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     ABSTRACT 

The PAX3 gene as a member of the paired homeodomain family of transcription factors 

plays a crucial role during embryonal development by regulating the early development 

of neural structures, derivatives of the neural crest and skeletal muscles.  Following 

embryonal development, the PAX3 expression is switched off.  Mutations in the PAX3 

gene are commonly associated with Waardenburg’s syndrome and in Craniofacial-hand 

syndrome.  Aberrant re-expression of PAX3 after embryogenesis plays a key role in the 

onset, growth, survival and progression of rhabdomyosarcoma, melanoma and 

neuroblastoma. Alternative splicing of PAX3 results in seven transcript variants (PAX3a, 

PAX3b, PAX3c, PAX3d, PAX3e, PAX3g and PAX3h), the interactions of which with 

other downstream targets, make it difficult for manipulation and the development of 

potent chemotherapeutic regimens to effectively treat malignant tumours including 

rhabdomyosarcoma, melanoma and neuroblastoma which have unfavourable prognostic 

outcomes.   

 

This research was aimed at down-regulating PAX3 gene expression in human 

rhabdomyosarcoma and melanoma cell lines, subsequently identifying the downstream 

target genes of PAX3 and determining the effects on cell growth and survival.  The 

expression of PAX3 in human rhabdomyosarcoma and human melanoma cell lines was 

significantly down-regulated using novel pre-designed PAX3 small interference RNA 

molecules, at a final concentration of 0.5µM in an in vitro transient transfection.  The 

three prime Affymetrix microarray analyses showed more than a four-fold and a two-

fold down-regulation of PAX3 gene expression in the human JR1 embryonal 

rhabdomyosarcoma and RH30 alveolar rhabdomyosarcoma cell lines respectively, 

whilst in the human A375 melanoma cell line, over an eight-fold down-regulation of 

PAX3 expression was demonstrated relative to negative control cells.  A quantitative 

RT-PCR analysis, which was used in validating results of the Affymetrix array, 

confirmed the knockdown of PAX3 in both human rhabdomyosarcoma and melanoma 

cell lines.  A semi-quantitative RT-PCR analysis of gene expression revealed at least 

90% down-regulation of all PAX3 variant expression in JR1, RH30 and A375 cell lines 

relative to negative controls cells.  Higher levels of gene silencing were observed in the 

JR1 cell line than in either RH30 or A375 cell lines.  Western blotting analysis, which 
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quantified the level of PAX3 gene knockdown, indicated a 98%, 92% and 90% reduction 

of PAX3 protein in JR1, RH30 and A375 cell lines respectively. This down-regulation of 

PAX3 expression significantly inhibited tumour cell growth, proliferation, migration, 

adhesion, invasion, and induced apoptosis of JR1, RH30 and A375 cell lines in vitro. 

These results were explainable by the particular genes that were up- or down-regulated 

by PAX3, which were correlated with the microarray results and the quantitative RT-

PCR experiments.  The expression of PAX3 gene has been previously demonstrated to 

promote tumourigenesis of rhabdomyosarcoma and melanoma. Results of this present 

study suggest that down-regulation of PAX3 might inhibit the progression of 

rhabdomyosarcoma and melanoma and PAX3 thus could be a suitable target for the 

development of potent chemotherapy.  

 

Silencing of PAX3 in these cell lines resulted in the alteration of expression of a host of 

downstream target genes, which PAX3 uses in the modulation of cellular activities, 

including cell growth, proliferation, migration, adhesion, metastatic invasion and 

apoptosis of the rhabdomyosarcoma and melanoma cell lines. 
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1.1. Overview of Cancer 

 

Human physiological activity depends on the normal function of cells, which are the 

building blocks and functional units of life in all living organisms.  At the cellular 

molecular level, genes contained in the DNA of cells regulate and control normal 

cellular function including cell cycle, proliferation, migration, adhesion, cell-cell 

communication and apoptosis which govern normal organ physiology (Marchetti et al., 

2012).  Gene activities in living organisms are often determined by investigating gene 

expression, which represent the transcription of DNA into RNA and translation of RNA 

into protein (Hebert and Molinari, 2007).  Inappropriate gene expression patterns, 

resulting from malformation of structural components of DNA motifs, may lead to 

mutational abnormalities and sometimes cancer with impairment of cell function (Damm 

et al., 2012; Michael et al., 2012).  

 

 

Cancer is a disease of cell abnormality characterised by uncontrollable cell growth, cell 

cycle, proliferation, migration, adhesion, evasion of apoptosis and aggregation of cells to 

form tumours in organs and body cavities.  Cancer cells in the body fails to respond to 

stimuli and allow continual cell growth, proliferation and inhibition of apoptosis to 

outgrow normal cells, which in contrast respond to stimuli for normal functional activity.  

Many different forms of cancer can develop in virtually any organ or tissue of the body. 

Some of the cancers of various organs of the body include rhabdomyosarcoma, 

melanoma, Ewing’s carcoma, neuroblastoma, medulloblastoma, leukaemia, Hodgkin's 

lymphoma, non-Hodgkin's lymphoma, breast cancer, lung cancer, cervical cancer, 

prostate cancer, colon cancer, kidney cancer, liver cancer, ovarian cancer, testicular 

cancer, thyroid cancer and uterine cancer (Moscow and Cowan, 2011).     

 

 

Several contributory risk factors of cancer include genetic mutation; carcinogens such as 

benzene, excessive alcohol, and other chemicals; environmental toxins; ultra-violet 

radiation; excessive sunlight; smoking; viruses and other unknown factors. These factors 

cause damage or mutations to DNA, which leads to uncontrolled cell growth because of 

abnormal activation of the cell division and apoptosis genes.  During DNA damage in 

normal cells, the DNA controls oncogenes in cell division and tumour suppressor genes 
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to inhibit cell division to allow the DNA-repair genes to effectively repair the damaged 

DNA, whilst the apoptosis regulatory genes are directed to induce cell apoptosis if the 

DNA damage is beyond repair.  In cancer cells however, mutations inhibit the normal 

function of oncogenes, tumour suppressor genes, and apoptosis genes leading to 

uncontrollable cell growth.  Gene mutations renderer cells unable to correct DNA 

damage and unable to induce apoptosis (Thun and Jemal, 2011).  

 

 

Various cancers present varying signs and symptoms depending on the type and location 

of the cancer.  For instance, lung cancer is associated with coughing, breathing 

difficulty, and chest pain while in colon cancer, diarrhoea, constipation and bloody 

stools are commonly seen.  Generally, many cancers present symptoms such as fever, 

fatigue, chills, loss of appetite, malaise, night sweats and weight loss.  Symptoms of 

some cancers are observed at the advanced stage of the disease, whilst other cancers are 

symptomless (Munde et al., 2014). 

 

 

Several diagnostic tools for cancer include histological examination of tumour and bone 

marrow biopsies, molecular biological diagnosis of specific tumour markers, full blood 

cell counts, liver function tests, magnetic resonance imaging, positron emission 

tomography, computed tomography or, ultrasound scans and chest x-ray.  Available 

treatment schemes for various cancers depend on the type, stage, and location of the 

cancer and include surgery, radiation and chemotherapy (Carrillo et al., 2014).   

 

 

Cancer cells continue to evade apoptosis, which makes treatment unsuccessful in most 

malignant cases after several treatment cycles, and this pose a great challenge to medical 

research.  Currently, new treatment modalities aim at treatment of cancer cells at the 

molecular level by targeting cancer specific genes or proteins using targeted 

genetherapy,  booster of patient’s immune system using immunotherapy and modulation 

of patient’s hormonal activities using hormonetherapy, as well as nanoknife tumour 

treatment using electric current are being studied (Carrillo et al., 2014).  

 

 

1.2. The Paired Box (PAX) Genes 
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Paired box (PAX: human) / (Pax: mouse) genes, encode important developmental 

transcriptional factors and belong to the homeobox (HOX) family of developmental 

genes (Li
1 

and Eccles, 2012).  PAX/Pax genes have individual functions and therefore 

differ from other members of the HOX family of developmental genes, which perform 

functions in temporal or partial combination (Kumar, 2009; Kang et al., 2011).  The 

PAX/Pax family which was initially identified in Drosophila and later found to be 

conserved across species, has an evolutionarily conserved amino-terminal 128 amino-

acid DNA-binding paired domain (PD) (384 base pairs), which facilitates PAX/Pax 

binding to DNA sequences during transcription (Martin and Wang,  2011).  Apart from 

the PD, several PAX proteins have a homeodomain (HD) for DNA interaction (Martin 

and Wang,  2011).  

 

  

Nine PAX family members, crucial in embryonic and postembryonic development, have 

been described in vertebrates (Li
1
 and Eccles, 2012).  PAX transcription factors residing 

on different chromosomal locations have been described in man (PAX1-PAX9) and mice 

(Pax1–Pax9) with orthologous genes occurring in worms, flies, fish and birds (Li
1
 and 

Eccles, 2012).   

 

The mammalian PAX protein has sequence homology to the Pax protein identified in the 

Drosophila, segmentation pair-rule class proteins (prd), the Drosophila segmentation 

polarity class protein gooseberry proximal (gsb-p) and gooseberry distal (gsb-d) and the 

Drosophila proteins, pox-meso and pox-neuro (Ravasi et al., 2010). There is 98% 

sequence homology of amino acids in human and mouse.  Quail has 95% sequence 

similarity with humans and mice, with slight variation in intron 8 (Moretti et al., 2012). 

 

 

 

 

 

 

 

 

1.2.1. The PAX/Pax Gene Ancestral Family 
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PAX/Pax is sub-divided into five large sub-groups of Drosophila / vertebrate genes 

including Pax1-9/meso, PAX/PaxD/3-7/ paired/gooseberry, PAX/Pax6-4/eyeless, 

PAX/PaxB/2-5-8/sparkling and PAX/PaxA/neuro (Aradhya et al., 2011).  PAX/Pax has 

been cloned from a variety of other metazoans such as arthropods, nematodes and 

several vertebrates (Kusakabe et al., 2011; Mudge et al., 2011).  Ruzickova et al. (2009) 

which has demonstrated that their roles are highly conserved across the animal kingdom. 

PAX/Pax homologues, which are found in simple organisms include PAX/PaxA and 

PAX/PaxB in hydra, PAX/PaxA, PAX/PaxB and PAX/PaxD in corals and PAX/PaxB/2-5-

8/sparkling-homologue in sponges. Over 100 PAX/Pax genes are accessible in scientific 

databases (Chuang et al., 2012).  PAX/PaxA genes containing only a paired box, 

underwent double autonomous homeobox capturing events producing the PAX/PaxB/2-

5-8/sparkling and PAX/Pax1-9/3-7/4-6 family groups based on an analysis of their HD. 

Reports indicate that the initial capturing event occurred in advance of sponge evolution 

whereas the subsequent event happened ahead of the triploblast split among crucians (Jo 

et al., 2011). This scenario has been represented as an evolutionary tree, comprising 

PAX/PaxC that is an ancestral form of PAX/Pax1 and 9/meso, PAX/Pax3 and 

7/gooseberry/paired and PAX/Pax4 and 6/eyeless (Birrane et al., 2009).  

 

 

1.2.2. PAX/Pax Gene Structure  

 

PAX/Pax interacts with DNA using a PD made up of two helix-turn-helix (HTH) motifs 

and a β-hairpin major domain.  Mutations and other abnormalities occur in these in both 

mice and humans (Aggarwal et al., 2011). The defining common feature of the PAX/Pax 

PD (Apuzzo and Gros, 2006), which contains a 128-amino-acid DNA-binding motif 

consisting of two discrete subdomains, which act together to distinguish specific DNA 

sequences (Chuang et al., 2012).  In Drosophila, the PD has a bipartite domain, 

comprising an amino-terminal subdomain (NTD or PAI) and a carboxyl-terminal 

subdomain (CTD or RED) (Fig. 1.1), (Devi at al., 2009).   
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Figure 1.1 Molecular crystal structural domains of PAX gene family (Blake and Ziman  

2003). Structural domains of PAX/Pax protein are: PD, HD, TA and octapeptide (OP). 

 

 

The two sub-domains, which interact with each other, each comprise three α-helices, 

which accumulate to form HTH patterns (Sergio and Philippe, 2007).  Conversely, 

identification of the helix (α3) side chains using the amino-terminal sub-domain 

anchorage at the DNA major-groove, binding to the DNA in a particular fashion, is 

suggestive of binding of a λ repressor with the DNA (Gregory, 2006).  Reports indicate 

that the HD of NTD sub-domain comprises an N-terminal β-turn, β-hairpin known as 

Wing, which can also contribute to DNA-binding, allowing the linker molecule to bind 

the DNA minor-groove (Sergio and Philippe, 2007).  In paired protein, the binding of 

DNA with protein is controlled by the NTD sub-domain (Narayansingh and Ouellette, 

2011). However, in other PAX/Pax proteins, the CTD subdomain seems to induce 

modulation of binding specificity at the NTD subdomain.  PAX/Pax genes encoding a 

carboxyl-terminal transactivating domain (TA) have the PD located in the NTD, while 
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HD and octapeptide regions (OP) occur in both the CTD and the serine-threonine-

proline-rich C-terminus (Corry et al., 2010).  PAX/Pax proteins with a HD interact with 

an ATTA sequence (Wang
2
 et al., 2011).  In addition, the PAX/Pax proteins can bind as 

dimers through their HD to a palindromic motif with the consensus sequence TAAT 

(N2-3)/ATTA (P2 or P3 sites respectively) and other targets are likely to exist for the 

CTD sub-domain (Birrane et al., 2009).  Therefore, some PAX/Pax proteins have at least 

three distinct means of binding DNA (Apuzzo and Gros, 2006).   

 

 

Furthermore, different PAX/Pax proteins and their alternatively spliced isoforms use 

different subdomains for DNA-binding to mediate the specificity of sequence 

recognition (Buckingham
1
, 2007).  The amino acid composition of the NTD sub-domain 

residues (42, 44 and 47) is essential in determining the specificity of DNA sequence 

recognition (Apuzzo and Gros, 2006; Sergio and Philippe, 2007) by PAX5/Pax5 and 

PAX6/Pax6 (Rowan et al., 2010).  Biochemical analysis revealed that the CTD of certain 

PAX/Pax proteins, such as PAX5/Pax5, directly links DNA on other binding sites (Fujita 

and Fujii, 2011).  Apart from linking the amino and carboxyl terminal regions, DNA 

interaction is further enhanced by a linker that induces substantial interactions with the 

minor-groove phosphodiester backbone (Apuzzo and Gros, 2006; Birrane et al., 2009).  

Several developmental irregularities, which arise from missense mutations in both the β-

hairpin and β-turn motifs of the PD, demonstrate their functional significance in the Pax 

protein (Sergio and Philippe, 2007; Birrane et al., 2009).   

 

 

The PD contains three sub-domains, which show differences in DNA-binding, enabling 

the PD protein to act as an activator or repressor (Chao et al., 2013).  Another important 

feature of PD-DNA interactions is their relatively relaxed nucleotide sequence 

specificity allowing PAX/Pax proteins to mediate transcriptional activation or repression 

(Robson et al., 2006; Corry et al., 2010).  The role of PAX/Pax protein as transcriptional 

activators or repressors has been demonstrated through their interaction with other 

transcription factors to induce target promoters (Buchberger et al., 2007).  Many 

PAX/Pax proteins, including PAX1/Pax1, PAX2/Pax2, PAX3/Pax3, PAX6/Pax6 and 

PAX8/Pax8 have similar sequence recognition enabling different Pax proteins to identify 

similar downstream targets (Chao et al., 2013).  Furthermore, PAX/Pax proteins which 
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show great flexibility in DNA-binding, interact with several sequences that are not 

related (Liu
2
 and Xue, 2011).  Identification of several downstream targets by PAX/Pax 

proteins is mediated through flexible interaction of either PAI and RED subdomains or 

the HD to induce gene modulation.  Interaction of Pax proteins with several transcription 

factors is facilitated by their ability to identify inconsistent sequences (Shin et al., 2012).  

 
 

Following embryonic development, PAX gene expression is switched off.  Few tissues 

show continual expression of PAX in adult life or re-expression (Kusakabe et al., 2011).  

In adult tissues, PAX/Pax directs organ-specific regenerative events and prevents stress-

induced cell death (Zhang
1
 et al., 2012).  The cellular functions of PAX/Pax proteins, 

including apoptosis resistance and repression of terminal differentiation, may possibly 

be subverted during the progression of a number of specific malignancies (Ozcan et al., 

2011).   

 

 

1.2.3. Function of PAX/Pax Genes  

 

Generally, PAX/Pax proteins act as transcription factors, regulating diverse signal 

transduction pathways and organogenesis during embryonic development by influencing 

cell proliferation and self-renewal, resistance to apoptosis, embryonic precursor cell 

migration, coordination of specific differentiation programmes and prevention of 

terminal differentiation (Hayashi et al., 2011; Liu et al., 2012).  PAX/Pax proteins 

influence the development of many tissues and organs in mammals, including muscle, 

thymus, thyroid, pancreas, neurons, eyes and kidney (Singh et al., 2011).  Recent studies 

have identified the role of PAX/Pax proteins in specific stem cell or progenitor cell 

populations and of PAX3/Pax3 in particular in differentiation of neural crest cells, 

myoblasts, melanocytes, B-lymphocytes and neurogenesis (Murdoch et al., 2012; 

Sanchez-Ferras et al., 2012).  PAX/Pax proteins are sub-grouped into four groups (I-IV) 

based on structural similarities.  The number of exons, the bases and amino acid 

composition identify the various PAX/Pax groups (Table 1.1) (Haldeman-Englert et al., 

2012). 
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Table 1.1 Compositions of PAX/Pax groups  

 

 

Group 

 

 

PAX/Pax 

 

 

 

Number of 

Exons 

 

 

Number of 

Bases 

 

 

Number of 

Amino Acid 

 

 

I 

 

      PAX1 

      PAX9 

 

4 

4 

 

1,323 

1,644 

 

440 

341 

 

 

II 

 

PAX2 

PAX5 

PAX8 

 

12 

10 

11 

 

4,261 

3,644 

2,526 

 

417 

391 

451 

 

III 

 

PAX3 

PAX7 

 

10 

8 

 

7,678 

2,260 

 

479 

520 

 

 

IV 

 

PAX4 

PAX6 

 

9 

12 

 

2,010 

5,656 

 

350 

422 

 
Various PAX/Pax groups are differenciated from each other because of the differences in 

structural composition of the number of amino acids,  bases and exons.  (Adapted from Birrane 

et al., 2009; http://ghr.nlm.nih.gov/). 

 

 

Differences in fixed radical amino acids among PAX protein are important for their 

sequence recognition specificities based in their structural domains (Holland and Short, 

2010).   

 

 

The phylogenetic analysis of PAX proteins demonstrated the existence of four fixed 

radical amino acid differences between sub-group I and sub-group III, located 

exclusively in the N-terminal alpha helices (Hayashi et al., 2011).  Similarly, sub-groups 

II and IV have three fixed radical amino acid differences in alpha helices, existing at 

positions different from those of sub-groups I and III.   

 

 

1.2.4. PAX/Pax Gene Classification and Chromosomal Location 

 

Members of PAX/Pax gene family are located on separate chromosomes in mammals 

(Fig. 1.2) (Chuang et al., 2012).   

http://ghr.nlm.nih.gov/
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Figure 1.2 Structural domains and chromosomal location of PAX genes (adapted from 

Sergio and Philippe, 2007).  The PD is present in all PAX/Pax groups but other domains may not 

be present.   

 

 

Group I 

 

This PAX group comprising PAX1/Pax1 and PAX9/Pax9 has a PD and an OP but 

without a HD (Bouchard et al., 2010) (Fig. 1.2).  PAX1/Pax1 and PAX9/Pax9 both 

contribute to skeletal development during embryogenesis (Zhao et al., 2007).   Pax1 

regulates vertebral column development (Chuang et al., 2012).  A study of Pax1-

deficient ‘undulated’ mice, demonstrated that Pax1 is a facilitator of notochordal signals 

during sclerotome differentiation (Capellini et al., 2010).  PAX1/Pax1 expression has 

been demonstrated in both the developing sclerotome and intervertebral discs (Capellini 

et al., 2010). PAX1/Pax1 in adult thymus epithelium promotes the thymus 

microenvironment, which is vital for normal maturation of T cells (Inami et al., 2011).   

 

    



35 
 

PAX9/Pax9 regulates cell proliferation, resistance to apoptosis and cell migration.  It is 

expressed in adult thymus and is essential for permanent tooth and skeletal formation 

(Suda et al., 2011).  It occurs in developing somites, specifically in the posterior 

ventrolateral areas, where cells are in the process of epithelial-mesenchymal transition, 

with subsequent enhancement of cell migration (Walter et al., 2011).  Migration of these 

cells, results in the formation of the lateral sclerotome, which develops into ribs and 

neural arches (Mues et al., 2009).  Furthermore, PAX9/Pax9 is essential in craniofacial 

and limb development by decreasing cell proliferation and increasing apoptosis in areas 

that normally form the vertebral column components (Hsu et al., 2011). 

 
 

Group II 

  

Sub-group II comprises PAX2/Pax2, PAX5/Pax5 and PAX8/Pax8 structurally 

characterised by a PD sequence, a truncated HD and an OP (Bouchard et al., 2010) (Fig. 

1.2).  PAX2/Pax2 is important for development of the urogenital tract, eyes and central 

nervous system (CNS) (Barembaum and Bronner- Fraser, 2010; Bouchard et al., 2010).  

Its expression occurs in adult kidney medulla, transitional urothelium of the ureter, 

bladder wall, the epithelial lining of female fallopian tube and in the ejaculatory duct 

epithelium of male rats (Burger et al., 2012).  In female mice, Pax2 expression observed 

during puberty in the mammary tubular epithelium is essential for progesterone-

dependent mammary development, where it forms a complex with an oestrogen receptor 

to modulate the erythroblastic leukemia viral oncogene homolog 2 promoter (Silberstein 

et al., 2006).  PAX2/Pax2 has been demonstrated in pancreas and optic tectum in mice 

(Samimi et al., 2008).  PAX2/Pax2, which occurs during development of the inner ear, is 

repressed upon terminal differentiation (Bouchard et al., 2010). 

 

 

Re-expression of all known PAX/Pax isoforms is essential for repair and regeneration of 

tissue (Samimi et al., 2008).  PAX2/Pax2 expression is mostly reduced in the adult 

kidney cortex following kidney injury, but during early stage of tubular regeneration, its 

brief expression is observed (Negrisolo et al., 2011; Ozcan et al., 2011).    
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This demonstrates an anti-apoptotic function role of PAX2/Pax2 during tubular 

regeneration (Karafin et al., 2011).  In male mice, castration induced the androgen-

dependent re-expression of Pax2 (Chen
3
 et al. 2010).   

 

 

PAX5 is expressed during B lymphopoiesis in the development of early B, pre-B and 

pro-B lymphocytes predominantly in the regulatory pathway of the V-to-DJ 

recombination (Firtina et al., 2012). Intriguingly, re-programming of mature B-

lymphocytes to pluripotency entails inhibiting PAX5 and inducing expression of other 

regulatory genes including octamer-binding transcription factor 4, sex determining 

region Y-box 2 (Sox2), Kruppel-like factor 4 and Myc (c-Myc) (Fujita et al., 2011; 

Herbeck et al., 2011). PAX8 expression, occuring in kidney, adult thyroid and 

developing thyroid, regulates the expression of thyroglobulin thyroid peroxidase and 

sodium/iodide symporter that are required for thyroid hormone synthesis (Narumi et al., 

2010).  PAX8 expression in adult kidneys is in the Bowman’s capsule and medullary 

areas (Hu et al., 2012).   

 

 

Group III 

 

This group comprising PAX3 and PAX7 contains all three complete structural domains: 

a PD, a HD and an OP (Du et al, 2005; Dumont et al, 2012) (Fig. 1.2).  PAX3/Pax3 is 

crucial in embryogenesis as subsequently discussed in detail below (see sections 1.3 and 

1.3.7).  Expression of Pax7 has been observed in adult muscle stem cell pools, (satellite 

cells) which are essential for tissue repair and regeneration after muscle injury (Liao et 

al., 2009; Xynos et al., 2010).  Pax7 is crucial for maintaining the survival and 

proliferation of postnatal satellite cells (Shin et al., 2012). 

 

 

Group IV 

 

This group comprising PAX4 and PAX6 contains a PD and a HD without an OP (Rath et 

al, 2009) (Fig. 1.2).  Even though few studies have implicated PAX4 in adult and cancer 

tissues, re-expression of PAX4 has been demonstrated to prevent pancreatic β-cells 

apoptosis (Plengvidhya et al., 2007; Liang et al., 2011).  Apart from increasing β-cell 
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replicative potential, mitogen-induced PAX4 expression further protects cells from 

apoptosis by activating C-MYC and B-cell lymphoma-extra large (BCL-XL) (Brun et al., 

2008; Collombat et al., 2009). Increased PAX4 expression occurs in human insulinomas 

and inhibition of apoptosis in rat insulinomas cells occurs via up-regulation of Bcl-xl 

(Brun et al., 2007; Bai et al., 2011).    

 
 

Re-expression of PAX6 observed in corneal epithelium, induced corneal wound repair, 

while decreased PAX6 expression during corneal wound repair, decreased corneal 

epithelial cell adhesion and corneal neuronal migration, but increased cell proliferation 

and stromal cell apoptosis (Smith
1
 et al., 2012).  Correspondingly, in olfactory epithelial 

regeneration, transient increased expression of Pax6 induced the globose basal stem cell 

pool into either neuronal or epithelial cell lineages (Cocas et al., 2011).  The levels of 

PAX6 protein regulates the balance between neural stem cell self-renewal and 

neurogenesis and hence is regarded as a neuroectodermal cell fate determinant (Jia et al., 

2011; Yoo et al., 2011).   Inhibition of human glioblastoma cell growth by increased 

expression of PAX6, repressed matrix-metalloproteinase 2 (MMP2) regulated 

invasiveness and induced glioma cell   susceptibility to detachment, oxidative stress and 

decreased angiogenesis (Wang
3
 et al., 2013).  However, PAX6 is not apparently mutated 

in gliomas (Liu et al., 2012).   

 

 

1.2.5. PAX/Pax Gene Mutations and the Development of Cancer 

 

Aberrant expression and mutations in PAX/Pax play a role in the onset of diseases and 

tumours (Li
1
 and Eccles, 2012).  PAX/Pax protein expression is up-regulated in several 

different types of tumour, although the precise role of PAX proteins in cancer is not 

clearly understood (Gutkovich et al., 2010).  The essential roles played by PAX proteins 

in maintaining tissue-specific stem cells by inhibiting terminal differentiation and 

apoptosis, has been observed to facilitate the development, survival and progression of 

specific cancers.  Various subgroups display distinct involvement in the development of 

several cancers, with subgroups II and III functioning as facilitators of tumour 

development, while subgroups I and IV exhibited neutral or favourable involvement in 

cancer (Li
1
 and Eccles, 2012).  PAX/Pax proteins, therefore, serve as tumour markers in 
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several cancers such as rhabdomyosarcoma, melanoma, neuroblastoma and Ewing’s 

sarcoma (Jothi et al., 2012; Li
1
 and Eccles, 2012).  For the purpose of development of 

novel anti-cancer therapies, an understanding of normal developmental pathways 

regulated by PAX/Pax proteins might contribute to other potentially parallel pathways 

common in tumours, and result in identifying new molecular targets (Li et al., 2009; 

Oesch et al., 2009).   

 

 

PAX1/Pax1 aberrant expression is related to developmental defects of craniofacial 

structures and teeth, which happen intermittently and the fundamental genetic 

abnormalities are not well understood, in part due to unknown protein-protein 

interactions (Militi et al., 2011).   

 

 

Cell proliferation is reduced, with increased apoptosis, in areas that develop into 

vertebral column components (Capellini et al., 2010).  Pax1 mutant mice had severe 

developmental abnormalities in the pectoral girdle, involving the fusions of skeletal 

elements, which normally remain separated, plus defective differentiation of blastemas 

into cartilaginous structures (Capellini et al., 2011).  In mice, Pax1 mutations produced 

the ‘undulated’ phenotype described by vertebral malformations along the entire rostro-

caudal axis (Capellini et al., 2011).  Studies of mice with homozygous mutations in Pax1 

or Pax9, showed a complete absence of derivatives of sclerotome, including 

intervertebral discs, vertebral bodies and proximal ribs because of lack of sclerotome 

chondrogenesis (Zhu et al., 2012).  Expression of some PAX genes, which has been 

associated with increase DNA methylation, induced inhibition of tumourigenesis.  For 

instance, PAX1 tumour suppressor activity through DNA hypermethylation, has been 

demonstrated in both human cervical and ovarian cancers, and this suggests that lack of 

PAX1 activity might induce the development of these cancers (Macones et al., 2011; 

Chao et al., 2013).  

 

 

Aberrant expression and mutation of PAX9/Pax9 are associated with tooth abnormalities 

in both humans and mice (Zhu et al., 2012).  Human PAX9 mutations afford a unique 

opportunity to investigate how these alterations change gene function and its effects on 
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normal tooth development (Sull et al., 2009; Zhang
2
 et al., 2012).  Tooth agenesis has 

been identified after PAX9/Pax9 autosomal dominant mutations (Brook et al., 2009; 

Mendoza-Fandino et al., 2011).  The majority of mutations are situated in the PD 

(Kapadia et al., 2006).  Previous studies of mutations, predicted that mutant proteins 

resulting from a frameshift or nonsense mutation, shows a total loss of function (Hansen 

et al., 2007).  

 

 

Expression of PAX9/Pax9 facilitates oncogene-induced cell survival in oral squamous 

cell carcinoma (Lee et al., 2008).  It is implicated in epithelial dysplasia and oesophageal 

invasive carcinoma (Zhu et al., 2012), being significantly reduced in these compared to 

levels in normal tissue (Zhao et al., 2005; Wang et al., 2009).  Progressive loss of 

PAX9/Pax9 expression has been associated with enhanced oesophageal tumour 

malignancy (Hsu et al., 2011; Haldeman-Engler et al., 2012).  Increased levels of 

PAX/Pax9 expression may be a useful prognostic indicator of favourable outcome in 

oesophageal invasive carcinoma (Kist et al., 2005; Hu et al., 2011).  Lung cancer tissues 

showed increased PAX9/Pax9 expression (Militi et al., 2011). 

 

 

Aberrant expression of PAX2/Pax2 is frequently identified in tumour cell lines including 

those from lymphoma, breast, ovarian, lung, prostate, colon and in primary tumour 

tissue samples (Quick et al., 2010; Davis et al., 2013).  PAX2/Pax2 promotes the 

survival of ovarian, renal cell and bladder carcinomas and has been proposed as a 

marker for renal neoplasms (Carney et al., 2011; Davis et al., 2013).  Apoptosis induced 

in cell lines following RNA interference to silence PAX2/Pax2 expression, further 

suggests that endogenous PAX2/Pax2 expression is required for the growth, survival and 

resistance to apoptosis of cancer cells and could be a suitable target for immunotherapy 

(Quick
2
 et al., 2012; Upson et al., 2012).  The downstream targets of PAX2/Pax2 are 

still poorly described, PAX2/Pax2 acts as both transcriptional repressor and activator of 

both phosphoprotein tumour suppressor 53 (p53) and Wilms tumour protein 1 (Shen et 

al., 2011).  Recently, wingless (Wnt) signaling pathway protein 5a (Wnt-5a) and human 

beta defensin 1 were identified as PAX2/Pax2 targets (Johnson et al., 2011; Padanad et 

al., 2012).  The expression of PAX2/Pax2 has been demonstrated in breast and prostate 

tumours and acute myeloid leukemia (Chivukula et al., 2009; Xu et al., 2012).  
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Interestingly, PAX2/Pax2 maintained oestrogen receptor responsiveness in breast cancer 

(Chivukula et al., 2009; Li
3
 et al., 2013).  In addition, PAX2/Pax2 expression induced 

endometrial cancer malignancy, while tamoxifen inhibition of PAX2/Pax2 expression 

prevents endometrial carcinogenesis (Monte et al., 2010; Upson et al., 2012).   

 
 

PAX5 expression is observed in most B-cell neoplasms, including B-cell lymphoma 

(Lazzi et al., 2009; Moretti et al., 2012).  PAX5 is expressed in breast cancer, 

medulloblastoma and neuroblastoma (Proulx et al., 2010; Moelans et al., 2012). In 

contrast, PAX5 haploinsufficiency synergizes with signal transducer and activator of 

transcription 5 (STAT5) activation to induce acute lymphoblastic leukemia (Rafei et al., 

2008; Heltemes-Harris et al., 2011).  PAX5 has been identified as a novel tumour 

suppressor in hepatocellular carcinoma through interaction with the p53 signaling 

pathway and an increase in PAX5 induced apoptosis in multiple myeloma cells (Proulx 

et al., 2010; Liu
2
 et al., 2011).  PAX8 undergoes chromosome rearrangement with 

peroxisome proliferator-activated receptor (PPAR) in thyroid adenocarcinomas and has 

been demonstrated as a lineage survival factor for an ovarian cancer cell line (Chia et al., 

2010).  In renal, ovarian and thyroid tumours, PAX8 is implicated in inducing 

transcription of the transcription factor E2F1 (E2F1) and maintenance of retinoblastoma 

tumour suppressor protein (RB) stability (Li
1
. et al., 2011; Yang

1
et al., 2012).  In 

glioblastoma cell lines, PAX8 regulates telomerase, which is an important factor in 

cellular ageing and immortalization (Chen et al., 2008).  

 

 

Aberrant PAX3/Pax3 expression is associated with various mutations and tumours (see 

sections 1.3.9 and 1.3.10).  In alveolar rhabdomyosarcomas, PAX7 may also undergo 

chromosomal translocation with forkhead (FKHR) box protein O1 (FOXO1) to form a 

fusion protein similar to PAX3-FKHR (Dumont et al., 2012; Yang
2 

et al., 2012).   

 

 

Ectopic PAX4 expression in melanoma decreases cell growth, demonstrating a potential 

tumour suppressor function (Hata et al., 2008; Sultana et al., 2011).  Repression of 

PAX6 in pancreatic adenocarcinoma following terminal cell differentiation induces 

pancreatic cancer cell progression by activating the mesenchymal epithelial transition 
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factor (MET) tyrosine kinase receptor (Mascarenhas et al., 2010).  PAX6, which 

stimulates retinoblastoma cell proliferation and inhibits apoptosis, also promotes breast 

cancer cell proliferation and tumourigenesis (Bai et al., 2011; Li
2
 et al., 2011).  

Increased expression of PAX6 in breast and bladder cancer induced hypermethylation of 

CpG islands as an indication of tumour progression (Zong et al., 2011; Moelans et al., 

2012). 

 

 

1.3. Paired Box Gene 3 

 

The human paired box gene 3 (PAX3), encodes 510 amino acids with several structural 

domains including a PD, OP, HD and TA, whilst murine Pax3 encoding 479 amino 

acids, has similar structural domains (Boutet et al., 2010; Gutkovich et al, 2010; 

Okamoto et al., 2012).   

 

 

PAX3/Pax3 directs development of skeletal muscle, central nervous system, somites and 

neural crest-derived cells that become cardiac tissue, gastrointestinal enteric ganglia, and 

melanocytes (Liu et al., 2012; Yvernogeau et al., 2012).  The capability of PAX3/Pax3 

to regulate vastly different developmental processes is due to AS and the features of its 

protein structural domains (Holland and Short 2010; Charytonowicz et al., 2011).  

PAX3/Pax3 AS modifies the C-terminal end of the HD, causing a frameshift to alter TA 

activity and produce several PAX3/Pax3 isoforms (Fernandez et al., 2010).  Currently, 

seven variants of PAX3/Pax3 have been defined: PAX3a/Pax3a; PAX3b/Pax3b; 

PAX3c/Pax3c; PAX3d/Pax3d; PAX3e/Pax3e; PAX3g/Pax3g and PAX3h/Pax3h showing 

different expression patterns which demonstrates that they have distinct functions 

(Parker et al., 2004; Wang
2
 et al., 2008; Charytonowicz et al., 2011).  

 

 

PAX3/Pax3 protein domains, which facilitate binding interactions with a host of factors 

in different combinations, induce either activation or repression of downstream target 

promoters (Gutkovich et al., 2010; Berlin et al., 2012).  PAX3/Pax3 interacts with other 

proteins that act as co-activators or co-repressors of transcription (Boutet et al., 2010; 

Lagha et al., 2010).  These binding interactions modulate the development and activities 

of melanocytes in both embryo and adult (Li
3
 et al., 2011; Medic et al., 2011).  
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PAX3/Pax3 controls cell proliferation, differentiation and apoptosis to maintain 

equilibrium between cell proliferation and differentiation (Berlin et al., 2012; Dong et 

al., 2013).  

 

 

1.3.1. Regulation of PAX3/Pax3 Activation and Functional Modulation 
 

Several protein interactions that regulate PAX3/Pax3 function subsequently induce 

terminal differentiation of cells.  The binding of Pax3 to DNA regulatory elements or 

Pax3 protein degradation may be inhibited by molecular obstruction. For instance, Pax3 

binding to DNA is inhibited by calmyrin (Sidhu et al., 2010).  Increased expression of 

calmyrin and decreased expression levels of Pax3 were demonstrated in differentiated 

cells, compared to their initial expression levels in undifferentiated myoblasts (Sidhu et 

al., 2010).  The transcriptional and DNA-binding activities of Pax3 were both inhibited 

by the direct interaction of calmyrin with Pax3 PD (Christova et al., 2010).  The 

mechanism of binding in melanocytes and melanoblasts is not fully understood (Dedeic 

et al., 2011).  Using the first two helices of the HD, Pax3 directly interacts with the N-

terminal domain of Rb and other related proteins such as p107 and p130 (Wiggan et al., 

2006).  The HD of Rb interacts with E2F to form an E2F-Rb complex, which in turn 

inhibits PAX3 activation of the Met promoter by an unknown mechanism (Grabellus et 

al., 2010).  The interaction of Rb with other Pax proteins such as (Pax2, 5, and 8), 

promotes Pax3 transcriptional inhibition, repression, or co-activation (Jain et al., 2011).  

The effects of Rb on Pax downstream transcriptional activities depends on the cell type 

involved, transcriptional target and a direct interaction of phosphorylated Rb-Pax3 

complex with death-domain associated protein (Daxx) (Kaneko et al., 2007).  Daxx 

protein, acts as both pro-and anti-apoptotic regulator.  It can repress transcription factors 

in the nucleus.  Promyelocytic leukaemia protein inhibits functional activities of Daxx 

with subsequent conversion of the latter into nuclear bodies.  The passage of Daxx into 

nuclear bodies prevents its inhibition of Pax3 (Yamaguchi et al., 2007).  The ability of 

Pax3 to activate promoters is inhibited through binding of Daxx at both the HD and the 

OP (Yamaguchi et al., 2007; Fenby et al., 2008).  Inhibition of Pax3 by Daxx further 

inhibits Pax3 downstream targets such as Met (Mascarenhas et al., 2010). 
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Direct interaction of HIR histone cell cycle regulation defective homolog (HIRA) with 

Pax3 at their C-terminal domains induces senescence, which is related to 

heterochromatin foci induced by wide dynamic repeat-containing chromatin regulator 

(Lorain et al., 2001; Charytonowicz et al., 2011).  Cellular senescence is induced by 

heterochromatin-associated protein HP1complex (Hong and Saint-Jeannet, 2007).  A 

brief transfer of both HP1 and HIRA to promyelocytic leukaemia protein bodies has 

been demonstrated during cell senescence.  Direct interaction of Pax3 with Grg4, which 

functions as a repressor is analogous to Pax3-HIRA interaction (Zibat et al., 2010).  

Interaction of HP1 with both Pax3 and HIRA, facilities the transfer of HP1 to promoters, 

which subsequently inhibits the transcriptional activity of Pax3 (Christova et al., 2010).  

The fact that HIRA activity requires promyelocytic leukaemia protein indicates that the 

binding pattern of Pax3-HIRA is similar to Daxx-Pax3 induced inhibition (Zeng et al., 

2009).   

 

 

The influence of the binding interaction of Pax3 and POU domain transcription factor 2 

(Brn-2) on their downstream targets observed in melanocytes and melanoma cells has 

not been elucidated (Betters et al., 2010).  The development of the central nervous 

system, neural crest and neuronal differentiation requires the expression of Brn-2 

(Betters et al., 2010).  High Brn-2 expression has been demonstrated in melanoma 

compared to insignificant Brn-2 expression in melanocytes (Bosserhoff et al., 2011).  In 

aggressive melanomas, a mutant B-Raf, V600E, can increase Brn-2 expression (Betters 

et al., 2010).  Response elements of both Pax3 and Sox10 induce Brn-2 expression in 

order to activate Mitf.  

 

 

In normal melanocytes and melanoma cells, the interaction of Brn-2 and Pax3 induces 

alteration of Mitf and downstream target gene expression (He
1 

et al., 2011).  Mono-

ubiquitination facilitates Pax3 regulation and proteasomal degradation (Boutet et al., 

2007). Proteasomal degradation of Pax3 induced by poly-ubiquitination involves 

ubiquitin and protein receptor recognition. Mono-ubiquitinated substrate for proteasomal 

breakdown is formed by the direct interaction of Pax3 with UV excision repair protein 

RAD23 homolog B (Rad23B) (Boutet et al., 2007).  Rad23B links Pax3 and the intrinsic 

ubiquitin receptor protein S5a as a complex.  In myoblasts, muscle differentiation is 
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impeded owing to inhibition of this pathway, signifying that Pax3 is capable of 

sustaining an undifferentiated state of cells and its degradation permits cell terminal 

differentiation (Hosoyama et al., 2011). 

 

 

Pax3 interaction with other factors not typically found in pigment cells has been 

demonstrated (Thomas et al., 2009; Nitzan et al., 2013).  For instance, binding of muscle 

segment homeobox 1 (Msx1) with MyoD1 inhibits Pax3 transcriptional activation, 

facilitated by both the Pax3 PD and Msx1 HD (Miller et al., 2007).  Mesenchyme 

homeobox (Mox)1 and 2, (also known as Meox1 and 2), which  are primarily expressed 

in mesodermal structures interact with the Pax3 HD (Woodruff et al., 2007; Zhang
1
 and 

Liu, 2009).  Pax3 directly interacts with importin 13 (IPO13) via the HD and basic 

amino acid C-terminal domain (Beaudin et al., 2011).  Several protein interactions with 

Pax3 are vital for modulating Pax3 as an effective transcriptional regulator of 

melanocyte cellular function, morphological characteristics and change of gene 

expression pattern (Tedesco et al., 2010; Djian-Zaouche et al., 2012). 

 

 

In mice, Bradshaw et al. (2009) and Marie et al. (2010) found that the proximal 1.6kb 

Pax3 promoter fragment used to induce Pax3 expression in the neural crest (NC) was 

sufficient to rescue all of the NC defects in Pax3-deficient Splotch embryos, including 

cardiac defects.  Increased Pax3 expression in this region was not associated with 

developmental abnormalities (Curchoe et al., 2010; Sanchez-Ferras et al., 2012).  These 

reports demonstrate that the proximal 1.6kb upstream of the Pax3 promoters contained 

sequences sufficient to mediate functional expression of Pax3 in the NC (Nelms et al., 

2011; Singh et al., 2011). PAX3/Pax3 expression has been found in somite 

compartments forming embryonic skeletal muscle progenitors, which subsequently 

produce skeletal muscle in the growing limb buds (Cairns et al., 2012) and in muscle 

proliferative cells in skeletal muscle development (Wan et al., 2011).  
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1.3.2. Functional  Biological Activities of PAX3/Pax3  

 

PAX3/Pax3 possesses four structural domains: the PD, HD, OP and TA have unique 

DNA binding patterns.  In figure 1.3, each group of letters with a similar colour 

represents a specific amino acid sequence acting as a protein interaction epitope (Sergio 

and Philippe,  2007; Farin et al., 2008; Corry et al., 2010).  The PD, so-called for the 

two HTH motif-containing sub-domains (PAI and RED) contain 128 amino acids, which 

are located at the N-terminal of Pax3.   

 

 
 
Figure 1.3 Structural domains of PAX3/Pax3 protein (Taken from Kubic et al., 2008).         

A: Four domains of Pax3 protein: PD, lavender (composed of PAI, RED, HTH and HTH 

motifs); HD, pink (composed of three helices I, II and III); OP, yellow (located in between PD 

and HD); TA (located at C terminal).  B: Letters denots Pax3 amino acid sequence in the PD, 

HD and OP and the numbers represent the number of exons.  

 

 

HD interaction with other proteins modulates Pax3 activity (Olaopa et al., 2011).  For 

instance, binding to Rb represses Pax3 transcriptional activation (Pallafacchina et al., 

2010; Zibat et al., 2010).  Co-repressors, including HIRA and Daxx, interact with DNA 

by binding to the HD (Thomas et al., 2009).  The three different DNA-binding motifs of 

the Pax3 HD permit several patterns of DNA binding sites, which allow the co-

ordination required for regulation of developmental processes (Thomas et al., 2009).    
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The PAI is composed of two beta-sheets, a HTH motif which binds with DNA to 

accelerate the association of Pax3 protein with downstream proteins (Farin et al., 2008; 

Corry et al., 2010). The N-terminal HTH motif has been demonstrated to be responsible 

for interaction with the consensus sequence (G)T(T/C)(C/A)(C/T)(G/C)(G/C),      

several of which exist as target sites in the DNA (Corry et al., 2010; Gutkovich et al., 

2010).  Although the PAI HTH motif has been demonstrated to enhance DNA binding at 

the C-terminal end, the role of the RED HTH is uncertain.  The latter motif is not 

involved in enhancing DNA binding capability since it does not bind DNA (Christova et 

al., 2010). The RED subdomain increases DNA binding potentials in relation to 

downstream targets (Makawita et al., 2009). The PD interacts with other structural 

motifs, such as SOX and calmyrin downstream of the HD in order to modulate the 

functional activity of Pax3 (Xia et al., 2009; Cairns et al., 2012).  For instance, calmyrin 

represses functions by inhibiting Pax3 binding to DNA (Hsieh et al., 2006; Conrad et al., 

2009).  Binding of Pax3 to SOX10 induces synergistic activation of ret proto-oncogene 

(c-Ret) and microphthalmia-associated transcription factor (Mitf) (Wahlbuhl et al., 

2012; Zhang
1
 et al., 2012).  

 
 

The HD is 60 amino acids in length and comprises three HTH motifs, which include 

helices I, II and III.  Helices I and II induced binding with downstream proteins, whereas 

helix III identifies and facilitates DNA sequence (TAAT) binding (Soleimani et al., 

2012).  The DNA binding capability of the PD is modulated by the HD (Christova et al., 

2010).  The HD further functions as a boundary between Pax3 and DNA as well as 

downstream targets in order to prevent other molecules from binding (Soleimani et al., 

2012).  Pax3 binds to DNA via the consensus sequences of the PD and HD so that they 

synergistically activate downstream target genes (Goljanek-Whysall et al., 2011).   

Direct interaction of the OP with calmyrin produces a complex that inhibits Pax3 DNA 

binding capability (Miller et al., 2007).  Pax3-DNA binding integrity is facilitated by the 

TA, which is rich in S/G/T and located at the carboxyl-terminal end (Charytonowicz et 

al., 2011).  To ensure sequence specificity in the absence of either PD or HD reactive 

elements, the TA inhibits the binding of the HD to DNA (Cao et al., 2005).  These 

reports indicate that the TA binds DNA directly alongside both the PD and HD (Himeda 

et al., 2013).   
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Even though Pax3 transcriptional regulatory mechanisms are not well known, post-

translational modifications of Pax3 have been demonstrated in several studies (Wan
 
et 

al., 2011).  Reports indicate that protein kinase C (PKC), containing eight recognised 

sites for S/T phosphorylation, regulate the function of Pax3 during embryonic 

myogenesis (Brunelli et al., 2007). In rhabdomyosarcoma, decreased Pax3/FKHR 

transcriptional activity induced by the kinase inhibitor PKC412 suggests that complete 

activity of Pax3/FKHR requires phosphorylation (Amstutz et al., 2008; Dietz et al., 

2011).  In myoblast precursor cells, an unknown kinase is reported to phosphorylate 

Pax3 on serine 205 (Miller et al., 2008; Iyengar et al., 2012).  Terminal differentiation of 

myogenic progenitors requires decreased levels of Pax3 mRNA and the phosphorylated 

state is lost swiftly after onset of differentiation (Dietz et al., 2009; Lagha et al., 2013).  

During myogenic development and adult stem cell differentiation, Pax3 activity is 

modulated by the ubiquitination-proteasomal degradation pathway (Boutet et al., 2010; 

Wang
2
 et al., 2011). 

 

 

1.3.3. Binding Partners of PAX3/Pax3 

 

Interaction of PAX3/Pax3 with other molecules is augmented through the direct binding 

of many co-activators and repressors in order to obtain greater influence on downstream 

targets (Lai et al., 2010; Sumegi et al., 2010).  Both Sox10 and tafazzin (TAZ) augment 

Pax3 transcriptional activity (Cairns et al., 2012).  Pax3 and Sox10 interact directly 

through their DNA binding domains (Zhang
1
 et al., 2012).   

 

 

The expression of Sox9 and Sox10 has been demonstrated in both melanoblasts and 

melanocytes (Bosserhoff et al., 2011).  In neural crest melanocyte precursors, increased 

expression levels of Sox9, which were observed initially, decreased before migration, 

while Sox10 expression was increased during migration (Wahlbuhl et al., 2012).  

Melanoblasts show increased levels of Sox10 while differentiated cells exhibit decreased 

levels of Sox10 (Cairns et al., 2012). During mouse development, the expression of 

Sox10 induces melanoblast maturity whilst Sox10 inhibition leads to pigmentation 

defects (Pingault et al., 2010) and Sox9 is essential in differentiating melanocytes 

(Cairns et al., 2012).  Mitf, crucial for melanogenesis, is activated by increased levels of 
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both Sox9 and Sox10 (Chen
1
 et al., 2010; Hou et al., 2008).  Interaction between Pax3 

and Sox10 can activate c-Ret (Kubic et al., 2008; Leon et al., 2009).  

 

  

Expression of both Mitf and C-Ret promoters is induced by Pax3 and Sox10 (Tshori et 

al., 2006).  The direct DNA binding of Pax3 induces the c-Ret enhancer whereas 

activation of Sox10 requires protein-protein binding.  The genomic cis regulatory site 

requires protein binding to induce the Mitf promoter (Wan et al., 2011).  Sox10 induces 

the activation of dopachrome tautomerase (Dct) while Mitf represses Dct by means of an 

enhancer sequence similar to that used by Pax3 to induce repression of Dct (Jiao et al., 

2006).  Many Sox10 melanocytic targets including Mitf and Dct are activated by Sox9.  

Direct interaction of Pax3 with TAZ (also known as WW domain-containing 

transcriptional regulator 1 or WWTR1), has been demonstrated (Ravasi et al., 2010).  

Multiple domains induced direct interaction of WW domain in TAZ protein with Pax3.  

In a luciferase assay system, TAZ presents as an effective transcriptional co-activator of 

Pax3 promoters, such as the promoter that activates Mitf.  Conversely, the expression of 

TAZ in the melanocytic lineage is not well established (He
1
 et al., 2011).  

 

  

Interactions of the Pax3 TA domain with other proteins enable synergistic activation of 

downstream targets (Kennedy et al., 2009; Zhao
3
 et al., 2013).  Pax3 is an effective 

repressor of gene expression in the presence of some cofactor repressor molecules such 

as KRAB associated protein 1 (KAP1), heterochromatin protein 1 (HP1), groucho 

protein 4 (Grg4) and T-box (Tbx) family proteins (Farin et al., 2008).  Binding of Pax3 

to both KAP1 and HP1 stimulates HP1 protein to induce heterochromatin inhibition of 

gene expression (Bae et al., 2013). Numerous transcriptional repressors, including 

KAP1, directly bind to and recruit HP1 to regulatory enhancers (Hsieh et al., 2006; 

Degenhart et al., 2010).  

  
 

Pax3 interacts with other transcription factors through its PD and recruits them to target 

promoters. Both HP1 and KAP1 compete for Pax3 interaction to regulate its 

transcriptional activities, HP1 inhibits Pax3 transcriptional repression, whereas KAP1 

enhances it (Hsieh et al., 2006).  The Tbx1 subfamily of T-box proteins, including 
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Tbx18, 15 and 22, interacts directly with Pax3 (Farin et al., 2008).  All T-box genes 

contain T-domains required for binding DNA and interaction with protein.  The binding 

interactions between the Tbx proteins and Pax3 occur via the T domain and PD 

(Tsumagari et al., 2013).  The expression of T-box proteins in the neural crest, which 

induces cell pigmentation, has not been demonstrated to be affected by the binding 

interactions (Tsumagari et al., 2013).  For instance, Tbx15 mutations induce changes in 

the dorso-ventral pigmentation pattern and the expression of tyrosinase-like protein 1 is 

repressed by Tbx2 (Liu
2
 et al., 2013).  A segment of Pax3 protein composed of the first 

90 amino acids can enhance the capability of Pax3 to repress downstream targets singly 

or with co-repressors (Hsieh et al., 2006; Sanchez-Ferras et al., 2012).  

  

 

1.3.4. PAX3/Pax3 Downstream Target Genes  
 

Expression of the C-Ret tyrosine kinase receptor is essential for neural crest-derived cell 

migration, survival, proliferation and differentiation (Hauswirth et al., 2012).  A link 

between Pax3 and C-Ret was deduced from the study of C-Ret expression in Splotch 

homozygous-deficient embryos, which died during midgestation accompanied with 

defective cardiac and neural tube because of diffecient Pax3 and C-Ret expression 

(Greene et al., 2009).   Induction of neural crest enteric ganglia formation was induced 

by Pax3 while suppression of Pax3 blocked intestinal ganglia formation (Sommer, 

2011).  Restoration of Pax3, which stimulated enteric ganglia formation and induced 

high levels of C-Ret expression, established c-Ret as a downstream target of Pax3 

(Bradshaw et al., 2009).  Synergistic activation of Sox10 facilitated by chromosomal 

acetylation is induced by the direct interaction of Pax3 with c-Ret promoter enhancer 

element (Griffith et al., 2009; Reichek et al., 2011).  Cellular activities including 

proliferation, differentiation, migration and apoptosis require transforming growth 

factor-beta 2 (TGFβ2) expression (Ichi
1 

et al., 2010).  TGFβ2 is required for the 

development of neural crest derivatives.  In mice, developmental defects in heart, 

craniofacial structures, skeleton, ear and the urogenital system have been induced by 

homozygous TGFβ2 mutation (Nakazaki et al., 2009).  The interaction of TGFβ2 

promoter cis regulatory elements with both the PD and HD of Pax3, established TGFβ2 

as a direct downstream target of Pax3 (Mayanil et al., 2006).  A significantly diminished 
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TGFβ2 expression in mouse embryos can be correlated with inhibition of Pax3 (Morgan 

et al., 2008).   

   

 

Proliferation of NC and its subsequent migration and differentiation is induced by Wnt 

proteins (Zhao et al., 2009).  In both Wnt1 and Wnt3a, double mutant mice, the overall 

Wnt signaling pathway induced poor NC development, indicated as a reduced number of 

neural crest cells (Su
3
 et al., 2013).  Increased expression of Wnt1 induced an increased 

number of dorsal neural tubes with subsequent induction of premature migratory neural 

crest cells. The latter decreased after diminished Wnt1 expression (Minchin and Hughes, 

2008).  A decreased expression level of Wnt1 in the dorsal neural tube, observed in 

Pax3-deficient mouse embryos, further demonstrates Wnt1 as a Pax3 downstream target 

(Wu et al., 2008).  During NC development, Pax3 directly regulates Wnt1 by activating 

Wnt1 enhancer elements (Fenby et al., 2008).  Acceleration of proliferation, migration 

and survival of NC cells are regulated by Pax3 (Sanchez-Ferras et al., 2012). 

 

 

1.3.5. PAX3/Pax3 Control of Cell Growth and Survival  

 

PAX3/Pax3 expression in cells imparts anti-apoptotic features to these cells, aiding 

survival (Walter et al., 2011; Ciarapica et al., 2013).  High Pax3/FKHR expression in 

rhabdomyosarcoma cells inhibits apoptosis (Ren et al., 2008), where as siRNA silencing 

of Pax3/FKHR expression in rhabdomyosarcoma cells induced significant cell apoptosis 

(Zeng et al., 2009).  Inhibition of Pax3 in mouse embryos induces neural tube defects, 

including spina bifida and exencephaly with accompanying high apoptosis in the 

unfused areas of the neural tube, demonstrating the crucial role of Pax3 in inhibiting 

apoptosis (Chappell et al., 2009).  Increased Pax3 expression in rhabdomyosarcoma, 

melanoma and neuroblastoma cell lines induced increased expression of Bcl-XL, which 

inhibited apoptosis (Medic et al., 2011).  Interaction of Pax3 HD with the enhancer 

element upstream of Bcl-XL activates Bcl-XL (Taylor et al., 2006).  Inhibition of 

apoptosis is further enhanced by Pax3 repression of phosphatase and tensin homolog 

(PTEN), while increased expression of PTEN induces apoptosis (Bhattacharya et al., 

2006; Li et al., 2007).  PTEN plays contributory roles in many pathways, but acts as a 

negative regulator of the phosphatidylinositide 3-kinase (PI3K) / v-Akt murine thymoma 
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viral oncogene homolog (AKT) signal transduction pathway, modulating cell 

proliferation and apoptosis (Li et al., 2007).  Pax3 expression in rhabdomyosarcoma and 

melanoma cell lines is inversely proportional to PTEN expression (Li et al., 2007; Medic 

et al., 2011).  Similarly, increased levels of Pax3-FKHR fusion protein can increase 

PTEN (Xia et al., 2009).  Suppression of Pax3-FKHR in cells, which induced increased 

cell apoptosis, demonstrated that Pax3 promotes survival of cells through modulation of 

PTEN (Li et al., 2007).  Interaction of Pax3 with a recognised HD binding motif of the 

PTEN promoter, revealed a mechanism by which Pax3 regulates PTEN to inhibit 

apoptosis (Li et al., 2007).  

 

 

1.3.6. PAX3/Pax3 and Embryonal Development 
 

During embryogenesis, PAX3/Pax3 is essential in regulating and promoting cell 

proliferation, migration and differentiation (Berlin et al., 2012). PAX3/Pax3 is associated 

with cell transformation as demonstrated in the chromosomal translocation t(2;13) 

(q35q14) PAX3-FKHR which characterises the solid tumour, alveolar 

rhabdomyosarcoma (ARMS) (Cao et al., 2010). The PAX3/Pax3 regulates cell migration 

from the NC or dorsal dermomyotome, during myogenesis/ melanogenesis or 

neurogenesis.  During development, PAX3/Pax3 plays an essential role in proper 

development of neural, cardiovascular, endocrine and musculature systems in humans 

and mice (Olaopa et al., 2011; Singh et al., 2011).  Cells derived from the neural crest 

ultimately form the peripheral nervous system (PNS), including sensory and motor 

nerves, as well as the pigment cells of the skin, hair, and inner ear, enteric ganglia, 

adrenomedullary cells, cardiac smooth muscle and mesenchyme (Wiese et al., 2012).    

 

 

1.3.6.1. PAX3/Pax3 and Neural Crest Development 
 

In developing embryos, the functional role of PAX3/Pax3 has been well demonstrated 

during the development of the neural crest (Betters et al., 2010).  The expression of 

initial neural crest indicators such as Pax3, Wnt1, Slug and Snail have the potential to 

induced tissue-tissue interactions between neural ectoderm and epidermis (Sanchez-

Ferras et al., 2012).  The neural crest consists of differentiated cells originating from the 

dorsal region of the neural tube (Edgar et al., 2013) (Fig. 1.4).   
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Figure 1.4 NC arises from the dorsal ectoderm (Taken http:/discovery.lifemapsc.com/ Edgar 

et al., 2013).  During embryonic development of the NC, cells are differentiated into many 

different cell types. 

 

 

Pax3 expression within the neural tube and dorsal neural groove commences at 

approximately embryonic day (E) 8.5 in the mouse embryo, climaxes between E9 and 

E12 then decreases from E13 and reduces to insignificant levels by E17 (Stoller et al., 

2008).  Expression of Pax3 at E9 occurs in neuroepithelium of the neural tube and then 

in the somites (Stoller et al., 2008).  Pax3 expression on E10 continues the full length of 

the dorsal half of the embryonic spinal cord and diminishes at E13 (Degenhardt et al, 

2010; Murdoch et al., 2012).  Following NC development, continual expression of Pax3 

has been established in the brain, spinal cord of the central nervous system (CNS) and 

melanocyte stem cells of the neural crest (Gutkovich et al., 2010; Sommer, 2011).    

 

 

Neural crest development, which commences between the non-neural ectoderm and the 

neural plate, spreads to new sites within the embryo (Lagha et al., 2010).  Cells of NC 

which pause at various sites, are differentiated into a sizeable group of cellular diversity 
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including melanocytes, cardiac NC, dorsal root and sympathetic ganglia and thymus 

(Fig. 1.5)  

 

 
 
Figure 1.5 Differentiated NC cells originated from the dorsal ectoderm 

(Taken from Carlson, 2013). 

 

 

The migration pattern of the crest has been categorised into two parts.   Initially, the 

dorsoventral cell migration, which occurs between the neural tube and the somites, 

develops into neural structures (Schmidt et al., 2008).  Finally, NC cells migrate 

mediolaterally dorsal to the somites, underneath the superficial ectoderm and develop 

into melanoblasts (Medic
1
 and Ziman, 2010, Minchin et al., 2013).  Migrating NC cells 

from the dorsal ectoderm are collected on either side of the neural tube and are known as 

the fourth germ layer because their cells go through a key developmental (epithelial-

mesenchymal) transition, to become migratory cells separating along specific pathways 

in the developing embryo (Betters et al., 2010; Carlson, 2013).  The development of the 

neural crest, which depends on normal function of PAX3/Pax3, is well demonstrated in 

humans and mice, which have deficient PAX3/Pax3 expression (Kubic et al., 2008; 

Nakazaki et al., 2009).   
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Isolated single NC cells from pre-migratory trunk NC induced by neuregulin-1 

proliferate and differentiate into Schwann cells (Ichi
2
 et al., 2010; Murdoch et al., 2012). 

Table 1.2 is a list of NC derived cells (Barraud et al., 2010; Nagoshi et al., 2009). 

Interestingly, these same cells differentiate into smooth muscle cells in the presence of 

TGFβ1 (Singh et al., 2011; Dong
2
 et al., 2012).   

 

 Table 1.2   Derivatives of the neural crest (adopted from Barraud et al., 2010). 
 

 

Derivatives 

 

Cell type or structure derived 

 

Peripheral nervous System (PNS) 

Neurons (sensory ganglia, sympathetic and 

parasympathetic ganglial and plexuses).  

Neuroglial cells  

Schwann cells. 

Endocrine Adrenal medulla 

Paraendocrine derivatives Calcitonin-secreting cells. 

Carotid body type 1 cells. 

Pigment cells Epidermal pigment cells.      

 

Facial cartilage and Bone 

Facial and anterior ventral skull cartilage 

and bones. 

 

 

 

Connective tissue 

Corneal endothelium and stroma. 

Tooth papillae. 

Dermis, smooth muscle and adipose tissue 

of skin of head and neck. 

Connective tissue of salivary, lachrymal and 

thymus, thyroid and pituitary glands. 

Connective tissue and smooth muscle in 

arteries of  aortic arch origin 

 

 

Derivatives of NC cells include: (1) sympathetic and parasympathetic nervous systems, 

sensory neurons and glial cells; (2) epinephrine-producing adrenal medullar cells; (3) 

pigment-containing cells of the epidermis; (4) skeletal and connective tissue components 

of the head (Carlson, 2013; Nitzan et al., 2013).  Differentiation of NC cells in the 

embryo occurs in two main pathways: (1) the “ventral” pathway, which produces PNS 

neurons and glial cells; (2) The “dorsolateral” pathway, which forms pigment-producing 

cells (Agoston et al., 2012).  Pigment precursor cells (melanoblasts) initially migrate to 

the dermis where they differentiate and further migrate to the epidermis (Eigelshoven et 
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al., 2009; Singh et al., 2011).  Cells of NC expressing neurotrophic tyrosine kinase 

receptor type 3 become neurons or glial cells, while cells expressing Kit become 

melanocytes (Thomas et al, 2009).  PAX3/Pax3 homozygous and heterozygous 

mutations produced aberrations in several cells originating from the neural crest (Singh 

et al, 2011).   

 

 

1.3.6.2. PAX3/Pax3 and Neurogenesis  
 

In murine embryos, Pax3 is expressed during early neurogenesis in the developing 

nervous system (Boshnjaku et al., 2011).  Pax3 expression identified in day 8.5 mouse 

embryos is restricted to the dorsal neuroepithelium and segmented dermomyotome 

(Boshnjaku et al., 2011).  Detection of Pax3 expression during early neurogenesis was 

demonstrated only in the ventricular zone mitotic cells of embryonic spinal cord and in 

specific areas of the diencephalons, midbrain and hindbrain (Murdoch et al., 2012).  

Pax3 expression occurred in E10-E12 embryos in the NC cells of developing spinal 

ganglia (Wiese et al., 2012).  Neural differentiation requires Pax3 expression (Dong
1
 et 

al., 2012).    

 

 

Pax3 mRNA expression which occurs in early and later phases of the Schwann cell 

lineage, modulates myelin basic protein expression (Conrad et al., 2009).  Early 

detection of Pax3 mRNA expression in NC cells was confined to neurons (Boshnjaku et 

al., 2011).  Cultures of NC cells, which demonstrated significant increases in Pax3 

mRNA expression in the presence of fibroblast growth factor (FGF), indicated induction 

of neurogenesis.  Sensory neurons produced from precursors arising in the NC are 

regulated by Pax3 expression (Lassiter et al., 2010). Antisense oligonucleotide 

inhibiting Pax3 expression in sensory neuron precursors of normal mice resulted in 80-

90% inhibition of sensory neuron formation relative to controls (Thompson et al., 2008).  

In cell cultures of NC from splotch mice, five-fold fewer sensory-like neurons were 

produced compared with numerous sensory-like neurons observed in normal mice.  The 

role of Pax3 in the differentiation pathway of peripheral neurons was demonstrated 

through the insignificant modulatory influence of antisense PAX3 on the survival of 

sensory neurons and precursor cells (Yamauchi
2 

et al., 2009). 
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Enteric ganglia formation requires Pax3 expression (Wiese et al., 2012).  In man, an 

enteric ganglia defect arising from lack of Pax3 expression, triggers gastrointestinal 

migration disorders, including Hirschprung’s disease (Boshnjaku et al., 2011).  Pax3 

regulates transcription of the Hirschsprung’s disease gene, Ret, by binding and 

modulating the PD in the Ret promoter, adjacent to a Sox10-binding site (Fenby et al., 

2008).  Neural progenitors arising from differentiation of embryonic stem cells, had 

increased expression of Pax3 and other neural-related genes such as  Pax6 and 

mammalian achaete-scute homologue 1 (Gee et al., 2011).    

 

 

1.3.6.3. PAX3/Pax3 in Melanocyte Stem Cell Development 

 

The essential role of Pax3 in developing neural crest-derived melanocytes is shown by 

the pigmentation anomalies of both humans and mice observed, having PAX3/Pax3 

mutations (Zhang
1 

et al., 2012).  Even though the commencement of neural crest 

development into the melanocytic lineage is seemingly unrelated to Pax3 expression, 

Pax3 is required for proliferation of embryonic melanoblasts and prevention of 

differentiation of melanoblast precursor cells to melanocytes (Medic
2
 and Ziman, 2010).  

During melanogenesis, the survival of melanoblast and migration into developing hair 

follicles of skin required the expression of Mitf (Dong
2
 et al., 2012; Wan et al., 2011).  

Certain features of neural crest precursors are maintained in adult melanocytes since 

melanocyte stem cells have the ability to migrate (Kubic et al., 2008).  This attribute is a 

contributory factor for potential development of metastatic melanoma (Medic
1
 and 

Ziman, 2010). 

 

 

Melanocytes are pigment-producing cells of the skin produced by the NC. Melanocyte 

stem cells give rise to temporary amplifying cells and differentiated melanocytes (Kubic 

et al., 2008). While the expression of PAX3/Pax3 promotes proliferation of melanocytes, 

it is insufficient to maintain differentiated melanocytes (Sommer, 2011; Wahlbuh et al., 

2012).  Kubic et al., (2008) reported that PAX3/Pax3 expression, which induced 

melanocyte lineage progression, concurrently inhibited melanocyte differentiation, via 

activation of MITF and SOX10.  (Fig. 1.6).   
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Figure 1.6 Melanogenesis.  A, Concurrent activation of Mitf and inhibition of Dct expression 

induced by Pax3 and Sox10.  The expression of Sox10 and Pax3 modulate the expression 

patterns of Dct and Mitf.  B, changes in melanocyte gene expression patterns are induced by Wnt 

signaling (taken from Kubic et al., 2008). 

 

 

In the mature mouse skin, stem cells are controlled to preserve multipotency, prevent 

apoptosis and remain dormant, pending requirement for daughter cells (Lacosta et al., 

2007; Medic et al., 2011).   In mice, melanocyte stem cells are located in specific areas 

within the lower part of the hair follicle bulge (Yang et al., 2008).  This area is 

composed of numerous skin stem cells, including follicular stem cells and keratinocytes 

(Djian-Zaouche et al., 2012).  Cultured cells isolated from bulge areas grew into cell 

lineages similar to those of adult skin (Qiu et al., 2010).  The cell migratory capability 

and flexibility demonstrated in related studies indicated that the niche melanocyte stem 

cells maintained the characteristics of their neural crest origin (Yamaguchi
1 

and Hearing, 

2009).  Colonization of neighbouring hair follicle bulge regions occurs by melanocyte 

stem cells after leaving their primary location and then migrating to the epidermis (Gad 

et al., 2008; Curchoe  et al., 2010).  Pigment-producing offspring are produced in this 

area by melanocyte stem cells (Zhao et al., 2009; Nishimura, 2011).  In human and 

mouse skin, isolated neural crest-derived cells characterised as skin-derived precursor 
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cells, have the potential to differentiate into neural and mesodermal cell lineages 

(Gianakopoulos et al., 2011).   

 

 

The expression of both Dct and Pax3 has been identified in isolated melanocyte stem 

cells without the expression of other melanocyte indicators such as Lymphoid enhancer 

binding factor 1 (Lef1), Mitf, tyrosine-protein kinase Kit (Kit), Sox10 and tyrosinase 

(Tatlidil et al., 2011).  Development and differentiation of melanocytes requires the 

expression of Pax3, Mitf and Sox10 (Chen
2
 et al., 2010; Dong

2
 et al., 2012).  Both Pax3 

and Sox10 induce activation of Mitf (Wan et al., 2011; Hauswirth et al., 2012).  This 

combined regulation of Mitf establishes equilibrium between expansion of melanocyte 

cell proliferation and stem cell type (Sommer, 2011). The promotion of a lineage-

restricted stem cell type being Pax3(+), Sox10(−) and Mitf(−), has been demonstrated to 

be dormant and fail to undergo apoptosis (Djian-Zaouche et al., 2012).   

 

 

In melanocyte stem cells, the molecular balance of Mitf, Sox10 and Pax3 is greatly 

affected by the Wnt signaling pathway (Sanchez-Ferras et al., 2012).  Melanocyte stem 

cells are directed either to differentiate or to avoid senescence by Wnt, or its downstream 

activator protein beta-catenin (Hutcheson et al., 2009; Wong
1 

et al., 2013).  The 

functional modulation of Pax3 and Mitf stimulates beta-catenin to induce differentiation 

of cells (Mascarenhas et al., 2010).  The presence of beta-catenin opposes Pax3 

inhibition of cell differentiation (Hong and Bain, 2012).  The repression of Dct 

expression by Pax3 requires Grg4 as an upstream enhancer co-repressor (Li et al., 

2009).  Both Pax3 and Dct expression have been demonstrated in melanocyte stem cells 

(Jiao et al., 2006).  In the nucleus, activated beta-catenin induces the production of a 

beta-catenin/Mitf/Lef1 activator complex, which inhibits the Pax3/Grg4 repressor 

complex, allowing the expression of Dct (Hutcheson et al., 2009; Wong
1
 et al., 2013).  

The production of immature melanoblasts and melanocytes without expression of Dct 

occurs following inhibition of beta-catenin by gene deletion or increased expression of 

the Wnt inhibitor dickkopf-related protein 1 (DKK1) (Kennedy et al., 2009).  Therefore, 

Dct expression in melanocyte precursors expressing Pax3 requires active beta-catenin 

(Hutcheson et al., 2009; Wong
1
 et al., 2013).  Activation of Mitf expression requires a 

direct Wnt signaling pathway through downstream signaling of Wnt3a via a Lef1 binding 
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site located 3' to the Pax3 response element in the Mitf promoter (Sanchez-Ferras et al., 

2012).  The Wnt inhibitors, including disabled homolog 2 (Dab2), DKK3 and Sfrp1, can 

induce repression of this Wnt signaling pathway in melanocyte stem cells (Pallafacchina 

et al., 2010).  Many Wnt inhibitors, including secreted frizzled-related protein 1 (Sfrp1), 

Wnt inhibitory factor 1 (Wif1), DKK4 and Dab2 are expressed by melanocyte stem cells 

(Su
3
 et al., 2013).  Inhibition of Wnt signaling induces melanocyte differentiation 

(Mousavi and Jasmin, 2006) and maintains stem cells Wnt signaling sustains 

melanoblasts (Bosserhoff et al., 2011).  For instance, embryonic melanoblast 

development requires Wnt1 and Wnt3a (Fenby et al., 2008).  Pax3 directly activates 

Wnt1 expression through a genomic enhancer (Fenby et al., 2008).  Wnt inhibitors can 

induce melanocyte stem cells and melanocytes to respond inversely to the Wnt signaling 

pathway (Li et al., 2009; Zhao et al., 2009).  Melanocyte proliferation is induced by 

moderate expression of Mitf, whereas increased Mitf expression promotes melanocyte 

differentiation (Sommer, 2011).  A Wnt-Pax3-Mitf complex model in which Wnt 

signalling was inhibited has been demonstrated to aid dormant type Pax3 (+), Mitf (−) 

melanocyte stem cell proliferation.  Moderate expression of Wnt induced expansion of 

Pax3(+), Mitf(+) daughter cells, while high expression of Wnt stimulated Pax3(−), 

Mitf(+) differentiated melanocytes (Kubic et al., 2008; Medic
2
 and Ziman, 2010).   

  
 

Pax3 transcriptional modulation of its direct downstream targets Mitf, Dct and 

tyrosinase-related protein 1 (Tyrp1) can induce inhibition or promotion of 

melanogenesis in melanocytes (Hou and Pavan, 2008).  The capability of Mitf to induce 

activation of several melanocyte-specific genes and to regulate proliferation or 

differentiation of vital cells means that Mitf has been described as a ‘master regulator’ of 

melanogenesis (Berlin et al., 2012).  The binding of a Mitf motif to the M-box induces 

the activation of the melanocyte differentiation genes, Tyrosinase, Tyrp1 and Dct 

(Thomas et al., 2009).  

 

 

Activation of Mitf is induced by binding of Pax3 PD and HD to Mitf transcriptional 

initiation site via a cis regulatory enhancer located upstream (Hirai et al., 2010).  Mitf is 

synergistically activated following interaction of both Sox10 and Pax3 with the 
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consensus sites of the Mitf promoter (Bondurand et al., 2007).  The activation of Mitf by 

Pax3 indictaes promotion of melanoblast differentiation to melanocytes.  

 

 

The expression of Dct is activated by Mitf, while expression of Dct and the binding 

capability of Mitf to the Dct promoter is inhibited by Pax3.  The binding capability of 

Mitf in the Dct enhancer sequence, is actively inhibited by Pax3 repressor complex with 

Lef1 and Grg4. In the presence of beta-catenin, Lef1 forms a complex with other binding 

partners in combination with Mitf and beta-catenin, which dislodges Pax3 from the Dct 

enhancer (Brunelli et al., 2007).  In the presence of Sox10, Mitf synergistically triggers 

Dct expression (Jiao et al., 2006).  Sox10 in combination with Pax3 is unable to induce 

activation of Dct in a cell culture system (Mascarenhas et al., 2010).  Although the 

molecular pathway that regulates melanocyte development is not recognised in its 

entirety, Pax3 modulation of Lef1, Mitf and beta catenin is indicative of differentiation 

of melanocyte stem cells to melanocytes and subsequent cell proliferation and survival 

(Medic
2
 and Ziman, 2010). 

 

 

1.3.6.4. PAX3/Pax3 and Cardiac Development 

 

The NC is an essential component of cardiac development.  Cells of the cardiac cranial 

NC migrate from the hindbrain into the outflow tract of the heart where they participate 

in the division of the septum into pulmonary and aortic channels (Nelms et al., 2011).  

Cardiac developmental abnormality can cause malfunction in the separation of the 

outflow, faulty vessels of the pharyngeal arteries and remodelling of the aortic arch 

(Sambasivan et al., 2009). 

 
 

Complete cardiac NC cell migration to the developing heart requires normal Pax3 

function.  Defective neural tube malformation, defective cardiac outflow tract and aortic 

arches have been demonstrated in Pax3-deficient splotch mice (Morgan et al., 2008; Nie 

et al., 2008).  In nitrofen-treated embryos, the expression of Pax3 was significantly 

decreased in the heart (Gonzalez-Reyes et al., 2006), together with congenital 

diaphragmatic hernia and other malformations in the offspring after abnormal cardiac 

development from NC (Olaopa et al., 2011).  During tubular heart patterning, the 
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ladybird-like homeobox (Lbx1) is expressed in cardiac NC cells (Jain et al., 2011).  In 

mice, defective heart loop and changes in gene expression patterns have been observed 

following inactivation of the Lbx1 (Kumar et al., 2007).  The normal differentiation and 

function of the myocardium during early development of the heart, requires a negative 

regulatory function of both Pax3 and the Lbx1 (Zhang and Wang, 2011).  Expression of 

Pax3 and Lbx1 induces a repressor that later inhibits the expression of both Pax3 and 

Lbx1, depending on the type of tissue and stage of development (Zhao et al., 2009).  

 
 

Pax3 induces repression of muscle segment homeobox 2 (Msx2) expression directly by a 

preserved Pax3 interaction site in the Msx2 promoter (Miller et al., 2007).  In splotch 

mutant mice, increased expression of Msx2 preventes cardiac development from NC 

(Patterson et al., 2010).  Reduced Pax3 expression and aberrant Pax3 protein induces 

defective apoptosis in the heart (Gonzalez-Reye et al., 2006; Lacosta et al., 2007).   In 

mice, deficiency of Pax3 expression, lead to lower numbers of cells migrating into the 

pharyngeal arch, caused deficiencies in cardiac outflow tract and arterial smooth muscle 

cells (Nie et al., 2008; Sambasivan, et al., 2009).   

 

 

1.3.6.5. PAX3/Pax3 and Myogenesis 
 

PAX3/Pax3 is crucial for the development of skeletal muscles originating from the 

paraxial mesoderm enclosing the neural tube (Liu et al., 2006).  Early restriction of 

expression of both PAX3 and PAX7, demonstrated in dermomyotome cells, induced the 

development of cells into dermis or skeletal muscle of the trunk and limb (Lee
1
 et al., 

2013).  Evidence from a study of muscle precursors, suggested that expression of Pax3 

induced myoblast migration and expression of the myogenic regulatory transcription 

factors, myogenic differentiation antigen 1 (MyoD1), myogenin (Myf-4), myogenic 

factor-5 (Myf-5) and myogenic factor-6 (Myf-6) (Fig. 1.7) (Simone and Amy, 2010).   
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Figure 1.7 Pax3 and Pax7 are involved in myogenesis in the embryo and in the adult (taken 

from Simone and Amy, 2010).  Both PAX3 and PAX7 activates MyoD1, Myf5, Myf6 and 

myogenin to promote the development of progenitor cells, myoblast and  myotubes into a mature 

muscle.  Aberrant  PAX3 and PAX7 at various stages of  myogenesis leads to ARMS and ERMS. 

 

 

The myogenic transcription factors (PAX3, PAX7, MyoD, Myf5, myogenin and Myf6), 

which direct both embryonic myogenesis and terminal differentiation could lead to 

embryonal rhabdomyosarcoma (ERMS) and ARMS when aberrantly expressed (Daubas 

et al., 2013).  The expression of Pax3 decreases during both muscle tissue differentiation 

and muscle-specific transcription factor activation (Goljanek-Whysall et al., 2011) 

whilst ectopic expression of Pax3 has been demonstrated to induce inhibition of 

myoblast differentiation into myotubes (Scuoppo et al., 2007; Cairns et al., 2012). 

 
 

In limb muscle development, migration of hypaxial muscle precursors was induced by 

decreasing Pax3 expression, thus inhibiting C-Met tyrosine kinase receptor (Boutet et 

al., 2010).  Inhibition of Pax3 expression in mice, which induced normal myogenesis in 

the trunk, inhibited myogenesis in the limbs (Hutcheson et al. 2009).  In a mouse 

pluripotent stem cell line, increase Pax3 expression induced cell proliferation and 

migration necessary for myogenesis (Belay et al., 2010), where as  decreased PAX3 

expression inhibits activation of both MyoD and myogenin to prevent terminal 

differentiation (Krskova et al., 2011; Calhabeu et al., 2012).  Decreased Pax3 expression 
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can prevent differentiation of muscle progenitors also by repressing Met expression and 

migration to sites of muscle terminal differentiation (Grabellus et al., 2010), yet 

activation of Pax3 in muscle tumours induces increased expression of C-Met (Grabellus 

et al., 2010).  In a study of P19 murine embryonal carcinoma cells, Wnt3 induced 

increased expression of Pax3, which in turn activated Six1, Eya2 and dachshund gene 

homologue 2 (Dach2).  This demonstrates that skeletal myogenesis requires Pax3 

transcriptional regulatory activity (Goljanek-Whysall et al., 2011).  

 
  

During development of the myogenic lineage, PAX3 and PAX7 show overlapping co-

expression patterns (Bae et al., 2013).  Co-expression of both Pax3 and Pax7 in mouse 

myotome at E10.5 demonstrated that approximately 87% of cells were Pax3
+
Pax7

+
, 

10% were Pax3+ only, and 3% were Pax7
+
 only (Deries et al., 2010).   A spatial and 

temporal expression difference has been demonstrated in areas where PAX3 and PAX7 

expressed (Olguín et al., 2011).  In skeletal myogenesis, high expression of Pax3 

induces both cell migration and myoblast differentiation (Sousa-Victor et al., 2011).  

Expression of Pax3 in the progenitors of adult skeletal muscle signified that Pax3 is 

essential for myogenesis after birth (Relaix et al, 2005; Boutet et al., 2010).  The role of 

Pax3 and Pax7 in myogenesis has been established using mutant mice (Griffith et al., 

2009).  The complete absence of limb and ventral trunk muscles in Splotch (Pax3
-/-

) 

mice is suggestive of crucial roles for Pax3 and Pax7 (Bradshaw et al., 2009).  PAX3 

mutations in man has been demonstrated by Buchberger et al., (2007) to be associated 

with limb muscle hypoplasia in patients with the disorder ‘Whole Stomach’, since a 

screene of these patients showed mutation in PAX3.  The functional activities of PAX3 

and PAX7 in myogenesis are strongly related but the absence of PAX3 expression is not 

counteracted by the presence of PAX7 (Buckinghan
2
 and Relaix, 2007).   

 
 

 1.3.7. PAX/3Pax3 Gene Alternative Splicing 

 

Alternative splicing (AS) of PAX3/Pax3 is a major posttranscriptional mechanism in 

which multiple discrete PAX3/Pax3 transcripts are generated (Biamonti et al., 2012; 

Chen et al., 2012). PAX/Pax proteins have been demonstrated to modulate 

transcriptional activity of downstream genes, through binding of DNA promoter 
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sequences with their highly conserved PD at the amino (N)-terminal end (Martin and 

Wang,  2011; Berlin et al., 2012).   Phosphorylation, which is essential for regulation of 

binding interactions with other protein binding elements to induce transcription occurrs 

in the conserved proline-threonine-serine-rich sequence of the TA within the carboxyl 

(C)-terminal end of the PAX/Pax protein (Wang
1
. et al. 2008; Holland and Short, 2010).  

Various groups of PAX/Pax genes, which have been identified to undergo AS, resulted 

in different isoform, were differentiated by their varying number of exons or length 

(Holland and Short, 2010).  A comparison of PAX/Pax in both vertebrates and 

amphioxus demonstrated that 52 variants occur in vertebrates while 23 variants occur in 

amphioxus (Chen
2 

et al., 2010).  The ancestral functional activities and expression 

patterns of PAX/Pax proteins are conserved in vertebrates (Chen et al., 2012).  The 

distribution of transcript variants encoding a PD with an alternative carboxyl terminus 

with enhanced transactivational activity is not well-understood (Hawkins et al., 2010).   

 

 

Different expression patterns and activities of PAX3 C-terminal variants have been 

demonstrated in melanocytes and melanoma cell lines.  However, in primary myoblasts 

the most highly expressed isoform is not clear, even though the involvement of full-

length variants was investigated (Paternoster et al., 2012).  Extra variants of Pax3 in the 

neural plate of vertebrates have been suggested to allow novel functions (Boutet, et al., 

2010).  Correspondingly, in the case of Pax4 and Pax6, vertebrate-specific AS events 

occurring on exon 5a are associated with the development of the eye (Holland and Short, 

2010).  The occurrence of AS at the 3'-end has been demonstrated in PAX7 

(Charytonowicz et al., 2011).   Exons 1–8 and 1–9, demonstrated in PAX7A and 

PAX7B respectively indicate that exon 8 is spliced at a conserved site and then joined to 

exon 9 (Chen et al., 2012).  Murine Pax7B and human PAX7B are generally 97% 

homologous and 100% homologous at the C-terminus, whereas human PAX7A and 

mouse Pax7A are 96% homologous upstream of the 8th exon but only 7% homologous 

downstream (Wang
1 

et al., 2008; Olguín and Pisconti, 2012). 
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1.3.7.1. PAX3/Pax3 Gene Isoforms  
 

PAX3/Pax3 and PAX7/Pax7, which are similar in structure, extend to 10 exons (Wang
2
 

et al. 2008; Holland and Short, 2010).  During development, AS occurring in the 

encoding region of the N-terminal PD, induces expression of multiple variants 

(Paternoster et al., 2012).  The diverse DNA-binding events displayed by N-terminal 

Pax3/7 variants, are expected to modulate distinct expression patterns of a range of 

downstream target genes PAX3 variants demonstrated in humans have different            

C-termini (Charytonowicz et al., 2011).  In humans, mice and other organisms, an extra 

alternative C-terminal variant of Pax3 has been demonstrated (Wang et al., 2007).  

Parker et al. (2004) first identified new isoforms.  During AS, splicing of the 8th exon to 

the 9th exon at a conserved point produces the major variants, PAX3c and PAX3d.  The 

transcription of Pax3c and Pax3d in mice, produced an extra inactive Pax3g deficient in 

exon 8 (Wang
2
 et al., 2008).   Studies of PAX3 structure and developmental roles in 

human tissues and tumours, identified regular AS events occurring at the 5’ end of exon 

3, resulting in the inclusion or exclusion of a single codon, encoding a glutamine residue 

that modifies the PD box to generate two isoforms Q+ and Q- respectively (Short and 

Holland, 2008; Sumegi et al., 2010).  PAX/Pax3 has the ability to modulate various 

developmental activities because of AS (Gutkovich et al., 2010) and PAX3/Pax3 

variants play various physiological roles in transcription, sequence-specific DNA 

binding, embryogenesis, oncogenesis and other biological processes, such as migration 

of NC cells, neural tube closure and sensory recognition of sound (Castranio and 

Mishina, 2009).  PAX/Pax3 AS, which generally alters the C-terminal end of the HD, 

mostly induce a frame shift, which in turn changes the function of the TA (Gutkovich et 

al., 2010).   

 

 

Currently seven main AS isoforms of PAX3 are known in man: PAX3a, PAX3b, PAX3c, 

PAX3d, PAX3e, PAX3g and PAX3h isoforms which have different expression patterns, 

suggesting unique functions and Pax3d has been identified as the most functional and 

active variant in cancer (Fig. 1.8), (Parker et al., 2004; Wang et al., 2007).  
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Figure 1.8 The schematic structure of seven alternatively spliced PAX3 isoforms both 

PAX3a and PAX3b were amplified  using exon 3 forward and exon 5 reverse primers, contained 

only PD (Red); PAX3c was amplified  using exon 7 forward and intron 8 reverse primers, 

contained PD, HD (green) and TA (ligh aqua); PAX3d  was amplified  using exon 8 forward and 

intron 9 reverse primers, contained PD, HD and TA; PAX3e was amplified  using exon 8 

forward and intron 10 reverse primers, contained PD, HD and TA; PAX3g was amplified  using 

exon 7 forward and intron 9 reverse primers, contained PD, HD and TA; PAX3h was amplified  

using exon 7 forward and intron 10 reverse primers, contained PD, HD and TA (Taken from 

Parker et al., 2004). 
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The PAX3a transcript extends from exons 1 to 4 whilst PAX3b, which extends from 

exons 1 to 5, is truncated early in intron 4.  It lacks the HD and the carboxyl-terminal TA 

(White et al., 2008; Graveley, 2009).  PAX3a and PAX3b variants vary in the 3' UTR, 

which includes an alternative segment in the coding region, causing a frameshift and 

lacks many segments in the 3' coding areas, compared to other PAX3 variants (Graveley 

et al, 2011).  The resulting PAX3a and PAX3b proteins have distinctly shorter C-termini 

than other PAX3 proteins (Charytonowicz et al., 2011).  PAX3b is highly expressed in 

most tissues but PAX3a occurs only in oesophagus, skeletal muscle and cerebellum 

(Kang and Krauss, 2010). 

 
 

Structurally the PAX3c transcript consists of a PD, HD and a carboxyl-terminal TA that 

extends to exon 8.  It varies in the 3' UTR and contains an alternative splice site in the 3' 

coding region that differs from other PAX3 variants (Graveley, 2009).  PAX3c interacts 

with DNA as monomers or as homo-and/or heterodimers in a sequence-specific fashion 

(Mudge et al., 2011).   

 

 

The PAX3d transcript, which uses an alternative in-frame splice site in the 5' coding 

region, varies in the 3' UTR and retains an alternative splice site in the 3' coding region, 

(Graveley, 2009).  The resulting PAX3d protein, also known as PAX3dQ+, structurally 

consists of a PD, HD and carboxyl-terminal TA that extends to exon 9.  PAX3d does not 

contain intron 8 and translation continues from exon 8 to exon 9.  The resulting PAX3d 

protein is longer and has a distinct C-terminus compared to other PAX3 proteins 

(Charytonowicz et al., 2011).  

 

 

Structurally the PAX3e transcript, which consists of a PD, HD and a carboxyl-terminal 

TA, is made up of exons 8, 9 and 10 but lacks introns 8 and 9.  It differs in the 3' UTR 

and contains an alternative splice site in the 3' coding region different from other PAX3 

variants (Paternoster et al., 2012).  The resulting PAX3e protein is the longest and has a 

distinct C-terminus (Charytonowicz et al., 2011).  
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The PAX3g transcript, which consists of a PD and HD, but lacks a carboxyl-terminal 

TA, extends to exon 8.  It is a truncated isoform of PAX3d lacking part of the TA 

encoded by exon 8, varies in the 3' UTR and maintains an alternative splice site in the 3' 

coding region different from other PAX3 variants (Zhang
2
 et al., 2009).  The resulting 

PAX3g protein is shorter and has a distinct C-terminus (Charytonowicz et al., 2011).  

 

 

The PAX3h transcript consists of a PD and a HD and like PAX3g lacks a part of the TA 

but extends to exon 10.  PAX3h is a truncated isoform of PAX3e, differs in the 3' UTR 

and contains a different alternative splice site in the 3' coding region (Zhang
2
 et al., 

2009). The resulting PAX3h protein is shorter and has a distinct C-terminus 

(Charytonowicz et al., 2011).  

 
 

1.3.8. PAX3/Pax3 and Development of Disease 

 

Mutations or dysregulation of PAX3/Pax3 provide a clear understanding of its essential 

functional activities in embryonic development but also trigger detrimental syndromes 

(Waardenburg’s syndrome and Craniofacial-deafness-hand syndrome).  Its aberrant 

expression results in various cancers including rhabdomyosarcoma, melanoma and 

neuroblastoma (Zohn, 2012).   

 

1.3.8.1. PAX3/Pax3 Gene Mutations 
 

Functional defects of Pax3 occur in Splotch mice and human Waardenburg’s syndromes 

I and III, while Pax3 overexpression or re-expression occur in neuroblastoma, 

melanoma, rhabdomyosarcoma and chromosomal translocations are observed in ARMS 

(Nie et al., 2008; Hayashi et al., 2011).  Germ-line mutations of PAX3 produce 

Waardenburg’s syndrome types I and type III, a non-neoplastic autosomal dominant 

disorder distinguished by hearing loss and pigmentary defects (Yang
2
 et al., 2012).  The 

common feature observed in this abnormality is missense mutations, occuring in 

encoding regions of the PD or HD (Kohli et al., 2010).  Additionally, there are minor 

deletions, insertions, as well as a few base substitutions at splicing sites, modify the 

reading frame (Kozawa et al., 2009).  More than a few cases of substantial deletions and 
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chromosome 2 translocations in rhabdomyosarcoma and missense mutation in 

Craniofacial-deafness-hand syndrome have been demonstrated (Nie et al., 2008). 

 

 

1.3.8.2. Pax3 and the Splotch Mouse 

 

The heterozygous Splotch (Sp) mouse shows an incomplete lack of Pax3 functional 

activity and is characterised by a white belly spot on the stomach, tail and feet (Greene 

et al., 2009).  Splotch mice possess a Pax3 mutation in the third intron producing four 

alternative transcripts, three of which result in truncated mRNAs with incomplete or 

missing domains due to early termination (Thompson et al, 2008).  The fourth transcript 

lacks the end of the PD and the OP (exon 4) is spliced out (Bradshaw et al., 2009).  

Homozygous Sp2H mutation, resulting from the deletion of 32bp within exon 3 results 

in embryonic death by E16.  A Pax3 semi-dominant mutation has been demonstrated to 

produce the Sp2H (Griffith et al., 2009).  In mice, both Pax3 and Sp loci were initially 

tightly mapped together on chromosome 1 and shortly after recognised as an identical 

gene (Greene et al., 2009).  In mice, six Splotch mutants, which developed from several 

Pax3 deletions or mutations, which induce a variety of phenotypic gravity (Brzóska et 

al., 2009). The first Splotch (Sp) and the Splotch delayed (Spd) were produced by 

random mutations within Pax3, while the Sp retarded (Spr), Sp1H, Sp2H and Sp4H 

mutants were formed after X-irradiation (Griffith et al., 2009; Cabrera
1
 et al., 2012).   

 

 

Sp homozygous with cardiac and neural crest defects, which die mid-gestation exhibit 

neural tube and neural crest product abnormalities (Davidson et al., 2007).  Derivatives 

of the neural crest associated with developmental problems include the CNS, Schwann 

cells, melanocytes, dorsal root (sympathetic) ganglia, thyroid, thymus, cardiac tissue 

such as the aortic arches and myotome-derived limb muscles (Snider et al., 2007; 

Nakazaki et al., 2009). Pigmentation malformations occurr owing to inefficient 

melanocyte precursor (melanoblast) proliferation and migration (Zhou et al., 2008; 

Bosserhoff et al., 2011).  Sp, Sp1H and Sp2H mutants have related phenotypes, which 

imply that they are all produced from loss of Pax3 functional activity (Bradshaw et al., 

2009).  The Splotch-delayed (Spd) homozygous mouse was produced because of a 

spontaneous transversion of glycine to arginine in the PD that permited a full length 



70 
 

protein (Greene et al., 2009).  Homozygous Spd composed spina bifida, which permited 

survival until birth.  Analysis of the homozygous Spd embryo demonstrates that neural 

tube defects, which are confined to the posterior end, are different from the whole neural 

tube defects identified in Sp, Sp1H and Sp2H mutants (Greene et al., 2009).  Spd 

mutants exhibit a decreased size and number of spinal ganglia, in contrast to Sp mice 

which lack spinal ganglia altogether (Griffith et al., 2009).  Spd mice display a reduction 

in limb bud muscle primordia that mature into the septum of the truncus arteriosis in the 

heart.  Defects caused by Spd mutants are less severe than Sp mutants and indicate that 

Spd is produced by incomplete loss of Pax3 functional activity.  The homozygous 

Splotch-retarded mutant (Spr) appears to be a severe phenotype, which induces 

embryonic death before implantation.  Spr is produced by a huge chromosomal deletion 

of 14-16 centimorgans in Pax3 (Snider et al., 2007).  In heterozygous Spr mice, 

pigmentation abnormalities and growth retardation have been demonstrated (Griffith et 

al., 2009).  Sp4H is produced by a complete deletion of Pax3 that induces embryonic 

death shortly after implantation (Bradshaw et al., 2009).   

 
 

1.3.8.3. PAX3/Pax3 and Waardenburg’s Syndrome  
 

Waardenburg syndrome (WS), a widespread cause of inherited deafness in infants is an 

autosomal-dominant disorder characterised by sensorineural hearing loss (of varying 

severity), dystopia canthorum (lateral displacement of the inner corners of the eye) and 

pigmentary disorders of the skin, hair and eye (Corry et al., 2008; Kapoor et al., 2012).  

WS is categorised into four variants: WSI, WSII, WSIII and WSIV.   WSI and WSIII 

were the only types of WS previously identified to be linked with PAX3 mutations until 

recently, when WSII was demonstrated to be associated with PAX3 mutations (Hazan et 

al., 2013; Yang
2
 et al., 2013).  WSIII is usually connected with deletions of the long arm 

of chromosome 2 comprising multiple genes including PAX3, whereas WSI is 

commonly linked with intragenic mutations in PAX3 (Daneshi et al., 2005; Wildhardt et 

al., 2013).  WSII is heterogeneous and can also be produced by mutations in the MITF 

gene (Grill et al., 2013).  WSIV is triggered by mutations in endothelin-3 (EDN3), 

endothelin receptor type B (EDNRB) and SOX10 (Jiang
1
 et al., 2011; Fernández  et al., 

2014). 
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The similarity between WS types in humans and Splotch mice soon led to the idea that 

similar genes induced these conditions or they were involved in the same molecular 

pathways (Demirci et al., 2011; Otręba et al., 2013).  Other signs of WSI include a broad 

nasal bridge and pigmentation defects, which subsequently cause early hair greying, iris 

heterochromia and patchy skin hypopigmentation (Gad et al., 2008).  Diverse Pax3 

mutations, which cause WS, induce missense or frameshift mutations in the highly 

conserved areas of exon 2, which modifies the DNA binding affinity of the PD causing 

loss of Pax3 function (Hager et al., 2010).  WSIII, well- known as Klein-Waardenburg 

syndrome, presents with symptoms similar to WSI and causes musculoskeletal 

abnormalities (Wollnik et al., 2003).   

 
 

1.3.8.4. PAX3 and Craniofacial-Deafness-Hand Syndrome   
 

Craniofacial-deafness-hand syndrome (CDHS) is an autosomal dominant PAX3 mutation 

categorised by distinct facial characteristics, a small, short nose with slit-like nares, 

hypertelorism, acute hearing loss and short palpebral fissures.  Other symptoms include 

aberrations of hand muscles that can inhibit movement at the wrist and ulnar deviations 

of the fingers, absence or hypoplasia of the nasal bones and extreme sensorineural 

deafness (Gad et al., 2008; Sonnesen et al., 2008).  Defective neural crest cells result in 

absence of functional specialisation resulting in overgrowth of craniofacial bones and 

impairment of muscles and nerve tissues (Haldeman-Englert et al., 2012).  A missense 

mutation in the PD, which was detected in a family of three (a mother and two children), 

defined this syndrome (Sommer and Bartholomew, 2003).  This mutation affects PAX3 

binding to DNA and inhibits PAX3 regulation of downstream target genes (Mues et al., 

2009).   

 
 

1.3.9. PAX3/Pax3 in the Development of Cancer 
 

Aberrant PAX3/Pax3 gene expression, which affects its downstream targets, induces 

disruption of the various signalling pathways regulated by PAX3/Pax3 (Sanchez-Ferras 

et al., 2012). Abnormal PAX3/Pax3 expression is associated with embryonal 

rhabdomyosarcoma (ERMS), alveolar rhabdomyosarcoma (ARMS), Ewing’s sarcoma 

and neural-crest-derived tumours including cutaneous melanoma, neuroblastoma and 
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neuroectodermal tumours such as squamous cell lung carcinomas (Michael et al., 2012).  

Repression of an aberrant Pax3 expression prevents inappropriate cellular activities and 

implicates its direct involvement in tumourigenesis.  For instance, repression of Pax3 

expression induced inhibition of cell proliferation both in vitro and in vivo in young mice 

(Pham et al., 2012). Knockdown of pax3 expression by miRNA stimulated increased 

expression of MyoD1 to induce cell apoptosis (Hirai, et al., 2010).   

 

 

During development, the expression of PAX3 promotes cell cycle and proliferation of 

Schwann cells whilst regulating Schwann cell differentiation and inhibition of apoptosis 

through repression of TGFβ1 (Doddrell et al., 2012).  The oncogenic potential of PAX3 

through modulation of downstream cell cycle and proliferation regulatory genes has 

been previously demonstrated.  For instance, tumour cell proliferation requires the re-

expression of PAX3 whilst inhibition of tumour cell growth entails down-regulation of 

PAX3 expression (Xia et al., 2013). Expression of PAX3 in mouse embryos promotes 

myogenesis of dermomyotome somitic stem and progenitor cells through regulation of 

notch signaling, whereas induction of proliferation of muscle progenitors was achieved 

through repression of Pitx2c expression (Lozano-Velasco et al., 2011).   

 

 

The cell cycle regulatory mechanism under the influence of Pax3 mRNA expression in 

neuronal cells has been demonstrated.  A serum starvation treatment of mouse ND7 cells 

for 24 hr, induced a G1 phase cell growth arrest in 89% of the cell population.  During 

that study, the addition of serum to the cell culture medium liberated the cells from this 

blockade.  Intriguingly, the level of Pax3 mRNA fluctuated throughout the cell cycle 

and during cell growth arrest, no Pax3 mRNA expression was detected (Chishti et al., 

2013).  Conversely, within 1 hr following the addition of serum, the expression of Pax3 

mRNA which was low initially, then increased at 6 hr after serum addition and finally 

declined as cells entered S phase (Magli et al., 2013).  This demonstrates that Pax3 

mRNA expression seems to be cell cycle-dependent, signifying that Pax3 plays a role in 

the progression of the cell cycle and/or in directing cell proliferation and differentiation. 
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1.3.9.1. Rhabdomyosarcoma  

 

Rhabdomyosarcoma, a frequently occurring childhood soft tissue sarcoma, is subdivided 

into four histological sub-types:  ERMS (Fig. 1.9A) and ARMS  (Fig. 1.9B) are the most 

prevalent variants, while less common are Spindloid and Botryoid variants (Sumegi et 

al., 2010; Liu at al., 2012).   

 

 
 
Figure 1.9, X 20 magnification of Haematoxylin and eosin (H&E) of RMS. A, ERMS 

containing visible irregular elongated, flattened, shrunken and scattered rhabdomyoblasts with 

eosinophilic cytoplasm.  B, ARMS with many alveoli spaces lined with numerous rounded 

granular eosinophilic and swollen rhabdomyoblasts and loss of cellular cohesion (taken from 

Sumegi et al., 2010). 

 

 

In contrast to ERMS, which occurs mainly in children, ARMS frequently appears in 

adolescents and young adults.  Although RMS can develop from any organ, the most 

commonly affected parts of the body include muscle of cheek or lips, head and neck, 

nose, throat, extremities of arms and legs, genitourinary system including vagina, 

prostate, bladder and testicles, as well as the eye orbit and parameninges at the base of 

the skull (Demetri, 2011).  Primary rhabdomyosarcomas are usually found in areas of 

skeletal muscle, including the appendages and trunk (Gallego and Sanchez, 2007; 

McLean and Castellino, 2008).  In most cases, ERMS has a more favourable outcome 

than ARMS, which has a very poor prognosis (Yu
2
 et al., 2012).  
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1.3.9.1.1. Causes of Rhabdomyosarcoma 

 

Even though the exact aetiology of RMS is unknown, PAX3 gene mutations  occur in 

addition to other syndromes.  Genetic disorders which are associated with the 

development of RMS include Neurofibromatosis type 1, Li-Fraumeni, Beckwith-

Wiedemann, Costello s and Cardio-facio-cutaneous syndromes (Ognjanovic et al., 2010; 

Lupo et al., 2014). RMS presents varying symptoms, which depend on the location of 

the primary tumour.  Painful or painless tumour masses have been the most usually 

reported symptom.  For instance, the location of tumour in the nose or throat presents 

with congestion, bleeding and swallowing difficulties.  Parameningeal and ear tumours 

are associated with headaches, facial pain, facial asymmetry, dual vision, and painful 

ears accompanied with swelling, discharge and hearing loss.  A painful and swelling eye 

with vision difficulty has been observed in patients with an orbital tumour.  A firm 

enlarged painful lesion is commonly seen in patients with a tumour located at the 

extremities. Genitourinary tumours present with urinating difficulty, poor bowel 

movement control, haematuria, vaginal bleeding, and vaginal or scrotal mass, whilst the 

extension of tumours in the brain and spinal cord is depicted by abnormal neurological 

behaviour (Egas-Bejar and Huh, 2014; Lupo et al., 2014).   

 

 

1.3.9.1.2. Dignosis of Rhabdomyosarcoma 

 

Although many diagnostic tools are available for the diagnosis of RMS, early diagnosis 

is essential because of the metastatic potential of RMS.  However, diagnosis may be 

delayed in symptomless RMS.  A physical examination of suspected swollen tumour 

mass under the skin is required, followed by imaging diagnostic techniques including 

magnetic resonance imaging, positron emission tomography, ultrasound and chest x-ray 

are usually used to study the stage of RMS (Bánusz et al., 2014).  These techniques, 

which determine the size, precise location, and metastasis of RMS to distant sites, are 

very crucial in the selection of the most effective treatment scheme (Hoffmeier et al., 

2014). Finally, cytological diagnosis of fine needle aspirate and histological diagnosis of 

tumour biopsy for confirmation and identification of RMS variants are essential (Nakib 

et al., 2014). 
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1.3.9.1.3. Treatment of Rhabdomyosarcoma 

 

Successful treatment of RMS depends on the variant involved and tumour location.  The 

current treatment schemes, which may not completely cure cancer, but are used to 

prolong the life of patients, involve surgical removal of the tumour, chemotherapy and 

radiotherapy (Egas-Bejar at al., 2014).  Generally, in most treatment schemes, 

immediately after surgery, the primary site of the tumour is initially treated by 

radiotherapy whilst chemotherapy is used for treatment of distant tumour metastatic sites 

in the body.  The first line chemotherapeutic regimens that are currently employed for 

treatment of RMS include vincristine, dactinomycin, cyclophosphamide, topotecan, 

irinotecan, etoposide, ifosfamide, doxorubicin, and carboplatin. These chemotherapeutic 

regimens have been demonstrated to effectively inhibit metastasis of less aggressive 

ERMS tumours (Bánusz et al., 2014; Hoffmeier et al., 2014).  Potent treatment schemes 

are required for the treatment of recurrent RMS after treatment as frequently observed in 

aggressive metastatic ARMS, which is resistant to treatment. Targeted treatment 

schemes including gene therapy, as well as hormonetherapy, and immunotherapy are 

currently being investigated for effective treatment of resistant RMS (Donahue et al., 

2014). 

 
 

1.3.9.1.4. PAX3/Pax3 Biological Activity in Rhabdomyosarcoma 

 

A high frequency of chromosomal translocations in ARMS, compared to a pattern of 

whole chromosome gains and losses in ERMS was demonstrated in a cytogenetic and 

comparative genomic hybridization study (Stegmaier et al., 2011).  Although both 

ERMS and ARMS originate from dedicated myogenic cells, PAX3-FKHR expression in 

ARMS activates numerous downstream transcriptional targets that presented a discrete 

and an aggressive type of tumour, distinct from ERMS (Stegmaier et al., 2011).  The 

usual translocation t(2;13)(q35;q14) and the infrequent translocation t(1;13)(p36;q14) 

forming the fusion proteins, PAX3-FKHR and PAX7-FKHR respectively, are typical of 

ARMS (Calhabeu et al., 2012). Marshall
2
 et al., (2011) demonstrated that both 

translocations are fusions of the DNA interacting elements of PAX3/7 with the TA of 

the forkhead transcription factor (FKHR) and are described as FKHR-disrupting 

translocations (Hecker et al., 2010).  Inefficient transcriptional activation has been 
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demonstrated in ERMS cell lines expressing wild-type PAX3 that interacts with the 

same DNA targets as PAX3-FKHR.  Occasionally 20% ERMS results from PAX3-

FKHR fusion, whereas 80% of ARMS cases are associated with FKHR fusions 

(Krskova et al., 2011).  A non-random chromosomal translocation differentiates ARMS 

tumours from ERMS and other paediatric solid tumours (Fig. 1.10) (O’Connor and Barr, 

2008; Shukla et al., 2012) 

 

 
 
Figure 1.10 Chromosomal translocations in ARMS (taken from O’Connor and Barr, 2008; 

http//AtlasGeneticsOncology.org/Genes/Foxo1ID83ch13q14.html). 

 
 

ARMS originates from skeletal muscle precursor (mesenchymal) cells, which can appear 

in sites other than skeletal muscle (Gallego and Sanchez, 2007; McLean and Castellino, 

2008).  This generates a protein with the N-terminal end of Pax3, where PD, HD and a 

part of the TA (first seven exons) are fused to the C-terminal portion of the DNA-

binding domain and the TAD (last two exons) of the forkhead protein (FOXO1 or 

FKHR) (Fig. 1.11) (Robson et al., 2006; Reichek et al., 2011).  In addition to the 

chimeric gene produced, a second type of PAX3-FKHR/ PAX3-FOXO1 chimeric gene, 

which is highly expressed and more stable is found which contains the complete PAX3 



77 
 

N-terminal DNA interacting domain fused to a complete FKHR C-terminal TA 

(Stegmaier et al., 2011). 

 

 
 
Figure 1.11 Diagram of RMS PAX3/7-FKHR chimeric fusion proteins (taken from Robson 

et al., 2006).  TAD/TA denotes transctivation domain. 

   

 

The resultant fusion proteins act as malformed transcription factors (Liu
1
 et al., 2011).  

More than 90% of ARMS express a 97 kDa chimeric fusion protein with DNA-binding 

capabilities analogous to Pax3, functioning as a more potent transcription factor than 

either Pax3 or FOXO1 (Liu
1
 et al., 2011).  Pax3-FOXO1 gains oncogenic capacity by 

dysregulating genes participating in cell proliferation, differentiation, metastasis and 

apoptosis (Reichek et al., 2011).  Culture of myoblasts in differentiation medium, 

demonstrated that Pax3-FOXO1 efficiently inhibited myoblast differentiation into 

myotubes (Scuoppo et al., 2007; Liu
1
 et al., 2011).  In ARMS, PAX3 may be combined 

with an alternative C-terminal partner forkhead box protein O4 (FOXO4).  Abnormal 

Pax3 regulation in either translocations induces equally detrimental effects on paediatric 

development (Sidhu et al., 2010).  The expression of both PAX3-FKHR and IGF-II 

induced cell cycle progression and proliferation of C2C12 myoblasts, whilst inhibiting 

myogenic differentiation through repression of downstream myogenic factors (Wang et 

al., 2005).  In a related study of ARMS cells, inhibition of Ink4a/ARF induced up-
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regulation of Cdk4, consequently enhancing the oncogenic potential of PAX3-FOXO1 

(Linardic et al., 2007). 

 
  

Inhibition of PAX3-FKHR in ARM cells induced G1 growth arrest, resulting in fewer 

cells in S phase while in fibroblasts, ectopic expression of PAX3-FKHR enhanced 

G0/G1 to S transition and PAX3-FKHR induced degradation of the CDK inhibitor, 

P27Kip1 (Stacey et al., 2010).  PAX3-FKHR indirectly suppressed the activities of some 

CDK inhibitors including P21Cip1 and P57Kip2 (Li et al., 2007).  High expression 

levels of P21Cip1 and P57Kip2 via activation of EGR-1 were observed during normal 

myogenesis (Nguyen et al., 2010).  In ARMs, proteasomal degradation of EGR-1 

induced by PAX3-FKFHR inhibits EGR-1 activation of P21Cip1 and P57Kip2 (Roeb et 

al., 2007).  Interestingly, the suppression of EGR-1 by PAX3-FKHR, which is through 

protein-protein interactions and not through transcription, signifies that PAX3-FKHR 

might act as a misfolded protein in association with proteasomes (Hecke et al., 2010).  

PAX3-FKHR expression has been indicated to collaborate with loss of the CDK 

inhibitor, P161NK4a, stimulating primary myoblasts reach to a tissue culture, induced 

senescence checkpoint (Linardic et al., 2007; Zhang and Wang, 2011).  In recent times, 

ERMS has been found to harbour one PAX3-NCOA2 translocation.  The tumourigenic 

activity of ERMS has been demonstrated in murine C2C12 myoblasts by transfecting the 

PAX3-NCOA2 translocated gene.  This characteristic of ERMS is comparable with the 

PAX3-FOXO1 observed in ARMS (Yoshida et al., 2013). 

 
 

Inhibition of PAX3-FKHR in ARM cells induced G1 growth arrest, resulting in fewer 

cells in S phase while in fibroblasts, ectopic expression of PAX3-FKHR enhanced 

G0/G1 to S transition and PAX3-FKHR induced degradation of the CDK inhibitor, 

P27Kip1 (Stacey et al., 2010).  PAX3-FKHR indirectly suppressed the activities of some 

CDK inhibitors including P21Cip1 and P57Kip2 (Li et al., 2007).  High expression 

levels of P21Cip1 and P57Kip2 via activation of EGR-1 were observed during normal 

myogenesis (Nguyen et al., 2010).  In ARMs, proteasomal degradation of EGR-1 

induced by PAX3-FKFHR inhibits EGR-1 activation of P21Cip1 and P57Kip2 (Roeb et 

al., 2007).  Interestingly, the suppression of EGR-1 by PAX3-FKHR, which is through 

protein-protein interactions and not through transcription, signifies that PAX3-FKHR 
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might act as a misfolded protein in association with proteasomes (Hecke et al., 2010).  

PAX3-FKHR expression has been indicated to collaborate with loss of the CDK 

inhibitor, P161NK4a, stimulating primary myoblasts reach to a tissue culture, induced 

senescence checkpoint (Linardic et al., 2007; Zhang and Wang, 2011).  In recent times, 

ERMS has been found to harbour one PAX3-NCOA2 translocation.  The tumourigenic 

activity of ERMS has been demonstrated in murine C2C12 myoblasts by transfecting the 

PAX3-NCOA2 translocated gene.  This characteristic of ERMS is comparable with the 

PAX3-FOXO1 observed in ARMS (Yoshida et al., 2013). 

 

 

Expression of Pax3 has great influence on the metastasis RMS, melanoma and 

neuroblastoma.  Protease degradation of the ECM such as matrix metalloproteinase 

permits tumour metastasis into distant sites (Hu
1
 et al., 2013).  PAX3 directly or 

indirectly modulates the up-regulation or down-regulation of downstream target genes to 

induce tumour cell adhesion, migration, and metastasis.  For instance, the expression of 

pax3 in mouse promotes myoblast cell migration to the limb during colonisation of 

endothelial and skeletal muscle (Yvernogeau et al., 2012).  In ARMS cells (RH2, RH4, 

RH18, RH30 and RH41) cell lines, the up-regulation of RasGRF1 induced cell migration 

whilst shRNA down-regulation of RasGRF1 inhibited ARMS cell migration (Tarnowski 

et al., 2012).  Alteration of IGF-1 expression induced F-actin to regulate RH30 cell 

migration both in vitro and in vivo (Liu et al., 2008).   

 

 

PAX3 repression of ILK expression decreased basal RMS cell adhesion and in RH18 and 

RH30 ARMS cell lines, decreased expression of PAX3 and migratory inhibitory factor, 

increased cell adhesion and vascularization (Durbin et al., 2009; Maciej, et al., 2010).  

Likewise, siRNA inhibition of N-cadherin and ɑ9-integrin decreased RMS cell adhesion 

and invasiveness (Masià et al., 2012).  Expression of PAX3-FOXO1 inducing the up-

regulation of Cnr1/Cb1 in ARMS and mouse myoblast cells, enhanced cell invasion and 

metastasis (Marshall
1
 et al., 2011).  Expression of MET and hepatocyte growth factor 

(HGF) in the RH30 cell line induced tumourigenesis and rhabdomyosarcoma metastasis 

in vivo.  Similarly, HGF induced up-regulation of CCN1 in a RH30 cell line stimulated 

rhabdomyosarcoma metastasis (Rees et al., 2006).  
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 In ARMS cells, PAX3-FKHR induced metastasis, accompanied by suppression of 

immune responses, by interaction with the JAK/STAT pathway (Nabarro et al., 2005). 

  

 

A reciprocal expression of FKHR-PAX3 in the ARMS RH30 cell line and myoblast 

cells, which induced inhibition of myogenesis, activated oncogenic pathways by 

stabilizing PAX3-FKHR expression to enhance cell proliferation, anchorage-

independent growth, and matrix adhesion in vitro. Additionally, FKHR-PAX3 

expression induced tumourigenesis in a xenograft mouse model. On the contrary, 

FKHR-PAX3 expression negatively affected cell migration, invasion in vitro and lung 

metastasis in vivo (Hu
1
 et al., 2013).  Up-regulation of PAX expression in human and 

murine SHG-44 glioma cell lines, stimulated cell proliferation, enhanced invasion and 

inhibited apoptosis of the human SHG-44 glioma cell line, whilst inducing 

tumourigenesis of the mouse SHG-44 glioma cell line in vivo.  Contrariwise, siRNA 

repression of PAX3 expression in the human U87 glioma cell line, suppressed both cell 

proliferation and invasion and induced apoptosis.  Likewise, inhibition of PAX3 in the 

mouse U-87MG glioma cell line suppressed tumourigenesis (Xia et al., 2013).  PAX3-

FKHR siRNA knockdown in ARMS induced inhibition of cell adhesion, migration and 

invasion through repression of CCN3 (Zhang and Wang, 2011).   For instance, in mice, 

cellular transformation and tumour formation resulting from ectopic expression of 

PAX3/FOXO1A in murine embyonal myoblasts, suggests that deregulated pax3 protein 

can induce tumourigenesis (Calhabeu et al., 2013).   

 

 

Knockdown of fascaplysin expression in a RH30 cell line induced activation of CDK4 

and repression of PAX3-FOXO1 expression, inhibiting anchorage-independent growth 

and cell migration (Lingling et al., 2013).  Transfection of C2C12 murine myoblasts 

with PAX3 or PAX3-FKHR cDNA induced cell transformation (Lagutina et al., 2002).  

In NIH3T3 fibroblasts and chicken embryos, PAX3-FKHR expression induced cell 

transformation, which was demonstrated by the morphological changes of anchorage 

independent growth and focus formation (Xia et al., 2007). 
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Mutational expression of FGFR4 in an ARMS cell line, induced proliferation and 

transformation of primary mouse myoblasts (Marshall
2
 et al., 2012).  In mouse ARMS 

cells, over-expression of P-cadherin as a downstream target of PAX3/7-FOXO1A, 

supressed myogenic differentiation and stimulated myoblast transformation, migration 

and invasion.  Conversely, hairpin RNA repression of P-cadherin diminished myoblast 

transformation, migration, and ARMS cell invasion (Thuault et al., 2013).  Cytogenetic 

analysis of ERMS patients’ tissues, demonstrating malignant cell transformation with 

increased expression of PAX3 downstream targets including MyoD1, myogenin and 

desmin, showed poor prognosis following treatment (Wang et al., 2011).  In a related 

study, histological demonstration of germ cell malignant transformation into ERMS has 

been reported (Sumerauer et al., 2006).  Aberrant expression of RAS, MYC, P53, SRC 

and B-catenin has been demonstrated to induce skeletal muscle precursor cells to 

undergo malignant transformation (Chen and Langenau, 2011).  Likewise, in a related 

recent case study, Ushida and colleagues (2013), demonstrated rhabdomyosarcoma germ 

cell tumour transformation in a rhabdomyosarcoma patient. In human 

rhabdomyosarcoma cell lines, high expression of macrophage migration inhibitory 

factor, induced cell transformation by activating the chemokine receptors, CXCR2 and 

CD74, whilst repressing macrophage migration inhibitory factor, and induced massive 

stromal cell transformation in immunodeficient mice (Maciej et al., 2010). 

   
 

The Rho GTPases that facilitate many integrin-dependent cytoskeletal remodelling that 

are essential for cell migration are frequently over-expressed in many human cancers 

(Alan and Lundquist, 2013).  For example, the Rho GTPases Rac1 and CDC42 were 

implicated in the disruption of normal epithelial cell polarization leading to increased 

motility and invasiveness (Kong et al., 2013).   PAX3 induced mesenchyme-epithelial 

transition requires appropriate levels of active Rho GTPase (Wiggan et al., 2006).  In a 

related study of RH30 and RD rhabdomyosarcoma cell lines, over-expression of ELMO1 

induced metastatic invasion of rhabdomyosarcoma, whilst repression of ELMO1 

inhibited metastatic invasion (Rapa et al., 2012). Samples from rhabdomyosarcoma 

patients with distant metastases demonstrated increased expression of FOXF1 and 

ELMO4 and suppression of the latter inhibited metastatic invasion (Armeanu-Ebinger et 

al., 2011).  In the RH30 ARMS cell line, over-expression of MMP-2 and VEGFA 
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triggered by PAX3-FKHR induced metastatic invasion of these cells (Onisto et al., 

2005). The expression of myf5 in ERMS cells was correlated with the metastatic 

aggressiveness of a paediatric muscle sarcoma (Myron et al., 2012).    

 

 

1.3.9.2. Melanoma 

 

Melanoma is a malignant tumour of the skin originating from malignancy of 

melanocytes under the skin. Melanocytes as dendritic pigment yielding cells originate 

from NC melanoblasts  non-pigmented precursors (Inoue et al., 2013).  Development of 

melanocytes into both cutaneous and ocular melanoma and the development of 

pigmented ocular tumours induced by retinal pigment epithelium proliferative cells have 

been confirmed (He
1 

et al., 2011).  Melanoma affects various parts of the skin on the 

face, neck, and arms, palms, soles, or under the nails, mouth, and iris of the eye, or 

retina, vagina, oesophagus, anus, urinary tract, and small intestine (Gajda and Kaminska-

Winciorek, 2014). Symptoms of melanoma can present as a mole, sore, lump, or growth 

on the skin.  Additionally a bleeding sore or growth with varying skin colouration may 

also indicate melanoma.  Generally, a flat or slightly raised skin patch or mole with 

irregular border discoloration may appear as tan, brown, black, red, blue, or white in the 

trunk or legs or in the upper back of the body (Gajda and Kaminska-Winciorek, 2014; 

Higgins et al., 2014).     

 

 

Four main variants of melanoma have been identified including cutaneous or superficial 

malignant metastatic melanoma, as the most common variant, nodular malignant 

melanoma, lentigo malignant melanoma and a less common variant acral lentiginous 

melanoma (Gajda and Kaminska-Winciorek, 2014).   

 

 

1.3.9.2.1. Causes of Melanoma 

 

One of the major risk factor of melanoma is ultraviolet radiation as in prolonged 

exposure to sunlight and sunburns.  Aberrant expression of PAX3 and BRAF have been 

observed in melanoma.  However, other unknown aetiology of melanoma has also been 

reported in some patients (Arozarena et al., 2014).   
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1.3.9.2.2. Dignosis of Melanoma 

 

Melanoma is a very malignant tumour with high metastatic index and therefore early 

diagnosis is important for effective treatment. Melanoma can be diagnosed by 

examination of a skin lesion or mole using sequential digital dermoscopy imaging. 

Further diagnostic tool of melanoma include an ultrasound scan of lymph node basins 

and soft tissue, computed tomography scan of melanoma tumour size, and the use of 

magnetic resonance imaging or positron emission tomography of surrounding organs 

and tissues to identify metastatic melanomas (Higgins et al., 2014). Cytological 

examination of tumour fine needle aspirate and histology of punch, excisional or 

incisional biopsies are used to confirm and differentiate variants of melanoma (Brauchle 

et al., 2014).  Histologic examination demonstrate that melanoma develops via four 

different developmental phases beginning from benign naevi to dysplastic naevi, then 

radial and vertical tumour phases which ultimately results in metastatic melanoma (Fig. 

1.12) (Smoller, 2006; Mascarenhas et al.,  2010).   

 

 
 
Figure 1.12, X 20 magnification of H & E of skin malignant melanoma.  Single and nests of 

radial melanocytes during invasive growth phase of both epidermis and dermis, with vesicular 

nuclei and prominent nucleoli.  The melanocytes appeared smaller and hyperchromatic with 

pagetoid extension (taken from Smoller, 2006). 

 

 

Cutaneous melanoma has been demonstrated to originate from a dysplastic naevus 

(Medic et al., 2011).  It has been universally established that in old men, the frequency 
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of and death from cutaneous melanoma, has risen 2-3% yearly over the past two decades 

(Lasfar et al., 2010; Hoshimoto et al., 2012). Clinically, malfunctions observed in 

numerous melanocyte developmental genes, induced the transformation of melanocytes 

into melanoma (Nicholl et al., 2011).   

 

 

1.3.9.2.3. Treatment of Melanoma 

 

Treatment of melanoma depends on the stage of melanoma, size of tumour and location, 

lymph node involvement, and the age of patient. Melanoma represents a therapeutic 

challenge with poor prognostic outcome because of its aggressiveness and resistant to 

treatment schemes with high recurrence index. Currently, combination treatment 

schemes of melanoma involve the use of radiotherapy, chemotherapy, immunotherapy, 

and targeted genetherapy after surgery (Deshmane et al., 2014; Mavropoulos and Wang, 

2014).  Surgical removal of skin lesions or tumours of lymph nodes in patients with local 

and regional melanoma are first performed (Sondak et al., 2014).  Available 

radiotherapies for the treatment of melanoma include gammaknife, cyberknife, or 

tomotherapy units are used for treatment of melanoma (La Greca et al., 2014; Tishler, 

2014). Currently, chemotherapies use for the treatment of melanoma include bleomicine, 

dacarbazine, temozolomide, cisplatin, paclitaxel, docetaxel, carmustine, fotemustine, 

lomustine, vinblastine, carboplatin, and electrochemotherapy (Ashworth et al., 2014; 

Ricotti et al., 2014).  Immunotherapies including ipilimumab, interferon, interleukin-2, 

aldesleukin, proleukin, sargramostim and tremelimumab are used for the treatment of 

melanoma (Kaufman et al., 2014; Megahed et al., 2014).  Targeted therapies including 

vemurafenib, dabrafenib, trametinib imatinib, nilotinib and dasatinib have been used to 

treat melanoma (Laurenz et al., 2013; Arozarena et al., 2014). 

 

 

1.3.9.2.4. PAX3/Pax3 Biological Activity in Melanoma 
 

Many transcription factors such as MITF and PAX3/Pax3 have been demonstrated to 

induce transformation of melanocytes (Medic
2 

and Ziman, 2010; Berlin et al., 2012).  

PAX3/Pax3 is essential for proliferation of dedicated melanoblasts and prevention of 

premature development of progenitor cells, while Mitf facilitates melanoblast migration 

from the dorsal neural tube and survival (Ichi
2
 et al., 2010).  Mechanisms by which 
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increased levels of Pax3 expression induced the progression of melanoma, through 

modulation of other genes including MITF have been demonstrated (Thomas et al., 

2009; Lasfar and Cohen-Solal, 2010).  Defects in the mechanism by which Pax3 retains 

regulation of melanocyte differentiation, demonstrates that melanoma development 

requires Pax3 expression (Maczkowiak et al., 2010; Bosserhoff et al., 2011). 

PAX3/Pax3 expression begins before initiation of melanoblast differentiation, which is 

then stimulated by decreased levels of PAX3/Pax3 expression (Chen
1
 et al., 2010; 

Michael et al., 2013).  This implies that Pax3 promotes melanocyte stem cells into 

melanocytes, despite the fact that it inhibits terminal differentiation (Djian-Zaouche et 

al., 2012).    

 

 

Many transcription factors, including MITF, PAX3, PTEN, SOX10, C-RET, RAS and C-

MYC could perhaps contribute to melanoma pathogenesis (Li et al., 2007; Chen
1
 et al., 

2010).  Recent reports suggest that several melanocytic genes are modulated by PAX3 

(Hauswirth et al., 2012; Yang
2
 et al., 2012). Genes that predispose to melanoma include 

cyclin-dependent kinase inhibitor 2A (CDKN2A), cyclin-dependent kinase 4  (CDK4), 

platelet-derived growth factor (PDGF), epidermal growth factor (EGF), basic fibroblast 

growth factor (bFGF), Mitogen-activated protein kinases (MAPK), nodal and STAT 

(Chen et al., 2007; McCabe and Bronner-Fraser, 2008; Dong
2
 et al., 2012).   

 
  

PAX3/Pax3 expression has been demonstrated in primary melanoma and melanoma cells 

but not in normal adjacent skin tissues (Medic et al., 2011).  In the majority of tumours, 

higher levels of PAX3/Pax3 expression occur in aggressive melanomas than in less 

aggressive melanomas (Ryu et al., 2007; Plummer et al., 2008).  Regulation of the cell 

cycle involves potent interaction of PAX3 with pRB (Jothi et al., 2012).  In dormant 

cells, interaction of both RB and phosphorylated retinoblastoma protein (pRB) with E2F 

inhibits E2F-responsive gene transcription required for cell cycle progression.  The 

significance of Pax3 in sustaining melanoma cells is indicated by experiments where 

increased Pax3 expression prevented apoptosis and diminished Pax3 induced cell 

apoptosis (He
1
 et al., 2011; Medic et al., 2011).  In related studies, antisense PAX3/Pax3 

oligonucleotides induced melanoma cell apoptosis (Hirai et al., 2010).  In B16F10.9 

melanoma cells, interleukin-6 receptor/interleukin-6, which repressed Pax3 expression, 
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was associated with a block in glial cell transdifferentiation and proliferation (Hirai et 

al., 2010).  Goding et al. (2008) attempted to treat mice with melanomas using 

interleukin-6 receptor/interleukin-6 (IL6R/IL6) as a tumour inhibitor.  Pax3 protein and 

mRNA levels decreased in melanoma cells following IL6R/IL6 treatment (Goding, 

2008). Pax3 down-regulation in B16F10.9 melanoma cells after treatment with 

IL6R/IL6, inhibited cell proliferation and induced cell transdifferentiation to glial cells 

(Thomas et al., 2009). Decreased Pax3 expression, which promotes defective 

melanogenesis, diminishes transcriptional activity of Mitf (Wan et al., 2011).  Lately, 

microarray analysis demonstrated that PAX3 modulated the activities of melanoma 

developmental and susceptibility genes including TGFβ, Ras homolog gene family 

member C, stem cell factor, metalloproteinase inhibitor and melanoma-progression 

associated molecule (Nakazaki et al., 2009; He
1
 et al., 2011; Hoshimoto et at., 2012).  

Down-regulation of Pax3 induced up-regulation of p53 and apoptosis-promoting genes 

including caspase 3 (He
2
 et al., 2011; Wang et al., 2011).  Increased apoptosis observed 

in mouse embryos with dysregulated Pax3, was to some extent salvaged following 

crossing of p53 mutant mice with heterozygous Splotch mice (Griffith et al., 2009; 

Greene et al., 2009). These reports suggest that increased Pax3 expression allows 

melanoma progression by evading apoptosis (by repressing both p53 and caspase 3) 

(Hirai et al., 2010; Wang et al., 2011).  It has been demonstrated that Pax3 can inhibit 

apoptosis by increasing levels of Bcl-XL (Taylor et al., 2006; Chappell et al., 2009).  

These attributes of Pax3 in melanoma are indicative of the ability of PAX3 to induce 

stem cells into tumour formation (Tatlidil et al., 2011; Liu
2
 et al., 2013). 

 

 

In previous study of ERMS and cutaneous malignant melanoma, PAX3 over-expression 

induced up-regulation of major cell-surface adhesion molecules, which confer metastatic 

properties on tumour cells and affect their motility (Oda and Tsuneyoshi, 2009).  PAX3 

induced several signaling pathways or downstream targets involved in cell migration 

including; NCAM, versican, C-met, LBX1, connexin-43, ephrin/Eph receptors, the 

CXCR4-DSF-1 axis, the Wnt-signalling cascade and the MET-HGF/SF signaling 

pathway (Wei et al., 2007; Froehlich et al., 2013).   
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1.3.9.3. PAX3/Pax3 and Neuroblastoma 
 

Aberrant expression of PAX3/Pax3 is associated with neuroblastoma, a common 

paediatric extracranial solid tumour (Murdoch et al., 2012).  It is derived from the 

sympatheticoadrenal lineage of cells with the primary tumours developing from 

peripheral parasympathetic or sympathetic ganglia (Nelms et al., 2011).  Increased PAX3 

expression has been demonstrated in neuroblastoma cell lines and tumours (Xao et al., 

2013).  Histologic examination of neuroblastoma is shown in Fig. 1.13.  

 

 
 

Figure 1.13, X 40 magnification of H & E of neuroblastoma.  Tumour cells appeared large 

with prominent nucleoli (taken from Xao et al., 2013). 

 

  

Several hereditary malformations associated with neuroblastoma, involve increased 

expression of N-myc proto-oncogene protein (N-MYC) (Xao et al., 2013).  Recent 

investigations in mice, have demonstrated that increased levels of N-MYC have the 

potential to stimulate cell transformation. For instance, the development of 

neuroblastoma in NC tissues has been demonstrated in transgenic mice with increased 

expression of N-MYC (Jain et al., 2011; Dong
2
 et al., 2012).  Furthermore, in cultured 

human neuroblastoma cell lines, reduced levels of N-MYC induced inhibition of cell 

proliferation and differentiation (Maczkowiak et al., 2010; Sanchez-Ferras et al., 2012).  

 
 

Previous mutagenesis and deletion studies demonstrated that Pax3 has a reversed E box 

sequence CGCGTG (or CACGCG) located within the 5’ promoter region which can be 
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activated by C-Myc or N-Myc, while elevated levels of Pax3 can be induced by N-Myc 

or C-Myc ectopic expression (Singh et al., 2011;  Wentzel and Eriksson., 2011).  It is 

not well understood whether PAX3 alone induces the pathogenesis of neuroblastoma or 

inhibition of PAX3 by N-MYC results in neuroblastoma.  Therefore, this necessitates 

further research (Sommer, 2011; Wahlbuhl et al., 2012).   Inhibition of PAX3 in human 

neuroblastoma cell lines cells, demonstrated two a fold knockdown of PAX3 in both SH-

SY5Y and SH-EP1 neuroblastoma cell lines with subsequent inhibition of cell cycle, 

proliferation, migration, adhesion, invasion and induction of apoptosis.  

 

  

This study identified the expression of NCAM in only N-type SH-SY5Y neuroblastoma 

cells but not S-type SH-EP1 and demonstrated that silencing of PAX3 in neuroblastoma 

cells significantly decreased cell attachment to various ECM proteins including 

fibronection, laminin, collagen 1 and collagen IV (Fang et al., 2013).  In a previous 

study, NCAM expression was down-regulated by PAX3 knockdown via transactivation 

of the NCAM promoter.  Decreased NCAM expression has been suggested to enhance the 

metastatic potential of neuroblastoma cells by accelerating cell detachment from primary 

tumour sites during the first step of metastasis (Bork et al., 2013).  Neural cell adhesion 

molecule has been demonstrated as a marker of neuronal tissue differentiation 

(Maczkowiak et al., 2010).   

 

 

Therapies for inducing apoptosis have become a potent tool in the treatment of cancer.  

PAX3, which plays important roles during embryogenesis and has been implicated in the 

inhibition of rhabdomyosarcoma cell apoptosis, may confer its oncogenic properties by 

inhibiting apoptosis in order to maintain survival of rhabdomyosarcoma cells (Tonelli et 

al., 2012; Sarkar et al., 2013).  The apoptotic regulatory role of PAX3 and PAX3-FKHR 

in development has been demonstrated in RMS and melanoma through modulation of 

activation of BCL-XL anti-apoptotic gene to induce massive apoptosis. This 

demonstrates that the anti-apoptotic effect of PAX3 and PAX3-FKHR in ARMS is 

mediated through BCL-XL (Barr, 2001).     
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Cell survival and cell cycle progression are negatively regulated by FOXO transcription 

factors, which act as tumour suppressors (Shi et al., 2010).  In hematopoietic cells 

deprived of growth factors, expression of FOXO proteins induces BIM expression.  Up-

regulation of FOXO3a by paclitaxel in paclitaxel-sensitive breast cancer inducing 

increased levels of BIM protein, induced breast cancer cell apoptosis (Chen
5
 et al., 

2010).  In the RH30 ARMS cell line, ectopic expression of PAX3-FKHR was observed 

following camptothecin siRNA knockdown, which subsequently inhibited cell 

proliferation and induction of apoptosis (Zeng et al., 2009).  Knockdown of FGFR4 in 

JR1 and RH30 rhabdomyosarcoma cell lines inhibited cell proliferation and induced 

apoptosis (Li
4
 et al., 2013). Up-regulation of Noxa in RH30 cells inhibited cell 

proliferation and induced apoptosis (Marshall et al., 2013).  Inhibiting hedgehog 

activation in RMS induced apoptosis (Uchida et al., 2011).  Inhibition of the PI3K/Akt 

signalling pathway in A204 rhabdomyosarcoma cells and A673 Ewing’s sarcoma cells 

induced apoptosis (Kilic-Eren et al., 2013).  PAX3 inhibits melanoma cell apoptosis 

through the modulation of decreased expression of PTEN and increased expression of 

BCL2 (Kubic et al., 2008).  A recent study demonstrates that selumetinib induced 

apoptosis of A375 cells in mice and fish melanoma xenografts following inhibition of 

PAX3 and MITF by SMURF2 (Looi et al., 2013). 

 

 

In normal myogenic precursor cells, P57KIP2 prevented progression of cell cycle by 

inhibiting cyclin E-CDK2 and promoting myogenic differentiation by stabilizing 

MyoD1 (Bilodeau et al., 2009).  Inhibition of P57KIP2 resulted in Pax3-FOXO1 

inhibiting differentiation while promoting proliferation (Sumegi et al., 2010).  The 

functional reliance of Pax3-FOXO1 on decreased levels of P57KIP2 has been 

demonstrated to permit uncontrolled growth of undifferentiated cells (Sidhu et al., 

2010).  Increased cell proliferation rates observed after ectopic expression demonstrates 

that Pax3-FOXO1 could contribute to tumourigenesis of ARMS since down-regulation 

of a chimeric gene slowed down proliferation rates (Kikuchi et al., 2008).  Another 

report indicated that Pax3-FOXO1 acts as stimulating factor for proliferation and 

metastasis in tumours using C-Met as a downstream target (Thuault et al., 2013).  Pax3-

FOXO1 chimera (Ree et al., 2006) facilitates tumour cell evasion of apoptosis in order 

to divide.  Decreased Pax3 and Pax3-FOXO1 expression, which induced increase in cell 
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death, suggests that the expression of a chimeric gene may prevent apoptosis (Thuault et 

al., 2013).  

 
 

Expression of Pax3 or Pax3-FKHR (Pax3-FOXO1) correlated with increased anti-

apoptotic genes, BCL-XL and TFAP2B, further supports the anti-apoptotic role of Pax3-

FOXO1 (Davicioni et al., 2009).  Knockdown of Pax3-FOXO1 transcripts in ARMS 

cells resulting in decreased cell migration and diminishing proliferation rates, induced  

differentiation (Kikuchi et al., 2013).  Notwithstanding the vast range of genes 

modulated by Pax3-FOXO1, which implicates the fusion gene inducing oncogenic 

behaviours of tumour cells, the introduction of Pax3-FOXO1 into an animal model was 

insufficient to induce tumour formation.  This suggests that the oncogenic capability of 

Pax3-FOXO1 requires the interaction with other downstream targets to induce tumour 

growth (Missiaglia et al., 2012).  

 

 

Pax3 has been demonstrated to regulate neural tube development in chick embryos 

through inhibition of a p53-induced apoptosis during morphogenic embryogenesis 

(Murko et al., 2013).  In neural tube defects, Pax3-dependent apoptosis has been 

observed (Chappell et al., 2009).  A dual inhibitory effect of Pax3 on the activity of p53 

has been demonstrated by repression of transcription of p53-dependent genes such as 

BAX and MDM2, and significant decrease of P53 protein through induced degradation 

of p53 protein (Underwood et al., 2007).  Activation of P53 stimulates increased 

expression of P21 and caspase-3 expression in RMS cell lines, to induce a G1 cell cycle 

arrest, and p53-dependent apoptosis (Miyachi et al., 2009).  Up-regulation of caspase 3 

expression in RH4 and RD rhabdomyosarcoma cells as well as SK-N-BE2 and CHLA-

20 neuroblastoma cells, induced cell-cycle arrest and apoptosis following inhibition of 

PAX3 after Nab-paclitaxel treatment (Zhang
3 

et al., 2013).  Suppression of PAX3 in 

neuroblastoma induced progressive cell apoptosis demonstrated by the appearance of a 

population of cells with sub-G1 DNA content and Annexin V staining (Fang et al., 

2013).  Evidence of these findings proposed that the anti-apoptotic function of PAX3 

during embryogenesis and possibly in some human tumours entails the repression of 

p53-dependent apoptotic pathways.  Collectively, these discoveries imply that PAX3 and 

PAX3-FKHR have the potential to induce inappropriate cell cycle progression and 
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proliferation by up-regulating G1/S transition positive regulators as well as repressing 

cell cycle inhibitors.  These studies further establish that suppression of PAX3 inhibits 

cell cycle progression by preventing the transition of G1 to S phase.  Consequently, 

inhibition of PAX3 expression in tumours could possibly be a potential target for 

therapeutic intervention in tumours including RMS, melanoma and neuroblastoma via 

inhibition of cell cycle progression. 

 

 

This current PhD research study is part of a larger research group study, which has been 

underway for the last twelve years, studying PAX3/Pax3 up-regulation or down-

regulation in different lines of differentiation comparing neural stem cells and 

neuroblastoma; melanocytes and melanoma; myoblasts and rhabdomyosarcoma.  The 

presently study seeks to inhibit PAX3 expression in human rhabdomyosarcoma and 

malignant melanoma cell lines.  

 
 

1.4. Aim 
 

1. To down-regulate PAX3 gene expression in human rhabdomyosarcoma and malignant 

melanoma, in order to determine the effect of PAX3 knockdown on the tumourigenic 

characteristics of rhabdomyosarcoma and melanoma in vitro. 

 

1.4.1. Objectives 

 

1. To identify the expression of PAX3 gene in cultured human JR1 and RH30 

rhabdomyosarcoma and A375 malignant melanoma cell lines in vitro. 

 

2. To confirm the functional tumourigenic characteristics of PAX3 in cultured human 

JR1 and RH30 rhabdomyosarcoma and A375 human melanoma cell lines in vitro (cell 

growth, proliferation, migration, adhesion, invasion, transformation, and inhibition of 

apoptosis). 

 

3. To optimize conditions for PAX3 gene expression knockdown in cultured human JR1 

and RH30 rhabdomyosarcoma and A375 human melanoma cell lines in vitro using 

siRNA silencing.  
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4. To carry out in vitro functional assays for verification of influence of PAX3 

knockdown on the characteristics of JR1 and RH30 rhabdomyosarcoma and A375 

melanoma cell lines including cell growth, proliferation, migration, adhesion, invasion, 

transformation and apoptosis.   

 

5. To  the degree of siRNA knockdown of PAX3 gene expression in JR1 and evaluate

RH30 rhabdomyosarcoma and A375 malignant melanoma cell lines in vitro.   

     

6.  To perform microarray analysis after siRNA knockdown of PAX3 in the above cell 

lines.  

 

compare 7. To the results of siRNA down-regulation of PAX3 gene expression in the 

above rhabdomyosarcoma and melanoma cell lines with the results of previous 

experiments using  siRNA down-regulation of PAX3 gene expression in neuroblastoma 

cell lines 
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CHAPTER 2 
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CHAPTER  2:  MATERIALS AND METHODS 

2.1. Materials 

 

Agar powder (Millipore, UK); Agarose powder (Melford, UK); Ammonium persulfate 

(APS) (Sigma Aldrich, UK); Anti-Fade solution (Molecular Probes, Sigma Aldrich, 

UK);  BD Falcon 24 and 96-well tissue culture plates (Becton Dickinson, UK); BD 

BioCoat Matrigel Invasion Chambers (Becton Dickinson); Benchtop DNA ladder 

(Promega, UK); Bio-Rad dye concentrate (Bio-Rad laboratories, UK); Bis-acrylamide 

solution (40%) (Sigma Aldrich, UK); Caspase-Glo™ 3/7 buffer and lyophilized 

Caspase-Glo™ 3/7 substrate (Promega, UK); Cell culture flasks (Corning, USA); Cell 

transformation kit (Millipore, UK); CellTiter 96® AQueous Non-Radioactive Cell 

Proliferation Assay kit (Promega, UK); Chemoattractant (5% foetal bovine serum in 

tissue culture medium) (Sigma Aldrich, UK); Crystal violet staining solution (1%) 

(Millipore, UK); DeadEnd™ Fluorometric TUNEL System kit (Promega, UK); 

Dimethyl sulphoxide (Sigma Aldrich, UK); Double distilled water (ddH2O); DNA Free 

Turbo (Ambion, UK); DNA loading dye (Bioscience, UK); Dulbecco’s Modified 

Eagle’s cell culture Medium (DMEM) supplemented with 4.5g glucose/L (Lonza, 

Switzerland); ECM array plate (Chemicon International, USA); ECM array kit 

(Chmicon international, Millipore, UK UK); Eppendorf and microcentrifuge tubes 

(Netheler, Germany); EDTA solution (200mg/ml, Lonza);  Enhanced Chemilumescent 

(ECL) A and B working detection solutions (GeneFlow, UK); Eukaryote RNA 6000 

nano-chip (Millipore, UK); Extracted total RNA and Protein; Ethanol (Sigma Aldrich, 

UK); Extracted DNA sample; Extraction buffer and Assay buffer (Millipore, UK); 

Foetal calf serum (FCS) (Labtech international, UK); Fragmentation buffer (5 X) 

(Qiagen, UK); Gene Chip Sample Clean up Module kit (Affymetrix/QIAGEN, UK); 

Genechip IVT labeling kit (Affymetrix, USA); Gel matrix, 10X DNAse buffer (Ambion, 

UK); Giemsa staining solution (Sigma Aldrich, UK); Human genome U133 plus 2.0 

Affymetrix GeneChips (Affymetrix, USA); Human rhabdomyosarcoma (JR1 and RH30) 

and human melanoma (A375) cell lines cells (A kind gift from Professor Patricia Kumar, 

School of Healthcare Science, Manchester Metropolitan University, UK); Isotone 

solution (LPD Lab Services Limited, UK); ImProm-IITM cDNA synthesis kit (Promega, 

UK); Isopropyl alcohol (Sigma Aldrich, UK); Lipofectamine
TM

 RNAiMAX (2mg/ml) 

(Invitrogen, UK); L-glutamine (200mM) (Lonza, Switzerland); Light Cycler 480 Probes 
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(Roche, Switzerland); Molecular biological grade chloroform (Sigma Aldrich, UK); 

MagicMarkTM XP Western Protein standard and Novex® sharp pre-stained protein 

standard (Invitrogen, UK); Microscope slides, coverslips and immersion oil (Millipore, 

UK); Methylene blue cell staining solution (0.5%) (Millipore, UK); Nuclease-free water 

(Promega, UK); Non-fat dry milk (Tesco, UK); Opti-MEM®I reduced serum medium 

(Invitrogen, UK); Paraformaldehyde fixative (4%) (Sigma Aldrich, UK); PBabe HAER 

PAX3 plasmid DNA and PBabe HAER empty plasmid DNA (A kind gift from professor 

); PCR master mix (Promega, UK); Penicillin-streptomycin (10,000U/ml and 

10,000µg/ml respectively) (Lonza, Switzerland); Phosphate Buffered Saline (PBS) (PH 

7.5) (Oxoid UK); Protein estimation assay kit (Bio-Rad Laboratory, UK); Propedium 

iodide (PI) (Sigma Aldrich, UK);  Pipette tips (Lonza, UK); PCR gel electrophoresis 

buffer (10X) (Sigma Aldrich, UK); Qiagen mini DNA extraction kit (Qiagen, Ltd 

Qiagen house, Crewley, RH10 9NQ UK); qRT-PCR primer sets for gene of interest 

(200µM stock) (Metabion, Germany); Reference ‘house-keeping’ transcripts: (beta-

actin, beta-2 microglobulin, glyceraldehyde 3 phosphate dehydrogenase, 

hydroxymethyl-bilane synthase, hypoxanthine phosphoribosyl transferase 1, ribosomal 

protein L13a, ribosomal protein L32, succinate dehydrogenase complex subunit A 

(Roche, Switzerland); RNA 6000 Nano Assay kit (Agilent Technologies, UK); RNA 

ladder (Ambion, UK); Radioimmunoprecipitation assay buffer (Sigma Aldrich, UK); R-

phycoerythrin conjugated to streptavidin (Molecular Probes, Inc. USA); sqRT-PCR 

primers (200µM stock) (Invitrogen, UK); (Sterile Tris-EDTA (TE) buffer (PH 8.0) 

(InVitrogen Ltd, Paisley, PA4 9RF,UK); Shaker incubator (Sigma Aldrich Ltd, Dorset, 

SP8 4XT UK); Staurosporine stock (1 mM in DMSO) (Sigma Adrich, UK);  Super 

Script IIITM RNase H reverse transcriptase (Invitrogen, UK); siRNA (100µM stock) 

(Applied Biosystems USA); TEMED (Sigma Aldrich, UK); Thermanox coverslips 

(13mm) (Nalge Nunc International, U.S.A.); Two-Cycled cDNA Synthesis Kit 

(Affymerix, USA); Western blotting electrophoresis buffer salts (Sigma Aldrich, UK); 

Whatman nitrocellulose membrane and 3 mm Whatman chromatographic paper 

(GeneFlow, UK);  White-walled 96-well plate (Millipore, UK); 0.1M Calcium chloride 

(CaCl2) (Sigma Aldrich Ltd, Dorset, SP8 4XT UK). 
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2.1.1. Equipments 

  

AGB-75 Laboratory PH meter (Orion, USA); Gene Chip scanner 3000, Affymetrix 

GCOS (V1.4) software, Agilent 2100 (Agilent, USA);  AScorn Ellizer reader (Promega, 

UK);  Automatic plate shaker (Grant Bio, UK); Chanelon Luminometer (Millipore, UK); 

Bioanalyser (Agilent Technologies, UK); Coulter cell counter (Bio-Rad, UK); Cross 

power Electrophoresis tank (ATTA, Japan); EukGe W S2v5 program controlled using 

Affymetrix software; FACS-Calibur Flow (Becton Dickinson, UK); Fluorescence 

microscope (Thermo Scientific, USA); Gel Electrophoresis tank (Pharmacia, UK); 

GeNorm software (Primerdesign, UK); Humidified CO2 incubator (Triple Red Lab 

Technology, UK); G-Box chemiluminescence (Syngene, UK); ImagJ 4.1 software 

(National Institute of Health, USA); LKB Spectrophotometer (Sigma Aldrich, UK); 

Microflow class II safety cabinet (Walker, UK);  Master Light Cycler® 480 real time 

PCR machine (Roche, Switzerland); Magnetic stirrer (Heidolph, UK); Inverted light and 

fluorescent microscopes with camera (Zeiss, Germany); Multiskan Ascent micro plate 

reader (Millipore, UK); Nanodrop ultra-low-volume, NanoDrop ND-1000 UV-visible 

spectrophotometer (Thermo scientific, USA); NanoDrop software, Agilent 2100 

Bioanalyser (Agilent Technologies, USA); Phase contrast microscope (Zeiss, Germany) 

Refrigerated centrifuge (4ºC) (Sigma Aldrich, UK); RMA Bioconductor (Agilent 

Technologies, UK); Spectrophotometer (Pharmacia Biotech, UK); Thermal cycler (PCR 

Express Hybrid, Australia); Trans-blot SD Semi-Dry Transfer cell (Bio-Rad, UK); 

Universal Probe Library (Roche Diagnostics, Switzerland); Ultrospec 2000 UV/Visible. 

 
 

2.2. Cell Culture of Human Rhabdomyosarcoma and Melanoma Cell Lines 

 

The maintenance of viable cells is essential for consistent and reliable experimental 

results.  Cells were revived and maintained for subsequent experiments including 

transient transfection for gene and protein expression analyses, cell proliferation, 

migration, adhesion, invasion, transformation and apoptosis assays.     

  
    

The adherent cell lines (human embryonal rhabdomyosarcoma (JR1), human alveolar 

rhabdomyosarcoma (RH30) and human malignant melanoma (A375) were used to 

down-regulate PAX3 expression. All materials used were sterilized using steam 
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sterilisation.  Cell culture medium was sterilised using membrane filtration (0.02µm pore 

size, Millipore).  All cell culture experimental manipulations requiring sterile conditions 

were carried out in a sterile microflow class II cell culture safety cabinet using aseptic 

technique. The JR1, RH30 and A375 cell vials retrieved from liquid nitrogen were 

briefly thawed  in a water bath set at 37ᴼC for 2 min and immediately resuspended in 

3ml of DMEM (supplemented with 10% FCS, 100 units/ml penicillin, 100 µg/ml 

streptomycin and 2mM L-glutamin, Lonza) in complete medium and well mixed.  The 

cells were centrifuged at 300 x g for 5 min and the supernatant discarded.  

 

 

The cell pellet was resuspended with 5ml of complete DMEM medium and mixed to 

obtain a homogeneous suspension.  An additional 10ml of complete DMEM medium 

was added to the cell suspension, mixed well and then 2.5ml and 5ml of the cell 

suspension were transferred into two sterile 25cm
2
 and 75cm

2
 cell culture flasks 

(Corning) respectively and incubated at 37ᴼC in a humidified incubator containing 5% 

atmospheric CO2 (Tripple Red Lab. Technology, UK).  The next day, following 

adherence of cells to the culture flask substratum, the medium was replaced with fresh 

complete medium to remove any dead cells.  The flasks were examined daily using a 

phase contrast inverted microscope to monitor the health and growth of the culture.  

Exhausted medium was replaced with fresh medium until the culture was approximately 

70% confluent.  The complete medium was discarded and the monolayer was rinsed four 

times with sterile PBS.  Excess PBS was completely removed and 2-3ml of trypsin-

EDTA solution (200mg/ml) was added to the monolayer and incubated for 2-5 min at 

37ᴼC to trypsinize the cells.  Gentle agitation was applied to detach cells from the 

substratum and the cell layer was intermittently examined microscopically until 

approximately 90% of the cells were rounded up.  Trypsin-EDTA was neutralized by 

addition of 5ml of complete medium and the cells were mixed well, then centrifuged at 

300 x g for 5 min. 

 

 

The supernatant was discarded and 5ml of complete DMEM was used to resuspend the 

cell.  100µl of cells were mixed with 20ml Isotone solution and the cells were counted 

three times using an automated coulter cell counter to estimate the mean concentration 

of cells.  The percentage of cell viability was confirmed by the trypan blue exclusion 
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technique.  The number of cells per ml was calculated using the formula: (N X 400 cells 

/ml), where N represents the mean of cell counts.  The required cell seeding density to 

be transferred per well was calculated using a dilution factor formula below.   

 

                                           Required cell seeding density per well 

                                                  Cell concentration per ml 

  

Cell stocks were prepared for long storage by centrifuging cells at 300 x g for 5 min and 

the supernatant medium was discarded.  The cell pellet was resuspended in 5ml of 10% 

DMSO (Sigma Aldrich) in FBS/FCS at 9.5 X 10
6
 cells/ml), mixed well and transferred 

to liquid nitrogen (-190
o
C) for longer storage. 

 
 

2.3. Small Interfering RNA Inhibition of PAX3 Expression in Human  

Neoplastic Cell Lines 

 

Small interfering RNA (siRNA) are minute regulatory fragments of double-stranded 

RNA, which are approximately 21 nucleotides elongated, with 3' projections at both 

ends.  These siRNA has the ability of "interfering" or inhibiting protein translation via 

high binding affinity to and stimulation of degradation of messenger RNA (mRNA) at 

specific sequences in the nucleus.  It is a major biological mechanism in which the 

cytoplasmic presence of double-stranded RNA (dsRNA) initiates post-transcriptional 

silencing of homologous genes by targeting sequence-specific inhibition of transcription 

and degradation of mRNA (Ambesajir et al; 2012).  This technique was used to silence 

PAX3 gene in JR1, RH30, and A375 cells through intracellular degradation and 

subsequently determine the effects of inhibition of PAX3 gene on cellular functions. 

 

 

2.3.1. Transfection with siRNA  
 

The siRNA Silencer® pre-designed PAX3-siRNA with three targeting sites on exon four 

of PAX3 was used to down-regulate PAX3 (Applied Biosystems).  A scrambled non-

targeting siRNA negative control (NC-siRNA) with sequences that do not target any 

gene product was used for determining transfection efficiency and controlling the effects 

of siRNA delivery on cells.  To monitor the silencing effectiveness of siRNA, NC-

siRNA was used in parallel with PAX3-siRNA.  
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Three different pre-designed PAX3-siRNA Silencers were tested individually and in 

combination to select the optimal PAX3 Silencer (see table 2.1).  

 

 

Table 2.1 Oligonucleotide sequence of PAX3-siRNA and NC-siRNA used 

 

                siRNA                                     Sequence 

PAX3-siRNA-1 Sense:       5'-GUCGCAUAAUGAGAAGUUUCT-3' 

Antisense: 5'-CCACGGCUCAGGAUGCUUCTG-3' 

 

PAX3-siRNA-2 

Sense:       5'-GUCUCAUCCUGAGCCGUCCUG-3' 

Antisense: 5'-UCACGUCUCACCAUACUUCTG-3' 

 

PAX3-siRNA-3 

Sense:       5'-GCCGCAUCCUGAGAAGUAATT-3'       

Antisense: 5'-UUACUUCUCAGGAUGCGGCTG-3' 

 

NC-siRNA       

Sense:       5'-GAUCCUGUGCAGGUACCAGTT-3' 

Antisense: 5'-CUGGUACCUGCACAGGAUCCG-3' 

 

 

JR1, RH30 and A375 cells were seeded in triplicate at a cell concentration of 2.0 x10
5 

cells/ml in 24-well plates for subsequent transfection of NC-siRNA and PAX3-siRNA 

(previously called PAX3-siRNA-3), alongside non-transfected negative control cells and 

incubated at 37ᴼC for 24 hr after seeding.  When cells were 30%-40% confluent, the 

medium was discarded and the cells were rinsed three times with 0.5ml sterile Opti-

MEM I reduced serum antibiotic-free medium and were maintained in this medium until 

transfected after 24 hr.  The Opti-MEM I reduced serum antibiotic-free medium was 

completely discarded and 0.5ml freshly prepared siRNA–lipofectamineTM RNAiMAX 

transfection complex, at a final concentration of 0.5µmol/µl siRNA from a 100µmol/µl 

stock siRNA (according to the manufacturer’s instructions), was added to each well and 

gently mixed.  The plates were then incubated at 37ᴼC in a humidified 5% CO2 

atmosphere for 96 hr.  After  24 hr, an additional 0.5ml fresh Opti-MEM I reduced 

serum antibiotic-free medium was added to each well to prevent medium evaporation 

during the long incubation.  The Opti-MEM I reduced serum antibiotic-free medium was 

used in growing the cells thoughtout the transfection experiments to achieve a slow cell 
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growth.  All cell lines were transfected for a maximum period of 96 hr prior to cell 

functional analysis. 

 

 

2.3.2. Determination of Inhibition of PAX3 mRNA Expression 

 

To establish the effect of siRNA knockdown on PAX3 gene expression, total RNA was 

extracted, reverse transcribed into cDNA and the PAX3 mRNA expression level was 

determined by reverse transcription semi-quantitative and quantitative real-time 

polymerase chain reaction (sqRT-PCR and qRT-PCR respectively), microarrays and 

western blotting.  

 
 

2.3.2.1. Extraction of total RNA from Transfected Cells 

 

Total RNA was extracted using TRIzol reagent according to the manufacturer’s 

instructions with a slight modification of prolonged incubation time by 5-10 min extra at 

the initial incubation stages to ensure complete disruption of cellular components.  After 

transfection, the medium was discarded from the 24-well plates, rinsed with ice-cold 

PBS four times and excess PBS was completely removed.  1ml of TRIzol reagent was 

added to each well and incubated for 40 min at room temperature (RT) to homogenise 

cells and ensure the complete dissociation of nucleoprotein complexes.  The cell 

homogenate mixture was vortexed for 1 min, stored at -80ºC to maintain the integrity of 

RNA and until ready to extract the cellular total RNA.  0.2ml chloroform was added per 

ml of TRIzol reagent used in the initial homogenisation, inverted for 15 sec and 

incubated for 10 min at room RT.  The cell homogenate mixture was centrifuged in a 

refrigerated centrifuge at 12,000 x g for 15 min at 4ᴼC to separate the mixture into a 

lower red phenol-chloroform phase, a white pellicle interphase and a colourless upper 

aqueous phase containing pure total RNA.  400µl of the colourless upper aqueous phase 

was carefully transferred into sterile ice-cold eppendorf tubes and 0.5ml of 100% 

isopropanol was added (per ml of TRIzol reagent used in the initial homogenisation), 

vortexed briefly for 1 min and incubated for 10 min at RT to precipitate the total RNA.  

The precipitated total RNA was centrifuged at 12,000 x g for 10 min at 4ᴼC to pellet 

isolated total RNA.  The supernatant was discarded and the isolated total RNA pellet 

was washed by adding 1ml of ice-cold 75% ethanol per ml of TRIzol reagent used in the 
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initial homogenisation, vortexed for 1 min and centrifuged at 7,500 x g for 5 min at 4ᴼC.  

The supernatant was discarded and the isolated pure total RNA pellet was briefly air-

dried for 5 min, resuspended in 15µl ice-cooled nuclease-free-water on ice and stored at -

80ᴼC overnight, until ready to use for determination of purity of the isolated RNA and 

cDNA synthesis.  

 
 

2.3.2.2. Determination of total RNA Yield and Purity 

 

4µl of RNA was diluted in 996µl of double distilled water (dd H2O) and the absorbance 

(OD) at 260nm and 280nm was measured in a spectrophotometer.  RNA concentration 

was calculated according to the absorbance reading at OD260 (one absorbance unit at 

260nm = 40µg/ml of single-stranded RNA).  The value of absorption ratio 260/280 was 

used to determine the purity of extracted RNA.  Ratio of 260/280 values out of (1.6-2.0) 

range indicates RNA contamination. 

   
 

2.3.2.3. Complementary DNA Synthesis 

 

Extracted RNA was reverse transcribed into complementary DNA (cDNA) using 

Promega ImProm-II
TM

 Reverse Transcription System kit according to the 

manufacturer’s instructions.  Up to 1µg/µl of target RNA and 1µl of cDNA oligo (dT)15 

primer (0.5µg/µl) were combined in nuclease-free water to a final volume of 5µl per 

reverse transcriptase reaction.  The target RNA reaction mixture was denatured in a 

70ᴼC heat block for 5 min and immediately chilled on ice for 5 min.  A reverse 

transcription reaction mix was prepared on ice by combining 4.5µl Nuclease-free H2O 

with 4µl of 25mM MgCl2, 4µl of 5 X Tris-HCl reaction buffer (PH 8.5), 1µl of 10mM 

dNTP mix, 0.5µl of 2500 units/ml recombinant ribonuclease inhibitor (Rnasin) and 1µl 

of 50 units/ml Reverse Transcriptase to a final volume of 15µl per reaction.  A total 

volume of 15µl of reverse transcription reaction was mixed with 5µl denatured target 

RNA.  A non-template negative control reaction tube was also set alongside the 

experimental reaction by combining 2.5µl of 0.5µg oligo (dT)15 with 2.5µl nuclease 

free-H2O.  The reaction tubes were microcentrifuged at 1500 rpm for 2 min and 

annealed at 25ᴼC for 5 min followed by 1 h extension at 42ᴼC and 15 min at 70ᴼC in a 

thermal cycler.  The synthesized cDNA was stored at -20ᴼC or -80ᴼC. 
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2.3.2.4. Semi-Quantitative Reverse-Transcription Polymerase Chain Reaction    

 

Semi-quantitative reverse transcription polymerase chain reaction (sqRT-PCR) based on 

the determination of band intensities of reversed transcribed mRNA on an agarose gel 

was used to determine the level of PAX3 mRNA expression knockdown. 

  

  
RT-PCR analysis of constructed cDNA was performed using a Promega RT-PCR 

analysis kit according to the manufacturer’s instructions.  RT-PCR was carried out in ice 

cooled 0.2ml microcentrifuge tubes by combining 1µl cDNA (1µg/µl) samples with 5µl 

of 2 X Master mix (composed of 50 units/ml Taq DNA polymerase in 5 X Tris-HCl 

reaction buffer (PH 8.5), 400µM dATP, 400µM dGTP, 400µM dCTP, 400µM dTTP, 

3mM MgCl2), 1µl forward/reverse primers (10µM working concentration of each, table 

2.2) and mixed with 3µl nuclease-free water to a final volume of 10µl per reaction tube.   

 

Table 2.2   RT-sqPCR Oligonucleotide primers used for RT-sqPCR  

 

 

Primer 

 

Sequence 

PAX3 

Isoform 

Amplicon 

size (bp) 

PAX3a/bF 

PAX3a/bR 

5’-TCAAGGACGCGGTCTGTGATC-3’ 

5’-ATAAGGCAGCCAATGTGGGGG-3’ 

PAX3a 

PAX3b 

684 

277 

PAX3E7F 

PAX3I8R 

5’-CCGCTTCCTCCAAGTACTGTACACCAAAGC-3’ 

5’-GATACCGGCATGTGTGCCTTAATCTTGCCTC-3’ 

 

PAX3c 

 

532 

PAX3E8R 

PAX3I9R 

5’GTCAGAGACTAGACCATATGAAGAGCTTGGACAG-3’ 

5’-CAGAGCAGATTCTTGATATCTAGGCTGCGAAGAC-3’ 

 

PAX3d 

 

241 

PAX3E8R 

PAX3I10R 

5’GTCAGAGACTAGACCATATGAAGAGCTTGGACAG-3’ 

5’-GAATTGGGATGTTTTGATATCTAACCATGTGAAA-3’ 

PAX3d 

PAX3e 

500 

294 

PAX3E7F 

PAX3I9R 

5’-CCGCTTCCTCCAAGTACTGTACACCAAAGC-3’ 

5’-CAGAGCAGATTCTTGATATCTAGGCTGCGAAGAC-3’ 

PAX3d 

PAX3g 

550 

286 

PAX3E7F 

PAX3I10R 

5’-CCGCTTCCTCCAAGTACTGTACACCAAAGC-3’ 

5’-GAATTGGGATGTTTTGATATCTAACCATGTGAAA-3’ 

PAX3d 

PAX3c 

PAX3h 

750 

532 

338 

S14F 

S14R 

5’-GGCAGACCGAGATGAATCCTCA-3’ 

5’-CAGGTCCAGGGTCTTGGTCC-3’ 

    

 S14 

 

143 

 

 

Reaction tubes were centrifuged for 30 sec and placed in a thermal cycler programmed 

for 40 cycles to allow the amplification of low level expressed PAX3 isoforms (95ᴼC for 

1 min, 58ᴼC for 1min, and 72ᴼC for 1 min) and 72
o
C for 10 min final incubation.   

Extracted total RNA from three specific PAX3 positive controls of non-transfected JR1, 

RH30 and A375 cell lines cells known to be expressing the PAX3 gene, with cDNA 

containing PAX3 isoforms, were set alongside the experimental reaction tubes to monitor 
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the effectiveness of the PCR master mix reaction, PCR programme and to identify the 

various PAX3 isoforms bands on agarose gel.  A non-template negative control, set 

alongside the experimental reaction tubes containing 1µl nuclease free-water in lieu of 

cDNA was amplified in parallel to monitor contamination.  A human ribosomal RNA 

S14 housekeeping gene was included as an internal normalisation control and carried out 

alongside the PAX3 experimental target genes to monitor the effectiveness of the reverse 

transcription reaction of extracted RNA into cDNA for RT-PCR analysis.  The RT-PCR 

analysis for each sample was performed three times. 

 
 

2.3.2.5. Agarose Gel Electrophoresis 

 

1.5% agarose gels were prepared in 1 X TBE buffer (Invitrogen), boiled in a microwave 

at high power to completely dissolve the agarose powder at 100ᴼC, and allowed to cool 

to approximately 50ᴼC.  The gel casting combs were inserted in the gel casting chambers 

and 45ml of the molten agarose solution was poured to about 1 mm thickness to create 

sample loading lanes without air bubbles and incubated at RT for 30 min to solidify at a 

gel thickness of 3.5 mm. The combs were carefully removed and the gels were 

transferred into an agarose gel electrophoresis running tank containing 450 ml 1 X TBE 

electrophoresis running buffer. Equal volumes (5µl) of sqRT-PCR products and 2 X 

orange G DNA loading buffer were mixed, briefly vortexed and loaded.  A 100-1500bp 

Benchtop ladder was used as a sample tracking molecular weight marker and to 

determine the size of RT-PCR analysis amplicons of the various PAX3 isoforms (Table 

2.2).  The gels were electrophoresed at 50-55mA for 45 min, stained in 0.5µg/ml 

ethidium bromide in ddH2O for 30 min and visualised with a G-Box UV 

chemiluminescence transilluminator.  

 

 

2.4. Microarray Analysis of Downstream Target of PAX3 Gene  

 

The microarray experimental work and analysis was carried out by Dr. Leo Zeef and 

colleagues at the microarray facility, University of Manchester, UK. 
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2.4.1. cDNA Synthesis 

 

Total RNA was extracted using a Trizol RNA extraction kit as described in section  

section 2.3.2.1).  RNA quality was checked using the RNA 6000 Nano Assay, and 

analysed on an Agilent 2100 Bioanalyser.  The RNA was quantified using a Nanodrop 

ultra-low-volume spectrophotometer. Approximately 100ng total RNA was used to 

synthesize cDNA.  Synthesis was carried out using a Two-Cycled cDNA Synthesis Kit 

and a Gene Chip Sample Clean up Module kit was used for cDNA cleanup.  The final 

elution step resulted in approximately 12µl cDNA. 

 
 

2.4.2. Biotinylation and Fragmentation of Complementary RNA 

 

Biotin labelling of complementary RNA (cRNA) was carried out using a Genechip IVT 

labelling kit.  12µl of cDNA was used and the resultant cRNA was purified using the 

GeneChip sample clean up module with a final elution volume of 19µl in RNase free 

water.  Using the Nanodrop spectrophotometer, cRNA was quantified and 15µg cRNA 

was used for fragmentation.  The reaction was carried out in 5 X fragmentation buffer at 

94ᴼC for 35 min. 

 

 

2.4.3. Hybridization 
 

For each target, a hybridization cocktail was made using the standard array methodology 

as described in the Gene Chip Expression Analysis Technical Manual.  The cocktail was 

hybridized to genome Mouse-4302 chips by incubating the Gene Chips in a rotisserie 

box in a 45ᴼC oven rotating at 60rpm. Following 16 hr hybridization, the chips were 

loaded onto a Fluidics station for washing and staining with R-phycoerythrin conjugated 

to streptavidin using the EukGe W S2v5 program controlled Affymetrix software, 

GCOS (V1.4). 

 

 

2.4.4. Scanning 

 

The chips were loaded onto the Agilent Gene Chip scanner 30009 and quality control 

checks for control hybridizations were performed, again using Affymetrix GCOS (V1.4) 

software.  RNA quality was checked using the RNA 6000 Nano Assay, analysed on an 
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Agilent 2100 Bioanalyser and then quantified using a Nanodrop ultra-low-volume 

spectrophotometer. The Human genome U133 plus 2.0 Affymetrix GeneChips were run 

according to manufacturer’s instructions. 

 
 

2.4.5. Analysis 

 

A technical quality control was performed with dChip (V2005) (www.dchip.org; Li and 

Wong, 2001) using the default settings.  Background correction, quantile normalization, 

and gene expression analysis were performed using robust multiarray analysis in a 

bioconductor (Bolstad et al., 2003).  The principal component analysis was performed 

with Partek Genomics Solution (version 6.5, Copyright 2010).  Differential expression 

analysis was performed using Limma functions lmFit and eBayes (Smyth, 2004).  Gene 

lists of differentially expressed genes were controlled for false discovery rate and errors 

using the method of QVALUE (Storey and Tibshirani, 2003).  Functional annotation of 

the genes was performed using DAVID NIH version 2 (Glynn et al., 2003).  

 

 

2.5. Reverse-Transcription Quantitative Polymerase Chain Reaction  

 

Dr. Fiona Marriage and colleagues (Quantitative Polymerase Chain Reaction Facility, 

Manchester Institute of Biotechnology, University of Manchester, UK), performed the 

Reverse-Transcription quantitative Polymerase Chain Reaction (RT-qPCR) experimental 

work and analysis. 

 

 

Extracted RNA was quantified using a NanoDrop ND-1000 UV-visible 

spectrophotometer.  Before RNA measurements were taken, the ND-1000 was blanked 

by pipetting 1.2l of Nuclease free water directly onto the optical pedestal, the lid was 

closed and using surface tension to hold a 1mm column of liquid in place, the 

background measurement was taken.  The pedestal surface was then wiped clean and 

1.2l of undiluted RNA measured.  The NanoDrop software displayed the concentration 

of RNA in ng/l and assessed the OD of 260/280 and 260/230 purity ratios for the 

estimation of RNA purity.  A 260/280 ratio between 1.9-2.1, and a 260/230 ratio around 

2.0 indicates pure RNA.  The RNA integrity was assessed using the Agilent 2100 

http://www.dchip.org/
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Bioanalyser.  RNA (1.5l/sample) and 1.5l RNA ladder were heat denatured at 70ᴼC 

for 2 min and placed on ice.  The Eukaryote RNA 6000 nano-chip was filled with 9l of 

gel dye mix into the appropriate well.  The chip was placed onto a chip priming station 

and a plunger depressed for 30 sec to fill the chip with gel.  A further 9l of gel dye mix 

was placed into the two remaining gel dye mix wells.  A gel matrix (5μl) was added to 

each of the sample wells and the ladder well.  The denatured samples and RNA ladder 

(1l) were then added to one of 12 sample wells.  The chip was vortexed for 1 min and 

then run on the Agilent 2100 Bioanalyser.  The 28s and 18s RNA peaks were seen at 

approximately 48 and 42 sec respectively for the extracted RNA.  The Agilent 2100 

Bioanalyser software assigned an RNA integrity number to each sample using a scale 

from 0 to 10, with a value of 0 meaning totally degraded and a value of 10 meaning 

highly intact.   

 

 

2.5.1. DNAse Treatment 
 

DNA Free Turbo was used to remove any contaminating genomic DNA present.  

Briefly, the RNA was diluted to give a greater volume, one-tenth volume of 10 X 

DNAse buffer and equal volume of DNAse and diluted RNA (1µl) were mixed and 

incubated at 37ᴼC for 30 min.  One tenth volume of DNase inactivation buffer was 

added to each tube (or 2µl if the volume was low).  The tubes were incubated at RT for 5 

min, gently mixed at intervals and then spun at 10,000 x g for 90 sec.  The RNA 

supernatant was collected. 

 
 

2.5.2. Reverse Transcription 

  

RNA (3µg/µl) was reverse transcribed using SuperScript III
TM

 RNase H reverse 

transcriptase following the manufacturer’s guidelines.  Briefly, 1µl Oligo (dT)12-18 

(0.5µg/µl), 3µg RNA and 1l dNTP mix (10mM) were added to a nuclease-free micro-

centrifuge tube, incubated at 65ᴼC for 5 min and then chilled on ice.  The tubes were 

briefly centrifuged, and 4l of 5 X first strand buffer, 1l DTT (0.1M), 1l 

RNaseOUT
TM

 and 1µl SuperScript III were added, gently mixed and the reaction tubes 
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were incubated at 50ᴼC for 60 min.  The reaction was terminated by heating the samples 

to 70ᴼC for 15 min.    

 
 

2.5.3. Quantitative PCR Measurement of Gene of Interest 
 

The Human Universal Probe Library system (Mouritzen et al, 2003) employing 

proprietary locked nucleic acid analogues of fluorescence resonance energy transfer 

hydrolysis probes, was used for qRT-PCR to measure expression levels of genes of 

interest (GOI).  Using the Roche online assay design centre, specific primers and an 

associated probe were selected for the gene of interest transcripts.  The primers were 

submitted to a basic local alignment search Tool (BLAST®) 

(http://www.ncbi.nlm.nih.gov/BLAST/) to check for non-specific binding.  Where 

primers showed homology to other regions within the human transcriptome, the assay 

was redesigned and the new primers submitted to BLAST again.  Dual labelled DNA 

probes were from the Universal probe library.  To compensate for variations in cell 

number, RNA isolation, reverse transcription and PCR amplification efficiency, two 

endogenous ‘house-keeping’ transcripts were chosen from a panel of eight ‘house-

keeping’ genes (Table. 2.3) using the GeNorm algorithm.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://www.ncbi.nlm.nih.gov/BLAST/
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Table 2.3 Gene of interest Oligonucleotide primers for RT-qPCR 

 

     Gene 

symbol 

Forward (F) and  Reverse (R) primers                               

                           Sequence 

Expected  Fragments       

     Size  (bp) 

       Ta 

(°C) 

PAX3 F: CGTCTCCAAGATCCTGTGC 

R: CGTCAGGCGTTGTCACCT 

                

                95 

           

         60 

 
ADAM23 

F: GCACAAGAGGAGTTGGTGTG 
R: GCCAGGCTCTGCGATAATAC 

 
73 

 
58 

 

AEN 

F: TGCAGACCGGAAGAGACAC 

R: GGAAGCCTGGGGAGTAATCT 

 

89 

 

60 

 
AKT3 

F: TTGCTTTCAGGGCTCTTAT 

R: CATAATTTCTTTTGCATCATCTGG 
 

75 
 

59 

 

BCL2 

F: CATCGCGGTATTCGGTTC 

R: GCTTTGCCATTTGGTCTT 

 

132 

 

60 

 

BRCA1 

F: CATCCCAGGAGGTGACGATTC 

R: GGGAGGCTCTGTGAATTGTC 

 

98 

 

60 

 

CALM3 

F: ATTGACTTCCCGGAGTTCCT 

R: GATGTAGCCATTCCCATCCTT 

 

114 

 

60 

 
CAPRIN1 

F: GGCAGAAACACAGTTCACCA 

R: AGGTTGCTGCTGGAGTGAAT 
 

94 
 

59 

 

CASP3 

F: TGGAATTGATGCGTGATG T 

R: TGGCTCAGAAGCACACAA AC 

 

73 

 

60 

 
CCNBI 

F: CGTCTCCAAGATCCTGTGCAAC 
R: CGTCAGGCGTTGTCACCTA 

 
90 

 
64 

 

CCND3 

F: ATCACTGGCACTGAAGTG GA 

R: CCTGAGGCTCTCCCTGAGT 

 

75 

 

59 

 
CDC25B 

F: TGCAGGTCTCTGCATGGAT 

R: GGATGGCCTGTTCAAACG 
 

74 
 

60 

 

CDCA3 

F: TGGTATTGCACGGACACCTA 

R: TGTTTCACCAGTGGGCTTG 

 

63 

 

60 

 
CDK5 

F: AATGACATCTGCCTTGACGAA 
R: GTAAATGCGTCGACGTTCAATC 

 
79 

 
58 

 

C-MYC 

F:GAACCAGAGAAACCTAACAGTGC 

R: CGAAGCAGCTCTATTTCTGGA 

 

89 

 

59 

 
COL1A1 

F: CTGGACCCCAGGGTCTTC 

R: CATCTGATCCAGGGTTTCCA 

 
75 

 
60 

 

CXCR4 

F: ATTGGGATCAGCATCGACTC 

R: CAAACTCACACCCTTGCTTG 

 

61 

 

60 

 

E2F7 

F: CAGGAAGCCTCCTTAGGAAAG 

R: GGGGCTGATCAGGTCTTTTA 

 

68 

 

59 

 

E2F8 

F: AATGACATCTGCCTTGACGA 

R: GTAAATGCGTCGACGTTCAA 

 

95 

 

60 

 

ETS1 

F: ACAAGCCTGTCATTCCTGCT 

R: GTAATTCCAGAAGAAACTGCCATAG 

 

84 

 

59 

 

FOXO 1 

F: AGGCTGAGGGTTAGTGAGCA 

R: TGAAAGACATCTTTGGACTGCTT 

                

                91 

          

         60 

 

FOXO3 

F: CTTCAAGGATAAGGGCGACA 

R: CGACTATGCAGTGACAGGTTG 

 

87 

 

60 

 

GADD45B 

F: CAGGAAGCCTCCTTAGGAAAGTC 

R: GGGGCTGATCAGGTCTTTTA 

 

96 

 

58 

 

HES1 

F: GAAGCACCTCCGGAACCT 

R: GTCACCTCGTTCATGCACTC 

 

111 

 

60 

 

ID3 

F: CATCTCCAACGACAAAAGGAG 

R: CTTCCGGCAGGAGAGGTT 

 

90 

 

63 
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Continued 

    
ITGB5 

F: GGAGTTTGCAAAGTTTCAGAGC 
R: TGTGCGTGGAGATAGGCTTT 

 
89 

 
60 

 

JAM2 

F: GCTATGCTCAGAGGAAAGGCTA 

R: GGATTTTGTGTGCTTGAAATCAT 

 

110 

 

60 

 
JUN 

F: CTGTCTCAAGGGGTGATTGCTC 
R: TTCGATAGGTCCATGTGCTG 

 
95 

 
54 

 

MAP1A 

F: ATTGGGATCAGCATCGACTCTCCG 

R: CAAACTCACACCCTTGCTTG 

 

88 

 

66 

 
MCM3 

F:  TCACCACAGACCAGGAAACA 
R:  CAAATTCATCAATGCAAACCA 

               
                90 

        
         60 

 

MDM2 

F:  GGCAGAAACACAGTTCACCAGTC 

R: AGGTTGCTGCTGGAGTGAAT 

 

89 

 

58 

 

 MITF 

F: AGAGTCTGAAGCAAGAGCACTG 

R: TGCGGTCATTTATGTTAAATCTTC 

 

95 

 

59 

 

MMP23A 

F: TTGCTTTCAGGGCTCTTATCCT 

R: CATAATTTCTTTTGCATCATCTGG 

 

75 

 

60 

 

MRPL16 

F: GAAGCACCTCCGGAACCTGTA 

R: GTCACCTCGTTCATGCACTC 

 

88 

 

58 

 

MYOD1 

F: CACTACAGCGGCGACTCC 

R: TAGGCGCCTTCGTAGCAG 

 

116 

 

60 

 

MYOG4 

F: CAGCTCCCTCAACCAGGAG 

R: GCTGTGAGAGCTGCATTCG 

 

90 

 

60 

 

NDRG1 

F: CGTCTCCAAGATCCTGTGCA 

R: CGTCAGGCGTTGTCACCTGC 

 

95 

 

60 

 

NID 1 

F: CAGTTTTCAGATGAGGGAACG 

R: TGAAGGCCAGTTTCACAGTAGTT 

 

74 

 

60 

 

P21 

F: CAGCTCCCTCAACCAGGAG 

R: GCTGTGAGAGCTGCATTCGTCC 

 

86 

 

68 

 

PCDH18 

F: AACCACGTGCCAGAGAATTT 

R: GAAAGAAGCTGAGAGACCTGCT 

 

77 

 

59 

 

PCNA 

F: TGGAGAACTTGGAAATGGAAA 

R: GAACTGGTTCATTCATCTCTATGG 

 

109 

 

60 

 

POLA2 

F: GACATTGTTTCCATTCAAGAGC 

R: GTGTGGTGTAAGAGTTCAAGAGGA 

 

74 

 

59 

 

PTEN 

F: CGAACTGGTGTAATGATATGTGC 

R: CGCCTCTGACTGGGAATAGT 

 

131 

 

59 

 

RBBP4 

F: CAGTTTTCAGATGAGGGAACGTCCG 

R: TGAAGGCCAGTTTCACAGTAGTTC 

 

85 

 

64 

 
SENP5 

F: TTTTGACGAGCCTTCAACAAG 
R: CTACAACCTGATGCGTCTGC 

 
90 

 
60 

 

SKP2 

F: CTGTCTCAAGGGGTGATTGC 

R: TTCGATAGGTCCATGTGCTG 

 

104 

 

60 

 
SMAD2 

F: AAAGGGTGGGGAGCAGAATA 
R: GAAGTTCAATCCAGCAAGGAT 

 
64 

 
60 

 

SOX10 

F: CATCCCAGGAGGTGACGA 

R: GGGAGGCTCTGTGAATTGTC 

 

76 

 

58 

 
TFDP 2 

F: CTGTCTCAAGGGGTGATTGCTGA 
R: TTCGATAGGTCCATGTGCTGC 

 
102 

 
60 

 

TGFB3 

F: AGTGCAGACACAACCCACAG 

R: GGTCCTCCCAACATAGTACAGG 

 

129 

 

59 

 
TMBIM4 

F: CTGTCTCAAGGGGTGATTGCTA 
R: TTCGATAGGTCCATGTGCTGAC 

 
85 

 
59 

 

P53 

F: CCTTGCTGCTCTACCTCCACGCC 

R: CCACTTCGTGATGATTCTGCAT 

 

68 

 

57 

 
TRIB3C 

F: CTGTCTCAAGGGGTGATTGC 
R: TTCGATAGGTCCATGTGCTG 

 
67 

 
60 

 

VCAN 

F: GCACCTGTGTGCCAGGATA 

R: CAGGGATTAGAGTGACATTCATA 

 

70 

 

60 

 
VEGFA 

F: CCTTGCTGCTCTACCTCCAC 
R: CCACTTCGTGATGATTCTGC 

 
84 

 
60 
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2.5.4. Reference Gene Screen Using GeNorm 
 

A reference gene selection of ‘ten patients spanning the age range’ previously used in a 

related study of PAX3 gene knockdown in neuroblastoma (Fang et al., 2013), was 

applied in this study for screening the eight reference genes including glyceraldehyde 3 

phosphate dehydrogenase (GAPDH), Beta-Actin (ACTB), Beta 2 microglobulin (β2M), 

hypoxanthine phosphoribosyl transferase 1 (HPRT1), ribosomal protein L32, (RPL32), 

Succinate dehydrogenase complex subunit A (SDHA), hydroxymethyl-bilane synthase 

(HMBS) and ribosomal protein L13a (RPL13A) (Using the GeNorm software, the two 

most stably expressed genes were selected and used for normalization) (Table 2.4).   

 

Table 2.4 Selected housekeeping gene primers 

 

Gene 

Symbol 

 

Transcript      

length 

 

Forward Primer 

 

Reverse Primer 

  

Probe 

ID 

 

Probe 

Sequence 

GAPDH NM_002046 AGCCACATCGCTCAGACAC GCCCAATACGACCAAATCC 60 TGGGGAG 

ACTB NM_001101 ATTGGCAATGAGCGGTTC GGATGCCACAGGACTCCAT 11 CTTCCAC 

β2M NM_004048 TTCTGGCCTGGAGGCTATC TCAGGAAATTTGACTTTCCATTC 42 CATCCAC 

HPRT1 NM_000194 TGACCTTGATTTATTTTGCATACC CGAGCAAGACGTTCAGTCCT 73 GCTGAGA 

RPL32 NM_000994 GAAGTTCCTGGTCCACAACG GCGATCTCGGCACAGTAAG 17 AGGAGCG 

SDHA NM_004168 AGAAGCCCTTTGAGGAGCA CGATTACGGGTCTATATTCCAGA 69 CTTCCTCC 

HMBS NM_000190 AGCTATGAAGGATGGGCAAC TTGTATGCTATCTGAGCCGTCTA 25 CTCCTCCA 

RPL13A NM_012423 GAGGCCCCTACCACTTCC TGTGGGGCAGCATACCTC 28 CCAGCCGC 

 

 

The algorithm worked out the stability of each transcript and sequentially removed the 

least stable transcript until the two most stable transcripts remained. The software 

compared the amount of each gene detected across all the samples.  The threshold for the 

stability value M, was set at 0.4 and any value below 0.4 was considered stable (Anstaett 

et al., 2010).  In this current study, HMBS and SDHA demonstrated low stability values 

(as the most stable genes) and were chosen as reference normalization genes.  
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2.5.5. Quantitative RT-PCR Analysis  

 

cDNA was diluted 1 in 40 with nuclease free water.  Each reaction comprised 4l 

diluted cDNA, 5l 2 X Light Cycler 480 Probes Master, 0.1l forward and reverse 

primer mix (20M), 0.1l Probe (10M) and 0.8l of nuclease free water.  Samples 

were then amplified on a Light Cycler® 480 real time PCR machine on the following 

cycle 95ᴼC for 5 min, followed by 50 cycles of 95ᴼC for 10 sec and 60ᴼC for 30 sec.  

The amount of target genes expressed in a sample were normalised to the average of 

each of the two selected endogenous controls.  This was given by Cp, where Cp was 

determined by subtracting the average endogenous gene Cp value from the average target 

gene Cp value.  [Cp GOI – Cp average (endogenous gene)].   

 
 

2.5.6. Sample Normalisation 

 

In this study, sample data normalisation was performed to ensure the reliability of the 

RT-sqPCR, RT-qPCR and microarray experimental data, which compensates for 

sample-to-sample variations in these experiments, efficiency and sample quantification 

errors. The microarray and RT-PCR data were normalised to a selected invariant 

endogenous control reference ‘house-keeping’ genes including (GAPDH, S14, SDHA 

and HMBS).  These four most commonly used housekeeping genes were selected as the 

optimal number of genes for validation, because they have been widely used as the  most 

stable expressed house-keeping genes required for reliable normalization of RT-PCR 

data. They were used to eliminate gene expression inconsistencies and to allow 

appropriate comparison of data between the NC-siRNA and PAX3-siRNA transfected 

cells.  Following adjustment of mean ratios of the ‘house-keeping’ genes to 1.0, the 

relative expression ratio of PAX3-siRNA and NC-siRNA was then used to obtain the 

normalised data (Gilsbach et al., 2006). 
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2.6. Expression of PAX3 protein in Rhabdomyosarcoma and Melanoma Cells 

 

2.6.1. Cell lysate extraction of total protein from transfected cell lines 

 

96 hr after transfection with PAX3-siRNA and NC-siRNA, medium was discarded and 

the cells were washed three times with 0.5ml  ice-cooled 1 X PBS to remove residual 

medium and possible contaminants.  0.2ml iced-cooled radioimmunoprecipitation assay 

buffer was added to the cells, incubated on ice for 30 min and the   cells were removed 

with a cell scraper. The cell lysate was transferred into a sterile 1.5ml  ice-cooled 

eppendorf tube and kept on ice for 20 min, vortexed 2 to 3 times to get a homogeneous 

mixture and then centrifuged at 1,2000 x g at 4ᴼC for 10 min.  The supernatant lysate 

containing the cellular soluble protein was transferred to a new sterile ice-cooled 

eppendorf tube for measurement of protein concentration.  

 

 

2.6.2. Bio-Rad Assay Estimation of Total Protein Concentration  

 

The concentration of total protein in the extracted cell lysate was determined using the 

Bio-Rad protein estimation assay kit.  A standard curve was made from bovine serum 

albumin (BSA) (1mg/ml) with increasing concentrations of BSA, ranging from (0 to 

50µg/µl) in ddH2O prepared in triplicate (Table. 2.5). 2ml of diluted Bio-Rad dye 

reagent (1:5 in ddH20), was added to each 10µl diluted BSA or cell lysate concentration, 

mixed and then incubated for 20 min at RT.  The cell lysate was treated in parallel with 

the BSA standards.  The absorbance of both BSA and the cell lysate were measured at 

585nm on an LKB spectrophotometer. The protein concentration of cell lysate was 

determined by comparison with the standard curve (Fig. 2.1).  The cell lysate tube was 

stored at -20ºC.   
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Table 2.5.  Preparation of BSA working concentrations 
 
 

BSA(µg/µl) 0 10 20 30  40    50 

BSA(µ1) 0 10µl 20µl 30µl 40µl 50µl 

 

ddH2O 

 

100µl 

 

90µl 

 

80µl 

 

70µl 

 

60µl 

 

50µl 

 

 

 
Figure 2.1 A typical BSA Protein Standard Curve for calculating protein sample       

concentration. 

 

2.6.3. Western Blotting Analysis 

 

Western blotting is a very powerful tool in identifying specific proteins (Kurien et al., 

2011). This was used to investigate the effect of PAX3 knockdown on protein expression 

levels of downstream targets. The technique utilises an electric field to separate charged 

protein molecules on a membrane based on their charge and size.   

 

 
2.6.4. SDS Polyacrylamide Gel Electrophoresis 

 

The use of SDS-PAGE gel, requires sample lysate solubilisation with an anionic 

detergent SDS, to coat membrane protein fragments with negatively charged particles.  

This was achieved by boiling a sample lysate with SDS for 15 min to disrupt protein-

protein and protein-lipid complexes.  Wells of freshly prepared polyacrylamide gel held 
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in between two glass plates, loaded with small samples of solubilised proteins, permits 

migration of protein molecules when an electrical potential is applied across the gel, 

with the positively charged anode attached to the bottom of the gel.  This causes the 

negatively charged protein molecules to migrate towards the bottom end of the gel, each 

forming a discrete band.  The rate of migration of each protein molecule down the gel is 

inversely proportional to its size and gel pore resistance, with the smallest protein 

molecules reaching the bottom as they easily migrate through the gel.  The SDS-PAGE 

gel containing discrete protein molecules are then transferred onto a nitrocellulose 

membrane placed flat against the gel.  Using an electric field, the protein molecules are 

then transferred from the gel to the membrane, where they remain in the same relative 

positions that they initially occupied in the gel.  Using labelled antibodies known to bind 

to specific proteins of interest, the proteins from the gel are then identified and 

quantified 

 
 

Separating and stacking gels for SDS polyacrylamide gel electrophoresis were prepared 

according to table 2.6.  

 

Table 2.6 SDS-PAGE  gel preparation 

 

 

  SDS-PAGE      

       

        gels 

Volume of 

40% gel 

solution
1
 

Volume of 

 

Buffer
2
 

Volume of 

 

ddH2O 

Volume of 

 

10% APS
3
 

Volume of 

 

TEMED 

 

Separation gel 

 

3.3ml 

 

2.5ml 

 

4.2ml 

 

100µl 

 

10µl 

Stacking gel  

1.45ml 

 

2.5ml 

 

6.1ml 

 

100µl 

 

10µl 

 

Note:   1. The gel solution was Acrylamide and N, N’ methylene bis-acrylamide (37.5:1) 

           2. The buffers for separating gel and stacking gel were separating buffer and     

                  stacking buffer respectively.          

           3. APS: (Ammonium persulphate) freshly prepared. 

 

The gels were prepared in sterile universal containers for two vertical dual casting-gel 

stand duplicate membranes using the table above.  A bis-acrylamide separating gel was 

prepared by combining 3.3ml of 40% bis-acrylamide with 4.2ml ddH2O and 2.5ml of 
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separating buffer in a sterile universal container, then 100µl of 100mg/ml ammonium 

persulphate was added and immediately followed by 10µl TEMED.  As soon as the 

TEMED was added, the solution was swirled gently to mix and immediately 4.6ml of 

the prepared separating gel was poured into each vertical dual gel-casting stand, 100µl of 

isopropanol was added on the top of the separating gel to expel air pockets and 

incubated at RT for 15 min to polymerize.  The isopropanol was discarded and the top of 

the gel immediately rinsed five times with ddH2O to completely remove all traces of 

isopropanol. The ddH2O was discarded and all traces of dd2O were removed using 1mm 

Whatman blotting paper. A bis-acrylamide stacking gel was prepared by combining 

1.4ml of 40% bis-acrylamide with 6.1ml ddH2O and 2.5ml of stacking buffer in a sterile 

universal container, then 100µl of 100mg/ml APS was added followed by 10µl TEMED.  

As soon as the TEMED was added, the solution was swirled gently to mix and 4.5ml of 

the prepared stacking gel was poured on top of the resolving gel in each gel-casting 

stand to the brim of the glass plates.  A pair of clean gel combs were carefully inserted 

without trapping air bubbles and incubated at RT for 15 min to polymerize.  As soon as 

the stacking gel polymerized, the spacers were removed and the gel sandwiched glass 

plates were submerged in the electrophoresis tank and filled with 400ml-500ml 

electrophoresis buffer.  The protein samples were mixed with 2 X protein loading buffer 

to stabilized the protein, then vortexed for 30 sec, boiled for 20 min and centrifuged in a 

microcentrifuge for a few sec at 800 x g. The total protein samples of known 

concentration were loaded at 20-40µg per lane alongside a MagicMark
TM

 XP protein 

standard to determine the size of the target protein.  In addition, a Novex
®
 sharp pre-

stained protein standard was used to allow the visualization of protein molecular weight 

ranges during electrophoresis and to evaluate western blot transfer efficiency.  

Electrophoresis was carried out at 60V for 45 min and the voltage was increased to 

200V for another 45 min until the dye reached the bottom of the gel. 

  

 

2.6.5. Blotting 

 

Six pieces of 3mm Whatman chromatographic paper and 1 piece of Whatman 

nitrocellulose membrane were cut to about 1cm x 2cm and soaked in Towbin transfer 

buffer (PH 8.8) for 5 min. The separating gel was cut, placed on the soaked 

nitrocellulose membrane, sandwiched between 3 soaked chromatographic papers on a 
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Bio-Rad semidry electro-transfer machine.  The proteins were transferred onto the 

nitrocellulose membrane at a current of 40mA/membrane for 30 min.  The visible 

Novex
®
 sharp pre-stained protein standard of varying protein molecular weight ranges 

was used to evaluate the western blot transfer efficiency. 

 
 

2.6.6. Blocking 

 

The nitrocellulose membranes containing the molecules of interest were blocked with 

5% milk Blocking Buffer in TBS-Tween (PH 7.4) on a shaker at RT for 2 hr.  The 

blocking buffer was discarded and a working solution of antibodies was prepared by 

dilution in 5% milk blocking buffer according to table 2.7.   

 

Table 2.7 Antibodies used for western blotting 

 

Primary Antibody 

 

Host 

animal 

 

Supplier 

 

Working 

dilution 

Predicted 

molecular 

 Weight      

  (KDa) 

Monoclonal anti-GAPDH Mouse Abcam 1:1000 37 

Monoclonal anti-PAX3 Mouse Abcam 1:1000 53 

Monoclonal anti-C-Myc Mouse Abcam 1:1000 49 

Monoclonal anti-ITGβ5 Mouse Abcam   1:250 88 

Monoclonal anti-MyoD1 Mouse Abcam 1:1000 35 

Monoclonal anti-Bcl2 Mouse Abcam   1:500 26 

Monoclonal anti-P21 Mouse Abcam   1:100 18 

Monoclonal anti-P53 Mouse Calbiochem   1:500 53 

Monoclonal anti-Casp3 Mouse Abcam   1:500 31 

Secondary Antibody - - - - 

Polyclonal Goat  

anti-mouse-IgG 

 

Goat 

 

Dako 

 

1:1000 

 

- 

 

 

Antibodies were allowed to bind their cognate antigens by incubating at 4ᴼC overnight 

on a shaker.  The following day, the membranes were washed with 10ml freshly 

prepared TBS-Tween (PH 7.4) five times for 10 min each on a shaker at RT. The 

horseradish peroxidise conjugated secondary antibody, Goat anti-Mouse IgG diluted at 

1:1000 in 5% milk Blocking Buffer was hybridized with the membrane on a shaker at 

RT for 1 hr. The membranes were washed with 10ml freshly prepared TBS-Tween         
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5 times for 10 min each on a shaker at RT and kept briefly in 10ml freshly prepared 

TBS-Tween until developed. 

 

 

2.6.7. Developing 
 

The nitrocellulose membranes were incubated in 2ml combined ECL A and B working 

detection solutions in the dark room for approximately 5 min.  The membranes were 

then covered with transparent cling film and exposed in a G-snap chemiluminescence 

UV transilluminator for capture of protein signal intensity and quantification.  

 
 

2.7. Analysis of Rhabdomyosarcoma and Melanoma Cell Proliferation 

  

Growth characteristics of JR1, RH30 and A375 cell lines, having a doubling time of     

29 hr, 35 hr and 20 hr respectively, was used to determine cell proliferation. The cell 

proliferative potential of JR1, RH30 and A375 cells following inhibition of PAX3 gene 

expression, was evaluated using both indirect and direct methods. 

 

 

2.7.1. Indirect MTS Cell Proliferation Analysis  
 

Indirect cell proliferation was measured using the tetrazolium salt (MTS) colorimetric 

CellTiter 96
®

 AQueous Non-radioactive cell proliferation assay kit as a colorimetric 

method to determine the number of viable cells. This assay provided a rapid and 

convenient method of determining viable cell number.  The principle of this assay is 

based on the conversion of the tetrazolium component of the dye solution into a 

formazan product by living cells.  A solubilisation solution added to the culture was able 

to solubilize the formazan product.  OD at 490nm was directly proportional to the 

number of viable cells.  The viability of JR1, RH30 and A375 cells transiently 

transfected with PAX3-siRNA and NC-siRNA was determined by a trypan blue 

exclusion assay.   

 
 

Prior to indirect cell proliferation analysis of transfected cells, a pre-transfection time 

course standard growth curve of JR1, RH30 and A375 cells was performed using the 

MTS cell proliferation kit, since different cell types have different levels of metabolic 
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activity which may affect the relationship between the number of viable cells and their 

relative absorption over a period of time.  This was necessary to establish the optimal 

seeding density producing optimal gradual growth over a transfection period, yielding 

medial absorbance readings according to the manufacturer’s instructions.  JR1, RH30 

and A375 cells were dispensed as 100µl aliquots into 96 well plates in triplicate at 

varying cell seeding densities of 5.0 X 10
4
 cells/ml, 1.0 X 10

5
 cells/ml, 1.5 X 10

5
 

cells/ml, 2.0 X 10
5
 cells/ml, 2.5 X 10

5
 cells/ml, 3.0 X 10

5
 cells/ml and incubated over a 

96 hour period at 37ᴼC in a humidified 5% CO2 atmosphere.  Following incubation, the 

MTS cell proliferation solution was allowed to equilibrate at RT for 1 hr, and then 

15µl/well of the MTS solution was added and incubated for 4 hr at 37ᴼC.  Following 

incubation, 100µl of the solubilization solution was added to each well and the plates 

were sealed with a cling film and incubated at RT overnight.  The absorbance reading at 

490nm was measured using the 96-well plate AScorn Eliza reader.  The mean optical 

densities of three replicate measurements were used to plot against cell seeding 

densities.  The correlation coefficient of JR1, RH30 and A375 cells showed a linear 

relationship between cell number and absorbance at 490nm indicated optimal cell 

growth at 5.0 X10
4
 cells/well and this was selected as the seeding density for subsequent 

cell proliferation analysis.  Cells in complete DMEM medium were seeded at a seeding 

density of 5.0 X 10
4
 cells/ml by dispensing 100µl/ml of suspension cells into three 

replicate wells of 96 well plates for NC-siRNA and PAX3-siRNA transfection and then 

incubated for 24-96 hr at 37ᴼC in a humidified 5% CO2 atmosphere.  Following 

transfection, the MTS cell proliferation analysis was determined as previously described 

using the MTS assay. 

 

 

2.7.2. Direct Cell Proliferation Analysis 

 

Analysis of direct cell growth of siRNA transfected cells was carried out by directly 

counting the number of growing cells as an indicator of cell proliferation.  Following a 

96 hr PAX3-siRNA and NC-siRNA transfection of JR1, RH30 and A375 cell lines cells, 

the cells were trypsinized and seeded in triplicate in 12-well plates (1ml/well) at a 

concentration of 1.5 X 10
4 

cells/ml of complete DMEM.  After 24 hr incubation at 37ᴼC 

in 5% CO2 humidified atmospheric temperature, the cell number in each well were 

counted directly for three consecutive days using a Bio-Rad coulter cell counter.  The 
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mean percentage of viable cells was estimated as well.  The experiment was repeated 

three times. 

 

 

2.8. Preparation of Homogeneous Discrete Single Cell Suspension 

 

For subsequent cellular functional analysis (2.9-2.14), a suspension of discrete single 

cells was prepared.  After 24-96 hr transfection, cells were trypsinized, pelleted at 300 x 

g for 5min, resuspended in 1 x PBS and then centrifuged at 100 x g for 1 min.  The 

supernatant PBS was transferred into a fresh sterile universal container, centrifuged at 

300 x g for 5 min and the cell pellet was resuspended in 1ml complete medium to form a 

homogeneous suspension of single discrete cells. 

 

 

2.9. Cell Cycle Analysis  

 

To assess the stage of the cell cycle which a cell has reached, its DNA content can be 

measured by using DNA-binding fluorochrome dyes (e.g. Propidium iodide: PI) 

followed by flow cytometry.  The interaction of fluorochrome and cellular DNA content 

leads to fluorochrome excitation by laser and trigger cell fluorescence.  The binding of 

fluorochrome to the DNA and the amount of fluorescence of each cell is directly 

proportional to the amount of DNA in that cell.  This assay was used to demonstrate the 

stage of the cell cycle distribution after PAX3 gene expression was inhibited and to 

quantify the relative number of cells in the cell cycle phases. 

 

 

2.9.1. Propidium Iodide Staining and Flow Cytomerty 

 

After transfection, discrete single cells (as shown in section 2.8) were resuspended in 

1ml cold 70% ethanol, briefly vortexed and incubated at 4ᴼC for 3 hr.  The cells were 

again centrifuged at 300 x g for 5 min and the cell pellet was resuspended in 437µl cold 

PBS, 13µl 0.8U/ml DNase-free RNase A, 40µg/ml PI (Sigma Aldrich) and then 

incubated at 37ᴼC for 1 hr.  The cell fluorescence was analysed using a FACS-Calibur 

Flow cytometer (Becton Dickinson) at the Paterson Cancer Research Centre, 

Manchester, UK.  The experiment was repeated three times.  
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2.10. Cell Migration Analysis  

 

In vitro analysis of JR1, RH30 and A375 cell migration potential was carried out to 

measure the migration ability following PAX3-siRNA gene knockdown.   The principle 

of the assay was that, a “wound gap” in a cell monolayer was created by a scratch, 

followed by monitoring the “healing” of this gap due to cell growth and migrating 

towards the centre of the gap, thereby filling up and decreasing the initial width of the 

gap.  Factors that alter the growth and/or motility of the cell can lead to increased or 

decreased rate of “healing” of the gap.   

 

 

2.10.1. Scratch Wound Healing Assay 

 

Following 12-96 hr transfection, homogenous discrete cells (as shown in section 2.8) 

were harvested and seeded in triplicate onto 13mm round glass Thermanox coverslips 

(Nalge Nunc International, USA) in 24-well plates at a cell concentration of 4 X 10
5 

cells/well. The cells were then grown in serum-free DMEM medium for 24 hr 

incubation, at 37ᴼC in a humidified 5% CO2 atmosphere to obtain a monolayer cell 

growth of about 70-80% confluence.  Using a sterile 1ml pipette tip, the cell monolayer 

was gently and slowly scratched to form a linear straight scratch wound across the centre 

of the well.  After scratching, the wells were gently washed three times with complete 

DMEM medium to remove the detached cells and fresh medium was added to the wells.   

Areas of wound were marked and photographed at various time-points with a phase-

contrast microscope.  The initial width of the gap between the two edges at the time of 

scratching (0 hr) was measured and the plates were incubated for 24 hr at 37ᴼC.  The 

cells were washed three times with 1 x PBS, fixed with 70% ethanol for 30 min and then 

stained with 0.5% methylene blue for 30 min and rinsed in ddH2O. The width of the 

stained monolayer wound healing gap was measured after 24 hr.  The difference in 

width of the wound gaps between 0 hr and 24 hr represents the distance migrated by the 

cells. Cell migration was assessed using inverted phase contrast microscopy with a 20 X 

phase objective lens and photographed.  The same configuration of the microscope was 

used when pictures were taken of different views of the stained monolayer.  Using the 

ImagJ software, the mean width of wound gap and the individual cells migrated within 
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the wound gaps were quantitatively evaluated.   To reduce variability in results, multiple 

views of each well were documented and each experiment was repeated thrice. 

 

 

2.11. Cell Adhesion Analysis 

 

In vitro analysis of JR1, RH30 and A375 cells adhesion potential was demonstrated by 

examining the extent of adhesion on various extracellular matrix (ECM) component 

proteins (Collagen I, Collagen II, Collagen IV, Fibronectin, Laminin, Tenascin, 

Vitronectin) following knockdown of PAX3 gene expression.  

 

 

2.11.1. Cell Adhesion Assay 

 

After transfection, 100µl of the discrete single cell suspension (as shown in section 2.8) 

was added into each ECM array plates and then incubated at 37ᴼC in a 5% CO2 

incubator for 3 hr.  Subsequently the complete DMEM medium was gently discarded 

and each well was washed three times with 200µl assay buffer to remove unbound cells 

whilst leaving residual assay buffer on the adherent cells to prevent drying of cells.   

100µl of 0.2% methylene blue cell staining solution was added to each well and 

incubated at RT for 10 min to fix and stain the cells.  The plates were washed four times 

with deionized water and 100µl of extraction buffer was added to each strip of well, 

incubated at RT on a gentle rotating orbital shaker for 20 min until the cell-bound stain 

was completely solubilized.  The strips of wells were placed on a multiskan Ascent 

micro plate reader and the average relative cell attachment OD at 540nm was measured.  

The OD reading was directly proportional to the attachment of cells to ECM coated 

proteins.  The experiment was repeated three times.   

 

 

2.12. Cell Invasion Analysis 

 

This assay was employed for the measurement of the metastatic potential of 

rhabdomyosarcoma and melanoma cells following knockdown of PAX3. The BD 

BioCoat Matrigel Invasion Chambers (Becton Dickinson) provide cells with the 

conditions that allow evaluation of their invasive property in vitro.  The BD BioCoat 

Matrigel Invasion Chambers consist of a BD Falcon™ TC Companion Plate with Falcon 
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Cell Culture Inserts containing an eight micron pore size PET membrane with a thin 

layer of MATRIGEL Basement Membrane Matrix.  The Matrigel Matrix serves as a 

reconstituted basement membrane in vitro. The layer occludes the pores of the 

membrane, blocking non-invasive cells from migrating through the membrane. In 

contrast, invasive cells (malignant or non-malignant) are able to detach themselves from 

the basement membrane and invade through the Matrigel Matrix and the membrane 

pores.   

 

 

2.12.1. Cell Invasion Assay  

 

Matrigel Matrix invasion insert chambers stored at -20ᴼC, were carefully removed with 

sterile forceps into a 24-well plate and allowed to equilibrate at RT for 10 min.  The 24-

well plates with the insert chambers were rehydrated with 0.5ml complete medium and 

incubated at 37ᴼC in a humidified 5% CO2 incubator for 2 hr. The medium was carefully 

removed from the chambers without disturbing the layer of the Matrigel
TM 

Matrix.  The 

inserts were then transferred into empty wells of the BD falcon
TM 

TC Companion plate 

containing 5% foetal bovine serum complete DMEM medium.  Immediately, 0.5ml of 

homogeneous transfected discrete single cell suspension (as shown in section 2.8) (1.5 X 

10
4
 cells/well) was added to the chamber in triplicate and incubated for 24 hr in a 

humidified incubator at 37ᴼC with 5% CO2 atmosphere.  The complete medium was 

discarded and the inserts were washed three times with 0.5ml 1 X PBS.  Non-invading 

cells were removed from the upper surface of the membrane by scrubbing three times 

with a cotton swab moistened with warm 1x PBS.  The cells on the lower surface of  the 

insert membrane were fixed with 4% paraformaldehyde for 20 min at RT, rinsed with 1 

x PBS three times and then stained with 1% Giemsa for 2 min.  The insert membranes 

were rinsed three times with ddH2O, dehydrated in 70% ethanol for 2 min followed by 

complete dehydration in 100% ethanol and air dried at RT.  The membrane was removed 

using a sharp scalpel blade and forceps onto a drop of immersion oil on a microscope 

slide.  Oil immersion microscopy was used to examine cells.  Several fields of view 

were counted to obtain the mean number of cells invading the insert membrane. The 

experiment was repeated three times. 

 

 



123 
 

2.13. Cell Transformation Analysis 

 

Anchorage-independent growth is one of the hallmarks of cell transformation.  In vitro 

cellular transformation detection assays are semi-quantitative and measure the 

morphological transformation of cell colonies induced by experimental conditions.     

The anchorage independent growth potential of rhabdomyosarcoma and melanoma was 

assayed by testing their ability to grow in soft agar cell culture
®
.  

 
 

2.13.1. Cell Transformation Assay 

 

Following transfection, a discrete single cell suspension (as shown in section 2.8) was 

resuspended in 0.3% agar in complete DMEM pre-warmed at 35ᴼC in a water bath.  The 

cells were seeded at a density of 2.0 X 10
3 

cells/well
 
onto a 0.8% agar base layer at the 

bottom of each well.  The cell layers were allowed to solidify prior to incubation and 

1ml of complete DMEM was added to the wells to completely cover the agar layers and 

then incubated at 37ᴼC in 5% CO2 atmosphere for 28 days until colonies were formed.  

The complete DMEM medium was changed twice every week.  Three weeks later, 

visible morphologically colonies were stained with 1% crystal violet staining solution 

and photographed under an inverted microscope at 40 X magnification.  Colonies were 

counted in several microscopic fields to obtain the mean number of colonies per field.  

All experiments were performed in triplicate and repeated three times. 

 

 

2.14. Apoptosis Assays 

 

The biochemical products of apoptosis including caspases are essential determinants of 

induction of cellular apoptosis. Caspases are cysteine proteases that cleave their 

substrate after an aspartic acid residue and have a critical role in both the initiation and 

execution of apoptosis. This assay uses a proluminescent caspase-3/7 DEVD-

aminoluciferin substrate and a thermo stable luciferase for the detection of caspase-3/7 

activity to indicate induction of apoptosis.  Addition of caspase-Glo™ 3/7 reagent in 

samples triggers cell lysis, followed by caspase cleavage of the substrate and this results 

in the liberation of free aminoluciferin which is then consumed by the luciferase to 

generate a "glow-type" luminescent signal.  The signal is proportional to caspase-3/7 
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activity.  The caspase-Glo
®

 3/7 assay was employed to demonstrate indirect induction of 

apoptosis following knockdown of PAX3 in rhabdomyosarcoma and melanoma cells. 

 

 

2.14.1. Indirect Caspase 3/7 Detection of Induction of Apoptosis 

 

Following transfection, 100µl of homogeneous discrete cells in suspension (as shown in 

section 2.8) was seeded at a density of 1.5 X 10
4 

cells/well in 96-well white-walled 

plates with positive control and blank (negative control) wells. The plates were 

incubated overnight at 37ºC in a humidified CO2 incubator.  A non-transfected positive 

apoptotic control was set up alongside to be used for induction of apoptosis by a pro-

apoptotic agent, staurosporine at an optimal working concentration (1µM/ml; 1µl/ml).  

Prior to the assay, the caspase-Glo™ 3/7 buffer and lyophilised caspase-Glo™ 3/7 

substrate were allow to equilibrate to RT and then the working caspase-Glo
®
 3/7 reagent 

was freshly prepared by transferring the caspase-Glo™ 3/7 buffer into the lyophilised 

caspase-Glo™ 3/7 substrate amber bottle and mixed until all the lyophilised caspase-

Glo™ 3/7 substrate was completely dissolved.  Following a 24 hr incubation at 37ᴼC, 

the 96-well white-walled plates containing siRNA transfected cells, non-transfected cells 

and blank wells were removed from the incubator and allowed to  equilibrate to RT for 5 

min.  The positive apoptotic control was first prepared by adding 100μl of staurosporine 

to the non-transfected cells and incubated at 37ᴼC in a humidified CO2 incubator for 2 hr 

to induce apoptosis.  To each well, 100μl of caspase-Glo
®
 3/7 working reagent was 

added, covered with a plate lid, gently mixed using a plate shaker at 300–500rpm for 3 

min and then incubated at 37ºC in a humidified CO2 incubator for 2 hr.  The 

luminescence of each sample was measured in a plate-reading luminometer according to 

the manufacturer’s instructions. The blank reading was subtracted from the 

corresponding NC-siRNA, PAX3-siRNA and positive control readings.  Induction of 

cellular apoptosis was determined by comparing the average luminescence readings 

relating to induction of apoptosis in both PAX3-siRNA and NC-siRNA transfected cells 

with the average luminescence readings of induction of apoptosis in the 2 hr 

staurosporine treated cells.  The experiment was repeated three times under the same 

experimental conditions. 
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2.14.2. Direct DeadEnd Fluorometric TUNEL detection of Induction of Cell 

Apoptosis 
 

During apoptosis, cellular morphological features are important determinants, 

distinguishing apoptosis from other cell death pathways.  The DeadEnd™ Fluorometric 

TUNEL System is a standard assay designed for the specific detection and quantitation 

of late  apoptotic cells within a cell population (Doonan and Cotter, 2013).   This assay 

quantifies nuclear DNA fragmentation, as an important morphological hallmark of 

apoptosis in many cell types, by catalytically incorporating fluorescein-12-dUTP at 3-

OH DNA ends using the enzyme Terminal Deoxynucleotidyl Transferase (TdT), which 

forms a polymeric tail by (TdT-mediated dUTP Nick-End Labelling).  The fluorescein-

12-dUTP-labeled DNA can then be visualized directly by fluorescence microscopy.  

This assay was intended to directly detect apoptosis by comparing the morphological 

changes in NC-siRNA and PAX3-siRNA following knockdown of PAX3 in 

rhabdomyosarcoma and melanoma cells, using a combined 96 hr PAX3-siRNA 

transfected cells and 2 hr staurosporine (1µM/ml; 1µl/ml) treated induced-cell apoptosis.   

 
 

The experiment was designed as: non-transfected cells (staurosporine positive apoptosis 

control wells, PC); NC-siRNA transfected cells; PAX3-siRNA transfected cells and 

PAX3-siRNA with staurosporine treatment (1µM/ml; 1µl/ml).  After transfection, 1ml of 

the homogeneous discrete single cell suspension (as shown in section 2.8) was seeded on 

Thermanox glass coverslips in 24-well plates at a cell concentration of 1.5 X 10
4 

cells/well in triplicate and incubated at 37ᴼC in a humidified CO2 incubator for 24 hr.  In 

this present study, staurosporine (1µM/ml) was employed to induced apoptosis because 

it has been widely used as a potent non-selective broad-spectrum protein kinase inhibitor 

of protein phosphorylation in cell functional and regulation studies (Nan et al., 2014).  

 
 

Following overnight incubation, the complete DMEM medium was discarded and the 

wells of both positive apoptosis control cells and one set of PAX3-siRNA transfected 

cells were first treated with 100µl pro-apoptotic agent staurosporine optimal working 

solution (1µM/ml; 1µl/ml) and incubated at 37ᴼC in a humidified CO2 incubator for 2 hr.  

This combination criterion provides a strong support for comparison as cells were 

equally treated with the pro-apoptotic agent.  The other set of PAX3-siRNA transfected 
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cells was without staurosporine treatment.  The cells were washed three times with 

500µl of 1 X PBS and then fixed with 250µl freshly prepared 4% Paraformaldehyde  

solution in PBS (pH 7.4) for 30 min at 4ᴼC.  The fixed cells were washed three times 

with 500µl of 1 x PBS, incubated at RT for 5 min in each wash, permeabilized in 0.2% 

Triton® X-100 solution in PBS for 5 min and then rinsed three times in fresh PBS for 5 

min at RT.  At this point, the 24-well plate was placed in a humidified chamber and 

excess PBS was completely removed. The fixed cells were covered with 100μl 

equilibration buffer to equilibrate at RT for 20 min and blotted to remove most of the 

equilibration buffer whilst avoiding cells drying.  The fixed cells were treated with 

100µl freshly prepared rTdT working solution, covered with aluminium foil to protect 

from direct light and then incubated at 37ᴼC for 2 hr in a humidified 5% CO2 incubator 

to allow the tailing reaction to occur.  Excess rTdT working solution was removed from 

the fixed cells and the reaction was terminated with 100µl of 2 X SSC solution at RT for 

20 min.  The SSC solution was completely blotted and the fixed cells were washed three 

times in fresh 1 x PBS, incubated at RT for 5 min in each wash to completely remove 

unincorporated fluorescein-12-dUTP.  The PBS solution was completely blotted and the 

fixed cells were stained with 200µl freshly prepared Hutchin stain in PBS for 15 min at 

RT in the dark, washed three times with 300µl ddH2O and then incubated in 200µl 

ddH2O for 5 min at RT.  Using forceps, the Thermanox glass coverslips with the fixed 

stained cells were removed and excess water was drained off from the surrounding area 

of cells.  Two drops of Anti-Fade solution was placed directly onto the Thermanox glass 

coverslips area containing the treated cells.  With a clean glass slide, the Thermanox 

glass coverslips were gently picked up and immediately examined to demonstrate the 

morphological changes of apoptosis under a fluorescence microscope  using a standard 

fluorescein filter set to view the green fluorescence of fluorescein at 520 ± 20nm and 

blue DAPI (diamidino-2-phenylindole) at 460nm. The Fluorescein-12-dUTP 

incorporation resulted in localized green fluorescence within the nucleus of apoptotic 

cells only and non-apoptotic cells showed DAPI blue nuclei.  The mean number of 

apoptotic cells per microscopic field in the NC-siRNA, PAX3-siRNA and PAX3-siRNA 

transfected cells with 2 hr staurosporine (1µM/ml; 1µl/ml) treatment were compared 

with the 2 hr staurosporine (1µM/ml; 1µl/ml) treated induced-apoptosis positive control 

cells to evaluate the cellular induction of apoptosis.  This comparison was to check if 
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there was apoptosis when PAX3-siRNA transfected cells was compared to NC-siRNA 

transfected cells and to evaluate the degree of apoptosis when PAX3-siRNA transfected 

cells were compared to both PAX3-siRNA transfected plus 2 hr staurosporine (1µM/ml; 

1µl/ml) treated cells and the 2 hr staurosporine induced-apoptosis positive control cells.  

The experiment was repeated three times.  

 
 

2.15. Statistical Analysis 

 

Data representation in all the figures were statistically analysed using arithmetic means 

and standard deviations (SD).  Results of all the figures were expressed as mean ± 

standard deviation (SD) of three independent experiments.  The error bars denotes SD.  

The correlation coefficients between arithmetic means tested by the Student’s t-test 

(where P means probability of false positive), were used to verify the statistical 

significance of the difference between PAX3-siRNA and NC-siRNA treated paired 

samples.  Values obtained from the differences were considered statistically significant 

if p ≤ 0.05 (*), p ≤ 0.01 (**) and insignificant if p > 0.05, where ‘*’ means degree of p 

value. 
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CHAPTER 3.  INHIBITION OF PAX3 IN HUMAN      

                      RHABDOMYOSARCOMA CELL LINES 

3.    Results 

 

PAX3 aberrant expression promotes tumourigenic characteristics of rhabdomyosarcoma 

whilst inhibition of PAX3 in JR1 and RH30 cell line in vitro could probably reduce the 

tumourigenic activity of rhabdomyosarcoma. 

 

3.1. Morphological Characteristics of Transfected Human Rhabdomyosarcoma 

Cell Lines  

 

Transfection of rhabdomyosarcoma cell lines with PAX3 siRNA targeting (PAX3-

siRNA), showed variable cell morphological changes.  Embryonal rhabdomyosarcoma 

cell line, JR1 (Fig. 3.1)  and alveolar rhabdomyosarcoma cell line, RH30 (Fig. 3.2), 

transfected with a pre-designed siRNA targeting PAX3 (PAX3-siRNA) or a scramled 

irrelevant non-targeting negative control siRNA (NC-siRNA) under the same 

experimental conditions, showed different morphological changes. The NC-siRNA 

transfected JR1 (Fig. 3.1A, B) and RH30 (Fig. 3.2 A, B) cells, showed cell growth and 

had thin intact and well-defined cell borders.  This was suspected to be due to the 

inability of NC-siRNA to induce PAX3 gene silencing.  In contrast, the PAX3-siRNA 

induced different morphologies in JR1 (Fig. 3.1C, D) and RH30 (Fig. 3.2C, D) cells, 

which appeared thicker, with irregular thick cell borders and deep brownish transfection-

complex attachment on cell surfaces (according to literature transfection kit). 
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Figure 3.1 Phase contrast micrograph showing representative morphology of JR1 cells 

after 96 hr siRNA transfection.  (A, B) NC-siRNA transfected JR1 cells.  (C, D) PAX3-siRNA 

transfected JR1 cells.  A/C, X 10 magnification and B/D, X 40 magnification. 

 

 
  
Figure 3.2 Phase contrast micrograph showing representative morphology of RH30 cells 

after 96 hr siRNA transfection.  (A, B) NC-siRNA transfected RH30 cells (C, D) PAX3-

siRNA transfected RH30 cells.  A/C, X 10 magnification and (B/D), X 40 magnification. 



131 
 

3.2. PAX3-siRNA Knockdown in Human JR1 and RH30 Cell Lines 

 

 

Table 3.1 Extracted total RNA purity and concentration 
 
 

 

Sample 

OD 

260nm 

OD 

280nm 

OD Ratio 

260/280 

 

RNA(µg/µl) 

 

JR 

 

- 

 

- 

 

- 

 

- 

 

 

C 

 

 

0.338 

 

 

0.185 

 

 

1.82 

 

 

3.38 

 

T 

 

0.255 

 

0.135 

 

1.88 

 

2.55 

 

RH30 

 

- 

 

- 

 

- 

 

- 

 

 

         C 

 

  

   0.488 

 

 

0.260 

 

 

1.87 

 

 

4.88 

 

T 

 

0.377 

 

0.206 

 

1.83 

 

3.77 

 

OD: Denotes absorbance of extracted total RNA, where 260nm values determines the 

concentration of extracted RNA and 280nm values indicate purity of extracted RNA.  High 

260nm OD values signifies contamination of RNA with protein, peptides, carbohydrate, 

aromatic compounds and phenol.  The ratio OD260/280 indicates the degree of RNA purity (the 

range of RNA ratio value is between (1.6 - 2.0). 

 

 C: Represent OD of NC-siRNA indicating the purity and concentration of total RNA.                    

 T: Represent OD of PAX3-siRNA signifying the purity and concentration of total RNA. 

 

 

A pre-transfection analysis of PAX3 gene expression, showed varying expression levels 

of the seven variants of PAX3 mRNA and human ribosomal mRNA in both JR1 and 

RH30 cell lines (Figs. 3.3 and 3.4). PAX3b, PAX3g and PAX3h were weakly expressed 

in both JR1 and RH30 cell lines.   
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Figure 3.3 Semi-quantitative RT-PCR analysis of PAX3 mRNA expression pattern 

in non-transfected JR1 cells.  Lane M: 100bp benchtop DNA Marker (100-1500bp);   Lanes 1-

4: Replicate cDNA template from JR1 cells.  (A) S14F/S14/R primer amplification of S14 

human ribosomal RNA; (B) E3F/E5R primer amplification of PAX3a and PAX3b; (C) E7F/I8R 

primer amplification of PAX3c; (D) E8F/I9R primer amplification of PAX3d; (E) E8F/10R 

primer amplification of PAX3e and PAX3d; (F) E7F/I9R primer amplification of PAX3g and 

PAX3d; (G) E7F/I10R primer amplification of PAX3h, faintly; PAX3c and PAX3d. 
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Figure 3.4 Semi-quantitative RT-PCR analysis of PAX3 mRNA expression pattern in non-

transfected RH30 cells.  Lane M: 100bp benchtop DNA Marker (100-1500bp); Lanes 1-4: 

Replicate cDNA template from RH30 cells.  (A) S14F/S14/R primer amplification of S14 human 

ribosomal RNA; (B) E3F/E5R primer amplification of PAX3a and PAX3b; (C) E7F/I8R primer 

amplification of PAX3c; (D) E8F/I9R primer amplification of PAX3d; (E) E8F/10R primer 

amplification of PAX3e and PAX3d; (F) E7F/I9R primer amplification of PAX3g and PAX3d; 

(G) E7F/I10R primer amplification of PAX3d, PAX3c and faintly PAX3h. 

 

 

To evaluate the degree of PAX3 knockdown following siRNA treatment, PAX3 mRNA 

expression in NC-siRNA negative control transfected cells (average of lanes 3-5)       

(Fig. 3.5) was compared with PAX3 mRNA expression in PAX3-siRNA transfected cells 

(average of lanes 6-8) (Fig. 3.5). 
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Semi-quantitative RT-PCR analysis showed no change in expression pattern of S14 

human ribosomal RNA, used as internal normalization control, (lanes 3-8 of fig. 3.5A).  

PAX3-siRNA induced significant high levels of knockdown of all PAX3 isoform 

mRNAs in JR1 cells (Fig. 3.5B-G).  

 

 
 

Figure 3.5  Semi-quantitative RT-PCR analysis of PAX3 mRNA after 96 hr siRNA 

transfection of JR1 cells.  Lane M: 100bp benchtop DNA Marker (100-1500bp);  Lane 

1: Untreated JR1 cell control; Lane 2: Negative control (no DNA);  Lanes 3-5: Trilicate 

NC-siRNA tranfected JR cells as negative control;Lanes 6-8: Triplicate PAX3-siRNA 

transfected JR1 cells. (A) S14F/S14/R primer amplification of S14 human ribosomal 

RNA internal normalization control; (B) E3F/E5R primer amplification of PAX3a and 

PAX3b; (C) E7F/I8R primer amplification of PAX3c; (D) E8F/I9R primer amplification 

of PAX3d; (E) E8F/10R primer amplification of PAX3e and PAX3d; (F) E7F/I9R primer 

amplification of PAX3g and PAX3d; (G) E7F/I10R primer amplification of PAX3d; 

PAX3c and PAX3h.      
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After 96 hr transfection, there was a significant reduction of PAX3 gene expression in 

JR1 cells (p < 0.01): at least 93% knockdown of all variants of PAX3 mRNA (Fig. 3.6).  

The level of PAX3 gene expression remaining after PAX3-siRNA repression observed 

was PAX3a (2%); PAX3b (1%); PAX3c (2%); PAX3d (7%); PAX3e (2%); PAX3g (5%) 

and PAX3h (2%).  The knockdown of PAX3c and PAX3d expression in JR1 cells was 

determined using C (E7F/I8R) and D (E8F/I9R) primer amplifications in figure 3.5, 

which are routinely used for the detection of only PAX3c and PAX3d respectively.  

However, E7F/I10R, that normally detects PAX3h, also identifies PAX3c and PAX3d in 

addition, which have also been knockeddown more than 90% (PAX3c) and 80% 

(PAX3d). 

 
 
Figure 3.6 Mean percentages of PAX3 gene expression as mRNA following 96 hr treatment 

with siRNA. The average PAX3 gene expression in NC-siRNA transfected JR1 cells (blue 

columns) was compared with the average PAX3 gene expression in PAX3-siRNA transfected 

JR1 cells (red columns) for each PAX3 mRNA variant. The values are means of three 

measurements in three separate experiments (n = 9). (Values marked **; have a p < 0.01, 

Student’s t-test). 

 

 

A similar pattern of PAX3-siRNA gene knockdown was observed in the RH30 cell line 

after 96 hr transfection (see lanes 6, 7 and 8 of fig. 3.7). 



136 
 

 

 
                  
Figure 3.7 Semi-quantitative RT-PCR analysis of PAX3 expression following  96 hr siRNA 

transfection of  RH30 cells.  Lane M: 100bp benchtop DNA Marker (100-1500bp);             

Lane 1: Untreated RH30 cell control;  Lane 2: Negative control (no DNA); Lanes 3-5: Triplicate 

NC-siRNA treated RH30 cells as negative control; Lanes 6-8: Triplicate PAX3-siRNA 

transfected RH30 cells. (A) S14F/S14/R primer amplification of human ribosomal RNA S14 

internal normalization control; (B) E3F/E5R primer amplification of PAX3a and PAX3b;        

(C) E7F/I8R primer amplification of PAX3c; (D) E8F/I9R primer amplification of PAX3d;     

(E) E8F/10R primer amplification of PAX3e and PAX3d; (F) E7F/I9R primer amplification of 

PAX3g and PAX3d; (G) E7F/I10R primer amplification of PAX3d,  PAX3c  and PAX3h.   

 

 

High levels of PAX3 gene expression were observed in NC-siRNA transfected RH30 

cells compared to statistically significant low levels of PAX3 gene expression in    

PAX3-siRNA transfected RH30 cells (p < 0.01).  The suppression of PAX3 mRNA 

detected in the RH30 cell line, indicated at least 90% PAX3 knockdown across all PAX3 

mRNAs (Fig. 3.8), based on triplicate reading in three independent experiments (n = 9).       
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The levels of PAX3 mRNA expression remaining after PAX3-siRNA transfection were: 

PAX3a (7%); PAX3b (3%); PAX3c (4%); PAX3d (10%); PAX3e (8%); PAX3g (5%) and 

PAX3h (4%).  The knockdown of PAX3c and PAX3d expression in the RH30 cell line 

was determined using the primer combinations, C (E7F/I8R) and D (E8F/I9R) 

respectively in figure 3.7, which are unique for the amplification and identification of 

only PAX3c and PAX3d expression.  

 
 

Figure 3.8 Mean percentages of PAX3 gene expression as mRNA in RH30 cells following 96 

hr siRNA transfection.  The average PAX3 gene expression in NC-siRNA transfected RH30 

cells (blue columns) was compared with the average PAX3 gene expression in PAX3-siRNA 

transfected RH30 cell (red columns).  The values are means from three separate experiments (n 

= 9).  Student’s t-test showed statistically significant difference between blue and red columns 

for each PAX3 gene variant (**; p < 0.01). 
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3.3. Effects of Inhibiting PAX3 Gene Expression on Downstream Targets 

 

The expression of the PAX3 gene in rhabdomyosarcoma modulates the function of other 

target genes by either down-regulating or up-regulating them (Rescan et al, 2013). 

Microarray analysis was used to measure the degree of siRNA knockdown of PAX3 

gene expression in both JR1 and RH30 cell lines and the functional effects of this down-

regulation on downstream targets. The mean normalized cDNA microarray gene 

expression profiling of NC-siRNA transfected cells was compared to that of PAX3-

siRNA transfected cells.  Prior to microarray analysis, the RNA integrity of JR1 and 

RH30 transfected cell lines was confirmed to be of high quality without degradation 

(Fig. 3.9), since reliable microarray data is dependent on the quality of RNA (Fig. 

3.10a).  The concentration of extracted RNA demonstrated a normal rRNA ratio of 1.6-

2.0 in both NC-siRNA and PAX3-siRNA transfected cells (shown in Table 3.1). 

 

 
 

Figure 3.9 Electrophoresis of RNA from NC-siRNA and PAX3-siRNA transfected cell lines 

to determine the integrity of extracted RNA observed as ribosomal RNA (rRNA) bands, 

28S (5kb) and 18S (2kb), with a 28S/18S ratio of intact RNA of 2:1 as a benchmark.      

Lane M: Marker size (25-4000bp); Lane L: Sample ladder (25-10,000bp);  Lanes 1-3:            

NC-siRNA transfected JR1cells; Lanes 4-6: PAX3-siRNA transfected JR1cells;  Lanes 7-9:  NC-

siRNA transfected RH30 cells; Lanes 10-12: PAX3-siRNA transfected RH30 cells.  The above 

discrete separation of rRNA bands without smearing on the gel, showed high  integrity and 

purity of the extracted RNA. 
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  JR1 Cell mRNA 

 

 

 
 
Figure 3.10a Quality of pooled RNA isolated from siRNA transfected JR1 cell line.             

A high relative absorbance fluorescence unit (FU) signal correlates with a high quality of rRNA 

in extracted RNA. 
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 RH30 Cell mRNA 

 

 

 
 

Figure 3.10b Quality of pooled RNA isolated from siRNA transfected RH30 cell line.         A 

high relative absorbance fluorescence unit (FU) signal correlates with a high quality of rRNA in 

extracted RNA. 
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 Table 3.2 Concentration and fragment rRNA ratios of extracted total RNA 

 

 

 

Affymetrix GCOS (V1.4) microarray analysis on the genechip, containing a 54,614 

probe set, demonstrated a 4.15-fold and 2.61-fold reduction of PAX3 expression in JR1 

and RH30 cells respectively.  Altered expression of 4,396 genes in JR1 and 5,877 genes 

in RH30 cells was observed (more than 1.5-fold) using the probability of positive log-

ratio (PPLR < 0.1 or > 0.9).  The mean knockdown of PAX3 expression in PAX3-siRNA 

and NC-siRNA cells was compared after normalization to the housekeeping gene 

GAPDH.  Using a 1.5-fold change of expression as a threshold in both JR1 and RH30 

cell lines, 2,317 out of these 4,396 altered genes in JR1 cells were down-regulated 

following knockdown of PAX3 expression, whilst 2,079 genes were up-regulated.  

Similarly, 3,456 out of these 5,877 altered genes in RH30 cells were down-regulated, 

whereas 2,421 genes were up-regulated.  This present data revealed that some down-

regulated genes in JR1 were up-regulated in RH30 cells.  Genes of interest were 

classified into different groups according to their binding interactions with the PAX3 

gene and their main function in cells such as proliferation, migration, differentiation, 

adhesion, apoptosis and cell cycle (Farin et al., 2008).  55 genes of interest including 

PAX3 genes, which play critical roles in cancer cell developmental processes, were 

selected from the microarray data of 86 down-regulated genes (Table 3.3) and 54 up-

SAMPLES siRNA TRANSFECTED       

           CELLS 

  TOTAL RNA CONCENTRATION     

                           (ng/µl) 

RNA RATIO   

     (28s/18s) 

1 JR1 NC-siRNA 200 1.6 

2 JR1 NC-siRNA 650 2.0 

3 JR1 NC-siRNA 214 1.8 

4 JR1  PAX3-siRNA 1,003 1.7 

5 JR1  PAX3-siRNA 461 1.8 

6 JR1  PAX3-siRNA 1,201 1.7 

7 RH30 NC-siRNA 619 1.9 

8 RH30 NC-siRNA 1,460 1.6 

9 RH30 NC-siRNA 275 1.7 

10 RH30 PAX3-siRNA 757 1.9 

11 RH30 PAX3-siRNA 224 1.8 

12 RH30 PAX3-siRNA 999 2.0 
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regulated genes (Table 3.4) for comparison with gene alteration pattern in qRT-PCR 

analysis under the same experimental condition. 

 

 
Tables 3.3-3.7 show microarray expression analysis data on selected genes following 96 hr 

PAX3-siRNA knockdown in JR1 and RH30 cell lines.  The selected genes in the Table below, as 

determined by the gene functional annotation tool DAVID NIH version 2, have important roles 

in cell proliferation (P), cell cycle (CC), migration (M), adhesion (AD), differentiation (DF), 

development (D) and apoptosis (AP).  Some genes were selected based on their known 

regulation by PAX3. 

 

Table 3.3 Microarray data showing genes down-regulated following PAX3-siRNA 

knockdown 

 
The degree of gene down-regulation was denoted by varying shades of colour.  Deep blue: gene 

expression down-regulated more than 2-fold; light blue:  gene expression down-regulated 

between 1.5-2 fold. 

 

                                                                                                                        Fold change 

Gene 

symbol 

Gene description Gene 

function 

JR1 RH30 

PAX3 Paired Box 3 D   -4.64 -2.61 

ADAM23 ADAM metallopeptidase domain 23 DF, M   -4.43 -4.87 

ANAPC5 Anaphase promoting complex subunit 5 CC   -2.05 -2.55 

BCL2 B-Cell lymphoma 2 AP   -4.37 -3.45 

BIRC5 Baculoviral 1AP repeat containing 5 CC, P   -6.23 -3.45 

BRCA1 Breast cancer 1 CC,P   -2.57 -2.86 

BRCA1 Breast cancer 2 CC,P   -2.93 -2.45 

CALM3 Calmodulin 3 P   -2.62 -2.20 

CAPRIN1 Cell cycle associated protein 1 CC   -2.50 -9.84 

CCNBI Cyclin B1 CC   -2.90 -2.00 

CCND1 Cyclin D1 CC -10.00 -5.00 

CCND3 Cyclin D3 CC   -3.68 -2.91 

CCNE1 Cyclin E1 CC   -6.03 -5.45 

CDC7 Cell division cycle 7 homolog CC   -2.94 -3.83 

CDC25A Cell division cycle 25 homolog A CC   -2.94 -1.96 

CDC25B Cell division cycle 25 homolog B  CC   -2.42 -1.57 

CDC25C Cell division cycle 25 homolog C  CC   -2.09 -2.18 

 

CDC42EP3 

CDC42 effector protein (Rho GTPase 

binding) 

  

P 

  -1.83 -1.59 
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Continued 

CDCA3 Cell division cycle association 3 CC   -5.84 -3.66 

CDCA7 Cell division cycle association 7 CC   -2.34 -6.76 

CDK2 Cyclin-dependant kinase 2 CC   -4.55 -2.02 

CDK4 Cyclin-dependant kinase 4 CC,P   -2.59 -2.65 

CDK5 Cyclin-dependent kinase 5 CC   -6.29 -4.72 

CDKN3 Cyclin-dependent kinase inhibitor 3 CC   -2.32 -2.39 

CDKN2C Cyclin-dependent kinase inhibitor 2C (p18) CC   -2.83 -2.65 

CHEK1 CHK1 checkpoint homolog (S. pombe) CC   -2.58 -1.83 

CHEK2 CHK2 checkpoint homolog (S. pombe) CC   -2.69 -2.50 

C-MYC C-myc binding protein P   -5.85 -3.50 

COL1A1 Collagen type I, alpha 1 AD, M -10.48 -5.98 

COL3A1 Collagen type III, alpha 1 AD, M -15.66 -9.65 

CYB5B Cytochrome b5 type B AP   -5.17 -4.84 

 

DDB2 

Damage-specific DNA binding protein 2, 

48kDa 

 

P 

  -2.93   -2.48 

DHFR Dihydrofolate reductase P   -2.62   -4.57 

E2F2 E2F transcription factor 2 P   -4.36   -2.21 

E2F8 E2F transcription factor 8 P   -5.40   -3.74 

EDN3 Endothelin 3 P -29.01   -9.80 

ENDRA Endothelin receptor type A M   -5.97   -2.86 

FAIM Fas apoptotic inhibitory molecule AP   -6.78   -3.20 

 

FGD4 

FYVE, RhoGEF and PH domain containing 

4 

 

AD, M 

  -8.99   -2.16 

FNDC5 Fibronectin containing sub-unit 5 AD, M   -4.46   -1.99 

FSCN1 Fascin homolog 1, actin bunding protein M   -3.27   -2.60 

GINS1 GINS complex subunit 1(Psf1 homolog) CC   -2.35   -3.16 

GAS1 Growth arrest-specific 1 CC   -8.27   -4.23 

HP1γ Heterochromatin protein Lambda binding 1, P, D   -2.94   -2.35 

HMMR Hyaluronic-mediated mobility receptor P   -2.07   -1.52 

ID3 Inhibitor of DNA binding 3 CC -18.14 -17.48 

ITGβ5 Integrin beta 5 AD, M   -6.06   -2.14 

IPO13 Importin 13 P, D   -3.03   -2.04 

LAMA1 Laminin alpha 1 AD, M   -4.43   -1.57 

MAP1A Microtubule-associated protein 1A DF   -5.86   -6.65 

MAPK 3 Mitogen-activated protein kinase 3 P   -3.05   -3.47 

MAPK9 Mitogen-activated protein kinase 9 P   -3.08   -1.71 

MCM3 Minichromosone maintenance  complex 3 P   -5.84   -3.99 

MMP2 Matrix metallopeptidase 2 A (pseudo) M   -2.47   -1.98 

MRPL16 Mitochondria ribosomal protein L16 P   -2.16   -2.59 

MSH2 Muts homolog 2 M   -2.93   -2.47 
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Continued 

MXRA7 Matrix-remodelling associated 7 M   -3.34   -2.81 

MYOD1 Myogenic differentiation 1 D   -2.82   -4.65 

MYOG4 Myogenin (myogenic factor 4) D -11.18   -2.54 

NID1 Nidogen 1 AD,M   -2.39   -1.74 

NUSAP1 Nucleolar and spindle associated protein 1 CC   -2.10   -1.61 

P300 CREB binding protein E1A binding protein P   -2.59   -1.67 

PBK PDZ binding kinase CC   -2.56   -2.32 

PCDH18 Protocadherin 18 AD, M -35.19   -4.76 

PCDH7 Proto cadherin 7 M -12.88 -14.27 

PCNA Proliferating cell nuclear antigen P   -3.75   -4.26 

POLA2 Polymerase (DNA directed alpha 2) P   -2.68   -2.11 

PRM 2 Protein arginine methyltransferase 2 P   -3.54   -2.21 

RAB27B RAB27B, member RAS   oncogene family P   -9.09   -8.29 

RB Retinoblastoma P   -7.66 -6.74 

RBBP4 Retinoblastoma binding protein 4 P   -6.71 -3.64 

RECK Reversion-inducing-cysteine-rich protein K M -13.71   -3.22 

RXA Retinoid X receptor alpha P   -4.22 -1.86 

SHC4 Src homology 2 domain   member 4 P   -2.33 -2.32 

SKP2 S-phase kinase- Associated protein 2(p45) CC   -3.99 -1.93 

SELPLG Selectin P ligand AD   -6.26 -5.67 

SMAD2 SMAD family member 2 P, M, D   -2.55 -2.06 

SMC1 Structural maintenance of chromosomes 4 CC   -2.34 -1.68 

SPCS3 Signal peptidase receptor complex subunit 3 CC   -3.27 -2.58 

TFDP1 Transcription factor DP-1 P -10.58 -4.36 

TGFβ3 Transforming growth factor beta 3 P -11.21 -6.22 

 

TMBIM4 

Transmembrane BAX inhibitor motif 

containing 4 

 

AP 

  -2.55 -2.06 

TNC Tenascin D, M   -3.52 -3.03 

TNFRSF19 Tumour necrosis factor receptor superfamily 

member 19 

 

AP 

-15.52 -4.20 

TUBB2C Tubulin beta 2c AP   -1.72 -3.03 

VCAN Versican AD, M -22.00 -2.96 

 
A 1.50-fold change (light blue shade) was used as the threshold for down-regulation of gene 

expression. 
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Table 3.4 Microarray data of genes up-regulated following PAX3-siRNA 

knockdown 

 

The degree of gene up-regulation was denoted by varying shades of colour.  Red:  gene 

expression up-regulated more than 2 fold; Orange: gene expression up-regulated 1.5-2 fold.  

 

                                                                                                                    Fold change 

Gene 

symbol 

Gene description Gene 

function 

JR1 RH30 

AEN Apoptosis enhancing nuclease AP 10.72 7.64 

 

AKT3 

V-AKTmurine thymoma viral oncogene 

homolog 3 

 

P, AP 

  2.43 3.39 

BAX BCL2-associated X protein AP   2.97 1.87 

 

BNIP1 

BCL2/adenovirus E1B 19kDa interacting 

protein 1 

 

P 

  2.59 1.86 

 

BNIP3 

BCL2/adenovirus E1B19kDa interacting 

protein 3 

 

AP 

  3.75 4.94 

BTG2 B-cell translocation gene CC, P   2.92 2.85 

 

CASP3 

Caspase3, apoptosis-related cysteine 

peptidase 

 

AP 

  2.45 2.92 

 

CASP4 

Caspase 4, apoptosis-related cysteine 

peptidase 

AP   3.36 1.62 

CCNA Cyclin A CC   4.10 2.92 

CCND2 Cyclin D2 CC 10.00 5.00 

CDH2 Cadherin 2, type 1 N-cadherin (neuronal) D   2.61 1.88 

CDK6 Cyclin-dependent kinase 6 CC   7.66 6.99 

CDKN1A Cyclin-dependent kinase inhibitor 1A CC   1.68 1.99 

CGRRF1 Cell growth regulator with ring finger CC, P   2.43 2.24 

 

CITED2 

Cbp/p300-interacting transactivator with 

Glu/Asp-rich carboxy-terminal domain 2, 

 

P 

  3.66 4.75 

CXCR4 Chemokine (C-X-C motif) receptor 4 P   4.73 2.88 

DAXX Death-domain associated protein D   2.95 1.62 

E2F7 E2F transcription factor 7 P   7.36 2.19 

ETS1 V-ETS erythroblastosis virus E26  P 11.11 4.73 

FOXO1 Forkhead box O1 P, D   3.51 2.04 

 

GADD45B 

Growth arrest and DNA- damage-

inducible, beta 

 

CC, P 

  5.23 3.40 

H-RAS V-Ha-ras Harvey rat sarcoma oncogene M   5.82 9.40 

HES1 Hairy and enhancer of split 1 P, D   6.69 2.92 



146 
 

Continued 

HMOX1 Heme oxygenase 1 P, D   8.25 5.28 

HUS1 Hus1 checkpoint homolog P, M   4.58 2.94 

ITGβ1 Integrin beta 1 P   4.84   3.64 

JAK2 Janus kinase 2 P   2.47   2.50 

JAM2 Junctional adhesion  molecule 2 AD   4.04   2.93 

JUN Jun oncogene P   6.66   1.89 

KAP1 kinase A anchor protein 1 P, D   6.23   3.85 

KITLG Kit ligand  AP, M 27.30   5.86 

LOC Similar to C-Jun P   6.09   2.24 

MCL1 Myeloid cell leukemia sequence 1 (BCL2-

related) 

AP   4.63   3.70 

MDM2 Mdm2 p53 binding protein homolog P   2.49   2.12 

MKNK2 MAP kinase interacting serine/threonine 

kinase2 

P   2.42   2.21 

MTSS1 Metastasis suppressor 1 M 10.33   8.48 

MYC V-myc myelocytomatosis viral oncogene P   7.45   4.13 

NAMPT Nicotinamide phosphoribosyl transferase P   4.66   4.46 

NDRG1 N-myc downstream regulated 1 P   6.82   6.07 

P15 Cyclin-dependent kinase inhibitor 2B CC   9.08   4.84 

P16 Cyclin-dependent kinase inhibitor 2A CC   2.52   2.31 

P21 Cyclin-dependent kinase inhibitor 1 P, CC   4.08   3.25 

P53 Tumour protein p53 inducible protein P, AP   3.51   3.77 

PDRG1 P53 and DNA-damage regulated 1 CC   1.87   2.12 

PTEN Phosphatase and tensin homolog P   2.87   2.77 

RASA2 RAS p21 protein activator 2 P   2.67   2.07 

ROCK2 Rho-associated, coiled-coil containing 

protein kinase 2 

M   1.50   1.51 

SENP5 SUMO1/sentrin specific peptidase AP   4.61   3.88 

SMEK1 SMEK homolog 1, suppressor of mek1 P, AP   2.02   1.90 

TBX18 T-box 18 P, D   6.85   4.53 

TRAF1 TNF receptor-associated factor 1 P 30.03   4.72 

TRIB3C Tribbles homolog 3 AP 10.33 11.97 

VEGFA Vascular endothelial growth factor A P   6.02   2.70 

ZEB2 Zinc finger E-box binding homolog 2 P, M   7.83   2.30 

 

A 1.50-fold change (orange shade) was used as the threshold for up-regulation of gene 

expression. 
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Some of the affected genes were DNA binding interaction partners of PAX3 (Table 3.5), 

acting as cofactor transcriptional modulators or functional modulators of PAX3 (Boutet 

et al., 2007). 

 

 

Table 3.5 Microarray expression data of PAX3 binding partners after PAX3 

inhibition 

 

The degree of alteration in gene expression was denoted by varying shades of colour.          Deep 

blue: gene expression down-regulated more than 2 fold; red: gene expression up-regulated more 

than 2 fold; orange: gene expression up-regulated 1.5-2 fold.   

 

                                                                                                                                Fold change 

Gene  symbol Gene description JR1 RH30 

PAX3 Paired box3 -4.64 -2.61 

 PAX3 Cofactor transcriptional modulators   

HP1γ Heterochromatin protein Lambda binding 1, -2.94 -2.35 

KAP1 kinase A anchor protein 1   6.23   3.85 

TBX18 T-box 18   6.85   4.53 

 PAX3 functional modulators   

BCL2 B-Cell lymphoma 2 -4.37 -3.45 

DAXX Death-domain associated protein   2.95   1.62 

HES1 Hairy and enhancer of split 1   6.69   2.92 

HMOX1 Heme oxygenase 1   8.25   5.28 

IPO13 Importin 13 -3.03 -2.04 

MSX1 Msh homeobox 1   2.22 -2.54 

PTEN Phosphatase and tensin homolog   2.87   2.77 

RB Retinoblastoma -7.66 -6.74 

 

+/- 1.50-fold change, down-regulation or up-regulation of expression was used as a 

threshold. 
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3.4. Quantitative RT-PCR Analysis of Downstream Targets 

 

The microarray data of selected downstream targets in JR1 and RH30 cell lines were 

validated by quantitative RT-PCR analysis.  Using a threshold of 0.4 as a cut-off point 

for stability showed that both HMBS and SDHA with a least mean value of stability were 

the most stable reference genes suitable for use to normalise both JR1 and RH30 cell 

lines (Fig. 3.11).  

 

 
 
Figure 3.11 JR1 and RH30 cell lines GeNorm graph showing the mean expression stability 

values of eight selected reference sample genes.  Each point shows the mean change of gene 

expression relative to fluorescence intensity at each PCR cycle.  Both HMBS and SDHA genes 

with average stability value of (<0.4) were selected as the most stable housekeeping reference 

genes for normalization. 

 
 

The quantification of cycle values (delta Cp), defined as cycle number at which the 

measured reporter fluorescence value past a fixed threshold above base line, was 

calculated for each gene. Generally, samples with higher message expression levels have 

lower delta Cp values.  The microarray analysis results of 26 selected downstream target 

genes of interest together with PAX3 in rhabdomyosarcoma cell lines were verified by 

the quantitative RT-PCR analysis. The genes were selected from the microarray analysis 

data based on their function including cell cycle, proliferation, migration, differentiation 
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and apoptosis.  In addition to exceeding the q-value threshold of 1.50 and -1.50 for up-

regulated and down-regulated genes respectively (based on 0.5 representing a 2-fold 

change in gene expression), the microarray analysis data of genes showing consistent 

changes in expression in both cell lines were selected. The microarray analysis data 

pattern of down-regulation of PAX3 expression (-4.64-fold) in the JR1 cell line was 

confirmed by the qRT-PCR analysis data (-1.63-fold), whilst in the RH30 cell line, the 

pattern of PAX3 down-regulation (-2.61-fold) confirmed by the qRT-PCR analysis was 

below 1.5-fold change (-1.37), (Table 3.6).  Out of the 14 down-regulated genes of the 

microarray analysis data of 27 genes compared, the qRT-PCR analysis data confirmed 

the down-regulation of another 11 genes beyond 1.5-fold change (ADAM23, BCL2, 

CAPRIN1, CCND3, CDCA3, COL3A1, C-MYC, E2F8, ITGβ5, MCM3 and MYOG4) 

(Table 3.6). However, the down-regulation of both C-MYC and MYOD1 in RH30 cell 

line and PCNA expression in JR1 cell line verified by the qRT-PCR analysis was below 

1.5-fold change whilst the down-regulation of JR1 MYOD1 expression in the microarray 

data analysis was in contrast, up-regulated in the qRT-PCR analysis below 1.5-fold 

change (Table 3.6). The qRT-PCR analysis data further confirmed the microarray data 

of up-regulation of another 12 genes, in the JR1 cell line above 1.5-fold change (AEN, 

AKT3, CASP3, CXCR4, E2F7, ETS1, FOXO1, JAM2, JUN, NDRG1, P21, P53 and 

TRIB3C) (Table 3.6) 

 

 

Similarly, in the RH30 cell line, the qRT-PCR analysis data confirmed the down-

regulation with at least 1.5-fold change of 10 genes out of the 14 genes down-regulated 

in the microarray analysis data (ADAM23, BCL2, CAPRIN1, CCND3, CDCA3, COL3A1, 

E2F8, ITGβ5, MCM3 and PCNA) (Table 3.6). The qRT-PCR further validated the 

expression of another 4 down-regulated genes in the RH30 cell line below 1.5-fold 

(PAX3, C-MYC, MYOD1 and MYOG4) (Table 3.6). Furthermore, the qRT-PCR analysis 

data has proved the up-regulation in the RH30 cell line of the expression of 12 genes 

(with at least 1.5-fold change) out of the 13 genes up-regulated in the microarray 

analysis data (AEN, AKT3, CASP3, CXCR4, E2F7, ETS1, FOXO1, JAM2, JUN, NDRG1, 

P53 and TRIB3C) (Table 3.6), whilst the pattern of up-regulation of P21 expression was 

confirmed as less than a 1.5-fold change in the qRT-PCR analysis data (Table 3.6).  
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Table 3.6 Microarray analyses gene alteration data compared to RT-qPCR                                                    

analysis following PAX3 silencing 

 
The degree of gene up-regulation was denoted by varying shades of colour. Red: gene 

expression up-regulated more than 2 fold; Orange: gene expression up-regulated 1.5-2 fold; 

Deep blue: gene expression down-regulated more than 2 fold; light blue: gene expression down-

regulated between 1.5-2 fold White non-shaded means gene expression < 1.5 fold (unchanged).  

                                                                                             

                                                                                                                            Fold change 

                                                                                                JR1                     RH30 

Gene 

symbol 

 

Gene description  

Micro-

array 

 qRT-    

 PCR   

Micro-

array 

 qRT-     

PCR 

PAX3 Paired Box 3 -4.64 -1.63 -2.61 -1.37 

ADAM23 ADAM metallopeptidase domain   23                  -4.34 -2.64 -4.87 -1.67 

AEN Apoptosis enhancing nuclease 10.72   3.72  7.64  3.82 

AKT3 V-AKT murine homolog 3 oncogene   2.43   1.74   3.39  2.37 

BCL2 B-Cell lymphoma 2 -4.37 -3.43 -3.45 -2.37 

CAPRIN1 Cell cycle associated protein 1 -2.50 -1.57 -9.84 -2.27 

CASP3 Caspase3, apoptosis related cysteine 

peptidase 

  2.45   1.56   2.92  1.68 

CCND3 Cyclin D3 -3.68 -2.02 -2.91 -1.71 

CDCA3 Cell cycle associated 3 -5.84 -1.54 -3.66 -1.50 

COL3A1 Collagen type III, alpha 1 -15.66 -4.64 -9.65 -2.64 

C-MYC C-MYCBP C myc binding protein -5.85 -2.62 -3.50 -1.12 

CXCR4 Chemokine (C-X-C motif)   receptor 4   4.73  2.15  2.88  1.55 

E2F7 E2F7 Transcription factor   7.36   2.82  2.19  1.57 

E2F8 E2F transcription factor 8 -5.40 -1.97 -3.74 -1.98 

ETS1 V-ETS erythroblastosis   virus 1  11.11   2.98  4.73  1.89 

FOXO1 Forkhead box O1   3.51   1.58  2.04 1.52 

ITGβ5 Integrin beta 5 -6.06 -1.76 -2.14 -1.52 

JAM2 Junctional adhesion molecule 2  4.04   2.34   2.93  1.54 

JUN Jun oncogene  6.66   1.88   1.89  1.53 

MCM3 Minichromosome maintenance 3 -5.84 -2.44 -3.99 -1.51 

MYOD1 Myogenic differentiation -2.82   1.02 -4.65 -1.34 

MYOG4 Myogenin (myogenic factor 4) -11.18 -2.20 -2.54 -1.14 

NDRG1 N-myc downstream regulated 1  6.82   2.33   6.07  2.03 

P21 Cyclin-dependent kinase inhibitor 1  4.08   1.56   3.25  1.45 

P53 Tumour protein p53    3.51   1.55   3.77  2.05 

PCNA Proliferating cell nuclear antigen -3.75 -1.30 -4.26 -2.54 

TRIB3C Tribbles homolog 3 10.33   2.02 11.97  2.52 
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The pattern of gene expressions alteration in the JR1 and RH30 rhandomyosarcoma cell 

lines after PAX3 inhibition was compared with previous microarray data of PAX3-

siRNA inhibition in the SH-EP1 and SH-SY5Y neuroblastoma cell lines (Fang et al., 

2013). The microarray analysis and the qRT-PCR data analysis of 14 selected 

downstream target genes of interest together with PAX3 in the rhabdomyosarcoma cell 

lines were compared with the microarray analysis and the qRT-PCR analysis data of 

neuroblastoma (Table 3.7). Out of the 14 genes compared, the expression of 5 genes 

showed similar pattern of down-regulation of expression in both microarray and qRT-

PCR data analysis of both rhabdomyosarcoma cell lines and neuroblastoma cell lines 

(PAX3, CALM3, CDCA3, SKP2 and TFDP1) (Table 3.7). Although the qRT-PCR 

analysis of another 2 genes failed (BRCA1 and POLA2), after being repeated three times, 

their down-regulation of expression in the microarray data analysis of both 

rhabdomyosarcoma cell lines was comparable to the down-regulation of expression in 

the microarray data of both neuroblastoma cell lines (BRCA1 and POLA2) (Table 3.7).     

 

 

On the contrary, the down-regulation of expression of another 2 genes in both 

microarray analysis and the qRT-PCR data analysis of rhabdomyosarcoma cell lines, 

was in disparity with their up-regulation of expression in both microarray analysis and 

qRT-PCR data analysis of neuroblastoma cell lines (NID1 and SMAD2) (Table 3.7).   

Likewise, with the exception of the qRT-PCR analysis data of down-regulation of the 

MCM3 expression in SH-EP1 neroblastoma cell line, the down-regulation of MCM3 

expression in both microarray analysis and qRT-PCR data analysis of both 

rhabdomyosarcoma cell lines was different from both microarray and the qRT-PCR data 

analysis of the neuroblastoma cell lines (Table 3.7).    

  

 

The expression of 2 genes in both rhabdomyosarcoma and neuroblastoma cell lines was 

comparably up-regulated in the microarray and qRT-PCR data analysis (FOXO1 and 

JUN) (Table 3.7). The microarray and qRT-PCR data analysis of down-regulation of 

BCL2 expression was only comparable to the SH-EP1 neuroblastoma cell line, in 

contrast to the up-regulation of BCL2 in the SH-SY5Y neuroblastoma cell line (Table 

3.7). Likewise, the up-regulation of CASP3 in both microarray and qRT-PCR data 

analysis of rhabdomyosarcoma cell lines was only comparable to the SH-SY5Y 
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neuroblastoma cell line, in contrast to CAPS3 down-regulation in the SH-EP1 

neuroblastoma cell line(Table 3.7). The microarray and the qRT-PCR data analysis of 

down-regulation of COL3A1 expression in both rhabdomyosarcoma cell lines were 

dissimilar to the up-regulation of COL3A1 expression in both microarray and qRT-PCR 

data analysis of the neuroblastoma cell lines (Table 3.7).  

 

 

Table 3.7 Comparison of PAX3-siRNA knockdown in rhabdomyosarcoma and 

neuroblastoma   

 

The pattern of gene expression in rhabdomyosarcoma cell lines after PAX3-siRNA knockdown 

was comparable to both microarray and qRT-PCR data in a related PAX3-siRNA inhibition of 

neuroblastoma cells shown below.  Gene expression up-regulated ≥ 1.50 fold is shown in red; 

gene expression down-regulated > 1.50 fold is shown in blue; ND means not detected.   

 

                                   Rhabdomyosarcoma                Neuroblastoma  

                                       JR1                         RH30                      SH-EP1               SH-SY5Y 

 

1.50 fold change (light blue) gene expression was used as the threshold for significant 

down-regulation. 

 

1.50 fold change (orange shade) gene expression was used as the threshold for 

significant up-regulation.   

Gene 

Symbol 

Micro-

array 

RT-

qPCR   

Micro-

array 

RT-

qPCR    

Micro- 

array 

RT-

qPCR    

Micro

array 

RT-

qPCR 

PAX3    -4.64  -1.63   -2.61  -1.37    -2.89   -1.47 -2.56 -1.48 

BCL2    -4.37 -3.43   -3.45    -2.37    -1.14           -1.60            2.37              3.03 

BRCA1    -2.57 ND   -2.86 ND    -9.88   -6.00  -1.34 -1.27 

CALM3    -2.62 -2.32   -2.20   -1.53    -7.68   -1.71  -1.99 -1.03 

CASP3     2.45  1.56    2.92  1.68    -2.02     -1.20   1.02    3.12 

CDCA3    -5.84 -1.54   -3.66 -1.50  -31.74 -12.57  -1.76   -1.11 

COL3A1  -15.66 -4.64   -9.65 -2.64 133.39  64.44   1.36    6.12 

FOXO1     3.51    1.58    2.04  1.52     1.90    1.67     1.85      2.52 

JUN     6.66  1.88    1.89     1.53     6.32    4.12     2.19  2.11 

MCM3    -5.84   -2.44   -3.99      -1.51     4.59   -1.09   2.33  8.99 

NID1    -2.39         -1.55   -1.74 -1.53     1.90    1.79   2.03    2.74 

POLA2    -2.68 ND   -2.11 ND    -8.49   -4.15  -2.01  1.08 

SKP2    -3.99                             -1.57   -1.93 -1.56  -20.38     -6.33    -1.83   -1.61 

SMAD2    -2.55    -1.67   -2.06    -1.76     2.48    3.01     1.81      2.07 

TFDP1  -10.58 -2.55   -4.36    -1.58    -4.21   -2.91  -1.70 -1.33 
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3.5. Effect of Inhibition of PAX3 mRNA on Downstream Target Protein Expression 

  

Western blotting analysis of non-transfected JR1 (Fig. 3.12) and RH30 cells (Fig. 3.13) 

demonstrated high levels of PAX3 protein as a base line.  

 

 
 

    Figure 3.12 Pre-transfection determination of PAX3 protein in non-transfected     

    JR1 cells.  Lanes 1-6: Replicate JR1 PAX3 and GAPDH protein expression. 

 

 

 
 

Figure 3.13 Pre-transfection determination of PAX3 protein in non-transfected RH30 cells.  

Lanes 1-6: Replicate RH30 PAX3 and GAPDH protein expression. 

 

 

To assess the effect of PAX3 knockdown on protein levels in JR1 and RH30 cells, 

immunoblotting was undertaken and PAX3-siRNA and NC-siRNA transfected cells 

were compared. Western blotting analysis demonstrated reduced PAX3 protein levels 

after PAX3 knockdown.  The NC-siRNA had no effect on PAX3 mRNA as shown in 

(lanes 3-5 of Figs. 3.5 and 3.7) and the cells showed high PAX3 protein expression 

(lanes 1-3 of Figs. 3.14B and 3.16B), whereas knockdown of PAX3 mRNA in PAX3-

siRNA transfected cells (see lanes 6-8 of Figs. 3.5 and 3.7), showed 2% of PAX3 

protein (lanes 5-7 of Figs. 3.14B and 3.16B). Using human GAPDH as an internal 

normalization control, JR1 showed high levels of GAPDH in both NC-siRNA and 

PAX3-siRNA transfected cells (lanes 1-3 and 5-7 of Fig. 3.14A). This indicated that 

neither PAX3-siRNA nor NC-siRNA had any inhibitory effect on GAPDH protein 

expression.  NC-siRNA had no inhibitory effects on PAX3 expression and subsequently, 
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showed consistently high levels of PAX3. Western blotting validated genes of interest 

that were significantly altered in the microarray data.  PAX3-siRNA knockdown gene of 

PAX3 expression resulted in down-regulation or up-regulation of its downstream targets, 

including a remarkable reduction of C-MYC (lanes 5, 6 and 7 of Fig. 3.14C) and 

completely decreased ITGβ5 (lanes 5, 6 and 7 of Fig. 3.14D). There was a reduction in 

MYOD1 (lanes 5, 6 and 7 of Fig. 3.14E), decreased BCL2 (lanes 5, 6 and 7 of Fig. 

3.14F) and increase in P21 (lanes 5, 6 and 7 of Fig. 3.14G).  P53 and phosphorylated 

P53 (lanes 5, 6 and 7 of Fig. 3.14H) and CASP3 (lanes 5, 6 and 7 of Fig. 3.14I) were all 

increased.   

 

 
 

Figure 3.14 Western blotting of JR1 cell proteins following 96 hr transfection with PAX3-

siRNA.  Lanes 1-3: Triplicate NC-siRNA transfected JR1 cells; Lane 4: Blank; Lanes 5-7: 

Triplicate PAX3-siRNA transfected JR1 cells.  

 



155 
 

The effect of knockdown of PAX3 mRNA on PAX3 protein and downstream target 

protein expression in JR1 cell line was statistically significant (p < 0.01).  Following 96 

hr transfection, the knockdown of PAX3 resulted in PAX3 protein being reduced by a 

mean of 98% (n = 9) (Fig. 3.15).  Downstream molecules down-regulated by PAX3 

showing low levels of protein remaining were, C-MYC (8%); ITGβ5 (3%); MYOD1 

(20%) and BCL2 (5%) (of expression relative to NC-siRNA).  Likewise, up-regulated 

molecules downstream of PAX3 showing high levels of protein expression were, P21 

(20 fold) P53 (15 fold) and CASP3 (30 fold). 

 

 
 
Figure 3.15 Mean percentages of protein expression after 96 hr siRNA transfection.  The 

mean protein expression in NC-siRNA transfected JR1 cells (blue columns) was compared with  

mean protein expression in PAX3-siRNA transfected JR1 cells (red columns). Means of triplicate 

values in each of three separate experiments, (n = 9).  Blue versus red column for each protein 

(Student’s t-test), (**, p < 0.01).  

 

 

Although a similar protein expression pattern was observed in RH30 cells, the protein 

expression levels in the RH30 cell line after knockdown of PAX3 were higher compared 

to the JR1 cell line in which some downstream target molecules were almost completely 

absent.  NC-siRNA showed no effect on protein levels whilst PAX3-siRNA did. High 
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levels of GAPDH were observed in both NC-siRNA and PAX3-siRNA transfected cells 

(Fig. 3.16). 

 

 
 

Figure 3.16 Western blotting of RH30 cell proteins following 96 hr trnafcetion with PAX3-

siRNA results in both inhibition and induction of downstream targets.  Lanes 1-3: Triplicate 

NC-siRNA transfected RH30 cells; Lane 4: Blank; Lanes 5-7: Triplicate PAX3-siRNA 

transfected RH30 cells.  

 

 

RH30 cells transfected with NC-siRNA showed high levels of PAX3 relative to 

consistent reduction of PAX3 in PAX3-siRNA treated cells.  Knockdown of PAX3 

expression in RH30 cells caused up or down-regulation of some downstream targets 

including reduction of C-MYC (lanes 5, 6 and 7 of Fig. 3.16C), consistent reduction of 

ITGβ5 (lanes 5, 6 and 7 of Fig. 3.16D) compared to markedly decreased ITGβ5 

expression in the JR1 cell line.  There were a consistent reduction of MYOD1 (lanes 5, 6 

and 7 of Fig. 3.16E) and decrease in BCL2 (lanes 5, 6 and 7 of Fig. 3.16F).  Increase in 
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P21 expression (lanes 5, 6 and 7 of Fig. 3.16G) were higher compared to the JR1 cell 

line (lanes 5, 6 and 7 of Fig. 3.14G). The increased expression of P53 and its 

phosphorylated form in (lanes 5, 6 and 7 of Fig. 3.16H) is similar to that in JR1 cells 

(lanes 5, 6 and 7 of Fig. 3.14H).  The increase in CASP3 expression (Fig. 3.14I) was 

higher than in JR1 cells (lanes 5, 6 and 7 of Fig. 3.16I).  

 

 

After 96 hr transfection, the effect of knockdown of PAX3 mRNA on PAX3 protein and 

downstream target protein expression in the RH30 cell line was statistically significant 

(p < 0.01).  PAX3 protein levels were reduced by 92% (Fig. 3.17).  

 

 
 
Figure 3.17 Mean percentages of protein expression after 96 hr siRNA transfection.  The 

mean protein expression in NC-siRNA transfected RH30 cells (Blue columns) was compared 

with the mean protein expression in PAX3-siRNA transfected RH30 cells (Red columns).  The 

histograms are means of three measurements in each of three separate experiments (n = 9).  Blue 

versus red column for each protein (Student’s t-test), (**, p < 0.01).  
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Following inhibition of PAX3 gene expression, the levels of protein expression were 

PAX3 (8%); C-MYC (10%); ITGβ5 (8%); MYOD1 (10%) and BCL2 (2%). The 

approximate level of protein expression in downstream molecules up-regulated by PAX3 

were, P21 (15 fold); P53 (30 fold) and CASP3 (10 fold).  

 

 

3.6. Effect of PAX3 Inhibition on Proliferation of Rhabdomyosarcoma Cell Lines 
 

The purpose of this experiment was to study the growth potential for the determination 

of optimal cell seeding density over 96 hr transfection period.  Standard growth curves 

for JR1 and RH30 (non transfected), cell lines where growth was proportional to starting 

density, demonstrated a linear growth (Figs. 3.18 and 3.19). A cell seeding density of 

5.0 X10
4 

cells/ well,
 
that produced a steady optimal growth with mean ODs of 0.35 in 

the JR1 cells and 0.45 in the the RH30 cells, relating to a slow cell growth over a 96 

hour time-course without over-growth and showing minimal cytotoxicity was selected 

for the cell proliferation analysis of JR1 and RH30 cells.  

 

 
  
Figure 3.18 Pre-transfection standard curve of JR1 cells for selection of optimal cell 

seeding density in subsequent cell proliferation analyses.  The OD readings of formazan 

produced are directly proportional to the number of proliferating cells.  Each point represents the 

mean ± SD of three replicate measurements in each of three separate experiments (n = 9).  

Ninety-six hours was selected for the duration of the subsequent cell proliferation analysis and 

5.0 X 10
4
 cells/well chosen as the starting density. 
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Figure 3.19 Pre-transfection standard growth curve of RH30 cells for selection of optimal 

cell seeding density in subsequent cell proliferation analyses.  The OD readings of formazan 

produced are directly proportional to the number of proliferating cells.  Each point represents the 

mean ± SD of three replicate measurements in each of three separate experiments (n = 9).  

Ninety-six hours was selected for the duration of the subsequent cell proliferation analysis and 

5.0 X 10
4
 cells/well chosen as the starting density. 

 

 

To determine the effects of knockdown of PAX3 gene expression over 12-96 hrs on 

proliferation of rhabdomyosarcoma cell lines, the mean OD relating to cell proliferation 

of NC-siRNA control cells were compared with that of PAX3-siRNA treated cells, using 

the Cell Titer non-radioactive MTS colorimetric time-course cell proliferation assay.  In 

the indirect MTS cell proliferation analysis, mean large amounts of formazan product 

(OD) relating to a higher number of proliferating viable cells was observed in the NC-

siRNA transfected cells compared to a smaller amount of formed formazan product in 

PAX3-siRNA transfected cells, indicating a lower number of proliferating viable cells.  

Following 96hr transfection, a lower mean OD of 0.25 demonstrated in PAX3-siRNA 

treated JR cells cells, signifies inhibition of cell proliferation compared to a 

corresponding higher mean OD of 1.83 in the NC-siRNA treated JR1 cells cells 

indicated high cell proliferation.  These results were confirmed by direct Coulter counter 

analysis of the mean numbers of proliferating JR1 cells (Fig. 3.20).   
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A significant difference in cell proliferation was observed between NC-siRNA 

transfected JR1 cells and PAX3-siRNA transfected JR1 cells (p < 0.01). Thus, a 

significant inhibition of cell growth was observed in PAX3-siRNA transfected JR1 cells 

because of cell apoptosis.  

   

 
 
Figure 3.20 CellTiter 96® aqueous cell proliferation analyses for determination of 

inhibition of JR1 cell proliferation following 96 hr PAX3-siRNA transfection.  The mean 

OD reading of NC-siRNA transfected JR1 cells (blue columns) was compared with the OD 

reading of PAX3-siRNA transfected JR1 cells (red columns) at each time point.   A cell seeding 

density of 5.0 X 10
4
 cells/well was initially seeded at the start of the experiment.   

The histograms are means of three replicate measurements in each three separate experiments,         

(n = 9). (Student’s t-test), (*, p < 0.05; **, p < 0.01).  

 

 

Cell Coulter counter of cell growth measurements of 5.0 X 10
4
 cells/ml initial cell 

seeding density confirmed a significant cell growth inhibition in PAX3-siRNA 

transfected JR1 cells compared to NC-siRNA transfected JR1 cells.  Higher mean cell 

count over the 96hr transfection (253 X 10
4
 cells) was observed in NC-siRNA 

transfected JR1 cells expressing the PAX3 gene than in the corresponding significantly 

reduced number of cells at 96hr transfection (20 X 10
4
 cells) in PAX3-siRNA transfected 
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JR1 cells with decreased PAX3 gene expression (p < 0.01) caused cell apoptosis (Fig. 

3.21).  

 

  
 

Figure 3.21 Coulter counter direct cell counts for determination of inhibition of JR1 cell 

proliferation following siRNA transfection.  The mean number of JR1 cell count in NC-

siRNA transfected cells (blue columns) was compared with the mean number of JR1 cell count 

in PAX3-siRNA transfected cells (red columns) at each transfection time point.  At the start of 

the experiment, 5.0 X 10
4
 cells/well was originally seeded.  The histograms are means of three 

replicate cell counts in each of three separate repeated experiments, (n = 9).  (Student’s t-test), 

(**, p < 0.01).  

 

 

Similarly, following a 96 hr transfection, a significant inhibition of cell growth of 5.0 X 

10
4
 cells/ml initial cell seeding density (p < 0.01) was observed in PAX3-siRNA 

transfected RH30 cells (with knockdown of PAX3 gene expression) recording a mean 

OD of 0.34 compared to a correponding higher OD of 2.14 in the NC-siRNA transfected 

RH30 cell growth with high levels of PAX3 gene expression (Fig. 3.22).  
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Figure 3.22 CellTiter 96® aqueous indirect cell proliferation analyses for determination of 

inhibition of RH30 cell proliferation following siRNA transfection.  The mean OD readings 

of NC-siRNA transfected RH30 cells (blue columns) was compared with the mean OD readings 

of PAX3-siRNA transfected RH30 cells (in red columns) at each transfection time point.  Cell 

seeding density was originally 5.0 X 10
4
 cells/well at the start of the experiment.   

The histograms are means of three replicate measurements in each of three separate experiments, 

(n = 9).  (Student’s t-test), (*, p < 0.01; **, p < 0.01). 

 

 

In the direct Coulter counter proliferation analysis used to confirm the results of the 

MTS, the mean cell counts of 15 X 10
4
 cells at 96 hr transfection in the PAX3-siRNA 

treated RH30 cells, demonstrated a significant cell growth inhibition of 5.0 X 10
4
 

cells/ml of initial cell seeding density compared to a higher mean cell count in the NC-

siRNA treated RH30 cells of 220 X 10
4
 cells observed at 96hr  respectively (p < 0.01) 

becaused of cell apoptosis (Fig. 3.23).  
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Figure 3.23 Coulter counter direct cell count for determination of inhibition of RH30 cell 

proliferation following 96 hr siRNA transfection.  The mean number of RH30 cell count in 

NC-siRNA transfected cells (blue columns) was compared with the mean number of RH30 cell 

count in PAX3-siRNA transfected cells (red columns) at each time point.  Original cell seeding  

density was 5.0 X 10
4
 cells/well.  The histograms are means of three replicate cell counts in each 

of three separate experiments, (n = 9).  (Student’s t-test),  (*, p < 0.05; **, p < 0.01).      

 

 

3.7. Effect of Knockdown of PAX3 on the Cell Cycle of JR1 and RH30 Cells 

 

PAX3 has a crucial role in the modulation of activity of downstream cell cycle genes.  

Since inhibition of PAX3 gene expression in JR1 and RH30 cells led to significant 

inhibition of cell proliferation, it was important therefore, to investigate the impact on 

the phases of the cell cycle at which cell growth was arrested.  Following 96 hr siRNA 

knockdown of PAX3 gene expression, flow cytometry was used to analyse the DNA 

content of individual transfected cells.  The mean number of PI stained cells among NC-

siRNA transfected cells were compared with the average number of PI stained cells 

among PAX3-siRNA transfected cells.  The amount of PI staining per cell determined 

the distribution of cells in each phase of the cell cycle (Table 3.8).  The outcome of this 

analysis demonstrated a high proportion of G0/G1 phase cells among the PAX3-siRNA 

transfected cells compared with the NC-siRNA transfected control cells (62.5% versus 

42.7%) arrested at the G0/G1 phase in JR1 cells (Fig. 3.24) and 70.3% versus 63.6% in 
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RH30 cells (Fig. 3.25).  PAX3 inhibition in JR1 cells reduced the cells in S phase from 

13.1% to 7.4%.  PAX3 inhibition reduced RH30 cells in S from 9.8% to 7.4%.  Although 

there can be a cell cycle check point in G2,  the presence of cells in S phase signifies cell 

cycle progression and hence probably cell proliferation.  Therefore, this result implies a 

lower cell proliferation rate in PAX3-siRNA transfected cells compared to a higher cell 

proliferation rate in the NC-siRNA transfected cells and agrees with the cell proliferation 

experiments mentioned earlier. 

 

 

Table 3.8 Cell cycle distribution of JR1 and RH30 cells following 96 h siRNA 

knockdown of PAX3 gene expression   

 

Flow cytometry analysis of DNA content by propidium iodide incorporation. Each value 

is the percentage of cells at that stage.  

     

                                                      

Cell 

cycle       

Phase 

             JR1 CELLS     

 

NC-siRNA          PAX3-siRNA 

              RH30 CELLS 

 

NC-siRNA                PAX3-siRNA 

G0/G1 42.7% ±3.6            62.5% ±2.2               63.6% ±2.1               70.3% ±2.7 

S 13.1% ±2.4             7.4% ±1.1   9.8% ±1.2                7.4% ±1.4 

G2/M 44.2% ±1.3           30.1% ±1.0 26.6%  ±1.4              22.3% ±2.1 

 
These values are mean of three measurements in two separate experiments, (n = 6); in all 

categories:- G0/G1, S and G2/M: p < 0.05; for NC-siRNA vs PAX3-siRNA (by Student’s t-test). 

 

The cell cycle results positively correlated with the western blotting results of increased 

P12 and P53 protein expression and a decreased in BCL2 protein expression. 
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Figure 3.24 Flow cytometric cell cycle analysis of JR1 siRNA transfected PI stained cells 

after 96 hr transfection.  This curve represents JR1 cells in one of two separate experiments.  

 

 

 

 
 

Figure 3.25 Flow cytometric cell cycle analysis of RH30 siRNA transfected PI stained cells 

after 96 hr transfection.  This curve represents RH30 cells in one of two separate experiments.  
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3.8. Effect of Inhibition of PAX3 on Cell Migration of Rhabdomyosarcoma Cell 

Lines 

 

To study the impact that knockdown of PAX3 gene expression might have on metastasis 

of rhabdomyosarcoma, a scratch wound healing assay was carried out to measure JR1 

and RH30 cell migration in vitro.  The difference between wound gaps as indicated by 

the arrows at 0 hr (Fig. 3.26) and the wound healing gaps at 24 hr (Fig. 3.27) represents 

the relative distance migrated by cells.  To verify the distance migrated by siRNA 

treated cells after 24 hr migration, the mean relative distance of cell migration indicated 

by the closure of wound gaps in NC-siRNA treated cells was compared to that of PAX3-

siRNA treated cells (Fig. 3.27). 

 

`  

 
Figure 3.26 Width of JR1 cells scratched wound gap at 0 hr after 12-96 hr transfection 

duration, X 10 magnification. A (12 hr); B (24 hr); C (48 hr); D (72 hr); E (96 hr).  The 

arrow represents the initial scratched wound width gap of NC-siRNA and PAX3-siRNA prior to 

24 hr JR1 cell migration (wider arrows).   
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After 24 hr cell migration, the NC-siRNA treated JR1 cells demonstrated narrow wound 

gaps because of migration of cells from the wound edges into the wound gaps whereas 

wider wound gaps were observed in the PAX3-siRNA treated JR1 cells indicating 

inhibition of cell migration from the wound edges.  The NC-siRNA transfected JR1 cells 

migrated over longer distances and gradually closed the width of wound gaps over 24 hr 

to maintain narrow wound gaps denoted by shorter arrows (Fig. 3.27).   By contrast, 

PAX3-siRNA transfected JR1 cells, which hardly migrated over the 24 hr from the initial 

scratched wound gaps, retained larger wound gaps shown by longer arrows (Fig. 3.27).  

 

 
 

Figure 3.27, X 10 magnification in scratch wound healing assay of transfected JR1 cells 

after 24 hours.  JR1 cells were stained with methylene blue.  A (12 hr); B (24 hr); C (48 hr); 

D (72 hr); E (96 hr).  Relative measurement of width of wound gap represents JR1 cell migrated 

distance.  Wound healing by cell migration was related to measured distance in the 24 hr 

following 12 hr, 24 hr, 48 hr, 72 hr or 96 hr siRNA transfection of JR1 cells.  NC-siRNA 

transfected JR1 cells showed a narrow wound gap from original wide wound gap at 0 hr due to 

high migration of JR1 cells (short arrows).  PAX3-siRNA transfected JR1 cells showed a wide 

wound gap due to inhibition of JR1 cell migration resulting from JR1 cell apoptosis (long 

arrow). 
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A low relative mean of cell migration distance (4 units), observed at E, demonstrated in 

the PAX3-siRNA treated JR1 cells was significantly different from a high relative mean 

of cell migration distance of (70) at E in the NC-siRNA transfected JR1 cells (p < 0.01) 

(Fig. 3.28).   

  

 
 
Figure 3.28 Relative JR1 cell migration over 24 hr after 12 hr, 24 hr, 48 hr, 72 hr or 96 hr 

siRNA transfection duration. The relative average migration distance of NC-siRNA 

transfected JR1 cells (blue columns) was compared with the relative average migration distance 

of PAX3-siRNA transfected JR1 cells (red columns) after 24 hr incubation.  The mean values 

were derived from three measurements observed in three separate experiments (n = 9). Student’s 

t-test, (*, p < 0.05; **, p < 0.01).  

  

 

A similar cell migration inhibition pattern of the RH30 cell line was observed, but the 

extent of inhibition was not as high as that in JR1 cells.  Likewise, the NC-siRNA 
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treated RH30 cells demonstrated more closure of wound gaps created at 0 hr (Figs. 3.29) 

after 24 hr cell migration (Fig. 3.30).      

   

 
 

Figure 3.29, X 10 magnification of width of RH30 cells in scratched wound assay at 0 hr 

after 12-96 hr transfection duration.  A (12 hr); B (24 hr); C (48 hr); D (72 hr); E (96 hr).  

The arrow represents the initial scratched wound gap of NC-siRNA and PAX3-siRNA at the start 

of RH30 cell migration experiment.  

 

 

In the NC-siRNA treated RH30 cells, narrow wound gaps were observed owing to 

migration of cells.  In contrast, wider wound gaps seen in the PAX3-siRNA treated 

RH30 cells revealed inhibition of cell migration.  The NC-siRNA transfected RH30 cells 

migrated over long distances, gradually increasing over 24 hr to close the initial wound 
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gaps denoted by short arrows (Fig. 3.30).  By contrast, PAX3-siRNA transfected RH30 

cells showed significant inhibition of migration (shorter distances), over 24 hr to 

maintain broader wound gaps designated by wider arrows (Fig. 3.30).   

 

 
 

Figure 3.30, X 10 magnification in scratch wound 24 hr healing assay of transfected RH30 

cells after 12-96 hr transfection duration.  RH30 cells were stained with methylene blue.  A 

(12 hr); B (24 hr); C (48 hr); D (72 hr); E (96 hr).  Measurement of wound gap distance 

represents cell distance migrated over 24 hr. Wound healing by cell migration related to 

measured distance in the 24 hr following 12 hr, 24 hr, 48 hr, 72 hr or 96 hr siRNA transfection.  

NC-siRNA transfected RH30 cells showed a narrow wound gap owing to high RH3 cell 

migration (shorter arrows).  PAX3-siRNA transfected RH30 cells showed a wide wound gap 

owing to inhibition of RH30 cell migration  as a result of  RH30 cell apoptosis (longer arrows). 

 

 

A minimal relative mean of cell migration distance (5 units)  demonstrated in PAX3-

siRNA treated cells at E was significantly different from an elevated relative mean of 
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cell migration distance at E (70) was exhibited in NC-siRNA transfected JR1 cells (p < 

0.01)  because of cell apoptosis (Fig. 3.31).   

 

 
 

Figure 3.31 Relative migration of RH30 cells over 24 hr following 12 hr, 24 hr, 48 hr, 72 hr 

or 96 hr siRNA transfection duration.  The relative average migration distance of NC-siRNA 

transfected RH30 cells (blue columns) was compared with the relative average migration 

distance of PAX3-siRNA transfected RH30 cells (red columns).The mean measurements were 

derived from three separate experiments (n = 9).  Student’s t-test; (*, p < 0.05; **, p < 0.01). 

 

 

3.9. Effect of PAX3 Expression Knockdown on Cell Adhesion to Extracellular 

Matrix Proteins  

 

Cell adhesion to natural extracellular matrices (ECMs) plays a major role in cellular 

communication regulation and is of fundamental importance in the development and 

maintenance of tumourigenesis of JR1 and RH30 cells (Al-Ayoubi et al, 2012).  The 

effect of silencing PAX3 on inhibition of JR1 and RH30 adhesion to human ECM 

proteins, including collagen I, collagen II, collagen IV, fibronectin, laminin, tenascin and 



172 
 

vitronectin, previously coated on surfaces of plastic wells was demonstrated.  The mean 

OD relating to the extent of NC-siRNA treated cell attachment to each ECM protein was 

compared to that of PAX3-siRNA treated cells following 96 hr transfection. The NC-

siRNA transfected cells with high PAX3 expression showed higher mean ODs 

corresponding to increased cell attachment  to the various ECM proteins compared to 

lower mean ODs observed in PAX3-siRNA treated JR1 cells, which demonstrated 

weaker adhesion to all ECM proteins studied.  At 96 hr transfection, lower mean ODs in 

the PAX3-siRNA treated JR1 cell inhibition of adhesion to Col I (0.04), Col II (0.03) and 

Col IV (0.03) were significantly different from the NC-siRNA JR1 treated cells 

attachment with higher mean ODs on Col I (0.62), Col II (0.41) and Col IV (0.26) (p < 

0.01) (Fig. 3.32).  

 

 
 

Figure 3.32 Inhibition of JR1 cell adhesion to ECM proteins following 96 hr siRNA 

transfection. The mean OD of JR1 cell adhesion in NC-siRNA transfected JR1 cells (blue 

columns) was compared with the mean OD of JR1 cell adhesion in PAX3-siRNA transfected JR1 

cells (red columns). The means were derived from three measurements in each of two separate 

experiments (n = 6).  Student’s t-test, (**, p < 0.01). 
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Likewise, RH30 cells showed a similar cell adhesion inhibition pattern with the NC-

siRNA treated RH30 cells adhering more strongly to the various ECM proteins 

(demonstrated higher mean ODs relating to increased cell attachment), while PAX3-

siRNA transfected RH30 cells adhered much less strongly.  

 

             

Following 96 hr transfection, PAX3-siRNA treated JR1 cells demonstrating lower mean 

ODs of cell attachment to Col I (0.05), Col II (0.04) and Col IV (0.04) which were 

significantly different from higher mean ODs in the NC-siRNA RH30 treated cell 

attachment to Col I (0.81), Col II (0.53) and Col IV (p < 0.01) (Fig. 3.33). 

 

 
 
Figure 3.33 Inhibition of RH30 cell adhesion to ECM proteins following 96 hr siRNA 

transfection. The mean OD of JR1 cell adhesion in NC-siRNA transfected RH30 cells (blue 

columns) was compared with the mean OD of JR1 cell adhesion in PAX3-siRNA transfected 

RH30 cells (red columns). The means were derived from three measurements in each of two 

separate experiments (n = 6).  Student’s t-test, (**, p < 0.01). 
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3.10. Effect of Silencing PAX3 on cell Invasion of JR1 and RH30 Cell Lines 

 

To investigate the effects of silencing PAX3 on JR1 and RH30 cell invasion in vitro, the 

mean numbers of cells invading a matrigel membrane among the NC-siRNA transfected 

cells were compared to the number of PAX3-siRNA transfected cells.  One part of a 

microscopic field view (Fig 3.34), showed JR1 cell invasion after 96 hr transfection.  In 

the JR1 cell line, among NC-siRNA transfected cells with high PAX3 expression, a 

mean number of seventy cells per microscopic field were observed to invade matrigel 

membranes to indicate high cell invasive capacity in.  On the contrary, a mean of fifteen 

PAX3-siRNA treated cells per microscopic field invaded the matrigel membranes 

(Fig.3.35).  

 

 
 
Figure 3.34 Inhibition of JR1 cell invasion of matrigel membrane following 96 hr siRNA 

transfection.  Invaded JR1 cells were stained with Giemsa and viewed in a phase contrast 

microscope X 40.  NC-siRNA transfected JR1 cells invaded the metri gel membrane in high 

numbers than PAX3-siRNA transfected JR1 cells invading in less numbers.  Invaded JR1 cells 

were counted in five microscopic fields in each of three experiments.   

 

 

Comparatively, a significantly reduced mean number of PAX3-siRNA transfected cells 

(15) invading the matrigel membrane, demonstrated a poorer cell invasive capacity (p < 

0.01), in contrast to a higher mean number of JR1 cell invasion (70) in the NC-siRNA 

transfected cells (Fig 3.35). The low  JR1 cell invasion observed in PAX3-siRNA transfected 

cells was significantly different from NC-siRNA treated invaded cells (p < 0.01).  
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Figure 3.35 Mean inhibition of JR1 cell  invasion.  The mean number of JR1 cell invasion in 

NC-siRNA transfected JR1 cells (blue column) was compared with the mean number of JR1 cell 

invasion in PAX3-siRNA transfected JR1 cells (red column).  The means were derived from five 

microscopic field measurements in each of three separate experiments (n = 15).  (Student’s t-

test), (**, p < 0.01). 

 

 

Similarly, a microscopic field view in an area (Fig 3.36), likewise showed higher RH30 

cells invasion of the NC-siRNA treated cells than the PAX3-siRNA treated cells.  

 

 
 
Figure 3.36 Inhibition of RH30 cell invasion of matrigel membrane after 96 hr siRNA 

transfection.   RH30 cells were stained with Giemsa and viewed in a phase contrast microscope 

X 40.  High number of NC-siRNA transfected RH30 cells invaded the metri gel membrane than 

PAX3-siRNA transfected RH30 cells invading in few numbers. Invaded RH30 cells were 

counted from five microscopic fields per experiment. 
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After 96 hr transfection, the NC-siRNA transfected cells with high PAX3 gene 

expression were observed to invade a matrigel membrane in high numbers (75 

cells/field), indicating a high cell invasive capacity.  Comparatively, PAX3-siRNA 

transfected cells with PAX3 gene knockdown invaded a matrigel membrane in 

significantly lower numbers (20 cells/field) indicating a reduced cell invasive capacity 

(Fig 3.37).  The low RH30 cell invasion observed in PAX3-siRNA transfected cells was 

significantly different from NC-siRNA treated invaded cells (p < 0.01).  

 

 

 
 
Figure 3.37 Mean inhibition of RH30 cell invasion.  The mean number of RH30 cell invasion 

in NC-siRNA transfected RH30 cells (blue column) was compared with the mean number of 

RH30 cell invasion in PAX3-siRNA transfected RH30 cells (red column).  The means were 

derived from five microscopic field measurements in each of three separate experiments (n = 

15).   Student’s t-test, (**, p < 0.01).  

 

 

3.11. Effect of Silencing PAX3 on Clonogenicity of JR1 and RH30 Cells 

 

The effect of knockdown of PAX3 on JR1 and RH30 cell transformation was evaluated 

using an in vitro soft agar assay. This detects colony formation arising from 

morphological transformation of JR1 and RH30 cells, which might be changed by 

PAX3-siRNA transfection. The average number of visible large colonies in the gel 
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arising from NC-siRNA transfected cells was compared with those arising from PAX3-

siRNA transfected cells.  

 

 

Following 96 hr transfected, the NC-siRNA transfection JR1 cells with high PAX3 gene 

expression produced an average of six large colonies of diameter greater than 

approximately 100µm as shown in one part of a microscopic field view (Fig. 3.38).  In 

contrast, PAX3-siRNA treated JR1 cells formed small aggregates of apoptotic JR1 cells 

(according to the manufacturer’s literature).   

 

 
 
Figure 3.38 Inhibition of JR1 colony reproducibility in (soft agar) following 96 hr siRNA 

transfection.  JR1 colonies were stained with crystal violet.  Phase contrast X 40 micrograph of 

anchorage independent growth of JR1 cells in soft agar after 28 days incubation.  The number of 

colonies in each of five microscopic fields was counted.  NC-siRNA transfected JR1 cells 

formed seven large colonies (approximately 100µm) per part field than PAX3-siRNA transfected 

JR1 cells which  produced apoptotic cells.  Colonies greater than 100µm were counted in each 

five microscopic fields in each of three experiments. 

  

 

The mean number of transformed colonies in the NC-siRNA transfected cells (seven per 

microscopic field) were significantly different from PAX3-siRNA treated cells              

(p < 0.01) (Fig. 3.39) because of cell apoptosis.  
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Figure 3.39 Mean inhibition of JR1 colony reproducibility.  The mean number of 

reproducible colony in NC-siRNA transfected JR1 cells (blue column) was compared with the 

mean number of reproducible colony in PAX3-siRNA transfected JR1 cells (red column).  The 

mean number of colonies were counted over five microscopic fields in each of three separate 

experiments and found to be statistically different, (n = 15).  Student’s t-test, (**, p ˂ 0.01).  

 
 

A similar pattern of colony reproducibility was observed in the RH30 cell line after 96 

hr transfection. NC-siRNA transfected RH30 cells produced about sixteen large colonies 

diameter greater than 100µm as demonstrated in one microscopic field view (Fig. 3.40).  

By contrast, PAX3-siRNA transfected RH30 cells produced much smaller colonies that 

were suspected to be collections of apoptotic RH30 cells (according to the 

manufacturer’s literature).    
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Figure 3.40 Inhibition of RH30 colony reproducibility in (soft agar) following 96 hr siRNA 

transfection.  RH30 cells were stained with crystal violet.  Phase contrast X 40 micrograph of 

anchorage independent growth of RH30 cell in soft agar after 28 days incubation.  NC-siRNA 

transfected RH30 cells generated higher numbers of large colonies while PAX3-siRNA 

transfected RH30 cells produced apoptotic cells.  Colonies greater than 100µm were counted in 

each five microscopic fields in each of three experiments. 

  

 

There was significantly less number of colonies generated from PAX3-siRNA 

transfected RH30 cells (1 per field) than those generated from the NC-siRNA transfected 

cells (16 per field) (p < 0.01) (Fig. 3.41). 
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Figure 3.41 Mean inhibition of RH30 colony reproducibility. The mean number of 

reproducible colony in NC-siRNA transfected RH30 cells (blue column) was compared with the 

mean number of reproducible colony in PAX3-siRNA transfected RH30 cells (red column).  The  

mean number of colonies were counted in five microscopic fields in each of three separate 

experiments and found to be statistically different, (n = 15).  Student’s t-test, (**, p ˂ 0.01).  

 

 

3.12. Effect of Silencing PAX3 on Apoptosis of JR1 and RH30 Cells 

 

To investigate the effect of knockdown of PAX3 on apoptosis of JR1 and RH30 cells 

both indirect biochemical and direct morphological assessments of cell apoptosis were 

carried out. Using an indirect biochemical analysis, caspase 3/7 activities were 

determined, since high caspase 3/7 activation has been regarded as a universal marker of 

early apoptosis (Dieker et al., 2012).     

  

 

In the indirect biochemical analysis of early apoptosis, the mean measured relative 

luminescence unit (RLU) of caspase 3/7 activity was measured over a 60 min period in a 

2 hr staurosporine (1µM/ml; 1µl/ml) induced-apoptosis of JR1 cells (positive control) 

which was compared to RLU caspase 3/7 activity in both NC-siRNA (negative control) 
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and PAX3-siRNA transfected JR1 cells. Following transfection, a high caspase 3/7 

activity evidenced by a high mean luminescence of 325 X 10
4
 RLU at 30 min was 

observed in the staurosporine induced-apoptotic JR1 cells (1µM/ml; 1µl/ml) (Fig. 

3.42A).  While at 30 min incubation, PAX3-siRNA JR1 cells demonstrated significant 

increased mean caspase 3/7 activity (180 X 10
4
 RLU) (p < 0.01) (Fig. 3.42B), compared 

to the NC-siRNA transfected JR1 cells which had little caspase 3/7 activity at 30 min 

(60 X10
4
 RLU) (Fig. 3.42C). 

 

 
 

Figure 3.42 Caspase 3/7 activity in JR1 cells following 96 hr siRNA transfection and/ or 2 

hr staurosporine induced-apoptosis (positive control).  The mean caspase 3/7  activity in A (2 

hr Staurosporine (1µM/ml; 1µl/ml) treated JR1 cells induced positive apoptosis control which 

pattern of curve indicate higher caspase 3/7 activity and induction of apoptosis), was compared 

with both B (PAX3-siRNA transfected JR1 cells which showed similar pattern of curve to A, 

revealed  high caspase 3/7 activity and  induction of JR1 cell apoptosis) and C (NC-siRNA 

transfected JR1 cells showing dissimilar pattern of curve to A, indicates no apoptosis).  The 

curves are representations of the mean of three replicate measurements in each of two separate 

experiments (n = 6).  At 30 min the mean RLU measurement of B was statistically higher than 

that of C, Student’s t-test, (B versus C **, p < 0.01).      
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The RH30 cell line showed a similar pattern of mean caspase 3/7 activity at 30 min after 

96 hr transfection.  The staurosporine (1µM/ml; 1µl/ml)  induced apoptosis of RH30 

cells (1µM/ml; 1µl/ml)  (positive control) showed high caspase 3/7 activity (300 X 10
4
 

RLU) (Fig. 3.43A). The caspase 3/7 activity (175 X 10
4
 RLU) of PAX3-siRNA 

transfected RH30 cells (Fig. 3.43B), was significantly higher than that of NC-siRNA 

transfected RH30 cells which showed little caspase 3/7 activity (30 X 10
4
 RLU) (Fig. 

3.43C) (p < 0.01).    

 

 
 

Figure 3.43 Caspase 3/7 activity in RH30 cells following 96 hr siRNA transfection and/ or 2 

hr staurosporine induced-apoptosis (positive control).  The mean caspase 3/7 activity in A (2 

hr Staurosporine (1µM/ml; 1µl/ml) treated RH30 cells induced positive apoptosis control, which 

pattern of curve signifies higher caspase 3/7 activity and induction of apoptosis), was compared 

with both B (PAX3-siRNA transfected RH30 cells which has similar pattern of curve to A, 

suggested  high activity of caspase 3/7 and RH30 cell apoptosis) and C (NC-siRNA transfected 

RH30 cells having dissimilar pattern of curve to A, indicates no apoptosis). The curves are 

representations of the mean of three replicate measurements in each of two separate experiments 

(n = 6).  At 30 min the mean RLU  measurement of B was statistically higher than that of C, 

Student’s t-test, (B versus C **, p < 0.01).      
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Direct detection of late apoptosis was performed using the DeadEnd™ Fluorometric 

TUNEL system for morphological detection of apoptosis.  Staurosporine (1µM/ml; 

1µl/ml)  is highly permeable to cells and has a strong cytotoxicity effect on various 

mammalian tumour cell lines.  It induce cell apoptosis by inhibiting the binding of ATP 

to kinases such as phospolipid/Ca2+ dependent and cyclic nucleotide dependent protein 

kinases.   

 

 

The mean number of cells with fragmented DNA, indicative of apoptosis, induced by 96 

hr PAX3-siRNA transfection of JR cells or combined 96 hr PAX3-siRNA transfection of 

JR cells plus 2 hr staurosporine (1µM/ml; 1µl/ml)  treatment was compared to the DNA 

of NC-siRNA (negative control) or 2 hr staurosporine (1µM/ml; 1µl/ml)  induced-

apoptosis of JR1 cells (positive control).  Part of a typical microscopic field showed 

fragmented DNA apoptotic nuclei in the PC, PAX3-siRNA or PAX3-siRNA-PC cells  

(Fig. 3.44).   

 

 

The 2 hr staurosporine (1µM/ml; 1µl/ml) treated JR1 cells, PC (positive control), 

showed a mean of three localized green fluorescent nuclei per field (DNA 

fragmentation) (Fig. 3.44).  In the PAX3-siRNA treated cells, a mean of two fragmented 

DNA apoptotic nuclei was demonstrated compared to the mean of six fragmented DNA 

apoptotic nuclei shown in combined PAX3-siRNA-PC treated cells (Fig. 3.44). 

 

By contrast, NC-siRNA transfected JR1 cells showed only blue DAPI stained nuclei and 

no localized green fluorescent nuclei (no DNA fragmentation).  
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Figure 3.44 Direct detection of apoptosis in transfected JR1 cells by DeadEnd Fluorometric 

TUNEL system.  X 400 fluorescence micrograph of apoptosis in JR1cells following 96 hr 

siRNA transfection.  NC-siRNA (negative control transfected JR1cells showing non-apoptotic 

cell blue nuclei) (DAPI).  PC (2 hr staurosporine (1µM/ml; 1µl/ml) treated JR1 cells positive 

apoptosis control revealed few green fluorescent fragmented apoptotic cell nuclei) (pointed 

arrows). PAX3-siRNA (PAX3-siRNA transfected JR cells showed few green fluorescent 

apoptotic cell nuclei) (pointed arrows). PAX3-siRNA-PC (combined PAX3-siRNA transfected 

JR1 cells plus 2 hr staurosporine (1µM/ml; 1µl/ml) treatment displayed many green fluorescent 

apoptotic cell nuclei) (pointed arrows).    

 

 

A mean of two localized green fluorescent nuclei per field was observed in the PAX3-

siRNA treated cells against a mean of three localized green fluorescent nuclei in the 2 hr 

staurosporine (1µM/ml; 1µl/ml)  treated positive control JR1 cells.  Whereas a high 

mean number of localized green fluorescent nuclei, (six per microscopic field) indicative 

of DNA fragmentation was observed in the PAX3-siRNA plus 2 hr staurosporine 

(1µM/ml; 1µl/ml) treated JR1 cells.  The number of localized green fluorescent nuclei 

(DNA fragmentation) observed in PAX3-siRNA or PAX3-siRNA-PC JR1 cells was 

significantly different from NC-siRNA transfected JR cells (p < 0.01) (Fig. 3.45).  
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Figure 3.45 Mean numbers of transfcted JR1 apoptotic cells.  The mean number of JR1 

apoptotic cells in NC-siRNA (negative control transfected JR1 cells) (blue column) was 

compared with the mean number of apoptotic cells in both PC (2 hr staurosporine (1µM/ml; 

1µl/ml) treated JR1 cells positive apoptosis control) (yellow column) and PAX3-siRNA 

transfected JR1 cells (green column) or PAX3-siRNA-PC (combined PAX3-siRNA transfected 

JR1 cells followed by 2 hr staurosporine (1µM/ml; 1µl/ml) treatment) (red column).  The Mean 

number of apoptotic JR1 cells were counted from five microscopic fields in three separate 

experiments (n = 15).  PC versus NC to demonstrate that positive control was working, (NC 

versus PAX3-siRNA or PAX3-siRNA-PC), Student’s t-test *, p ˂ 0.01). 

 

 

A similar induction of apoptosis was detected in RH30 cells.  Likewise, a field 

microscopic view (Fig. 3.46), showed localized green fluorescent nuclei (DNA 

fragmentation) in the 2 hr staurosporine (1µM/ml; 1µl/ml)  treated RH30 cells (three per 

field), PAX3-siRNA transfection of RH30 cells (two per field) and PAX3-siRNA 

transfected plus 2 hr staurosporine (1µM/ml; 1µl/ml)  treated RH30 cells ( eight per 
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field).  By contrast, NC-siRNA transfected RH30 cells showed only blue DAPI stained 

nuclei and no localized green fluorescent nuclei (no DNA fragmentation) 

 

 
 
Figure 3.46 Direct detection of apoptosis in transfected RH30 cells by the DeadEnd 

Fluorometric TUNEL system.  X 400 fluorescence micrograph of apoptosis in RH30 cells 

following 96 hr siRNA transfection. NC-siRNA (negative control transfected RH30 cells; 

exhibited blue nuclei non-apoptotic cells).  PC (2 hr staurosporine (1µM/ml; 1µl/ml) treated 

RH30 cells positive apoptosis control showed green fluorescent fragmented apoptotic nuclei) 

(pointed arrows). PAX3-siRNA (PAX3-siRNA transfected RH30 cells revealed green 

fluorescent apoptotic cell nuclei) (pointed arrows).  PAX3-siRNA-PC (combined PAX3-siRNA 

transfected RH30 cells plus 2 hr staurosporine (1µM/ml; 1µl/ml) treatment displayed many 

fluorescent apoptotic cell nuclei). 

 

 

The mean apoptotic RH30 cells observed in both PAX3-siRNA transfected RH30 cells 

(two per microscopic field) and PAX3-siRNA transfected plus 2 hr staurosporine 

(1µM/ml; 1µl/ml)  treated RH30 cells (eight per microscopic field), indicate induction of 

apoptosis similar to the 2 hr staurosporine (1µM/ml; 1µl/ml)  induced apoptosis of RH30 

cells (PC) which also had a mean of three localized green fluorescent nuclei (DNA 
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fragmentation) (Fig. 3.47).  Likewise a significant number of localized green fluorescent 

nuclei (DNA fragmentation) observed in PAX3-siRNA or PAX3-siRNA-PC RH30 cells 

was significantly different from NC-siRNA transfected RH30 cells (p < 0.01).  

 

 
 

Figure 3.47 Mean numbers of transfected RH30 apoptotic cells.  The mean number of RH30 

apoptotic cells in NC-siRNA (negative control transfected RH30 cells) (blue column) was 

compared with the mean number of RH30 apoptotic cells in both PC (2 hr staurosporine 

(1µM/ml; 1µl/ml) treated RH30 cells positive apoptosis control (yellow column) and PAX3-

siRNA PAX3-siRNA transfected RH30 cells (green column) or PAX3-siRNA-PC (combined 

PAX3-siRNA transfected RH30 cells plus 2 hr staurosporine (1µM/ml; 1µl/ml) treatment) (red 

column).  The Mean number of apoptotic RH30 cells were counted from five fluorescence 

microscopic fields in three separate experiments (n = 15). NC versus PAX3-siRNA or PAX3-

siRNA-PC, Student’s t-test *,   p ˂ 0.01).  
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3.13. DISCUSSION 

 

3.13.1. PAX3-siRNA Knockdown Modulates JR1 and RH30 Cellular Activity 
 

During development and embryonic morphogenesis, the normal activities of cells 

including regulation of the cell cycle, proliferation, migration, adhesion, and induction 

of apoptosis are well coordinated by normal gene expression (De Crozé et al., 2011; 

Jamiyandorj et al., 2013).  Cellular gene expression plays a central role in the control of 

functional activity of cells using several mechanisms (Yan
3
 et al., 2013).  Aberrant gene 

expression may result in tumourigenesis, accompanied by induced inappropriate 

progression of the cell cycle, proliferation, migration, adhesion, invasion and prevention 

of apoptosis (Santarpia et al., 2013). 

 

 

This present study achieved a successful knockdown of PAX3 gene expression, as 

microarray data analysis demonstrated a four-fold and two-fold knockdown of PAX3 

expression in human JR1 and RH30 cells respectively.  A validation of the microarray 

data by quantitave RT-PCR analysis showed similar patterns of PAX3 decreased 

expression in both human JR1 and RH30 cells.  A semi-quantitative RT-PCR analysis 

indicated at least 93% knockdown of all variants of PAX3 mRNA in human JR1 cells 

with a significantly decreased expression of PAX3 compared to control cells (p < 0.01), 

(Figs. 3.5 and 3.6).  Likewise, a minimum of 90% PAX3 knockdown in all PAX3 

variants was demonstrated in human RH30 cells compared to negative control cells 

(Figs. 3.7 and 3.8) and resulted in significantly decreasd PAX3 expression (p < 0.01).   

 

 

Silencing of PAX3 mRNA in the human JR1 cell line subsequently induced a 98% 

decrease in PAX3 protein, which consequently repressed the expression of key 

downstream target protein expression (p < 0.01), including C-MYC, ITGβ5, MYOD1 

and BCL2 (Figs. 3.14 and 3.15).  Other downstream targets demonstrating increased 

protein expression resulting from the knockdown of PAX3 include P21, P53 and Casp3 

(Figs. 3.14 and 3.15).  Similarly, repression of PAX3 in the RH30 cell line significantly 

reduced PAX3 protein by 92% (p < 0.01). This resulted in decreased expression of some 

downstream target proteins such as C-MYC, ITGβ5, MYOD1 and BCL2 whilst inducing 

increased expression of P21, P53, and Casp3  (Figs. 3.16 and 3.17). 
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Microarray data analysis revealed that PAX3 silencing in both JR1 and RH30 cell lines, 

altered the expression of other genes of interest, which were classified into different 

groups according to their binding interactions with PAX3 and their main function such as 

cell cycle regulation, proliferation, migration, adhesion, differentiation, myogenesis and 

apoptosis.  The expression levels of DNA binding interaction partners of PAX3; acting 

as cofactor transcriptional modulators or functional modulators of the PAX3 gene that 

were increased or decreased are shown in Table 3.2.  For instance, HP1γ was down-

regulated, whilst KAP1 and TBX18 were up-regulated.  In both JR1 and RH30 cell 

lines, other PAX3 DNA-binding partners including BCL2, IPO13 and RB were down-

regulated whilst DAXX, HES1, HMOX1 and PTEN were up-regulated.  The induced up-

regulation of PTEN in particular, was in agreement with a previous study demonstrating 

high expression of PTEN following inhibition of PAX3 expression in 

rhabdomyosarcoma (Li et al., 2007).  Intriguingly, MSX1 was up-regulated in JR1 cells 

but down-regulated in RH30 cells.  Most importantly, PAX3 dual functional inhibition of 

apoptosis through repression of PTEN and increased expression of BCL2 was 

demonstrated.  Hence, here the up-regulation of PTEN and inhibition of BCL2 induced 

human JR1 and RH30 cell apoptosis.   

   
 

3.13.2. Suppression of PAX3 Inhibits JR1 and RH30 Cell Cycle and Proliferation  
 

Progression of cell cycle through the G1, S, or M phases in eukaryotic cells is regulated 

by fluctuation in the activities of cyclin-dependent kinases (CDKs) (Bose et al., 2013).  

The activity of CDK is controlled by recurrent synthesis and degradation of cyclins, as 

well as variations in the levels of CDK inhibitors (CKI) and reversible phosphorylation 

(Gomes et al., 2013).  Abnormal regulation of the cell cycle leads to uncontrolled 

growth, which may lead to tumour formation (Khammanivong et al., 2013).   

 

 

This present investigation was the first to demonstrate a substantial down-regulation of 

PAX3 following PAX3-siRNA silencing in human rhabdomyosarcoma, which 

significantly inhibited PAX3 cellular activities in vitro.  Knockdown of PAX3 drastically 

inhibited proliferation of both human JR1 (p < 0.01) and human RH30 cells (p < 0.01) 

by about 95% whilst maintaining cell viability and subsequently inducing apoptosis.   
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The pattern of inhibition of cell proliferation in both the CellTiter 96® aqueous cell 

proliferation and the Coulter counter direct cell counts were positively correlated (Figs. 

3.20, 3.21, 3.22 and 3.23).  

 
 

In conformity with the above studies, the microarray analysis in this current study 

revealed that other essential downstream targets of PAX3 were either repressed or 

activated following knockdown of PAX3 gene expression in both human JR1 and RH30 

cell lines.  Twenty nine genes that promote the cell cycle and cell proliferation were 

significantly down-regulated (Table 3.3) (BIRC5, BRCA1, BRCA2, CALM, CAPRINI, 

CCNB1, CCND1, CCND3, CCNDE1, CDCA3, CDC7, CDC25A, CDC25B, CDC25C, 

CDK2, CDK4, CDK5, CDKN2C, CHK1, CHK2,C-MYC, ID3, MCM3, MSH2, PCNA, 

RB, RBBP4, SKP2 and TGFβ3.  

 
 

On the contrary, twenty-one genes that inhibit cell cycle progression and cell 

proliferation were significantly up-regulated in both human JR1 and RH30 cell lines 

(AKT, ATM, ATR, BTG2, CASP3, CDK1, CDK6, ETS1, HES1, FOXO3, GADD45B, 

HUS1, ITGβ3, MDM2, NOTCH2, P15, P16, P21, PTEN, P53 and VEGFA) (Table 3.4).  

Since inhibition of PAX3 gene expression in both human JR1 and RH30 caused 

significant inhibition of cell proliferation, it was important therefore, to identify the 

phases of the cell cycle at which cell growth was arrested.  To clarify this, a flow 

cytometry analysis of the cell cycle was used to identify the phase at which cell growth 

was halted.   

 

 

In both human JR1 and RH30 cell lines, repression of PAX3 triggered a cell cycle 

blockade in the G1 phase at an early stage of PAX3 knockdown with subsequent 

induction of apoptosis.  In the G1/G0 phase of the cell cycle, 62.5% of JR1 and 70.3% of 

RH30 PAX3 siRNA treated cells were located, compared to 42% of JR1 and 63.6% of 

RH30 control cells (Figs. 3.24 and 3.25). Concurrently, there was a percentage 

reduction of cells in S phase (Table 3.8).  Repression of PAX3 in the JR1 cell line 

decreased the population of cells in S and G2/M phases from 13.1% to 7.4%, whereas in 

the RH30 cell line the population in S phase decreased from 9.8% to 7.4% signifying 
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that PAX3 silencing inhibited cell entry into S phase.  Correspondingly, the decreased 

expression of S phase and G2 phase checkpoint genes (CHK1, CHK2, CDC25A, 

CDC25B and CDC25C) indicate that neither JR nor RH30 cells were halted in S or G2 

phases of the cell cycle.  There was a lower percentage of cells observed in S phase in 

the current study.  This indicates that the cell proliferation rate was slower in PAX3-

siRNA transfected cells than in the negative control cells, which correlates with the cell 

proliferation experiments. 

 

 

Analysis of the cell cycle results demonstrating a significant high proportion of human 

JR1 and RH30 cells in the G1 phase of the cell cycle showed that silencing of PAX3 

caused a G1 phase cell cycle growth arrest.  The microarray data suggest that PAX3 

repression induced increased expression of six genes promoting G1 phase cell cycle 

arrest (ATM, ATR, BTG2, GADD45B, P21, and P53).  By contrast, the four positive 

regulatory genes of G1 phase of the cell cycle (RB, CCND1, CDK2, and CCNE1) had 

substantially decreased expression.  Likewise, G1 phase cell cycle arrest in other cells 

has been associated with decreased expression of five key genes (CCNA, CCND1, 

CCNE1, CDK2 and CDK4).    

 

 

The significant decrease in the number of JR1 and RH30 cells observed in the cell 

proliferation assays (Figs. 3.20, 3.21, 3.22 and 3.23), does not only demonstrate 

inhibition of JR1 and RH30 cell proliferation, but also indicates induction of JR1 and 

RH30 cell apoptosis induced by PAX3 knockdown, which was remarkably high at 96 hr 

transfection.  The pattern of JR1 and RH30 cell proliferation resulting from apoptosis, 

correlates with increased expression of apoptosis inducing genes (Table 3.4) and 

decreased expression of apoptosis inhibitory genes (Table 3.3). 

 

 

This present microarray data was further analysed to determine the effects of PAX3 

down-regulation on the different regulatory pathways in JR1 and RH30 cell lines using 

the David NIH functional annotational bioinformatics KEGG-pathway analysis tool 

version 6.7.  The KEGG-pathway analysis of this present microarray data indicates that 

PAX3 silencing triggered the P53 signaling pathway to halt both JR1 and RH30 cell 
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cycle in G1 via activation of the ATM/ATR signaling pathways.  Inhibition of PAX3 in 

both JR1 and RH30 cell lines induced activation of the ATM/ATR signaling pathways, 

which in turn trigger the P53 pathway (Figs. 3.48 and 3.49).   

 

 
 

Figure 3.48 Schematic diagram of proposed induction of G1/S growth arrest induced by 

PAX3 silencing in rhabdomyosarcoma.  Activation of ATM/ATR by PAX3-siRNA knockdown 

induces the P53 pathway.  BTG2 inhibits proliferation of both JR1 and RH30 cells by blocking 

the phosphorylation of RB and synthesis of CCND1. Activation of P21 induces the blockage of 

synthesis of both CDK2 and CCDE1 to cause a G1 growth arrest.   

Key:                   Represents activation.                                   Designates inhibition/block 

 

 

P53 activation of BTG2 primarily induced the inhibition of CCND1 and phosphorylation 

of RB, resulting in inhibition of JR1 and RH30 cell proliferation.  Subsequently, BTG2 

activation of P21 induced inhibition of CDK2 and CCDE1 to halt the JR1 and RH30 cell 

growth arrest at the G1 phase of the cell cycle.  The microarray data showed increases in 

BTG2 and P53 after PAX3 siRNA knockdown, which agrees with western blotting 

showing two equally large amounts of P53 and phosphorylated P53.  This leads to the 

activation of P21 demonstrated by both microarray and western blotting with a 

consequential G1 phase cell cycle growth arrest.  Likewise, the current microarray data 

supports the pattern of results seen in the inhibition of both JR1 and RH30 cell 
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proliferation and cell cycle (Figs. 3.20-3.23).  This present study strongly suggests that 

inhibition of PAX3 activity, as a potential target would perhaps be a promising avenue 

for developing a therapeutic regimen to effectively inhibit rhabdomyosarcoma tumour 

progression and growth. 

 

 
 

Figure 3.49 PAX3 silencing modulates the main cell cycle checkpoint effectors of G1, G2 

and S phases to halt progression of the cell cycle.  PAX3-siRNA knockdown activates the 

ATM/ATR pathway to induce the activation of P53 and P21, inhibits CDC2/CCDE1 to halt G1 

phase arrest. The activation of ATM/ATR pathway also prevents the occurrence of cell growth 

arrest in both S and G2 phases of the cell cycle.  Inhibition of the cell cycle checkpoint proteins 

CHK2 blocked CDC25A to activate CDK2 and CCNDA, promoting the progression of JR1 and 

RH30 cells into the S phase of the cells cycle.  Likewise, inhibition of BRCA1 by ATM/ATR may 

perhaps induce entry of cells into S phase through unknown mechanisms. Additionally, 

ATM/ATR inhibition of CHK2 directly allows JR1 and RH30 cell progression into G2 phase or 

indirectly inhibits CDK2 and CCNB1 to allow cell growth at the G2 phase of the cell cycle.  

Key:                    Denotes activation.                                    Signifies inhibition/block. 

Question marks (?) indicate unclear mechanisms. 

 

Comparatively, the outcome of this current cell cycle analysis demonstrating a G1 phase 

cell growth arrest, is in agreement with a related siRNA silencing of PAX3 in 

neuroblastoma, in which cells were halted in G1 phase of the cell cycle after siRNA 

inhibition of PAX3 in two neuroblastoma cell lines, whre a flow cytometry analysis 
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demonstrated that 61% of SH-SY5Y cells and 69% of SH-EP1 cells were arrested in G1 

compared to 40% in control cells, whilst approximately 38% of SH-SY5Y cells and 33% 

SH-EP1 cells were observed in the S phase of the cell cycle (Fang et al., 2013).  PAX3 

knockdown in human neuroblastoma cell lines triggered cell cycle arrest followed by 

apoptosis. This indicates that PAX3 re-expression in neuroblastoma might impair 

regulation of cell cycle checkpoints allowing tumour development, growth advantage 

and maintenance.  Even though higher level of PAX3 down-regulation in both human 

rhabdomyosarcoma JR1 and RH30 cell lines was observed in this present study, the 

pattern of PAX3 repression was similar to PAX3 inhibition and other downstream targets 

in neuroblastoma (Fang et al., 2013).   

 
 

3.13.3. Inhibition of Rhabdomyosarcoma Cell Metastasis 
                                                                                                                                                                    

The intricate interactions between host stromal cells and tumour cells lead to the 

development of a tumour microenvironment, which subsequently contributes to tumour 

malignant characteristics, including increased cancer cell proliferation, angiogenesis, 

inflammation, invasiveness, metastasis, evasion of adaptive immunity and apoptosis 

(Suriyan et al., 2012). The ECM is an important constituent of the tumour 

microenvironment that provides the physical microenvironment for the existence and 

maintenance of cells (He
2
 et al., 2013; Kucharzewska and Belting, 2013).  It is a dense 

mixture of matrix molecules, comprising hyaluronan, glycoproteins, fibronectin, 

collagens, laminin, tenascin, vitronectin, proteoglycans, and growth factors (Gonzalez-

Perez and Udina, 2013; Plantman, 2013.  The ECM further transmits signals to cells, 

which alter cell proliferation, differentiation and apoptosis (Su
1
 et al., 2013). Adhesion 

of cell surface molecules to the ECM activates various intracellular signaling pathways 

to regulate progression of the cell cycle, growth, migration and differentiation (Campbell 

et al., 2010). The most important feature of these metastatic processes is the alteration of 

tumour cell adhesive properties, mediated by variations in the expression of cell 

adhesion molecules (Jiang et al., 2013).       
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3.13.3.1. Repression of PAX3 Inhibits JR1 and RH30 Cell Migration In Vitro 
 

This present investigation sought to ascertain whether PAX3 affects the migration 

potential of rhabdomyosarcoma cells. Microarray analysis showed that silencing of 

PAX3 in both JR1 and RH30 cells significantly decreased expression of eleven genes 

that positively regulate cell migration (COL1A1, COL3A1, ENDRA, FNDC5, FSCNI, 

HCG, HMMR, MAP1A, MXRA7, MYO1B, and TGFβ3) (Table 3.3).  PAX3 silencing on 

the other hand, induces increased expression of six other genes that negatively regulate 

cell migration (H-RAS, KITL, RND3, ROCK2, VEGFA and ZEB2) (Table 3.4). 

 

 

Alteration of these genes may contribute negatively to inhibit cell migration. The pattern 

of alteration of gene expression shown in the microarray data correlates with the 

significant inhibition of cell migration demonstrated in the migration experiments (Figs. 

3.26-3.31). Likewise, genes related to the promotion of myogenesis (MYOD1 and 

MYOG4) as well as cell differentiation genes (ADAM23 and MAPA1) were significantly 

down-regulated (Table 3.3). 

 

 

In assessing the potential impact of PAX3 expression on cell migration, the scratch cell 

migration wound-healing assay demonstrated significantly decreased PAX3-siRNA cell 

migration compare to negative control cells, which was monitored over 24 hr. This result 

demonstrates that the negative control cells with high expression of PAX3 induced high 

migration of JR1 and RH30 cells across a demarcation line at the wound edges to close 

scratch wound gaps compare to initial wound gaps as indicated by the arrows.  PAX3 

silencing in JR1 cell line induced significant inhibition of cell migration (p < 0.01) (Figs. 

3.26 and 3.29). Likewise, inhibition of PAX3 in RH30 cells significantly inhibited cell 

migration (p < 0.01) (Figs. 3.26 and 3.29).    

 

 

The significant inhibition of cell migration (Figs. 3.27, 3.28, 3.30 and 3.31) observed, in 

which wider wound healing gaps remained after 96 hr inhibition of PAX3, is suggestive 

of induction of human JR1 and RH30 cell apoptosis as a result of PAX3 knockdown. 

Since cells undergoing apoptosis lose their tumourigenic migration potential 

characteristics, they are unable to migrate, as demonstrated by broader wound gaps 
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remaining. Inhibition of JR1 and RH30 cell migration caused by apoptosis of JR1 and 

RH30 cells, relates to increased expression of apoptosis inducing genes (Table 3.4) and 

decreased expression of apoptosis inhibitory genes (Table 3.3). 

 

 

In agreement with the above studies, David NIH bioinformatics database functional 

annotational tool version 6.7 analysis of this present microarray data in the KEGG-

pathway indicate that PAX3 repression inhibits cell migration possibly via activation of 

FAK/Rho/RAS/MAPK signaling pathways.  Silencing PAX3 in both JR1 and RH30 cells 

induced the activation of these signaling pathways.  Induced activation of VEGFA, 

ROCK2 and RND3 caused inhibition of TGFβ3, HMMR and FNDC5 with subsequent 

inhibition of cell migration (Fig. 3.50).   

 

 

Figure 3.50 Schematic diagram of inhibition of JR1 and RH30 cell metastasis (derived from 

the KEGG-pathway analysis. Activation of the FAK/RHO/RAS/MAPK signaling pathways by 

PAX3 repression stimulated the activation of VEGFA, with sequential activation of ROCK2 and 

RND3, inducing inhibition of TGFβ3, HMMR and FNDC5, subsequently blocked migration of 

JR1 and RH30 cells.  The successive activation of CXCR4 and JAM2 induced inhibition of 

ITGβ5, PCDH7, PCDH18 and VCAM1, resulted in the inhibition of JR1 and RH30 cell 

attachment to the ECM.  Knockdown of PAX3 further induced progressive activation of RND3 

and MISS1, sequentially inhibited FGD4, MET, HCG and MMP2, induced blockage of JR1 and 

RH30 cell invasion. 

Key:                    Indicates activation.                                    Implies inhibition/block 
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These results strongly suggest that indeed PAX3 expression plays a crucial role in 

promoting JR1 and RH30 cell migration during metastasis of rhabdomyosarcoma.  

Therefore, PAX3 could be a suitable target for inhibiting rhabdomyosarcoma cell 

migration. Since cell migration involves cell adhesion to the ECM, this significant 

inhibition of rhabdomyosarcoma cell migration could imply impaired 

rhabdomyosarcoma cell adhesion to ECM proteins.  

 

 

3.13.3.2. Knockdown of PAX3 Inhibits JR1 and RH30 Cell Adhesion to the ECM 

 

 Cell adhesion plays a major role in metastatic invasion of rhabdomyosarcoma.  

Knockdown of PAX3 in this present study, inhibited NCAM  and ITGβ5 expression 

whilst up-regulating ITGβ1 in both human JR1 and RH30 cell lines. 

 

 

The present microarray data established that the suppression of PAX3 expression in both 

human JR1 and RH30 cells induced significant decreased expression of ten cell adhesion 

promoting genes (FGD4, ICAM3, ITGβ5, LAMA1, NID1, PCDH7, PCDH18, SELPLG, 

VCAM1 and VCAN), which subsequently decreased JR1 and RH30 cell adhesion to 

ECM proteins in vitro.  On the other hand, four cell adhesion inhibitory genes (CXCR4, 

JAM2, RND3, ITGβ1 and ROCK2) were up-regulated when PAX3 was inhibited.  The 

changes in expression of these genes may negatively contribute to inhibit cell adhesion, 

especially the knockdown observed of the major cell surface adhesion molecules 

including ICAM3, ITGβ5, LAMA1 VCAM1, and VCAN.  The influence of these cell 

adhesion regulatory proteins on JR1 and RH30 cell adhesion potential was evaluated.  

Cell–matrix assays demonstrated that the PAX3 repression in PAX3-siRNA cells, indeed 

induced significant inhibition of JR1 (p < 0.01) and RH30 cell adhesion (p < 0.01) to 

seven selected ECM proteins (Collagen I, Collagen II, Collagen IV, Fibronectin, 

Laminin, Tenascin and Vitronectin) as shown in (Fig. 3.32 and 3.33).   By contrast, high 

PAX3 expression in NC-siRNA cells showed enhanced JR1 and RH30 cell adhesion to 

the various ECM proteins.  The pattern of inhibition of cell adhesion to the various ECM 

proteins relates to the results of the microarray analysis showing knockdown of 

expression of cell adhesion regulatory genes (Table 3.3).   
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Microarray analysis suggests that reduced PAX3 expression may perhaps decrease cell 

adhesion to ECM proteins through activation of the FAK/Rho/RAS/MAPK signaling 

pathway, since the major cell surface ECM receptors, including integrins  are known to 

signal through the FAK signaling pathway (Han et al., 2013).  Knockdown of PAX3 in 

both JR1 and RH30 cell lines cells activated the FAK/Rho/RAS/MAPK signaling 

pathway.  The activation of CXCR4 and JAM2, inhibiting ITGβ5, PCDH7, PCDH18 and 

VCAM1, subsequently inhibits JR1 and RH30 cell adhesion to ECM proteins (see earlier 

Fig.3.50). 

  

 

The present cell adhesion results established that PAX3 could be an appropriate target 

for blocking rhabdomyosarcoma cell adhesion with consequential inhibition of tumour 

metastasis.  Because a decreased interaction between cells and the ECM may alter cell 

functions, this significant inhibition of rhabdomyosarcoma cells to ECM proteins may 

impair tumour cell invasion. 

 

 

3.13.3.3. Down-regulation of PAX3 Blocked JR1 and RH30 Cell Invasion In Vitro 

 

The functional involvement of PAX3 in JR1 and RH30 cell metastasis was determined.  

Invasion of cells through the ECM is a critical step in tumour metastasis (Kikuchi et al., 

2013).  Following migration and adhesion of cells to the ECM, the proteolytic activity of 

proteases then results in basement membrane degradation to allow invasion by 

malignant cells (Nowak et al., 2013; Sun
2
 et al., 2013). 

  

 

In the present study, microarray analysis data demonstrated significantly decreased 

expression of six cell invasion promoting genes (MMP2, RECK, MET, SMAD2, FGD4 

and HCG), shown in Table 3.3.  The expression of two cell invasion inhibitory genes 

was significantly increased (RND3 and MISS1) (Table 3.4).  The changes in expression 

of these genes may contribute negatively to inhibit cell invasion in cells with repressed 

PAX3. 

 

 

In determining what effects these genes might have on JR1 and RH30 cell invasive 

potential, the Boyden chamber invasion analysis showed that PAX3-siRNA JR1 treated 
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cells had weak invasion potential, with significantly fewer cells than controls invading 

the ECM (p < 0.01), (Figs. 3.34 and 3.35).  Similarly, PAX3-siRNA RH30 treated cells 

had weak invasion potential, demonstrated by substantially fewer cells than controls 

invading the ECM (p < 0.01), (Figs. 3.36 and 3.37). This inhibition of ECM cell 

invasion correlates with the microarray data showing reduced expression of cell invasion 

promoting genes (Table 3.3). These results suggest that PAX3 expression certainly 

promotes JR1 and RH30 cell invasive capacity.  PAX3 knockdown in PAX3-siRNA 

cells, also decreased expression of proteases, especially MMP2, which additionally 

decreased the invasion potential (Roomi et al., 2013).  

 

 

The current microarray data in David NIH bioinformatics database functional 

annotational tool KEGG-pathway analysis, imply that PAX3 suppression in both JR1 and 

RH30 cell lines probably inhibits cell metastasis through activation of the 

FAK/RHO/RAS/MAPK signaling pathways. Silencing of PAX3 activated the 

FAK/RHO/RAS/MAPK signaling pathways (see earlier Fig. 3.50).  Activation of RND3 

and MISS1 inhibited FGD4, MET, HCG and MMP2 and blocked ECM invasion by JR1 

and RH30 cell.  Taken together, these findings strongly demonstrate that the above cell 

migration, adhesion and invasion regulatory genes are transcriptional targets of PAX3 

and affect metastasis.  Since repression of PAX3 in this study resulted in a consecutive 

inhibition of cell migration, adhesion and invasion, this suggests a suppression of 

rhabdomyosarcoma cell metastasis. Therefore, inhibition of PAX3 as a tractable 

metastatic target could be an ideal therapeutic intervention in rhabdomyosarcoma.  In 

brief, PAX3 silencing inhibited the multiple steps involved in tumour metastasis, 

particularly proteins and pathways that determine the invasive potential of cells.  

 

 

3.13.4. Effect of Repression of PAX3 on Clonogenicity of JR1 and RH30 Cells 

 

Accumulation of several genetic mutations that result in neoplastic transformation, 

permits uncontrolled cell proliferation and growth independent of normal homeostatic 

regulation (Bu et al., 2013).  Furthermore, up or down regulation of several genes can 

induce transformation of cells under unfavourable growth conditions (Gacche and 

Meshram, 2013).   
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The present investigation examined whether PAX3 expression in rhabdomyosarcoma 

could induce transformation of JR1 and RH30 cell lines in vitro. In this present 

microarray analysis, silencing of PAX3 expression in both JR1 and RH30 cell lines 

repressed two cell transformation-promoting genes, (DCA7 and TGFβ3) (Table 3.3).  

However, the expression of five genes inhibiting cell transformation (H-RAS, MYC, 

NDRG1, P21 and P53) was significantly increased (Table 3.4). Changes in the 

expression of these genes may directly or indirectly interfere with cell clonogenesity.   

 

 

PAX3 colony reproducibility capacity was evaluated using the soft agar anchorage-

independent growth assay for JR1 and RH30 cell lines.  PAX3-siRNA JR1 cells showed 

no colony formation. RH30 cells produced a few small non-growing aggregates 

apoptotic cell (based on manufacturer’s literature). On the contrary, NC-siRNA negative 

control cells with high PAX3 expression demonstrated significant cell growth producing 

large colonies of both JR1 cells (Figs. 3.38 and 3.39) (p < 0.01) and RH30 cells (Figs. 

3.40 and 3.41)  (p < 0.01). 

 

 

The pattern of inhibition of reproducibile colonies of human JR1 and RH30 cell lines, 

observed in PAX3-siRNA transfected cells (Figs. 3.38 and 3.40), indicates induction of 

cell apoptosis.  This suggests that 96 hr knockdown of PAX3 resulted in apoptosis of JR1 

and RH30 cells, thereby, blocking their survival. Supression of colonal reproducibility in 

JR1 and RH30 cell induced by apoptosis, agree with the pattern of increased expression 

of apoptosis inducing genes (Table 3.4) and decreased expression of apoptosis 

inhibitory genes (Table 3.3). 

 

 

The microarray results of David NIH functional annotation KEGG-pathway analysis 

presented here demonstrate that PAX3 silencing probably inhibits the colony 

reproducibility of JR1 and RH30 cells in vitro by activating the RAS signaling pathway 

(Fig.3.51).   
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Figure 3.51 Schematic diagram of inhibition of JR1 and RH30 colony reproducibility 

(originated from the KEGG-pathway analysis).  Induced expression of MYC by PAX3 silencing 

blocked TGFβ3 to cause inhibition of JR1 and RH30 colony formation.  Activation of H-RAS, 

P53 and P21 by PAX3 repression induced blockage of CCND1 and CDK2 to block TGFβ3 then 

inhibited JR1 and RH30 reproducible colonies. 

Key:                     Stand for activation.                                   Symbolizes inhibition/block 

 

 

Down-regulation of PAX3 primarily induced activation of MYC to inhibit TGFβ3, 

resulting in a block to JR1 and RH30 colony formation.  Activation of H-RAS by PAX3 

silencing in this present study activated P53 and P21 to inhibit CCND1 and CDK2, 

which in turn inhibited TGFβ3 to block JR1 and RH30 colony reproducibility.  This 

finding indicates that PAX3 is an appropriate target for the development of effective 

therapeutic agents to inhibit rhabdomyosarcoma clonogenesity.  

 
 

3.13.5. Down-regulation of PAX3 Induced JR1 and RH30 Cell Apoptosis In Vitro 
 

Apoptosis is a highly regulated mechanism of programmed cell death that is essential in 

embryogenesis, maintenance of cellular and tissue homeostasis and host defence in 

multicellular organisms and is required for autodestruction of damaged and abnormal 

cells (Fuchs and Steller, 2011).  Cells die in response to a variety of stimuli and during 

apoptosis, they do so in a controlled regulated fashion (Fietta, 2006). Defective apoptotic 

process is implicated in various diseases including cancer, and autoimmune disorders, 

neurodegenerative diseases and ischemic injuries (Fuchs and Steller, 2011).    
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Different cell types are triggered to undergo apoptosis through extracellular or 

intracellular signals (Galluzzi, et al., 2012; Gholami et al., 2013).  Apoptotic cells 

exhibit a series of characteristic morphological changes, including plasma membrane 

blebbing, cell shrinkage and formation of membrane-bound apoptotic bodies, which are 

engulf by neighbouring healthy cells (Gholami et al., 2013).  Thus, during apoptosis, 

intracellular contents are not released, thus prevent potentially harmful inflammatory 

responses. Apoptosis is accompanied by certain biochemical changes including cleavage 

of various cellular proteins (Gholami et al., 2013).                               

 

 

The microarray data of this present study show that five anti-apoptotic genes that 

negatively regulate apoptosis were down-regulated (BCL2, CYB5B, FAIM, TMBIM4 and 

TUBB2) in PAX3- siRNA treated cells (Table 3.3).  Fourteen genes that positively 

regulate apoptosis are up-regulated when PAX3 is knocked down (AEN, AKT, BNIP3, 

CASP3, CASP4, DAXX, GADD45B, KITL, MCL1, SMEK1, P53, PTEN, SENP5 and 

TRIB3C) (Table 3.4).  The genes could have a potential role in inducing apoptosis of 

rhabdomyosarcoma cells.  

 

 

An indirect biochemical apoptosis index analysis that has been used in previous studies 

(Zhang
1
et al., 2013), was used in this present study to demonstrate that silencing PAX3 

can induce apoptosis in JR1 and RH30 cells.  Fig. 3.42A shows a positive control for 

apoptosis in JR1 cells.  Caspase 3/7 activity was higher in PAX3-siRNA treated JR1 

cells than in NC-siRNA JR1 cells, which showed little caspase 3/7 activity (p < 0.01) 

(Figs. 3.42B and 3.42C). Likewise, PAX3-siRNA treated RH30 cells showed a 

significant increase in caspase 3/7 activity compared with NC-siRNA treasted RH30 

cells having insignificant caspase 3/7 activity (p < 0.01) (Figs. 3.43B and 3.43C).  A 

positive control for apoptosis in RH30 cells is shown in Fig. 3.43A.  This result implies 

that PAX3 silencing induced an early apoptosis of both JR1 and RH30 cells in vitro 

compared with controls (Scabini et al., 2011).  Since non-apoptotic cells show a small 

but detectable level of caspase 3/7 activity, the morphological features of apoptosis were 

demonstrated to confirm the increased caspase 3/7 activity observed in JR1 and RH30 

cells following PAX3 silencing (Figs. 3.44 and 3.46).  Induction of a persistent and 

prolonged apoptosis of tumours is a hallmark for the treatment and management of 
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cancer patients with combination therapeutic regimens (Abdelghany et al., 2011; 

Marchal et al., 2013; Waters et al., 2013).  

 

 

The findings of this present represent the first attempt to demonstrate that silencing of 

PAX3 followed by a therapeutic regimen, for example staurosporine, could produce 

sustained apoptosis in rhabdomyosarcoma.  

 

 

This study established the induction of late apoptosis of JR1 and RH30 cells indicated by 

fragmentated apoptotic nuclei in both PAX3-siRNA and staurosporine (1µM/ml; 1µl/ml) 

treatment (Figs. 3.44 and 3.46). The observed enhanced apoptotic DNA nuclie 

fragmentation in PAX3-siRNA and staurosporine (1µM/ml; 1µl/ml) combined treatment 

compared to either staurosporine or PAX3-siRNA alone, demonstrates the efficacy of a 

combine therapeutic regimen in the treatment of cancer. In the JR1 cell line, the 

combination treatment of PAX3-siRNA followed by staurosporine (PAX3-siRNA-PC) 

demonstrated significantly higher numbers of apoptotic nuclei induced (p < 0.01) (Figs. 

3.44 and 3.45).  Likewise, a significantly higher number of induced apoptotic nuclei of 

RH30 cells was observed after combined PAX3-siRNA and staurosporine treatment 

(PAX3-siRNA-PC) (p < 0.01) (Figs. 3.46 and 3.47). By contrast, NC-siRNA transfection 

of both JR1 and RH30 cells failed to induce apoptosis since these cells showed DAPI 

stained blue nuclei but no green fluorescent apoptotic nuclei (DNA fragmentation) (Figs. 

3.44 and 3.45) and (Figs. 3.46 and 3.47).     

 

 

This present study showed that PAX3 expression is essential for prevention of apoptosis 

and the survival of human rhabdomyosarcoma cells.  For instance, the induction of JR1 

and RH30 cell apoptosis following PAX3 knockdown, resulted in marked inhibition of 

cell proliferation and cell cycle.  Increased P53 expression inhibited proliferation of  JR1 

and RH30 cells, whilst increased P21 expression halted their cell cycle and a decreased 

BCL2 expression resulted in apoptosis of JR1 and RH30 cells. This was confirmed by 

the significant reduction in the number of proliferating JR1 and RH30 cells (Figs. 3.20, 

3.21, 3.22 and 3.23) after 96 hr knockdown of PAX3.  Furthermore, the observed 

presence of cells in the sub-G1 phase of the cell cycle (Figs. 3.24 and 3.25) and the 
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increased P21 expression, was suggestive of cell apoptosis.  Significant inhibition of 

migration and colony reproducibility of JR1 and RH30 cells induced by apoptosis, also 

correlates with increased expression of apoptosis inducing genes (Table 3.4) and 

decreased expression of apoptosis inhibitory genes (Table 3.3). 

 

 

Following 96 hr PAX3 knockdown in JR1 and RH30 cell lines with subsequent 

induction of JR1 and RH30 cell apoptosis, resulted in remarkable inhibition of 

proliferation of JR1 and RH30 cells (Figs. 3.20, 3.21, 3.22 and 3.23).  The induction of 

JR1 and RH30 cell apoptosis led to wider wound healing gaps as dead cells failed to 

migrate (Figs. 3.27 and 3.30).  Similarly, a significant inhibition of reproducibility of 

JR1 and RH30 cell colony formation, was induced by apoptosis of transformed JR1 and 

RH30 cells (Figs. 3.38 and 3.40). This significant effects of apoptosis on the 

tumourigenic activities of JR1 and RH30 cell lines, confirmed the pattern of increased 

expression of apoptosis promoting genes (Fig. 3.4) and decreased expression of 

apoptosis inhibiting genes (Fig. 3.3), proved induction of JR1 and RH30 cell apoptosis 

as shown by the presence of apoptotic morphologic features (Fig. 3.44 and 3.46). 

 

 

Taken together, in support of this current investigation of apoptosis, the functional 

annotational KEGG-pathway analysis of the microarray data in the David NIH 

bioinformatics tool database, suggests that inhibition of PAX3 expression might induce 

apoptosis through both the mitochondrial apoptotic pathway of caspase activation and 

the P53-dependent apoptotic pathway via the Bcl-2 family.  In the KEGG-pathway 

analysis, PAX3 silencing caused mitochondrial release of cytochrome C, which 

subsequently induced caspase activation and resulted in cell apoptosis (Fig. 3.52).  

Likewise, the direct activation of P53 after PAX3 silencing, either induced activation of 

caspase 3 or directly blocked BCL2 expression or activated BAX expression to block 

BCL2, resulting in cell apoptosis (Fig. 3.52).  Interestingly, PAX3 silencing induced 

increased expression of its binding partiner, PTEN, which activated expression of BAX 

to induce a block of BCL2 expression, resulting in cell apoptosis (Fig. 3.52).  This study 

strongly demonstrates that targeting PAX3 in a combination treatment, probably could 
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enhance and sustain apoptosis for effective treatment and management of 

rhabdomyosarcoma.   

 

 
 

Figure 3.52 Schematic diagram of induction of JR1 and RH30 cell apoptosis. 

Suppression of PAX3 principally induced successive activation of P53, APAF1, CASP9 

and CASP3 to induce apoptosis via the P53 pathway.  Inhibition of PAX3 partly induced 

mitochondrial membrane blockage of CYB5B and induced the activation of CYTO C to 

induce apoptosis through caspase activation via the activation of APAF1.  Suppression 

of PAX3 activated the apoptosis repressor PTEN, which in turn activated BAX and 

blocked BCL2 to induce apoptosis.  

Key:                     Indicate activation.                                   Show inhibition/block 

 
 

In summary, these findings demonstrate that the re-expression of PAX3 as an embryonic 

morphogenic developmental transcription factor, following embryonic development, 

plays a pivotal role in the onset and regulation of the oncogenic potential of 

rhabdomyosarcoma. Undoubtedly, this current study strongly supports the various 

previous studies implicating PAX3 in the development of rhabdomyosarcoma.  

Apparently, the crucial transcriptional and cellular functional roles of PAX3 during 

embryonic development, which include regulation of cell cycle and proliferation, 
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migration, adhesion and cell survival, have been used repeatedly in rhabdomyosarcoma.  

These oncogenic mechanisms of PAX3 activities were demonstrated by comparing the 

negative control cells with high PAX3 activity with PAX3-siRNA cells having decreased 

PAX3 activity. This present study demonstrates that re-expression of PAX3 is essential 

for the development of rhabdomyosarcoma.  
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CHAPTER 4.     siRNA INHIBITION OF PAX3 IN A HUMAN      

                                 MALIGNANT MELANOMA CELL LINE 

Expression of PAX3 in maglignant melanoma play a crucial role progressing cellular 

tumourigenic activity of melanoma and interruption of PAX3 in human A375 melanoma 

cell line in vitro, may suppress melanoma. 

4. Results 

 
4.1. Morphological Characteristics of the Human Malignant A375 Melanoma Cell Line 

 

Transient transfection of the A375 melanoma cell line with non-targeting siRNA 

negative control (NC-siRNA) or pre-designed siRNA targeting PAX3 (PAX3-siRNA) 

aimed at suppressing PAX3 mRNA expression, presented variable morphological 

alterations.  The NC-siRNA transfected A375 cells showed thin, intact, well-defined cell 

borders (Fig. 4.1).  In contrast, PAX3-siRNA treated A375 cells appeared thicker, with 

irregular thick cell borders and attachment of deep brownish transfection-complexes to 

cell surfaces (Fig. 4.1) (according to the manufacturer’s transfection literature). 

 

 
 

Figure 4.1 Phase contrast micrograph showing representative morphology of A375 cells 

following 96 hr siRNA treatment (A, B) NC-siRNA transfected  A375 cells.  (C, D) PAX3-

siRNA transfected A375cells.  A/C, X 10 magnification and B/D, X 40 magnification. 
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4.2. Inhibition of PAX3 Gene Expression in the A375 melanoma Cell Line 

 

 

Table 4.1 Extracted total RNA purity and concentration 
 

 

 

Sample 

 

 

OD 

260nm 

 

 

OD 

280nm 

 

 

OD Ratio 

260/280 

 

 

RNA(µg/µl) 

 

 

 

A375 

 

 

 

- 

 

 

 

- 

 

 

 

- 

 

 

 

- 

 

C 

 

0.568 

 

0.303 

 

1.9 

 

5.68 

 

 

T 

 

 

0.468 

 

 

0.261 

 

 

1.8 

 

 

4.68 

 

OD: Designates absorbance of extracted total RNA, where 260nm values verifies the 

concentration of extracted RNA and 280nm values indicates purity of extracted RNA.  High 

260nm OD values indicates contamination of RNA with protein, peptides, carbohydrate, 

aromatic compounds and phenol.  The ratio OD260/280 indicates the degree of RNA purity (the 

range of RNA ratio value is between (1.6 - 2.0). 

 

C: Representative OD of NC-siRNA indicating the purity and concentration of total RNA.  

T: Representative OD of PAX3-siRNA signifying the purity and concentration of total RNA.  

 

 

Analysis of PAX3 gene expression in the A375 cell line pre-transfection demonstrates 

expression levels of the seven PAX3 isoforms.  Human S14 ribosomal mRNA was used 

as a measure of the amount of mRNA in each sample (Fig. 4.2).  PAX3a and PAX3g 

were weakly expressed in the A375 cell lines.  This study revealed that PAX3a is more 

highly expressed in the rhabdomyosarcoma cell lines (Fig. 3.2) than in the A375 

melanoma cell line, which demonstrates high expression levels of PAX3b in contrast to 

its low level in rhabdomyosarcoma cell lines.  
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Figure 4.2 Semi-quantitative RT-PCR analysis of PAX3 mRNA expression pattern in non-

transfected A375 cells on a 1.5% agarose gel to verify base line of PAX3 gene expression.  

Lane M: 100bp benchtop DNA Marker (100-1500bp); Lanes 1-4: replicate PAX3 mRNA 

expression in non-transfected A375 cells.  (A) S14F/S14/R primer amplification of S14 human 

ribosomal protein mRNA; (B) E3F/E5R primer amplification of PAX3a and PAX3b; (C) 

E7F/I8R primer amplification of PAX3c; (D) E8F/I9R primer amplification of PAX3d; (E) 

E8F/10R primer amplification of PAX3e and PAX3d; (F) E7F/I9R primer amplification of 

PAX3g and PAX3d; (G) E7F/I10R primer amplification of PAX3h, PAX3c and faintly PAX3d 

respectively.  

 

 

To assess the degree of inhibition of PAX3 resulting from siRNA treatment, the mean 

PAX3 gene expression in A375 cells transfected with PAX3-siRNA was compared with 

the mean expression of PAX3 in A375 cells treated with NC-siRNA.  Semi-quantitative 

RT-PCR analysis indicated that the human ribosomal RNA S14 housekeeping gene, used 
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as an internal normalization control, showed no change of gene expression whether 

treated with PAX3-siRNA or NC-siRNA.  High levels of down-regulation of PAX3 in 

the PAX3-siRNA treated A375 cells (lanes 6, 7 and 8 of Fig. 4.3) was evident without 

corresponding gene inhibitory effects in the NC-siRNA treated A375 cells (lanes 3, 4and 

5 of Fig. 4.3) when compared with PAX3 in untreated A375 cells (lane 1 of Fig. 4.3).  

  

 
 

Figure 4.3 Semi-quantitative RT-PCR analysis of PAX3 mRNA after 96 hr siRNA 

treatment in A375 cells.  Lane M: 100bp benchtop DNA Marker (100-1500bp); Lane 1: A375 

control PCR cells; Lane 2: Non-template negative control PCR (no DNA);  Lanes 3-5: Triplicate 

NC-siRNA treated negative control; Lanes 6-8: Triplicate PAX3-siRNA treated.  (A) 

S14F/S14/R primer amplification of S14 human ribosomal RNA as an internal normalization 

control; (B) E3F/E5R primer amplification of PAX3a and PAX3b; (C) E7F/I8R primer 

amplification of PAX3c; (D) E8F/I9R primer amplification of PAX3d; (E) E8F/10R primer 

amplification of PAX3e and PAX3d; (F) E7F/I9R primer amplification of PAX3g and PAX3d; 

(G) E7F/I10R primer amplification of PAX3d; PAX3c and PAX3h. 
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The knockdown of PAX3c and PAX3d expression in the above figure, was determined 

using the primer combination in C (E8F/I8R) and D (E8F/I10R), which only amplify 

PAX3c and PAX3d respectively. There was considerably decreased gene expression, 

(approximately 90% knockdown) in all PAX3 isoforms after PAX3-siRNA transfection 

in A375 cells.  The residual gene expressions were; PAX3a (7%); PAX3b (4%); PAX3c 

(8%); PAX3d (10%); PAX3e (10%); PAX3g (9%) and PAX3h (8%).   The reduced PAX3 

mRNA expression in PAX3-siRNA treated cells was significantly different (p < 0.01) 

from the high expression of PAX3 in NC-siRNA treated cells (Fig. 4.4).   

 

 
 

Figure 4.4 Mean percentages of PAX3 isoforms remaining following 96 hr siRNA 

treatment. The mean PAX3 gene expression in NC-siRNA transfected A375 cells (blue 

columns) was compared with the mean PAX gene expression in  PAX3-siRNA transfected A375 

cells (red colunms).  The  mean values were derived from triplicate measurements in each of 

three separate experiments (n = 9).  The difference between red and blue columns for each 

isoform was statistically significant (Student’s t-test **, p < 0.01). 
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4.3. Inhibitory Effects of PAX3 Gene Expression on Potential Downstream    

Targets 

 

 

High quality extracted RNA (data not shown) obtained from the A375 cell line (260/280 

ratio 1.6-2.0) as well as the RNA concentrations (Table 4.2), was similar to the patterns 

of extracted RNA observed in JR1 and RH30 cell lines (Figs. 3.9 and 3.10) 

 

Table 4.2 Concentration and rRNA fragment ratios of total RNA extracted from 

A375 cells  

 

 

Microarray data analysed using Affymetrix GCOS (V1.4) on the genechip, containing a 

54,614 probe set, showed an 8.95-fold knockdown of PAX3 in PAX3-siRNA treated 

A375 cells compared with PAX3 in NC-siRNA treated cells (Table 4.3).  The inhibition 

of PAX3 in A375 cells resulted in the alteration of 8,520 genes (more than 1.5-fold), 

using the probability of positive log-ratio (PPLR < 0.1 or > 0.9).  After normalization to 

the housekeeping gene GAPDH, the alteration of expression of these 8,520 genes in 

PAX3-siRNA and NC-siRNA treated cells was compared.  Out of these genes, 6,220 

were down-regulated following knockdown of PAX3 expression, whilst 2,300 genes 

were up-regulated.   

 

 

Tables 4.3-4.7 showed microarray analysis data of selected gene expression alteration 

patterns after 96 hr PAX3-siRNA knockdown of PAX3 gene in A375 cell line.  These 

genes were determined by the gene functional annotation tool DAVID NIH, version 2, to 

play an essential role in cell proliferation (P), cell cycle (CC), migration (M), adhesion 

(AD), differentiation (DF), development (D)  or apoptosis (AP). 

SAMPLES siRNA TREATED       

           CELLS 

  TOTAL RNA CONCENTRATION     

                              (ng/µl) 

RNA RATIO   

     (28s/18s) 

1 A375  NC-siRNA 346 1.9 

2 A375  NC-siRNA 679 1.7 

3 A375 NC-siRNA 545 2.0 

4 A375  PAX3-siRNA 965 1.9 

5 A375  PAX3-siRNA 1,379 2.0 

6 A375  PAX3-siRNA 935 1.8 



214 
 

Values are means of three experiments expressed separately on a microarray. (n = 3), 

(**; p < 0.01), (Student’s t-test).  Important genes of interest including PAX3 were 

selected from the microarray data for verification by qRT-PCR data analysis. Down-

regulated genes (Table 4.3) that are essential in cell developmental processes such as 

proliferation, migration, differentiation and apoptosis were selected for verification by 

qRT-PCR data analysis under the same experimental conditions. 

 

 

Table 4.3 Genes down-regulated in the A375 melanoma cell line following PAX3 

inhibition  

 

A -1.50-fold change was used as the threshold for down-regulation of gene expression. The 

degree of gene down-regulation was denoted by distinct shades of colour. Deep blue: gene 

expression down-regulated more than 2 fold; light blue: gene expression down-regulated 

between 1.5-2 fold.                                                                                                   

                                                                                                                                                  

Gene 

Symbol 

Gene description                          Gene 

Function        

Fold 

change 

PAX3 Paired Box 3 D    -8.95 

ADAM23 ADAM metallopeptidase domain 23 DF -2.51 

BCL2 B-Cell lymphoma 2 AP -6.17 

BNIP3 BCL2/adenovirus E1B19kDa interacting protein 3 AP -4.17 

CALM3 Calmodulin 3 P -1.71 

CAPRINI Cell cycle associated protein 1 CC -1.57 

CCND2 Cyclin D2 CC -1.62 

CCND3 Cyclin D3 CC -1.82 

CDC25C Cell division cycle 25 homolog C (S. pombe) CC -1.88 

CDCA3 Cell cycle associated 3 CC, P -1.80 

CDK2 Cyclin-dependent Kinase 2 CC, P -1.68 

CDK4 Cyclin-dependent Kinase 4  CC, P -3.04 

CDK5 Cyclin-dependent kinase 5 CC -1.61 

CIB1 Calcium and integrin binding 1 M -1.66 

 

CITED2 

Cbp/p300-interacting transactivator with Glu/Asp-

rich carboxy-terminal domain, 

 

P 

 

-2.35 

CDKN2C Cyclin-dependent kinase inhibitor 2C (p18) CC -1.51 

C-MYC C-myc binding protein P -1.54 

COL3A1 Collagen type III, alpha 1 AD, M  -72.08 

CXCR4 Chemokine (C-X-C motif) receptor AD, M  -11.87 

FAIM Fas apoptotic inhibitory molecule AP -1.95 

FGD4 FYVE, Rho GEF and PH domain containing 4 AD, M -1.65 

FOXO1 Forkhead box  O1 D, P -2.82 

FSCN1 Fascin homolog 1, actin binding protein M -1.86 
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Continued 

 

 

 

Similarly, up-regulated genes (Table 4.4) that are important in cell developmental 

processes including: proliferation, migration, differentiation and apoptosis were selected 

for verification by qRT-PCR data analysis under the same experimental conditions. 

 

 

 

GTSE1 G-2 and S-phase expressed 1 CC  -2.97 

HES1 Hairy and enhancer of split 1 P  -4.25 

ID3 Inhibitor of DNA binding 3 CC  -1.62 

HUS1 Hus1 checkpoint homolog P, M  -1.58 

IGFβP3 Insulin-like growth factor binding protein 3 P  -5.00 

IGFβP5 Insulin-like growth factor binding protein 5 P   -23.25 

ITGβ5 Integrin beta 5 AD, M  -2.26 

JAM2 Junctional adhesion molecule 2 AD   -12.24 

LOC Similar to C-Jun P  -3.41 

MCAM Melanoma cell adhesion molecule AD, M -4.25 

MITF Microphthalmia associated transcription factor D, P -6.15 

MKNK2 MAP kinase interacting serine/threonine kinase 2 P -1.81 

MMP2 Matrix metallopeptidase 2 A (pseudo) M -3.53 

MXRA7 Matrix-remodelling associated 7 M -1.73 

MYOD1 Myogenic differentiation1 D -2.42 

MYOG4 Myogenin (myogenic factor 4) D -4.83 

NDRG1 N-myc downstream regulated 1 P -5.85 

NID1 Nidogen 1 AD,M -2.76 

PCDH18 Proto cadherin 18 AD, M -1.65 

PCDH7 Proto cadherin 7 AD, M -3.79 

RECK Reversion-inducing-cysteine-rich protein K M -2.00 

RXA Retinoid X receptor alpha P -1.56 

SOSTDC1 Slerostin domain containing 1 P, D -1.53 

SMAD2 SMAD family member 2 P, M, D -2.23 

SOX10 Sex determining region-box 10 D, P -2.23 

TAZ Tafazzin P, D -4.41 

TBX18 T-box 18 CC, P -1.50 

TGFβ2 Transforming growth factor, beta 2 P,  D -7.26 

TGFβ3 Transforming growth factor, beta 3 P,  D -3.11 

TNFRSF19 Tumour necrosis factor receptor   superfamily, 

member 19 

AP -3.90 

TUBB2 C Tubulin beta 2c AP -4.96 

VCAN Versican AD, M -3.31 

VEGFA Vascular endothelial growth factor A P -3.39 
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Table 4.4  Genes up-regulated in the A375 melanoma cell line following PAX3 

inhibition 

 

A 1.50-fold change was used as the threshold for up-regulation of gene expression.  The degree 

of gene up-regulation was denoted by different shades of colour.  Red: gene expression up-

regulated more than 2 fold; Orange: gene expression up-regulated 1.5-2 fold. 

                                                                                                                          

Gene 

symbol 

Gene description Gene 

function 

Fold 

change 

AEN Apoptosis enhancing nuclease AP 2.80 

ANAPC5 Anaphase promoting complex subunit 5 CC 2.29 

AKT V-AKTmurine thymoma viral homolog 3 oncogene P 2.52 

BIRC5 Baculoviral IAP repeating containing 5 (survivin) P 3.33 

BRCA1 Breast cancer 1 P 1.92 

BRCA2 Breast cancer 1 P 2.34 

BUB1 Budding uninhibited by benzimidazoles 1 P 1.73 

CASP3 Caspase 3, apoptosis-related   cysteine peptidase AP 2.53 

CASP4 Caspase 4, apoptosis-related cysteine peptidase AP 1.79 

CASP7 Caspase 7, apoptosis-related cysteine peptidase AP 2.23 

CCNA2 Cyclin A2 CC 1.69 

CDC25A Cell division cyclin 25 homolog A CC 3.20 

CDC25B Cell division cycle25 homolog B (S. pombe) CC 3.53 

CDC42SE1 CDC42 small effector 1 CC 1.55 

CDH2 Cadherin 2, type 1 N-cadherin (neuronal) D 1.65 

CDK1 Cyclin-dependent kinase 1 CC 2.00 

CDK6 Cyclin-dependent kinase 6 CC 2.02 

CDKN1A Cyclin-dependent kinase inhibitor 1A CC 2.29 

CHEK1 CHK1 checkpoint homolog (S. pombe) CC 1.75 

CHEK2 CHK2 checkpoint homolog (S. pombe) CC 2.53 

DHFR Dihydrofolate reductase P 2.20 

E2F7 E2F transcription factor 7 P, CC 1.50 

E2F8 E2F8 transcription factor 8 P, CC 1.57 

EDN3 Endothelin 3 P 3.27 

ENDRA Endothelin receptor type A M 3.26 

ETS1 V-ETS erythroblastosis virus E26 oncogene P 3.68 

FNDC5 Fibronectin containing sub-unit 5 AD,M 2.40 

GADDβ45 Growth arrest and DNA-damage-inducible, beta CC, P 5.59 

GINS1 GINS complex subunit 1(Psf1 homolog) CC 1.98 

GRK6 G protein coupled receptor 6 kinase P 4.91 

HIRA HIR histone cell cycle regulation defective homolog P 5.07 

HMOX1 Heme oxygenase decycling 1 CC, P 2.13 

ITGβ1 Integrin beta 1 P 5.23 

JAK2 Janus kinase 2 P 2.20 
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Continued 

JUN Jun oncogene P 7.59 

KITLG Kit ligand P, AP, M 3.58 

LAMA1 Laminin alpha 1 AD, M 3.89 

MCL1 Myeloid cell leukemia sequence 1(BCL2-related) AP 1.77 

MCM3 Minichromosone maintenance 3  complex b P 2.29 

MDM2 Mdm2 p53 binding protein homolog P 4.48 

MELK Maternal Embryonic leucine zipper kinase P 1.81 

MSH2 Muts homolog 2 M 1.83 

MSX1 MSH homeobox 1 CC, P 1.57 

MTSS1 Metastasis suppressor 1 M 2.71 

NCAPH Barren homolog 1 P 2.85 

P21 PAK protein (Cdc42/Rac)-associated kinase  P,CC 1.83 

PBK PDZ binding kinase CC, P 1.61 

PCNA Proliferating cell nuclear antigen P 2.29 

POLA2 Polymerase (DNA directed alpha 2) P 1.61 

PTEN Phosphatase and tensin homolog P 3.99 

RB Retinoblastoma P 2.03 

RBBP4 Retinoblastoma binding protein 4 p 3.04 

SENP5 SUMO1/sentrin specific peptidase AP 1.81 

SKP2 S-phase kinase- Associated protein 2(p45) CC 15.03 

SELPLG Selectin P ligand AD 3.10 

SPCS3 Signal peptidase receptor complex subunit 3 CC 1.54 

TFDP1 Transcription factor DP-1 P 2.36 

P53 Tumour protein p53 inducible protein P, AP 4.43 

TRIB3C Tribbles homolog 3 AP 1.50 

 

 

 

Some of the altered genes had been identified previously as DNA binding interaction 

partners or cofactor transcriptional modulators of PAX3 or as having a main role in cell 

proliferation, migration,differentiation or apoptosis (Table 4.5) (Boutet et al., 2007; Li 

et al., 2007).   
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Table 4.5 Alteration of PAX3 interaction partners following PAX3 knockdown in 

A375 cells 

 
A -1.50 fold change in gene expression (Deep blue/light blue) indicates significant down-

regulation. A 1.50 fold change in gene expression (red/orange) indicates significant up-

regulation.    

 

 

The level of gene alteration was denoted by varying shades of colour.  Deep blue: gene 

expression down-regulated more than 2 fold; light blue: gene expression down-regulated 

between 1.5-2 fold; red: gene expression up-regulated more than 2 fold; orange: gene 

expression up-regulated 1.5-2 fold; non-shaded white: gene expression unchanged 1-1.5 

fold.           

                                                                                                                                      

                      

 

 

 

 

 

 

 

 

 

 

 

 

Gene symbol    Gene description      Fold change      

PAX3 Paired box3 -8.95 

 PAX3 Cofactor transcriptional modulators  

SOX10 Sex determining region Y-box 10 -2.23 

TBX18 T-box 18 -1.50 

 PAX3 functional modulators  

BCL2 B-Cell lymphoma 2 -6.17 

CIB1 Calcium and integrin binding 1 -1.66 

HES1 Hairy and enhancer of split 1 -4.25 

HMOX1 Heme oxygenase 1   2.13 

MSX1 Msh homeobox 1   1.57 

MITF Microphthalmia-associated transcription factor -6.15 

MYOD1 Myogenic differentiation1 -2.42 

MYOG4 Myogenin (myogenic factor 4) -4.83 

PTEN Phosphatase and tensin homolog  3.99 

SOSTDC1 Sclerostin domain containing 1         -1.53 
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4.4. Quantitative RT-PCR Analyses of Potential Downstream Targets of PAX3 
 

The microarray data of potential downstream targets of PAX3 were validated by qRT-

PCR analysis in the A375 cell line.  Using a threshold of 0.4 as a cut-off point for 

stability, demonstrated that HMBS and SDHA, having the lowest stability values were 

more stable and were selected as reference genes for normalisation of the qRT-PCR data 

from the cell line (Fig 4.5).  

 

 
 

Figure 4.5 A375 cell line GeNorm graph showing the mean expression stability values of 

eight selected reference sample genes.  Each point shows mean change in the fluorescence 

intensity at each PCR cycle. Both HMBS and SDHA genes with average stability values of 

(<0.40) were selected as the most stable housekeeping reference genes for normalisation. 

 

 

The quantification of cycle values (delta Cp), is defined as the cycle number at which the 

measured reporter fluorescence value past a fixed threshold above base line, was 

calculated for each gene.  Generally, samples with higher expression levels have lower 

delta Cp values. The genes of interest from the microarray data were selected for 

verification by qRT-PCR analysis, based on the role they play in cellular processess 

including: cell cycle, proliferation, migration, differentiation, or apoptosis, in addition to 

exceeding the thresholds of 1.5 and -1.50 for up-regulation and down-regulation 
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respectively.  The inhibition of PAX3 in the A375 cell line (8.95-fold down-regulation) 

in PAX3-siRNA treated A375 cells was further confirmed by the qRT-PCR analysis.  

Although low levels of gene expression were observed in the qRT-PCR data analysis, 25 

genes including PAX3, which were validated by the qRT-PCR analysis, showed that the 

pattern of down-regulation of 16 genes of the 25 genes investigated was comparable to 

their down-regulation in the microarray data analysis. The down-regulation of 3 genes of 

the 16 genes analysed by the qRT-PCR analysis, confirmed the down-regulation of the 

microarray data analysis (PAX3, COL3A1 and CXCR4) (Table 4.6).  However, the 

down-regulation of another 13 genes expression pattern verified by the qRT-PCR data 

analysis was less than a -1.5 fold-change (ADAM23, BCL2, CALM3, CAPRIN1, CCND3, 

CDCA3, C-MYC, FOXO1, ITGβ5, JAM2, MITF, MYOD1 and NDRG1) (Table 4.6). The 

down-regulation of 4 genes in the qRT-PCR data analysis was in contrast to their up-

regulation in the microarray data analysis (E2F7, E2F8, MCM3 and PCNA) (Table 4.6). 

The qRT-PCR analysis confirmed the pattern of up-regulation of 5 genes in the 

microarray analysis data. Two of the 5 up-regulated genes were confirmed above a 1.5 

fold-change in the qRT-PCR analysis (AEN and P21)  (Table 4.6) while the up-

regulation of another 3 genes validated in the qRT-PCR data analysis was less than a 1.5 

fold-change (AKT3, CASP3 and P53) (Table 4.6).      

 

 

The alteration of gene expression in the microarray analysis data of the A375 cell line 

was partly confirmed by the qRT-PCR data analysis.  However, the qRT-PCR validated 

less alteration in expression of the majority of genes compared to the microarray data 

and this was perceived to be partly due to the low levels of expression of these genes in 

A375 cells.    
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Table 4.6 A microarray data analysis of alterations in gene expression compared 

with qRT-PCR analysis of those genes in A375 cells  

 

A 1.50 fold change in gene expression (light blue) was used as the threshold for significant 

down-regulation.   A 1.50 fold change in gene expression (orange) was used as the threshold for 

significant up-regulation.  The degree of gene alteration was denoted by varying shades of 

colour.  Dark blue: gene expression down-regulated more than 2 fold; Light blue: gene 

expression down-regulated 1.5 to 2 fold; Red: gene expression up-regulated more than 2 fold; 

orange : gene expression up-regulated 1.5-2 fold; non-shaded white: gene expression unchanged 

1-1.5 fold. 

                                                                                                                         
 

                                                                                                                              Fold change 

Gene   

symbol 

Gene description Microarray qRT-PCR 

PAX3 Paired Box 3 -8.95 -2.04 

ADAM23 ADAM metallopeptidase domain 23 -2.51 -0.98 

AEN Apoptosis enhancing nuclease   2.80   1.80 

 

AKT3 

V-AKTmurine thymoma viral homolog 3 

oncogene 

 

  2.52 

 

  1.08 

BCL2 B-Cell lymphoma 2 -6.17 -1.10 

 

CASP3 

Caspase3, apoptosis related cysteine 

peptidase 

  

  2.53 

   

  1.29 

CALM3 Calmodulin 3 -1.71 -0.93 

CAPRIN1 Cell cycle associated protein 1 -1.57 -1.33 

CCND3 Cyclin D3 -1.82 -1.34 

CDCA3 Cell cycle associated 3 -1.80 -1.33 

C-MYC C-myc binding protein -1.54 -1.25 

COL3A1 Collagen type III, alpha 1 -72.08      -1.80 

CXCR4 Chemokine (C-X-C motif) receptor 4 -11.87      -3.56 

E2F7 E2F transcription factor 7    1.50 -1.75 

E2F8 E2F transcription factor 8   1.57 -1.26 

FOXO1 Forkhead box  O1 -2.82 -1.28 

ITGβ5 Integrin beta 5       -2.26 -1.31 

JAM2 Junctional adhesion molecule 2     -12.24 -1.20 

MCM3 Minichromosome maintenance 3   2.29 -1.64 

MITF Microphthalmia-associated transcription 

factor 

-6.15 -1.01 

MYOD1 Myogenic differentiation 1 -2.42 -1.48 

NDRG1 N-myc downstream regulated 1 -5.85 -0.95 

P21 Cyclin-dependent kinase inhibitor 1  1.83   1.68 

PCNA Proliferating cell nuclear antigen  2.29  -1.30 

P53 Tumour protein P53 inducible protein  4.43    1.44 
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The microarray and the qRT-PCR data analysis of gene up/down-regulation were 

comparable in both rhabdomyosarcoma and melanoma cell lines. The qRT-PCR data 

analysis however, showed smaller changes in gene expression of the majority of the 

genes compared (Table 4.7).  The microarray and the qRT-PCR data analysis of down-

regulation of 11 of 24 genes were comparable in the A375 cell line and in both JR1 and 

RH30 cell lines (PAX3, ADAM23, BCL2, CALM3, CAPRIN1, CCND3, CDCA3, 

 C-MYC, COL3A1, ITGβ5 and MYOD1) (Table 4.7). The down-regulation of another 4 

genes expression in both the microarray and the qRT-PCR data analysis of the A375 

melanoma cell line, was in contrast, up-regulated in both microarray and qRT-PCR data 

analysis of both JR1 and RH30 rhabdomyosarcoma cell lines (CXCR4, FOXO1, JAM2 

and NDRG1) (Table 4.7).  

 

 

Additionally, the pattern of up-regulation of 5 of the 24 genes compared were similar in 

the A375, JR1 and RH30 cell lines (AEN, AKT3, CASP3, P21 and P53) (Table 4.7).   

However, the pattern of down-regulation of another 3 genes was in contrast to their up-

regulation in only the microarray data analysis of A375 cells (E2F7, E2F8 and PCNA) 

(Table 4.7).  The up-regulation of 4 genes in the microarray analysis data of A375 cells 

was in disagreement with the down-regulation of these genes in the qRT-PCR data 

analysis (E2F7, E2F8, MCM3 and PCNA) (Table 4.7).   
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Table 4.7 Comparison of selected gene expression after PAX3 down-regulation  

melanoma and rhabdomyosarcoma cell lines by microarray and qRT-PCR 

analyses  

 

Gene expression up-regulated ≥ 1.50 fold is shown in orange; ≥ 2.0 in red; gene expression 

down-regulated ≥ 1.50 fold is shown in light blue; ≥ 2.0 in dark blue; gene expression less than 

1.50 up-regulated / down-regulated is shown in white. 

                           A375 fold change            JR1 fold change             RH30 fold change  

 
 
 
 
 
 

Gene 

symbol 

Microarray   qRT-

PCR 

Microarray   qRT-

PCR         

Microarray   qRT-

PCR 

PAX3 -8.95 -2.04    -4.64 -1.63 -2.61 -1.37 

ADAM23 -2.51    -0.98    -4.34 -2.34 -4.87 -1.67 

AEN  2.80  1.80   10.72  3.72  7.64  3.82 

AKT3  2.52  1.08     2.43  1.74  3.39  2.37 

BCL2 -6.17 -1.10   -4.37 -3.43 -3.45 -2.27 

CALM3 -1.71 -0.93   -2.62 -2.32 -2.20 -1.53 

CAPRIN1 -1.57 -1.33  -2.50 -1.57 -9.84 -2.27 

CASP3  2.53  1.29   2.45  1.56  2.92  1.68 

CCND3 -1.82 -1.34  -3.68 -2.02 -2.91 -1.71 

CDCA3 -1.80 -1.33  -5.84 -1.54 -3.66 -1.50 

C-MYC -1.54 -1.25  -5.85 -2.62 -3.50 -1.12 

COL3A1     -72.80    -1.80     -15.66 -4.64 -9.65 -2.64 

CXCR4     -11.87    -3.56   4.73  2.15  2.88  1.55 

E2F7  1.50 -1.75   7.36  2.82  2.19  1.57 

E2F8  1.57 -1.26  -5.40 -1.97 -3.74 -1.98 

FOXO1 -2.82 -1.28   3.51  1.58  2.04  1.52 

ITGβ5 -2.26 -1.31  -6.06 -1.76 -2.14 -1.52 

JAM2     -12.24 -1.20   4.04  2.34  2.93  1.54 

MCM3  2.29 -1.64  -5.84 -2.44 -3.99 -1.51 

MYOD1 -2.42 -1.48  -2.82 -1.02 -4.65 -1.34 

NDRG1 -5.85 -0.95   6.82  2.33  6.07  2.03 

PCNA  2.29 -1.30  -3.75 -1.30 -4.26 -2.54 

P21  1.83  1.68   4.08  1.56  3.25  1.45 

P53  4.43  1.44   3.51  1.55  3.77  2.05 
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4.5. Effect of PAX3 down-regulation on Potential Downstream Target Protein 

Expression  
 

Western blotting analysis of pre-transfected A375 cells revealed high levels of PAX3 

and GAPDH expression (Fig.4.6). 

 

 
 

Figure 4.6 Pre-transfection analysis of PAX3 protein expression pattern in A375 cells.  

Lanes 1-6: Replicate PAX3 and GAPDH proteins in non-transfected A375 cells. 

 

     

To evaluate the effect of PAX3-siRNA inhibition of PAX3 protein levels in A375 

melanoma cells, immunoblotting of PAX3-siRNA and NC-siRNA transfected cells was 

carried out.  Western blotting analysis of PAX3 and selected genes of interest confirmed 

the pattern of alteration of gene expression observed in the microarray data.  PAX3 

protein expression in PAX3-siRNA treated A375 cells was compared with the protein 

expression in NC-siRNA treated A375 cells.  Human GAPDH was used as an internal 

normalisation control (lanes 1, 2, 3, 5, 6 and 7 of Fig. 4.7A).  The NC-siRNA treated 

cells showed high PAX3 protein expression (see lanes 1-3 of Fig. 4.7B), while inhibition 

of PAX3 mRNA in PAX3-siRNA treated cells resulted in a consistent reduction of PAX3 

protein (see lanes 5-7 of Fig. 4.7B).   

 

Significant knockdown of PAX3 protein by siRNA targeting PAX3 without a 

corresponding effect in the NC-siRNA transfected negative control was observed.  

PAX3-siRNA knockdown caused both down-regulation and up-regulation of potential 

downstream molecules of PAX3 including a significantly decreased C-MYC (lanes 5, 6 

and 7 of Fig. 4.7C), completely decreased ITGβ5 (lanes 5, 6 and 7 of Fig. 4.7D), 

decreased MYOD1 (lanes 5, 6 and 7 of fig. 4.7E) and almost completely diminished 

BCL2 (lanes 5, 6 and 7 of Fig. 4.7F), consistent induction of P21 protein (lanes 5, 6 and 
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7 of Fig. 4.7G), increased P53 protein expression as well as phosphorylation (lanes 5, 6 

and 7 of Fig. 4.7H) and increased CASP3 (lanes 5, 6 and 7 of Fig. 4.7I).   

 

 
 

Figure 4.7 Western blotting of A375 cell protein expression after 96 hr PAX3-siRNA 

inhibition.  Lanes: 1-3: Triplicate NC-siRNA treated A375 cells. 4: Blank. 5-7: Triplicate 

PAX3-siRNA treated A375 cells.    

  

 

The mean percentage of PAX3 protein expression remaining after PAX3-siRNA 

treatment was 10% (p < 0.01) (Fig. 4.8). The percentages remaining of downstream 

proteins were: C-MYC (6%); ITGβ5 (8%); MYOD1 (15%) and BCL2 (7%).  Likewise, 

other downstream targets of PAX3 had induced increased expression:  P21 (20 fold), 

P53 (2.5 fold) and CASP3 (2.9 fold). 
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Figure 4.8 Mean percentages remaining of A375 cells of protein expression after 96 hr 

siRNA transfection. The mean protein expression in NC-siRNA transfected cells (blue 

columns) was compared with the mean protein expression in PAX3-siRNA transfected A375 

cells (red colunms). The histograms are means of triplicate measurements in each of three 

separate experiments (n = 9). (Student’s t-test), (**, p < 0.01).   

 

 

4.6. Effect of Knockdown of PAX3 on Cell Proliferation of A375 Melanoma Cell 

Line 
 

A standard curve of the pre-transfected melanoma A375 cell line using various cell 

seeding densities/well, was established (Fig. 4.9), where linear growth was proportional 

to initial cell density. An initial cell seeding density of 5.0 X 10
4
 cells/well that produced 

a steady optimal growth over a 96 hr time-course without over-growth and with minimal 

cytotoxicity was chosen for the investigation of A375 cell proliferation.   
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Figure 4.9 CellTiter 96 aqueous assay of pre-transfection standard curve for the selection 

of optimal A375 cell seeding density in successive cell proliferation analyses. Initial cell 

seeding density was 5.0 X 10
4
 cells/well.  Using an ELISA plate reader at 490nm, the OD 

readings of formazan produced are directly proportional to the number of proliferating A375 

cells. Each point represents the mean of triplicate measurements (± SD) of three separate 

experiments performed (n = 9). 

 

 

To establish the effects of PAX3 inhibition on proliferation of the A375 melanoma cell 

line by the CellTiter non-radioactive MTS colorimetric assay, the mean OD reading 

relating to the number of proliferating viable cells among both NC-siRNA and PAX3-

siRNA treated cells were compared (Fig. 4.10) and the results were further confirmed 

directly using the Coulter cell counter (Fig. 4.11).   

 

 

Higher mean ODs produced by the NC-siRNA transfected cells relating to a greater 

number of proliferating viable cells were noticed, in contrast to lower OD values 

produced by PAX3-siRNA transfected cells at 24, 48 72 and 96-hr time points.  This was 

particularly apparent in the cells transfected for 96 hrs, when the OD of PAX3-siRNA 

treated A375 was 0.49 and the NC-siRNA was 2.31. Consequently, a significant 
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inhibition of cell growth was observed in PAX3-siRNA transfected A375 cells after 

inhibition of PAX3 (p < 0.01).  (Fig.4.10). 

      

 
 

Figure 4.10 CellTiter 96 aqueous indirect cell proliferation analyses for determination of 

inhibition of A375 cell proliferation following 96 hr siRNA transfection.  Cells were initially 

seeded at 5.0 X 10
4
 cells/well. The mean OD of NC-siRNA transfected A375 cells (blue 

colunms) was compared with the mean OD of PAX3-siRNA transfected A375 cells (red 

colunms) at each time point. The histograms are means of three separate measurements in 

experiments carried out in triplicate, (n = 9).  (Student’s t-test),   (*, p < 0.05; **,  p < 0.01).  

 

 

Direct coulter counter cell proliferation analysis was used to confirm the results of the 

MTS assay and equally demonstrated significant cell growth inhibition of an initial 5.0 

X 10
4
 cells/ml in PAX3-siRNA transfected A375 cells (p < 0.05 at 24 hrs and p < 0.01 at 

48, 72, 96 hrs) compared to high cell numbers in NC-siRNA transfected A375 cells (Fig. 

4.11). 
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The mean cell count (589 X 10
4
/cells) after 96 hr transfection observed in NC-siRNA 

treated A375 cells was much higher than PAX3-siRNA treated A375 cells (20 X 

10
4
/cells). The decreased number of proliferating cells observed in PAX3-siRNA 

transfected cells was because of cell apoptosis.  

 

 
 

Figure 4.11 Coulter counter direct cell counts for determination of inhibition of A375 cell 

proliferation after PAX3-siRNA transfection. Original cell seeding density was 5.0 X 10
4
 

cells/well. The mean number of cell count in NC-siRNA transfected A375 cells (blue colunms) 

was compared with the mean number of cell count in PAX3-siRNA transfected A375 cells (red 

colunms) at each time point.  The histograms are means of triplicate cell counts in three separate 

experiments (n= 9).  (Student’s t-test);  (*, p < 0.05; **,  p < 0.01).  

 

 

4.7. Effect of Knockdown of PAX3 on the Cell Cycle of A375 Melanoma Cells 

 

Since inhibition of PAX3 in A375 cells significantly suppressed cell proliferation, it was 

imperative to assess the influence of PAX3 inhibition on the cell cycle and to distinguish 

the phases of the cell cycle at which cell growth was halted. After 96 hr siRNA 

knockdown of PAX3 gene expression, the DNA content of individual transfected cells 

was analysed by flow cytometry. The mean numbers of PI stained cells amomg the  NC-
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siRNA treated A375 cells was compared with the numbers of PI stained cells among 

PAX3-siRNA treated A375 cells. The amount of PI staining per cell established the 

distribution of that cell in a particular phase of the cell cycle. A typical flow cytometry 

analysis is shown in Fig. 4.12.  

 

Flow cytometry analyses of A375 cells following 96 hr siRNA inhibition of PAX3 gene 

expression. 

   

 
 

Figure 4.12 A typical cell cycle pattern of NC-siRNA and PAX3-siRNA of A375 siRNA 

treated PI stained cells after 96 hr transfection.   The mean percentages of cells at different 

stages of the cell cycle are shown in (Table 4.9).  

  

 

Table 4.8 Cell cycle distribution of A375 cells after 96 h siRNA knockdown of 

PAX3.   Flow cytometry analysis of DNA content by Propidium iodide incorporation. 

Each value is the percentage of cells at a particular cell cycle stage. 

 

Cell cycle phase               A375 cells 

treated with NC-siRNA 

A375 cells 

treated with  PAX3-siRNA 

G0/G1 59.6% ±2.1 57.6% ±1.2 

S  7.9% ±1.2  5.3% ±2.2 

G2/M 32.5% ±1.2 36.7% ±1.3 

 

 These values are means of three cell counts in each of two separate experiments, (n = 6);   

 p < 0.05; for NC-siRNA vs PAX3-siRNA (by Student’s t-test). 
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This analysis revealed a lower percentage of cells among G0/G1 PAX3-siRNA treated 

A375 cells compared with the NC-siRNA treated cells: ± 57.6% of PAX3-siRNA treated 

cells versus ± 59.6% NC-siRNA treated A375 control cells were arrested at the G0/G1 

phase. NC-siRNA transfected cells showed ± 7.9% in S phase compared to ± 5.3% of 

PAX3-siRNA transfected cells.  The occurrence of cells in S phase suggests cell cycle 

progression and hence is probably related to cell proliferation. This result therefore, 

indicates a slower cell proliferation rate in PAX3-siRNA treated A375 cells compared to 

a higher cell proliferation rate in the NC-siRNA treated A375 cells and corresponds with 

the cell proliferation experiments described previously. Cells in which PAX3 had been 

down-regulated, appeared to be halted more in G2/M phase than the NC-siRNA treated 

controls (36.7 ± 1.3% versus 32.5 ± 1.2 %  respectively: p < 0.05), thus more PAX3-

siRNA treated cells were accumulating at the well-known cell cycle checkpoint in the 

G2/M.  

 

 

4.8. Effect of PAX3 Down-regulation on Migration of A375 Melanoma Cells 

 

A scratch wound healing assay was analysed to evaluate the migratory ability in vitro 

(and possible metastatic potential) of A375 melanoma cells. The initial relative mean 

width of scratch wound gaps of NC-siRNA treated A375 cells and PAX3-siRNA treated 

A375 cells at 0 hr (Fig. 4.13), was compared with the relative mean width of scratch 

wound healing of A375 cells after 12, 24, 48, 72 and 96 hr transfection. The NC-siRNA 

treated A375 cells with high expression of PAX3 migrated long distances to close wound 

gaps, better than PAX3-siRNA treated cells, which migrated only short distances.  
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Figure 4.13, X 10 magnification of width of A375 cells scratched wound gap at 0 hr after 

12- 96 hr transfection duration. A (12 hr); B (24 hr); C (48 hr); D (72 hr); E (96 hr) 

transfected cells.  The arrows represent the initial widths of scratch wound gaps measured in 

monolayers of NC-siRNA and PAX3-siRNA transfected A375 cells before 24 hr cell migration.  

 

 

Following 24 hr cell migration, the NC-siRNA treated A375 cells exhibited narrow 

wound gaps due to migration the wound edges to close wound gaps, whereas broader 

wound gaps were detected in the PAX3-siRNA treated A375 cells, representing less cell 

migration. (Figure 4.14) (long arrows indicate wound gaps). 
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Figure 4.14,  X 10 magnification in scratch wound healing assay of transfected A375 cells 

after 24 hours.  A375 cells were stained with methylene blue.  A (12 hr); B (24 hr); C (48 hr); 

D (72 hr); E (96 hr) transfection durations.  Relative measurement of wound gap distance 

indicates A375 cell migration distance.  Wound healing corresponds to measured distance in 24 

hr cell migration after 12 hr, 24 hr, 48 hr, 72 hr or 96hr siRNA transient transfection of A375 

cells. NC-siRNA transfected A375 cells displayed narrow wound gaps, signifying high cell 

migration. PAX3-siRNA transfected A375 cells showed wider wound gaps, because of inhibition 

of cell migration as a result of A375 cell apoptosis.  

  

 

The relative mean cell migration distance in the 96 hr PAX3-siRNA treated cells of (10 

units) was significantly different from the relative mean cell migration distance in the 96 

hr NC-siRNA treated cells which was (75 units), (p < 0.01) as shown in (Fig. 4.15). 
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Figure 4.15 Relative migration of A375 cells over a 24 hr period after 12 hr, 24 hr, 48 hr, 72 

hr or 96 hr siRNA transfection duration. The relative cell migration distance of NC-siRNA 

treated A375 cells (blue columns) was compared with the relative cell migration distance of 

PAX3-siRNA transfected A375 cells (red columns).  Mean values were derived from three 

measurements in each of three separate experiments (n = 9).  Student’s t-test; **, p < 0.01. 

 

 

4.9. Effect of PAX3 Down-regulation on A375 Cell Adhesion to ECM Proteins 

 

Cell attachment to natural ECMs is essential in cell communication and regulation of 

growth and is of central importantance in the advancement and continuation of 

tumourigenesis of A375 cells (Wang et al. 2013). The effect of suppressing PAX3 on the 

inhibition of A375 cell adhesion to human ECM components was investigated using 

collagen I, collagen II, collagen IV, fibronectin, laminin, tenascin and vitronectin, 

previously coated onto the surfaces of plastic wells. Following 96 hr transfection, the 

mean cell adhesion to the various ECM proteins in the NC-siRNA transfected A375 

cells was compared with that of PAX3-siRNA treated A375 cells.  In each well, the OD 
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was proportional to the number of adherent stained cells.  PAX3-siRNA treated A375 

cells with knockdown of PAX3 displayed lower mean ODs, relating to a weaker cell 

adhesion to collagen I (0.06), collagen II (0.05), collagen IV (0.05), fibronectin (0.14), 

laminin (0.13), tenascin (0.09) and vitronectin (0.06) was significantly different from 

higher means of ODs in NC-siRNA JR1 treated cell adhesion to Col I (0.45), Col II 

(0.37), Col IV (0.41), fibronectin (0.62),laminin (0.52) tenascin (0.36) and vitronectin 

(0.34) (p < 0.01) (Fig. 4.16).   

 

 

 

Figure 4.16 Inhibition of A375 cell adhesion to ECM after 96 hr siRNA transfection.  The 

mean OD of A375 cell adhesion in NC-siRNA transfected A375 cells (blue columns) was 

compared with the mean OD of A375 cell adhesion in PAX3-siRNA transfected cells (red 

columns).  Three measurements were derived from each of two separate experiments (n = 6).  

Student’s t-test; **, p < 0.01.  
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4.10. Influence of Silencing PAX3 on Invasion of A375 Cells 

 

Cell invasion is fundamental in the metastasis of these tumours. To examine the effects 

of 96 hr down-regulation of PAX3 on A375 cell invasion in vitro, the mean numbers of 

NC-siRNA transfected A375 cells invading a basement membrane were compared to the 

mean numbers of PAX3-siRNA transfected A375 cells. Representative microscopic 

images of invading cells from both NC-siRNA transfected and PAX-siRNA transfected 

cells are shown under the same magnification (Figs. 4.17). A mean of 80 NC-siRNA 

transfected A375 cells per field were detected to invade the matrigel membranes, 

indicating significant cell invasive ability, compared to a mean number of 22 PAX3-

siRNA transfected A375 cells per field invading the matrigel membranes (p < 0.01) 

(Fig. 4.18).  

 

 
 

Figure 4.17 Inhibition of A375 cell invasion of matrigel membrane following 96 hr 

transient siRNA transfection.  Invaded A375 cells were stained with Giemsa and viewed in a 

phase contrast microscope X 40.  NC-siRNA transfected A375 cells averagely invaded in high 

numbers while PAX3-siRNA transfected A375 cells showed less cell invasion. 
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Figure 4.18 Mean numbers of A375 cell invasion. The mean number of invading cells in NC-

siRNA transfected A375 cells (blue column) was compared with the mean number of invading 

cells in PAX3-siRNA transfected A375 cells (red column).  Invading A375 cells were counted in 

five microscopic fields per experiment.  The columns represent the mean number of A375 cells 

invading a matrigel membrane as a mean of three separate experiments (n = 15). (Student’s t-

test),  (**,  p < 0.01). 

 

 

4.11. Effect of Knockdown of PAX3 on Clonogenicity of A375 Cells 

 

The inhibitory effect of PAX3 repression on A375 cell colony reproducibility was 

evaluated by an in vitro soft agar assay following 96 hr transfection with NC-siRNA 

orPAX3-siRNA. This experiments demonstrated that colony formation of A375 cells 

was reduced by PAX3 inhibition in PAX3-siRNA transfected cells when compared with 

NC-siRNA transfected counterparts. NC-siRNA transfected A375 cells generated many 

large colonies of diameter greater than 100µm in contrast to smaller colonies generated 
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of diameter much less than 100µm from PAX3-siRNA transfected A375 cells (Fig. 4. 

19). The small colonies were expected to be aggregates of apoptotic A375 cells 

(according to the soft agar assay manufacturer’s literature).  

 

 
 

Figure 4.19 A375 cell soft agar colony reproducibility following 96 hr transient siRNA 

transfection.  X 40 magnification phase contrast micrograph of anchorage independent growth 

of A375 cell colonies in soft agar after 28 days incubation.  A375 colonies were stained with 

crystal violet.  NC-siRNA transfected A375 cells produced larger colonies (>100µm).  PAX3-

siRNA transfected A375 cells showed smaller colonies.  Colonies were counted over five 

fields in each of three experiments.   

 

 

The mean number of 15 colonies in NC-siRNA transgected A375 cells was significantly 

different from the mean number of 1 colony in PAX3-siRNA transfected cells (p < 0.01) 

because of apoptosis of A375 cells (Fig.4.20).   
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Figure 4.20 Mean numbers of A375 reproducible colonies. The mean number of reproducible 

colony in NC-siRNA treated A375 cells (blue column) was compared with the mean number of 

reproducible colony in PAX3-siRNA transfected cells (red column).  The mean values were 

derived from three separate experiments and found to be statistically different, (n = 15).  

Student’s  t-test; **, p ˂ 0.01.   

 
 
 

4.12. Effect of PAX3 Down-regulation on Inhibition of Apoptosis of A375 Cells 
 

Both indirect biochemical and direct morphological assessments of cell apoptosis were 

undertaken to determine the effect of PAX3 down-regulation on apoptosis of the A375 

cell line. The caspase 3/7 activities in both 96 hr PAX3-siRNA and NC-siRNA treated 

A375 cells were measured by indirect biomedical analysis.  The caspase 3/7 activity in 

the staurosporine (1µM/ml; 1µl/ml) treated A375 cells was used as positive control.  At 

30 min, the mean caspase 3/7 activities in PAX3-siRNA treated A375 cells of 210 X 10
4
 

RLU (Fig. 4.21B) was significantly higher (p < 0.01) than 75 X 10
4
 RLU produced in 

NC-siRNA treated cells (Fig. 4.21C). The staurosporine positive apoptosis control 

yielded 380 X10
4
 RLU (Fig. 4.21A). 
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Figure 4.21 Indirect Caspase 3/7 activity in A375 cells following 96 hr siRNA transfection 

and/ or 2 hr staurosporine induced-apoptosis (positive control). The mean caspase 3/7 

activity in A (2 hr Staurosporine (1µM/ml; 1µl/ml) treated A375 cells positive apoptosis 

control, which pattern of curve signify increased caspase 3/7 activity and induction of apoptosis), 

was compared with both B (PAX3-siRNA transfected A375 cells which presented similar pattern 

of curve to A indicated increased caspase 3/7 activity and induction of A375 cell apoptosis), and 

C (NC-siRNA transfected A375 cells, showing dissimilar pattern of curve to A showed no 

induction of apoptosis).  The curves are representation of mean of three replicate measurements 

in two separate experiments (n = 6).  At 30 min the mean RLU measurement of B was 

statistically higher than that of C, Student’s t-test, (B versus C **, p < 0.01).     

 

 

Direct detection of delayed apoptosis of A375 cells was performed by the DeadEnd™ 

Fluorometric TUNEL system after 96 hr A375 cell transfection. DNA fragments with 

green fluorescence-staining were rarely observed in NC-siRNA A375 cells in a typical 

fluorescence microscopic field. However, they were observed in both staurosporine-
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treated (PC), PAX3-siRNA transfected as well as PAX3-siRNA transfected plus PC 

treated cells (Fig. 4.22). 

 

 
 

Figure 4.22 Direct detection of apoptosis in transfected A375 cells by the DeadEnd 

Fluorometric TUNEL System.  X 400 fluorescence micrographs of apoptosis in A375 cells 

following 96 hr siRNA transfection. NC-siRNA (negative control transfected A375 cells showed 

blue nuclei non-apoptotic cells (DAPI). PC (2hr staurosporine (1µM/ml; 1µl/ml) treated A375 

cells positive apoptosis control exhibited few green fluorescent apoptotic cell nuclei (pointed 

arrows). PAX3-siRNA (PAX3-siRNA transfected A375 cells displayed few green fluorescent 

apoptotic cell nuclei (pointed arrows).  PAX3-siRNA-PC (combined PAX3-siRNA transfected 

A375 cells plus 2 hr staurosporine treatment revealed many green fluorescent apoptotic cell 

nuclei) (pointed arrows).   

  

  

The conclusion is that PAX3 down-regulation added to the apoptosis caused by 

staurosporine (1µM/ml; 1µl/ml) in A375 cells, which had been transfected with PAX3-
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siRNA plus treated for 2 hr with staurosporine (1µM/ml; 1µl/ml). Moreover PAX3 siRNA 

alone could induce apoptosis. There was a significant difference in the mean number of 

observed apoptotic cells amongst the PC (3 per field), PAX3-siRNA (2 per field), PAX3-

siRNA-PC treated (7 per field) compared to NC-siRNA treated cells (p < 0.01). The 

mean number of apoptotic cells in the PAX3-siRNA-PC sample was higher than PAX3-

siRNA treated A375 cells or A375 cells treated with staurosporine (1µM/ml; 1µl/ml)  

alone (Fig. 4.23).  

 

 
 

Figure 4.23 Mean numbers of transfected A375 apoptotic cells.  The mean number of A375 

apoptotic cells in NC-siRNA (negative control transfected A375 cells (blue column) was 

compared with the mean number of apoptotic A375 cells in both PC (2 hr staurosporine 

(1µM/ml; 1µl/ml) treated A375 cells positive apoptosis control (yellow column) and PAX3-

siRNA ( PAX3-siRNA transfected A375 cells) (green column) or PAX3-siRNA-PC, (combine 

PAX3-siRNA transfected A375 cells followed by 2 hr staurosporine (1µM/ml; 1µl/ml) treatment 

(red column).  The Mean number of apoptotic A375 cells were counted from five fluorescence 

microscopic fields in three separate experiments (n = 15).  PC vs NC demonstrates that positive 

control was working.  (NC vs PAX3-siRNA  or NC vs PAX3-siRNA–PC), Student’s t-test; **, 

p ˂ 0.01.    
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4.13. DISCUSSION 

 

4.13.1. Down-regulation of PAX3 Expression in Melanoma A375 Cells Modulates 

Downstream Targets 

 

PAX3 as a transcription factor is essential for the development of melanocytes by 

regulating melanocyte differentiation, proliferation, migration and inhibition of 

apoptosis during embryogenesis. The regulatory activities of PAX3 isoforms in 

melanocytes have been demonstrated (Wang et al., 2007). The functional activities of 

PAX3 in melanocyte development seem to be observed also in melanoma cells (Medic et 

al., 2011; Milet et al., 2013). PAX3 expression in metastatic melanoma of a transgenic 

mouse model has been demonstrated alongside MITF (Makhzami et al., 2012). Recently, 

the expression of PAX3 and MCAM in peripheral blood have been identified as 

biomarkers in recurrent aggressive metastatic melanoma (Dye et al., 2013). 

 

 

Collectively, the above studies implicate PAX3 involvement in melanoma.  Since PAX3 

has been demonstrated to regulate melanocyte development as well as the metastatic 

activity of melanoma, repression of PAX3 will probably inhibit melanoma progression 

 

 

This present study has achieved a significant down-regulation of PAX3 in the A375 

melanoma cell line. Analysis of microarray data revealed a 8.95-fold knockdown of 

PAX3 expression in the A375 cell line following 96 hr PAX3-siRNA transfection, which 

subsequently altered the expression patterns of numerous downstream targets of PAX3 

(Tables 4.3 and 4.4). Likewise, semi-quantitative RT-PCR analysis demonstrated a 

minimum of 90% knockdown in expression of the various PAX3 isoforms in PAX3-

siRNA transfected A375 cells, which was significantly different from the NC-siRNA 

transfected negative control A375 cells (p < 0.01), (Figs. 4.3 and 4.4).  Western blotting 

analysis validation of the knockdown of PAX3 mRNA, demonstrated a significant 

reduction in PAX3 protein expression and changes in its downstream targets.  

Suppression of PAX3, induced significant inhibition of C-MYC, ITGβ5, MYOD1 and 

BCL2 protein expression, whereas increased protein expression of P21, P53 and CASP3 

was demonstrated (Figs. 4.7 and 4.8). 
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Microarray analysis data further demonstrated that silencing of PAX3 expression in 

A375 cells, significantly modulated the expression patterns of some PAX3 binding 

partners (Table 4.5).  For example, BCL2, CIB1, HES1, MITF, SRY10, MYOD1, MYOG, 

SOSTDC1 and TBX18 were down-regulated, whilst PTEN, HMOX1 and MSX1 were up-

regulated.  Once again, the increased expression pattern of PTEN agreed with a previous 

study of the induced expression of PTEN in rhabdomyosarcoma (Li et al., 2007). The 

suppression of PTEN and increased BCL2 expression after PAX3 down-regulation can 

inhibit apoptosis. Fascinatingly, the present study demonstrates that up-regulation of 

PTEN and decreased expression of BCL2 certainly induced A375 cell apoptosis. The 

effect of PAX3-siRNA inhibition of PAX3 mRNA and protein in A375 melanoma cells 

was comparable to the pattern of inhibition of PAX3 demonstrated in the JR1 and RH30 

rhabdomyosarcoma cell lines.  

 

 

Additionally, inhibition of PAX3 in the A375 melanoma cell line induced both 

suppression and activation of downstream regulatory genes that facilitate PAX3 activities 

in the regulation of A375 cell cycle, proliferation, migration, adhesion, and apoptosis. 

This current study demonstrates that some of the potential tumourigenic activities of 

PAX3 were interrupted following PAX3-siRNA knockdown, including the significant 

inhibition of A375 cell proliferation (p < 0.01), (Figs. 4.10 and 4.11).  This significant 

decreased in cell proliferation indicate that A375 cells were undergoing apoptosis after 

96 hr inhibition of PAX3 as shown in the microarray results of increasing expression of 

apoptosis ptomoting genes (Table 4.4) and decreasing expression of apoptosis 

inhibitotry genes (Table 4.3).  

 

 

4.13.2. Inhibition of PAX3 Expression Suppressed A375 Cell Cycle Progression and 

cell Proliferation 

 

Expression of PAX3 promotes both melanocyte proliferation during melanogenesis and 

proliferation of melanoma cells (Kubic et al., 2012; Milet et al., 2013).  The impact of 

PAX3 down-regulation on A375 melanoma cell growth and proliferation was 

investigated. The present microarray analysis demonstrated that 28 selected key genes 

involved in regulating the cell cycle and cell proliferation were significantly down-
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regulated (Table 4.3: CALM, CAPRINI, CCNB1, CCND2, CCND3, CDCA3, CDC25C, 

CDK2, CDK4, CDK5, CDKN2C, CIB1, CITED2, C-MYC, GTSE1, HES1, HUS1, ID3, 

IGFβP3, IGFβP5, LOC, NDRG1, SMAD2, TAZ, TBX18, TGFβ2, TGFβ3 and VEGFA).  

By contrast, 35 other selected genes which inhibit cell cycle progression and cell 

proliferation were significantly up-regulated following PAX3 repression in A375 cells 

(Table 4.4); (ANAPC5, AKT, BIRC5, BRCA1, BRCA2, BUB1, CDC25A, CDC25B, 

CDK1, CDK6, CDKN1A, EDN3, DHFR, CHK1, CHK2, ETS1, GADDβ45, GINS1, 

GRK6, HIRA, HMOX1, ITGβ1, JAK2, JUN, SKP2, MCM3, MDM2, MSX1, MELK, RB, 

P21, P53, PCNA, PTEN and TFDP1).   

 

 

The KEGG-pathway functional annotational tool of David NIH bioinformatics database 

analysis of the present microarray data suggest that inhibition of PAX3 in A375 cells 

induces the activation of AKT/P53/PTEN signaling pathways resulting in G2 cell cycle 

arrest and induction of apoptosis.  

 

 

PAX3 silencing induces A375 cell cycle arrest, which subsequently inhibits cell 

proliferation. Flow cytometry cell cycle analysis following PAX3 knockdown, indicates 

that fewer A375 cells (57.6% ±) were in the G0/G1 phase relative to negative control 

cells (59.6% ±) and 5.3% ± of A375 cells were in the S phase compared to 7.9% ± in the 

NC-siRNA negative control, demonstrating the inhibitory effects of PAX3-siRNA on 

cell cycle progression (Fig. 4.12) (Table 4.8). A375 cells seemed to accumulate in the 

G2/M checkpoints after PAX3 down-regulation. Repression of PAX3 after 96 hr 

markedly inhibited A375 cell proliferation (Figs. 4.10 and 4.11), as a result of apoptosis 

of A375 cells. This pattern of inhibition reflected the increased expression of cell 

apoptosis promoting genes caspase 3 (Fig. 4.4) including and the decreased expression 

of apoptosis inhibiting genes including BCL2 (Fig. 4.3).   

 

 

David NIH functional annotational bioinformatics KEGG-pathway analysis tool version 

6.7, was used to determine the effects of PAX3 down-regulation on the various 

regulatory pathways of the A375 cell line in this present microarray data. Following 

PAX3 inhibition, the microarray data demonstrated increased expression of PCNA, 
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BIRC5, BRCA1, BRCA2, JAK2, JUN, ITGβ1 and TFDP1, indicating A375 cell viability 

with a decreased proliferation rate.  Alterations in the expression patterns of these genes 

in the microarray data showed a strong relationship with the cell proliferation 

experiments.   Similarly, the increased expression of P21, P53 as well as the checkpoint 

genes (CHK1, CHK2, CDC25A and CDC25B) indicates that the suppression of PAX3 

possibly induced a G2 phase cell cycle arrest of A375 cells through the 

CHK1/CHK2/CDC25C pathways. Furthermore, a close evaluation of the microarray 

data demonstrating increased expression of the key G2 phase cell cycle arrest-promoting 

genes including (ANAPC5, AKT, CHK1, CHK2, CDC25A, CDC25B, CDK1, CDK6, 

GADDβ45, P21 and P53) indicating that suppression of PAX3 induced a G2 phase A375 

cell cycle growth arrest. By contrast, the decreased expression levels observed in the five 

key positive regulators of G1 phase of the cell cycle (CCNA, CCND1, CDC25C, CDK2 

and CDK4), demonstrates that A375 cells were not arrested at the G1 phase after PAX3 

knockdown.  

 

 

The KEGG-pathway analysis of this present microarray data demonstrates that down-

regulation of PAX3 in A375 cells induced activation of the AKT signaling pathway, 

which in turn stimulated the P53 signaling pathway to block cell cycle at the G2 growth 

phase and subsequently inhibited cell proliferation (Fig. 4.24). Inhibition of PAX3 

expression caused increased AKT expression, which resulted in the activation of the 

checkpoint kinases 1/2 to induce activation of CDC25A/CDC25B to block 

CDK2/CCNB1 and arrest A375 melanoma cell growth at the G2 phase of the cell cycle 

(Fig. 4.24).  Similarly, PAX3 down-regulation induced increased P53 expression which 

stimulated P21 and GADD45B expression to block CDK2/CCNB1 and resulted in G2 

phase A375 melanoma cell arrest (Fig. 4.24).  

 

 

The activation of P53 correlates with the western blotting results showing increased P53 

phosphorylation and decresed BCL2 expression induced A375 cell apoptosis. This 

implies that suppression of PAX3 is a suitable therapeutic target and would possibly 

inhibit melanoma tumour growth and progression. By comparison, silencing PAX3 in 

JR1 and RH30 cell lines activated the ATR/ATM signalling pathway to induce JR1 and 

RH30 cell arrest at the G1 phase of the cycle resulted in JR1 and RH30 cell apoptosis.  
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Repression of PAX3 in A375 cells induces activation of the AKT signalling pathway to 

halt A375 cells at the G2 phase of the cell cycle also resulted in A375 cell apoptosis.  

These diverging activities of PAX3 demonstrate that PAX3 could use different pathways 

in its cell regulatory mechanisms, according to the cell type in which it acts.   

 

 

Figure 4.24 Schematic diagram of A375 melanoma cell cycle arrest.  Knockdown of PAX3 

induced a G2 growth arrest of A375 cells via activation of AKT signaling. Induced activation 

of checkpoints kinases 1/2 induced activation of CDC25A/CDC25B, which in turn blocked 

CDK2/CCNB1 to arrest melanoma A375 cell growth at the G2 phase of the cell cycle.  

Likewise, activation of P53 induced the activation of P21 and GADD45B, which in turn block 

CDK2/CCNB1 to cause a G2 phase cell growth arrest.  

                                                                  

  Key:                     Denote activation.                                    Indicate inhibition/block. 

                                                                               

 

 

4.13.3 Knockdown of PAX3 Induced Metastatic Inhibition of A375 Cell Migration 
 

Migration of A375 cells is crucial for melanocyte migration and proliferation as well as 

metastatic melanoma (Berlin et al., 2012; Milet et al., 2013). PAX3 knockdown in 

melanoma has been demonstrated to inhibit cell migration (Wouters et al., 2013). The 

present study examined the effect of PAX3 suppression on the migratory ability of 

melanoma A375 cells. The microarray analysis demonstrates that silencing PAX3 in 
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A375 cells induced significantly diminished expression of 17 selected genes regulating 

cell migration (Table 4.3: ADAM23, CIB1, COL3A1, CXCR4, FGD4, FSCNI, HUS1, 

MCAM, MMP2, MXRA7, PCDH18, PCDH7, RECK, VCAN, TGFβ2, TGFβ3 and 

VEGFA). Conversely, PAX3 inhibition induces increased expression of six negative 

regulatory genes for cell migration (ENDRA, FNDC5, JUN, LAMA1, MSH2 and MTSS1) 

(Table 4.4). The change in expression of all of these genes probably inhibits A375 cell 

migration. The microarray analysis of these gene alterations shows a strong correlation 

with the substantial suppression of A375 cell migration exhibited in the migration 

experiments (Figs. 4.14 and 4.15).   

 

 

The effect of PAX3 down-regulation on A375 cell migration was demonstrated using a 

scratch wound healing assay, which showed a significant decrease in the PAX3-siRNA 

transfected A375 cell migration relative to the NC-siRNA transfected A375 cells (p < 

0.01) (fig. 4.15). The higher level of A375 cell migration observed in the negative 

control A375 cells was correlated with a higher level of PAX3 expression, which induces 

A375 cell migration, resulting in a significant closure of the wound gaps (Figs. 4.13 and 

4.14). Comparatively, PAX3-siRNA maintained wider wound gaps to indicate inhibition 

of A375 cell migration caused by diminished PAX3 activity. Inhibition of PAX3 induced 

A375 cell apoptosis which resulted remarkable inhibition of A375 cell migration. This 

was demonstrated in microarray data of increasing expression of apoptosis ptomoting 

genes (Table 4.4), and decreasing expression of apoptosis inhibitotry genes (Table 4.3).  

  

 

The microarray analysis in the KEGG-pathway demonstrated increased expression of 

ENDRA and FNDC5 that induced inhibition of TGFβ3, VEGFA, FGD4 and FSCNI 

expression, suggesting that PAX3 probably activates the FAK/Rho/RAS/MAPK 

signaling pathways to inhibit A375 cell migration (Fig. 4.25). The cell migration assay, 

demonstrating that the presence of PAX3 in A375 cells induces migration, indicates that 

PAX3 expression is probably essential for metastatic melanoma A375 cell migration.  

Hence, PAX3 could be an appropriate target for inhibition of melanoma cell migration.  

In the metastatic processes, adhesion of cells to the ECM may depend on the migratory 

ability of cells.  Therefore, this markedly decreased A375 melanoma cell migration may 

perhaps impair adhesion of A375 melanoma cell to ECM proteins. 



249 
 

4.13.4. Repression of PAX3 Expression Blocked A375 Cell Adhesion  

 

Expression of cell surface adhesion molecules is essential for the promotion of 

metastatic melanoma since decreased cell adhesion inhibits metastasis (Sil et al., 2010; 

Nishibaba et al., 2012). 

 

 

Following repression of PAX3 in A375 melanoma cells, microarray analysis 

demonstrates that expression of ten cell adhesion genes was decreased COL3A1, 

CXCR4, FGD4, ITGβ5, JAM2, NID1, MCAM, PCDH7, PCDH18, and VCAN) which 

inhibited A375 cell adhesion to ECM proteins in vitro (Table 4.3). On the contrary, 

three cell adhesion inhibitory genes (FNDC5, SELPLG, and LAMA1) were up-regulated 

(Table 4.4). The alterations in expression of these genes will possibly interfere with 

A375 cell adhesion during metastatic melanoma.  

 

 

In assessing the impact of inhibition of these cell surface adhesion molecules on A375 

cell adhesion ability, cell–matrix assays indicated that PAX3 silencing induced 

significantly decreased adhesion of A375 cells to all of the seven selected ECM proteins 

(Collagen I, Collagen II, Collagen IV, Fibronectin, Laminin, Tenascin and Vitronectin) 

relative to negative control cells (p < 0.01)  (Fig. 4.16). The observed inhibition of A375 

cell adhesion strongly correlates with the microarray analysis showing suppression of 

cell adhesion regulatory genes. The KEGG-pathway analysis of this present microarray 

data implies that silencing of PAX3 probably decreases A375 cell adhesion to the ECM, 

via activation of the FAK/Rho/RAS/MAPK signaling pathway. The activation of 

FNDC5 and SELPLG, suppressed ITGβ5, PCDH7, PCDH18 and MCAM, which 

consequently induced inhibition of A375 cell adhesion to ECM proteins (Fig. 4.25).  

Particularly, MCAM as a downstream target of PAX3, plays a crucial role in promoting 

A375 cell adhesion. 

  

 

The outcome of this current cell adhesion assay confirmed that PAX3 is crucial in the 

promotion of A375 cell adhesion. Therefore, PAX3 would be a suitable target for 

inhibition of A375 cell adhesion, which could possibly block metastatic melanoma.  

Since contact between cells and the ECM modulates cellular functional activities, the 
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observed marked block of A375 cell adhesion to the ECM could probably impede 

tumour cell invasion. 

 

 

4.13.5. PAX3 Silencing Inhibits A375 Cell Invasion 

The expression of PAX3 has been implicated in promoting invasion of melanoma 

through modulation of downstream targets (Makhzami et al., 2012; Dye et al., 2013). 

 

 

In this present study, microarray analysis demonstrates significantly decreased 

expression of four cell invasion promoting genes (FGD4, MMP2, RECK and SMAD2) 

(Table 4.3). On the contrary, the expression of two cell invasion inhibitory genes was 

significantly increased (ENDRA and MTSS1) (Table 4.4). The observed changes in gene 

expression could possibly influence A375 melanoma cell invasion and metastatic 

potential. PAX3-siRNA significantly decreased A375 cell invasion compare to the NC-

siRNA (p < 0.01) as demonstrated using the Boyden chamber invasion assay (Figs. 4.17 

and 4.18). The inhibition of A375 cell invasion demonstrated here, correlates with the 

microarray analysis showing altered expression of genes related to cell invasion. The 

outcome of this cell invasion analysis demonstrates that PAX3 induces A375 melanoma 

cell invasion by activating the FAK/RHO/RAS/MAPK signaling pathways as shown in 

the KEGG-pathway analysis. Activation of ENDRA and MISS1 blocked MMP2 and its 

ability to induced A375 cell invasion of ECM (Fig. 4.25).  Silencing of PAX3 therefore, 

is a possible therapeutic target for inhibition of metastatic melanoma. 
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Figure 4.25 Inhibition of metastatic A375 melanoma cells via activation of AKT signaling 

(created from the KEGG-pathway analysis).  PAX3 silencing induced activation of the AKT 

signaling pathway, which activated JUN and ENDRA to inhibit TGFβ3 and VEGFA, which in 

turn induced inhibition of A375 melanoma cell migration.  AKT activation of SELPG and 

FNDC5 blocked PCDH7/18, ITGβ5, and MCAM to induce inhibition of A375 melanoma cell 

adhesion.  AKT activation of ENDRA and MTSS1 blocked FGD4, RECK and MMP2 to induce 

inhibition of A375 melanoma cell invasion.  

 

 

4.13.6. Knockdown of PAX3 Inhibited A375 Cell Clonogenicity in Soft Agar 

 

Melanocyte transformation into melanomas (demonstrated in vitro) is one of the 

tumourigenic activities of PAX3 (Berlin et al., 2013).   

 

 

In this present study, the potential of PAX3 to inhibit transformed cell growth was 

demonstrated following inhibition of PAX3 in melanoma A375 cells. Analysis of 

microarray data showed a significantly reduced expression of one cell transformation 

gene (TGFβ3) (Table 4.3) and markedly increased expression of two cell transformation 

inhibitory genes (P21 and P53) (Table 4.4). The observed alterations in the expression 

of these genes could probably stimulate the ability of transformed A375 melanoma cells 

to grow in soft agar. 
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The potential of PAX3 to allow transformed cell growth (of A375 melanoma cells) was 

investigated using the soft agar anchorage-independent assay. PAX3-siRNA transfected 

A375 cells produced a few insignificant colonies compared to the large colonies 

demonstrated in the NC-siRNA transfected cells (p < 0.01) (Figs. 4.19 and 4.20). This 

indicates that the expression of PAX3 in the NC-siRNA transfected cells allows A375 

melanoma cell growth in soft agar, whilst inhibition of PAX3 expression in PAX3-

siRNA transfected cells blocked it. Analysis of this current microarray data in the 

KEGG-pathway, demonstrate that inhibition of transformed A375 melanoma cell growth 

could possibly have occurred through the activation of the P53 signaling pathway (Fig. 

4.26).   

 

 

Figure 4.26 Inhibition of A375 melanoma colony formation via P53 signaling pathway 

(drived from the KEGG-pathway analysis).  Silencing of PAX3 activation of P53 and P21 to 

block CCNB1/CDK2, which in turn can prevent TGFβ3 from inhibiting transformed A375 

melanoma cell growth in soft agar.  Likewise, PAX3 silencingdirectly inhibits TGFβ3 and 

prevents its block of A375 melanoma cell growth in soft agar. 

 

 

Inhibition of A375 colony reproducibility resulting from apoptosis of A375 cells relates 

to the increasing expression of apoptosis inducing genes (Table 4.4) and decreasing 

expression of apoptosis inhibitotry genes (Table 4.3) of the microarray data.  
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Knockdown of PAX3 probably induced direct inhibition of TGFβ3 expression to block 

the growth of transformed A375 melanoma cells. Likewise, PAX3 silencing also induced 

increased P53 expression, which in turn up-regulated P21 expression to block 

CCNB1/CDK2, which in turn blocked TGFβ3, resulting in the inhibition of transformed 

A375 melanoma cell growth. This discovery is suggestive of PAX3 being a suitable 

therapeutic target for inhibiting transformed (melanoma) cells. These experiments show 

that PAX3 is possibly acting more as a survival factor for transformed cells. 

 
 

4.13.7. Suppression of PAX3 Induced A375 Cell Apoptosis 
 

Evasion of apoptosis is one of the mechanisms used by PAX3 for the benefit of 

melanoma.   Following knockdown of PAX3, the microarray analysis data demonstrates 

decreased expression of five apoptosis inhibitory genes (BCL2, BNIP3, FAIM, 

TNFRSF19 and TUBB2C) (Table 4.3). On the contrary, increased expression of ten 

apoptosis promoting genes was shown (AEN, CASP3, CASP4, CASP7, KITLG, MCL1, 

P53, PTEN, SENP5 and TRIB3C) (Table 4.4). The observed variations in the expression 

of these genes may perhaps play contributory roles in induction of A375 melanoma cell 

apoptosis. 

 

After PAX3 knockdown, assessment of the role of PAX3 in the induction of A375 

melanoma cell apoptosis using the indirect caspase 3/7 activity assay, demonstrated 

significant high caspase 3/7 activity in the PAX3-siRNA transfected cells compared to a 

low caspase 3/7 activity in the NC-siRNA transfected A375 cells (p < 0.01) (Fig. 4.21).  

The direct apoptosis DeadEnd™ Fluorometric TUNEL assay verified the above 

experiments. The PAX3-siRNA transfected cells in combination with staurosporine, 

demonstrated significantly greater numbers of apoptotic nuclei compared to either the 

NC-siRNA transfected cells  (negative control) the staurosporine induced apoptotic cells 

(positive control) (p < 0.01) (Figs. 4.22 and 4.23).  This result firstly demonstrates that 

inhibition of PAX3 in PAX3-siRNA treated cells plays a crucial role in the induction of 

A375 melanoma cell apoptosis and secondly indicates that PAX3 uses two different 

pathways in both induction and inhibition of apoptosis.  PAX3 expression was inversely 

correlated with the expression of some of its downstream targets. For instance, in 

regulating cell apoptosis, the up-regulation of PAX3 expression decreases PTEN and 
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increases BCL2 expression to inhibit cell apoptosis.  In contrast to this present study, the 

down-regulation of PAX3 expression decreases BCL2 and increases PTEN expression to 

induce apoptosis. In the PAX3-siRNA transfected A375 cells, PAX3 utilised the PTEN 

pathway to induce apoptosis. Thus, knockdown of PAX3 induced increased expression 

of PTEN resulting in A375 melanoma cell apoptosis. On the other hand, in the NC-

siRNA transfected A375 cells, PAX3 used the BCL2 pathway to inhibit apoptosis by 

maintaining high expression of BCL2. In this manner knockdown of PAX3 decreased 

expression of BCL2, which subsequently resulted in apoptosis of the A375 melanoma 

cells. The KEGG-pathway analysis of this present microarray data indicate that 

suppression of PAX3 induced activation of both PTEN and P53 pathways which in turn 

blocked BCL2 to induced melanoma A375 cell apoptosis (Fig. 4.27).   

 
 
Figure 4.27 Induction of A375 melanoma cell apoptosis through P53 pathway and caspase 

activation cascade.  Silencing of PAX3 induced activation of PTEN, which in turn induced the 

P53 pathway to inhibit BCL2 and induced A375 melanoma cell apoptosis.  PAX3 knockdown 

further activated SEMP5, which in turn activated CASP3 to induced apoptosis. Equally, 

repression of PAX3 induces activation of SEMP5, which in turn induces caspase activation 

cascade, which finally activate CASP3 to induce A375 melanoma cell apoptosis.  

 

 

The observed significant apoptosis of A375 cell (Fig. 4.22), confirmed by the increased 

expression of apoptosis promoting genes (Fig. 4.4) and decreased expression of 
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inhibitory genes of apoptosis (Fig. 4.3). This affected the tumourigenic characteristics of 

malignant melanoma A375 cells and induced significant reduction in prolifetation of 

A375 cells, resulting from cell death caused by PAX3 inhibition (Fig. 4.11).  

Additionally, migration of A375 cells was significantly inhibited (Fig. 4.14) as non-

proliferative cells continually unergoe apoptosis. Furthermore, colony reproducibility of 

malignant melanoma A375 cells was inhibited (Fig. 4.19), because of apoptosis of A375 

cells. 

 

 

In summary, melanoma is one of the most aggressive tumours with high metastatic 

potential (Helfrich et al., 2014). This present study demonstrates that the expression of 

PAX3 plays a crucial role in A375 metastatic melanoma. In this regard, PAX3 could 

promote the development of melanoma and maintain its tumourigenic activities.   

 

 

The techniques of siRNA-silencing, microarray analysis, semi-quantitative RT-PCR and 

western blotting demonstrated significant inhibition of expression of both PAX3 mRNA 

and protein in A375 melanoma cells and this subsequently inhibited the cellular 

activities of PAX3. Silencing of PAX3 inhibited melanoma A375 cell cycle and 

proliferation that progressively interrupted the metastatic process melanoma and 

induction of apoptosis.  Additionally, in this study for the first time, PAX3 knockdown in 

A375 melanoma cells induced remarkable alterations in expression of wide range of 

downstream targets of PAX3, which subsequently negatively affected a number of 

signaling pathways. Suppression of PAX3 expression in melanoma A375 cells reduced 

PAX3 activities resulting in a marked inhibition of the cell cycle progression.  Melanoma 

A375 cell growth was arrested at the G2 phase of the cell cycle resulting in an extensive 

inhibition of proliferation of A375 cells.   

 

 

PAX3 down-regulation decreased A375 melanoma cell attachment to various ECM 

proteins (because of repression of cell surface adhesion molecules) with a consequent 

inhibition of cell migration.  During the metastatic processes of melanoma, migration of 

A375 cells requires the expression of cell surface adhesion molecules, which were 

remarkably inhibited after PAX3 knockdown. This successively decreased the metastatic 
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invasive potential of A375 cells. Intriguingly, in this study for the first time, PAX3 

silencing induced tremendous inhibition of A375 melanoma cells to grow in soft agar 

and induced enormous apoptosis of A375 cells (hallmarks of inhibition of melanoma 

tumourigenesis). Additionally, the combination treatment approach adapted for 

demonstrating significant apoptosis of A375 melanoma cells indicates a therapeutic 

window for malignant melanoma that could target all PAX3 spliced variants. This 

present study indeed demonstrated that PAX3 is vital for the survival of melanoma and 

inhibition of PAX3 induced cell apoptosis.  In conclusion, taken together this current 

study demonstrates that the PAX3 signaling pathway, which interacts with multiple 

pathways could possibly be suitable target for a novel therapeutic treatment for 

melanoma.  
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CHAPTER 5. GENERAL CONCLUSION AND FUTURE WORK 

 

5.1. General Conclusion 

 

Human rhabdomyosarcoma is the most frequent and highly metastatic aggressive 

childhood soft tissue sarcoma accounting for approximately 5% of all malignant 

paediatric tumours (Annavarapu et al., 2013; Roomi et al., 2013). Paediatric 

rhabdomyosarcoma continues to be associated with poor patient prognosis owing to its 

morphological and genetically heterogeneous malignant nature (Jacob et al., 2013).  The 

invasive and metastatic potential of rhabdomyosarcoma are the main concern in the 

treatment and survival of patients (Oue et al., 2013).  Likewise, human melanoma is an 

equally highly metastatic and aggressive tumour that can affect all age groups (Dye et 

al., 2013). 

 
 

The oncogenic activities of PAX3/Pax3 have been well demonstrated, playing a 

significant role in contributing to the establishment, maintenance and aggressiveness of 

several tumours. Early studies showed that PAX3 expression contributes to several 

tumours, including rhabdomyosarcoma, malignant melanoma, neuroblastoma and 

Ewing’s sarcoma (Rodeberg et al., 2006).  Apart from ARMS, the expression of PAX3-

FKHR has been identified to promote Ewing's sarcoma, synovial sarcoma and 

neuroectodermal tumours (Oda and Tsuneyoshi, 2009).    

 
 

In the past, several attempts have been made to provide knowledge concerning 

PAX3/Pax3 in cancer and currently, more scientific efforts are underway to broaden our 

understanding of the cancer biology of PAX3/Pax3 (Kojima et al., 2012; Dummer et al., 

2013).  Although PAX3/Pax3 has been identified to be strongly involved in the 

tumourigenesis of rhabdomyosarcoma, melanoma, neuroblastoma, Ewing’s sarcoma and 

medulloblastoma (Barone et al., 2012; Van Gaal et al., 2013), the development of 

effective therapeuties targeting PAX3/Pax3 still poses a challenge to medical research, as 

patients’ treatment response rates are poor (Capovilla, 2013; Raciborska  et al., 2013).  

Hence, this present study was undertaken in an attempt to address some of the 

drawbacks of PAX3/Pax3 inhibition, which could perhaps be developed further in 

identifying specific biomarkers with a high predictive response, to comprehend 
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mechanisms of resistance and finally but not least, to explore strategic combination 

therapeutic regimens for a good prognostic response.   

 
 

Histology demonstrates that the biological activity of PAX3 in RMS cells also presents 

difficulties in morphological identification and classification of variants of RMS 

(Rudzinski et al., 2013).  In recent times, ERMS has been found to harbour one PAX3-

NCOA2 translocation.  The tumourigenic activity of ERMS, has been demonstrated in 

murine C2C12 myoblasts by transfecting the PAX3-NCOA2 translocated gene.  This 

characteristic of ERMS is comparable with the PAX3-FOXO1 observed in ARMS 

(Yoshida et al., 2013). 

 

 

The formation of chimeric proteins resulting from the translocation of PAX3/Pax3 and 

its interaction with other multiple downstream molecules enhances the oncogenic 

activities of PAX3, especially in the aggressive tumours (Parham and Barr, 2013).  

Clinically, PAX3-FOXO1 contributes to the poor prognosis for ARMS patients (Skapek 

et al., 2013).  In ARMS cells, thapsigargin induced inhibition of tumourigenic activity of 

PAX3-FOXO1, via the AKT signaling pathway as a presumed therapeutic target, 

resulted in apoptosis (Jothi et al., 2013).  PAX3-FOXO1 chimeric proteins augment the 

tumourigenic activity of PAX3, which has the potential for increasing expression of 

downstream targets including myogenic markers such as MYOD and MYOG (Yuan et 

al., 2013). In ARMS cells, PAX3-FOX01 modulates its downstream targets by 

increasing expression of MYOD1, DAPK1 and GREM1.  Decreased expression of HEY1 

caused up-regulation of MYCN (Ahn, 2013).  The chimeric protein of PAX3-FOXO1A 

transfected into murine satellite cells inhibited terminal differentiation of those cells 

through repression of myogenin (Calhabeu et al., 2013).   

 
 

In primary myoblasts and RH30 ARMS cells, increased expression of NOXA expression 

induced apoptosis following up-regulation of PAX3-FOXO1 expression (Marshall et al., 

2013).  In vivo suppression of IGFBP2 as a downstream target of PAX3 in an IGF1R 

antibody-resistant rhabdomyosarcoma cell model, induced inhibition of both the IGF 

signaling pathway and AKT activation (Kang et al., 2013).  Repression of Rb1 in a 
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rhabdomyosarcoma mouse model, modified tumour progression and enhanced both 

anaplasia and pleomorphism, making identification of rhabdomyosarcoma variants 

difficult (Kikuchi et al., 2013).  The tumourigenic activity of PAX3-FOXO1 in ARMS 

cells has been identified to be augmented by increased expression of EZH2, whilst 

repression of EZH2 inhibits the cellular activities of PAX3-FOXO1 and induces 

apoptosis (Ciarapica et al., 2013).  Increased expression of anaplastic lymphoma kinase 

enhanced PAX3/7-FOXO1 tumourigenic activities in cells of patients with 

rhabdomyosarcoma resulting in unfavourable outcomes (Bonvini et al., 2013). In a 

related study, histology of Asian patients with metastatic rhabdomyosarcoma, 

demonstrated high expression of anaplastic lymphoma kinase as a diagnostic marker of 

metastatic rhabdomyosarcoma (Lee
3
 et al., 2013).   

 
 

In ARMS, neuroblastoma and Ewing’s sarcoma cells, fenretinide effectively interrupted 

PAX3-FOXO1 tumourigenic activity and induced apoptosis (Herrero et al., 2013).  

Lately in RH30 ARMS cells, the expression of FKHR-PAX3 as a reciprocal gene of 

PAX3-FOXO1, increases expression of PAX3-FKHR, does not only contribute to 

ARMS but also promotes its tumourigenic activity by augmenting proliferation, 

migration, invasion and transformation ability (Hu et al., 2013). Most cases of metastatic 

rhabdomyosarcoma are associated with chemoresistance to multiple chemotherapeutic 

agents such as doxorubicin, ifosfamide, dacarbazine; gemcitabine, paclitaxel; vincristine, 

actinomycin D, cyclophosphamide and gemcitabine-paclitaxel resulting in patients’ 

death (Haider et al., 2013). Since there is a poor event-free survival rate for recurrent 

ARMS, a therapeutic combination regime with using vincristine, irinotecan and 

temozolomide has been tried recently (Mixon et al., 2013).  In chemoresistant metastatic 

recurrent Ewing’s sarcoma, a combination treatment regimen consisting of vincristine, 

irinotecan and temozolomide gave a good prognosis (Raciborska et al., 2013). 

 
 

PAX3 regulates melanocyte development and it is involved in the maintenance and 

survival of melanoma through induced increased expression of TBX2 as a direct 

downstream target (Liu
2 

et al., 2013).  In melanoma, increased PAX3 expression induced 

cell proliferation and inhibition of apoptosis through downstream modulation of the 

mitogen activated protein kinase pathway (Smith et al., 2013). PAX3/Pax3 can induce 
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melanoma cell proliferation and invasion through downstream regulation of Brn-2 

(Bonvin et al., 2012).  Recently in melanoma patients, circulating tumour cells have 

been identificated in addition to PAX3 as a biomarker for the determination of prognosis 

(Kiyohara et al., 2013).  In mouse primary melanoma, high PAX3 expression has been 

identified in addition to CCND1, STAT3, MITF and TYR as diagnostic indicators 

(Makhzami et al., 2012). The expression of PAX3 plays a contributory role in melanoma 

chemoresistance to chemotherapeutic regimes.  Particularly, PAX3 increased expression 

of STAT3 to promote melanoma resistance to vemurafenib treatment, which resulted in a 

good prognosis during initial treatment (Liu
1 

et al., 2013). In human medulloblastoma 

cells, expression of murine Pax3 induced adhesion through increased expression of 

neural cell adhesion molecules (Mayanil et al., 2000). PAX3 expression promoted 

glioma cell proliferation whilst knockdown of PAX3 inhibited proliferation, invasion 

and induction of glioma cell apoptosis (Xia et al., 2013).   

 

 

Neuroblastoma has been characterized generally as having a poor prognosis, although 

metastatic neuroblastoma is more common in older children. Usually, the age of a  

patient and the stage of tumour progression are commonly used as prognostic indicators 

for neuroblastoma (Maris, 2010). Recently, high expression of Sam68 observed in 

neuroblastoma, which correlates with metastatic neuroblastoma appeared to be a 

valuable diagnostic prognostic tool (Zhao
2
 et al., 2013). In the treatment of 

neuroblastoma, the chemotherapeutic regimens presently used are aimed at inducing 

apoptosis through the activation of important elements in the apoptosis signaling 

pathways (Van Noesel and Versteeg 2004; Fangusaro et al., 2006). However, aggressive 

neuroblastoma can use dysregulation of these pathways as a self-defence against broad 

chemotherapeutic agents. Defects in the key elements of the apoptotic pathways, 

including caspases, P53, BCL-2, survivin and aberrant MYCN expression are the main 

contributory factors in chemoresistant neuroblastoma (Goldsmith  et al., 2012; Barone et 

al., 2013). Treatment of neuroblastoma has been associated with a poor prognosis, 

because patients respond briefly to therapeutic agents, after which recurrence occurs 

with a fatal chemoresistant neuroblastoma (Modesto et al., 2013; Fang et al., 2014). The 

survival rate of high-risk neuroblastoma patients is less than 30%, even though rigorous 
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effective multimodal therapies are being used (Fechete et al., 2011; Goldsmith et al., 

2012;).  

 

 

This present study investigated the oncogenic potential role of PAX3 in the two main 

subtypes of human rhabdomyosarcoma embryonal rhabdomyosarcoma the JR1 cell line 

and the alveolar RH30 cell line, as well as in an A375 melanoma cell line and possible 

potential strategic therapeutic targets.  

 

 

The expression of PAX3 was down-regulated in JR1, RH30 and A375 cell lines utilising 

siRNA technology.  PAX3-siRNA transient transfection induced significant inhibition of 

PAX3 mRNA expression in JR1, RH30 and A375 cell lines, and demonstrated that the 

different spliced variants of PAX3 present unique biological functions in 

rhabdomyosarcoma and melanoma, which may perhaps require different therapeutic 

interventions. Pre-designed PAX3-siRNA transient transfection induced a continual 95% 

and 98% inhibition of JR1 cell line PAX3 mRNA and PAX3 protein expression 

respectively for four days.  Similarly, a persistent 90% and 92% repression of PAX3 

mRNA and PAX3 protein expression respectively was observed in the RH30 cell line.  

Whereas in the A375 cell line, 90% inhibition of both PAX3 mRNA and protein 

expression was demonstrated. 

 

 

Semi-quantitative RT-PCR demonstrating the seven spliced variants of PAX3 (PAX3a-h) 

showed evidently different PAX3 mRNA expression patterns in both JR1 and RH30 cell 

lines. Overall, JR1 cell line cells anticipated to be less aggressive showed higher 

inhibition of PAX3 compared to the expected highly aggressive rhabdomyosarcoma 

RH30 cell line and the A375 malignant melanoma cell line. Interestingly, the 

expressions of the various PAX3 variants in the JR1 cell line was almost completely 

inhibited compared to RH30 and A375 cell lines.  In the JR1 cell line, a decreasing order 

of residual expression pattern of PAX3 spliced transcript variants were demonstrated; 

PAX3d, PAX3g, (PAX3a, PAX3c PAX3e and PAX3h) and PAX3b.  Whereas in the RH30 

and A375 cell lines; PAX3d, PAX3e, PAX3a, (PAX3c and PAX3h) and PAX3b in 

decreasing order of residual expression was observed.  Likewise, the parallel inhibition 
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of PAX3 protein in JR1, RH30 and A375 cell lines demonstrated by western blotting, 

conformed the patterns of inhibition of PAX3 mRNA. Additionally, this study indeed 

demonstrates PAX3 functional modulation of crucial downstream targets including P53, 

P21, C-MYC, MYOD1, ITGβ5, CASP3 and BCL2 as proven by the western blotting.   

 

 

This present study confirmed the primary activity of PAX3 in the regulation of cell cycle 

and proliferation as one of the control mechanisms, used in promoting 

rhabdomyosarcoma and melanoma tumour growth and maintenance as previously 

established in various investigations. However, this study further demonstrates that 

down-regulation of PAX3 impedes the cell cycle and proliferation regulatory 

mechanisms as well as inhibition of other cellular oncogenic control activities of PAX3 

including metastatic rhabdomyosarcoma and melanoma cell migration, adhesion, 

invasion and induction of apoptosis. 

 

 

Knockdown of PAX3 expression in JR1, RH30 and A375 cell lines, impaired PAX3 

activities by a drastic blockage of the cell cycle progression with a consequential 

inhibition of proliferation in the pre-designed PAX3-siRNA transfected JR1, RH30 and 

A375 cell lines, compared to the negative control siRNA transfected cells.  A G1 phase 

growth arrest in the cell cycle ensued a markedly inhibition of proliferation of JR1, and 

RH30 cell lines and a G2 arrest occurred in the A375 cell line.  The extent of inhibition 

of cell proliferation was evident in the microarray data of down-regulation of several 

interacting molecules, which are being used by PAX3 to regulate diverse aspects of the 

cell proliferation and cell cycle pathways. 

 
 

Knockdown of PAX3 prominently diminished JR1, RH30 and A375 cell line adhesion 

potential to a number of ECM proteins because of inhibition of cell surface adhesion 

molecule expression.  The latter are utilised by PAX3 to regulate different aspects of the 

metastatic pathway and this subsequently impaires cell migration. Since mobility of cells 

requires attachment of cell surface molecules to epithelial surfaces, JR1, RH30 and 

A375 cell migration was tremendously inhibited following PAX3 knockdown, which 

subsequently impaired the metastatic invasive potential of JR1, RH30 and A375 cell 
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lines.  In view of the fact that migration of cells is central in the metastatic process, 

inhibition of cell migration through endothelial surfaces has debilitating consequences 

on invasion.  Intriguingly, knockdown of PAX3 enormously inhibited JR1, RH30 and 

A375 cell lines invasion.   Fascinatingly, for the first time, the down-regulation of PAX3 

increased apoptosis in JR1, RH30 and A375 cell line (as a hallmark of cancer treatment), 

subsequently resulted in significant inhibition of cell proliferation, cell cycle, cell 

migration and colony reproducibility. 

  
 

Analysis of the Affymetrix GeneChip human genome microarray demonstrated 

variations in gene expression patterns between PAX3 knockeddown rhabdomyosarcoma 

cells and negative control siRNA transient transfected cells.  Remarkably, the array 

discovered that over two hundred signalling pathways were extensively altered 

following PAX3 knockdown in rhabdomyosarcoma and melanoma cells.  Interestingly, 

most of the major affected signalling pathways were cell cycle and cell proliferation 

related, emphasising that inhibition of PAX3 negatively regulated these altered signaling 

pathways, and confirming that PAX3 is certainly associated with regulation of the cell 

cycle and proliferation. Quantitative PCR and western blotting validated a selected 

number of microarray data.  The array data further revealed other PAX3 target genes that 

have not been investigated in embryonic developmental studies, which implies that 

PAX3 may perhaps employ additional unusual signaling pathways to facilitate its 

cellular functional activities for tumour growth progression and maintenance.   

 
 

This current study demonstrates for the first time that PAX3 is vital for the development 

of rhabdomyosarcoma and melanoma by modulating several essential signaling 

pathways, which signifies that PAX3 may have other functional characteristics that may 

be a possible novel therapeutic target for the treatment of rhabdomyosarcoma and 

melanoma.  Expression of PAX3 is mainly observed during embryogenesis as well as in 

malignant cells, and is absent in adult differentiated tissues. This implies that in 

rhabdomyosarcoma and melanoma, anti-PAX3 therapeutic regimens that are perhaps 

formulated to avoid cytotoxicity effects on normal cells, can be selectively targeted at 

cancer cells. Additionally, several presumed PAX3 downstream target genes, which 

perhaps augment PAX3 tumourigenic activity including, CDC25A, CDC25B, CDK2, 



265 
 

CCDE1, BRCA1, MYCN, RB, TGFβ3, ITGβ5, MMP2, MET, REC, PCDH18, BCL2, 

CYB5B and FAIM, which have oncogenic potential and which could induce therapeutic 

resistance would be promising targets for the development of novel therapeutic schemes. 

Consequently, anti-PAX3 therapeutic regimes for the treatment of tumours, which have 

the capacity to target the activities of multiple oncogenes including suppression of 

tumour intrinsic networks, are therefore, more potent, effective and promising 

therapeutic strategies in oncology. 

 

 

Conversely, other vital therapeutic questions concerning treatment of aggressive 

rhabdomyosarcoma and melanoma continue to present a clinical challenge concerning 

the spliced variants of PAX3.  Each PAX3 spliced variant presents a unique oncogenic 

attribute in rhabdomyosarcoma and melanoma and counteract to effective treatment.  

This problem requires intensive research on selective therapeutic target schemes specific 

for targeting the signaling pathways connected to individual PAX3 spliced variants.  

 

 

Furthermore, this study represents an in vitro inhibition of PAX3. Hence, in vivo 

assessment of the anti-cancer effect of PAX3 inhibition will be vital to establish the 

therapeutic potential.  Since, the expression of PAX3 has been observed in specific stem 

cells such as muscle satellite cells and melanocyte cells, it is unclear whether anti-PAX3 

therapy, particularly long-term therapeutic schemes will have a consequential effect on 

the viability of these normal stem cells and tissue regeneration.   

 

 

The combination strategy of inducing apoptosis, which has been tried in this study, 

seems to target both PAX3 and its downstream genes, which facilities PAX3 cellular 

activities. The induced apoptosis observed in this study affirms the effectiveness of 

combination chemotherapeutics that are currently underway in several studies. A 

collective analysis of this present study regarded the PAX3 signaling pathway as a 

possible target for the development of effective and potent therapeutic regimes for  

rhabdomyosarcoma and melanoma treatment.  The microarray analysis data of this 

present study showed very many significantly up/down-regulated genes, demonstrating 

the importance of PAX3 in regulating the majority of genes expressed in these cell types 



266 
 

(ARMS, ERMS and melanoma). An interesting aspect of this study was that all the 

results were positively correlated and very consistent with one another with the 

exception of some qRT-PCR analysis results.  

 

 

The pattern of gene expression in the microarray analysis data corroborated all the 

results of the functional assays.  Even though the microarray data demonstrated a high 

level of PAX3 knockdown in the melanoma A375 cells compared to the relatively lower 

PAX3 knockdown in the rhabdomyosarcoma JR1 and RH30 cell lines, a higher number 

of significantly down-regulated genes was revealed in the rhabdomyosarcoma JR1 and 

RH30 cell lines than in the melanoma A375 cells.  A higher number of cell proliferation 

and cell cycle promoting genes were down-regulated in the rhabdomyosarcoma JR1 and 

RH30 cell lines compared to the melanoma A375 cell line.  Likewise, a higher number 

of genes that promote cell migration, adhesion and invasion were down-regulated in the 

rhabdomyosarcoma cell lines than in the melanoma cell line. Fascinatingly, the 

apoptosis inhibitory genes were equally down-regulated in both melanoma and 

rhabdomyosarcoma cell lines and this confirmed the patterns of increased cell apoptosis 

in all the cell lines observed in this present study.  

 

 

This study demonstrates that, PAX3 utilises various molecular pathways in regulating the 

tumourigenic activities of rhabdomyosarcoma, melanoma and neuroblastoma.  This was 

evident by different pattern of alterations of molecules in the microarray data of the 

rhabdomyosarcoma, melanoma and neuroblastoma cell lines after PAX3 down-

regulation. The myogenic differention factor, SMAD2, was inhibited in both 

rhabdomyosarcoma and melanoma cell lines, as opposed to the activation of SMAD2 in 

the neuroblastoma cell lines. This showed that the repression of SMAD2 possibly 

influenced the inhibition of cell proliferation and apoptosis observed in the 

rhabdomyosarcoma and melanoma cell lines, but did not in the neuroblastoma cell lines.  

Interestingly, PAX3 silencing induced the activation of FOXO1 in both 

rhabdomyosarcoma and neuroblastoma cell lines, compared to the inhibition of FOXO1 

in melanoma cell line.  This implies that, the inhibition of PAX3 could possibly suppress 

the myogenic differentiation activity of FOXO1 in the melanoma cell line, (which 

presupposes that the myogenic activities of both PAX3 and FOXO1 depend on each 
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other), whereas inhibition of PAX3 in both rhabdomyosarcoma and neuroblastoma cell 

lines, enhances the myogenic differentiation activity of FOXO1 in these cell lines.  

Similarly, the activation of HES1 expression in  both JR1 and RH30 rhabdomyosarcoma 

cell lines, compared to the inhibition of HES1 in the A375 cell line, indicates that the 

perhaps the myogenic differentiation activity of HES1 in the A375 melanoma cell line 

depends on PAX3, whereas the myogenic activity of HES1 in the JR1 and RH30 

rhabdomyosarcoma cell lines is possibly enhanced by PAX3 inhibition.  Intriguingly, the 

inhibition of ADAM23, MYOD1 and MYOG4 expression in both rhabdomyosarcoma and 

melanoma cell lines, demonstrates that the differentiation and myogenic activities of 

these genes might be influenced by PAX3 in these cell lines.  The down-regulation of 

two tumour metastatasis molecules, COL3A1 and NID1 in both rhabdomyosarcoma and 

melanoma cell lines was in contrast to the up-regulation of COL3A1 and NID1 in the 

neuroblastoma cell lines. This indicates that, the suppression of COL3A1 and NID1 in 

the rhabdomyosarcoma and melanoma cell lines, possibly contributed directly to the 

metastatic inhibition observed in these cell lines. By contrast, the inhibition of 

neuroblastoma metastatasis might not be induced directly by COL3A1 and NID1.  

 

 

Similarly, activation of caspase 3 in the rhabdomyosarcoma and melanoma cell lines as 

well as in the SH-SY5Y neuroblastoma cell line, was in contrast to caspase 3 inhibition 

in the SH-EP1 neuroblastoma cell line. This suggests that, with the exception of the SH-

EP1 neuroblastoma cell line, caspase 3 possibly promoted apoptosis unequivocally as 

observed in these cell lines.  Likewise, the inhibition of BCL2 in the rhabdomyosarcoma 

and melanoma cell lines as well as the SH-EP1 neuroblastoma cell line, was in contrast 

to the actication of BCL2 in the SH-SY5Y neuroblastoma cell line. These 

inconsistencies established that BCL2 expression does not perhaps influence apoptosis 

of the SH-SY5Y neuroblastoma cell line, but may influence apoptosis of the JR1, RH30, 

A375 and SH-EP1 cell lines. 

 
 

Interestingly, the patterns of gene expression verified by the qRT-PCR analysis were 

similar to the microarray analysis data with the exception of few inconsistencies. For 

instance, a few genes that were down-regulated in the microarray data of JR and RH30 

rhabdomyosarcoma cell lines such as MCM3 and PCNA, were up-regulated in the 
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microarray data of A375 melanoma cell line.  Likewise, CXCR4 and JAM2 expression 

were down-regulated in both microarray and qRT-PCR data of A375 melanoma cell 

line, whilst up-regulated in both microarray and qRT-PCR data of the JR1 and RH30 

rhabdomyosarcoma cell lines.  In the A375 cell line, the expression of MCM3, E2F7, 

E2F8 and PCNA were up-regulated in the microarray data and down-regulated in the 

qRT-PCR data. Generally, the microarray data demonstrated higher fold-change of gene 

expression than the qRT-PCR data in both rhabdomyosarcoma and melanoma cell lines. 

Most of the qRT-PCR data of the A375 melanoma cell line were less than 1.5-fold 

changed compared to the JR1 and RH30 rhabdomyosarcoma cell lines, which showed 

higher than 1.5-fold changes.  

 

 

Even though this current study demonstrated a coherent result pattern between the 

various methodologies, its main drawback was the failure of the qRT-PCR analysis in 

confirming the expression of BRCA1 and POLA2, out of the 55 selected genes from the 

microarray analysis data for verification by the qRT-PCR analysis.  In attempt to rectify 

this shortcoming, different freshly ordered primers, which were used also failed after 

three repetitions.  The observed limitation in the qRT-PCR analysis of these genes was 

attributed probably to a poor primer quality from manufacturers. To address this 

inadequacy in the future work, primers from different manufacturers could be tried.  

 
 

In summary, this present study significantly down-regulated PAX3 in both JR1 and 

RH30 rhabdomyosarcoma cell lines and the A375 melanoma cell line. The cellular 

activity of PAX3 was substantially inhibited. For instance, PAX3 siRNA-silencing 

inhibited JR1, RH30 and A375 cell growth and proliferation, which was indicative of 

inhibition of progression of these tumours. The metastatic activity of PAX3 was 

inhibited in these cell lines, which was demonstrated by the inhibition of cell migration, 

adhesion and invasion. At this stage, both rhabdomyosarcoma and melanoma were 

blocked from progressing and metastatic invasion of distant sites.  The siRNA inhibition 

further exerted its effects on the apoptotic signaling pathways (usually regulated by 

PAX3 to maintain the survival of these tumours) by inhibiting apoptosis.  Interestingly, a 

block of PAX3 in these tumour cell lines induced both extrinsic and intrinsic apoptotic 
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pathways as the hallmarks of cancer treatment.  In conclusion, targeting of PAX3 in this 

manner may provide a perfect mode of inhibiting rhabdomyosarcoma and melanoma.  

 

 

The results of this study, which implicates PAX3 involvement in rhabdomyosarcoma and 

melanoma, suggest that down-regulation of tumourigenic activities of PAX3 in vivo 

using chemotherapeutic agents will perhaps enhance effective treatment of both 

rhabdomyosarcoma and melanoma.  It is intended to further analyse the results of our 

larger group study where PAX3 down-regulation in rhabdomyosarcoma is compared 

with up-regulation in myoblasts, PAX3 down-regulation in melanoma is compared with 

up-regulation in melanocytes and PAX3 down-regulation in neuroblastoma is compared 

with up-regulation in neural stem cells. However, this meta-analysis is beyond the scope 

of this study. 

 

 

5.2. Future Work 

 

PAX3 expression provides both protective and survival mechanisms for 

rhabdomyosarcoma and melanoma and could prevent long-term chemotherapeutic 

effectiveness, with consequential patient mortality. Conversely, down-regulation of 

PAX3 expression with subsequent monitoring of cellular function, will invariably 

promote tumour cell apoptosis improving patients’ survival.  It is essential therefore, to 

carry out a series of monitoring experiments following PAX3 down-regulation, which 

could be suitable as an effective monitor during chemotherapy as, outlined below.  

 

 

1. To stably transfect PAX3-pBABE HAER inducible plasmid vector DNA into murine 

myoblast cell line C2C12. The pBABE retroviral plasmid DNA vector backbone, which 

has been widely used for reliable transfer and maintenance of stable exogenous gene 

expression in human cell lines as an advantage over small interference messenger RNA 

(siRNA), since it can then be silenced using siRNA, to decrease the expression of target 

genes both in vitro and in vivo (Patel et al., 2012). 

 

2. To identify the PAX3/Pax3 variants in a PAX3-pBABE HAER plasmid vector 

previously extracted from competent transformed E. coli DH5α cells (See appendix A). 
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3. To confirm PAX3/Pax3 variants in a murine C2C12 myoblasts cell line and 

subsequently down-regulate PAX3 expression using siRNA silencing. 

 

4.  To determine the effects of PAX3 siRNA knockdown in murine C2C12 myoblasts on 

downstream targets using microarray analysis.  

 

5.  To evaluate the effects of PAX3 knockdown on cell growth and proliferation, cell 

migration, adhesion, invasion, transformation and cell apoptosis. 

 

6.  To carry out in vivo tamoxifen treatment studies on cultured PAX3-pBABE HAER 

clones after switch off or on of PAX3 gene expression using the optimized siRNA 

silencing methodology.  A vector can be switched on or off easily (more easily than 

doing transfection studies).  A vector is more stable for few months than siRNA, which 

only lasts for few days. Tamoxifen, which has been widely used as anti-oestrogen 

metabolite in previous studies, effectively antagonizes oestrogen and oestrogen 

receptors, thereby inhibiting cell growth with consequent effects on downstream gene 

expression (Ishiguro et al., 2012; Li
3
 et al., 2013).  

 

7. To determine the effects of tamoxifen induced PAX3 inhibition on cell proliferation, 

migration, adhesion, invasion, transformation and apoptosis. 

 

8. To perform microarray analysis of tamoxifen induced PAX3 inhibition in the C2C12 

murine myoblast cell line. 

 

9. To compare the results of PAX3-pBABE HAER vector tamoxifen down-regulation of 

PAX3 expression in murine myoblasts with the results of siRNA down-regulation of 

PAX3 expression in rhabdomyosarcoma, melanoma and neuroblastoma cell lines.  

10. Once the PAX3-pBABE HAER vector system is established, it will be very easy to 

understand the mechanism of action of drugs against these tumours. 
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Appendix A : Map of  Inducible PAX3-PBabe HAER plasmid vector  
 

 
 

PAX3-PBabe-HAER plasmid vector DNA and PBabe-HAER empty plasmid vector were 

constructed by Kristian Helin and Karin Holm of the Biotech Research and Innovation 

Centre (BRIC).  The PBabe puro backbone plasmid was cloned with a modified 

oestrogen receptor (ER) and PAX3 gene HA-tag.  PAX3-PBabe-HAER plasmid of a 

reading frame of GGA TCC was then cloned into the BamH site to put ORFs with an 

HA-tagged ER on the N-terminus. 

 

Appendix B: PAX3-PBabe HAER Plasmid DNA and empty vector PBabe HAER 

plasmid DNA 

Both PAX3-PBabe-HAER and empty vector PBabe-HAER plasmid DNA were 

recovered from a whatman filter paper and then used to transform a competent E.coli 

DH5α strain cells that were previously prepared using the calcium chloride protocol 

(Sambrook and Russel, 2002).  Triplicates extracted PAX3-PBabe-HAER plasmid DNA 

(test) and empty vector plasmid DNA (negative control) showed three consistent non-

degraded DNA bands of different sizes, consist of an open circular DNA (~23,130bp) 

undergoing DNA synthesis (Fig A-A), relaxed open circular DNA (~20000bp) (Fig A-

B) and a super coiled DNA with PAX3 insert (~6500bp) (Fig A-C). Extracted triplicate 

empty vector plasmid DNA also showed two consistent non-degraded DNA bands made 

up of relaxed open circular DNA(~20000bp) (Fig A-D) and super coiled DNA 

(~4361bp) (Fig A-E). 
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Figure A 0.8% Agarose gel, ethidium bromide stained of extracted PAX3-PBABE 

HAER plasmid DNA. Lane M: Lambda DNA HindIII marker (125bp-23.1 kb);   Lanes 

1-3: PAX3-PBabe HAER Plasmid DNA; Lanes 4-6: Empty plasmid DNA.  A. PAX3-

PBabe HAER plasmid DNA consists of open circular DNA undergoing DNA synthesis 

(~23,130bp).  B. Relaxed open circular DNA (~20000bp) and C. Super coiled DNA with 

PAX3 insert (~6500bp). D. Extracted empty plasmid vector DNA consist of relaxed open 

circular DNA (~20000bp) and E. Super coiled DNA without PAX3 insert (~4500bp) 
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APPENDIX C: PREPARATION OF WORKING SOLUTIONS 

 

Sample Buffer 

Tris-base                                                                                                                     1.51g 

SDS                                                                                                                                  4g 

DDH2O                                                                                                                        25ml 

Glycerol                                                                                                                       20ml 

PH                                                                                                                                   6.8 

2-mercaptoethanol                                                                                                       10ml 

Bromophenol blue                                                                                                    0.004g 

H2O                                                                                                                            100ml 

Filtered and freeze until used 

 

1.51g Tris-base and 4g SDS  were weighed and dissolved in 25ml ddH2O with a 

magnetic stirrer in a clean 200ml beaker. 20ml glycerol was added, mixed with a 

magnetic stirrer to form homogenous mixture and PH adjusted to 6.8.  10ml 2-

mercaptoethanol, 0.004g bromophenol blue and 100ml ddH2O was added and stirred to 

mix well.   The mixture was filtered and aliquots were frozen until used.                                                               

 

Separation Buffer 

SDS                                                                                                                                  1g 

Tris-base                                                                                                                     45.4g 

DDH2O                                                                                                                      250ml 

PH                                                                                                                                   8.8 

Store at RT 

 

1g SDS and 45.4g Tris-base were weighed and dissolved in 250ml ddH2O with a 

magnetic stirrer in a clean 250ml beaker to form homogenous mixture and PH adjusted 

to 8.8.  The mixture was stored at RT until used  

 

Stucking Buffer 

SDS                                                                                                                                  1g 

Tris-base                                                                                                                        15g 

H2O                                                                                                                            250ml 

PH                                                                                                                                   6.8 

Store at RT 

 

1g SDS and 15g Tris-base were weighed and dissolved in 250ml ddH2O with a magnetic 

stirrer in a clean 250ml beaker to form homogenous mixture and PH adjusted to 6.8.  

The mixture was stored at RT until used  
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Electrode Buffer 

Tris-base                                                                                                                   12.02g 

SDS                                                                                                                                  4g 

Glycine                                                                                                                      57.68g 

H2O                                                                                                                                  2L 

Store at                                                                                                                            RT 

 

12.02g Tris-base, 4g SDS and 57.68g glycine were weighed and dissolved in 2L ddH2O 

with a magnetic stirrer in a clean beaker to form homogenous mixture.  The mixture was 

stored at RT until used.                                                               

 

Towbin Buffer 

Tris-base                                                                                                                       1.5g 

SDS                                                                                                                           0.167g 

Glycine                                                                                                                          7.2g 

Methanol                                                                                                                      75ml 

H2O                                                                                                                            500ml 

PH                                                                                                                                   8.3 

Store at RT 

 

1.5g Tris-base, 0.167g SDS and 7.2g glycine were weighed and dissolved in 75ml 

methanol with a magnetic stirrer in a clean beaker to form homogenous mixture.  500lm 

ddH2O was added, well mixed and PH adjusted to 8.3.  The mixture was stored at RT 

until used.        

 

Persulphate 

APS                                                                                                                           100mg 

ddH2O                                                                                                                            1ml 

Store at                                                                                                                           4°C 

 

100mg APS was weighed, dissolved 1ml ddH2O and stored at 4°C until used. 
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TBS-Tween 

Tris-base                                                                                                                   2.422g 

Nacl                                                                                                                           16.36g 

H2O                                                                                                                                  2L 

Tween                                                                                                                            2ml 

PH                                                                                                                                   7.4 

Store at                                                                                                         RT for 10 days 

 

2.422g Tris-base and 16.36g SDS were weighed and dissolved in 2L of ddH2O with a 

magnetic stirrer in a clean beaker.  2ml tween 20 added, well mixed and PH adjusted to 

7.4.  The mixture was stored at RT for 10 days.                                               

 

1% Bovine Serum Albumin 

BSA                                                                                                                                 1g 

TBS-tween                                                                                                                 100ml 

PH                                                                                                                                   7.4 

Store at                                                                                                                           4°C 

 

1g BSA was weighed, dissolved in 100ml TBS-tween and PH adjusted to 7.4.  The 

mixture was stored at 4°C until used 

 

5% Milk 

Dry non-fat milk                                                                                                              5g 

TBS-Tween                                                                                                               100ml 

PH                                                                                                                                   7.4 

Store at                                                                                                         4°C for 1 week 

 

5g dry milk was weighed, dissolved in 100ml TBS-tween and PH adjusted to 7.4.  The 

mixture was stored at 4°C for 1 week until used. 

 

ECL Working Solution 

ECL solution A                                                                                                              1ml 

ECL solution B                                                                                                               1m 

 

Equal volumes of ECL solutions A and B were mixed and used immediately. 
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0.8 % Agarose 

Agarose                                                                                                                         0.8g 

1 in 10 TBE                                                                                                               100ml 

 

1.5% Agarose 

Agarose                                                                                                                         1.5g 

1 in 10 TBE                                                                                                               100ml 

 

0.8g or 1.5g agarose powder was weighed into a cleaned beaker containing 100ml of 

diluted TBE buffer and microwaved at 1 horsepower for 2 min to completely dissolve 

the agarose powder. The mixture was allow to cool to 60º at RT and then agarose gels 

were casted and allowed to cool at RT for 30 min.  

 

5% Stock Agar 

Agar                                                                                                                     5g 

DDH2O                                                                                                            100ml 

 

5g agar powder was dissolved in 100ml of ddH2O in sterile bottle  and microwaved at 1 

horsepower for 2 min to completely dissolve the agar powder.  The mixture was tightly 

closed, allowed to cool to 50ºC at RT for 30 min and the stored at 4ºC until used. 

 

0.8% Agar base 

5% Stock Agar                                                                                                 0.8ml 

DDH2O                                                                                                          99.2ml 

 

In a safety cabinet, 99.2ml sterile ddH2O was mixed with 0.8ml stock ager and 5ml of 

the mixture dispensed into 38 well plates and the stored at 4ºC until used. 

 

0.3% top Agar 

5%  stock Agar                                                                                                       0.3ml 

DMEM suspension cells                                                                                    99.7ml 

 

In a safety cabinet, 99.7ml DMEM discrete suspension a cell was mixed with 0.3ml 

warmed stock ager (at 37ºC).  0.5ml of the mixture was dispensed onto the 0.8% ager 

base in 38 well plates previously warmed at 37 ºC in the incubator.  The cells were 

allowed to settle for 10 min and then incubated at 37 ºC. 

 

 


