome.

Initially, a predefined number of solutions are generated (limited by the pop-

ulation size parameter) and evaluated using a fitness function to identify which

solutions are better suited to solving the problem. An example of a simple fitness

function is described in Equation 2.1. When putting the solution from Figure 2.3

through the fitness function it is assigned the fitness value 12.83, in a minimisa-

tion problem, a smaller value indicates a better solution. The fitness values of

all the solutions are evaluated to check whether predefined termination criteria

has been satisfied, this can be reaching a threshold fitness value or completing

a number of generational iterations. If the criteria has not been satisfied the

algorithm continues.

fitnessfunction(a, b, c, d, e) =
((a× 32) + (b×−26) + (c×−5) + 50

(d+ 1)× (e+ 2)
(2.1)

Once each solution has been assigned a fitness value, new offspring solutions

are typically generated by the selection and recombination of parent solutions.

Selection can be achieved through various selection schemes, in this example

roulette wheel selection [48] is used. In roulette wheel selection, the probability
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of a solution being selected is proportional to their fitness, although it is not

certain that the fittest solutions will be selected, only that they have a higher

chance. To select an individual, a random number is generated between 0 and

100, this number is then checked against the roulette wheel to see which solution is

selected. This has been illustrated in Figure 2.4, where if the randomly generated

number is 17, then solution (1) is selected.

Figure 2.4: An illustration of four solutions subjected to roulette wheel selec-
tion.

A random number is then generated between 0 and 1 to decide whether to

perform the crossover process on the two selected parent individuals, this random

number is checked against a predefined crossover rate parameter (controlling the

probability that crossover will occur), and if the randomly generated number is

lower, then the crossover is performed. A simple binary crossover regards the

swapping of bits between the two binary chromosomes after a certain point in

the binary bit string (single point crossover), this has been illustrated in Figure

2.5.
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The example given in Figure 2.5 illustrates the crossover and mutation of two

parent solutions in order to create two offspring solutions, one of which receives

a mutation. In order to determine the position of the crossover point a number

between 0 and the length of the binary bit string is randomly generated, the bit

strings of the two parent solutions are then swapped at this point to produce two

new offspring solutions. A random number between 0 and 1 is then generated

and compared to see if it is lower than a pre-defined mutation rate parameter to

decide whether mutation is to take place, the mutation rate is often very low for

a binary encoded chromosome (e.g. 0.001). If mutation is to take place on either

of the offspring solutions, a random position in the binary bit string is selected

and the binary value is flipped (either from 0 to 1 or 1 to 0), in this example only

Offspring 2 has received a mutation. This process of selection, recombination

and mutation continues until the populations solution capacity has been met,

and another iteration of the GA continues from the evaluation of solutions.

Parent 1 1 0 1 1 0 0 1 1 0 0 Parent 2

Offspring 1 1 0 1 0 0 0 1 1 1 0 Offspring 2

Mutated Offspring 2 0 1 1 1 1

Figure 2.5: An example of single-point binary crossover from position 3 in the
binary bit string, and the mutation of binary position 5 in Offspring 2.
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2.2.2 Evolution Strategies

Ideas of solving real-valued optimisation problems using an evolutionary process

were considered by [26] and [27]. These ideas resulted in the formation of a set

of algorithms named Evolution Strategies (ES), which differed from other EA

methods in two ways: ES used real parameter values; and they did not use re-

combination operators, instead the variation of solutions during the optimisation

process is driven entirely by mutation. ES were typically implemented in two

forms: two-member ES (1 + 1), in which a single parent is used to create a single

offspring using a mutation operator; and multi-member ES (µ + λ) or (µ, λ), in

which more than one parent solution (µ) is used to create λ offspring solutions

using a mutation operator. In the (µ + λ) variation of the multi-member ES,

both parent and offspring populations are considered in selection for the next

parent population, where as in the (µ, λ) variation, only the offspring population

is considered, making the (µ+ λ) an elitist procedure.

2.2.3 Covariance Matrix Adaptation Evolution Strategy

The Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) is a state

of the art single objective ES first introduced in [49, 50] and later improved upon

in [51, 52]. ES typically use a multivariate normal distribution and rank-based

selection to apply mutations to a population of solutions in order to continue

searching to the next generation. The CMA-ES adapts the mean and full covari-

ance matrix of this multivariate normal distribution (illustrated in Figure 2.6) to

direct the search towards new solutions.

The CMA-ES is invariant against linear transformations of the search space,

it has been shown to perform extremely well across a broad range of problems
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Figure 2.6: “Six ellipsoids, depicting one-σ lines of equal density of six different
normal distributions, where σ ∈ R +D is a diagonal matrix, and C is a positive
definite full covariance matrix. Thin lines depict exemplary objective function
contour lines.”
Nikolaus Hansen. The CMA evolution strategy: A comparing review, 2006. [53]

in the continuous domain [54], and it is robust to the initial parameter set used

due to its self-adaptive nature. CMA-ES can be used independently as a primary

optimiser, but is often incorporated into other optimisation algorithms as a local

optimiser. One of the key properties of CMA-ES is the speed at which it can

find good approximations to (and in many cases the actual value of) the global

minimum.

CMA-ES is an ES and therefore implements mutation as the only scheme

for problem variable variation, in contrast to a GA which implements both a

recombination and mutation scheme. This difference is an advantage for CMA-

ES if it is to be extended for multi-objective and many-objective problems, as

recombination operations often become inefficient as the number of problem ob-

jectives increase. Solutions become more likely to be distant from each other in

objective space as the number of objectives increase, such that two distant parent

solutions are likely to produce offspring solutions that are also distant from the
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parents [55]. A disadvantage to CMA-ES is that it does not inherit any of the

benefits from implementing recombination, which allows the exploitation of genes

through the mixing of chromosomes. However, implementing recombination in

CMA-ES would disrupt the sophisticated mutation scheme. Additionally, it has

been shown in [56] that the NFL theorem does not hold in continuous search

domains, meaning CMA-ES, which performs extremely well in the continuous

domain, has an advantage over other algorithms.

Through many performance comparisons across different test suites of bench-

mark problems (e.g. the competition results in [57, 54, 58]) the CMA-ES has

been proven to be a powerful and robust optimiser.

2.3 Multi-Objective Optimisation

Multi-objective optimisation, as implied by the name, refers to problems with

two or more objective functions, this is often the case with real-world problems

in search and optimisation which naturally involve multiple objectives or multiple

criteria [59].

A fundamental difference between single-objective optimisation and multi-

objective optimisation is that in single-objective optimisation problems, the ob-

jective is to find a single solution which represents the global optimum in the

entire search space, where as multi-objective optimisation problems often involve

conflicts between multiple objectives, and as a result it is unlikely that there

exists a single optimal solution. Therefore, in multi-objective optimisation a so-

lution is an approximation set of candidate solutions which offers a representation

of the trade-offs between the multiple objectives, where any improvement in one
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objective value will result in the degradation in one or more of the other objective

values. This notion of “optimum” solutions is called Pareto-optimality.

x = (x1, x2, . . . , xn) (2.2)

optimise fm(x), m = 1, 2, . . . ,M ;
subject to gj(x) ≥ 0, j = 1, 2, . . . , J ;

hk(x) = 0, k = 1, 2, . . . , K;

x
(L)
i ≤ xi ≤ x

(U)
i i = 1, 2, . . . , n;

 (2.3)

f(x) = (f1(x), f2(x), f3(x), . . . , fM(x)) (2.4)

A solution x is defined in Equation 2.2 as a vector of n decision variables. In

Equation 2.3, a multi-objective optimisation problem is described in its general

form, taken from [59]. There are M objective functions with the definition in

Equation 2.4, these objective functions can be either minimised or maximised.

The constraint functions gj(x) and hk(x) impose inequality and equality con-

straints that must be satisfied by a solution x in order for it to be considered

a feasible solution. Another condition which affects the feasibility of a solution

regards the adherence of a solution x to values between the lower x
(L)
i and upper

x
(U)
i boundaries within the decision space.

A set of non-dominated solutions1 generated by the optimiser is known as an

approximation set [60] and can be characterised in three key areas [61]. These

are illustrated graphically in Figure 2.7 and listed in the following:

1A solution is termed non-dominated if there exists no other solution in the population that
is superior to it in all considered problem objectives.
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• Proximity. This tells the Decision Maker (DM) how close the approximation

set is to the true Pareto-optimal front. An ideal approximation set should

be as close as possible in proximity to the true Pareto-optimal front.

• Diversity. This characterises the distribution of the approximation set both

in the extent and uniformity of that distribution. The ideal approxima-

tion set should be uniformly distributed across the trade-off surface of the

problem.

• Pertinence. This criteria measures the relevance of the approximation set to

the DM. Ideally the approximation set should contain a number of solutions

which satisfy the DM’s expressed preferences.

Figure 2.7: Proximity, diversity, and pertinence characteristics in an approxi-
mation set in bi-objective space.
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Conventional multi-objective optimisation techniques often fail to satisfy these

criteria. For example, the goal-attainment method [62] and the weighted-sum

method [63] both only provide single solutions to the optimisation problem -

thus failing to provide a diverse distribution of solutions. However, EAs are well

suited to this kind of multi-objective optimisation since they search a population

of candidate solutions and are thus capable of presenting a diverse approximation

set to a DM [59].

Many theoretical EMO studies only consider a small number of objectives,

with most of the published literature focussing on the bi-objective case. However

complex real-world problems often require the consideration of a higher number

of objectives. This has led to much interest amongst the research community in

many-objective2 optimisation. The increased scale of a many-objective optimi-

sation problem means that the pertinence of the approximation set presented to

a DM is especially important. The global trade-off surface for a problem with

many conflicting objectives frequently contains many Pareto-optimal solutions,

the majority of which may not be in the DM’s Region of Interest (ROI) [61]. In

this case the exploration of those undesirable regions of the objective space results

in inefficiency in terms of the use of computational resources and the quality of

the final approximation set produced.

2.4 Evolutionary Multi-Objective Optimisation

Multi-objective optimisation problems had previously been solved by being en-

capsulated as single-objective optimisation problems using techniques such as the

2The phrase many-objective has been used in the operations research community to refer
to problems with more than the standard two or three objectives [64].
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weighted sum approach [65]. In this approach, different weights are assigned to

each objective function based on their configured level of importance and pri-

ority, these weighted objectives are then aggregated into a single weighted sum,

allowing the use of conventional optimisation techniques to solve the problem. A

major disadvantage of using the weighted sum approach and other conventional

multi-objective optimisation approaches, is that they can only produce a single

candidate solution per execution, and therefore require multiple executions to

generate a set of trade-off solutions.

In contrast, EMO algorithms have inherited beneficial properties from the

principles upon which they are based. EAs are suitable for solving multi-objective

optimisation problems, due to being population based and therefore being able

to generate and exploit more than a single solution per generational iteration,

this allows EAs to find several solutions in the Pareto-optimal set in a single

algorithm execution [6]. In addition, EMO algorithms do not require auxiliary or

derivative information regarding the problem, do not require the aggregation of

problem objectives into a single objective, and are less susceptible to the shape

or continuity of the Pareto-optimal front.

Within the last decade there have been major advances in the field of EMO.

Whilst the first generation of Pareto-based EMO’s algorithms (such as the Multi-

Objective Genetic Algorithm (MOGA), the Niched Pareto Genetic Algorithm

(NPGA), and the Nondominated Sorting Genetic Algorithm (NSGA)) were char-

acterised by the simplicity of the algorithms and lack of rigorous methodology

for their analysis [66], the latest generation of EMO algorithms have focussed on

efficient convergence to the whole of the true Pareto-optimal front. This has been

accomplished by incorporating elitism (ensuring that the best solutions are never
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lost during the optimisation process) and advanced methods for the preservation

of diversity (to ensure a good spread of solutions across the whole Pareto-optimal

front) into the selection-for-survival process. There are two main strategies for

incorporating elitism into EMO algorithms — maintaining an archive of non-

dominated solutions, and using a (µ+ λ) type selection-for-survival mechanism.

2.5 Diversity Preservation in Evolutionary

Multi-Objective Optimisation Algorithms

After proximity to the true Pareto-optimal front, diversity of solutions in the

Pareto-optimal approximation set is the most desired quality in a robust EMO

algorithm. The reason for this is because in EMO and multi-objective optimisa-

tion in general, there exists no single ideal solution to a problem. Instead there

exists many Pareto-optimal solutions, and in the Pareto-optimal approximation

set the minimisation of one objective will result in the increase of another ob-

jective. For this reason, the DM requires a set of Pareto-optimal solutions that

are uniformly spread along the objective space, to allow the DM to observe the

trade-off information and use domain specific expert knowledge to select a final

solution.

Figure 2.8 presents an ideal Pareto-optimal approximation set of solutions

uniformly distributed along the Pareto-optimal front, this is a Pareto-optimal

approximation set with both ideal proximity and diversity. In another scenario

presented in Figure 2.9, the EMO process has successfully converged to solutions

along the Pareto-optimal front, however it has not achieved a satisfactory level

of diversity amongst solutions in the Pareto-optimal approximation set. This
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scenario does not offer the DM with adequate information to make a well-informed

decision.

Figure 2.8: A Pareto-optimal approximation set containing 10 solutions with
ideal diversity.

Figure 2.9: A Pareto-optimal approximation set containing 10 solutions with
undesirable diversity.
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2.5.1 Conflicts between Proximity and Diversity

The EMO process (and multi-objective optimisation process in general) is pre-

sented with a multi-objective trade-off of its own. This trade-off arises due to

the conflict between attaining ideal proximity and diversity in an approximation

set. This is a bi-objective trade-off which exists in most cases where the true

Pareto-optimal front is not known. In such a case it is not possible to determine

whether the approximation set has converged to the true Pareto-optimal front,

and therefore diversity preservation cannot become the focus of the remainder of

the search. However, diversity preservation usually comes second to obtaining a

good approximation set, as stated in [67]. The goal of diversity preservation is

to preserve diversity along an approximation set as close to the Pareto-optimal

front as possible.

The example in Figure 2.10 illustrates the trade-off between proximity and

diversity. Set 2 has a more diverse population of solutions in comparison to Set

1; however Set 1 is closer in proximity to the Pareto-optimal front than Set 2. In

this case, the better diversity offered by Set 2 is not as valuable as the proximity

offered by Set 1.
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Figure 2.10: An illustration of the trade-off between proximity and diversity to
the Pareto-optimal front of an objective function.

2.5.2 Methods of Diversity Preservation

There exist many novel concepts and variants of these concepts for the preserva-

tion of diversity in a population throughout the EMO process. In this section a

selection of methods of diversity preservation are described.

Adaptive Grid Algorithm

Bounded Pareto archiving (as in the Adaptive Grid Algorithm (AGA) strat-

egy used in the PAES algorithm) is a simple yet powerful diversity preservation

scheme which uses an adaptive grid to keep track of the density of solutions

within divisions of the objective space [34]. To achieve this, a grid with a pre-set

number of divisions is used to divide the objective space and when a solution is

generated, its grid location is identified and associated with it. Each grid location

is considered to contain its own sub-population, and information on how many
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solutions in the archive are located within a certain grid location is available

during the optimisation process, this has been illustrated in Figure 2.11.

0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

Objective 1

O
bj

ec
tiv

e 
2

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

Figure 2.11: An example plot of a population and visualisation of grid divisions
managed by an AGA.

When an archive has reached capacity and a new candidate solution is to be

archived, the information tracked by the AGA is used to replace a solution in

a grid location containing the highest number of solutions. When a candidate

solution is non-dominated in regards to the current solution and the archive,

the grid information is used to select the solution from the least populated grid

location as the current (and parent) solution.

The AGA concept used in PAES (described in Section 2.7.2) later inspired

several researchers, and was altered and deployed in multiple EMO algorithms

such as the Pareto Envelope-based Selection Algorithm (PESA) (a population
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based version of PAES) [68], the Micro Genetic Algorithm [69], and the Domina-

tion Based Multi-Objective Evolutionary Algorithm (ε-MOEA) [70].

Contributing Hypervolume

The contributing hypervolume indicator is an adaptation of the hypervolume

indicator in order to be used as sorting criteria for selection operators, it has been

used in the s-metric Selection Evolutionary Multi-Objective Algorithm (SMS-

EMOA) [71] and the Hypervolume Estimation Algorithm for Multi-Objective

Optimisation (HypE) [72]. The hypervolume indicator works by calculating the

size of the objective space that has been dominated by an entire approximation set

in regards to a specified reference point, where as the contributing hypervolume

indicator assigns each solution in an approximation set with the size of the space

covered by each solution exclusively. With this information the population can be

sorted by the most dominant and diverse solutions. In addition, most contributing

hypervolume indicator selection methods always assign solutions containing the

extreme values for an objective with the highest hypervolume value. This has

been illustrated in Figure 2.12 in two-dimensional space with a population of

three solutions.

Although many state of the art EMO algorithms use the contributing hyper-

volume as a sorting criteria for selection, its calculation becomes computationally

infeasible as the number of problem objectives considered increase. Monte Carlo

approximations have been used to speed up the calculation of the contributing

hypervolume in [73], which through empirical experiments has shown that the

method does not impair the quality of the approximation set. However, the

speed increase provided by the Monte Carlo approximation method still results
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Figure 2.12: An example of the contributing hypervolume indicator in two-
dimensional objective space.

in the contributing hypervolume indicator being infeasible on problems consisting

of five objectives or more.

This particular measure of diversity preservation can also be used post-optimisation

to reduce the size of a final approximation set produced by an optimiser, to a

size that will not overwhelm and confuse a DM.

Crowding Comparison Operator

The crowded comparison operator is used in various stages of NSGA-II to guide

its selection process towards an approximation set with uniformly spread out

solutions. Associated with each individual in a population is two algorithm spe-

cific properties: a non-domination rank, in which solutions are ranked by the

number of solutions they are dominated by, found using the fast non-dominated
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sorting approach; and a local crowding distance, which is an estimation of the

density of solutions surrounding a particular solution in the population [35, 74].

An illustration of this measure is given in Figure 2.13.

Figure 2.13: Calculation of the crowding-distance — points marked with solid
markers are solutions of the same non-dominated rank.

Between two solutions with different non-domination ranks, the solution with

the lower rank is given preference. However, if both solutions are of the same

domination rank, then the solution which is located in a region with the least

number of solutions is given preference.
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2.6 Preference Articulation in Evolutionary

Multi-Objective Optimisation

When solving real-world multi-objective problems, the ideal optimisation algo-

rithm is one which converges to non-dominated Pareto-optimal solutions within

the DM’s ROI. This allows for the DM to be presented with a small set of trade-

off solutions which are within their ROI (illustrated in Figure 2.14), as opposed

to a larger set of trade-off solutions within the entire objective space (illustrated

in Figure 2.15). Subsequently, the DM is not overwhelmed with a large set of

candidate solutions when using expert knowledge to select their desired solution

to the problem. Furthermore, when an ROI is specified by the definition of pref-

erences, the algorithm is able to use this information during the search to discard

trade-off solutions which do not fall within the desired region, and to skew the

search towards the region by influencing the EMO algorithm’s selection operator.

This additional preference information ultimately reduces the area of feasible so-

lutions within the objective space, thus reducing the computational effort needed

to produce a diverse set of pertinent solutions to aid the DM in making a decision.

The role of the DM in EMO is usually to choose a single compromise solution

from the approximation set presented to them. Although there may be a poten-

tially infinite number of Pareto-optimal solutions in the global trade-off surface,

in practice the DM will usually only be interested in a small subset of these.

Therefore, allowing the DM to focus the optimisation process on relevant areas

of the search space both increases the efficiency of the search effort and reduces

the amount of irrelevant information the DM has to consider [75].
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Figure 2.14: A Pareto-optimal approximation set containing five solutions with
ideal pertinence.

Figure 2.15: A Pareto-optimal approximation set containing seven solutions
with undesirable pertinence.
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A prerequisite for this type of convergence is the articulation of preferences

by the DM. The preferences of a DM can be incorporated into the optimisation

process in three ways:

• A priori , in which preferences are defined before the search.

• A posteriori , in which the DM selects a solution after completion of a

search.

• Progressively, involving interaction with the DM during execution of the

search.

A posteriori methods of preference articulation involve the DM selecting a

compromise solution from the global approximation set of Pareto-optimal solu-

tions found at the end of the optimisation process, whilst a priori and progressive

preference articulation methods aim to achieve a good representation of the trade-

off surface in the ROI of the DM. The key advantage of a priori and progressive

preference articulation methods is the reduction in the size of the search space

explored by the optimiser because the search is focussed on a sub-set of the global

trade-off surface.

In a priori articulation of preferences the DM expresses their preferences be-

fore the start of the optimisation process. However, often the DM may not be

sure of their preferences prior to optimisation, and by stating their preferences

a priori, the DM may not investigate some areas of the search space which po-

tentially deserve attention. A better method is often progressive articulation of

preferences, which enables the DM to alter their preferences during the optimisa-
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tion process and thus incorporate information that only becomes available during

the search process [76] (such as the exact nature of trade-offs between objectives).

One of the first schemes for progressive preference articulation in EMO algo-

rithms was introduced by [77], and extended the Pareto-based ranking scheme

used in the Multiple Objective Genetic Algorithm (MOGA) [78] to allow pref-

erences to be expressed throughout the run of an EMO algorithm. These pref-

erences were then used in a modified version of dominance which combines the

concept of Pareto-optimality with a preference operator to rank the candidate

solutions according to both preference information and Pareto dominance. This

progressive preference articulation method has been used in a wide variety of

engineering applications such as the optimisation of robust control strategies for

gasifier power plants [79], and the design of lateral stability controllers for aircraft

[80].

More recently, the Reference-point-based Nondominated Sorting Genetic Al-

gorithm II (R-NSGA-II) presented in [81], combines a preference based strategy

with an EMO methodology, in order to demonstrate how a preferred set of solu-

tions near a number of reference points can be found simultaneously. The paper

suggests two approaches for the incorporation of preferences: a modified EMO

procedure based on the NSGA-II; and a predator-prey approach based on an

original grid based procedure [82]. Both approaches appeared to perform well,

with the modified NSGA-II approach performing better overall.

The Preference-Based Evolutionary Algorithm (PBEA) was introduced in [83]

in order to address the short-comings of not having preference information in the

solution process. The algorithm uses the Indicator-Based Evolutionary Algorithm

(IBEA) introduced in [84] as a base, in combination with a binary indicator which
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has been modified with an achievement function (based on a reference point)

which directly represents the preference information. The experimental results

were obtained primarily from bi-objective synthetic test functions from the ZDT

synthetic test suite. The authors suggest that the incorporation of preferences

results in more relevant approximations throughout the optimisation process.

These preference driven multi-objective optimisers offer promising results, and

suggest that the incorporation of DM preferences into multi-objective search can

reduce computational cost of the optimisation process and improve the pertinence

of the final approximation set presented to the DM.

The approaches introduced appear to lack rigorous benchmarking consisting of

many test suites, real-world problems, and test-cases. The approaches introduced

also involve the tight integration of the preference method into an existing EMO

method. Instead, it would be desirable to have a preference articulation operator

which is designed for portability. Such a portable preference articulation operator

could be incorporated into any multi-objective optimiser, as different optimisers

are more suitable for different problems, and some optimisers become redundant

after years of further research.
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2.7 State of the art Evolutionary

Multi-Objective Optimisation Algorithms

The EMO literature contains descriptions of many different EMO algorithms,

some of these algorithms are new designs and introduce new concepts, where as

others are variants or combinations of existing EMO algorithms. In this section,

four well-regarded and popular EMO algorithms are introduced and described

briefly: Section 2.7.1 introduces NSGA-II, Section 2.7.2 introduces PAES, Sec-

tion 2.7.3 introduces MO-CMA-ES, and Section 2.7.4 introduces MOEA/D and

MOEA/D-DRA.

2.7.1 Non-dominated Sorting Genetic Algorithm II

NSGA-II was introduced in [35, 74] as an enhancement to NSGA [85] in order to

address some problems with the original algorithm. In particular, NSGA-II uses

an enhanced approach to selection whereby a candidate solution is ranked using

a much faster non-dominated sorting scheme paired with a crowded comparison

operator (described in Section 2.5.2). Not only does NSGA-II take into account

the non-domination rank of a candidate solution but also its crowding distance3

during the selection for variation and survival process. Unlike PAES (introduced

in Section 2.7.2) which uses an external archive, NSGA-II uses a simple (µ + λ)

selection scheme in the survival process. In the EMO literature, NSGA-II is

widely used in pairwise comparisons, and as an optimiser against which new

optimisers are compared to.

3A measure of the density of solutions surrounding a particular solution in the objective
space.
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The algorithm begins by initializing a population of randomly generated so-

lutions, and then evaluates the objective values for every solution. Then the

generational loop begins, where each solution in the current population is as-

signed a rank based on its Pareto dominance using the fast non-dominated sort-

ing scheme, and then the crowding distance between every solution of the same

rank is calculated. Selection for variance is then carried out using the crowded

comparison operator and binary tournament selection. Genetic operators such

as the Simulated Binary Crossover (SBX) for recombination and polynomial mu-

tation [86] are then used to introduce variance in the offspring population, these

new offspring solutions are then evaluated. The parent population and offspring

population are combined and selection for survival takes place, where elitism is

ensured because the best solutions from the parent and offspring population are

in the population which is subjected to selection. The population for the next

generation is populated by solutions from each rank (from best to worse) until the

population capacity has been met. If adding all solutions from a rank exceeds the

population capacity, then solutions are selected based on their crowding distance

in descending order until the capacity is met. This process is repeated for every

generation until some termination criteria is met.

2.7.2 Pareto Archived Evolution Strategy

The archiving approach to elitism is typified by PAES which proposes a concep-

tually simple EMO algorithm capable of producing a diverse approximation set

with close proximity to the true Pareto-optimal front [34]. PAES uses a (1+1)

ES in conjunction with a novel bounded Pareto archive and AGA (described in

Section 2.5.2). This bounded Pareto archive stores only non-dominated solutions
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that are discovered during the search, and a non-dominated candidate solution

is compared to the archive before it is accepted as a current solution. Once the

archive is full, a grid system (whereby the objective space currently covered by

non-dominated solutions is divided up into a predefined number of partitions)

is used to decide which archived solution to remove to allow space for a new

non-dominated solution to be added. Using a set of rules for grid and archive

management, diversity is achieved amongst the archive. The execution life-cycle

for PAES is illustrated in Figure 2.16. Variations of the AGA approach used

in PAES have been used in other EMO algorithms; for example, in the Pareto

Envelope-based Selection Algorithm (PESA) [68].

The Pareto Archived Evolution Strategy (PAES) [34] is a simple (1+1) evolu-

tion strategy whereby a single parent solution produces a single offspring. PAES

uses an archive (with an upper bound on its size) which contains all the non-

dominated solutions which have been found during the optimisation process. This

archive implements the elitism concept and plays the role of a reference set. The

performance of the mutated solution (offspring solution) is assessed by comparing

it to the performance of the solutions in the reference set. However, the major

feature of PAES is its strategy for promoting diversity in the approximation set.

PAES uses an adaptive hyper-grid system in the objective space to divide it into

several non-overlapping hyper-boxes. The belonging of a certain solution to a

certain region in the hyper-box is determined by the solution’s objective values

which define the solution’s coordinates. In the case where an offspring solution is

non-dominated by the reference set, a crowding measure based on the number of

solutions residing in a certain grid location is applied to determine whether the

offspring solution is to be accepted or not. The major advantage of this diversity
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Figure 2.16: Execution life-cycle for the PAES optimisation process.

maintenance technique is that it does not require setting any additional param-

eters such as the niche size parameter-share in other fitness sharing approaches.
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2.7.3 Multi-Objective Covariance Matrix Adaptation
Strategy

The MO-CMA-ES is a multi-objective implementation of the powerful single ob-

jective CMA-ES designed to solve multi-objective optimisation problems [36].

The MO-CMA-ES maintains a population of elitist solutions that adapt their

search strategy depending on the shape of the underlying search landscape. There

are two variations of the MO-CMA-ES: the s-MO-CMA-ES which achieves di-

versity using the contributing hyper-volume measure (or s-metric) introduced

by [87], and the c-MO-CMA-ES which achieves diversity using the crowding-

distance measure introduced in NSGA-II. Whilst initial results have shown that

MO-CMA-ES is extremely promising, it is as yet predominately untested on

real-world engineering problems. Some results show that MO-CMA-ES struggles

to converge to good solutions on problems with many deceptive locally Pareto-

optimal fronts - a feature that can be common in real-world problems [88]. The

MO-CMA-ES execution life-cycle has been illustrated in Figure 2.17.

In the original MO-CMA-ES, a mutated offspring solution is considered to

be successful if it dominates its parent. In contrast, [88] introduces a new MO-

CMA-ES variant which considers a solution successful if it is selected to be in the

next parent population, and conducts a comparison of MO-CMA-ES variants on

synthetic test functions consisting of up to three objectives, making it the first

time MO-CMA-ES has been evaluated on synthetic test functions consisting of

more than two objectives. NSGA-II with the hypervolume indicator as a second-

level sorting criterion was also considered, and for the first time MO-CMA-ES is

shown to out-perform it. MO-CMA-ES with the improved update rule is strongly
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Figure 2.17: Execution life-cycle for the MO-CMA-ES optimisation process.

recommended and is shown to offer better performance than the original, and will

be referred to as MO-CMA-ES herein.

MO-CMA-ES is a powerful multi-objective optimiser (empirically evaluated

in [36, 89, 88]), but suffers from computational infeasibility when applied to

problems consisting of many objectives, this is because of its reliance on the

contributing hypervolume indicator as a second-level sorting criterion (described

in Section 2.5.2).
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2.7.4 Multi-Objective Evolutionary Algorithm Based on
Decomposition

The decomposition approach to EMO is typified by the Multi-objective Evolu-

tionary Algorithm Based on Decomposition (MOEA/D) [37] which decomposes

a multi-objective optimisation problem into a number of scalar optimisation sub-

problems and optimises them simultaneously. Each of the sub-problems is op-

timised by only using information from its several neighbouring sub-problems,

which results in MOEA/D having a lower computational complexity at each gen-

eration when compared to NSGA-II. The use of the Tchebycheff approach [90]

to decomposition in MOEA/D is suggested in [37, 91], where MOEA/D either

outperforms or performs comparably to NSGA-II on a range of synthetic test

functions.

The performance of a new version of MOEA/D, named MOEA/D with Dy-

namical Resource Allocation (MOEA/D-DRA), was presented as part of the Spe-

cial Session on Performance Assessment of Constrained / Bound Constrained

Multi-Objective Optimization Algorithms held at CEC09 in Norway, the synthetic

test functions and rules of which are described in [92]. In the previous version of

MOEA/D, all sub-problems were treated equally in regards to the computational

effort which they were allocated. However, there may be variance in computa-

tional difficulty amongst these sub-problems, and because of this MOEA/D-DRA

uses dynamic resource allocation to assign different amounts of computational ef-

fort to different sub-problems, this is based on the computation of a utility value

πi for each of the sub-problems i. The MOEA/D-DRA algorithm is described in

Algorithm 1, with further detail available in [93].
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Algorithm 1 MOEA/D-DRA algorithm

Step 1: Initialisation
Step 1.1: Calculate the Euclidean distances between any two weight

vectors and then find the closest weight vectors to each weight
vector.

Step 1.2: Generate an initial population by uniformly sampling from
the weight space.

Step 1.3: Initialize algorithm parameters.
Step 2: Selection of sub-problems using 10-tournament selection based on
the utility value πi, sub-problem indexes are selected.
Step 3: Variation for every sub-problem selected in Step 2:

Step 3.1: Selection of mating/update range.
Step 3.2: Reproduction by generating a new solution using a differential

evolution operator, then performing mutation to produce a
new solution.

Step 3.3: If an objective value does not conform to the problem bound-
aries, its value is reset to be a randomly selected value within
the boundary.

Step 3.4: Update of Solutions.
Step 4: Terminate optimisation process if stopping criteria is satisfied.
Step 5: Continue the generational loop, continue from Step 2.

Neighbourhood relations amongst sub-problems are defined based on the dis-

tances amongst their weight vectors. These weight vectors are generated as ran-

dom uniformly distributed values, an example of generated weight vectors has

been illustrated in Figure 2.18.

Overall, MOEA/D-DRA’s performance suggests it is a powerful EMO algo-

rithm capable of producing approximation sets with good proximity and diversity

on synthetic test problems which contain optimisation difficulties such as complex

Pareto-optimal sets.
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Figure 2.18: Uniformly distributed random weight values generated for 2, 3, 5,
7, 10 and 12 objective problems, for use with MOEA/D-DRA.

2.8 Objective Functions

In mathematics, optimisation is concerned with the selection of optimal solutions

to objective functions. An objective function consists of input arguments re-

ferred to as problem variables (or genotype) which are computed by one or many

mathematical functions to determine the objective value (or phenotype).

Real-world optimisation problems are divided into one (in the case of single

objective optimisation) or many (in the case of multi-objective optimisation)

objective functions in order to be optimised by an optimisation algorithm. The

difficulty of convergence can be reduced by the bounding of problem variables as
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this reduces the size of the search domain.

An example objective function can be described mathematically as:

f1 = x1

f2 = g

(
1.0−

√
f1

g

)

g (x2, . . . , xn) = 1.0 +
9

n− 1

n∑
i=2

xi

0 ≤ xi ≤ 1, i = 1, . . . , n

(2.5)

where 〈x1, . . . , xn〉 are the problem variables, f1 is the first objective value

and f2 is the second objective value for this bi-objective synthetic test function

named ZDT1, taken from the ZDT multi-objective test suite (described in Section

2.9.1). This particular objective function is, by design, scalable up to any number

of problem variables but is restricted to two problem objectives.

Synthetic test functions which are developed for the purpose of testing the ro-

bustness of an optimiser are typically computationally inexpensive and have short

execution times. In contrast, real-world problems which have been encapsulated

within an objective function in order to be used by an optimiser are often com-

putationally expensive and have long execution times. This is because synthetic

test functions are often mathematical equations which aim to cause difficulty for

an optimiser when searching for problem variables that produce optimal objec-

tive values, where as real-world problems often involve computationally expensive

simulations in order to arrive at the objective values.
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2.9 Multi-Objective Test Suites

In order to determine an EMO algorithm robust when solving problems consisting

of multiple objectives, its performance must be assessed on the optimisation of

test functions which are created for the purpose of testing. These problems may

also be used to systematically compare two or more EMO algorithms. These test

function often have a scalable number of problem objectives and problem variables

as well as a complex Pareto shape, and aim to test algorithms on their ability

to converge to an approximation set in the presence of optimisation difficulties

which are often present in real-world optimisation problems.

The four most popular multi-objective test suites in the literature are the

bi-objective ZDT test suite proposed in [38], the scalable multi-objective DTLZ

test suite proposed in [39], the multi-objective CEC09 competition test suite

proposed in [92], and the scalable multi-objective WFG test suite proposed in

[40]. These test suites aim to incorporate a combination of features in each test

problem that an EMO algorithm may potentially find difficult to overcome during

the optimisation process, allowing for the assessment of an EMO algorithm’s

ability to converge toward the true Pareto-optimal front in the presence of such

difficulties.

2.9.1 The ZDT Test Suite

The ZDT test suite [38] contains six synthetic test functions which were con-

sidered to provide sufficient complexity in the benchmarking of multi-objective

optimisers. The test functions are named ZDT1 through to ZDT6, with each test

function incorporating a feature that is known to cause the EMO process diffi-
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culty when attempting to converge toward the true Pareto-optimal front, and in

the maintenance of diversity in the approximation set. Each test function is con-

cerned with the minimisation of two problem objectives, and has been described

in the following:

• ZDT1 is by default a 30 variable problem with a convex Pareto-optimal

front;

• ZDT2 is by default a 30 variable problem with a non-convex Pareto-optimal

front;

• ZDT3 is by default a 30 variable problem with a Pareto-optimal front

consisting of non-contiguous convex parts;

• ZDT4 is by default a 10 variable problem which tests the ability to handle

multi-modality with 219 local Pareto-optimal fronts;

• ZDT5 is typically not considered when designing experiments to bench-

mark modern EMO algorithms due to its requirement of binary encoded

problem variables;

• ZDT6 is by default a 10 variable problem with solutions non-uniformly

distributed along the Pareto-optimal front, with the diversity of solutions

decreasing near the Pareto-optimal front.

The true Pareto-optimal fronts of the test problems from the ZDT test suite

have been plotted and presented in Figure 2.19.
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Figure 2.19: Plots of the Pareto-optimal fronts for all ZDT test functions ex-
cluding ZDT5, from the ZDT test suite.

The ZDT synthetic test suite has been used for the performance assessment

of algorithms in much of the multi-objective optimisation and evolutionary com-

putation literature (e.g. [94, 95, 81, 96, 97]).
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2.9.2 The DTLZ Test Suite

Most research on EMO algorithms often employed simple or non-scalable test

problems in their benchmarking and comparison. In order to test EMO algo-

rithms on their ability on multi-objective test problems, the DTLZ test suite

[39] has been developed with both scalable problem variables and for the first

time scalable problem objectives. The test suite consists of seven scalable multi-

objective synthetic test problems concerned with minimisation, and have been

described in the following:

• DTLZ1 is by default a 7 variable simple test problem, with objective func-

tion values lying on a linear hyperplane. The difficulty is in converging

to the Pareto-optimal hyperplane in a search space which contains 11k−1

(k recommended to be 5) local Pareto-optimal fronts, each of which can

deceive an EMO algorithm and result in premature convergence;

• DTLZ2 is by default a 12 variable test problem with a spherical Pareto-

optimal front, which tests an EMO algorithm’s performance when optimis-

ing three or more objectives;

• DTLZ3 is by default a 12 variable test problem based on DTLZ2, which

tests an EMO algorithm’s ability to converge to a global Pareto-optimal

front by altering the DTLZ2 function to introduce many local Pareto-

optimal fronts;

• DTLZ4 is by default a 12 variable test problem based on DTLZ2, which

tests for an EMO algorithm’s ability to maintain good solution diversity

and distribution by altering the DTLZ2 function’s meta-variable mapping,
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allowing for a dense set of solutions near the fm − f1 plane. When opti-

mising DTLZ4, the final population is significantly dependant on the initial

population;

• DTLZ5 is by default a 12 variable problem which tests an EMO algorithm’s

ability to converge to a degenerated curve;

• DTLZ6 is by default a 12 variable problem which introduces 2m−1 dis-

connected Pareto-optimal regions in the search space, this tests an EMO

algorithm’s ability to maintain sub-populations in different Pareto-optimal

regions;

• DTLZ7 is by default a 22 variable problem which introduces a Pareto-

optimal front consisting of a combination of a straight line and a hyper-

plane, this tests an EMO algorithm’s ability in finding solutions in both of

these regions whilst maintaining good solution diversity and distribution.

The true Pareto-optimal fronts of two-objective and three-objective instances

of the test problems from the DTLZ test suite have been plotted and presented

in Figure 2.20 and Figure 2.21 respectively.
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Figure 2.20: Plots of the true Pareto-optimal fronts for the bi-objective DTLZ
test functions from the DTLZ test suite.

The DTLZ synthetic test suite has been used for the performance assessment

of algorithms in much of the multi-objective optimisation and evolutionary com-

putation literature (e.g. [98, 99, 100, 101, 102]).
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Figure 2.21: Plots of the true Pareto-optimal fronts for the three-objective
DTLZ test functions from the DTLZ test suite.

2.9.3 The WFG Tool-kit

Through the analysis of existing test suites, [40] suggests existing test problems

are poorly constructed and poorly represent non-separability, and proposes a flex-

ible tool-kit which can be used to construct well-designed synthetic test problems.

The tool-kit is demonstrated with the construction of nine multi-objective test

problems (WFG1 through to WFG9) referred to as the WFG test suite, with

test problems consisting of scalable problem variables and problem objectives.

All test problems in the WFG test suite consist of: Pareto-optimal fronts which
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have dissimilar trade-off magnitudes, problem variables which have domains of

dissimilar magnitude, and Pareto-optimal fronts which are not degenerate (with

the exception of WFG3).

The WFG test suite has been described in the following:

• WFG1 is a separable uni-modal test problem, with a polynomial/flat bias,

and a convex mixed geometry;

• WFG2 is a non-separable test problem with a uni-modal and multi-modal

variant, and a convex disconnected geometry;

• WFG3 is a non-separable uni-modal test problem, with a linear and de-

generate geometry consisting of a one dimensional Pareto-optimal front;

• WFG4 is a separable and multi-modal test problem with a concave geom-

etry;

• WFG5 is a separable test problem with deceptive modality, and a concave

geometry;

• WFG6 is a non-separable uni-modal test problem with a concave geometry;

• WFG7 is a separable uni-modal test problem with a parameter dependent

bias and a concave geometry;

• WFG8 is a non-separable uni-modal test problem with a parameter de-

pendent bias and a concave geometry;

• WFG9 is a non-separable test problem with a multi-modal and deceptive

modality, with a parameter dependent bias and a concave geometry.
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The true Pareto-optimal fronts of two-objective and three-objective instances

of the test problems from the WFG test suite have been plotted and presented

in Figure 2.22 and Figure 2.23 respectively.
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Figure 2.22: Plots of the true Pareto-optimal fronts for the bi-objective WFG
test functions from the WFG test suite.

The WFG synthetic test suite has been used for the performance assessment

of algorithms in much of the multi-objective optimisation and evolutionary com-

putation literature (e.g. [103, 104, 105, 106, 107]).
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Figure 2.23: Plots of the true Pareto-optimal fronts for the three-objective
WFG test functions from the WFG test suite.
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2.9.4 The CEC2009 Competition Test Suite

The CEC09 test suite proposed in [92] consists of a series of constrained and un-

constrained multi-objective test functions designed for the 2009 IEEE Congress

on Evolutionary Computation competition. Each test problem is intended to re-

semble complicated real-life problems and declares a required number of problem

objectives and problem variables. The unconstrained test functions UF1 to UF10

are of interest from this test suite, with UF1 to UF7 consisting of bi-objective test

problems (illustrated in Figure 2.24) and UF8-UF10 consisting of three-objective

test problems (illustrated in Figure 2.25), all of which are concerned with their

minimisation and have 30 problem variables.

The unconstrained test problems from the CEC09 test suite have been de-

scribed in the following:

• UF1 and UF2 share the same convex Pareto-optimal front, but their

Pareto-optimal sets consist of various non-linear complex curves in the de-

cision space;

• UF3 has the same Pareto-optimal front as UF1 and UF2, but its Pareto-

optimal set is a simple curve in the decision space. The test function con-

tains many Pareto-optimal fronts which tests an EMO algorithm’s global

search ability;

• UF4 has a non-convex Pareto-optimal front, but its Pareto-optimal set

consists of various non-linear complex curves in the decision space;

• UF5 has a Pareto-optimal front consisting of 21 diversely distributed solu-

tions which lie on a linear hyperplane;
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Figure 2.24: Plots of the true Pareto-optimal fronts for the bi-objective CEC09
test functions from the CEC09 competition test suite.
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Figure 2.25: Plots of the true Pareto-optimal fronts for the three-objective
CEC09 test functions from the CEC09 competition test suite.
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• UF6 has a disjoint Pareto-optimal front of one isolated point (0, 1) and two

disconnected parts, which tests an EMO algorithm’s ability in finding all the

regions of the Pareto-optimal front whilst maintaining good diversity. The

Pareto-optimal set consists of thinly distributed disjoint complex curves in

the decision space;

• UF7 has a Pareto-optimal front of solutions which lie on a linear hyper-

plane, with a Pareto-optimal set which is similar to the one used in UF1;

• UF8 and UF10 have a spherical Pareto-optimal front, with a non-linear

2D surface for a Pareto-optimal set;

• UF9 has a Pareto-optimal front and Pareto-optimal set which have two

parts.

The CEC09 competition also has strict configuration guidelines which spec-

ify a budget of 300, 000 function evaluations, 30 independent executions of the

candidate algorithm, the same algorithm parameter settings for test problems

consisting of the same number of problem objectives, and the use of the IGD

measure for performance assessment (described in Section 2.10.3).

The CEC09 synthetic test suite has been used for the performance assess-

ment of algorithms in much of the multi-objective optimisation and evolutionary

computation literature (e.g. [108, 109, 110, 111, 112]).
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2.10 Performance Assessment

There have been many contributions in the EMO literature regarding the formu-

lation of performance criteria and methods of performance assessment of EMO

algorithms. Selecting a relevant and sufficient method of performance assessment

is a necessity when evaluating or comparing EMO algorithms. These methods of

performance assessment can be used to gauge an EMO algorithm’s performance

in regards to the proximity, diversity, and pertinence of the final approximation

set. Most methods of performance assessment rely on the availability of a refer-

ence front. This dependency is not feasible in real-world problem scenarios, more

so in the case where the problem is new and has not yet been subjected to a

method of optimisation.

In this chapter, a number of performance metrics are introduced. Section

2.10.1 describes the Hypervolume Indicator metric, Section 2.10.2 describes the

Generational Distance metric, and Section 2.10.3 describes the Inverted Gen-

erational Distance metric. Section 2.10.4 describes methods of non-parametric

testing for statistical analysis of EMO algorithms, and Section 2.10.5 describes

the selection of sufficient sample sizes.

2.10.1 The Hypervolume Indicator

The hypervolume indicator (or s-metric) is a performance metric for indicating

the quality of a non-dominated approximation set, introduced by [87] where it is

described as the “size of the space covered or size of dominated space”. It can be

defined as [88]:
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Sfref (X) = Λ

( ⋃
Xn∈X

[
f1(Xn), f ref1

]
× · · · ×

[
fm(Xn), f refm

])
(2.6)

Where Sfref (X) resolves the size of the space covered by an approximation

set X, f ref ∈ R refers to a chosen reference point and Λ (.) refers to the Lebesgue

measure [113]. This has been illustrated in Figure 2.26 in two-dimensional ob-

jective space (to allow for easy visualisation) with a population of 3 solutions.

f
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3

 fref

Figure 2.26: An example of the hypervolume indicator in two-dimensional ob-
jective space.

The hypervolume indicator is appealing because it is scaling independent and

requires no prior knowledge of the true Pareto-optimal front, this is important

when working with real-world problems which have not yet been solved. The hy-

pervolume indicator is currently used in the field of multi-objective optimisation

as both a proximity and diversity performance metric, and also in the decision

making process [114, 115].
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A reference vector is required to calculate the hypervolume indicator value.

When used for pairwise or multiple comparison of EMO algorithms, this reference

vector must be the same, otherwise the resulting hypervolume indicator values

are not comparable. This reference vector can be approximated as large values for

each problem objective in order for all objective values in any approximation set to

be within the reference vector. A more accurate method for selecting a reference

vector, is to use the worst objective values from the union of approximation

sets produced on a particular test problem for each algorithm which is being

considered for comparison.

Various implementations of the hypervolume indicator have been presented

in [116, 117, 118, 119, 120], all with the aim to speed up its calculation. The

hypervolume indicator has been employed in the performance assessment of algo-

rithms in much of the multi-objective optimisation and evolutionary computation

literature (e.g. [8, 121, 122, 96, 106]).

2.10.2 The Generational Distance

The Generational Distance (GD) introduced in [123, 124] measures the proximity

of the approximation set to the true Pareto-optimal front in objective space. The

GD can be defined as:

GD =

√∑n∗

i=1 d
2
i

n∗
(2.7)

where n∗ is the number of solutions in the approximation set, and d is the

Euclidean distance (in objective space) between each solution in the approxima-

tion set and the nearest member of the true Pareto-optimal front. A GD value

equal to zero indicates that all members of the approximation set are on the
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true Pareto-optimal front, and any other value indicates the magnitude of the

deviation of the approximation set from the true Pareto-optimal front.

The calculation of the GD is easy and the concept is intuitive, however, knowl-

edge regarding the true Pareto-optimal front is required in order to form a ref-

erence set. The selection of solutions for the reference set will have an impact

on the results obtained from the GD, and therefore the reference set must be

diverse. In addition, the calculation of the GD can be computational expensive

when working with large populations or a high number of problem objectives.

The GD measure has been employed in the performance assessment of algo-

rithms in much of the multi-objective optimisation and evolutionary computation

literature (e.g. [125, 126, 127, 128, 129]).

2.10.3 Inverted Generational Distance

Following the suggestion of a reviewer, the Inverted Generational Distance (IGD)

was introduced in [130] as an enhancement to the GD measure, measuring the

proximity of the approximation set to the true Pareto-optimal front in objective

space. The IGD can be defined as:

IGD =

√∑n′

i=1 d
2
i

n′
(2.8)

where n′ is the number of solutions in the reference set, and d is the Euclidean

distance (in objective space) between each solution in the reference set and the

nearest solution in the approximation set. A GD value equal to zero indicates that

all members of the approximation set are on the true Pareto-optimal front, and

any other value indicates the magnitude of the deviation of the approximation

set from the true Pareto-optimal front. This implementation of the GD solves an
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issue in its predecessor so that it will not rate an approximation set with a single

solution on the reference set as better than an approximation set which has more

non-dominated solutions that are close in proximity to the reference set.

Much like the GD measure, knowledge regarding the true Pareto-optimal

front is required in order to form a reference set. The selection of solutions for

the reference set will have an impact on the results obtained from the IGD, and

therefore the reference set must be diverse. The calculation of the IGD can be

computational expensive when working with large reference sets or a high number

of objectives.

The IGD measure has been employed in the performance assessment of algo-

rithms in much of the multi-objective optimisation and evolutionary computation

literature (e.g. [131, 132, 133, 134, 135]).

2.10.4 Non-Parametric Testing

EAs are inherently stochastic and the initial conditions that ensure the reliability

of parametric tests cannot be satisfied [136]. In order to find the significance in

contrast amongst the results obtained by algorithms considered for comparison, a

non-parametric test (encouraged by [137, 138]) for pairwise statistical comparison

can be used. The Wilcoxon signed-ranks [139] non-parametric test (counter-part

of the paired t-test) can be used with the statistical significance value (α = 0.05),

this is able to rank the difference in performance between two algorithms over

each approximation set.

The use of non-parametric tests have been used to statistically contrast evo-

lutionary algorithms in many experiments in the literature:
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• [137] discusses the basics and gives a survey of a complete set of non-

parametric test procedures and encourages the use of non-parametric tests

when analysing results obtained by EAs, due to the fact that the initial

conditions that guarantee the reliably of the parametric tests are not satis-

fied.

• In [140] the results of a hybrid EA used for data reduction and a competing

algorithm are contrasted through non-parametric statistical tests in order

to reinforce the resolved conclusion. Two non-parametric tests for pairwise

statistical comparisons of classifiers are employed: the well-known Wilcoxon

signed-ranks test [139] and the contrast estimation of medians [141].

• [142] emphasise that it is necessary to distinguish between pairwise tests and

multiple comparison tests. This is achieved by demonstrating that when

the pairwise Wilcoxon signed-ranks test is employed for multiple comparison

the result will lead to overly optimistic solutions. Similar to the t-test, the

Wilcoxon signed-ranks test is intended for the contrast in performance of

two sets of data.

• Other research employing non-parametric tests in the comparison of EAs

can be found in [136, 138, 143, 144].
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2.10.5 Sample Size Sufficiency

Selecting a sufficient number of samples when comparing optimisers is critical.

The sample size of 25, in order to reduce stochastic noise, is re-occurring in

the evolutionary computation literature (e.g. [145, 146, 147, 148, 149]). The

sufficiency of this sample size has been tested by producing a large number of

hypervolume indicator value samples by executing WZ-MOEA/D-DRA (an op-

timiser described in Chapter 5) 200 times (the distribution of which has been

illustrated in Figure 2.27) on the WFG6 synthetic test problem (described in

Section 2.9.3).
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Figure 2.27: Histogram showing the distribution of the hypervolume indicator
values from 200 executions of WZ-MOEA/D-DRA on the WFG6 synthetic test
problem.

These 200 samples were then used to identify the relationship between the

Standard Error of the Mean (SEM) and the sample size using:
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SEM =
SD√
N

(2.9)

This relationship has been illustrated in Figure 2.28 which shows the limited

benefit of more than 25 independent executions of the algorithm on the synthetic

test problem.
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Figure 2.28: Relationship between Standard Error of the Mean (SEM) and
the sample size of hypervolume indicator values from 200 executions of WZ-
MOEA/D-DRA on the WFG6 synthetic test problem.





Chapter 3

The Covariance Matrix
Adaptation Pareto Archived
Evolution Strategy

Covariance Matrix Adaptation (CMA) (described in Section 2.2.3) has been se-

lected from the literature as the desired variation operator for the design of an

Evolutionary Algorithm (EA) intended for fast convergence within few func-

tion evaluations on real-world many-objective problems. The single-objective

CMA driven optimiser, the Covariance Matrix Adaptation Evolutionary Strat-

egy (CMA-ES) (described in Section 2.2.3), has been shown to perform extremely

well across a broad range of problems, including the single-objective optimiser

performance comparisons in [58, 54].

The Multi-Objective Covariance Matrix Adaptation Evolution Strategy (MO-

CMA-ES) (described in Section 2.7.3) is an existing Evolutionary Multi-Objective

Optimisation (EMO) algorithm which utilises the CMA variation operator and

has been shown to perform well in a number of algorithm variations in [36, 89,

88]. However, MO-CMA-ES relies on the contributing hypervolume (described

in Section 2.5.2) indicator as a second-level sorting criterion and therefore suffers

77
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from computational infeasibility on multi-objective problems which consist of

more than three problem objectives. Real-world problems are often complex

and require the optimisation of many objectives, therefore the CMA operator for

variance needs to be incorporated into a new optimisation algorithm if it is to

satisfy this requirement and be capable of being utilised for problems consisting

of four or more problem objectives. In order to design an EMO algorithm which is

driven by the CMA operator and capable of optimisation in the presence of many

objectives, subjecting the entire non-dominated population to the contributing

hypervolume indicator at each generation of the optimisation life-cycle must be

avoided.

This chapter is divided into three sections. First, the Covariance Matrix

Adaptation Pareto Archived Evolution Strategy (CMA-PAES) is introduced in

Section 3.1 as a fast EMO algorithm which offers comparable performance to

MO-CMA-ES, without reliance on the hypervolume indicator. Section 3.2 intro-

duces the Multi-tier Covariance Matrix Adaptation Pareto Archived Evolution

Strategy (m-CMA-PAES), an EMO algorithm which uses a multi-tier AGA with

a grid-level hypervolume indicator, which outperforms MO-CMA-ES on problems

consisting of two and three objectives. The chapter concludes with a summary

of the developed algorithms and their intended use in Section 3.3.

3.1 CMA-PAES

The Pareto Archived Evolution Strategy (PAES) (described in Section 2.7.2) is an

EMO algorithm which both contains a unique method of diversity preservation in

the form of an Adaptive Grid Algorithm (AGA), and an algorithm which is does

not have a high computational cost due to its simplicity [150]. The simplicity of
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PAES has inspired a base framework which can be used to intuitively incorporate

the CMA operator, such that an AGA and bounded Pareto archiving scheme will

be responsible for diversity preservation and selection for variation and survival,

and CMA will be used as the variation operator.

An algorithm inspired by the PAES structure and the CMA scheme for vari-

ation has been designed under the name CMA-PAES. With the aim to be light

in computational cost (without considering the computational cost of objective

function evaluation), simple in structure in order to allow for easy extensibil-

ity as the algorithm matures and develops in further work, and the ability to

produce approximation sets with performance initially similar to or better than

MO-CMA-ES on a test suite for which comparison between CMA-PAES and

MO-CMA-ES is feasible (three objectives or lower). The field of Evolutionary

Computation (EC) is growing year by year, with many contributions including

the introduction of new methods for selection, diversity preservation, variance,

etc. The development of a simple and modular framework (CMA-PAES) would

allow for easy incorporation of these new methods in any number of combina-

tions, meaning that CMA-PAES can be extended to target specific problems or

to incorporate state of the art techniques.

The algorithm execution order for CMA-PAES has been illustrated in Figure

3.1. CMA-PAES begins by initializing the algorithm variables and parameters,

these include the number of grid divisions used in the AGA, the archive for

storing Pareto-optimal solutions, the parent vector Y and the covariance matrix.

An initial current solution is then generated at random, which is evaluated and

then the first to be archived (without being subjected to the PAES archiving

procedure). The generational loop then begins, the square root of the covariance
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matrix is resolved using Cholsky decomposition (as recommended by [151]) which

offers a less computationally demanding alternative to spectral decomposition.

The λ candidate solutions are then generated using copies of the current solution

and the CMA-ES procedure for mutation before being evaluated. The archive is

then merged with the newly generated offspring and subjected to Pareto ranking,

this assigns a rank of zero to all non-dominated solutions, and a rank reflecting

the number of solutions that dominate the inferior solutions. The population is

then purged of the inferior solutions so that only non-dominated solutions remain

before being fed into the PAES archiving procedure. After the candidate solutions

have been subjected to the archiving procedure and the grid has been adapted to

the new solution coverage of objective space, the archive is scanned to identify the

grid location with the smallest population, this is considered the lowest density

grid population (ldgp). The solutions from the lowest density grid population

are then spliced onto the end of the first µ − ldgp of the Pareto rank ordered

population to be included in the adaptation of the covariance matrix, with the

aim to improve the diversity of the next generation by encouraging movement

into the least dense area of the grid. After the covariance matrix is updated, the

generational loop continues onto its next iteration until the termination criteria

is satisfied (maximum number of generations).

CMA-PAES has been benchmarked against the Nondominated Sorting Ge-

netic Algorithm II (NSGA-II) and PAES in [15] in a performance comparison

on the ZDT synthetic test suite, using two performance metrics to compare per-

formance in terms of proximity (using the generational distance metric) and di-

versity (using the spread metric). CMA-PAES displayed superior performance

(the significance of which was supported with randomisation testing) in return-
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Figure 3.1: Execution life-cycle for the CMA-PAES algorithm.

ing an approximation set close to or on the true Pareto-optimal front as well as

maintaining diversity amongst solutions in the set.

The ultimate aim of CMA-PAES development is to utilise the benefits of the

CMA operator for variance in an EMO algorithm that is computationally feasible

on many-objective problems, and comparable in performance to MO-CMA-ES.

3.1.1 Comparison Between CMA-PAES and
MO-CMA-ES

In order to evaluate the performance of CMA-PAES, a pairwise comparison be-

tween CMA-PAES and MO-CMA-ES has been conducted. MO-CMA-ES is a

popular and powerful EMO algorithm which uses the CMA operator for vari-
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ance much like CMA-PAES, for this reason MO-CMA-ES has been selected for

performance comparison to assess whether CMA-PAES is capable of comparable

performance without relying on the contributing hypervolume indicator.

Both CMA-PAES and MO-CMA-ES have been configured with a function

evaluation budget of 25, 000 function evaluations per algorithm execution, this is

to ensure fair comparison. The algorithm configurations are presented in Table

3.1, and the finer configurations for the CMA operator and population based

MO-CMA-ES have been taken from [88], where the version of MO-CMA-ES used

incorporates the improved step-size adaptation.

Table 3.1: Parameter configurations used for testing CMA-PAES and MO-
CMA-ES.

Parameter CMA-PAES MO-CMA-ES

µ/ Population 1 100

λ/ Offspring 100 100

Generations 250 250

Archive Capacity 100 —

Grid Divisions 10 —

Mutation Rate 1 1

The ZDT test suite has been selected for the benchmarking and compari-

son of CMA-PAES and MO-CMA-ES, this test suite will pose basic difficulties

that can be encountered during multi-objective search, and allows a feasible ex-

periment to be conducted by only containing bi-objective problems. The test

functions used for this experiment are ZDT1, ZDT2, ZDT3, ZDT4 and ZDT6.

The configurations used for these test functions are shown in Table 3.2.
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Table 3.2: Parameter configurations used for the ZDT test suite.

Problem Number of variables

ZDT1 30

ZDT2 30

ZDT3 30

ZDT4 10

ZDT5 10

The metric used for performance assessment is the hypervolume indicator

described in Section 2.10.1. This metric determines the coverage of the objective

space (assessing both proximity and diversity) of any given approximation set

without the requirement of knowledge of the true Pareto-optimal front. This is a

necessary feature of a performance metric in most real-world problems as the true

Pareto-optimal front is often not known. The hypervolume indicator will be used

at each generation in order to assess performance and compare both algorithms

on not just the hypervolume indicator quality of the final approximation set but

also the hypervolume indicator quality over time. CMA-PAES and MO-CMA-ES

have been executed 25 times on each test function to reduce stochastic noise, this

sample size has been selected because of the limited benefit of producing more

than 25 samples (discussed in Section 2.10.5).

In this experiment, MO-CMA-ES is at an advantage as it uses the contributing

hypervolume indicator for selection and diversity preservation, because of this it is

expected that over time MO-CMA-ES will produce better quality approximation

sets in regards to hypervolume indicator performance assessment.
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3.1.2 Results

The results from the experiments in Section 3.1.1 have been produced and pre-

sented in a number of formats in order to allow for a better assessment of each

algorithms performance.

Table 3.3 presents the worst, mean, and best hypervolume indicator results for

the final approximation set of each algorithm. Overall, CMA-PAES outperformed

MO-CMA-ES on three test functions (ZDT3, ZDT4, and ZDT6), and MO-CMA-

ES outperformed CMA-PAES on two test functions (ZDT1 and ZDT2).

Table 3.3 also presents information regarding the p-value resolved by the

Wilcoxon signed-ranks non-parametric test for the final approximation sets of

the considered synthetic test problems, and a symbol indicating the observation

of the null hypothesis. A ’+’ indicates that the null hypothesis was rejected, and

CMA-PAES displayed statistically superior performance at the 95% significance

level (α = 0.05) on the considered synthetic test function. A ’−’ indicates that

the null hypothesis was rejected, and CMA-PAES displayed statistically inferior

performance. An ’=’ indicates that there was no statistically significant differ-

ence between both of the considered algorithms on the synthetic test problem. In

all cases the null hypothesis was rejected and a statistical significance of greater

than 95% was observed.

In regards to the hypervolume indicator results, CMA-PAES significantly out-

performs MO-CMA-ES on three of the five considered synthetic test problems,

and MO-CMA-ES significantly outperforms CMA-PAES on the remaining two

synthetic test problems. The difference in the mean hypervolume indicator re-

sults show that CMA-PAES and MO-CMA-ES produce comparable approxima-
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tion sets on the considered synthetic test problems, and CMA-PAES in particular

shows far superior performance on ZDT4 and ZDT6 in regards to the magnitude

of the difference in means of the hypervolume indicator results.

Table 3.3: Hypervolume indicator results from 25 executions of CMA-PAES and
MO-CMA-ES on the ZDT test suite with 2 objectives, and results from pairwise
comparison of the final approximation sets of both considered algorithms on each
synthetic test function using the Wilcoxon signed-ranks non-parametric test.

CMA-PAES MO-CMA-ES

2D Worst Mean Best Worst Mean Best p-value

ZDT1 0.95713 0.95762 0.95772 0.95777 0.95783 0.95787 1.4e-09 –

ZDT2 0.91625 0.91648 0.91669 0.91674 0.91692 0.91697 1.4e-09 –

ZDT3 1.0096 1.0099 1.01 0.9976 1.0036 1.0051 1.4e-09 +

ZDT4 0.86214 0.89948 0.94049 0.82538 0.85985 0.90769 7.5e-07 +

ZDT6 0.67793 0.67869 0.679 0.65556 0.65558 0.65559 1.4e-09 +

The box plots in Figure 3.2 show that on ZDT1 the median hypervolume

indicator value is greater for MO-CMA-ES than that of CMA-PAES, the total

range and interquartile range for MO-CMA-ES is smaller, showing a more robust

set of results from MO-CMA-ES as well as fewer outliers. ZDT2 appears to be the

test function for which both algorithms produced the most outliers, suggesting

this test function causes difficulty in achieving consistently robust performance

for both algorithms. ZDT3 shows that regardless of MO-CMA-ES being bottom

skewed, the interquartile range for CMA-PAES is far greater. On ZDT4, it can be

observed that although the hypervolume indicator performance for CMA-PAES

is top-skewed and the dispersion is greater, the interquartile range achieves a

better hypervolume indicator quality than MO-CMA-ES overall. ZDT6 shows

that all results from CMA-PAES clearly outperform MO-CMA-ES.
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Figure 3.2: Box plots of hypervolume indicator results for 2-objective ZDT
problems (1: CMA-PAES; 2: MO-CMA-ES) 25,000 function evaluations, 25 runs.

Figure 3.3 shows the hypervolume indicator performance of each algorithm

on all test functions at each generation of the optimisation process. On ZDT1,

although MO-CMA-ES converges to a slightly better mean hypervolume indicator

value, CMA-PAES converges much faster to a similar hypervolume indicator

quality within 75 generations, again on ZDT2 it can be observed that within

just 100 generations CMA-PAES has achieved a hypervolume indicator quality

similar to that of MO-CMA-ES on its final generation. On ZDT3, CMA-PAES

converges to a hypervolume indicator quality that outperforms MO-CMA-ES at

just over 50 generations which remains similar throughout the remainder of the

search.
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(a) ZDT1
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(b) ZDT2
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(c) ZDT3
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(d) ZDT4
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Figure 3.3: Hypervolume indicator values at each generation for CMA-PAES
and MO-CMA-ES on the considered ZDT test problems.
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3.1.3 Conclusion

The benchmarking and performance analysis of the algorithm returned promising

results that suggest on some problems CMA-PAES is faster at converging to an

approximation set close to or on the true Pareto-optimal front, as well as returning

a diverse set of solutions in regards to points in the objective space.

These observations held in the comparison with MO-CMA-ES on equal func-

tion evaluations, however, in this section, no serious attempt was made to find

the optimal parameter settings for CMA-PAES. As previously mentioned, CMA-

PAES and other CMA driven EMO algorithms fail to perform adequately on

ZDT4, further work is required to identify a method for preventing CMA-PAES

to be deceived into prematurely converging to locally Pareto-optimal fronts.

Overall CMA-PAES has been designed and developed as an algorithm which

utilises CMA as a variation operator, without the need for the hypervolume indi-

cator for selection and diversity preservation, but instead using a computationally

lightweight AGA scheme which outperforms MO-CMA-ES when both algorithms

are benchmarked on the ZDT test suite.

3.2 m-CMA-PAES

Elitism in EMO algorithms has been shown to improve the rate of convergence

by ensuring some or all of the fittest individuals in a population at generation g

are inserted into generation g + 1. Using this method, it is possible to prevent

the loss of the fittest individuals which are considered to have some of the most

valuable chromosomes in the population. Many state of the art EMO algorithms

use elitism at the core of their population management schemes, for example,
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NSGA-II, PAES, and MO-CMA-ES. However, in many multi-objective optimi-

sation problems, solutions exist which may not be considered elite due to their

objective value in regards to the population, but may contain useful genetic infor-

mation. This genetic information can be utilised later in the search to move into

unexplored areas of the objective-space, but due to elitism and non-dominated

sorting schemes it may be abandoned in the early stages of the search.

The consequences of elitism and non-dominated sorting can be seen in Figure

3.4, where the MO-CMA-ES has produced an approximation set for the CEC09

UF1 [92] test function with a budget of 300,000 function evaluations (in compli-

ance with the CEC09 competition rules).

Figure 3.4: An approximation set found using MO-CMA-ES after 300,000 func-
tion evaluations on CEC09 UF1.

By observing this two-objective plot of the approximation set, it can be seen

that the MO-CMA-ES has converged to an approximation set which is missing

three distinct areas containing solutions in comparison to the true Pareto-optimal

front plotted in Figure 3.5. The genetic information which would have potentially
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found these missing areas was discarded by the MO-CMA-ES during the search

process due to the use of elitism and non-dominated sorting. This is a difficulty

that occurs in the CEC09 UF1 test problem because of its complicated Pareto-

optimal set, making it easier to converge to some areas of the Pareto-optimal

front early in the search. In these cases, the MO-CMA-ES will focus selection

on these more dominant solutions and converge further into that area of the

Pareto-optimal-set, and discard individuals which may have been only a few

generations away from producing non-dominated solutions in unexplored areas

of the objective-space.

Figure 3.5: The true Pareto-optimal front (left) and Pareto-optimal set (right)
for CEC09 UF1.

Figure 3.6 illustrates an example of elitist and non-dominated selection dis-

carding an individual that may contain valuable genetic information, which could

have been exploited to produce a better quality approximation set. In this ex-

ample a Pareto AGA selection scheme has been used to select parent individuals

for the next generation. Because of the scheme’s elitist nature, the individual

between 0.6 and 0.7 on the x-axis has not been selected for reproduction, and
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therefore the scheme has discarded genetic information which may have ulti-

mately produced solutions towards the missing area of the approximation set.

This behaviour over many generations can lead to convergence to incomplete

approximation sets.

Figure 3.6: An example of elitist and non-dominated selection, circled points
indicate a selected individual.

The goal of this study is to counter this negative effect inherited from the

elitism in CMA-PAES, and to evaluate its performance on several benchmarking

test suites. To achieve this, a new multi-tier adaptive grid selection scheme

is developed and combined with the existing CMA-PAES algorithm, in a new

algorithm named the Multi-tier Covariance Matrix Adaptation Pareto Archived

Evolution Strategy (m-CMA-PAES).

CMA-PAES inherited the issues caused by elitism from its contributing al-

gorithms, and has been revised to improve its robustness by allocating a com-

putational budget for dominated and non-elite population individuals at each
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generation. The algorithm execution life-cycle for m-CMA-PAES has been illus-

trated in Figure 3.7.

m-CMA-PAES begins by initialising the initial population, the generational

loop then begins by sampling an offspring population. A single offspring is created

by copying every member of the parent population into a new population, and

then mutating the newly copied offspring’s problem variable using its inherited

covariance matrix. The new offspring population and old parent population are

then merged into a single solution pool to be used in the selection procedure

described in Section 3.2.1, where as in MO-CMA-ES the population would be

divided into sub-populations by their rank of non-dominance, and then sorted at

a secondary level by their contributing hypervolume indicator value. Once the

solutions in the selection pool have been assigned their fitness levels, µ individuals

are selected to be used as the parent population for the next generation. Before

moving onto the next generation, the success probabilities, step-sizes, evolution

paths and covariance matrices of the successful solutions are updated.
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Figure 3.7: Execution life-cycle for the m-CMA-PAES algorithm.
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3.2.1 New Multi-Tier AGA

The new multi-tier AGA aims to prevent the population prematurely converging

due to following only the dominant (i.e. elite) solutions which are discovered

early in the optimisation process, as this ultimately results in genetic drift and

consequently an approximation set with solutions clustered around these points.

This is achieved by dividing the function evaluation budget and investing a per-

centage of the budget in to non-elite solutions (which can potentially contain

genetic information that would contribute to finding undiscovered areas of the

objective space later in the search).

The algorithm pseudo-code is listed in Algorithm 2, which is executed from the

shaded in “Multi-Tier AGA” stage in Figure 3.7. First, the candidate population

is divided into sub-populations based on their non-dominated rank using NSGA-

II’s fast non-dominated sort. If the size of any sub-population exceeds µ, then

the standard AGA scheme is applied to it with a maximum archive capacity of

µ, resulting in a number of rank-ordered archives each with a maximum capacity

of µ. Then, a single population of size µ plus the budget for non-elite individuals

β is produced, for example if β is set as 10% for a µ population of 100, then

a population of size 100 × 1.10 is to be produced. Next the multi-tier archives

containing the first µ× β solutions are merged with no size restriction (meaning

the merged archive size can be greater than µ × β). This merged archive is

then subjected to a non-elite AGA (ensuring non-elite solutions are not instantly

discarded) with an archive capacity of µ, producing a population of individuals

to be selected as parents for the next generation.
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Algorithm 2 Pseudo-code of Multi-Tier Adaptive Grid Algorithm

1: nonDominatedFronts = nonDominatedSort(population)
2: spaceRemaining = µ× β
3: for all nonDominatedFront in nonDominatedFronts do
4: if spaceRemaining > 0 then
5: tierArchive = adaptiveGridSelection(nonDominatedFront, µ)
6: archive = archive + tierArchive
7: spaceRemaining = spaceRemaining - size(archive)
8: end if

parentPopulation = adaptiveGridSelection(archive, µ)
9: end for

The configuration of β is important - if it is too high (for example if it is

greater than half of µ), then the majority of the budget is spent on dominated

solutions and the search does not progress in a positive direction, and may instead

move away from the Pareto-optimal front. However if β is too small, the benefits

of investing in non-elite solutions are not achieved. The result of this new grid

selection scheme has been illustrated in Figure 3.8, where the solution which may

potentially contain valuable genetic information is selected, in contrast to it being

discarded in Figure 3.6.
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Figure 3.8: An example of the multi-tiered grid selection, circled points indicate
a selected individual.

3.2.2 Comparison Between m-CMA-PAES and
MO-CMA-ES

In order to evaluate the performance of m-CMA-PAES on multi-objective test

problems consisting of up to three problem objectives, a pairwise comparison

between m-CMA-PAES and MO-CMA-ES on selected benchmarking problems

has been conducted. MO-CMA-ES is a popular and powerful algorithm which

uses the CMA operator for variance much like m-CMA-PAES. For this reason

MO-CMA-ES is selected for performance comparison to assess whether m-CMA-

PAES is capable of comparable performance without relying on the contributing

hypervolume indicator at population level.

Both m-CMA-PAES and MO-CMA-ES have been configured with a budget

of 300, 000 function evaluations per algorithm execution, and were executed 30

times per test function as per the CEC09 competition guidelines. The algorithm

configurations are presented in Table 3.1, and the finer configurations for the
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CMA operator and MO-CMA-ES have been taken from [88], where the version

of MO-CMA-ES used incorporates the improved step-size adaptation.

Table 3.4: Algorithm configurations used when benchmarking MO-CMA-ES
and m-MA-PAES.

Parameter MO-CMA-ES m-CMA-PAES

µ 2D(100) 3D(300) 2D(100) 3D(300)

λ 2D(100) 3D(300) 2D(100) 3D(300)

Archive Capacity — 2D(100) 3D(300)

Multi-tier Budget — 10%

Divisions — 10

The ZDT, DTLZ, and CEC09 test suites have been selected for the bench-

marking and comparison of m-CMA-PAES and MO-CMA-ES. The ZDT and

DTLZ test suites will face both algorithms with difficulties likely to be encoun-

tered in most real-world multi-objective optimisation problems, in both two-

dimensional and three-dimensional objective spaces (allowing for feasible com-

parison with MO-CMA-ES). The CEC09 competition test suite will face the

algorithms with difficulties encountered when optimising in the presence of com-

plex Pareto-optimal sets and Pareto shapes. The test functions used for this

experiment are ZDT1 through to ZDT6 (excluding ZDT5), DTLZ1 through to

DTLZ7, and CEC09 UF1 through to CEC09 UF10. The configurations used for

these test problems are shown in Table 3.5.
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Table 3.5: Parameter configurations used for the ZDT, DTLZ and CEC09 test
suites.

(a) Three-objective test functions.

Problem Number of variables

ZDT1 30

ZDT2 30

ZDT3 30

ZDT4 10

ZDT5 10

UF1 30

UF2 30

UF3 30

UF4 30

UF5 30

UF6 30

UF7 30

(b) Three-objective test functions.

Problem Number of variables

UF8 30

UF9 30

UF10 30

DTLZ1 7

DTLZ2 12

DTLZ3 12

DTLZ4 12

DTLZ5 12

DTLZ6 12

DTLZ7 22

The metric used for performance assessment is the Inverted Generational Dis-

tance (IGD) indicator described in Section 2.10.3. The IGD indicator will be used

at each generation in order to assess performance, and compare both algorithms

on not just the IGD quality of the final approximation set, but also the IGD

quality over time. Both m-CMA-PAES and MO-CMA-ES have been executed 30

times on each test function to reduce stochastic noise, this sample size has been

selected in order to comply with the CEC09 competition rules described in [92],

and is seen as sufficient because of the limited benefit of producing more than 25

samples (discussed in Section 2.10.5).
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3.2.3 Results

The results from the experiments in Section 3.2.2 have been produced and pre-

sented in a number of formats in order to allow for a better assessment of each

algorithm’s performance.

The worst, mean, and best IGD indicator results for the final approxima-

tion set of each algorithm are presented in Table 3.6 for the two-objective test

functions, and in Table 3.7 for the three-objective test functions. Tables 3.6

and 3.7 also present information regarding the p-value resolved by the Wilcoxon

signed-ranks non-parametric test for the final approximation sets of the consid-

ered synthetic test problems, and a symbol indicating the observation of the null

hypothesis. A ’+’ symbol indicates that the null hypothesis was rejected, and m-

CMA-PAES displayed statistically superior performance at the 95% significance

level (α = 0.05) on the considered synthetic test function. A ’−’ symbol indicates

that the null hypothesis was rejected, and m-CMA-PAES displayed statistically

inferior performance. An ’=’ symbol indicates that there was no statistically

significant difference between both of the considered algorithms on the synthetic

test problem. Overall, m-CMA-PAES outperformed MO-CMA-ES on all but 3

(ZDT3, UF6 and UF9) of the 22 test functions, producing better performing

worst, mean, and best approximation sets.
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Table 3.6: IGD results from 30 executions of m-CMA-PAES and MO-CMA-ES
on the ZDT and CEC09 test suites with two problem objectives.

m-CMA-PAES MO-CMA-ES

2D Worst Mean Best Worst Mean Best p-value

ZDT1 0.00628 0.00657 0.00686 0.00813 0.00936 0.01031 1.4e-09 +

ZDT2 0.00592 0.00614 0.00639 0.00989 0.01172 0.01511 1.4e-09 +

ZDT3 0.00574 0.00609 0.00676 0.00552 0.00594 0.00643 0.0625 =

ZDT4 1.80044 6.17983 11.44563 2.85512 8.35397 14.56593 0.0232 +

ZDT6 0.01132 0.01279 0.01406 0.04788 0.08938 0.20901 1.4e-09 +

UF1 0.03762 0.05824 0.06579 0.05044 0.07228 0.12375 1.1e-06 +

UF2 0.01359 0.02006 0.02687 0.02117 0.03496 0.05235 5.5e-08 +

UF3 0.04869 0.07992 0.12647 0.06044 0.08129 0.10133 0.7269 =

UF4 0.05925 0.06431 0.06942 0.07661 0.08261 0.09722 1.4e-09 +

UF5 0.49880 0.72982 1.04816 0.87997 1.04873 1.26644 8.3e-09 +

UF6 0.08817 0.12736 0.22802 0.09314 0.11268 0.22469 0.010432 –

UF7 0.01791 0.02431 0.03226 0.03306 0.06434 0.12773 1.4e-09 +

Table 3.7: IGD results from 30 executions of m-CMA-PAES and MO-CMA-ES
on the DTLZ and CEC09 test suites with three problem objectives.

m-CMA-PAES MO-CMA-ES

2D Worst Mean Best Worst Mean Best p-value

UF8 0.13308 0.18188 0.23023 0.16091 0.23432 0.24924 3.6e-08 +

UF9 0.07381 0.07877 0.08795 0.06755 0.07440 0.07911 5.4e-05 –

UF10 0.64046 0.97907 1.34102 1.33073 1.90805 2.89107 1.6e-09 +

DTLZ1 0.60928 3.11971 5.72913 2.11988 10.1829 20.9531 1.2e-06 +

DTLZ2 0.03919 0.04005 0.04077 0.04207 0.04491 0.04939 1.4e-09 +

DTLZ3 22.4023 50.7571 102.51 171.175 188.531 229.147 1.4e-09 +

DTLZ4 0.02459 0.03090 0.04093 0.03181 0.04411 0.07016 5.5e-08 +

DTLZ5 0.00152 0.00174 0.00201 0.00190 0.00213 0.00259 8.3e-09 +

DTLZ6 0.11059 0.32162 0.65582 0.19705 0.42455 0.71631 0.01701 +

DTLZ7 0.05268 0.05783 0.06449 0.05824 0.06653 0.07449 2.9e-08 +

The mean of the IGD metric at each generation has been plotted and presented

in Figure 3.9 for the two-objective test functions, and Figure 3.10 for the three-
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objective test functions. These plots illustrate the rate of IGD convergence from

the initial population to the final population.

m-CMA-PAES significantly outperforms the MO-CMA-ES on most of the

test-functions used in this comparison. However, as a consequence of investing a

percentage of the maximum number of function evaluations in non-elite solutions,

it can be observed in Figures 3.9 and 3.10 that the convergence of the algorithm is

slower in most cases (more so in the two-objective test functions). This suggests

that in experiments where the number of function evaluations are not constrained

to a low number, the m-CMA-PAES will outperform MO-CMA-ES.

It can be observed in Figures 3.9 and 3.10 that the mean IGD for MO-CMA-

ES oscillates or rises on some test functions over time. This issue is most visible

on UF4 where the mean IGD for MO-CMA-ES can be seen to oscillate over time,

and in DTLZ3 where the mean IGD for MO-CMA-ES can be seen to improve in

performance until 200 generations and then worsen gradually until termination.

This issue is due to MO-CMA-ES being dependent on the hypervolume indicator

entirely for diversity preservation, paired with its elitism scheme gradually reduc-

ing the IGD quality of an approximation set once a difficult area of the search

space is encountered.

The results presented in Table 3.6 and Table 3.7, as well as the box plots pre-

sented in Figure 3.11 and Figure 3.12 show that on 18 of the 22 considered test

functions, m-CMA-PAES significantly outperformed MO-CMA-ES in regards to

the achieved mean and median IGD. The box plots show that the interquartile

ranges for m-CMA-PAES results are either lower than the medians or interquar-

tile ranges for MO-CMA-ES results. Across all test functions m-CMA-PAES
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(e) ZDT6
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(f) UF1
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Figure 3.9: IGD results at each generation visualising performance of m-CMA-
PAES and MO-CMA-ES over 300, 000 function evaluations on two-objective test
problems, 30 runs.
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Figure 3.9: IGD results at each generation visualising performance of m-CMA-
PAES and MO-CMA-ES over 300, 000 function evaluations on two-objective test
problems, 30 runs.

produces fewer outliers indicating a more reliable and robust algorithm in com-

parison to MO-CMA-ES on the considered test functions.

On the UF3 test function, it can be observed in Figure 3.11 that although the

MO-CMA-ES median IGD outperforms m-CMA-PAES, m-CMA-PAES achieved

a better interquartile range, and a far better total range, achieving the best ap-

proximation set for that test function, a similar result to the performance on UF6

where CMA-PAES also achieves the best approximation set but is outperformed

by MO-CMA-ES on the median values of the IGD results.

The MO-CMA-ES significantly outperforms the m-CMA-PAES on the UF9,

this function (as well as ZDT3 and UF6) consists of disjoint true Pareto-optimal

fronts as shown in Figure 3.13. With the comparison in performance on these

problems, it can be seen that the m-CMA-PAES has performance issues on some
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Figure 3.10: IGD results at each generation visualising performance of m-CMA-
PAES and MO-CMA-ES over 300, 000 function evaluations on three objective test
problems, 30 runs.
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Figure 3.10: IGD results at each generation visualising performance of m-CMA-
PAES and MO-CMA-ES over 300, 000 function evaluations on three objective test
problems, 30 runs.
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Figure 3.11: Box plots of IGD indicator results for two-objective test problems
(1: m-CMA-PAES; 2: MO-CMA-ES) 300,000 function evaluations, 30 runs.
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Figure 3.12: Box plots of IGD indicator results for three-objective test problems
(1: m-CMA-PAES; 2: MO-CMA-ES) 300,000 function evaluations, 30 runs.

problems consisting of multiple parts in their Pareto-optimal fronts.

Figure 3.13: True Pareto-optimal fronts plotted for problems ZDT3 (left), UF6
(middle) and UF9 (right).
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3.2.4 Conclusion

In this section, a multi-tier AGA scheme has been introduced and incorporated

into the CMA-PAES algorithm to create m-CMA-PAES. m-CMA-PAES improves

the quality of the produced final approximation set by investing a percentage of

the allowed function evaluation budget in non-elite but potentially successfully

solutions. Experiments and statistical analysis presented in this study show that

with CEC09 competition compliant benchmarking configurations, m-CMA-PAES

significantly outperforms MO-CMA-ES on all but 4 of the 22 considered synthetic

test problems, and out of these 4, MO-CMA-ES only performs significantly better

on 2 test functions.

When observing the IGD values at each generation, it can be seen that in

some cases the IGD of the final population is higher than some of the generations

before it, this is due to the non-elite solutions invested in at each generation being

a factor right to the end of the algorithm. This suggests that in further work the

algorithm may benefit from either an offline archive which the algorithm selects

from at the end of the optimisation process or a final approximation set selection

scheme which uses the last two generations of the optimisation process, including

non-dominated solutions only.
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3.3 Conclusion

In this chapter, two EMO algorithms which utilise the CMA operator for variance

have been designed, developed, and benchmarked to assess their performance.

Both of these algorithms (CMA-PAES and m-CMA-PAES) are either completely

independent of the contributing hypervolume indicator or do not rely on com-

plete contributing hypervolume indicator calculation for the entire population.

A summary and comparison of features between CMA-PAES and m-CMA-PAES

has been presented in Table 3.8.

Table 3.8: Feature comparison between CMA-PAES and m-CMA-PAES.

CMA-PAES m-CMA-PAES

Population Structure 1 + λ µ+ λ

Diversity Preservation AGA Multi-Tier AGA

Hypervolume Reliance None Grid-level

Suitable # of Objectives 2 Objectives Up to 3

Suitable Pareto Shape Simple Complex

Targeted at Fast Convergence Complex Problems

CMA-PAES has been introduced as an EMO algorithm with promising per-

formance on simple test functions containing a low number of objectives, with the

ability to converge to approximation sets scoring comparably to MO-CMA-ES in

regards to the hypervolume indicator results, without the requirement for using

any form of hypervolume indicator calculation during the optimisation process.

m-CMA-PAES has been introduced as an EMO algorithm with promising

performance on test functions consisting of complex Pareto-optimal sets with a

large function evaluation budget, with the ability to converge to an approximation



3.3. Conclusion 109

set that outperforms MO-CMA-ES in most cases, using the contributing hyper-

volume indicator at grid-level only, which avoids the computational infeasibility

MO-CMA-ES faces.





Chapter 4

The Covariance Matrix
Adaptation Pareto Archived
Evolution Strategy II

The Covariance Matrix Adaptation Pareto Archived Evolution Strategy (CMA-

PAES) and the Multi-tier Covariance Matrix Adaptation Pareto Archived Evo-

lution Strategy (m-CMA-PAES) have shown promising results in Sections 3.1

and 3.2 by either offering similar or better performance than the Multi-Objective

Covariance Matrix Adaptation Evolution Strategy (MO-CMA-ES) on considered

benchmarks and performance metrics. This performance has been achieved ei-

ther in complete absence of the hypervolume indicator in CMA-PAES or with

grid level use of the hypervolume indicator in m-CMA-PAES.

It is now desirable to use elements from CMA-PAES and m-CMA-PAES to

develop an algorithm specifically for the optimisation of many-objective prob-

lems, allowing the use of Covariance Matrix Adaptation (CMA) in an extensible

framework without the computational infeasibility from using a population-wide

hypervolume calculation.

The algorithm will then be benchmarked against the competition winning

111
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Multi-Objective Evolutionary Algorithm Based on Decomposition with Dynam-

ical Resource Allocation (MOEA/D-DRA) on test functions consisting of up to

ten objectives. MO-CMA-ES will no longer be considered in comparison as it

is not feasible to execute the algorithm on test functions consisting of greater

than three objectives [73]. The Nondominated Sorting Genetic Algorithm III

(NSGA-III) has not been considered for comparison as it has not been adequately

benchmarked with a sufficient sample size, sufficient number of considered test

problems, or the appropriate use of non-parametric testing to report the signif-

icance of the results. NSGA-III has been discussed in Appendix B.1. Another

algorithm not considered but related is Differential Evolution for Multi-objective

Optimisation with Self Adaptation (DEMOwSA), this is because it is not fo-

cussed on many-objective optimisation which is the focus of this thesis, and does

not offer a comparison to any other Evolutionary Multi-Objective Optimisation

(EMO) algorithm as a benchmark of its performance. MOEA/D-DRA also uses

differential evolution and has also been benchmarked extensively against other al-

gorithms, in particular in the CEC09 competition described in [92]. DEMOwSA

has been discussed in Appendix B.2.

4.1 CMA-PAES on Many-objective Problems

An implementation of CMA-PAES including the grid-level hypervolume indicator

selection scheme from m-CMA-PAES was executed on the WFG3 test function

from the WFG tool-kit. The test function was configured with seven objectives

to assess CMA-PAES on a many-objective problem. CMA-PAES was configured

with a population and archive capacity of 100, this number was chosen so as

to reduce the number of function evaluations per generation and to produce a



4.1. CMA-PAES on Many-objective Problems 113

final approximation set that would not overwhelm a Decision Maker (DM). The

hypervolume indicator performance at each generation has been illustrated in

Figure 4.1.
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Figure 4.1: Plot of the hypervolume indicator performance at each generation
of CMA-PAES on the WFG3 synthetic test problem.

From this figure it can be observed that between generation 50 and 100,

CMA-PAES achieves peak hypervolume performance and then regresses to worse

performing populations and oscillates in performance until termination, where it

ultimately concludes on a population performing worse than some populations

preceding it. This is because of several factors. The m-CMA-PAES algorithm

uses the contributing hypervolume indicator for selection only at a second level

(within grids), therefore it is not designed to improve hypervolume performance of

the entire population from generation to generation, this design choice was made
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to allow CMA-PAES to be feasible for execution on problems of greater than three

objectives. CMA-PAES is also designed to optimise using a small population (for

example 100) regardless of the number of objectives being optimised, this means

diversity preservation is important because the number of available solutions in

the population are limited.

In order to adapt CMA-PAES to perform well on many-objective problems,

some modifications to the algorithm were needed. The following sub-sections

introduce these modifications, followed by a section describing the full CMA-

PAES-II algorithm.

4.2 Indicator Based Conformation

CMA-PAES-II uses the contributing hypervolume indicator as a second-level se-

lection criteria. This is because the hypervolume indicator does not require a

reference set - only a reference point (this can be approximated or set as the

extremes found for each objective during the optimisation process). This is de-

sirable in real-world optimisation problems where the true Pareto-optimal front

is not known.

As the number of grid divisions increase, the accuracy of the contributing

hypervolume indicator for second level selection decreases in regards to the overall

hypervolume indicator quality of the population. Reducing the number of grid

divisions would reduce the accuracy of the first level selection criterion, which

is grid location, and also increase the computational cost of the contributing

hypervolume indicator calculations by subjecting a higher number of solutions to

the hypervolume indicator at once.
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It is well known in the EMO literature that although Pareto dominance based

algorithms can perform successfully on multi-objective problems [152, 59, 153],

they do not always perform well on many-objective problems consisting of three

more problem objectives [8, 9, 10, 11, 12, 13, 14]. Pareto dominance strug-

gles to produce a strong selection pressure toward the Pareto-optimal front in

the presence of many objectives, as throughout the optimisation process it is

likely that the entire population will consist of entirely non-dominated solutions.

Indicator-Based Evolutionary Algorithms (IBEAs) have been designed to incor-

porate performance indicators to produce stronger selection pressure toward the

Pareto-optimal front [84, 154, 155], however these also suffer from the computa-

tional infeasibility of subjecting an entire population to a performance indicator

(i.e. the hypervolume indicator) at each generation of the optimisation process.

One solution is to steer the optimisation process back towards a generation

where it was at its peak performance, before it fell into a local optima, non-

diverse population, or other fault. This can be seen visually in Figure 4.1 at

approximately 75 generations into the optimisation process, where performance

dropped from this point onward. As an observer of this illustration, it is possible

to decide when it would be wise to revert to a previous population and continue in

a different search direction. This can be automated for any performance indicator

so that after a number of generations where the indicator performance lowers,

the algorithm can exploit a population that conforms to the current executions

peak performance. This feature has been named Indicator Based Conformation

(IBC).

The IBC mechanism execution-cycle has been illustrated in Figure 4.2, and

in the case of CMA-PAES-II, IBC will be based on the hypervolume indicator.
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During the optimisation process, each population found at every generation is

subjected to the hypervolume indicator, the performance is checked against a

variable storing the peak performance of the current execution and replaces it

if it is greater. If the hypervolume has been lower than the current execution’s

peak performance for a number of generations defined by the IBC threshold, then

IBC will merge both the current population and the population which has the

peak performance into a single intergenerational population. The AGA scheme

is then applied to this population using significantly fewer grid divisions than

the primary optimisation process. This is slower, but provides better accuracy

in terms of hypervolume indicator performance, with the aim to move the next

generation in a direction that will improve on the current peak performance.

The IBC threshold, Θ, is a variable which changes throughout the optimisa-

tion process but must remain within the boundaries of the IBC minimum thresh-

old, Θmin, and the IBC maximum threshold, Θmax. Θ is initialised as the value

of Θmax, which can be set to the maximum number of unsuccessful generations

which the DM can afford in the optimisation process, but must not be so low that

the IBC mechanism is repeatedly triggered. A recommendation for the value of

the IBC minimum threshold is:

Θmin =
G

100
(4.1)

where G is the maximum number of generations configured for the optimisa-

tion process. A recommendation for the value of the IBC maximum threshold

is:

Θmax = 4Θmin (4.2)
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Figure 4.2: Execution life-cycle for the IBC mechanism.
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In Figure 4.1 the oscillation in hypervolume indicator performance can be

clearly observed, if the IBC mechanism had been incorporated during the opti-

misation process this negatively performing oscillation may have been prevented.

Incorporating the IBC mechanism into the same CMA-PAES implementation

and executing the algorithm on the same test problem configuration produces

the results presented in Figure 4.3. This plot shows the hypervolume indica-

tor performance of both CMA-PAES with and without IBC, with plotted points

indicating the occurrence of the IBC mechanism, the result of which clearly out-

performs the implementation of CMA-PAES without IBC. In this example, the

maximum number of generations G was set to 500, resulting in a Θmin of 5 and

Θmax of 20. In the event that Θ is set to 20 and the IBC conforms to a pop-

ulation which continues to perform poorly for another Θ generations, a total of

40 generations are wasted with no improvement in performance. Therefore it is

desirable to adapt Θ so that it is sensitive to success and failure.

For example, the performance i of the current population P is calculated

using the hypervolume indicator and then compared to the performance of the

best performance found in the current execution Bi. If i > Bi, then the current

population is stored as the best population found in the current execution, along

with the generation it was found within and the performance indicator value:

Bp = P

Bg = g

Bi = i

(4.3)

where Bp is the best population found in the current execution and Bi is the

performance indicator value of Bp. This execution path is seen as successful and
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as a result the Θ is increased by multiplication with the IBC threshold success

variable Θsucc (recommended to be set at 1.05):

Θ = dΘsuccΘe (4.4)

and reset to a value between Θmin and Θmax if it falls outside that boundary,

before continuing to the next generation of the algorithm execution life-cycle:

Θ =


Θmin, if Θ < Θmin

Θmax, if Θ > Θmax

Θ, otherwise.

(4.5)

However, if the hypervolume indicator value of the current population is less

than the hypervolume indicator value of the best found population, and the

difference between the number of the current generation and the generation at

which the best found population was updated is greater than Θ:

(Bi > i) ∧ (g −Bg > Θ) (4.6)

then this execution path is treated as unsuccessful and as a result Θ is de-

creased by multiplication with the IBC threshold failure variable Θfail (recom-

mended to be set at 0.5):

Θ = dΘfailΘe (4.7)

and reset to a value between Θmin and Θmax if it falls outside that boundary

using Equation 4.5. The number of the current generation g is then stored in Bg

and the best found population Bp is copied to a temporary population Bp∗ before

it is merged with the current population P :
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P = P ∪Bp∗

Bg = g
(4.8)

The temporary population Bp∗ is used later in Section 4.3 for achieving sigma

restart as part of the IBC mechanism. The population P is then subjected to

non-dominated sorting and the AGA scheme, before the algorithm continues to

the next generation. In the event that the hypervolume indicator value of the

current population is less than the hypervolume indicator value of the best found

population, but the difference between the number of the current generation and

the generation at which the best found population was updated is less than Θ,

the algorithm simply continues to the next generation.

This process means that once Θ generations have passed without the peak

performance improving, IBC will execute and Θ will become the value resolved

from Equation 4.7, meaning there will only be an allowance of ten generations of

failure to improve upon the peak performance before IBC executes again. This

process of division by two will be limited to Θmin, meaning in the worst case sce-

nario IBC will be executed every five generations until a successful optimisation

path is found. In contrast, after IBC if the next generation does indeed outper-

form the current peak performing population, Θ will become the value resolved

from Equation 4.4, for example going from 10 to 11, and will continue to do so for

every successful (raising peak performance) generation within the limit of Θmax.

This will allow more room for failure for populations which have shown promise

by raising the peak performance in recent generations.

IBC was incorporated into an implementation of CMA-PAES and again ex-

ecuted on the WFG3 test function configured with seven objectives, with the
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algorithm parameter configuration:

Θmin = 5

Θmax = 20

IBCdiv = 2

AGAdiv = 10

(4.9)

where IBCdiv is the number of grid divisions used for the AGA during IBC,

and AGAdiv is the number of grid divisions used for the AGA during the pri-

mary optimisation process. In addition, the seed used for generating the random

numbers during the optimisation process was kept the same as the seed used

in the execution which produced the results in Figure 4.1. The results for this

execution have been illustrated in Figure 4.3. During the optimisation process,

IBC executed 67 times, and the benefits can be seen in Figure 4.3 where both

implementations of CMA-PAES-II with and without IBC are identical in hyper-

volume indicator performance until approximately 100 generations where the first

IBC is executed, from that point the implementation of CMA-PAES-II with IBC

continues to achieve better hypervolume indicator performance.
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Figure 4.3: Plot of the hypervolume indicator performance at each generation of
CMA-PAES-II without IBC and CMA-PAES-II with IBC on the WFG3 synthetic
test problem. The generations where IBC was executed have been plotted with
blue points.

4.3 Sigma Restart

During an execution of an EMO algorithm with the incorporation of the IBC

mechanism, the population which has been stored as the best population can

be assumed to be responsible for leading future generations toward populations

which score worse performance. One method to prevent repetition of past failure

when executing the IBC mechanism (and merging the current population and

best population) is to restart the sigma (step-size) values of the population, and

allow them to re-propagate to the current state of the search. For example, during

the optimisation process the current population would have a lower sigma than
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the sigma of the best performing population, as there would have been Θ failed

generations in order for the IBC mechanism to execute, and without a sigma

restart the solutions in the current population would continue to make very little

improvement in performance.

The shaded and labelled area of Figure 4.2 indicates where the sigma restart

takes place in the IBC mechanism. This is achieved by setting the sigma and

success probability of each solution from the best found population (which as

described in Section 4.2 is stored in the temporary population Bp∗) to their initial

configurations.

σ = σinit

p̄succ,i = psuccinit

(4.10)

where p̄succ,i ∈ [0, 1] is the smoothed success probability and σ ∈ R+
0 is the

global step size.

Sigma restart was implemented into the design of CMA-PAES-II and again

executed on the WFG3 test function configured with seven objectives, with the

configuration Θmin = 5,Θmax = 20, IBCdiv = 2, AGAdiv = 10, where IBCdiv is

the number of grid divisions used for the AGA during IBC, and AGAdiv is the

number of grid divisions used for the AGA during the primary optimisation pro-

cess. In addition, the seed used for generating the random numbers during the

optimisation process was kept the same as the seed used in the execution which

produced the results in Figures 4.1 and 4.3. The results for this execution have

been illustrated in Figure 4.4. During the optimisation process IBC combined

with sigma restart was executed 62 times, which is five times less than the in-

stance without the sigma restart. The benefits can be seen in Figure 4.4 where
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both implementations of CMA-PAES-II with and without IBC are identical in

hypervolume indicator performance until approximately 100 generations where

the first IBC is executed, from that point the implementation of CMA-PAES-II

with IBC continues to achieve better hypervolume indicator performance. When

comparing these results to the results achieved by IBC without sigma restart, it

can be observed that CMA-PAES-II with IBC and sigma restart achieved better

hypervolume performance with fewer IBC executions.
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Figure 4.4: Plot of the hypervolume indicator performance at each generation
of CMA-PAES-II without IBC and CMA-PAES-II with IBC and sigma restart
on the WFG3 synthetic test problem. The generations where IBC was executed
have been plotted with blue points.
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4.4 Improved Adaptive Grid Algorithm

CMA-PAES-II incorporates the use of an updated AGA implementation contain-

ing a number of changes from the AGAs used in CMA-PAES and m-CMA-PAES,

in order to make the AGA implementation suitable for many-objective optimisa-

tion. These changes consist of:

• A new data structure for storing a solution’s grid number.

• An improved scheme for grid selection when searching for a solution to

replace.

• Maintenance of global extremes for problem objectives.

The mathematical procedure for the improved AGA in its entirety is described

herein. M defines the number of problem objectives and N defines the population

size, whilst ∆ defines the number of desired grid divisions for a problem objective

within the objective space. X is an M by N matrix of entries xmn, where every

xmn refers to a solution’s objective value:

Xn = 〈x1n, x2n, . . . , xMn〉 (4.11)

Γ is an M by N matrix of entries γmn, where every γmn refers to the grid

location of an objective value xmn in the divided objective space.

Γn = 〈γ1n, γ2n, . . . , γMn〉 (4.12)

To calculate Γn, the grid location γMn of each objective value xmn for each

solution Xn needs to be resolved. To calculate a solution’s grid location, the

padded grid length Λ
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Λ = 〈λ1, λ2, . . . , λM〉 (4.13)

for each objective needs to be calculated using the lowest and highest objective

value for each objective in the population:

λm =
|min(Xm)−max(Xm)|

∆

λlowerm = min(Xm)− λm

λupperm = max(Xm) + λm

(4.14)

where λlowerm is the start point of the grid for objective m in the objective

space, and λupperm is the end point of the grid for objective m in the objective

space. With the grid length and range calculated, it is possible to get the grid

location of each solution’s objective value using:

γmn =

⌈
xmn − λlowerm

λm
∆

⌉
(4.15)

When the entries of Γn have been calculated, it can be used to identify the

grid location of a solution Xn. In this new method, the grid location Γn is defined

by a vector rather than a scalar, for example in a five-objective problem a grid

location can be described by being at location Γn = 〈2, 4, 1, 1, 2〉.

As an example, a populationX of five (N = 5) solutionsXn for a five-objective

problem (M = 5) has been presented in Table 4.1 and Figure 4.5.

This population X has been subjected to the improved AGA scheme to resolve

the grid location Γn of each solution Xn, with an AGA configuration of four grid

divisions (∆ = 4). The grid locations resolved by the AGA scheme have been

presented in Table 4.2 and the objective values xmn have been plotted in their
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Table 4.1: An example population X of objective values xmn to be subjected
to the improved AGA scheme.

x1n x2n x3n x4n x5n

X1 0.5 0.5 5.0 2.5 1.5

X2 0.6 0 5.0 3.0 1.4

X3 0.5 3.5 4.5 2.5 1.5

X4 0.8 3.2 4.2 3.0 1.2

X5 1 3 4 2 1
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Figure 4.5: Parallel-coordinate plot of the Population X used in the improved
AGA example.

respective grid locations γm in Figure 4.6, where the plot markers correspond to

those used in Figure 4.5.

The results from this example show that the example population does not

consist of any solutions which are in the same grid square (otherwise their Γ

entries would be identical).
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Figure 4.6: One dimensional plots illustrating the grid locations resolved by
the AGA scheme for each objective value, where the plot markers correspond to
those used in Figure 4.5.
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Table 4.2: Grid locations Γ for the example population X of objective values
xmn.

γ1n γ2n γ3n γ4n γ5n

Γ1 1 1 4 3 4

Γ2 2 1 4 4 3

Γ3 1 4 2 3 4

Γ4 3 4 2 4 2

Γ5 4 4 1 1 1

The method for selecting a grid location to replace a solution when the archive

is at capacity has also been modified. Previously in CMA-PAES a grid location

was selected at random from grid locations which were at the same density, how-

ever this could cause genetic drift and doesn’t provide the best overall diversity.

Instead, it is desirable to find the grid location which is closest in proximity

to the candidate solution in the objective space and also at a higher density.

CMA-PAES stores grid locations as a single scalar value, this is not helpful when

calculating distance between grid locations or for storing grid locations for a

many-objective problem. The grid location structure used in the improved AGA

scheme described above enables an intuitive method for finding the distance be-

tween grid locations. By establishing the grid location which a candidate solution

would be assigned if it was part of the archive, it is possible to find the difference

between its grid location and other grid locations which are at high density to

find out which one it’s closest to by summing the grid location vector.

For example, if a new solution X6 = 〈0.6, 0.5, 4, 3, 1.1〉 was to be included as

a candidate solution as part of the improved AGA scheme, it would resolve a

grid location of Γ6 = 〈2, 1, 1, 4, 2〉. The distance δn between this grid location
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and the grid locations of the other solutions can be found by finding the absolute

difference of each corresponding entry of the candidate solution’s grid location

and another solution from the population, and then summing those values.

δn =
N∑
n=1

|γ∗m − γmn| (4.16)

Where γ∗m is the γmn values for the candidate solution X6. The distances δn

between the grid location Γ6 of solution X6 and all the other solutions in the

population presented in Table 4.1 have been presented in Table 4.3. The results

show that the solution closest in proximity to solution X6 is solution X2, this has

been visualised in Figure 4.7.

Table 4.3: Grid locations Γ for the example population X of objective values
xmn.

Γ1 Γ2 Γ3 Γ4 Γ5

δ6 7 4 8 5 9

One final modification has been made in the improved AGA. Previously, in

CMA-PAES, the extreme values for each objective were preserved at grid level.

In the new AGA scheme, solutions containing extreme values for problem objec-

tives (with the candidate solution taken into consideration) are removed from the

population before it is subjected to the AGA. This ensures candidate solutions

are given a better chance of entering the archive than they would have had if they

had come up against those solutions containing extreme values. This preserves

the overall spread whilst encouraging new solutions to enter the archive.
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Figure 4.7: Parallel-coordinate plot of the Population X used in the improved
AGA example. X6 and the solution closest in proximity to it, X2, have been
presented using thicker lines.

4.5 CMA-PAES-II Design

CMA-PAES-II has been designed with the intention of being used for many-

objective optimisation. This has been achieved through a combination of features

from CMA-PAES, m-CMA-PAES, and with new features which have been de-

veloped as a result of preliminary experiments of CMA-PAES on many-objective

problems (discussed in Section 4.1). The execution life-cycle for CMA-PAES-II

has been presented in Figure 4.8.

CMA-PAES-II begins by initialising algorithm parameters and randomly sam-

pling the search-space to generate an initial parent population, X, of size µ, which

is then evaluated by the problem objective function. At this point, the gener-

ational loop begins by checking whether the configured termination criteria (a

configured maximum number of function evaluations) has been met, and if so the
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Figure 4.8: Execution life-cycle for the CMA-PAES-II algorithm, where IBC
Scheme refers to the execution life-cycle illustrated in Figure 4.2.
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EMO process is terminated. X is an M by N matrix of entries xmn, where every

xmn refers to a solution’s objective value.

Xn = 〈x1n, x2n, . . . , xMn〉 (4.17)

If the termination criteria has not been met, CMA-PAES-II continues to gen-

erate and evaluate an offspring population X
′

of size λ using the CMA operator

for variance. The parent population X and offspring population X
′

are then

merged to create an intermediate population X∗ to be used in the following pro-

cesses of the algorithm.

X∗ = X ∪X ′ (4.18)

The extreme values εm encountered for each problem objective during the

optimisation process are then updated by checking if any objective value x∗mn is

higher than a corresponding stored extreme objective value εm, and if so, replacing

it.

εm =

{
x∗mn if x∗mn > εm

εm otherwise
(4.19)

where E is a vector containing all of the extreme values encountered for each

problem objective.

E = 〈ε1, ε2, . . . , εM〉 (4.20)

The intermediate population X∗ is then sorted using the fast non-dominated

sorting procedure described in Section 2.7.1, before the improved AGA scheme

described in Section 4.4 paired with the Sigma restart addition described in Sec-

tion 4.3 is applied. This is achieved by subjecting each ranked population resolved
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from the non-dominated sorting procedure to the improved AGA scheme, with

the archive capacity for each execution of the improved AGA being either µ (in

the case that the rank-1 non-dominated population is greater than µ) or the

size of the rank-1 population otherwise. In the event that the rank-1 population

size is not equal to or greater than µ, subsequent lower rank populations are

used with an archive capacity setting of µ minus the cumulative size of previous

ranked populations subjected to the AGA scheme, until the parent population

for the next generation Xg+1 has been populated with µ solutions. The param-

eters used for the CMA operator for variance are then updated similarly to that

in Section 2.7.3, where solutions are considered successful if they make it from

the intermediate population X∗ to the parent population for the next generation

Xg+1.

The performance i of the current generation is then assessed using the hyper-

volume indicator described in Section 2.10.1 and calculated using Equation 2.6,

with the extreme values encountered in each problem objective E as the reference

point f ref .

i = SE
(
Xg+1

)
(4.21)

This performance value i is then used in the IBC scheme described in Sec-

tion 4.2 in order to prevent the algorithm from prematurely converging to local

optima. The IBC scheme is only considered after the first 5 generations of CMA-

PAES-II, to allow the encountered extreme objective values E to propagate. The

optimisation process then continues to the next generational iteration.
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4.6 Comparison between CMA-PAES-II and

MOEA/D-DRA

CMA-PAES-II and MOEA/D-DRA have been configured with a budget of 50, 000

function evaluations per algorithm execution to ensure fair comparison. The

algorithm configurations are presented in Table 4.4. Note that MOEA/D-DRA

specific configurations have been taken from [93].

Table 4.4: Parameter configurations used for testing CMA-PAES-II and
MOEA/D-DRA.

Parameter CMA-PAES-II MOEA/D-DRA

µ Population 100 100

λ Offspring 100 100

Niche Population Size — 20

Archive Capacity 100 —

AGA Grid Divisions 4 —

IBC Grid Divisions 2 —

Θmin 5 —

Θmax 20 —

The WFG tool-kit has been selected for the benchmarking and comparison

of CMA-PAES-II and MOEA/D-DRA, these test functions will pose difficulties

to the optimisers and also allow for testing the considered algorithms on many-

objective problems. The test functions used for this experiment are WFG1,

WFG2, WFG3, WFG4, WFG5, WFG6, WFG7, WFG8, and WFG9. The con-

figurations used for these test functions are given in Table 4.5.
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Table 4.5: Parameter configurations used for the WFG tool-kit.

Parameter Value

Number of objectives M 2, 3, 5, 7, 10

Total Variables n 24

Position Related Variables k Equation 4.22

Distance Related Variables l n - k

Each considered algorithm will be executed 30 times on each test function

to reduce stochastic noise for objectives two, three, five, seven, and ten. This

sample size has been selected in order to comply with the CEC09 competition

rules described in [92] and seen as sufficient because of the limited benefit of

producing more than 25 samples (discussed in Section 2.10.5).

The WFG tool-kit requires the configuration of test function parameters such

as M for the number of objectives, n for the number of total parameters, k for

the number of position related parameters which is resolved using Equation 4.22,

and l which is resolved from n− k.

k =

{
2(M-1) if M ≥ 2

4 otherwise
(4.22)

The metric used for performance assessment is the hypervolume indicator

described in Section 2.10.1. This metric determines the coverage of the objective

space (assessing both proximity and diversity) of any given approximation set,

without the requirement of knowledge of the true Pareto-optimal front, this is

a necessary feature of a performance metric in most real-world problems, as the

true Pareto-optimal front is often not known. The hypervolume indicator will

be used at each generation in order to assess performance and compare both
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algorithms on not just the hypervolume quality of the final approximation set

but also the hypervolume quality over time.

4.7 Results

The results from the experiments in Section 4.6 have been produced and presented

in a number of formats in order to allow for a better assessment of each algorithms

performance.

The worst, mean, and best IGD indicator results for the final approximation

set of each algorithm are presented in Tables 4.6, 4.7, 4.8, 4.9, and 4.10, for test

functions containing two, three, five, seven and ten objectives respectively. In

regards to the mean hypervolume indicator results of the final approximation set

produced by each algorithm for each test function, CMA-PAES-II outperformed

MOEA/D-DRA on 32 of the 45 test functions considered for the experiment.

Tables 4.6, 4.7, 4.8, 4.9, and 4.10 also present information regarding the p-

value resolved by the Wilcoxon signed-ranks non-parametric test for the final

approximation sets of the considered synthetic test problems, and a symbol in-

dicating the observation of the null hypothesis. A ’+’ symbol indicates that the

null hypothesis was rejected, and CMA-PAES-II displayed statistically superior

performance at the 95% significance level (α = 0.05) on the considered synthetic

test function. A ’−’ symbol indicates that the null hypothesis was rejected, and

CMA-PAES-II displayed statistically inferior performance. An ’=’ symbol indi-

cates that there was no statistically significant difference between both of the

considered algorithms on the synthetic test problem.

The means of the IGD metric at each generation have been plotted and pre-

sented in Figures 4.10, 4.11, 4.12, 4.13, and 4.14, for test functions containing two,
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three, five, seven and ten objectives respectively. These plots illustrate the rate of

hypervolume indicator convergence from the initial population to the final popu-

lation. From these plots it can be observed that at two-objective configurations

of the WFG tool-kit, MOEA/D-DRA significantly outperforms CMA-PAES-II

in regards to rate of convergence, however as the number of objectives increase,

CMA-PAES-II becomes the algorithm with the faster and better performing con-

vergence.

The box plots in Figure 4.9 allows for comparison on the dispersion, skew and

outliers in the performance for the final approximation set of each algorithm on

each considered test function.

Results analysis has been divided into sections based on the number of objec-

tives being optimised for clarity.
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Figure 4.9: Box plots of hypervolume indicator results for WFG problems (set
1: CMA-PAES-II; set 2: MOEA/D-DRA) 50,000 function evaluations, 30 runs.
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Figure 4.9: Box plots of hypervolume indicator results for WFG problems (set
1: CMA-PAES-II; set 2: MOEA/D-DRA) 50,000 function evaluations, 30 runs.
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4.7.1 Two-Objective Results

Overall, it can be observed in Table 4.6 that MOEA/D-DRA outperforms CMA-

PAES-II on the considered WFG test functions when each test function is con-

figured to consist of two objectives. MOEA/D-DRA achieves better mean hy-

pervolume indicator performance on six of the nine considered test functions

and achieves the best performing final approximation set of the two algorithms

on six of the nine considered test functions. However, in regards to worst-case

performance, CMA-PAES-II outperforms MOEA/D-DRA by achieving the best

performing worst case performance on six of the nine considered test functions.

Table 4.6: Hypervolume indicator results from 30 executions of CMA-PAES-II
and MOEA/D-DRA on the WFG test suite with two objectives.

CMA-PAES-II MOEA/D-DRA

2D Worst Mean Best Worst Mean Best p-value

WFG1 0.33819 0.34122 0.34499 0.32614 0.35422 0.36457 5.5727e-10 –

WFG2 0.66751 0.71044 0.72216 0.68334 0.72452 0.74016 1.3853e-06 –

WFG3 0.68422 0.68823 0.69205 0.68819 0.70138 0.70787 1.4643e-10 –

WFG4 0.53883 0.54789 0.55604 0.53456 0.54739 0.55347 1 =

WFG5 0.5174 0.52007 0.52365 0.5075 0.51592 0.51936 1.9568e-10 +

WFG6 0.51012 0.51432 0.52103 0.4995 0.51377 0.54229 1.7479e-05 +

WFG7 0.54937 0.55494 0.55917 0.55365 0.56899 0.57322 2.8716e-10 –

WFG8 0.51546 0.52004 0.52381 0.50616 0.52344 0.53442 0.0005264 –

WFG9 0.51339 0.51482 0.5479 0.50359 0.53395 0.5467 0.0013703 –

On WFG1, MOEA/D-DRA outperforms CMA-PAES-II in regards to mean

and best hypervolume indicator performance of the final approximation sets.

However, it can be seen in the plot of hypervolume indicator performance at

each generation in Figure 4.10a that CMA-PAES-II achieves faster initial conver-

gence up until approximately 100 generations, where MOEA-/D-DRA converges
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steadily at a faster rate. There is also less dispersion in the individual executions

which can be verified in the box-plot in Figure 4.9a, where it can also be observed

that although MOEA/D-DRA achieves the two worst executions on WFG1, both

executions are considered outliers.

On WFG2, MOEA/D-DRA outperforms CMA-PAES-II in regards to the

mean, worst, and best hypervolume indicator performance of the final approxi-

mation sets. MOEA/D-DRA also achieves a better convergence rate which can

be seen in Figure 4.10b. Both algorithms contain a high number of outliers as

seen in Figure 4.9a, this may be a consequence of the WFG2 test function con-

sisting of a disconnected geometry causing some executions of each algorithm to

only resolve some parts of the objective space.

On WFG3, MOEA/D-DRA outperforms CMA-PAES-II in regards to the

mean, worst, and best hypervolume indicator performance of the final approxi-

mation sets. MOEA/D-DRA also achieves a better convergence rate which can

be seen in Figure 4.10c. However, Figure 4.9a suggests CMA-PAES-II achieves

more robust executions as there is less dispersion in the final approximation sets

and MOEA-D/DRA has many outliers both in the top and low end.

On WFG4, CMA-PAES-II outperforms MOEA/D-DRA in regards to the

mean, worst, and best hypervolume indicator performance of the final approxi-

mation sets. Both algorithms achieve similar rates of convergence and dispersion

which can be seen in Figures 4.10d and 4.9a.

On WFG5, CMA-PAES-II outperforms MOEA/D-DRA in regards to the

mean, worst, and best hypervolume indicator performance of the final approx-

imation sets. However, MOEA/D-DRA achieves a faster rate of mean conver-

gence up until approximately 250 generations, this can be seen in Figure 4.14e.
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CMA-PAES-II offers more robust performance, and Figure 4.9a shows that the

interquartile range for CMA-PAES-II achieves better performance than the total

range of MOEA/D-DRA.

On WFG6, CMA-PAES-II outperforms MOEA/D-DRA in regards to mean

and worst hypervolume indicator performance, on the final approximation sets.

Both algorithms achieve similar rates of convergence and dispersion which can be

seen in Figure 4.10f, and in Figure 4.9a it is displayed that although MOEA/D-

DRA achieves executions with the best performance, they are considered outliers.

On WFG7, MOEA/D-DRA outperforms CMA-PAES-II in regards to the

mean, worst and best hypervolume indicator performance of the final approx-

imation sets. MOEA/D-DRA also achieves a better convergence rate which can

be seen in Figure 4.10g, and it can be observed in Figure 4.9a that the results

for MOEA/D-DRA contain outliers in the bottom end and that the distribution

is bottom skewed.

On WFG8, similar to WFG7, MOEA/D-DRA outperforms CMA-PAES-II in

regards to mean and best hypervolume indicator performance of the final approx-

imation sets. MOEA/D-DRA also achieves a better convergence rate which can

be observed in Figure 4.10h, and Figure 4.9a illustrates that CMA-PAES-II offers

more robust performance with a much smaller total range and no outliers.

On WFG9, MOEA/D-DRA outperforms CMA-PAES-II in regards to mean

hypervolume indicator performance of the final approximation sets. MOEA/D-

DRA also achieves a better convergence rate which can be observed in Figure

4.10i, and CMA-PAES-II achieves the execution with the best performance,

though it is considered an outlier which can be shown in Figure 4.9a. MOEA/D-

DRA also contains a high number of low performing outliers.
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(f) WFG6 2D

Figure 4.10: Hypervolume indicator values at each generation for CMA-PAES-
II and MOEA/D-DRA on the considered two-objective WFG test problems.
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(g) WFG7 2D
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(h) WFG8 2D
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Figure 4.10: Hypervolume indicator values at each generation for CMA-PAES-
II and MOEA/D-DRA on the considered two-objective WFG test problems.

4.7.2 Three-Objective Results

Overall, it can be observed in Table 4.7 that CMA-PAES-II outperforms MOEA/D-

DRA on the considered WFG test functions when each test function is configured

to consist of three objectives. CMA-PAES-II achieves better mean hypervol-

ume indicator performance on seven of the nine considered test functions, it also

achieves the best performing final approximation set of two algorithms on six of

the nine considered test functions. Furthermore, it achieves the best worst-case
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performance on all of the considered test functions.

Table 4.7: Hypervolume indicator results from 30 executions of CMA-PAES-II
and MOEA/D-DRA on the WFG test suite with three objectives.

CMA-PAES-II MOEA/D-DRA

3D Worst Mean Best Worst Mean Best p-value

WFG1 0.43017 0.43299 0.43517 0.36038 0.41075 0.42752 3.0199e-11 +

WFG2 0.86768 0.8816 0.89345 0.78028 0.89286 0.91835 9.5139e-06 –

WFG3 0.65903 0.67208 0.68303 0.62395 0.65032 0.67108 2.3715e-10 +

WFG4 0.65217 0.65708 0.66489 0.61332 0.62976 0.6491 3.0199e-11 +

WFG5 0.58381 0.59754 0.60997 0.57764 0.58925 0.60018 4.9426e-05 +

WFG6 0.64112 0.64534 0.64974 0.60524 0.61768 0.63362 3.0199e-11 +

WFG7 0.63625 0.65062 0.66336 0.63256 0.6534 0.66692 0.13345 =

WFG8 0.57531 0.58475 0.59543 0.51948 0.55792 0.58836 2.9215e-09 +

WFG9 0.62113 0.62475 0.65209 0.59063 0.61133 0.63881 0.00030059 +

On WFG1, CMA-PAES-II outperforms MOEA/D-DRA in regards to mean,

best, and worst hypervolume indicator performance of the final approximation

sets. It can be seen in the plot of the hypervolume indicator performance at each

generation in Figure 4.11a that CMA-PAES-II achieves faster initial convergence

similar to Figure 4.10a when it was executed on WFG1 with two objectives.

There is also less dispersion in the individual executions which can be verified in

the box-plot in Figure 4.9b.

On WFG2, MOEA/D-DRA again outperforms CMA-PAES-II in regards to

the mean and best hypervolume indicator performance of the final approximation

sets. MOEA/D-DRA also achieves a better convergence rate which can be seen

in Figure 4.11b, however in comparison to the results from WFG2 with two

objectives, CMA-PAES-II reaches a similar rate of convergence and performs
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better. MOEA/D-DRA contains a number of low performing outliers as seen in

Figure 4.9b.

On WFG3, CMA-PAES-II outperforms MOEA/D-DRA in regards to mean,

best, and worst hypervolume indicator performance of the final approximation

sets. Both algorithms reach similar rates of convergence and dispersion which can

be observed in Figure 4.11d, and Figure 4.9b suggests CMA-PAES-II produces

more robust executions as there is less dispersion in the final approximation sets.

On WFG4, CMA-PAES-II outperforms MOEA/D-DRA in regards to the

mean, worst, and best hypervolume indicator performance of the final approxima-

tion sets. Both algorithms reach similar rates of convergence and CMA-PAES-II

produces more robust executions as there is less dispersion in the final approxi-

mation sets which can be observed in Figures 4.11d and 4.9b.

On WFG5, CMA-PAES-II outperforms MOEA/D-DRA in regards to the

mean, worst, and best hypervolume indicator performance of the final approx-

imation sets. However, similar to when optimising WFG5 with two objectives

MOEA/D-DRA reaches a faster rate of mean convergence up until approximately

350 generations, this can be seen in Figure 4.11e.

On WFG6, CMA-PAES-II outperforms MOEA/D-DRA in regards to mean,

worst, and best hypervolume indicator performance on the final approximation

sets. Both algorithms reach similar rates of convergence and dispersion which

can be seen in Figure 4.11f. CMA-PAES-II produces more robust executions as

there is less dispersion in the final approximation sets which can be seen in Figure

4.9a.

On WFG7, MOEA/D-DRA outperforms CMA-PAES-II in regards to the

mean and best hypervolume indicator performance of the final approximation



4.7. Results 147

sets, however, the improvement in performance is not significant. Both algo-

rithms reach similar rates of convergence which can be seen in Figure 4.11g.

On WFG8, CMA-PAES-II outperforms MOEA/D-DRA in regards to mean,

worst, and best hypervolume indicator performance of the final approximation

sets. Both algorithms reach similar rates of convergence which can be seen in Fig-

ure 4.10h. By studying Figure 4.9a, it can be observed that CMA-PAES-II offers

more robust performance with a much smaller total range, and an interquartile

range which achieves better hypervolume indicator performance than the entire

interquartile range for MOEA/D-DRA.

On WFG9, CMA-PAES-II outperforms MOEA/D-DRA in regards to mean,

worst and best hypervolume indicator performance of the final approximation

sets. Both algorithms reach similar rates of convergence which can be observed

in Figure 4.11i, and CMA-PAES-II produces the execution with the best perfor-

mance, though it is considered an outlier which is shown in Figure 4.9b.
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(b) WFG2 3D
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(c) WFG3 3D
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(d) WFG4 3D
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(e) WFG5 3D
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(f) WFG6 3D

Figure 4.11: Hypervolume indicator values at each generation for CMA-PAES-
II and MOEA/D-DRA on the considered three-objective WFG test problems.
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(g) WFG7 3D
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(h) WFG8 3D
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Figure 4.11: Hypervolume indicator values at each generation for CMA-PAES-
II and MOEA/D-DRA on the considered three-objective WFG test problems.
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4.7.3 Five-Objective Results

Overall, it can be observed in Table 4.8 that CMA-PAES-II outperforms MOEA/D-

DRA on the considered WFG test functions when each test function is configured

to consist of five objectives. CMA-PAES-II achieves better mean hypervolume

indicator performance on seven of the nine considered test functions. Further-

more, CMA-PAES-II produces the best performing final approximation set of the

two algorithms on six of the nine considered test functions, and also achieves the

best worst-case performance on all of the considered test functions.

Table 4.8: Hypervolume indicator results from 30 executions of CMA-PAES-II
and MOEA/D-DRA on the WFG test suite with five objectives.

CMA-PAES-II MOEA/D-DRA

5D Worst Mean Best Worst Mean Best p-value

WFG1 0.41395 0.41629 0.41938 0.37947 0.39065 0.3973 3.0199e-11 +

WFG2 0.85062 0.89 0.90419 0.76018 0.89201 0.93239 0.0013017 –

WFG3 0.59406 0.61944 0.6398 0.54642 0.5843 0.61288 2.4386e-09 +

WFG4 0.69843 0.71753 0.74149 0.61096 0.65344 0.70566 4.0772e-11 +

WFG5 0.52795 0.5638 0.58662 0.57799 0.60514 0.65011 6.0658e-11 –

WFG6 0.7449 0.75287 0.76201 0.67458 0.70012 0.72186 3.0199e-11 +

WFG7 0.61305 0.64306 0.6756 0.59533 0.64872 0.70915 0.71719 =

WFG8 0.58967 0.6293 0.65547 0.57004 0.60989 0.66974 0.00020058 +

WFG9 0.63315 0.65487 0.67674 0.5359 0.59016 0.63396 3.3384e-11 +

The rates of convergence for CMA-PAES-II and MOEA/D-DRA on WFG

tool-kit test functions configured for five objectives appear to be similar to ex-

periments conducted on the same test functions configured for three objectives

in Section 4.7.2, these have been presented in Figure 4.12. The most noticeable

difference in hypervolume indicator performance from generation to generation

is in the scale of the oscillation from CMA-PAES-II, this is best illustrated in
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Figure 4.12c in comparison to Figure 4.11c, where the difference in oscillation on

the WFG3 test function increases when moving from three to five objectives.

This oscillation in hypervolume indicator performance from generation to gen-

eration is expected to increase in CMA-PAES-II as the number of objectives in the

test function increase, this is due to the execution of IBC when trying to maximise

hypervolume indicator performance with a small population in many-objective

space. It is also expected that where CMA-PAES-II hypervolume indicator per-

formance will oscillate on a greater scale on a higher number of objectives, the

hypervolume indicator performance of MOEA/D-DRA in comparison will worsen,

increasing the difference in mean performance between the two algorithms.
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(b) WFG2 5D
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(c) WFG3 5D
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(d) WFG4 5D
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(e) WFG5 5D
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Figure 4.12: Hypervolume indicator values at each generation for CMA-PAES-
II and MOEA/D-DRA on the considered five-objective WFG test problems.
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(g) WFG7 5D
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(h) WFG8 5D
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Figure 4.12: Hypervolume indicator values at each generation for CMA-PAES-
II and MOEA/D-DRA on the considered five-objective WFG test problems.

4.7.4 Seven-Objective Results

Overall, it can be observed in Table 4.9 that CMA-PAES-II outperforms MOEA/D-

DRA on the considered WFG test functions when each test function is configured

to consist of seven objectives. CMA-PAES-II achieves better mean hypervolume

indicator performance on eight of the nine considered test functions. Further-

more, CMA-PAES-II produces the best performing final approximation set of

two algorithms on five of the nine considered test functions, and also achieves the
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best worst-case performance on eight of the nine considered test functions.

Table 4.9: Hypervolume results from 30 executions of CMA-PAES-II and
MOEA/D-DRA on the WFG test suite with seven objectives.

CMA-PAES-II MOEA/D-DRA

7D Worst Mean Best Worst Mean Best p-value

WFG1 0.34726 0.35097 0.35525 0.31918 0.32613 0.33485 3.0199e-11 +

WFG2 0.85555 0.89994 0.92708 0.78171 0.9285 0.95981 2.0152e-08 –

WFG3 0.58351 0.60479 0.61544 0.49175 0.55128 0.59361 4.0772e-11 +

WFG4 0.68342 0.70559 0.72476 0.58811 0.65099 0.70675 6.1177e-10 +

WFG5 0.47554 0.52808 0.56049 0.47747 0.52535 0.5823 0.37108 =

WFG6 0.84837 0.85457 0.85919 0.82161 0.83261 0.84717 3.0199e-11 +

WFG7 0.63425 0.68295 0.72226 0.59571 0.66344 0.73922 0.012731 +

WFG8 0.62454 0.67712 0.71885 0.60134 0.66714 0.73353 0.50114 =

WFG9 0.57861 0.62316 0.65317 0.43025 0.52282 0.63121 1.9568e-10 +

The rates of convergence for CMA-PAES-II and MOEA/D-DRA on WFG

tool-kit test functions configured for seven objectives appear to be similar to

experiments conducted on the same test functions configured for three and five

objectives in Sections 4.7.2 and 4.7.3, these have been presented in Figure 4.13.

As expected and predicted in Section 4.7.3 in the comparison of convergence rate

between three and five objectives, the oscillation in hypervolume performance

has increased in scale, and the difference in performance between CMA-PAES-II

and MOEA/D-DRA has increased. This pattern is expected to continue as the

number of objectives increase in the next experiment.
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(b) WFG2 7D
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(c) WFG3 7D
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(d) WFG4 7D
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(e) WFG5 7D

50 100 150 200 250 300 350 400 450 500

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.40

0.50

0.60

0.70

Generation

H
yp

er
vo

lu
m

e

 

 

CMA−PAES−II
CMA−PAES−II mean
MOEA/D−DRA
MOEA/D−DRA mean

(f) WFG6 7D

Figure 4.13: Hypervolume indicator values at each generation for CMA-PAES-
II and MOEA/D-DRA on the considered seven-objective WFG test problems.
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(g) WFG7 7D

50 100 150 200 250 300 350 400 450 500

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Generation
H

yp
er

vo
lu

m
e

 

 

CMA−PAES−II
CMA−PAES−II mean
MOEA/D−DRA
MOEA/D−DRA mean

(h) WFG8 7D

50 100 150 200 250 300 350 400 450 500

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.10

0.20

Generation

H
yp

er
vo

lu
m

e

 

 

CMA−PAES−II
CMA−PAES−II mean
MOEA/D−DRA
MOEA/D−DRA mean

(i) WFG9 7D

Figure 4.13: Hypervolume indicator values at each generation for CMA-PAES-
II and MOEA/D-DRA on the considered seven-objective WFG test problems.

4.7.5 Ten-Objective Results

Overall, it can be observed in Table 4.10 that CMA-PAES-II outperforms MOEA/D-

DRA on the considered WFG test functions when each test function is configured

to consist of ten objectives. CMA-PAES-II achieves better mean hypervolume

indicator performance on eight of the nine considered test functions. Further-

more, CMA-PAES-II achieves the best performing final approximation set of two

algorithms on seven of the nine considered test functions, and also achieves the
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best worst-case performance on eight of the nine considered test functions.

Table 4.10: Hypervolume results from 30 executions of CMA-PAES-II and
MOEA/D-DRA on the WFG test suite with ten objectives.

CMA-PAES-II MOEA/D-DRA

10D Worst Mean Best Worst Mean Best p-value

WFG1 0.29982 0.30449 0.31119 0.27127 0.27848 0.29103 3.0199e-11 +

WFG2 0.9397 0.95548 0.96561 0.95163 0.97197 0.97866 5.0723e-10 –

WFG3 0.65453 0.66091 0.66733 0.53156 0.58962 0.62602 3.0123e-11 +

WFG4 0.6744 0.70753 0.76728 0.61893 0.69902 0.765 0.38709 =

WFG5 0.46585 0.49276 0.51274 0.40642 0.45224 0.50403 1.8567e-09 +

WFG6 0.63142 0.64301 0.6679 0.5458 0.56942 0.59811 3.0199e-11 +

WFG7 0.67276 0.72503 0.80515 0.58412 0.66273 0.77383 2.3768e-07 +

WFG8 0.57423 0.59885 0.63409 0.46983 0.5827 0.68128 0.31119 =

WFG9 0.54441 0.60458 0.63477 0.36732 0.44146 0.55746 3.6897e-11 +

The rates of convergence for CMA-PAES-II and MOEA/D-DRA on WFG

tool-kit test functions configured for seven objectives appear to be similar to ex-

periments conducted on the same test functions configured for three and seven

objectives in Section 4.7.4. As predicted in Section 4.7.4 in the comparison of

convergence rate between three, five and seven objectives, the oscillation in hy-

pervolume performance has increased in scale, and the difference in performance

between CMA-PAES-II and MOEA/D-DRA has increased. In addition to this

performance increase, CMA-PAES-II also outperforms MOEA/D-DRA on more

of the worst-case and best-case executions than in previous experiments when

test functions were configured to a lower number of problem objectives.
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(b) WFG2 10D
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(c) WFG3 10D
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(d) WFG4 10D
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(e) WFG5 10D
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(f) WFG6 10D

Figure 4.14: Hypervolume indicator values at each generation for CMA-PAES-
II and MOEA/D-DRA on the considered 10D WFG test problems.
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(g) WFG7 10D
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(h) WFG8 10D
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(i) WFG9 10D

Figure 4.14: Hypervolume indicator values at each generation for CMA-PAES-
II and MOEA/D-DRA on the considered 10D WFG test problems.

4.8 Conclusion

Benchmarking and performance analysis of the algorithm returned promising

results suggesting that on problems containing many objectives CMA-PAES-II is

faster at converging to an approximation set with better hypervolume indicator

quality than MOEA/D-DRA. MOEA/D-DRA outperformed CMA-PAES-II on

experiments consisting of test functions with two objectives, however, on test
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functions consisting of three objectives and more, CMA-PAES-II outperforms

MOEA/D-DRA consistently with an increasing difference in the performance

gap as the number of objectives scale up.

The IBC mechanism for assisting the convergence of CMA-PAES-II based on

continuous assessment using a desired performance indicator, has been successful

in ensuring entire executions of the algorithm are not wasted on a local optima

or only part of a Pareto-optimal front, this has been illustrated in the plots of

hypervolume indicator results over generations in each benchmarking section.

Overall, CMA-PAES-II has been designed and benchmarked as a robust and

extensible EMO algorithm for many-objective problems, which has a computa-

tional cost that does not restrict it to computing clusters or below four-objective

test functions.



Chapter 5

Weighted Z-Score Preference
Articulation

One approach to solving complex engineering problems is to use Evolutionary

Multi-Objective Optimisation (EMO) algorithms to address each of the conflict-

ing objectives simultaneously. Typically, these EMO algorithms are run non-

interactively with a Decision Maker (DM) setting the initial parameters of the

algorithm and then analysing the results at the end of the execution process

(which can often take hours or days to complete). This approach has been com-

mon since the late 1990s [2, 4, 5] and will lead to a set of potential solutions

distributed across the whole trade-off surface. Whilst this is often appropriate

for problems with a low number of objectives, in real-world problems that involve

the consideration of many objectives this trade-off surface can be very large. In

these cases, the DM is usually more interested in a sub-region of this solution

space that satisfies some domain specific criteria. However, this can be compli-

cated further by a lack of a priori knowledge about what trade-offs are achievable.

To overcome these problems, Progressive Preference Articulation (PPA) meth-

ods have been proposed that take into account DM preferences (such as [156])

161
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but these are frequently difficult to integrate with current state of the art EMO

algorithms, and the incorporation of user preferences is frequently disregarded in

the EMO literature [157].

This chapter introduces a novel method of progressive preference articulation

in Section 5.1 for EMO algorithms which can provide improved performance in

both the execution speed of the algorithm and in the quality of the solutions

the algorithm produces. This method is then integrated into two state-of-the-art

EMO algorithms in Sections 5.2 and 5.3. Section 5.4 provides a full statistical

analysis of the results of the integration of the proposed novel progressive prefer-

ence articulation operator with state of the art EMO algorithms for two suites of

benchmark test functions from the literature. The results from the test-cases are

then discussed in Section 5.5 and the chapter is then concluded in Section 5.6.
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5.1 Weighted Z-Score Preference Articulation

Operator

Weighted Z-score (WZ) preference articulation is a novel method of preference

articulation based around the use of z-scores1 (or standard scores) from statis-

tics. Traditional z-score calculations are performed by subtracting the population

mean from a datum and then dividing the result by the population standard devi-

ation as can be seen in Equation 5.1. Calculating the z-score in statistics requires

knowing the population parameters and not just the parameters of a sample,

which is often seen as unrealistic in typical statistics; however this is not an issue

in EMO as it is possible to have a complete representation of the population at

each generation.

z =
(x− µ)

σ
(5.1)

For the z-score to be useful for preference articulation, some modifications

are made to the way z is calculated. Instead of using the population mean and

population standard deviation to calculate z, the preference information2 that

has been expressed by the DM is used (as can be seen in Equation 5.2) where

ρm is the goal for a corresponding objective value xmn, and N is the number of

solutions in the population.

zmn =
(xmn − ρm)√∑N

n=1(xmn−ρm)2

N

(5.2)

1The number of standard deviations a datum is above or below the mean of its data-set.
2A ROI can be defined by a preference vector containing goals for each objective, where if

all objective values of a solution satisfy the corresponding objective goal it is considered within
the ROI.
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This will enable the calculation of zmn for the objective values of each candi-

date solution in an approximation set, resolving the number of standard devia-

tions each solution is from the DM’s expressed Region of Interest (ROI), which

will be a positive value when it is outside the ROI, and negative when within

the ROI. Once zmn is calculated for every objective value of a solution, the zmn

values are aggregated into a single fitness value using Equation 5.3.

Vn =

∑M
m=1 zmn

M
(5.3)

As a demonstration, the CEC09 competition winning MOEA/D-DRA [93]

EMO is executed for five generations to generate an initial population for the

ZDT1 synthetic test problem from the ZDT test suite. Using Equation 5.3 to

calculate Vn for each candidate solution, it is possible to order the initial pop-

ulation by the aggregated number of standard deviations from the ROI (0.2 for

objective 1 and 1 for objective 2 for this example) and then select a number of

solutions (five for this example) to exploit for the next generation. An illustration

of this example can be seen in Figure 5.1.

The Z-scores calculated using the simple method in Equation 5.2 can be used

in an EMO as either a replacement or addition to the fitness scheme used for

selection, to focus the search towards and then within the ROI expressed by the

DMs. This works well for test problems where there is a low number of objectives

and the Pareto-optimal set is not complicated in shape as seen in Figure 5.2,

however its effectiveness is reduced when this basic method is applied to a more

complicated problem with a higher number of objectives. To demonstrate this,

the same basic Z-score preference articulation method is applied to an initial
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Figure 5.1: Basic Z-score preference articulation applied to an initial population
generated by MOEA/D-DRA for the synthetic test problem ZDT1.

population generated by executing MOEA/D-DRA for five generations on a five-

objective instance of the WFG5 synthetic test problem from the WFG tool-kit,

this is illustrated in Figure 5.3.

This demonstration illustrates that the basic method of Z-score preference

articulation falls into the trap of selecting the solutions with the overall lowest

zmn values. This results in the minimisation of objectives 1 to 4 as they are

already below or close in proximity to the corresponding preference value ρm,

yielding negative or low positive z values, and due to the conflicting objectives

in WFG5, the associated 5th objective value for these selected solutions are the

furthest away from the specified ROI. This issue is amplified from generation to

generation and the result after 2000 function evaluations with the ROI specified

as {2, 5, 2, 2, 2} has been illustrated in Figure 5.4, where it can be observed that

although objectives 1-4 have been further optimised, there are still no individuals
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Figure 5.2: Population generated by MOEA/D-DRA combined with basic Z-
score preference articulation after 2000 function evaluations for the synthetic test
problem ZDT1.

Figure 5.3: Basic Z-score preference articulation applied to an initial population
generated by MOEA/D-DRA for the synthetic test problem WFG5.
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within the desired ROI due to objective 5.

Figure 5.4: Population generated by MOEA/D-DRA combined with basic Z-
score preference articulation after 2000 function evaluations for the synthetic test
problem WFG5.

To solve this ineffectiveness at higher numbers of objectives and on more dif-

ficult problems, a two-phase preference articulation operator has been developed.

The first phase (W-phase) focusses the search on bringing all objectives closer in

proximity to the desired ROI using absolute and weighted z values. The second

phase (Z-phase) takes effect once the criterion for the number of solutions required

within the ROI has been met, this phase uses the basic z values demonstrated

earlier for minimisation within the ROI.

The mathematical procedure for the WZ preference articulation operator in

its entirety is described herein. M defines the number of problem objectives whilst

N defines the population size. X is an M by N matrix of entries xmn, where every

xmn refers to a solution’s objective value:
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Xn = 〈x1n, x2n, . . . , xMn〉 (5.4)

Z is an M by N matrix of entries zmn, where every zmn refers to the result of

the z-score preference articulation operator applied to a corresponding objective

value xmn:

Zn = 〈z1n, z2n, . . . , zMn〉 (5.5)

To calculate Z, a preference vector P of M entries must be defined, where

every entry ρm refers to the goal which the corresponding objective values xm

must satisfy:

P = 〈ρ1, ρ2, . . . , ρM〉 (5.6)

S is an M by N matrix of entries smn where every smn refers to a logical

value indicating whether the corresponding objective value xmn has satisfied the

corresponding goal ρmn (xmn ≤ ρm):

Sn = 〈s1n, s2n, . . . , sMn〉 (5.7)

where smn is calculated using:

smn =

{
1, if xmn ≤ ρm

0, otherwise.
(5.8)

Φ is a vector of N entries, where every φn refers to a logical value indicating

whether all entries of P have been satisfied by a solution Xn.

Φ = 〈φ1, φ2, . . . , φN〉 (5.9)
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where φn is calculated by the product of the entries of Sn:

φn =
M∏
m=1

smn (5.10)

The scalar Ψ refers to the number of solutions Xn in the population which

have satisfied the preference vector P :

Ψ =
N∑
n=1

φn (5.11)

T defines the required number of solutions which satisfy the preference vector

before the search changes phase. Whilst Ψ < T the W-phase of the WZ preference

articulation operator takes effect. In this phase, the weighting (1 − 1
M

) is only

applied to the zmn value if m corresponds to the entry of Ω with the lowest value.

ωm refers to the number of solutions in the population that have satisfied the

corresponding ρm:

Ω = 〈ω1, ω2, . . . , ωM〉 (5.12)

ωm is the sum of columns M in the matrix S and is calculated using:

ωm =
N∑
n=1

smn (5.13)

With the entries of Ω calculated, the M by N matrix of weighted scores E can

be defined as:

En = 〈ε1n, ε2n, . . . , εmN〉 (5.14)

where the corresponding weighted score εmn for each objective value xmn can

be calculated using:
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εmn =

{
zmn

(
1− 1

M

)
if f(ωm, Smn) = 0

zmn otherwise.
(5.15)

where zmn and ωm are first normalised to real values between 0 and 1:

zmn = f(|zmn|, |Zm|) (5.16)

using the function f(k,K) where:

f(k,K) =
k −min(K)

max(K −min(K))
(5.17)

The initial calculation of zmn is the same in both phases (W-phase and Z-

phase) and is defined in Equation 5.2. The final score Wn of a single solution is

the aggregation of the corresponding εmn entries:

Wn =

∑M
m=1 εmn

M
(5.18)

.

This two-phase method attempts to move the search towards the production

of solutions that are close in proximity to the ROI and within it, but does not

attempt to minimise the solutions beyond the edges of the ROI. When the number

of solutions within the ROI has satisfied the threshold (Ψ ≥ T ) the Z-phase takes

effect. This phase uses Equation 5.2 to calculate Zn and then Equation 5.3 to

aggregate the scores into the scalar Vn, this is because there are adequate solutions

(defined by T ) that have satisfied all entries of P . These solutions can then be

further minimised within the ROI. A full example of both phases of the WZ

preference articulation operator is available in Section 5.1.1.
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When the WZ preference articulation operator algorithm is applied to the

same initial population previously generated for WFG5 by MOEA/D-DRA, so-

lutions that are closest to the ROI are selected with weighted preference for solu-

tions with objectives which have not yet been satisfied. This has been illustrated

in Figure 5.5, where it can be seen that solutions with worse values for objective

1-4 have been selected in order to exploit their useful genetic information to bring

objective 5 closer to and within the ROI.

Figure 5.5: WZ preference articulation applied to an initial population gener-
ated by MOEA/D-DRA for the synthetic test problem WFG5.

The second phase of the search is activated when the threshold T has been met

or exceeded, for this example T is set to 5 solutions (one tenth of the population

size) and executed for the same 2000 function evaluations as before, the results

of the search have been illustrated in Figure 5.6.

The results from this experiment show that 25 solutions have been found

within the desired ROI, further investigation has shown that threshold T of 5

solutions was satisfied at just 300 function evaluations which is when the search
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Figure 5.6: Population generated by MOEA/D-DRA combined with WZ pref-
erence articulation operator after 2000 function evaluations for the synthetic test
problem WFG5. 25 solutions have been found in the desired ROI.

switched from the W-phase to the Z-phase in the WZ preference articulation

operator, the results at 300 function evaluations have been illustrated in Figure

5.7.

As a preliminary comparison for proof-of-concept MOEA/D-DRA without

preference articulation was executed for 2000 function evaluations on WFG5, the

results of which are illustrated in Figure 5.8, for which no solutions were found

within the ROI, due to lack of focus toward the desired ROI during the search.

This is to be expected in the absence of preference articulation.

The WZ preference articulation operator is algorithm agnostic and can there-

fore be applied to any EMO algorithm as either a primary or secondary sorting

criterion for use by a selection operator. As a demonstration, in Figure 5.9 the

WZ preference articulation operator has been combined with an initial popula-

tion for the ZDT4 synthetic test problem from the ZDT test suite, generated
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Figure 5.7: Population generated by MOEA/D-DRA combined with the WZ
preference articulation operator after 300 function evaluations for the synthetic
test problem WFG5. 6 solutions have been found in the desired ROI.

Figure 5.8: Population generated by MOEA/D-DRA without preference artic-
ulation after 2000 function evaluations for the synthetic test problem WFG5. No
solutions have been found in the desired ROI.
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by CMA-PAES [15], an algorithm which uses covariance matrix adaptation for

search and adaptive grid archiving for selection and maintenance of a population.

After 2000 function evaluations CMA-PAES combined with the WZ preference

articulation operator has produced the results illustrated in Figure 5.10. ZDT4 is

a test problem with many deceptive Pareto-optimal fronts which makes it com-

putationally expensive for an EMO algorithm to find an approximation set close

in proximity to or along the true-front. However, when searching toward and

within a specified ROI it is possible to cut down the computational cost of the

search by reducing the search space that is explored, whilst still resolving solution

individuals which are of interest to the DM.

Figure 5.9: Basic Z-score preference articulation applied to an initial population
generated by CMA-PAES for the synthetic test problem ZDT4.

The WZ preference articulation operator shows promise in finding solutions

within a desired ROI by focussing the search and preventing exploration of areas

of the search space that will not be of expressed interest to the DM, and it can be
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Figure 5.10: Population generated by CMA-PAES combined with basic Z-
score preference articulation after 2000 function evaluations for the synthetic test
problem ZDT4.

observed from Figures 5.6 and 5.8 that in its absence the performance (in regards

to the number of solutions within the ROI) is worse.

Information regarding the number of standard deviations between an objective

value and the decision maker’s preferred goal is available, this is because the WZ

preference articulation operator is based around the use of z-scores from statistics.

This information can be used to blacklist solutions from the selection process, in

cases where a solution exists with a preferable aggregate W-phase score, but where

an objective value is greater than three standard deviations from the preferred

goal.

The WZ preference articulation operator is a portable and auxiliary operator

which can be incorporated into any host3 algorithm, therefore its performance in

finding solutions within the ROI will ultimately be relative to that of its host and

3An algorithm that incorporates the WZ preference articulation operator is referred to as
the host.
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the method of incorporation (whether it is used as the sole measure of fitness or

used in conjunction with other fitness operators).

5.1.1 WZ Preference Articulation Operator
Worked-Example

In this section a complete worked-example of both phases of the WZ preference

articulation operator (described in Section 5.1) is demonstrated. The objective

values used in these examples are not the result of any objection function, they

have only been selected for demonstration and ease of replication.

The W-Phase

This example assumes a five-objective problem (M = 5) with a population of

four (N = 4) solutions Xn where T = 2, this population has been presented in

Table 5.1 and plotted in Figure 5.11. The preference vector P = 〈1, 3, 4, 2, 1〉

defines the ROI for which the solutions are desired to be within. In order to

decide which phase of the WZ preference articulation operator takes effect, Ψ

needs to be calculated.

Table 5.1: An example population X of objective values xmn.

x1n x2n x3n x4n x5n

X1 0.5 0.5 5.0 2.5 1.5

X2 0.6 0 5.0 3.0 1.4

X3 0.5 3.5 4.5 2.5 1.5

X4 0.8 3.2 4.2 3.0 1.2

Table 5.2 shows that Ψ for the current population against the preference

information has been resolved as 0 and because (Ψ < T ) the W-phase of the WZ
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preference articulation operator takes effect. In order to find out which preference

entries ρm have been satisfied the least by the population, the entries ω of vector

Ω are calculated. The entries of Ω are then normalised to values between 0 and

1 using f(k,K) and it can be seen that ρ3, ρ4 and ρ5 have the least number of

solutions satisfied, therefore the scores for those objectives will receive weighting.
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Figure 5.11: Parallel-coordinate plot of the Population X and preference vector
P used in the W-Phase example.

Table 5.2: Logical values of matrix S, vector Ω and its normalised values, vector
Φ and the scalar Ψ calculated for population X.

s1n s2n s3n s4n s5n 0 Ψ

S1 1 1 0 0 0 0 φ1

S2 1 1 0 0 0 0 φ2

S3 1 0 0 0 0 0 φ3

S4 1 0 0 0 0 0 φ4

Ω 4 2 0 0 0

f(ω, S) 1 0.5 0 0 0
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In Table 5.3 it can be seen that εmn has been calculated for every solution’s

objective value and has been aggregated per solution into a single score as the

scalar Wn. Sorting the entries of W in ascending order resolves (as calculated by

the WZ preference articulation operator) the proximity of each solution Xn to P

in the objective space. In this example, the solutions are ordered (presented in

order of ascending proximity to P ) 〈X4, X3, X1, X2〉.

Table 5.3: The matrix E containing the weighted scores for the population X,
and the aggregated weighted score W for each solution Xn.

ε1n ε2n ε3n ε4n ε5n W

E1 1.0 0.82 0.8 0 0.8 0.86 W1

E2 0.67 1.0 0.8 0.8 0.53 0.95 W2

E3 1.0 0.11 0.3 0 0.8 0.55 W3

E4 0 0 0 0.8 0 0.2 W4

In the event that no solutions are found within the ROI, or if (Ψ < T )

is not satisfied throughout the optimisation process, then the WZ preference

articulation operator will remain in the W-phase until the host algorithm meets

its termination criteria. The result of the WZ preference articulation operator

remaining in the W-phase is a final approximation set of solutions Xn that are

close in proximity to to the preference vector P . This allows the algorithm to still

produce an approximation set of feasible solutions that are close in proximity to

the DM’s ROI in the scenario where no solutions exist within the ROI.

The Z-Phase

This example also assumes a five-objective problem (M = 5) with a population

of four (N = 4) solutions Xn where T = 2, this population has been presented
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in Table 5.4 and plotted in Figure 5.12. The preference vector P = 〈1, 3, 4, 2, 1〉

defines the ROI for which the solutions are desired to be within. In order to

decide which phase of the WZ preference articulation operator takes effect, Ψ

needs to be calculated.

Table 5.4: An example population X of objective values xmn.

x1n x2n x3n x4n x5n

X1 1.5 2.2 3.5 1.5 1.0

X2 0.5 2.5 3.5 1.2 0.5

X3 0 2.5 1.0 1.5 0

X4 1.0 1.0 2.0 0.5 1.0

Table 5.5 shows that Ψ for the current population against the preference

information has been resolved as 3 and because (Ψ ≥ T ) the Z-phase of the WZ

preference articulation operator takes effect. This allows for the minimisation of

the solutions within the found discovered by calculating zmn for every xmn and

aggregating them into a single score as the scalar Vn, so that the solutions Xn

may be sorted in order of descending proximity to P .

Table 5.5: Logical values of matrix S, vector Φ and the scalar Ψ calculated for
population X

.

s1n s2n s3n s4n s5n 3 Ψ

S1 0 1 1 1 1 0 φ1

S2 1 1 1 1 1 1 φ2

S3 1 1 1 1 1 1 φ3

S4 1 1 1 1 1 1 φ4

In Table 5.6 it can be seen that zmn has been calculated for every solution’s

objective value and has been aggregated per solution as the scalar Vn. Sorting
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Figure 5.12: Parallel-coordinate plot of the Population X and preference vector
P used in the Z-Phase example.

the entries of V in ascending order resolves (as calculated by the WZ preference

articulation operator) the solutions Xn within the ROI and furthest in proximity

to P in objective space. In this example, the solutions are ordered (presented in

order of descending proximity to P ) 〈X3, X4, X2, X1〉.

Table 5.6: The matrix Z containing the z-scores for the population X, and the
aggregated z-score V for each solution Xn.

z1n z2n z3n z4n z5n V

Z1 0.82 -0.71 -0.27 -0.54 0 -0.14 V1

Z2 -0.82 -0.44 -0.27 -0.87 -0.89 -0.66 V2

Z3 -1.63 -0.44 -1.63 -0.54 -1.79 -1.21 V3

Z4 0 -1.76 -1.09 -1.63 0 -0.9 V4
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5.2 Incorporation of the WZ Preference

Articulation Operator into CMA-PAES-II

The WZ preference articulation operator has been incorporated into the Covari-

ance Matrix Adaptation Pareto Archived Evolution Strategy II (CMA-PAES-II)

(introduced in Chapter 4) in order to both test the portability of the operator

itself as well as the feasibility of preference articulation on test functions con-

taining many objectives. CMA-PAES-II has been designed as an algorithm with

the optimisation of many-objective test functions in mind, in order to retain the

optimisation benefits CMA-PAES-II provides, it is important to incorporate the

WZ preference articulation operator in a way that assists the selection process

rather than completely replacing it.

An augmented algorithm named the Weighted Z-score Covariance Matrix

Adaptation Pareto Archived Evolution Strategy (WZ-CMA-PAES) has been de-

veloped, featuring an optimisation scheme that is focussed on optimisation to-

wards and within a DM’s ROI. This scheme works in different phases which are

activated depending on when certain criteria are satisfied, allowing the optimi-

sation process to efficiently spend the function evaluation budget depending on

the current optimisation context.

WZ-CMA-PAES operates in one of four phases, each of which override the

“AGA Selection for Next Generation” stage in the execution life-cycle of CMA-

PAES-II (illustrated in Figure 4.8). Phase 1 is active whilst there are no solutions

in the current approximation set which are within the DM’s expressed ROI, this

phase uses the WZ clustering algorithm described in Section 5.1 for selection of
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individuals that are closest to the DM’s expressed ROI as parents for the next

generation.

Phase 2 is active whilst there are solutions in the current approximation set

which are within the DM’s expressed ROI, whilst the number of these solutions is

below a threshold Zthresh, this phase continues to use the WZ clustering algorithm

described in Section 5.1 whilst retaining solutions in the archive which are within

the DM’s expressed ROI.

Phase 3 is active when the number of solutions in the current approximation

set which are within the DM’s expressed ROI equal or exceed Zthresh, this phase

uses the Z-score preference articulation method described in Equation 5.2 whilst

retaining solutions in the current approximation set which are within the DM’s

expressed ROI. This phase aims to populate the current archive entirely with

solutions that are within the current ROI.

Phase 4 is active when the archive for the current generation is at capac-

ity containing only solutions which are within the DM’s expressed ROI. In this

phase, when selecting which solutions to use as parents in the next generation,

all solutions that are not within the ROI are automatically discarded and the

remainder are subjected to the CMA-PAES-II AGA scheme, with the DM’s ex-

pressed goals as the reference point for the IBC scheme, this encourages diversity

and hypervolume indicator quality in the final approximation set.

By using these four phases the optimisation process is able to quickly get as

close as possible to the DM’s expressed ROI, produce solutions within it, populate

an entire archive with solutions only within that ROI, and then converge further

into that ROI with a diverse approximation set.
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5.3 Incorporation of the WZ Preference

Articulation Operator into MOEA/D-DRA

The WZ preference articulation operator has been incorporated into Multi-Objective

Evolutionary Algorithm Based on Decomposition with Dynamical Resource Al-

location (MOEA/D-DRA) (introduced in Section 2.7.4) in order to both test the

portability of the operator itself as well as the feasibility of preference articu-

lation on test functions containing many objectives. MOEA/D-DRA has been

designed as an algorithm with the optimisation of test functions consisting of

complex Pareto-optimal sets in mind, it is important to retain the benefits of

MOEA/D-DRA by incorporating the WZ preference articulation operator in a

way that assists the selection process rather than completely replacing it.

The Weighted Z-score Multi-Objective Evolutionary Algorithm Based on De-

composition with Dynamical Resource Allocation (WZ-MOEA/D-DRA) operates

in one of two phases (W-phase and Z-phase) dictated by the WZ preference artic-

ulation operator, which take effect depending on when certain criteria are satis-

fied, allowing the optimisation process to efficiently spend the function evaluation

budget depending on the current optimisation context.

Whilst the number of solutions satisfying the preference vector P is below the

threshold (Ψ < T ) the W-phase of the WZ preference articulation operator takes

effect. In this phase the MOEA/D-DRA’s utility selection (step 2 of Algorithm

1) is replaced with a selection of solutions based on their Wn score calculated

using Equation 5.18.

If during the optimisation process the threshold (Ψ ≥ T ) is satisfied then the

Z-phase of the WZ preference articulation operator takes effect, whilst in this
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phase a modified implementation of MOEA/D-DRA’s utility selection is used,

where the edging sub-problems are no longer considered as elite and solutions

that do not satisfy (φn = 0) the DM’s expressed preferences P are discarded.

Using these two phases WZ-MOEA/D-DRA is able to get close in proximity

to the DM’s expressed ROI within a small number of function evaluations, and

then produce solutions within the ROI and minimise solutions whilst retaining

the diversity features of MOEA/D-DRA.
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5.4 Comparison of WZ-CMA-PAES and

WZ-MOEA/D-DRA

In order to evaluate the performance of the WZ preference articulation operator,

test cases have been designed containing both a prioi preferences and progressive

preferences in Section 5.4.1, and the method of performance assessment has been

described in Section 5.4.2.

Two test suites are considered in the comparison of WZ-MOEA/D-DRA

to MOEA/D-DRA and WZ-CMA-PAES to CMA-PAES-II: the real-valued test

problems found in the ZDT bi-objective test suite proposed in [38]; and the scal-

able WFG multi-objective test suite proposed in [40].

The algorithm configurations for WZ-MOEA/D-DRA and WZ-CMA-PAES

are listed in and Tables 5.7 and 5.8 respectively. The algorithm configurations

for MOEA/D-DRA and CMA-PAES-II are the same as those used for WZ-

MOEA/D-DRA and WZ-CMA-PAES, with the exclusion of the Zthresh parame-

ter.

Table 5.7: Parameter configurations used for WZ-MOEA/D-DRA.

Parameter Configuration

µ Population 50

Niche 25

Maximum Update Number 10

Zthresh 5

Maximum Function Evaluations 10,000
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Table 5.8: Parameter configurations used for WZ-CMA-PAES.

Parameter Configuration

Archive Capacity 50

Grid Divisions 2

µ Population 10

Θmax 50

Θmin 10

Zthresh 5

Maximum Function Evaluations 10,000

5.4.1 Test Cases

A test case consisting of a chosen ROI has been chosen for each test function,

to test the convergence of each algorithm to different areas of objective space.

These test cases have been defined in Table 5.9 for two-objective problems and

in Table 5.10 for five-objective problems.

Table 5.9: Test cases defining the ROI used for each two-objective test function.

Test Function Region of Interest

ZDT1 1.0, 0.2

ZDT2 0.3, 1.0

ZDT3 1.0, -0.4

ZDT4 0.2, 1.0

ZDT6 1.0, 0.2

Based on results from previous comparison of the host evolutionary algorithms

in Section 4.7.1 and 4.7.3 for two and five objective test functions respectfully,

only MOEA/D-DRA and its WZ variant are executed on the bi-objective test

cases, where as both MOEA/D-DRA, CMA-PAES-II and their WZ variants are
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Table 5.10: Test cases defining the ROI used for each five-objective test function.

Test Function Region of Interest

WFG1 2.5, 1.0, 1.0, 1.0, 1.0

WFG2 1.0, 0.5, 0.5, 0.5, 2.5

WFG3 0.5, 0.5, 1.0, 2.0, 10

WFG4 2.0, 1.0, 6.0, 1.0, 2.0

WFG5 5.0, 5.0, 1.5, 1.5, 1.5

WFG6 2.0, 0.5, 0.5, 1.0, 11

WFG7 0.6, 0.6, 0.6, 8.5, 0.6

WFG8 0.5, 0.5, 0.5, 9.0, 0.5

WFG9 3.0, 1.0, 1.0, 2.0, 1.5

executed on the five-objective test cases. This is because CMA-PAES-II is in-

tended as a many-objective EMO and this study is not a direct comparison be-

tween the two individual algorithms, but instead a comparison between an EMO

with and without incorporation of the WZ preference articulation operator.

In Table 5.11 two test cases have been designed to demonstrate WZ pref-

erence articulation when applied to scenarios involving a change in preferences

during the optimisation process. Selected for this demonstration is the ZDT1

test function as it is a bi-objective problem which is easily visualised, and LAT-

CON (multi-objective design optimisation of an aircraft lateral control system)

a seven-objective test function taken from [158].
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Table 5.11: Progressive Preference Articulation Test Cases.

Test Function Generation Region of Interest

ZDT1 0 to 399 1.0, 0.1

400 to 699 0.6, 0.5

700 to 1000 0.2 0.9

LATCON 0 to 399 0.75, -360, -0.01, -3.75, -0.45, -1, -90

400 to 599 0.75, -1200, -0.01, -3.75, -0.45, -1, -90

600 to 1000 0.75, -800, -0.01, -3.75, -0.45, -1, -200

5.4.2 Performance Assessment

For the two-objective and five-objective test functions, all considered algorithms

(MOEA/D-DRA, WZ-MOEA/D-DRA, WZ-CMA-PAES, and CMA-PAES-II) have

been executed with an allowance of 10,000 function evaluations 25 times on each

test function to reduce stochastic noise, and the population at each generation

of each execution has been scored using the hypervolume indicator. This sample

size is seen as sufficient because of the limited benefit of producing more than 25

samples (discussed in Section 2.10.5).

The hypervolume indicator is selected because it is scaling independent and

requires no prior knowledge of the true Pareto-optimal front, this is important

when working with real-world problems which have not yet been solved. The hy-

pervolume indicator is currently used in the field of multi-objective optimisation

as both a performance metric and in the decision making process [114, 115].

The hypervolume indicator allows performance comparison between WZ-MOEA/D-

DRA and MOEA/D-DRA based on which algorithm covers the greatest amount

of the search space within a specified ROI, by using the preference vector P

described in Equation 5.6 in place of f ref when calculating the hypervolume in-
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dicator value. This means until the optimisation process has found solutions

within the ROI, the algorithms current execution is considered to be performing

at zero. This will be the basis for identifying which algorithm outperforms the

other, an example of this measure has been given in Figure 2.26.

Oscillation in hypervolume indicator performance from generation to genera-

tion is expected on some test functions as neither MOEA/D-DRA or CMA-PAES-

II are entirely hypervolume indicator driven algorithms, with MOEA/D-DRA

not utilising the hypervolume indicator at all during the optimisation process

and CMA-PAES-II only utilising it at grid level. WZ variants of both CMA-

PAES-II and MOEA/D-DRA are of course considered to outperform their non-

WZ counter-parts, in particular because their non-WZ counter-parts will be at-

tempting to maintain diversity across the entire objective space where as the WZ

variants will be attempting to maintain diversity across the ROI.

For the progressive preference articulation test cases, WZ-CMA-PAES has

been compared to CMA-PAES-II. For WZ-CMA-PAES the population prior to

a change in preferences or algorithm termination has been scored using the rele-

vant reference points taken from Table 5.11 and compared to a final population

generated by CMA-PAES-II within the same function evaluation budget.
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5.5 Results

The discussion of results for the test-cases defined in Section 5.4.1 has been di-

vided into three sections: Section 5.5.1 for the two-objective test-cases, Section

5.5.1 for the five-objective test-cases, and Section 5.5.3 for the progressive pref-

erence articulation test-cases.

5.5.1 Two-Objective Results

From a general observation of the box plots in Figure 5.13 it can be seen that WZ-

MOEA/D-DRA outperforms MOEA/D-DRA on each of the ZDT test cases using

the hypervolume indicator. WZ-MOEA/D-DRA succeeds in finding solutions

within the specified ROI in fewer function evaluations than MOEA/D-DRA, even

when MOEA/D-DRA fails to find any solutions in the ROI throughout the entire

search process (within the function evaluation budget). The populations found

by WZ-MOEA/D-DRA on each test function cover more of the hypervolume

within the specified ROI than MOEA/D-DRA, and because of this the DM will

have a more diverse set of candidate solutions to make a decision from, giving

them a better idea of the trade-offs within the specified ROI with a better spread

throughout the approximated front.

Table 5.12 presents information regarding the p-value resolved by the Wilcoxon

signed-ranks non-parametric test for the considered synthetic test problems, and

a symbol indicating the observation of the null hypothesis. A ’+’ indicates that

the null hypothesis was rejected, and WZ-MOEA/D-DRA displayed statistically

superior performance at the 95% significance level (α = 0.05) on the considered

synthetic test function. A ’−’ indicates that the null hypothesis was rejected,
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Figure 5.13: Box plots of hypervolume indicator results for two-objective ZDT
problems (1: WZ-MOEA/D-DRA; 2: MOEA/D-DRA) 10,000 function evalua-
tions, 25 runs.

and WZ-MOEA/D-DRA displayed statistically inferior performance. An ’=’ in-

dicates that there was no statistical difference between both of the considered

algorithms on the synthetic test function.

In all cases the null hypothesis was rejected and a statistical significance of

greater than 95% was observed. In addition, in all test cases WZ-MOEA/D-DRA

scores a median greater than the interquartile range when compared to MOEA/D-

DRA, and in all cases but ZDT6, WZ-MOEA/D-DRA’s entire interquartile range

is robust and outperforms MOEA/D-DRA’s.

Plots for the results of the test cases have been illustrated in Figure 5.14 for
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Table 5.12: Results from pairwise comparison of the final approximation sets
of both considered algorithms on each two-objective synthetic test function using
the Wilcoxon signed-ranks non-parametric test.

Test Function p-value

ZDT1 2.2857e-09 +

ZDT2 2.5742e-09 +

ZDT3 1.1773e-07 +

ZDT4 1.309e-07 +

ZDT6 0.00051446 +

two-objective test problems. Each plot presents the mean hypervolume covered

within the ROI at each generation for 25 executions on a test function, for both

MOEA/D-DRA and WZ-MOEA/D-DRA.

The results show that the test function posing the greatest difficulty in finding

a single solution within the specified ROI is ZDT4, this can be seen in Figure

5.14d where the plot of the mean hypervolume indicator value over the number of

generations indicates that of all the test functions, ZDT4 required each algorithm

to search for more generations before finding solutions within the ROI. This is to

be expected as a result of ZDT4’s multi-frontal nature [159] which is a struggle

for most EMO algorithms; however, when comparing WZ-MOEA/D-DRA to

MOEA/D-DRA it is clear that WZ-MOEA/D-DRA can get to the specified ROI

faster and produce a final approximation set of better hypervolume indicator

quality. In Figure 5.15 the populations for WZ-MOEA/D-DRA and MOEA/D-

DRA have been plotted for an execution for which the hypervolume indicator

value was close to the mean of each respective algorithms 25 executions, these

plots show that WZ-MOEA/D’s final approximation set has converged through

more of the deceptive Pareto-optimal fronts than MOEA/D-DRA, with more
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Figure 5.14: The mean hypervolume indicator values of WZ-MOEA/D-DRA
and MOEA/D-DRA populations at each generation for two-objective ZDT test
suite.
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candidate solutions, better diversity, and also including more solutions near the

extremes of the ROI. A similar result can be seen in Figure 5.16 where the worst

of the 25 populations for WZ-MOEA/D-DRA and MOEA/D-DRA have also been

plotted for ZDT4, in this case however MOEA/D-DRA has only found a single

solution within the ROI where as WZ-MOEA/D-DRA has completed with better

proximity and diversity.

Figure 5.15: Population generated by a run of MOEA/D-DRA and WZ-
MOEA/D-DRA on ZDT4 within the ROI, with a hypervolume indicator value
close to the mean of the 25 executions.

The plots in Figure 5.14 show that in every test function considered, the WZ

variant of MOEA/D-DRA not only finds solutions in the ROI many generations

prior to MOEA/D-DRA, but it also achieves MOEA/D-DRA’s peak and final

hypervolume metric performance much earlier in the optimisation process and

then proceeds to performs far better.
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Figure 5.16: Population generated by worst run of MOEA/D-DRA and WZ-
MOEA/D-DRA on ZDT4 within the ROI, with a hypervolume indicator value of
0.000063568 and 0.0159 respectively.
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5.5.2 Five-Objective Results

From a general observation of the box plots in Figure 5.17 it can be seen that

WZ variants of MOEA/D-DRA and CMA-PAES-II outperform their original im-

plementations on each of the WFG test cases using the hypervolume metric. The

WZ variants succeed in finding solutions in the specified ROI in fewer function

evaluations than their original implementations, even when the originals fail to

find any solutions in the ROI throughout the entire search process (within the

function evaluation budget). The populations found by the WZ variants on each

test function cover more of the hypervolume within the specified ROI than the

original algorithms, and because of this the DM will have a more diverse set of

candidate solutions to make a decision from, giving them a better idea of the

trade-offs within the specified ROI with a better spread throughout the approx-

imated front.

Tables 5.13 and 5.14 present information regarding the p-value resolved by

the Wilcoxon signed-ranks non-parametric test for the considered synthetic test

problems, and a symbol indicating the observation of the null hypothesis. A

’+’ indicates that the null hypothesis was rejected, and WZ algorithm variant

displayed statistically superior performance at the 95% significance level (α =

0.05) on the considered test synthetic test function. A ’−’ indicates that the null

hypothesis was rejected, and the WZ algorithm variant displayed statistically

inferior performance. An ’=’ indicates that there was no statistical difference

between both of the considered algorithms on the synthetic test function. In all

cases the null hypothesis was rejected and a statistical significance of greater than

95% was observed.
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Table 5.13: Results from the pairwise comparison of the final approximation sets
of both WZ-MOEA/D-DRA and MOEA/D-DRA on each five-objective synthetic
test function using the Wilcoxon signed-ranks non-parametric test.

Test Function p-value

WFG1 7.6832e-08 +

WFG2 0.022656 +

WFG3 6.132e-07 +

WFG4 0.0012886 +

WFG5 5.806e-09 +

WFG6 5.8255e-05 +

WFG7 0.00023161 +

WFG8 1.0932e-06 +

WFG9 1.7323e-06 +

Table 5.14: Results from the pairwise comparison of the final approximation
sets of both WZ-CMA-PAES and CMA-PAES-II on each five-objective synthetic
test function using the Wilcoxon signed-ranks non-parametric test.

Test Function p-value

WFG1 1.4157e-09 +

WFG2 2.4712e-10 +

WFG3 1.4157e-09 +

WFG4 4.4598e-08 +

WFG5 1.2695e-09 +

WFG6 1.5967e-09 +

WFG7 1.4144e-09 +

WFG8 3.93e-10 +

WFG9 2.883e-09 +
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Figure 5.17: Box plots of hypervolume indicator results for five-objective WFG
test cases (1: WZ-CMA-PAES; 2: CMA-PAES-II; 3: WZ-MOEA/D-DRA; 4:
MOEA/D-DRA) 10,000 function evaluations, 25 runs.

In all test cases, WZ variants of MOEA/D-DRA and CMA-PAES-II score a

median greater than the original, with WZ-CMA-PAES scoring the highest me-

dian hypervolume indicator result on 7 of the 9 test functions and WZ-MOEA/D-

DRA scoring the highest median on the remaining 2. In some test cases (WFG3,

WFG4, WFG5 and WFG6), CMA-PAES-II and WZ-CMA-PAES outperform

MOEA/D-DRA and WZ-MOEA/D-DRA, this is because of CMA-PAES-II’s im-

proved performance in general on five-objective test functions in comparison to
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MOEA/D-DRA as seen in Section 4.7.3.

Plots for the results of the test cases have been illustrated in Figure 5.18 for

five-objective test problems. Each plot presents the mean hypervolume covered

within the ROI at each generation for 25 executions on a test function for WZ-

MOEA/D-DRA, MOEA/D-DRA, WZ-CMA-PAES, and CMA-PAES-II.
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Figure 5.18: The mean hypervolume indicator value of WZ-MOEA/D,
MOEA/D-DRA, WZ-CMA-PAES, and CMA-PAES-II populations at each gen-
eration for five-objective test functions WFG1, WFG2, WFG3, WFG4, WFG5,
and WFG6.
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(g) WFG7 5D
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(h) WFG8 5D
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Figure 5.18: The mean hypervolume indicator value of WZ-MOEA/D,
MOEA/D-DRA, WZ-CMA-PAES, and CMA-PAES-II populations at each gen-
eration for five-objective test functions WFG7, WFG8 and WFG9.

Similar to the results when CMA-PAES-II was compared to MOEA/D-DRA

in Section 4.7.3, Both WZ-CMA-PAES and CAM-PAES-II continue to perform

poorly on WFG2, though WZ-CMA-PAES performs far better than CMA-PAES-

II on the test case. This is to be expected as the WZ operator compliments its

host algorithm and aims to reduce the number of function evaluations wasted

and improve the overall hypervolume indicator quality of the population, it does

not replace the variation operator.
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The results for WFG6 show that all considered algorithms find solutions

within the ROI very early in the search, taking less than 50 generations on aver-

age. This is the result of relaxed preferences used in the test case, in particular

for the 5th objective where the preference was set to 11 or below. In general, all

considered algorithms find the ROI in a similar number of function evaluations,

with WZ variants of the algorithms converging to populations with better hyper-

volume quality very early on in the search. In the worst performing (in regards

to hypervolume) execution of each algorithm on WFG6, the plots for the final

population show that WZ-MOEA/D-DRA in Figure 5.19 finds many solutions

within the ROI with good diversity to offer the DM with an idea of the trade-offs,

where as MOEA/D-DRA in Figure 5.20 fails to find a solution in the ROI.

Figure 5.19: Population generated by worst run of WZ-MOEA/D-DRA on
WFG, with a hypervolume indicator value of 0.0485.

In some of the results it can be seen that the achieved hypervolume indicator

value oscillates throughout the optimisation process, for example in WFG4 and

WFG7. This occurs because both MOEA/D-DRA and WZ-MOEA/D-DRA are
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Figure 5.20: Population generated by worst run of MOEA/D-DRA on WFG6,
with a hypervolume indicator value of 0.

not hypervolume indicator based algorithms and instead use a weighted selection

method, therefore the hypervolume indicator is not taken into account in any

point of the optimisation process, unlike algorithms such as CMA-PAES and

MO-CMA-ES, which take the contributing hypervolume indicator into account

during their selection process.

Table 5.15 shows the number of occurrences in which each considered algo-

rithm did not find a solution in the ROI on each test case out of the 25 executions.

From this table it can be seen that there are no test cases where WZ-CMA-PAES

fails to find a solution within the expressed ROI, this is expected to be because

of the promising performance of CMA-PAES-II as seen in Section 4.7.3 paired

with the IBC scheme described in 4.2 translating intuitively from using a maxi-

mum hypervolume indicator reference point to using the ROI for each test case.

WZ-MOEA/D-DRA also performs well when assessing the number of times the

algorithm failed to find a solution in the ROI, and though it did not perform
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as well as WZ-CMA-PAES in this regard, it did outperform WZ-CMA-PAES on

some test cases in regards to mean and median hypervolume indicator perfor-

mance. CMA-PAES-II and MOEA/D-DRA perform similarly in regards to the

number of times no solution was found in the ROI, which is to be expected as

they are not algorithms that incorporate a method of preference articulation.

Table 5.15: The number of occurrences in which each considered algorithm did
not find a solution in the ROI on the WFG test suite with 5 objectives.

WZ-CMA-PAES CMA-PAES-II WZ-MOEA/D-DRA MOEA/D-DRA

WFG1 0 0 2 18

WFG2 0 22 6 4

WFG3 0 0 0 3

WFG4 0 0 3 8

WFG5 0 9 0 4

WFG6 0 1 0 6

WFG7 0 2 3 14

WFG8 0 20 5 20

WFG9 0 0 1 9

5.5.3 Progressive Preference Articulation Results

Overall, the results from the PPA test cases in Table 5.11 show promise in evolu-

tionary optimisation when using the WZ preference articulation operator in the

presence of online changes in DM preferences. The results predictably show that

the exploitation of existing solutions that have undergone optimisation for some

number of generations prior to a change in the ROI allows for the new ROI to be

found in fewer function evaluations than if the optimisation process were to be

restarted with the new preferences expressed a priori.
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This has been demonstrated for the two-objective test function ZDT1 from the

ZDT test suite and the seven-objective LATCON real-world problem. In order

to compare the effectiveness of an algorithm execution where WZ is incorporated

progressively as a PPA operator, against an algorithm where WZ is incorporated

a priori, a single algorithm execution where WZ is used progressively is compared

to a number of executions per number of preferences changes where WZ is used

a priori.

It is expected that both algorithms will perform identically in any measure of

performance up until the first change in preference, which for both the test cases

is the 400th generation. This has proven true in Figures 5.21a and 5.22a where

both WZ with PPA and WZ with a priori preference articulation has achieved

identical hypervolume indicator performance from generation 0 to generation 399.

After the change in preferences, it can be seen in Figure 5.21b that WZ-CMA-

PAES with PPA finds the new ROI in almost 150 generations fewer than a new

execution of WZ-CMA-PAES to find the same ROI, this is because WZ-CMA-

PAES with PPA was able to use the existing population with optimal information

for a different ROI to get to the new ROI quicker. Similarly in Figure 5.22b it

can be seen that in the LATCON test-case that not only does WZ-CMA-PAES

with PPA find the new ROI in fewer generations, but it finds it instantly as the

ROI for generations 400 to 699 is within the initial ROI, this allows the existing

population to be exploited far more efficiently.

After the final change in preferences, WZ-CMA-PAES with PPA finds solu-

tions in the new ROI in fewer generations or instantly when compared to a new

execution of WZ-CMA-PAES. In the third ZDT1 test-case, a solution is found

instantly (shown in Figure 5.21c) due to the closeness of the old ROI and the new



206 Chapter 5. Weighted Z-Score Preference Articulation

0 100 200 300 400
0

0.02

0.04

0.06

0.08

0.1

Generation

H
yp

er
vo

lu
m

e

 

 
WZ−CMA−PAES (PPA)
WZ−CMA−PAES

(a) ZDT1 - Generation 0 to 399
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(b) ZDT1 - Generation 400 to 699
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Figure 5.21: The mean hypervolume indicator value of WZ-CMA-PAES (a
priori) and WZ-CMA-PAES (PPA) populations at each generation for the ZDT1
PPA test case.

ROI and the easiness of the ZDT1 test function. In the third LATCON test-case

a solution is found instantly (shown in Figure 5.22c) when the preferences for the

second objective is relaxed and the preferences for the fifth objective made more

strict, in this case it is likely that either a number of solutions that satisfied both

sets of preferences existed in the generation prior to the change in preferences, or

the change in ROI was an easy one.
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(b) LATCON - Generation 400 to 699
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Figure 5.22: The mean hypervolume indicator value of WZ-CMA-PAES (a pri-
ori) and WZ-CMA-PAES (PPA) populations at each generation for the LATCON
PPA test case.
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5.6 Conclusion

In this chapter a novel method of preference articulation has been introduced in

the form of the Weighted Z-score (WZ) preference articulation operator. The

WZ preference articulation method has been incorporated into an implementa-

tion of MOEA/D-DRA and CMA-PAES-II and benchmarked on two-objective

and five-objective test functions and compared to their originals. The results

show that the WZ preference articulation operator has successfully improved the

performance of their host algorithms (MOEA/D-DRA and CMA-PAES-II) when

searching towards an expressed ROI, by producing more solutions within the

ROI, producing solutions in the ROI within fewer function evaluations, and also

producing populations of better hypervolume indicator quality.

With the development WZ-MOEA/D-DRA and WZ-CMA-PAES, an inter-

esting question is raised as to the classification of these algorithms. The WZ

preference articulation operator has been developed independently and then in-

corporated into MOEA/D-DRA and CMA-PAES-II, this may allow the resulting

algorithms to be classified as hybrid algorithms, and may encourage hybridisation

of other algorithms if the WZ operator is required in any other host algorithm.

In addition, the WZ preference articulation operator has been demonstrated

successfully in scenarios involving progressive preference articulation, showing

promising results for reducing the number of function evaluations required when

exploring a new ROI, by not requiring a completely fresh execution of the opti-

misation process but instead continuing from any existing search and exploiting

existing solutions.



Chapter 6

Application to Concealed
Weapon Detection

The optimisation of the accuracy and efficiency of classifiers in pattern recogni-

tion is a complex problem that is often poorly understood. For example, whilst

numerous techniques exist for the optimisation of weights in Artificial Neural

Networks (ANNs) (such as the Widroff-Hoff least mean squares algorithm and

back propagation), there do not exist any hard and fast rules for choosing the

structure of an ANN - in particular for choosing both the size (in terms of the

number of neurons) and the number of hidden layers used in the network. How-

ever, this internal structure is one of the key factors in determining the efficiency

of the network and the accuracy of the classification. In recent years there has

been some interest in using soft computing techniques such as Evolutionary Al-

gorithms (EAs) to provide a solution to this problem [160], focussing on evolving

the structure of an ANN to solve function approximation problems. However,

complex classification problems often involve trade-offs between classification ob-

jectives that are not well suited to this kind of single-objective approach.

This chapter presents the optimisation of the ANN architecture used for con-

209
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cealed weapon detection in a two-objective, five-objective, and seven-objective

problem. The two-objective optimisation is performed on an ANN that is clas-

sifying the radar signals into two groups which are threat and non-threat. The

five-objective and seven-objective optimisation are ambitious in the sense that

they attempt to optimise the architecture of a number of ANNs each of which

are trained to detect a specific threat item. These many-objective optimisations

are the more difficult of the problems but will give a greater level of information

to the user of the detection system. This will allow the security forces to react

to specific threats in a more controlled manner as they will know the type of

threat presented. The optimisation of concealed weapon detection classifiers is

important because even a marginal gain in performance can improve the safety

and security for the area in which the system is implemented.

The chapter begins with an overview of the method of concealed weapon

detection used in the experiments in Section 6.1, followed by a description of how

the problem is encoded into a real-value chromosome for use by the evolutionary

multi-objective optimiser in Section 6.2. Section 6.3 regards the two-objective

optimisation of a currently implemented and published system, and Section 6.4

regards the five-objective and seven-objective optimisation of systems able to

detect multiple categories of threat. The chapter concludes with a summary of

the research in Section 6.5
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6.1 Concealed Weapon Detection

Concealed Weapon Detection (CWD) is an important area of research in the

defence and security community. This is due to a number of high profile terrorist

attacks which have resulted in loss of life and damage to public infrastructure.

The threat faced by the security forces is diversifying and current technology

is struggling to meet new requirements. The technologies currently in use at

airports include metal detection portals, millimetre wave imaging systems, x-ray

scanners and ion mobility spectrometers. These technologies are all designed to

detect specific threats to security and collectively they are used to satisfy the

current requirements for screening in the aviation industry. The use of multiple

technologies in airports has led to choke points with lengthy waits at security

checkpoints, making this method of screening undesirable and it is only used in

places where it is absolutely necessary. Recently the threat of terrorism has spread

and many more public areas and government buildings are becoming targets, even

sporting events have now become targets. This presents a real problem as the

best examples of mass screening are demonstrated at airports and as mentioned

previously this type of screening leads to choke points and delays. Therefore

there is a requirement for a fast method of screening people in crowded areas,

which is capable of detecting a diverse range of threats.

One method of detecting a diverse of range concealed weapons in crowded

areas in real-time is to use small portable radars. A number of radar systems

have been developed for this purpose [161] and [162]. These radars use multiple

methods of detecting concealed weapons such as time domain reflectometry and
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the exploitation of polarisation changes induced by complex objects concealed on

the human torso under clothing.

The radar used in this work is constructed of a Vector Network Analyser

(VNA) with pyramid horn antennas connected to the VNA using suitable cabling.

A laptop is used to control the VNA and then classify the signals. The radar

signals are analysed on the laptop using pattern recognition applied to the time

resolved signals in the form of an ANN, this set-up has been illustrated in Figure

6.1. This method has been discussed in detail in a previous publication [163].

Laptop Target

1. TX/RX

2. RX

VNA

Figure 6.1: System block diagram illustrating the arrangement of the transmit-
ted and receiver horn antennas.

One of the shortcomings of this method is that the optimisation of the ANN

architecture has previously been performed using trial and error. This has been

done by increasing the number of hidden layers in the ANN and also increasing the

number of neurons on each of these layers. A set of validation data was fed into

the ANN each time a new layer or neuron was added, and the true positive and

false positive rates were recorded. The best architecture was selected by weighing

the achieved true positive rate against the cost in false alarm rate. Another issue

exists with the training of the ANN, which tends to be inconsistent. This is

caused when an initial guess at the weights and biases is taken. As a result of the
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randomness of this guess the convergence can be to a local minima rather than

the global.

It is of great importance that the false alarm rate is kept low, typically below

a few percent, for security screening of large volumes of people. This is due to the

action that must be taken once a potential threat has been identified. This action

could range from further investigation, e.g. stop and search, to the evacuation

of a crowded public area. If the false positive rate goes above a few percent the

inconvenience to the security forces and general public would render the method

ineffective. Therefore the primary objective in optimising the ANN architecture

must be the reduction of the false positive rate.

The second objective in the optimisation of the ANN architecture must be

the preservation of the true positive rate for targets of interest. The targets that

should be detected by the radar include knives and guns. It is unfortunate that

knives and guns are seized by the security forces far too frequently and pose a

significant threat to the safety of the general public. The damage that can be

caused with these weapons is considerable and these targets are easily concealed

upon the human body.
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6.2 Encoding the Problem

In order to use evolutionary optimisation to optimise the topology and weights

of the ANN classifier for concealed weapon detection, the ANNs topology and

weights must be encoded into a real-valued chromosome, which can then be

subjected to the various evolutionary operators used in the optimisation process

and then decoded for evaluation. Figure 6.2 illustrates the chromosome structure

used to store the problem parameters for an ANN with 2 output neurons, a

maximum of 2 layers, and 8 input neurons.

HL1.NEURONS HL2.NEURONS IL.WEIGHTS HL1.WEIGHTS

HL2.WEIGHTS HL1.BIAS HL2.BIAS OL.BIAS

Figure 6.2: Encoded chromosome for an ANN consisting of 2 hidden layers (HL),
input layer (IL), 2 neurons on the output layer (OL), and associated biases.

Parameter boundaries are also required to restrict the number of hidden layers,

neurons per hidden layer, and ranges for the weights and biases within a lower

and upper limit. All hidden layers but the last can contain a number of neurons

ranging from none to twice the number of input neurons as seen in Equation 6.1,

and the last hidden layer must contain a minimum of neurons equal to the number

of input neurons as seen in Equation 6.2, this means each candidate network

generated by the optimiser must have at least one hidden layer, preventing the

generation of benign networks which would waste function evaluations throughout

the entire optimisation process. Finally, each weight or bias is restricted to the

same boundary shown in Equation 6.3.
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b(1...(HL− 1)) = {x ∈ Z | 0 ≤ x ≤ 2i} (6.1)

b(HL) = {x ∈ Z | i ≤ x ≤ 2i} (6.2)

w = {x ∈ R | −5 ≤ x ≤ 5} (6.3)

The algorithm for generating the parameter boundaries used for solutions

during the optimisation process is listed in Algorithm 3. The algorithm requires

an input of: maximum number of hidden layers, minimum number of neurons

per hidden layer, and the number of output neurons.

Algorithm 3 ANN Solution Boundary Algorithm

1: function range = annboundary(layers, size, n out)1

2: lb = [lb; (ones((size × 2) × size, 1) × -5)];

3: for i = 1 : layers do
4: if i == layers then
5: lb = [lb; (ones((size × 2) × n out,1) × -5)];

6: else
7: lb = [lb; (ones((size × 2) × (size × 2),1) × -5)];

8: end if
9: end for

10: lb = [lb; (ones((layers × size × 2) + n out, 1) × -5)];

11: ub = lb × - 1;

12: lb = [zeros(layers, 1); lb];

13: ub = [(ones(layers, 1) × size × 2); ub];

14: lb(layers - 1) = size - 1;

15: lb(layers) = size;

16: range = [lb ub];

For the ANN used in this network, each candidate solution contains 452 vari-

ables, with the first 2 defining the number of hidden layers and the number of

1This is near functional MATLAB 2012a code but may be interpreted as pseudo-code.
1The function ones(n, m) returns an n-by-m matrix of ones.
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neurons on each respectively, the following 128 variables defining the weights for

the input layer, 256 for the first hidden layer, and 32 for the final hidden layer.

Regardless of the topology of the candidate solution ANN (which in this

case is defined by the first 2 genes of the encoded chromosome) the maximum

number of weights and biases will be stored with each chromosome, however not

all genotypes will manifest and be expressed as phenotypes as only the weights

and biases required to configure the candidate solutions ANN topology will be

decoded and used. These unused weights and biases will remain unexpressed in

the phenotype until the first two genes allow them to manifest and can go through

many generations as dormant genes. This introduces the interesting feature of

atavism2 into this problem.

At each function evaluation, a chromosome is decoded from its encoded state

described in Figure 6.2 and used to instantiate an ANN. This ANN is then used

to classify the training data and the objective information is extracted and used

to assess the chromosome’s fitness based on the ANN result set.

2“Atavism is the tendency to revert to ancestral type. In biology, an atavism is an evolu-
tionary throwback, such as traits reappearing which had disappeared generations before.”
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An algorithm for decoding a chromosome conforming to the structure defined

in Algorithm 3 has been suggested in Algorithm 4. In this algorithm listing, top

contains the topology of the ANN, HL contains the weights for the hidden layers of

the ANN, bias contains all the layer biases of the ANN, IL contains the weights for

the input layer of the ANN, chrom contains the real-value encoded chromosome

for an ANN, layers is the number of hidden layers, size is the minimum number

of neurons per hidden layer, and n out contains the number of neurons on the

output layer.

Algorithm 4 ANN Chromosome Decode Algorithm

1: function [top HL bias IL] = anndecode(chrom, layers,size,

n out3)

2: top = chrom(1:layers);

3: chrom(1:layers) = [];

4: IL = chrom(1:size × 2 × size);

5: chrom(1:size × 2 × size) = [];

6: for (i = 1 : layers) do
7: if i == layers then
8: HL{i} = chrom(1:(size × 2) × n out);

9: chrom(1:(size × 2) × n out) = [];

10: else
11: HL{i} = chrom(1:(size × 2)2);

12: chrom(1:(size × 2)2) = [];

13: end if
14: end for
15: for (i = 1 : layers) do
16: bias{i} = chrom(1:size × 2);

17: chrom(1:size × 2) = [];

18: end for
19: bias{layers+ 1} = chrom;

20: top = ceil(top);

3This is near functional MATLAB 2012a code but may be interpreted as pseudo-code.
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6.3 Comparison to Existing Solution

To assess the performance of the optimisation algorithm when applied to this

novel real-world problem, a benchmark must be taken. The performance of the

optimised ANN is compared to previously published data [163], the experimental

methodology used to obtain this data is explained herein.

The radar used in [163] is a novel multi-polarimetric frequency modulated

continuous wave radar operating in the K Band (14-40 GHz). The radar illu-

minates a person using two linear polarisations which are switched. The use of

two illuminating polarisations has been shown to significantly improve detection

rates [163]. The reflected signal is then recorded in four polarisations, which are

co and cross polar to each of the illuminating polarisations. The gain and phase

of the reflected signals are then recorded with respect to the outgoing signal, in

the frequency domain. Once collected the gain and phase information is used

to generate an array of complex numbers that are then time resolved using an

Inverse Fast Fourier Transform (IFFT). Examples of typical radar signals from

the human body with and without concealed weapons are given in Figures 6.3

and 6.4.

The radar signals from the body with and without a concealed weapon vary

with the aspect in which the person and weapon are presented in the illuminating

radar beam. To compensate for this variance many scans must be taken whilst a

person is moving in the beam and an accurate representation of the real operating

conditions are given to the ANN. The large amounts of data obtained in the

collection of training scans makes the problem difficult for the ANN to converge to

a solution that is robust but without over training the ANN. In [163] a Principal
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Figure 6.3: Typical co polarised radar signals from a body alone, a body with
a concealed gun, and finally a body with a concealed knife.

Figure 6.4: Typical cross polarised radar signals from a body alone, a body
with a concealed gun, and finally a body with a concealed knife.
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Component Analysis (PCA) data reduction technique was integrated into the

classification algorithm. The PCA data reduction was applied to the time resolved

radar signals to obtain a set of Eigenvalues and Eigenvectors. The Eigenvalues

were then used to train the ANN to classify the data into two classes, namely

’threat’ and ’non-threat’. A threshold was then applied to the output neuron of

the ANN and an alarm was triggered when the output value became larger than

the threshold.

In [163] the architecture of the ANN is a 3 layer feed-forward network with

as many input neurons as there are significant principal components (typically 5

or 6), the hidden layer has one extra neuron than the input layer and the output

layer has a single neuron. The ANN was trained using a constant gradient de-

scent back-propagation method. The training set was constructed of Eigenvalues

corresponding to 700 multi-polarimetric radar scans. Of these 700 scans, 100

were taken with a body without a concealed weapon and the other 600 scans

with a concealed weapon. There were two different weapons used in the training

set, which were a knife and a gun (300 scans of each). The validation of the ANN

was performed using a dataset with the same number of scans and same distribu-

tion of body with and without a concealed weapon. The validation dataset was

constructed using radar scans, which the ANN had not seen a priori.

6.3.1 Experiment

This section will describe the encoding of the problem for the optimiser, the

optimiser used and its configuration, and the method of performance assessment

used when comparing the existing solution to the proposed solution.
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The problem has been encoded into a real-valued chromosome using the

method described in Section 6.2 with the parameters listed in Table 6.1, the

structure of which has been illustrated in Figure 6.5.

Table 6.1: Parameter configurations used for instantiating the ANN.

Parameter Configuration

Hidden Layers 2

Output Layer Neurons 1

Minimum Hidden Layer Neurons 8

Maximum Hidden Layer Neurons 16

Training Set Size 700

Test Set Size 700

HL1.NEURONS
Variables: 1

HL2.NEURONS
Variables: 1

IL.WEIGHTS
Variables: 128

HL1.WEIGHTS
Variables: 256

HL2.WEIGHTS
Variables: 16

HL1.BIAS
Variables: 16

HL2.BIAS
Variables: 16

OL.BIAS
Variables: 1

Figure 6.5: Encoded chromosome for the two-objective ANN consisting of 2
hidden layers (HL), input layer (IL), 1 neuron on the output layer (OL), and
associated biases, totalling to 435 variables.

The proposed solution uses an implementation of MOEA/D-DRA enabled

with the ability to express Decision Maker (DM) preferences named WZ-MOEA/D-

DRA, the algorithm itself is described and benchmarked in Chapter 5. WZ-

MOEA/D-DRA was selected to allow the optimisation process to search within

a Region of Interest (ROI), which will be above a true positive rate of 0.8 and
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below false positive rate of 0.04. This ROI was selected from the existing solu-

tion’s performance, this will allow the algorithm to optimise toward and possibly

beyond a known benchmark. MOEA/D-DRA specific configurations have been

taken from [93], and those configurations which differ are listed in Table 6.2.

Table 6.2: Parameter configurations used for WZ-MOEA/D-DRA.

Parameter Configuration

µ Population 300

Number of Variables 435

Number of Objectives 2

Niche 60

Maximum Update Number 6

Zthresh 50

Maximum Function Evaluations 500

Region of Interest 0.8, 0.04

The hypervolume indicator described in Section 2.10.1 will be used as the

method of performance assessment, this will be conducted similar to the perfor-

mance assessment in Section 5.4.2, where the ROI is used as the reference point

that is provided to the hypervolume indicator allowing for performance assess-

ment based on how much of the search space within the ROI has been covered.

6.3.2 Results

WZ-MOEA/D-DRA has been used to optimise the classifier parameters for the

classification of concealed weapon detection with two objectives: true positives

and false positives. The final population produced by the optimiser has been

plotted in Figure 6.6, where it can be seen that a number of trade-off solutions

have been found with the ROI, resulting in a Pareto-optimal approximation set.
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When compared to the benchmark plot it can be observed that it is Pareto-

dominated by every candidate solution in the final population, this means that

the optimiser has found a diverse set of solutions which are all an improvement

on the existing solution. The same candidate solutions have also been plotted in

Figure 6.7 without conversion of all objectives for minimisation, this plot is what

was presented to the DM when selection of a successful candidate solution was

required.

Figure 6.6: Population generated by MOEA/D-DRA combined with Weighted
Z-score preference articulation after 500 function evaluations for the two-objective
concealed weapons detection classifier.

The plot in Figure 6.7 shows a number of optimised solutions. One of these

solutions must be selected, by the DM, to be applied in a concealed weapon

detection radar. As can been seen from the distribution of the solutions in Figure

6.7 each solution offers a distinctly different true positive and false positive rate.

This allows the DM to use these solutions in a manner that will give control

over the behaviour of the weapon detector. This will enable the DM to choose a
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Figure 6.7: Population of candidate solutions presented to the DM, for selection
to be made based on expert knowledge.

solution that increases the system’s sensitivity when there is a heightened threat

to security. Equally the false alarm rate could be reduced by choosing another

solution.

The benchmark shown in Figure 6.7 was taken from [163], this solution offers

a true positive rate of 0.8 at a cost in false positive rate of 0.04. Given the re-

quirement for false alarm reduction which was identified as the primary objective

earlier, the solution from Figure 6.7 that was chosen by the DM was the solution

offering a true positive rate of 0.82 and a false positive rate of 0.005. The cho-

sen solution has provided a false alarm reduction of 0.035 at the same time as

increasing the true positive rate by 0.02. To put this into perspective previously

40 people in one thousand would have been wrongly accused of carrying a con-

cealed weapon whereas the number of wrongly accused with the new optimised

solution would be less than one in a thousand. Not only does this reduce the

inconvenience to the security forces and general public, it builds confidence in
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the ability and robustness of the weapon detection system.

6.4 Detection and Classification of Multiple

Types of Threat

A weapon detection system that is capable of classifying a detected threat into

target groups would be an extremely valuable tool to security forces. Such a

system would enable the authorities to react to a detection in a controlled and

proportional manner. The action that must be taken to confront an individual

concealing a threat object depends very much on the threat object itself. An

individual carrying a knife could be dealt with easier than an individual with an

improvised explosive device.

Besides obvious threat objects such as guns and knives, the detection of ob-

jects such as mobile phones is desirable as they can be seen as a threat in the

case of a controlled courtroom (where photographing witnesses and communicat-

ing with witnesses waiting to testify is an issue) where they are banned and when

entering a controlled site.

The extent of the ROI will be determined by the DM based on some pre-

determined criteria, for example the radar may be deployed in an environment

where the client has specified a minimum detection rate and maximum false alarm

rate. It is possible that no solutions may be found within an ROI which has been

confined based on a client’s specifications, in which case the specification would

be deemed beyond the performance of the radar and another solution would be

required.
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As the number of targets of interest increases so does the risk of increasing

the number of conflicting objectives. The extent of which this method can handle

conflicting objectives will be explored in more detail in subsequent publications.

It should be noted that the radar beam is confined to a spot size which is

commensurate in size with the weapons of interest, therefore it is infeasible to

measure more than one weapon in a given location on the body. The authors

suggest that the radar operator would scan the radar beam over the person and

would be able to find multiple weapons concealed on different parts of the body

and then address the situation based on the most severe threat detected.

To investigate whether the developed radar based weapon detection system

is capable of classifying the reflected signal into target groups, two experiments

have been conducted. In the first experiment, radar signals from a body without

a concealed weapon, a body with a concealed knife, and a body with a concealed

gun have been recorded by the radar. In the second experiment, radar signals

from a body without a concealed weapon, a body with a concealed knife, a body

with a concealed gun, and a body with a concealed mobile phone device have

been recorded by the radar.

Again, the radar signals were recorded in the frequency domain with both

amplitude and phase relative to the illuminating beam measured. The amplitude

and phase were used to generate an array of complex numbers that were tempo-

rally resolved using an IFFT, the resulting signal was then reduced using PCA

as described earlier. For the first experiment the training set was constructed of

300 sets of Eigenvalues corresponding to the radar scans, 100 scans of each target

scenario were taken. That is 100 scans from body alone, 100 with a concealed

knife, and 100 with a concealed gun. For the second experiment the training
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set was constructed of 500 sets of Eigenvalues correspond to the radar scans,

and the addition of 100 scans of a body with a concealed mobile phone device.

The validation set was constructed of the same number of scans and the same

distribution of targets. The scans used to construct the validation set had not

been seen by the ANN a priori. The architecture (in terms of the number of

layers and number of neurons on each layer) of the ANN was determined by the

optimisation algorithm and the weights and biases were also determined by the

optimisation algorithm.

To assess the statistical significance of these results the area under the ob-

served Receiver Operating Characteristic (ROC) curve (as observed in [163]) was

used alongside the chosen sample sizes to calculate the standard error.

θ1 = 0.8362

nA = 200

nN = 100

(6.4)

θ1 is the area under the curve for the observed ROC, nA is the number of

scans with a weapon, and nN is the number of scans without a weapon. The

standard error is calculated as follows:

SE =

√
θ1(1− θ1) + (nA − 1)(Q1 − θ2

1) + (nN − 1)(Q2 − θ2
1)

nAnN
(6.5)

Where Q1 and Q2 are calculated using the following equations:

Q1 =
θ1

2− θ1

(6.6)

Q2 =
2θ2

1

1 + θ1

(6.7)
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The standard error was calculated to be 0.0225, this shows a high level of

certainty that the results are statistically significant. It can be shown through

testing a null hypothesis (that the results happened by chance) that the sample

size chosen gives a high level of confidence in the significance of these results. To

do this the area under the curve is set at 0.5, this represents a special case of a

ROC which is by chance and has no useful classification abilities. The difference

between the area under the observed ROC and the area under the curve for the

null hypothesis is divided by the standard error to give a z-score. A z-score of

1.645 relates to a 5% one-sided test of significance and a 95% power.

z =
θ1 − θ2

SE
(6.8)

θ2 = 0.5 (6.9)

The value of the z-score calculated for this test was 14.9, this shows that the

sample sizes chosen were much larger than required and thus result in a high level

of statistical significance.

6.4.1 Experiment

This section will describe the encoding of the problems for the optimiser, the

optimisers used and their configuration, and the method of performance assess-

ment used when comparing the final solutions. The problems have been encoded

into real-valued chromosomes using the method described in Section 6.2 with the

parameters listed in Table 6.3, the structures of which have been illustrated in

Figures 6.8 and 6.9.
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HL1.NEURONS
Variables: 1

HL2.NEURONS
Variables: 1

HL3.NEURONS
Variables: 1

IL.WEIGHTS
Variables: 128

HL1.WEIGHTS
Variables: 256

HL2.WEIGHTS
Variables: 256

HL3.WEIGHTS
Variables: 48

HL1.BIAS
Variables: 16

HL2.BIAS
Variables: 16

HL3.BIAS
Variables: 16

OL.BIAS
Variables: 3

Figure 6.8: Encoded chromosome for the five-objective ANN consisting of 3
hidden layers (HL), input layer (IL), 3 neurons on the output layer (OL), and
associated biases, totalling to 742 variables.

HL1.NEURONS
Variables: 1

HL2.NEURONS
Variables: 1

HL3.NEURONS
Variables: 1

HL4.NEURONS
Variables: 1

IL.WEIGHTS
Variables: 128

HL1.WEIGHTS
Variables: 256

HL2.WEIGHTS
Variables: 256

HL3.WEIGHTS
Variables: 256

HL4.WEIGHTS
Variables: 64

HL1.BIAS
Variables: 16

HL2.BIAS
Variables: 16

HL3.BIAS
Variables: 16

HL4.BIAS
Variables: 16

OL.BIAS
Variables: 4

Figure 6.9: Encoded chromosome for the seven-objective ANN consisting of 4
hidden layers (HL), input layer (IL), 4 neurons on the output layer (OL), and
associated biases, totalling to 1032 variables.
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Table 6.3: Parameter configurations used for instantiating the ANN.

Parameter 5D Configuration 7D Configuration

Maximum Hidden Layers 3 4

Output Layer Neurons 3 4

Minimum Hidden Layer Neurons 8 8

Maximum Hidden Layer Neurons 16 16

Training Set Size 300 400

Test Set Size 300 400

The proposed solution in the first experiment uses an implementation of

MOEA/D-DRA enabled with the ability to express DM preferences named WZ-

MOEA/D-DRA, the algorithm itself is described and benchmarked in Chapter

5. WZ-MOEA/D-DRA was selected to allow the optimisation process to search

within a ROI with the preferences defined as:

• True positive rate on classification of bodies at or above 95%.

• True positive rate on classification of guns at or above 60%.

• True positive rate on classification of knives at or above 50%.

• False positive rate on classification of guns at or below 5%.

• False positive rate on classification of knives at or below 5%.

This ROI was selected by the DM based on the performance of the two-

objective results, this will allow the algorithm to optimise toward and possibly

beyond an unknown goal. The MOEA/D-DRA specific configurations have been

taken from [93], and those configurations which differ are listed in Table 6.4.
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Table 6.4: Parameter configurations used for WZ-MOEA/D-DRA.

Parameter Configuration

µ Population 100

Number of Variables 742

Number of Objectives 5

Niche 30

Maximum Update Number 3

Zthresh 50

Maximum Function Evaluations 1000

Region of Interest 0.05, 0.4, 0.5, 0.05, 0.05

The proposed solution in the second experiment uses an implementation of

CMA-PAES-II enabled with the ability to express DM preferences named WZ-

CMA-PAES. The algorithm itself is described and benchmarked in Chapters 4

and 5 where it is shown to perform well on problems containing many objectives,

this is a requirement for this problem as it consists of seven problem objectives.

WZ-CMA-PAES was selected to allow the optimisation process to search within

a ROI with the preferences defined as:

• True positive rate on classification of bodies at or above 95%.

• True positive rate on classification of guns at or above 60%.

• True positive rate on classification of knives at or above 50%.

• True positive rate on classification of mobile phones at or above 50%.

• False positive rate on classification of guns at or below 5%.

• False positive rate on classification of knives at or below 5%.
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• False positive rate on classification of mobile phones at or below 5%.

This ROI was selected by the DM based on the performance of the two-

objective results, this will allow the algorithm to optimise toward and possibly

beyond an unknown goal. The MOEA/D-DRA specific configurations have been

taken from [93], and those configurations which differ are listed in Table 6.4.

Additionally, this problem regarding concealed weapon detection is in the

continuous domain, meaning that WZ-CMA-PAES is advantageous as it uses

Covariance Matrix Adaptation (CMA) from the Covariance Matrix Adaptation

Evolutionary Strategy (CMA-ES) for its variation. This is because it has been

shown in [56] that the No Free Lunch (NFL) theorem does not hold in contin-

uous search domains, meaning CMA-ES which performs extremely well in the

continuous domain has an advantage over other algorithms. The configurations

for WZ-CMA-PAES have been listed in Table 6.5.

Table 6.5: Parameter configurations used for WZ-CMA-PAES.

Parameter Configuration

Archive Capacity 50

Grid Divisions 3

µ Population 10

Θmax 50

Θmin 10

Number of Variables 1032

Number of Objectives 7

Zthresh 50

Maximum Function Evaluations 1000

Region of Interest 0.05, 0.4, 0.5, 0.5, 0.05, 0.05, 0.05
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The hypervolume indicator described in Section 2.10.1 will be used as the

method of performance assessment, this will be conducted similar to the perfor-

mance assessment in Section 5.4.2 where the ROI is used as the reference point

that is provided to the hypervolume indicator allowing performance assessment

based on how much of the search space within the ROI has been covered.

The contributing hypervolume indicator described in Section 2.5.2 is used to

reduce the size of the final approximation set produced by the optimiser to a size

that will not overwhelm and confuse the DM.
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6.4.2 Results

This section is divided into two parts. The first part presents and discusses

the results for the five-objective problem which concerns the optimisation of a

classifier aiming to categorise signals into bodies, guns, and knives. The second

part presents and discusses the results for the seven-objective problem which

concerns the optimisation of a classifier aiming to categorise signals into bodies,

guns, knives, and mobile phones.

Five-Objective Problem

The population of solutions from the WZ-MOEA/D-DRA optimisation results are

plotted in Figure 6.10, this plot shows the solutions for the five-objective problem.

The five objectives are split into true positives for the body, gun, and knife, and

the false positives for the gun and knife. In this problem the reduction of both

the false positive rates are the two main objectives, these should be weighted

equally. The remaining objectives are the maximization of the true positive rates

for each target included in the training and validation sets. Also presented is a

colour-map, Figure 6.11, this was used to aid the DM in choosing a solution from

the population. In each of the presented plots there are five candidate solutions,

one of which should be chosen by the DM to be implemented in the weapon

detection system.

The colour-map was found to be useful tool in the selection of a solution from

the final candidate population. When a population of 5 solutions was presented

to the DM in the minimisation format presented in Figure 6.10, it was difficult to

visualise the different trade-offs between candidate solutions. The visualisation

of the trade-off between solutions is much clearer in the colour-map in Figure



6.4. Detection and Classification of Multiple Types of Threat 235

Body TP Gun TP Knife TP Gun FP Knife FP
0

0.05

0.1

0.15

0.2
C

oo
rd

in
at

e 
V

al
ue

Pareto front

 

 

Figure 6.10: Parallel-coordinates plot illustrating objective value results for
five-objective threat detection.
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Figure 6.11: Colour-map illustrating objective value results for five-objective
threat detection, for use by the DM.
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6.11. Figure 6.11 shows that all solutions provide a means to reliably classify the

signals into target classes which are body, gun, and knife; where the true positive

rates are high and the false positive rates are low for all target classes. This can

also be seen in the minimisation format presented in Figure 6.10. In Figure 6.11

it is clear to see that there are subtle differences in the trade-offs between the five

objectives in the final candidate population. As the false positive rates for both

target classes are effectively equal for all candidate solutions, the solution taken

by the DM was chosen as the solution with near equal true positive rate for all

targets. This solution is candidate solution number 5 in Figure 6.11.

Seven-Objective Problem

The population of solutions from the WZ-CMA-PAES optimisation are plotted

in Figure 6.12, this plot shows the solutions for the seven-objective problem.

The seven objectives are split into true positives for the body, gun, knife, mobile

phone and the false positives for the gun, knife, and mobile. In this problem

the reduction of false positive rates are the three main objectives, these should

be weighted equally. The remaining objectives are the maximization of the true

positive rates for each target included in the training and validation sets. Also

presented is a colour-map, Figure 6.13, this was used to aid the DM in choosing a

solution from the population. In each of the presented plots there are 7 candidate

solutions, one of which should be chosen by the DM to be implemented in the

weapon detection system.

Figure 6.13 shows that all solutions provide a means to reliably classify the

signals into target classes which are body, gun, knife, and mobile phone; where

the true positive rates are high and the false positive rates are low for all target
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Figure 6.12: Parallel-coordinates plot illustrating objective value results for
seven-objective threat detection.
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Figure 6.13: Colour-map illustrating objective value results for seven-objective
threat detection, for use by the DM.

classes. This can also be seen in the minimisation format presented in Figure

6.12. In Figure 6.13 it is clear to see that there are subtle differences in the

trade-offs between the seven objectives in the final candidate population. As

the false positive rates for the three target classes are effectively equal for all

candidate solutions, the solution taken by the DM was chosen as the solution

with near equal true positive rate for all targets. This solution is candidate

solution number 2 in Figure 6.13.
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6.4.3 Conclusion

In this section, preference driven Evolutionary Multi-Objective Optimisation

(EMO) has been used to design classifiers that are capable of classifying sig-

nals into many categories of threat. These classifiers were presented to the DM

in the form of a colour-map in order for the preferred solution to be selected using

expert knowledge.

The method used for encoding the problem into a chromosome proved feasible

and applicable to both the five-objective and seven-objective problem, and both

WZ-MOEA/D-DRA and WZ-CMA-PAES were able to produce solutions that

satisfied the DM’s ROI within the function evaluation budget defined by the

experiment.

6.5 Conclusion

In this chapter two preference driven EMO (WZ-MOEA/D-DRA and WZ-CMA-

PAES) have successfully optimised the design of three signal classifiers used for

concealed weapon detection. By using preference articulation, the final approx-

imation set is more pertinent and the computational cost of the optimisation

process has been reduced by requiring less function evaluations and searching

within an expressed ROI, this has been shown in Chapter 5.

The application of the WZ-MOEA/D-DRA and WZ-CMA-PAES optimisa-

tion algorithms to the training and optimisation of the topology of an ANN

intended for use in concealed weapon detection has been presented. The perfor-

mance of the optimised ANN has been benchmarked against previously published

data, in which an ANN had been trained using back-propagation and its topology
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determined by trial-and-error. The optimisation has been shown to provide the

DM with a number of solutions (trained ANNs) that all have independent trade-

offs which are equally distributed across the Pareto-optimal front. The DM then

selected an optimised solution which provided a reduction in false alarm rate and

an increase in detection rate.

This evolutionary method showed promising results in Section 6.3 where the

proposed solution was compared to an existing published solution. The compari-

son resulted in the evolutionary method producing better solutions and justifying

further experiments in Section 6.4, where a more difficult classifier which is able

to classify signals into multiple threat categories was designed and tested with

results satisfying the DM’s preferences.

Although the results have shown that the weapon detection radar can achieve

high detection rates with very little cost in terms of false alarm rates, it should

be noted that these values only apply in the scenario used to collect the data

within this thesis. It is anticipated that the system performance will fall away

and fewer detections will be made in other scenarios, for example if the person

being screened is non-co-operative then the operator may be unable to make a

full scan of the person and therefore a concealed weapon may go undetected. The

application of radar to weapon detection is novel and therefore all operational

procedures and system performance have not yet been evaluated, this will be

subject to further research.

Overall the evolutionary optimisation of classifiers used for concealed weapon

detection showed an increase in performance when compared to the existing so-

lution, and proves a feasible method of optimising topology, weights and biases of

ANNs. The use of an EMO algorithm for the design of such a classifier will save
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time that would be spent using a trial-and-error manual hill-climbing method,

and the marginal performance gains that an evolutionary method can provide

may end up detecting more threats to security.



Chapter 7

Conclusion

In this thesis the incorporation of Decision Maker (DM) preferences into Evolu-

tionary Multi-Objective Optimisation (EMO) search methods has been explored.

This has been achieved through the development and statistically verified bench-

marking of an extensible modular EMO framework, the Covariance Matrix Adap-

tation Pareto Archived Evolution Strategy (CMA-PAES), with the incorporation

of the novel Weighted Z-score (WZ) preference articulation operator. This WZ

driven algorithm (WZ-CMA-PAES) is then benchmarked against the WZ driven

Multi-Objective Evolutionary Algorithm Based on Decomposition with Dynam-

ical Resource Allocation (MOEA/D-DRA) variant (WZ-MOEA/D-DRA) before

it is applied to solving a real-world concealed weapon detection optimisation

problem.

This chapter is structured with an overview of the main findings in Section 7.1,

a summary of the contributions of this research in Section 7.2, and suggestions

of future research directions in Section 7.3.

241
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7.1 Main Findings

A clear outline of the main findings in this thesis is presented in the following:

• Development of CMA-PAES, a fast converging EMO algorithm.

• Development of m-CMA-PAES, an EMO algorithm tailored for problems

with complex Pareto sets.

• Development of CMA-PAES-II, an algorithm specifically tailored towards

many-objective problems.

• A new method of preference articulation (the Weighted Z-score operator),

to involve the DM in any EMO process.

• Successful optimisation of a classifier used for concealed weapon detection,

which outperforms an existing and published classifier.

Through these findings, it has been shown that:

• Using an AGA in place of the contributing hypervolume indicator can pro-

duce comparable results to MO-CMA-ES.

• Investing a percentage of the function evaluation budget in dominated so-

lutions can prevent discarding potentially valuable genetic material.

• CMA can be used in many-objective spaces and can outperform state-of-

the-art approaches.

• The contributing hypervolume indicator can be feasibly incorporated into

many-objective optimisation, when used as a narrow-phase sorting criterion.
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• Approaches such as IBC can keep the evolutionary process on track and

improve the indicator quality of the final approximation set.

• Methods for incorporating decision maker preferences do not have to be

dependant on existing search operators.

• Methods for incorporating decision maker preferences may appear to per-

form well on multiple objectives, for example 2 or 3, but unexpected opti-

misation difficulties may occur when moving to many-objective space.

• Optimisers with and without a non-dominated approach can easily incor-

porate the same portable preference articulation operator.

• the Hypervolume Indicator can be used as a performance metric for assess-

ing an optimisers approximation set in regards to its pertinence. This is

achieved by using the goals or preferences as the reference point.

• EMO can be applied to the field of concealed weapon detection and produce

better performing solutions to a state-of-the-art and current problem, which

determines peoples safety.

• Preference driven many-objective optimisers can solve problems which were

before seen as too difficult. For example the parameter settings and topol-

ogy for a multi-output neuron ANN.

• Preference driven many-objective optimisers can produce specialist classi-

fiers by focussing on regions of interest and exploring classification trade-

offs.



244 Chapter 7. Conclusion

7.2 Summary of Contributions

This thesis entitled “Preference Focussed Many-Objective Evolutionary Compu-

tation” aims to investigate the incorporation of DM preferences into EMO search

methods in order to solve real-world problems, so as to improve the quality of

the final solutions produced by the optimisation process. In order to achieve this

aim, a number of research objectives were defined and accomplished throughout

the duration of this research.

A critical review of the field of evolutionary computation with particular em-

phasis on using evolutionary computation methods to solve multi-objective prob-

lems was conducted in Chapter 2. The review of the literature identified Covari-

ance Matrix Adaptation (CMA) as a powerful technique for the variation of solu-

tions, which had been originally implemented within a single-objective evolution

strategy named the Covariance Matrix Adaptation Evolutionary Strategy (CMA-

ES). The multi-objective implementation of CMA-ES, named the Multi-Objective

Covariance Matrix Adaptation Evolution Strategy (MO-CMA-ES), unfortunately

offered poor performance in terms of computational efficiency on problems con-

sisting of four or more objectives. The cause of this computational inefficiency

on many-objective problems was identified to be a result of the algorithm’s com-

plete reliance on the contributing hypervolume indicator (described in Section

2.5.2) as a sorting criterion during the selection process. During the sorting

for selection stage of MO-CMA-ES, the population at the current generation is

sorted into ranks using the non-dominated sorting algorithm, and then sorted at

a second level using the contributing hypervolume indicator. The computational

effort of this scheme increases exponentially throughout the optimisation process,
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as the number of dominated solutions in the population reduces, and only non-

dominated solutions are produced. This results in all solutions in the population

being assigned the same rank and therefore all solutions being subjected to the

contributing hypervolume indicator at once.

The computationally lightweight EMO algorithm, named the Pareto Archived

Evolution Strategy (PAES), appeared to offer a simple structure, intuitive design,

and computationally efficient method of diversity preservation through the adap-

tive grid technique. The attractive simplicity and effectiveness of PAES, and the

powerful variation and convergence offered by CMA set the premise for developing

a CMA driven EMO algorithm capable of feasibly optimising problems consist-

ing of many objectives. Through the EMO literature a number of performance

assessment methods were also identified, allowing the performance comparison of

EMO algorithms and statistical verification of their results.

Chapter 3 concerns the development of a new EMO algorithm, named CMA-

PAES. The design of the algorithm consists of a PAES-like structure, adaptive

grid inspired diversity preservation method, and CMA driven variation. The

ambition of this design was to exploit the powerful CMA variation technique in a

multi-objective implementation, without the infeasibility of optimising problems

consisting of many objectives which MO-CMA-ES suffers from. CMA-PAES is

shown to perform comparably with MO-CMA-ES (and to outperform NSGA-

II and PAES in [15]) on the two-objective ZDT synthetic test suite. A multi-

tier variant of CMA-PAES, named the Multi-tier Covariance Matrix Adaptation

Pareto Archived Evolution Strategy (m-CMA-PAES), is developed which employs

the contributing hypervolume indicator at grid-level and is shown to outperform

MO-CMA-ES on all but 3 of 22 synthetic test functions from the ZDT, DTLZ, and
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CEC09 synthetic test suites. m-CMA-PAES outperforms MO-CMA-ES on these

synthetic test functions in the presence of their intended optimisation difficulties

and complex Pareto-optimal sets on up to three objectives. No more than three

objectives were considered due to the infeasibility of MO-CMA-ES on problems

consisting of many objectives.

With the confidence that CMA-PAES is an EMO algorithm comparable to

MO-CMA-ES in performance but without the infeasibility of optimisation in the

presence of many objectives (due to the reliance on population-wide subjection to

the contribution hypervolume indicator), Chapter 4 aims to assess CMA-PAES

on synthetic test problems consisting of many objectives. Design elements from

CMA-PAES and m-CMA-PAES were used to implement a new EMO algorithm,

named the Covariance Matrix Adaptation Pareto Archived Evolution Strategy

II (CMA-PAES-II), which is enhanced with new features intended for robustness

on many-objective optimisation problems, such as Indicator Based Conforma-

tion (IBC), sigma restart, and an improved Adaptive Grid Algorithm (AGA).

CMA-PAES-II is shown to perform comparably to MOEA/D-DRA on the two-

objective configuration of the scalable WFG synthetic test suite, and is shown

to significantly outperform MOEA/D-DRA on the three-objective, five-objective,

seven-objective, and ten-objective configurations of the same test suite.

A novel method of preference articulation has been developed, in order to

improve the pertinence of an approximation set produced by an EMO algorithm.

This novel method increases the rate of an EMO algorithm’s convergence by

directing the search towards a Region of Interest (ROI) expressed by a DM,

without wasting computational effort exploring regions of undesirable objective

space. Chapter 5 introduces the two-phase WZ preference articulation operator,
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a portable operator capable of focussing the optimisation process toward a ROI

and producing pertinent approximation sets using preferences expressed by a

DM. The WZ preference articulation operator has been incorporated into CMA-

PAES-II and MOEA/D-DRA and has shown in Chapter 5 to provide significant

performance enhancement in the optimisation process in the presence of DM

preferences. The results indicate WZ-CMA-PAES provides overall better perfor-

mance, suggesting it is more suited to the incorporation of portable operators

due to its extensible design and many-objective optimisation enhancements.

The promising results from the performance assessment and statistical anal-

ysis of these algorithms, suggest that CMA-PAES-II and the WZ preference ar-

ticulation operator offer robust preference driven many-objective optimisation

on problems containing a range of optimisation difficulties. In Chapter 6, WZ-

CMA-PAES is applied to an optimisation problem regarding the optimisation of

classifiers intended for concealed weapon detection. The results show that WZ-

CMA-PAES produced an approximation set of non-dominated solutions which

outperform the previously published [163] ANN solution. WZ-CMA-PAES is

then used to optimise many-objective concealed weapon detection problems and

successfully produces classifiers which are able to categorise radar signals into

categories of threat (e.g. gun, knife, explosive), rather than simply threat or

non-threat. The success of this application suggests that WZ-CMA-PAES is a

preference driven EMO algorithm capable of the optimisation of real-world prob-

lems, and also demonstrates that security forces can benefit from the optimisation

of their systems in order to increase the safety and security of the area in which

it is implemented.
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7.3 Recommendations for Future Research

There are many opportunities for future research directions in the field of Evolu-

tionary Computation, and its application to concealed weapon detection. Some

research directions which are relevant to this thesis are listed in the following:

• There is an opportunity for further work in using the WZ preference articu-

lation operator in combination with an offline archive to explore the effects

of changing preferences progressively during the optimisation process and

using the offline archive to search for solutions matching the new prefer-

ences, to identify whether this type of combination would speed up search

in the presence of shifting preferences, without the need for re-starts.

• There is potential for incorporating the WZ preference articulation operator

into many state of the art EMO algorithms in a performance comparison

study in order to identify which algorithm is best suited for preference

articulation and what mode of incorporation is the most beneficial.

• There exists a requirement for the development of a multi-objective test

suite targeting the performance assessment of the ability for an optimiser

to incorporate DM preferences, this would also provide a standard for future

comparison and assessment of preference driven optimisers.

• Although the results have shown that the weapon detection radar can

achieve high detection rates with very little cost in terms of false alarm

rates, it should be noted that these values only apply in the scenario used

to collect the data published within in this thesis. It is anticipated that the

system performance will fall away and fewer detections will be made in other
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scenarios, for example if the person being screened is non-co-operative then

the operator may be unable to make a full scan of the person and there-

fore a concealed weapon may go undetected. The application of radar to

weapon detection is novel and therefore all operational procedures and sys-

tem performance have not yet been evaluated, this will be subject to further

research.

• The optimisation of classifiers for concealed weapon detection in Chapter 6

is a novel application, further work is recommended to explore the applica-

tion of preference focussed EMO in the real-time execution of a concealed

weapon detection security system. The premise of the recommendation is

that the WZ preference articulation operator can be incorporated as a pro-

gressive preference articulation method, and with every radar signal that is

scanned by the concealed weapon detection system, the training, test, and

verification sets can be expanded upon. This will create a change in the

calculation of the objective function, therefore allowing for the real-time

evolution of a classifier for concealed weapon detection. A real-time EMO

for the optimisation of a classifier for concealed weapon detection, with the

ability to change preferences of the system in real-time (e.g. assign greater

preference in lower false alarm rates) is a challenging and novel research

direction.

• The Indicator Based Conformation mechanism presented in Section 4.2

shows promising results in preventing CMA-PAES-II from succumbing to

local-optima or “stagnating” during the optimisation process. There is an

opportunity for the exploration of the incorporation of the IBC mechanism
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into other EMO algorithms and the use of other indicators in the mecha-

nism.
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A.1 MO-CMA-ES

The algorithm pseudo-code for MO-CMA-ES [88].

Algorithm 5 MO-CMA-ES algorithm pseudo-code

1: g ← 0
2: initialize parent population Q0

3: while termination criteria not met do
4: for k = 1, ..., λ do
5: ik ← k;

6: a
′ (g+1)

k ← ai
(g)
k

7: x
′ (g+1)

k ∼ xi
(g)
k + σi

(g)
k N

(
0, Ci

(g)
k

)
;

8: Q(g) ← Q(g) ∪
{
a
′ (g+1)

k

}
;

9: end for
10: for k = 1, ..., λ do

11: p̄′
(g+1)

succ,k ← (1− cp)p̄′
(g+1)

succ,k + cpsuccQ(g)

(
a

(g)
k , a

′ (g+1)

k

)
;

12: σ
′ (g+1)

k ← σ
′ (g+1)

k exp

(
1
d

p̄′
(g+1)

succ,k−p
target
succ

1−ptargetsucc

)
;

13: if p̄′
(g+1)

succ,k < pthresh then

14: p
′ (g+1)

c,k ← (1− cc)p
′ (g+1)

c,k +
√
cc(2− cc)

x
′ (g+1)

k −xi
(g)
k

σ′
(g)
k

;

15: C
′ (g+1)

k ← (1− ccov)C
′ (g+1)

k + ccovp
′ (g+1)

c,k p
′ (g+1)T

c,k

16: else
17: p

′ (g+1)

c,k ← (1− cc)p
′ (g+1)

c,k ;

18: C
′ (g+1)

k ← (1 − ccov)C
′ (g+1)

k +

ccov

(
p
′ (g+1)

c,k p
′ (g+1)T

c,k + cc(2− cc)C
′ (g+1)

k

)
19: end if
20: p̄(g)ik ← (1− cp)p̄(g)ik + cpsuccQ(g)

(
a

(g)
ik
, a
′ (g+1)

ik

)
;

21: σi
(g)
k ← σi

(g)
k exp

(
1
d

p̄
(g)
succ,ik

−ptargetsucc

1−ptargetsucc

)
;

22: end for
23: g ← g + 1;

24: Q(g) ←
{
Q

(g−1)
≺:i |1 ≤ i ≤ µ

}
;

25: end while
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A.2 Weighted Z-score Operator

The algorithm pseudo-code describing the WZ preference articulation operator

proposed in [164].

Algorithm 6 Weighted Z-score pseudo-code

1: nSolutionsSatisfyObjectives =

PopulationObjectives <= RegionOfInterest

2: for i = 1 : nObjectives do
3: WeightedZscore(i) = AbsZscore(PopulationObjectives(i),

RegionOfInterest(i))

4: if nSolutionsSatisfyObjectives(i) == 0 then
5: WeightedZscore(i) = WeightedZscore(i) × (1 - 1 ×

nObjectives)

6: end if
7: end for
8: for i = 1 : nSolutions do
9: SummedWeightedZScore = sum(WeightedZscore(i))

10: end for
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Algorithms not considered

B.1 NSGA-III

The Nondominated Sorting Genetic Algorithm III (NSGA-III) is a multi-objective

algorithm which builds upon the popular Nondominated Sorting Genetic Algo-

rithm II (NSGA-II) framework in order to tackle many-objective problems.

NSGA-III uses structured weights, which the authors refer to as “reference-

points”, in order to achieve the diversity characteristic throughout the optimi-

sation process. This approach is similar to the approach taken in the Multi-

Objective Evolutionary Algorithm Based on Decomposition (MOEA/D), such

that both NSGA-III and MOEA/D can be initialised with the same set of weights,

and results in a pre-defined guided mechanism to achieve diversity based on the

distribution and structure of these weights. Another feature of NSGA-III is the

use of niching in order to achieve efficient recombination, without this feature

two distant parents are likely to produce offspring which are also distant from

the parents.

The EMO algorithm is proposed in [55], and although the authors suggest

“algorithms must be tested on other more challenging problems than the usual

279
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normalized test problems such as DTLZ problems”, NSGA-III is compared to

MOEA/D on a limited set of test functions: DTLZ1, DTLZ2, DTLZ3, DTLZ4,

WFG6, WFG7. The sample size used for this comparison is not proven to be suf-

ficient or greater than a sample size of one, and there is no statistical verification

to indicate the significance of the results obtained.

NSGA-III also aims to allow the incorporation of preference information, how-

ever, the incorporation of preferences is implemented by simply providing differ-

ent weights or “aspiration-points” when initialising the algorithm. This approach

is not user-friendly, as there is no way for a decision maker to provide a goal or

“reference-points”, they must instead design a structure of weights which are

distributed to reflect the preferences.

The NSGA-III pseudo-code has been listed in Algorithm 7, however, there

is currently no complete and fully functioning first-party implementation of the

NSGA-III algorithm available, and the available third-party implementation does

not function on problems consisting of more than three problem objectives.

For these reasons, NSGA-III has not been considered for comparison in this

thesis.
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Algorithm 7 Generation t of NSGA-III algorithm pseudo-code

1: Input: H structured reference points ZS or supplied aspiration points Za,
parent population P t.

2: Output: Pt+1

3: St = Φ, i = 1
4: Qt = Recombination+Mutation(Pt)
5: Rt = Pt ∪Qt

6: (F1, F2, . . . ) = Non-dominated sort(Rt)
7: do
8: St = St ∪ Fi
9: i = i+ 1

10: while |St| ≥ N Last front to be included: Fl = Fi
11: if |St| = N then
12: Pt+1 = St, break
13: else
14: Pt+1 = ∪l−1

j=1Fj
15: Points to be chosen from Fl :: K = N − |Pt+1|
16: Normalise objectives and create reference set Zr:

Normalise(fn, St, Z
r, Zs, Za)

17: Associate each member s of St with a reference point: [π(s), d(s)] =
Associate(St, Z

r).
18: Compute niche count of reference point j ∈ Zr: ρj =∑

S ∈ St/Fl((π(s) = j)?1 : 0)
19: Choose K members one at a time from Fl to construct Pt+1:

Niching(K, ρj, π, d, Z
r, Fl, Pt+1)

20: end if
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B.2 DEMO and DEMOwSA

The Differential Evolution for Multi-objective Optimisation (DEMO) is an Evo-

lutionary Multi-Objective Optimisation (EMO) algorithm which is based around

differential evolution, it has been extended in Differential Evolution for Multi-

objective Optimisation with Self Adaptation (DEMOwSA) to include self-adaptation

which was inspired by the self-adaptation in Evolution Strategies (ES).

DEMO builds upon differential evolution which is a simple but powerful Evo-

lutionary Algorithm (EA) with many successful applications. DEMO aims to

combine the advantages provided by differential evolution with mechanisms of

Pareto-based ranking and crowding distance for sorting.

DEMO is introduced and benchmarked on the ZDT synthetic test suite in

[95] in three variants:

• DEMO/parent, immediately replaces a parent solution with the candi-

date solution that dominates it. Uses non-dominated sorting and crowding

distance metric.

• DEMO/closest/dec, works the same way as DEMO/parent, with an ex-

ception, such that a candidate solution replaces the most similar solution

in the decision space if it dominates it.

• DEMO/closest/obj, works the same way as DEMO/closest/dec, except

candidate solutions are compared in the objective space rather than the

decision space.

The authors conclude that DEMO/closest/dec and DEMO/closest/obj are

too computationally expensive and do not offer any important advantage over
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DEMO/parent, and therefore recommend the DEMO/parent variant be used in

future experiments.

The DEMO pseudo-code has been listed in Algorithm 8

Algorithm 8 DEMO algorithm pseudo-code

1: Evaluate initial population P of random individuals.
2: while termination criteria not met do
3: for each individual Pi(i = 1, . . . , popSize) from P do
4: Create candidate C from parent Pi
5: Evaluate candidate
6: if C > Pi then
7: Pi ← C
8: else if C < Pi then
9: discard C

10: else
11: insert C into P .
12: end if
13: end for
14: if size(P ) > popSize then
15: truncate(P )
16: end if
17: Randomly enumerate the individuals in P .
18: end while

DEMOwSA is introduced in [146], and is benchmarked on a number of syn-

thetic test functions including test functions from the ZDT and WFG synthetic

test suites.

DEMO and DEMOwSA are not focussed on many-objective optimisation,

and depend on non-dominated sorting and the crowded comparison metric which

does not scale feasibly for many-objective problems. They also do not offer a

comparison to any other state-of-the-art EMO algorithm as a benchmark of their

performance.
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For these reasons, DEMO and DEMOwSA have not been considered for com-

parison in this thesis. However, MOEA/D which also uses differential evolution

during the optimisation process has been considered for comparison, as it is a

competition winning and thoroughly benchmarked state-of-the-art algorithm.


