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Abstract 

This thesis contains a series of studies that report, for the first time, the 

congruence between physical, imagined and observed movement though a range of 

eye movement markers as a test of Jeannerod’s Simulation Theory (Jeannerod, 1994, 

2001). First, the eye gaze metrics of healthy young individuals across all the action-

related processes in a single paradigm is reported. The finding from this study 

suggested a temporal and spatial similarity between action execution (AE) and action 

observation (AO), and a spatial similarity between AE and motor imagery (MI). 

These findings suggest that AO could be used to simulate actions that involve a 

critical temporal element. Second, the influence of early ageing on gaze metrics was 

examined. The findings from this study indicated that whilst the profile of metrics 

for AE showed age-related decline, it was less evident in AO and MI although there 

was evidence of some age-related decline across all the three processes. Third, the 

influence of visual perspective on eye movements during movement simulation is 

reported. The data analysis in this study was novel and allowed, for the first time, 

eye gaze to be used to quantify MI and highlighted the importance of social gaze in 

AO and its absence in MI. Taken together, the finding that some eye metrics are 

preserved in more covert behaviours provides support for the efficacy of (re)learning 

optimal eye gaze strategies through AO- and MI-supported movement-based 

interventions for older adults with movement dysfunction. Therefore, in the final 

study, the development of a fully-integrated AE-AO-MI toolkit is reported. A new, 

App-based approach to the integration of movement simulation in rehabilitation is 

described in detail.  

Twenty years after he first proposed his Simulation Theory of MI the novel 

findings from this programme of work provide substantial support for the concept. 

This thesis highlights the advantage of using advanced eye gaze technology as an 

important marker to inform the on-going debate on the extent of the neural substrate 

sharedness as the central tenet to Simulation Theory. The findings of the studies will 

make an important impact on the use of simulation procedures for motor relearning.  
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1 Introduction 

The use of psychological interventions for learning new motor skills is not 

new. Parents of young children have used demonstrations and guiding cues to help 

their offspring’s skill development since humans first used tools in a meaningful 

way. Later, the child uses the motor representational memories of the demonstration 

event to facilitate their movement patterns by attempting to match those of their 

parents. This example of the role of covert behaviour in motor skill acquisition has 

been essential for human development (Berger, Carli, Hammersla, Karshmer, & 

Sanchez, 1979; Magill, 2000). More recently, sports performers and clinicians, 

guided by the evidence-based findings that covert mental training techniques have 

motor learning efficacy, have aimed to exploit the same mechanisms (Ertelt et al., 

2007; Smith, Wright, & Cantwell, 2008). By their very nature, however, action 

execution (AE), action observation (AO) and motor imagery (MI) are quite different 

processes and it is too simplistic to assume that they are just variants of a single 

‘motor programme’. Many factors contribute to the effectiveness of AO and MI 

(e.g., visual perspective and movement agency) and these will be discussed in detail 

throughout each of the studies in this thesis. More importantly, the way each of the 

factors can be controlled to optimise the outcome of the intervention was essential to 

the design of the studies.  

The most important tenet across all studies, however, was the consideration 

of eye gaze metrics. If, as Vickers (1996) has argued, an individual’s eye fixations 

tell us something about their attentional allocation and if visual attention is important 

for motoric understanding (Bandura, 1986) then it follows that eye gaze 
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characteristics must be equally important in covert techniques that attest to be valid 

motor learning interventions. To date, there has been no published research that has 

considered the role and congruence of eye movement metrics across both covert and 

overt conditions. 

The work reported in this thesis aimed to further our knowledge of the role of 

MI and AO processes within healthy and clinical populations by considering some of 

the detailed kinematics of eye movements as individuals observe and imagine 

movements. The work draws on the motor cognition literature from across a range of 

disciplines to more fully understand the role of eye gaze within the covert 

techniques. There is extensive literature in the sports domain and many of the 

variables that influence the effectiveness of MI and AO, or observational learning, 

have been investigated (e.g., for MI see Smith et al., 2008; and for observational 

learning see Williams, Ward, & Chapman, 2003). Sport psychology theories and 

models have informed the work in this thesis directly. In addition, the cognitive 

neuroscience, motor learning, and clinical rehabilitation literature has also been 

considered. In the case of the latter there has been more of a concern since the 

literature tends to suggest a more varied and limited consideration of the important 

factors known to influence MI, with few reporting any control of the recognised 

factors underpinning MI quality and effectiveness. The studies reported in this thesis 

have addressed the identified methodological limitations in the clinical rehabilitation 

and MI work.  In addition, across all the psychological skills training literature, there 

has been almost no recognition that eye gaze may be fundamentally important to the 

delivery of these techniques. This thesis aimed to address these significant gaps in 

the literature and was guided by a theoretical approach to motor cognition that has 
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had a significant impact on research in this area since it was first reported in 1994. 

Jeannerod’s seminal paper ‘The representing brain: neural correlates of motor 

intention and imagery’ published in Behavioral Brain Sciences (Jeannerod, 1994) 

was the first to suggest a mechanism for how the brain, and particularly the motor 

areas, may share neural substrate across different movement-related behaviours. 

Jeannerod’s Simulation Theory (Jeannerod, 2001) and its central tenets were 

fundamental to all the study designs reported in this thesis.  

The Simulation Theory posits the existence of a common neural substrate 

that is activated during AE, AO, and MI. Drawing largely on evidence from 

behavioural and cognitive psychology, psychophysiology, and cognitive 

neuroscience, the theory was the first to combine three processes that had historically 

been examined independently. When first presented, the theory may have seemed 

ambitious; why should three distinctly different processes be interdependent? The 

introductory section addresses this question and discusses the evolution of 

Jeannerod’s Simulation Theory. 

1.1 Action observation 

Demonstrations are used ubiquitously to learn novel movements or improve 

motor skills (Magill, 2000).  From as early as a few hours old, humans begin to learn 

and understand motor behaviour through the AO of others (Meltzoff & Moore, 

1983). As discussed above, this covert process is suggested to be of major 

evolutionary benefit, underpinning not only motor learning (Berger et al., 1979) but 

also other sophisticated mental functions such as communication (Rizzolatti & 

Arbib, 1998) and socialisation (Gallese & Goldman, 1998). Action demonstrations 
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can modify behaviour by various processes. For example, an individual may adapt 

his or her behaviour to match a model (Heyes, 2001; Prinz, 1987), an object 

(emulation: Heyes, 2001) or a perceived goal or outcome (Byrne & Russon, 1998). 

In the skill acquisition/motor learning literature AO is seen as more pertinent. AO 

can be defined as the process by which an individual observes behaviour and adapts 

his/her action(s) accordingly (Bandura, 1986). 

1.1.1 Theories of action observation 

The Social Cognitive Theory (Bandura, 1986) suggests that AO leads to 

motor learning through an informative feedback function. The AO process allows 

individuals to acquire movement patterns in the absence of the costly ‘trial and error’ 

approach that accompanies physical practice. The process comprises four inter-

related sub-processes: attention; retention; motor reproduction; and motivation. 

Attention refers to how a learner selectively attends to, and extracts, distinctive 

features of the modelled action. This process may be modified by the learner’s 

perceptions, past experiences, and current situational requirements. During retention 

the observed action is stored in memory by reconstructing and transforming it using 

strategies such as labelling, coding, and images.  Motor reproduction involves the 

symbolic representation of the memorised action that is used to guide overt 

performance, and motivation affects performance by motivating the individual to 

execute the modelled response.  Of these four inter-related processes, the role of 

attention is particularly pertinent to this thesis. If visual percepts are memorised for 

later recall during motor production, then ensuring that all key visual information is 

initially acquired may be critical to the motor learning outcome.  
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The idea of a representation guiding motor planning and performance is 

retained in more recent theories such as the Common Coding Theory (Prinz, 1997, 

see Figure 1.1) and the Direct Matching Hypothesis (Rizzolatti, Fogassi, & Gallese, 

2001).  

 

Figure 1-1: Major functional components suggested to underlie perception and 

action control in the Common Coding Theory (Prinz, 1997). 

In these theories the representation is linked to the neural mechanisms 

specific to action planning and comprises two parts: (i) a representation of the body 

as a force generator; and, (ii) a representation of the goal of the action encoded in a 

pragmatic code (Decety & Grèzes, 1999). The Common Coding Theory contends 

that a common representation exists between the late products of perception, referred 

to as event codes, and the early antecedents of action, referred to as action codes. 

The event codes are generated by the stimulation of sense organs in response to the 

environment, whereas the overlapping action codes generate motor excitability in the 
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muscles.  In this context, (re)motor learning (which may involve the learning of 

novel movements or the relearning of inefficient movements) in AO would be 

achieved through the manipulation of the common representation via perception. 

Conceived at a time when functional magnetic resonance imaging (fMRI) equipment 

was still in its infancy, the theory was based largely on the behavioural findings of 

studies using inductive and interference paradigms to study action performance. 

These studies demonstrated that concurrent AE and AO of similar actions led to 

action induction or enhancement (inductive paradigm), whereas the concurrent AE 

and AO of dissimilar events led to action impairment (interference paradigm).   

The advent of widely available brain imaging equipment has permitted 

cognitive neuroscientists to examine the neural architecture underlying AE and AO. 

Based on evidence from this alternative methodological approach, and championing 

the idea of a common representation between AE and AO, the Direct Matching 

Hypothesis (Rizzolatti et al., 2001) was developed. The determination of the 

common neural network underpinning this theory stemmed from the discovery of a 

particular subset of visuomotor neurons in the pre-motor cortex of macaque monkeys 

(Rizzolatti et al., 1988). These neurons, referred to as ‘mirror neurons’, were found 

to discharge when the macaque either observed or performed a goal-directed motor 

act (Di Pellegrino, Fadiga, Fogassi, Gallese, & Rizzolatti, 1992; for a comprehensive 

review see Hickok, 2009). Using fMRI, Iacoboni et al. (1999) highlighted their 

anatomical location in humans and stated that they were homologous to those of the 

macaque. The Direct Matching Hypothesis contends that observed actions are 

understood (i.e., internally described) because neurons that fire in the perceptual 

system are propagated to motor areas where additional information about the action 
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is provided. In this regard, an ‘intrapersonal resonance’ is suggested to occur 

between the motor and perceptual systems (Uithol, van Rooij, Bekkering, & 

Haselager, 2011). The human mirror neuron system (hMNS) describes the subset of 

neurons activated during this process, and the term ‘motor resonance’ has become 

common to describe the phenomenon (Rizzolatti et al., 2001).   

The congruency of the observer’s motor representation with the observed 

action is dependent upon the observer’s motor skill. For example, the movements of 

an expert performer will not be held in the motor repertoire of a novice performer 

and thus, simplistically, the motor resonance experienced by a novice observing an 

expert may be less than that experienced by an expert observing an expert (Calvo-

Merino, Grèzes, Glaser, Passingham, & Haggard, 2006). The motor representation is 

highly plastic and it is this feature that can be exploited when learning through AO; 

repeated AO, in conjunction with or without AE, is reported to alter the neural 

activation pattern and support motor learning (Ertelt et al., 2007). Indeed, studies 

have shown that increasing the speed of a movement during AO biases the 

subsequent AE of the same action (Bienkiewicz, Rodger, Young, & Craig, 2013). If 

the motor representation can be manipulated through visual perception, it follows 

that undesirable or sub-optimal manipulation may also occur if inappropriate visual 

information is acquired through an ineffective gaze strategy. This suggestion echoes 

a core contention of Social Cognitive Theory that an individual will not learn 

effectively from AO unless he or she attends to, and accurately perceives, the 

relevant aspects of the modelled action. These ideas form the main focus of this 

thesis. 
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1.2 Imagery 

Another technique suggested to activate mental representations to improve 

performance is mental imagery. Mental imagery is a process by which information is 

represented in the brain in the absence of appropriate sensory input (Moran, 2009). 

As a construct, imagery is multi-sensory and multi-modal; the sight, feel, smell, 

taste, and sound of an imagined event may be simulated during the process. 

Historically, the majority of research conducted by cognitive psychologists has 

focussed on the visual modality. Increasingly MI, defined as the conscious 

representation of action in the absence of movement execution (Jeannerod & Frak, 

1999), is being examined by cognitive psychologists and neuroscientists. In the 

literature the distinction between these two types of imagery (visual and motor) is 

often unclear (Morris, Spittle, & Watt, 2005). This thesis adopts the view that human 

movement can be imagined using visual imagery (VI) and MI, but kinaesthesis (the 

physiological feeling that accompanies movement) can only developed during MI. 

MI has many parallels with AO: (i) it may be used to influence motor processes, 

such as the kinematics, kinetics, and co-ordination of action, and cognitive process 

such as motivation, attention, and affect (Moran, 2009); (ii) it is frequently reported 

to improve motor skill acquisition and performance when employed discretely or in 

conjunction with AE (for a meta-analysis see Feltz & Landers, 1983; Smith et al., 

2008); and, (iii) manipulating the speed of a movement during MI biases subsequent 

AE (Louis, Guillot, Maton, Doyon, & Collet, 2008). 
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1.1.2 Theories of imagery 

Despite its well-established research tradition, the specific mechanisms 

through which MI exerts its positive effect on AE remain unclear. Some researchers 

suggest that the mechanism is peripherally-based (Jacobson, 1932; Mackay, 1981; 

Magill, 2000), while more contemporary researchers suggest it is of central origin 

(Jeannerod, 1994; Lang, 1979). Researchers supporting a peripherally-based 

mechanism argue that similar muscle innervation patterns are activated in MI and 

AE, with the magnitude of the activation much less in MI. In a seminal study, 

Jacobson (1932) used electromyography (EMG) to demonstrate consistent muscle 

activation patterns in MI and AE and suggested that the activation in MI was 

suppressed physical activity. The suppressed physical activity was suggested to 

prime the motor pathways and facilitate subsequent motor performance. Since this 

published report some (Guillot et al., 2007; Hale, Raglin, & Koceja, 2003), but not 

all researchers (Dickstein, Gazit-Grunwald, Plax, Dunsky, & Marcovitz, 2005; 

Mulder, Zijlstra, Zijlstra, & Hochstenbach, 2004), have demonstrated subliminal 

muscle activity at the periphery during MI that is consistent with AE. The 

inconsistent reports have questioned the efficacy of a peripherally based explanation 

of the mechanism for the performance effects of MI. Many now accept an alternative 

interpretation that the observed muscle activity represents the incomplete inhibition 

of muscle output by central processes (Guillot et al., 2007; Jeannerod, 1994; Mulder, 

de Vries, & Zijlstra, 2005). The extent of this residual EMG  ‘leakage’ (Lang, 1979) 

is thought to be influenced by the content of the mental image and the inhibition of 

AE by the cerebellum (Decety, 1996a; Lotze et al. 1999). 



 

25 

An alternative and well-supported theory (Hale, 1982; Hecker & Kaczor, 

1988; Smith et al., 2008) relating to the cognitive processes involved in MI is the 

Bioinformational Theory of Emotional Imagery (Lang, 1979). Similar to Social 

Cognitive Learning Theory, Bioinformational Theory suggests performance 

improvement is achieved through an information function. The mental image is said 

to comprise a set of ‘propositions’ or units of information that are manipulated to 

improve motor behaviour. The propositions are accessed through verbal or written 

scripts that contain information relating to the task (stimulus and meaning 

propositions) and information relating to the affective responses (response 

propositions). During MI, the propositions behave as a prototype for action and 

efferent outflow occurs. The efferent outflow, which is appropriate to the content 

and quality of the image, may involve eye movements, muscle activation, skin 

responses, and heart rate (for a synoposis of the experiments supporting the 

development of the theory see Lang, 1979). In support of the theory, researchers 

have demonstrated that increases in muscle strength and golf putting performance, 

similar to that observed through physical practice, can be achieved by using 

personalised stimulus, response and meaning propositions during MI (Smith et al., 

2008). To guide the development of highly personalised MI scripts, Holmes and 

Collins (2001, 2002) developed the PETTLEP model (see Figure 1.2). PETTLEP is 

an acronym, with each letter relating to an element of the action that should be 

considered when delivering an MI intervention. These elements are inter-related and 

reflect the: physical, environmental, task, timing, learning, emotion, and perspective 

aspects of the physically performed task.  
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Figure 1-2: Schematic diagram illustrating the interconnectivity of elements of the 

PETTLEP model of MI. Reproduced with permission (Holmes & Collins, 2002). 

In 1994, Jeannerod’s Functional Equivalence Hypothesis (Jeannerod, 1994) 

bridged the gap between traditional cognitive psychology approaches to MI and 

emerging cognitive neuroscience views. Based on evidence relating to the 

physiological correlates of MI and AE, the neural structures involved in motor 

planning and preparation, and the effect of MI on motor performance, Jeannerod 

suggested that the neural ‘sharedness’ reflected the hidden part of movement; a 

representation of the preparation and intention to move. In agreement with Lang 

(1979), Jeannerod posited that the common representation included information 

about the event, in particular the goal of the action and the effort and force required 

to complete the action. 
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Jeannerod suggested that the representation may evoke physiological responses 

(changes in heart rate, respiration and eye movements) but, in contrast to the 

peripherally-based explanation, he argued that performance was improved via 

central, not peripheral, mechanisms. To support his hypothesis of a central 

mechanism he drew on studies that had demonstrated interference effects when 

concurrent AE and MI of dissimilar actions were performed. A similar phenomenon 

was later identified to exist in AE and AO by Prinz (1997). Over the last twenty 

years the Functional Equivalence Hypothesis has received much empirical support 

(see Chapter Two) and Moran (2009) has suggested it is now time to take the next 

step and uncover the mechanisms underlying the ‘real time’ cognitive processing in 

these action related processes. This thesis specifically addresses this gap in the 

literature. 

This introductory discussion has outlined the development of AO and MI as 

individual constructs. Appearing as very different forms of mental practice, the 

evidence suggests both processes share many parallels with each other and with AE. 

For example, AO and MI appear to: be based on an information function; generate a 

representation that is shared with AE; experience interference during the concurrent 

execution of a dissimilar action-related process; and, be optimised when the tasks are 

matched to the motor and visual familiarity of the individual. The advent of widely 

available neuroimaging equipment in the late 1990s has permitted the similarity 

between AE and AO, and AE and MI to be examined repeatedly at a neural level. 

Based on this evidence, the Simulation Theory proposed the existence of a partially 

overlapping neural network in AE, AO, and MI, and suggested that the ‘hidden’ part 

of the action, the motor representation, is common across all processes. 
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To date, evidence of a shared motor representation has been demonstrated 

through central, peripheral, and behavioural markers assumed to reflect equivalence 

across the three processes. In the following sections the factors that influence the 

neural sharedness are initially discussed. Subsequently, the markers that are typically 

used to examine the processes are considered and finally, novel markers that may 

provide a more comprehensive test and understanding of the Simulation Theory are 

explored. 
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2 Literature review 

The Simulation Theory (Jeannerod, 2001) suggests that AE, AO, and MI 

activate common neural areas of the motor system. This idea suggests that the motor 

pathways associated with one simulation process, referred to as an s-state, may be 

enhanced via any of the other two through the Hebbian learning principle of ‘cells that 

fire together, wire together’ (Holmes & Calmels, 2008; Robertson & Murre, 1999). In 

support of this assumption, AO and MI have been reported to improve motor 

performance in music (Bernardi, De Buglio, Trimarchi, Chielli, & Bricolo, 2013), 

sport (Smith et al., 2008), aviation (Tokumaru, Mizumoto, Takada, & Ashida, 2003), 

surgical practice (Immenroth et al., 2007), and movement rehabilitation (Ertelt et al., 

2007; Holmes, 2007).  

The Simulation Theory posits that AO and MI include distinct stages of motor 

planning that subsequently converge on the same neural structure, possibly the 

posterior part of the left hemisphere (Farah, Soso, & Dasheiff, 1992; Goldenberg, 

1992). Supporting this idea, research suggests that MI involves the computation of a 

motor plan (Macuga & Frey, 2011), whereas AO maps the dynamic visual 

information onto a previously acquired motor plan (Rizzolatti et al., 2001). Direct 

tests of the Simulation Theory have demonstrated that some, but not all, of the neural 

activation that occurs in AO and MI is also present in AE (Filimon, Nelson, Hagler, & 

Sereno, 2007; Macuga & Frey, 2011). The extent of the shared neural profile remains 

the subject of current debate and maybe influenced by many delivery factors such as 

task content, task instruction, task expertise, modality, and perspective (Holmes & 

Calmels, 2011; MacIntyre et al., 2013, see Figure 2.1 and 2.2). 
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Figure 2-1: Delivery factors for MI (MacIntyre et al., 2013). 
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Figure 2-2: Delivery factors for AO. Reproduced with permission (Holmes & Calmels, 2007). 
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The following two sections discuss some of these simulation factors in the 

context of sport and clinical rehabilitation. These two domains arguably represent 

either end of the expert-novice continuum in terms of the cognitive processes, such 

as attention, memory, knowledge acquisition, and visual search, involved during the 

performance of skilled movements in dynamic environments. As such, they permit 

the validity and efficacy of the simulation procedures to be considered. 

In the sports domain the effectiveness of AO and MI in motor learning has 

been linked positively to simulation competence (i.e., MI and AO ability; Lawrence, 

Callow, & Roberts, 2013) and the motor expertise of the individual (Calvo-Merino et 

al., 2006; Haslinger et al., 2005). Based on the premise of a shared representation in 

AE, AO, and MI, this inter-dependency should not be surprising. In skilled 

individuals the representation becomes highly developed through many hours of 

physical practice. A shared representation implies that performance gains acquired 

through one process should influence the other two in a similar way. Thus, enhanced 

AE should lead to enhanced AO and MI and vice versa. In situations where motor 

skill is less than optimal, such as with novice performers, AO and MI can be 

manipulated by perspective to assist the simulation process. A first person visual 

perspective (1PP) and a third person visual perspective (3PP) are the perspectives 

most commonly adopted. In a 1PP an action is observed or imagined from an 

egocentric perspective whereas in a 3PP the action is performed from an allocentric 

perspective (Holmes & Calmels, 2008). The literature suggests a 3PP is most 

effective for novice athletes and for skills that depend heavily on form, for example 

gymnastics (Callow & Hardy, 2004). In contrast, a 1PP is suggested to be most 

effective when the basic skill is acquired and for skills that depend heavily on 
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perception, for example canoe slalom or penalty kicking (White & Hardy, 1995). 

Athletes do report switching frequently between perspectives during MI and this 

may be to supplement the information that is ordinarily available during AE (Hardy, 

1997; Smith, Collins, & Hale, 1998).  

It is important to note that the literature concerning visual perspective 

remains unclear and is hindered by researchers using inconsistent methodological 

approaches and inappropriate task instructions (Moran, 2009). Perspective, agency, 

and imagery modality are frequently conflated, with researchers often attaching 

different meanings to common terms (Holmes, 2012). For example, MI from a 1PP 

is also referred to by some as internal imagery (Callow & Hardy, 2004), and by 

others (Hale, 1982) as a kinaesthetic modality, or a visual modality (Glisky, 

Williams, & Kihlstrom, 1996). This confusion may stem, in part, from Jeannerod’s 

early description of MI. In his Functional Equivalence Hypothesis, he described MI 

as an egocentric process (i.e., a 1PP) that involved a representation of the self in 

action with the subject feeling himself executing a specific action, often in a 

visually-represented space. Thus, the MI process included both the visual and 

kinaesthetic modalities. Conversely, he described the imagination of an action of an 

agent from an allocentric perspective (3PP) as VI. He suggested that VI could 

involve the imagination of a person or an object moving but would not involve any 

kinaesthesis. Since Jeannerod’s original definition of MI, some researchers (e.g., 

Callow & Hardy, 2004; Hardy & Callow, 1999; Stevens, 2005; Ungerleider & 

Golding, 1991) have demonstrated that kinaesthesis can occur when an action is 

imagined in the 3PP if the agent of the action is the self and if the imager is 

specifically instructed to ‘feel’ the movement. In a series of well-controlled 
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experiments Hardy and Callow (1999) preceded MI (1PP, self, and 3PP, self) with 

AO videos and personalised MI scripts (weighted with response propositions to 

encourage physiological responses) and demonstrated that kinaesthesis can be 

developed in both perspectives. Further, the authors demonstrated that when tasks 

include a high degree of form-based skills, such as rock climbing, kinaesthetic 

imagery in the 3PP can be more effective than kinaesthetic imagery in the 1PP. To 

eliminate confusion in this thesis, and because it has become the accepted term, MI 

is used to describe the imagination of actions performed in a 1PP or a 3PP. In 

accordance with Hardy and Callow (1999), it is assumed that kinaesthesis can be 

developed in both perspectives during MI if appropriate instructions are given and if 

the agent of the action is the self. In contrast, VI typically involves the imagination 

of a scene which may, or may not, involve an action performed by an agent but does 

not involve kinaesthesis. 

Of particular importance to this thesis is that the concepts of perspective, 

agency, and modality have been shown to significantly influence neural substrate 

during the different imagery conditions. Given that the Simulation Theory suggests 

at least some common substrate across MI and AO, it is intuitive to suggest that 

these factors will also influence the efficacy of AO. Taken together, the three factors 

were critical to the methodological designs of the studies repeated in this thesis as 

they pertain to eye gaze behaviours, and to the development of the AST toolkit 

discussed in Chapter Six.  

In the clinical domain there is increasing evidence supporting the efficacy of 

action simulation procedures (e.g., AO, MI, mirror box, and virtual learning). Recent 

findings suggest that mental practice may offer new ways of stimulating motor 
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weakness, regeneration, and plasticity when motor function has been compromised 

by age, stroke, or neurodegenerative disease. A number of related reviews have 

proposed the potential of AO and MI in motor rehabilitation (e.g., de Vries & 

Mulder, 2007; Garrison, Winstein, & Aziz-Zadeh, 2010; Holmes, 2007) as an 

alternative or adjunct to movement therapies. In addition, a growing number of 

clinical studies involving elderly patients suffering from Parkinson’s disease (Pelosin 

et al., 2010), dementia (Eggermont, Knol, Hol, Swaab, & Scherder, 2009), and 

stroke (Butler & Page, 2006) also indicate the benefit of action simulation 

procedures in movement rehabilitation.  Similar to the sports domain, evidence 

suggests that visual perspective may influence the performance outcome (Ewan, 

Smith, & Holmes, 2010; Liu, Chan, Lee, & Hui-Chan, 2004).  Ewan et al. (2010) 

demonstrated that individuals affected by stroke improved motor performance when 

using MI in a 3PP, and preferred using this perspective. The authors reported that the 

vividness of the MI was impaired in the 1PP and suggested that this may be due to a 

loss of functional motor activity. These findings would support the view from sport 

psychology that for less skilled performers a 3PP may be most effective (White & 

Hardy, 1995). Others (Page, Levine, & Leonard, 2007) have demonstrated that MI 

from a 1PP is beneficial in stroke rehabilitation. Reconciling these differences, de 

Vries and Mulder (2007) speculated that a 1PP may potentially lead to recovery of 

basic motor skills whereas the 3PP may be beneficial for (re)learning the cognitive 

and planning aspects of movements.  

The cognitive and planning aspects of movements are reported to decline 

with age, irrespective of clinical morbidity (Salthouse, 2009; Salthouse & Lichty, 

1985). It is, therefore, surprising how few studies have examined the influence of 
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age on the cognitive processes involved in AE, AO, and MI. The concept of a central 

sharedness between AE, MI, and AO implies bi-directionality; AO and MI may 

influence AE and, similarly, AE may influence AO and MI (Schutz-Bosbach & 

Prinz, 2007). A bi-directional relationship suggests that if efficient AE is 

compromised through age related changes, then AO and MI may also become sub-

optimal. Thus, the use of these mental techniques during the motor rehabilitation of 

older individuals may reinforce inefficient movement. Researchers who have 

investigated the influence of age on simulation procedures have typically used 

comparisons of neural blood flow (Dror & Kosslyn, 1994; Nedelko et al., 2010) or 

the chronometry paradigm (Skoura, Papaxanthis, Vinter, & Pozzo, 2005; for an 

explanation of these methods see section 2.1.1 and 2.1.2 respectively). In general, it 

appears that older adults retain the ability to simulate their own movement but there 

is some loss of accuracy between the simulated movement and AE. There is also 

some degradation associated with activating and maintaining the visual component 

of the representation (Dror & Kosslyn, 1994). These findings suggest that age related 

changes in AE may also manifest in AO and MI, and this potentially challenges the 

efficacy of AO and MI as motor (re)learning tools. Understanding how these 

cognitive processes are influenced by age related changes may permit more 

efficacious techniques to be developed. This issue is addressed in Chapter Four and 

Chapter Six of this thesis. 

The preceding sections indicated that motor learning may be influenced by 

the perspective adopted during simulation, and that individuals with reduced motor 

skill may prefer a 3PP. The 3PP is suggested to offer the individual supplementary 

information about an action (Hardy, 1997) and to be of benefit during the 
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(re)learning of cognitive and planning aspects of movement (de Vries & Mulder, 

2007). It is currently unknown what specific supplementary information is perceived 

in AO (3PP) and how it represented it in MI (3PP). If, as discussed earlier, MI (3PP, 

other agent) does not involve kinaesthesis, then only the visual element of motor 

representation may be activated during MI. This may reduce the cognitive load. 

However, a movement of the self imagined in a 3PP could require the mental image 

to be rotated by up to 180°, and this additional cognitive process may increase the 

demand on working memory. Thus, the influence of perspective (and agency) on the 

cognitive processes could facilitate or impede motor learning. Given the increasing 

use of multi-perspective approaches in simulation procedures (Ertelt et al., 2007), it 

would seem pertinent to understand how visual orientation influences the shared 

mechanism. These specific issues are addressed in Chapter Five of this thesis. 

2.1 Markers of central sharedness 

2.1.1 Neural evidence 

Some studies have used techniques such as transcranial magnetic stimulation 

(TMS), electroencephalography (EEG), and magnetoencephalography (MEG) to 

examine the neural processes in AO and MI. Common and coherent activation of the 

motor system that is similar to AE has been demonstrated (for a review of the AO 

literature see Rizzolatti et al., 2001; Roosink & Zijdewind, 2010; Tokumaru et al., 

2003) although some activation remains unique to each process. Most studies, 

however, have used fMRI to examine the shared neural network. This line of enquiry 

typically involves measuring the level of deoxygenated haemoglobin in the blood 

(called the blood oxygenated level dependent or BOLD signal) via cerebral 
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scanning. Cube-shaped brain regions called voxels (volumetric pixels) are 

determined from the scanned images and the pattern of voxel activation is contrasted 

between the independent conditions. This contrast permits differences in voxel 

activity to be determined. Although the technique is used widely it is not without 

spatial and temporal limitations, and it is difficult to determine if increases in 

regional cerebral blood flow are related to excitation or inhibition processes (Menon 

& Kim, 1999). Reaching agreement regarding the localisation of the shared areas is 

often difficult, hindered by different inter-laboratory methodological and analytical 

approaches (Vul, Harris, Winkielman, & Pashler, 2009). The lack of ecological 

validity in methods is also a concern for AO and MI research since participants lie in 

a prone position during data collection, clearly this is not behaviourally equivalent 

(Wakefield, Smith, Moran, & Holmes, 2013) to the action they are simulating. 

The neural activation pattern is highly sensitive and can be differentiated by a 

number of factors: task type (Nakano, Ueta, Osumi, & Morioka, 2012); task 

intention (Iacoboni et al., 2005); visual perspective and agency (Ruby & Decety, 

2001); visual sensory control (Macuga & Frey, 2011); simulation skill ability (Cui, 

Jeter, Yang, Montague, & Eagleman, 2007); motor expertise (Calvo-Merino et al., 

2006); and, age (Nedelko et al., 2010). In an attempt to eliminate some of these 

confounding variables, Grèzes and Decety (2001) conducted a meta-analysis which 

was limited to studies that: measured cerebral blood flow activity in the whole brain; 

used consistent reporting measures; performed similar cognitive tasks; and, included 

upper limb movements only. They reported evidence of shared neural activation in 

putative areas of the hMNS. These areas included: the supplementary motor area 

(SMA; implicated in motor planning and learning); the dorsal premotor cortex 
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(involved in aspects of motor control that precedes actual movement); the 

supramarginal gyrus; and, the superior parietal lobule. In the dorsal premotor cortex, 

activation was greater in AE than MI, and greater in MI that AO. Since the meta-

analysis only three published studies (Filimon et al., 2007; Macuga & Frey, 2011; 

Nakano et al., 2012) have tested the Simulation Theory directly by examining AE, 

AO, and MI in a single paradigm. Unfortunately, in two of these studies the neural 

activation may have been confounded by poor experimental control. Filimon et al. 

instructed participants to view passively rather than view with the intention to 

imitate. Task instructions such as ‘observe with the intent to imitate later’ have been 

demonstrated to activate regions involved in the planning and generation of actions, 

whereas instructions to ‘observe to be able to recognise’ activate memory-encoding 

structures (Iacoboni et al., 2005). Therefore, the pattern of brain activation during 

AO may have been confounded by the nature of the executive processing associated 

with the task instruction. In the Nakano et al. study, no assessment tools were used to 

confirm MI ability. In a more controlled study, Macuga and Frey (2011) examined 

the AE, AO, and MI of a bimanual action and presented a visual image of the action 

in all three conditions. Motor regions involved in the control of bimanual movements 

(sensorimotor hand areas, SMA and cerebellum) were compared across conditions. 

Increased activity was observed in bilateral sensorimotor and SMA regions in all 

three conditions but the level of activity was not consistent across conditions. The 

cerebellum was only activated in AE and MI and this finding led the authors to 

suggest that the cerebellum was involved in the computation of a motor command, a 

process not performed in AO. In their summary, Macuga and Frey proposed a 

hierarchical model of activation with activation greater in AE compared to MI, and 

greater in MI compared to AO. These findings have face validity given that a total 
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overlap of neural activation between AE, AO, and MI would lead to both 

behavioural and agency confusion (Decety & Sommerville, 2003). The interpretation 

of cerebellar activity during MI conflicts with an earlier interpretation provided by 

Decety (1996a). Decety suggested that activity in anterior portions of medial 

cerebellum may reflect the brain’s need to inhibit the motor commands to avoid 

overt movement. Motor inhibition would, intuitively, be expected in MI to prevent 

physical movement typically reinforced through instructions. Decety’s interpretation 

has been supported by others using fMRI (Lotze et al., 1999). These conflicting 

findings highlight the difficulty in interpreting central brain activity since such 

activity may reflect congruent functional neural sharedness or in other cases 

incongruent behaviour in similar neural areas. The difficulty with identifying 

meaningful brain activity suggests that the Simulation Theory (Jeannerod, 2001) 

should be examined using cognitive-behavioural markers so that the meaningfulness 

of the shared neural network may be better understood. The following section 

provides a discussion of the alternative markers used historically. 

2.1.2 Chronometry 

Mental chronometry has been used frequently to infer the duration of 

cognitive operations during MI (Decety, 1996b). Indeed, the robust temporal 

congruency that appears to exist between executed and simulated actions has, 

historically, been used as a marker of MI ability; individuals are asked to physically 

execute and subsequently imagine similar movements and a comparable movement 

time (MT) is accepted as evidence of MI competence (for a review see Guillot & 

Collet, 2005a).  Thus, like AE, MI appears constrained by a fundamental kinematic 

law of movement, Fitts’ Law (Fitts, 1954). Fitts’ Law states that the time needed to 
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move as quickly as possible between two targets is determined by the width of the 

targets and the distance separating them. In support of shared motor processes, 

contemporary researchers have used novel paradigms to demonstrate that this 

fundamental motor principle also constrains AO (Grosjean, Shiffrar, & Knoblich, 

2007). The similar influence of task complexity on MT in AE, AO, and MI has led 

researchers to suggest that the processes employ similar feed-forward models to 

predict action outcome. In support of this claim, researchers have demonstrated that 

the neural substrate is sensitive to the kinematic laws of movement in AO (Casile et 

al., 2010; Eskenazi, Rotshtein, Grosjean, & Knoblich, 2012) and in MI (Lorey et al., 

2010). While the total MT of the motor act may be similar in AE, AO, and MI, the 

timing of the discrete components of the motor act can be very different in MI. In 

this modality individuals have been observed to speed up or slow down the 

subcomponents of the task depending on their goal and motor skill (Calmels, 

Holmes, Lopez, & Naman, 2006). Calmels et al. requested elite gymnasts to execute 

and imagine a complex gymnastic vault routine. They reported that the temporal 

organisation of the action was different in MI compared to AE and suggested that 

individuals choose specific aspects of the task to focus on. These findings suggest 

that while chronometry provides a robust method of examining simulation at a 

macroscopic level, additional markers may permit a more microscopic examination 

of the cognitive process. 

2.1.3 Autonomic nervous system 

As a working hypothesis, Collet, Di Rienzo, El Hoyek, and Guillot (2013) 

posited that some markers of the peripheral nervous system, for example heart rate 

and respiratory frequency, are causally linked to the mental processes involved in 
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motor planning. In their review Collet et al. provided evidence to suggest that if the 

primary function of the autonomic nervous system is to maintain homeostasis in the 

individual, then the motor planning phase should comprise physiological commands 

that are linked to cognitive processes preparing the organism for the intended 

movement. The measurement of these physiological responses provides an objective 

and dynamic marker of the mental processes and permits examination of what an 

individual experiences during simulation. This information can inform the debate on 

the meaningfulness of the shared neural substrate.   

Using respiration frequency and heart rate as dependent variables, 

researchers have demonstrated positive correlations between AE and AO (Brown, 

Kemp, & Macefield, 2013; Paccalin & Jeannerod, 2000), AE and MI (Decety, 

Jeannerod, Germain, & Pastene, 1991) and between AE, AO and MI (Mulder et al., 

2005). Mulder et al. used an effortful weight-lifting task and reported an increase in 

respiration frequency of 35.6% during AO and 31.6% during MI. They also 

measured heart rate but failed to demonstrate an effect and reasoned that this may be 

due to the covert nature of this marker compared to the more obvious rise and fall of 

the rib cage in respiration. These findings highlight the importance of using task 

relevant visual cues to enhance motor and visual familiarity between the observer 

and the observed. Their findings for respiratory frequency corroborated the results of 

an earlier study (Paccalin & Jeannerod, 2000) that demonstrated that respiratory 

frequency remains relatively comparable between AE and AO. In this particular 

study the participants observed a model running at an increasing speed in the 3PP. 

During AO, the participants’ respiration frequency was found to increase at a linear 

rate for most, but not all, of the exercise bout. Demonstrating that respiration is 
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influenced by the intensity of the observed effort provides key evidence that the 

autonomic nervous system is active during AO in a similar manner to AE, and that 

visual cues are important (Collet et al., 2013).   

The relative similarity in the physiological responses outlined above suggests 

that what an individual perceives or imagines during movement simulation is linked 

to similar processes in AE. The measurement of physiological responses permits a 

more detailed and dynamic examination of the neural sharedness that is absent in 

chronometric comparisons. It may, however, still mask some of the processes 

involved. For example, some changes in the physiological response may be ‘lost’ by 

the interdependence of the sympathetic and parasympathetic branches of the 

autonomic nervous system; the sympathetic branch may increase heart rate in 

anticipation of an upcoming action whilst the parasympathetic branch may serve to 

decrease heart rate to maintain homeostasis. In support of this suggestion some 

(Brown et al., 2013; Decety et al., 1991), but not all (Mulder et al., 2005; Paccalin & 

Jeannerod, 2000), researchers have observed heart rate to co-vary with the rate of 

simulated running intensity. Decety et al. (1991) asked models to stand on a 

treadmill while they performed their MI. In contrast, participants sat in a chair in 

Mulder et al. and Paccalin and Jeannerod’s studies.  Standing in a running position 

may have elicited a stronger motor representation response, being more 

behaviourally equivalent behaviour to AE (Holmes & Collins, 2002) due to the 

functional kinetic afference and proprioception.  

The above findings support a PETTLEP approach to movement simulation 

(Holmes & Collins, 2001); behavioural functional equivalence in MI and AO is 

optimised by the inclusion of relevant sensory input.  Indeed, Paccalin and Jeannerod 
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(2000) reasoned that the detail of the visual stimuli used in their study may have 

inadvertently disrupted the linear respiratory response. They suggested that relatively 

small changes in the frequency of the gait cycle during running at a moderately fast 

speed were too subtle to influence the motor representation and, by extension, the 

respiratory response of the observer. The work of Calvo-Merino et al. (2006) would 

suggest that more experienced runners may have been influenced to a greater extent 

by these subtle changes. Brown et al. (2013) reported that the AO of a model running 

from a 1PP influenced respiration frequency but this was to a much lesser degree 

than that reported by Paccalin and Jeannerod, who used a 3PP. These differences 

may be reconciled if one considers that the visual information related to form is 

richer in the 3PP compared to the 1PP. As such, the additional information may 

supplement the information ordinarily available to the performer (observer) in the 

1PP. It may also be possible that the observer is able to acquire functionally-

meaningful visual information from the model’s behaviour (for example, respiratory 

rate and depth; see Mulder et al., 2005). These task relevant cues, akin to Langian 

stimulus and response propositions, would seem to be important to the content and 

development of meaningful AO ‘scripts’.  This suggests that attentional processes 

involved in the acquisition and processing of relevant visual information maybe key 

factors influencing the congruency between AE, AO, and MI.  It would seem 

sensible to consider these cognitive processes in a comprehensive test of the 

Simulation Theory.  

2.2 Eye movements 

Vision is frequently considered to be the dominant  sensory system 

underpinning human function (Causer, Janelle, Vickers, & Williams, 2012), and the 
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processes and mechanisms by which vision aids and controls movement have been 

researched extensively (Elliott, Hayes, & Bennett, 2012). During perception, 

external visual information is suggested to be retinoptically mapped (preserved) onto 

topographically organised areas in the occipital lobe. The ‘attended’ environmental 

visual cues are then processed via the dorsal, ventral, and rostral streams of the 

visual system; the dorsal stream permits identification of object location, size and 

orientation, the ventral stream facilitates object recognition, and the rostral stream 

acting as a conduit between both (Goodale & Milner, 1992). In the dorsal stream, 

which extends from visual cortex into posterior parietal cortex, the visual and other 

sensory information is transformed into a common eye-centred frame of reference in 

motor areas to guide movement (Andersen, Snyder, Bradley, & Xing, 1997; 

Desmurget et al., 1999).  

As the gaze control system comprises mechanisms concerned with the 

acquisition of visually presented information, it is considered an excellent reflector 

of cognitive processes such as decision-making and attention (Vickers, 2009). 

Although the extent to which gaze behaviour represents the amount of cognitive 

processing has been questioned (Posner & Raichle, 1994; Viviani, 1990), recent 

research suggests that it is difficult to shift the point of gaze without shifting 

attention (Shinoda, Hayhoe, & Shrivastava, 2001). The attention shifts that precede 

saccadic eye movements are associated with their preparation and involve some of 

the same neuronal ‘machinery’ (Corbetta et al., 1998; Culham et al., 1998). Corbetta 

et al. examined fMRI and surface-based representations of brain activity to compare 

the functional anatomy of two tasks, one involving covert shifts of attention to 

peripheral visual stimuli, the other involving both attentional and saccadic shifts to 
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the same stimuli. Overlapping regional networks in parietal, frontal, and temporal 

lobes were active in both tasks. This anatomical overlap is consistent with the 

hypothesis that attentional and oculomotor processes are tightly integrated at the 

neural level. Motter and Belky (1998) and Findlay and Gilchrist (1998) have also 

argued that fixations reflect attentional distribution in visual search experiments. 

Accordingly, researchers rely extensively on markers of gaze behaviour to infer the 

attentional processes involved in the execution of visuomotor tasks (Abrams, Meyer, 

& Kornblum, 1990; Hayhoe, 2004; Land, Mennie, & Rusted, 1999; Vickers). In 

reach and grasp tasks, visual fixations (brief periods of time when the eyes are stable 

and focusing on visual cues) typically precede motor manipulation (Abrams et al.). 

The location and duration of these unique eye movements are considered to perform 

two vital monitoring functions. First, they identify the goal directed target and 

second, they provide visual feedback about the grasping hand to enable online 

corrections (Brouwer, Franz, & Gegenfurtner, 2009; Land et al.). Cognitive 

psychologists interpret the spatial and temporal distribution, and duration of the 

fixations as reflecting the cognitive processes used in movement execution 

(Vickers). Seminal work by Woodworth (1899) suggested that once a stationary 

target is fixated, a single ballistic movement occurs that brings the limb into the 

vicinity of the target and this is then followed by a single corrective movement that 

is based on visual feedback about the relative positions of the limb and target. More 

contemporary work (Desmurget & Grafton, 2000; Khan et al., 2006) has, however, 

suggested that the ballistic phase of the movement is not as predetermined as first 

thought. Desmurget and Grafton reported that the limb may be under continuous 

control, with movement determined through the comparison of the early dynamic 

information from the limb with an internal model associated with the movement 
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planning process. This suggests that the continuous motor control comprises graded 

fluctuation in muscle forces driven by the dynamic, online, functions of visual and 

proprioceptive feedback from the limb. 

In the sports domain, economical gaze strategies during aiming tasks are 

reported to involve fewer fixations of longer duration to the critical visual cues 

(Shapiro & Raymond, 1989; Vickers, 1996; Williams, Singer, & Frehlich, 2002). 

The duration of the final fixation prior to movement onset has been identified as a 

particularly important marker. Referred to as the ‘quiet eye’ (QE; Vickers), the 

location, onset, offset and duration of this specific fixation are considered to 

represent aspects associated with the preprogramming of the movement (Vickers, 

2009). In certain tasks, such as the golf swing, the QE duration is also considered to 

reflect online control (Vine, Lee, Moore, & Wilson, 2013). There is increasing 

evidence to suggest that when the parameters of this unique fixation are trained (i.e., 

when individuals are taught how to optimally control their gaze), the performance 

gains are much greater than when physical or psychological training regimes are 

used independently (Vickers). The QE has been examined in sport, law enforcement, 

medicine, and the military. It has, however, received little consideration during 

mental simulation procedures. If the QE reflects the cognitive processes associated 

with motor planning and online control, then, in accordance with Simulation Theory, 

it may be intuitive to expect aspects of the phenomenon to occur in AO and MI. If 

there is evidence to support this claim, potential may exist to optimise (re)learning 

through these covert techniques by exploiting the plasticity of the parameter. This 

idea is explored further in Chapter Six of this thesis. 
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2.2.1 Eye movements in action observation and action execution 

Seminal work by Flanagan and Johansson (2003) demonstrated that eye 

movements in AO were related to the shared motor representation. Using a block-

stacking task, Flanagan and Johansson compared the location and temporal 

execution of fixations during AO (3PP, other agency) and AE. They reported that 

eye movements in AO were spatially similar to, and in phase with, the fixations 

performed in AE. In both simulation conditions participants attended proactively to 

the upcoming point of contact (block pick up or set down) and were considered to be 

anticipating the outcome of the action rather than attending to its visual unfolding. 

The authors suggested the execution of similar, proactive fixations in AO and AE 

provides evidence that the neural processes are linked and that the motor 

representation includes directions for the visual system. These data are supported by 

Brouwer et al. (2009) who demonstrated a different eye movement pattern 

depending upon whether the action involved the viewing of a stationary object or the 

reach and grasp of that object. During viewing, the eyes fixated the centre of mass of 

the object, whilst during reach and grasp the eyes predictively fixated the future 

contact areas of the index finger and thumb.  

In a more recent study, Ambrosini, Costantini, and Sinigaglia (2011) 

examined whether the shared representation transferred into more complex 

scenarios. In this study a variety of objects of varying shapes and sizes were used 

that demanded the actor to execute one of two different handgrips.  A control 

condition was also included in which the actor did not pre-shape their hand. The 

results showed that in the pre-shaping condition the observers demonstrated earlier 

saccadic eye movements and higher hand position accuracy compared to the control 
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condition. These data suggest that simply pre-shaping the hand is enough for an 

observer to identify a target object, and engage the same motor representations as 

that employed during AE.  Building on these ideas, Ambrosini, Sinigaglia, and 

Costantini (2012) asked participants to observe an actor reaching for a target object 

whilst their hand was either free to move or restrained. Gaze behaviour was 

compromised significantly in the restrained condition, leading the authors to 

conclude that it is critical for the observer to be under the same constraints in AO 

and is in AE. These findings would support Holmes and Collins’ (2002) PETTLEP 

model of MI, that the congruency of the gaze metrics appears enhanced when the 

other sensory inputs are matched. Collectively, these studies suggest that similar 

attentional processes are used in AE and AO. When the tasks are predictive, eye 

movements in AO appear to proactively seek out the target and are spatially similar 

to those in AE.  

In conditions where the task goal is unknown or ambiguous, the observer 

makes use of subjectively salient cues to help determine the action goal. When AO is 

from the 3PP, observers are reported to fixate the agent’s head initially and this may 

be due to an innate desire to establish joint social attention or to acquire early cues 

relating to the task goal. (Letesson & Edwards, 2012; Webb, Knott, & Macaskill, 

2010). This behaviour highlights an important issue in AO; active vision is guided 

not only by the action but also by the vagaries of the visual scene. Thus, an 

individual may be presented with the correct action cues but they may not attend to 

the critical cues at the critical time (Loftus & Mackworth, 1978). These factors may 

be of particular importance in elderly populations where the efficiency with which 

observers extract visual information is decreased (Sekuler, Bennett, & Mamelak, 
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2000), and in clinical populations where the perceptual sensitivity to the actions of 

others has been influence through functional motor inactivity.  If the spatial and 

temporal aspects of visual cues are attended to incorrectly during AO, the 

effectiveness of this process as a motor (re)learning technique may be compromised. 

This idea is explored further in Chapter Five. 

2.2.2 Eye movements in motor imagery and action execution 

The presence of task-related eye movements in VI has been argued for over 

eighty years (Brandt & Stark, 1997; Hebb, 1968; Jacobson, 1932; Laeng & 

Teodorescu, 2002). As early as 1968 Hebb (Hebb, 1968) hypothesised that  “if the 

image is a reinstatement of the perceptual process it should include the eye 

movements” (Hebb, 1968, p. 470). Although this postulate refers to VI, the claim 

may also apply to MI given that MI involves actions taking place within represented 

visual space (Jeannerod, 1994). Rodionov, Zislin, and Elidan (2004) were one of the 

first groups to examine eye gaze in MI (1PP). Specifically, they questioned whether 

imagination of body rotation could induce occulomotor activity similar to the typical 

vestibulo-ocular reflex. Their data suggested that nystagmic activity in the horizontal 

plane could be elicited during MI and provided early evidence that eye movements 

could be used as an objective measure of online cognitive processes. More recent 

research has confirmed the significant role of other gaze metrics during MI. For 

example, Heremans, Helsen, and Feys (2008) compared eye movements during the 

AE and MI (1PP) of a cyclical aiming task. Addressing the phenomenon that many 

individuals close their eyes spontaneously during MI they included two MI 

conditions, one with eyes open and one with eyes closed. Their results showed that 

over 80% of participants made task-related fixations during MI with the eyes open 
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and eyes closed. Furthermore, both the number of fixations and inter-fixation 

amplitude MI closely resembled the fixations made during AE. In a follow up study 

(Heremans et al., 2009) the authors also demonstrated that the congruency of gaze 

metrics in AE and MI (1PP) was enhanced when the MI was assisted with visual and 

auditory cues (similar to those used during AE). These findings resonate with the VI 

literature. VI is reported to comprise two distinct types, one that involves allocating 

attention to specific regions of space (attention-based imagery) and one that involves 

activating stored visual memories (visual-memory based imagery; Kosslyn, 1993). 

Attention-based imagery is suggested to be facilitated when a visual structure is 

provided by the environment rather than it having to be generated internally. Thus, in 

the Heremans et al. study, the congruency between the gaze metrics may have been 

enhanced because the participants performed ‘attention-based’ MI. Supporting MI 

by providing a visual structure could be of benefit in elderly populations where the 

ability to activate a stored visual representation and maintain an image is reported to 

degrade (Dror & Kosslyn, 1994). 

In attempts to explain the role of eye movements during MI, researchers have 

employed chronometry paradigms and included conditions in which the eyes are 

fixed or free (Gueugneau, Crognier, & Papaxanthis, 2008). Gueugneau et al. 

demonstrated that the temporal similarity between AE and MI (1PP) was maintained 

when eyes were fixed or free, but that both tasks were speeded up, and temporal 

congruency between AE and MI enhanced, in the eyes free condition. These findings 

suggest that in both conditions a shared motor representation was generated but the 

quality of the representation was compromised in the eyes-fixed condition where 

information was acquired through peripheral vision only. This study highlights that 
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performance in AE and MI may be compromised if eye movements are less than 

optimal and supports the Hebbian argument that similar eye movements are executed 

in MI and AE. In addition, the study demonstrates how a combination of markers 

(chronometry and eye movements) can help inform the meaningfulness of the shared 

neural substrate. 

The studies reviewed in this section imply that spatially-similar eye 

movements are performed in AE and MI (1PP). This general consensus belies the 

debate that surrounds the purported mechanism for the phenomenon. Kosslyn (1987) 

suggested the eye movements in VI are used to access a ‘visual buffer’, a storage 

medium in visual parts of cortex that is activated during VI. During perception, 

visual information is stored in the visual buffer alongside spatio-topic information 

relating to where the objects are in space. This spatio-topic information has been 

suggested to be indexed using eye movements. During VI, the mental image is 

activated in the visual buffer with the spatial aspects of the image retained through 

the re-enactment of the eye movements that were executed during perception. There 

has been some support for Kosslyn’s Visual Buffer Hypothesis (Brandt & Stark, 

1997; Laeng & Teodorescu, 2002) but not all researchers accept the theoretical 

account (Johansson, Holsanova, & Holmqvist, 2010; Thomas, 1999). Johansson et 

al. demonstrated that when a central fixation is maintained during scene perception, 

spontaneous eye movements still occur during scene generation in VI, and that the 

eye movements reflect the task but with some loss of accuracy. These findings 

suggest that the eye movements in VI are not a re-enactment of those performed in 

perception but represent some other phenomenon. Johanasson et al. posited that eye 

movements may be performed in VI to relieve the working memory load; eye 
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movements do not have to be executed but are likely to be executed when the task is 

complex. The interpretation has parallels with the functional role of eye movements 

in AE. Simple tasks can be performed in the absence of eye movements but increases 

in task complexity typically influence the number of fixations and/or the fixation 

duration (Williams et al., 2002). A similar explanation also been used to interpret the 

findings of some eye gaze studies in MI (Debarnot et al., 2011). The idea of a visual 

buffer has also been disputed by others (Thomas, 1999). Thomas suggested that eye 

movements in VI do not re-enact the perceptual phase but rather they inspect the 

imagined scene as if it were actually present. In this hypothesis, the eye movements 

in VI are likely to be similar to perception but they are executed independently and 

not coupled to a visual index. Notwithstanding the contrasting views for why eye 

movements occur during simulation, the general view from this section is that eye 

movements perform a functional role that is linked to action understanding. A clearer 

understanding of the extent of the shared mechanism in relation to eye movements 

may permit motor (re)learning techniques involving MI to be optimised. This topic is 

revisited in Chapter Six. 

2.2.3 Eye movements in action observation and motor imagery 

Few researchers have compared eye movements during AO and MI. Given 

that the motor representation is suggested to be shared between AE, AO, and MI, it 

is intuitively appealing to suggest that similar eye movements should be executed in 

AO and MI. McCormick, Causer, and Holmes (2012) compared a number of fixation 

parameters during the AO and MI (1PP and 3PP) of a reach-grasp-place action. In 

this study, participants observed a model reach for a cup and place it on a saucer, 

presented in the 1PP and 3PP. Subsequently, the participants performed MI in the 
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same perspective as the AO. The authors recorded fewer fixations at the critical 

movement cues in 3PP compared to the 1PP, and reported that fixation duration was 

duration was significantly longer in AO. In accordance with Shapiro and Raymond 

(1989), the findings for fixation duration suggest that a more economical gaze 

strategy was executed in AO. The less economic gaze pattern in MI may be due to 

the lack of visual cues or the absence of prior practice. Indeed, others have reported 

that MI is facilitated when it is primed by AE (Mulder et al., 2005). Mulder et al. 

reported that respiration frequency during MI (1PP, self-agency) was significantly 

increased when the MI was performed after AE compared to when it was performed 

before. These findings support the idea of a shared motor representation and suggest 

that the combination of simulation procedures and perspective should be considered 

when these processes are used in motor (re)learning.  

McCormick et al. (2012) speculated that the reduced number of fixations to 

the regions of interest (ROIs; Cup Pick Up and Cup Placement) in the 3PP may have 

been due to an innate desire to establish joint social attention. Evidence from sport 

psychology suggests a 3PP may be beneficial because this perspective provides 

additional anatomical cues. Eye gaze studies, however, appear to suggest that a 3PP 

shifts the focus from anatomical cues to social cues (Castiello, 2003). If gaze 

strategy is as critical to motor learning in AO and MI as it is in AE, then it would 

seem pertinent to understand the influence of social gaze during simulation 

procedures. This issue is examined in detail in Chapter Five. 
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2.3 Overview of studies  

The primary aim of this thesis was to test Jeannerod’s Simulation Theory 

(Jeannerod, 2001) using gaze metrics. A second aim was to identify the processes by 

which individuals acquire information in AE, AO, and MI and to use this knowledge 

to design an evidence based motor simulation tool for movement (re)learning. A 

novel experimental paradigm was devised to compare the eye movements of healthy 

individuals in AE, AO, and MI, and to examine the influence of early ageing on the 

gaze metrics. Subsequently, a novel approach to examining the influence of 

perspective was developed. Finally, an empirically-driven action simulation-based 

therapy intervention to support the physical treatment of upper limb function was 

designed and prototyped. Specific hypotheses are presented in each of the individual 

chapters. 

Currently, there are few empirical studies that have tested the Simulation 

Theory directly and none have used gaze metrics. Chapter Three reports how visual 

search differs between AE, AO, and MI and uses fixation metrics to indirectly 

compare the posited neural overlap. The intention was to identify common and 

specific gaze metrics in AE, AO, and MI, providing insight into the meaningfulness 

of the shared neural substrate and the cognitive processes employed. Using a similar 

protocol to the study described in Chapter Three, Chapter Four examines the 

influence of ageing on the congruency of the gaze metrics. 

After identifying typical gaze characteristics in AE, AO, and MI, Chapter 

Five aimed to use eye movements to examine the influence of perspective on 

simulation procedures. The specific objectives of this study were: (i) to understand if 
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and how the 3PP is represented during MI; and (ii), to examine the influence of 

prime perspective during simulation.  

The aim of the final study in Chapter Six was to develop an Action 

Simulation Training (AST) toolkit to support the physical treatment of upper limb 

function. The findings of the eye gaze studies in this thesis were considered in the 

context of a prototype rehabilitation aid. The AST toolkit was conceived as an 

empirically-based, best practice model to facilitate motor (re)learning and future 

research.  

To conclude, Chapter Seven provides a synthesis the findings from this 

programme of work and provides a clear and concise summary of both the 

theoretical and applied implications of the thesis. Future research directions are 

discussed and limitations of the programme of work identified. 
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3 Study 1: Active vision during action execution, action observation and motor 

imagery 

3.1 Introduction 

Chapters One and Two discussed the use of MI and AO to improve motor 

performance and the proposal that both MI and AO access the same neural substrate 

as AE. In support for these claims, evidence was provided that the interdependence 

between these action-relation cognitive skills may be linked closely to their neural 

anatomical-equivalence (e.g., Filimon et al., 2007; Macuga & Frey, 2011), and that 

all three processes are constrained by a fundamental law of human movement, Fitts’ 

Law (Decety, Jeannerod, & Prablanc, 1989; Grosjean et al., 2007). This evidence of 

neural ‘sharedness’ was identified as an important marker within Jeannerod’s 

Simulation Theory (Jeannerod, 2001).  

The Simulation Theory is frequently used as a mechanism to explain the 

improvements in motor performance following AO and MI. The burgeoning support 

for this theory belies the number of studies that have directly tested its main tenets, 

i.e., examined the neural sharedness by including all three process in a single 

paradigm. The few studies that have adopted this approach (Filimon et al., 2007; 

Macuga & Frey, 2011) have primarily focussed on comparisons of neural blood 

flow. Although this marker can be used to indicate cortical activity, it is not without 

limitation (see section 2.1.1). A more detailed interpretation of the neuronal activity 

is required if the mechanism is to be fully explained. It would therefore seem 

pertinent to include all action related process in a single experiment and to consider 

markers that permit the cognitive process to be examined in ‘real time’. 
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An emerging method of comparing cognitive processes is eye gaze 

registration (Moran, 2009). As discussed in the introductory chapter, contemporary 

researchers have demonstrated that fixations are congruent between AE and MI 

(Heremans et al., 2009), AE and AO (Flanagan & Johansson, 2003), and AO and MI 

(McCormick et al., 2012). Although these studies suggest that similar cognitive 

processes (e.g., attention) are performed in AE, AO and MI, the inclusion of only 

two of the three processes in any one study does not constitute a direct test of the 

theory. A comprehensive inter-process comparison using eye movements would 

address this shortfall.  

In the current study, the Simulation Theory was comprehensively tested 

using eye movements. Fixation metrics were compared across AE, AO and MI 

conditions. All participants performed a reach and point task at three levels of 

complexity, defined by target width. MT was measured in AE and MI to confirm 

task compliance. Based on the tenets of Jeannerod’s Simulation Theory it was 

hypothesised that: (i) MT would be congruent between AE and MI; (ii) the number 

of fixations to the target location would remain congruent in all conditions; and (iii) 

total target fixation duration would be congruent across all conditions.  

3.2 Methods  

Following purposeful sampling, a homogeneous group of thirteen healthy 

participants volunteered to participate in the study. All participants had normal or 

corrected to normal vision and were right handed as assessed by the Edinburgh 

Handedness Inventory (EHI; 96.12 ± 4.36; Oldfield, 1971; see Appendix A). The 

age range of participants was 51.49 ± 6.01 years. The motor and cognitive skills of 
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the participants were assumed to be unimpaired as age related slowing in AE, AO, 

and MI is suggested to increase from 60 years (Dror & Kosslyn, 1994; Leonard & 

Tremblay, 2007). All participants were naïve to the hypotheses being tested and 

provided written consent to take part. The protocol were approved by a Departmental 

Ethics Committee at the Manchester Metropolitan University and conducted in 

accordance with the Declaration of Helsinki. 

Measures 

The Movement Imagery Questionnaire – Revised Second Version  (MIQ-RS, 

Gregg et al., 2010; see Appendix B) was administered to measure MI ability. This 

questionnaire comprises 14 items; seven VI items and seven kinaesthetic imagery 

items. The completion of this questionnaire requires participants to imagine 

movement tasks such as a knee or arm raise and then rate the ease with which they 

were able to perform the imagery.  Ratings for each item on the MIQ-RS are selected 

from a 7-point Likert-type scale where 1 = very hard to see/feel and 7 = very easy to 

see/feel. Possible scores therefore range from 14 (extremely poor imagery ability) to 

98 (extremely good imagery ability) for the combined modalities. Following the 

recommendation of others (Fourkas, Ionta, & Aglioti, 2006; Goginsky & Collins, 

1996), an in-house questionnaire (see Appendix D) was also administered post-

experiment to subjectively assess participants’ MI and AO performance. The 

questionnaire used a 7-point Likert-type scale (similar to the MIQ-RS) to rate the 

ease/difficulty associated with the participant’s visual and kinaesthetic performance 

in MI and their active visual engagement and kinaesthesis in AO. 
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When this study was undertaken there was no psychometric tool available to 

measure the ability to observe an action. The Functions of Observational Learning 

Questionnaire (Cumming, Clark, Ste-Marie, McCullagh, & Hall, 2005) is a tool used 

to determine an individual’s motivation for using AO but it does not measure AO 

competence. Recently, Lawrence et al. (2013) reported that MI ability (assessed via 

the VMIQ-2) moderates the relationship between AO and imitation learning (AE). 

Thus, given that the participants recruited in this programme of work had at least 

average MI ability (albeit assessed through a different validated questionnaire) it is 

likely that they also possessed above average AO skills. 

Eye movements were recorded using an Applied Science Laboratories (ASL) 

Mobile Eye system (Bedford, Massachusetts). The system uses a method known as 

‘Dark Pupil Tracking’ in which the relationship between the pupil and three 

harmless near infra-red lights projected onto the cornea is computed to locate gaze 

within a scene. The equipment samples at a rate of 30 Hz, has a system accuracy of 

0.5° of visual angle, a resolution of 0.10° of visual angle, and a visual range of 50° 

horizontal and 40° vertical. A fixation was defined as a stable gaze position (i.e., 

within 0.67 ° visual angle) that was maintained for at least 120 ms. Pilot testing of 

the task revealed no significant horizontal eye movements and therefore only vertical 

gaze was analysed. Individual ‘look-zones’ were overlaid onto each target during 

post processing and all fixations within these zones were analysed.  The look-zones 

were equivalent to the target size plus a tolerance: large target = 6 mm
2
; medium 

target = 7 mm
2
; small target = 8 mm

2
. The tolerance accommodated for drift, 

compressions, expansions and individual gaze behaviour preference (Laeng & 

Teodorescu, 2002). A similar method of spatially comparing fixations between 
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simulation states has been employed by others (Laeng & Teodorescu, 2002; 

Richardson & Spivey, 2000). The equipment was operated from outside the testing 

booth to eliminate experimenter distraction. A chin rest was used to restrict head 

movements and participants were requested to refrain from talking whenever 

possible. The equipment was calibrated immediately prior to the experiment using a 

9 point grid which was presented on the tablet once the participants were seated 

appropriated. 

Goal directed task 

A goal-directed reach and point task was used to examine the internal model 

associated with the motor planning processes involved in AE, AO, and MI (see 

Figure 3.1). The neurological profile associated with simple reach and point tasks is 

reported to be influenced depending upon whether the task is discrete or rhythmic 

i.e., simple harmonic sinusoidal oscillation between two targets (Schaal, Sternad, 

Osu, & Kawato, 2004). As rhythmical tasks become more complex, the kinematic 

profile of the limb is reported to shift from continuous motion to a concatenation of 

discrete movements, where the forward and reverse arm movements are punctuated 

by a short dwell time at the target (Mottet & Bootsma, 1999). To control for this 

potential confound in movement kinematics, participants performed a series of 11 

discrete forward reach and point movements. The task, referred to as a Virtual Fitts’ 

Task (VFT), represented a modified version of the Virtual Radial Fitts’ Task 

previously employed by others (Caeyenberghs, Wilson, van Roon, Swinnen, & 

Smits-Engelsman, 2009; Heremans et al., 2011). It is important to note that the MI 

condition comprised the 1PP only. This approach was adopted for a number of 

reasons. First, it is consistent with the interpretation of MI within a strict 
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Jeannerodian understanding of motor imagery. Second, MI has been interpreted in 

this way by other researchers (e.g., Heremans et al., 2008), and third, perspective sub 

elements (1PP and 3PP) have different neural substrate signatures. Therefore, whilst 

kinesthesis can be experienced during 3PP, as discussed in Chapter Two, the study in 

this chapter was delimited to a single perspective of 1PP.  

The tasks were performed using a calibrated (pre-experiment) tablet 

(ST2220T, Dell United Kingdom Inc.) and a hand held stylus (normal pen size and 

weight). The tablet had a spatial accuracy ± 2.5 mm over 95 % of touchable area and 

a typical response time of 15 ms. The experiments were hosted in DMDX (Forster & 

Forster, 2003). This windows based programme precisely controlled the timing and 

presentation of participant instructions and the action related stimuli. The stylus 

movements were recorded at 50 Hz using this software. Participants held the stylus 

in their right hand and performed the VFT in: (i) AE; (ii) MI; and (iii) AO.  In the 

majority of conditions (see note below) a HOME and FINISH button together with a 

TARGET square were presented on the tablet (see Figure 3.1). The HOME and 

FINISH buttons were positioned approximately 200 mm away from the participant’s 

torso (midline). The TARGET was vertically aligned with the HOME button and the 

amplitude between the closest edges of the HOME and TARGET was constant (185 

mm). Three TARGET squares of different sizes were used: large (20 mm
2
), medium 

(9 mm
2
), and small (4 mm

2
). The size of the TARGETs led to three indices of 

difficulty (ID), 4.2, 5.4 and 6.5 respectively (ID = log2 (2A/W); Fitts, 1954). Note: 

The MI condition consisted of two sub conditions, guided MI (GMI) and unguided 

MI (UMGI). In GMI the HOME, FINISH, and TARGET buttons were presented. In 

UGMI the HOME and FINISH buttons were presented but the TARGET button was 
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not presented. Thus, in the UGMI conditions the participants had to imagine the 

location of the TARGET as well as the movement to and from the TARGET. The 

GMI and UGMI were included as distinct conditions as MI may not always be 

performed with the assistance of relevant visual cues. 

In AE and MI (GMI and UGMI), the HOME button was tapped to begin the 

task. In AE, participants physically moved the stylus to the TARGET, back to 

HOME and then to FINISH. In MI, the same action was imagined but without any 

concomitant movement to the TARGET. The MT, the time from when the stylus left 

the HOME button until it pressed the FINISH button, was recorded in both AE and 

MI. In AO, the participants held the stylus and observed a recording of the 

movement. Note: To promote intra-individual congruency between conditions, 

participants’ AE trials were covertly filmed using a Sony High Definition Handycam 

(HDR-HC7E). The camera was positioned directly above the participant, 186 cm 

from the floor. The participants were unaware that their AE trials were being filmed, 

however, the experimental protocol was later explained during the final debrief 

session. The personalised videos were then presented onto the tablet during the 

participants’ AO trials.
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Figure 3-1: a)Participant performing the VFT in AE; b)view from the Mobile Eye scene camera with red cross-hairs indicating point of 

gaze; and c) the eye with the three harmless near infra-red lights that are used to measure movement.
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Control 

To ensure that the eye movements in the simulation conditions did not reflect 

random oculomotor behaviour a control condition was included. In this condition the 

TARGET, HOME and FINISH buttons were presented on the tablet and participants 

were instructed to count back slowly from 100. After 60 s (a time equivalent to the 

mean time spent performing a complete block of repeated tasks in AE) the 

participants were asked to rest. To ensure a maximally homogeneous task across all 

participants a series of instructions were issued. In AE, participants were requested 

‘to move the stylus as quickly as possible but not to risk improving speed at the 

expense of accuracy’. In MI, participants were instructed to use MI from a first 

person egocentric, visual orientation. To control the MI, a brief script was recited by 

the experimenter which described the scenario and the imager’s inner response to the 

scenario (Lang, 1979): ‘see yourself accurately reach the square target, as if you 

were actually performing the movement’ and ‘feel your grip on the stylus, feel the 

muscles in your upper arm contract, feel your arm extend as you perform the 

movement’. Participants were requested to refrain from any upper limb movement in 

this condition. In AO, the participants were instructed to remain stationary and to 

‘observe the action with the intention to imitate it at a later time’. 

Experimental procedure 

Participants were fitted with the eye tracking system and initially performed a 

single habituation block of the VFT using a target that was a different size (15 mm
2
) 

to the experimental tasks. Participants were then assigned to one of three starting 

series defined by target size (large, medium, small). Each series began with one 
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block (11 repeated reach tasks) of AE, followed by one block of each of the other 

conditions, i.e. MI, AO, and Control, counterbalanced (see Figure 3.2). Preceding 

AO and MI conditions with AE was a necessity to maintain equivalent self-referent 

representations based on stored memories of the prescribed task (Borst & Kosslyn, 

2008). Each block consisted of 11 repetitions of the task followed by a 120 s rest. 

Following each rest period the calibration of the Mobile Eye was checked. At the 

end of the experiment each participant was debriefed fully and manipulation checks 

were performed to confirm participant compliance in the covert tasks.  

Chronometry 

Performance on the VFT was measured by comparing each participant’s 

mean MT. The AO condition was excluded from this analysis as no MT data were 

recorded. If effective MI was performed, MT would be comparable between MI and 

AE, and both GMI and UGMI conditions would be influenced by task complexity. 

Total number of fixations 

The total number of fixations inside the look-zones (per block of trials) was 

calculated and compared between conditions. Based on the work of Flanagan and 

Johansson (2003), no significant difference in the number of fixations to the target 

zone would indicate the execution of a similar visual, but not necessarily motor, 

strategy between conditions.  In addition, repeated fixations at the target would 

provide a measure of participants’ engagement in the covert tasks (Heremans et al., 

2008).  
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Figure 3-2: Experimental protocol for Study 1 (a similar protocol was also used in Study 2).
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The control condition was also included in this analysis. The fixations in this condition were 

expected to be epiphenomenal rather than functional, and significantly different to that of the 

simulation states (Heremans et al., 2008). 

Fixation duration 

The total fixation duration at the target (per block of trials) was computed for each 

participant and compared between conditions. Comparable values for fixation duration, that 

were similarly influenced by task complexity, would provide evidence of a shared eye motor 

representation (Flanagan & Johansson, 2003). 

Data analysis 

The eye movement data were analysed using Gazetracker software (Lankford, 2000). 

All trials incurred < 5% loss in tracking time. The first trial in each block was discarded since 

pilot testing revealed MT in this trial to be more variable. Excluding the control condition, 

which was analysed at a block level, eye movements during 120 trials were analysed for each 

participant: 10 (trials per block) x 4 (conditions: AE, AO, GMI, UGMI) x 3 (target sizes: 

large, medium, small). The Shapiro-Wilks test were used to identify normal distribution and 

sphericity was assumed if Mauchly’s test of sphericity was > 0.05. Effect sizes were 

calculated using partial eta squared values (ηp
2
) and the alpha level for significance was set at 

0.05. Pairwise comparisons were LSD corrected. All data are presented as means and 

Greenhouse-Geisser corrected. 
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3.3 Results 

Chronometry measures 

To confirm participant task compliance, MT was recorded and compared using a 3 

(condition: AE, GMI, UGMI) x 3 (target size: large, medium, small) repeated measures (RM) 

ANOVA. Main effects were found for condition (F1.403, 16.831 = 9.338, p = 0.004, ηp
2 

= 0.438, 

and target size (F2, 24 = 3.793, p = 0.037, ηp
2
 = 0.240). There were no significant interactions. 

Pairwise comparisons revealed MT was significantly quicker in AE (2.681 s) when compared 

to GMI (3.106 s, p = 0.046) and UGMI (3.460 s, p = 0.004). MT was also significantly 

quicker in GMI compared to UGMI (p = 0.008). For target size, MT was significantly 

quicker for the large target (2.943 s) compared to the small target (3.207 s, p = 0.028) across 

all conditions. There was no significant difference between the large and medium targets 

(3.097 s, p = 0.140) or between the medium and small targets (p = 0.215).  

Total number of fixations 

A 5 (condition: AE, AO, GMI, UGMI, Control) x 3 (target size: large, medium, 

small) RM ANOVA was used to compare the total number of fixations at the target zone. A 

main effect was found for condition (F4, 48  = 21.401, p < 0.001 ηp
2
 = 0.641, but not for size 

(F2,24 = 1.527, p = 0.113) and there were no interactions, (see Figure 3.3). Pairwise 

comparisons revealed that significantly more fixations were made during AE (15) compared 

to all other simulation states; AO (12, p = 0.006), GMI (12, p = 0.003), and UGMI (12, p = 

0.018). There were no significant differences between the covert conditions. 
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Figure 3-3: Total number of fixations at the target 'look-zone' over 10 consecutive trials for all series and conditions.
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A control condition was included in this analysis to confirm that the fixations in the target 

zone were task related. Significantly fewer fixations  (5, p <0.001) were observed during 

Control compared to AE, AO, and GMI and UGMI. In addition, the number of fixations in 

this condition was highly variable as reflected in the large standard deviations (large target 7 

± 6, medium target 5 ± 4, small target 4 ± 5).  

Total fixation duration 

A 4 (condition: AE, AO, GMI, UGMI) x 3 (size: large, medium, small) RM ANOVA 

was used to compare total fixation duration. A main effect of size (F2, 24 = 4.204, p = 0.027, 

ηp
2
 = 0.259), but not condition (F1.603, 19.239 = 1.656, p = 0 .194), was observed. There was 

also a significant size by condition interaction (F6, 72  = 2.227, p = 0.050, ηp
2 

 = 0.157; see 

Figure 3.4). Simple effect analyses revealed that in AE and AO the total fixation duration was 

significantly shorter for the large target size compared to the small target size (AE, 8.692 s vs 

10.815 s, p = 0.005; AO, 7.447 vs 10.212 s, p = 0.001), and for the large target size compared 

to the medium target size (AE, 8.692 s vs 10.210 s, p = 0.002; AO, 7.447 s vs 9.115 s, p = 

0.054). All other comparisons were not significant.  

Manipulation checks 

Participants completed the MIQ-RS to assess ease of imagery generation ability. All 

participants rated their ability as at least average. Mean scores of 33.82 ± 9.42 (VI) and 34.09 

± 8.56 (kinaesthetic imagery) were recorded. Manipulation checks were performed post 

experiment to examine the participants’ MI and AO experiences of the reach and point task. 

For MI, mean scores revealed that the visual component of the imagery was considered at 

least ‘somewhat easy to see’ (GMI = 5.54 ± 1.13, UGMI = 5.47 ± 1.98).  
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Figure 3-4: Total dwell time at the target during 10 consecutive trials, for all series 

and conditions. *Significantly different to Small target (p < 0.05). 
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Kinaesthetic imagery was rated as ‘somewhat hard to feel’ (GMI = 3.54 ± 1.11, 

UGMI = 3.08 ± 1.98). For AO, mean scores revealed that the visual component of 

the AO was considered at least ‘very easy to actively engage with’ (6.77 ± 0.60). 

The kinaesthesis component associated with AO was rated as ‘very hard to feel’ 

(1.46 ± 2.82). 

3.4 Discussion 

The current study explored eye gaze behaviour across four experimental 

conditions using a forward reach and point VFT.  The hypotheses were partially 

supported: (i) MT was not strictly congruent between AE, GMI and UGMI 

conditions, but was similarly influenced by target size across all conditions;  (ii) the 

number of target fixations was significantly different between AE and all covert 

conditions but all conditions were similarly influenced by target size; and (iii), total 

target fixation duration remained congruent in AE and AO and both conditions 

displayed an indirect Fitts’ Law effect. The findings suggest there are similarities in 

the fixation metrics and also some specific differences. Therefore, these data provide 

partial support for a common representation and Simulation Theory and, for the first 

time, through eye movement metrics. The discussion is organised by dependent 

variable. 

Equivalence in chronometry measures 

The MT in AE and MI was compared in three levels of task difficulty. In 

agreement with others (Decety et al., 1989; Maruff et al., 1999), MT was 

significantly quicker in AE compared to the GMI and UGMI conditions. Decety et 
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al. (1989) reasoned that increased force in AE (required to maintain similar levels of 

performance in more effortful tasks) is interpreted as increased MT in MI (of the 

same task). In the current study, the participants were asked to perform all tasks 

optimally, focussing on both speed and accuracy. It was possible that increased 

effort was required to decelerate the limb and place it accurately and quickly at the 

medium and small targets during the current control phase of the movement (Abrams 

et al., 1990; Marteniuk, MacKenzie, Jeannerod, Athenes, & Dugas, 1987). This 

increase in effort could have been interpreted as an increase in time during MI. MT 

was also found to be significantly longer in UGMI compared to GMI.  Kosslyn 

(1975) suggested that additional time is required in VI when the tasks are more 

complex. The data support this idea given that the UGMI condition required 

participants to generate and inspect additional images (i.e., the target). Some 

researchers have argued that overestimations in imagined MT can occur because 

tacit knowledge is used instead of MI (Pylyshyn, 1973). For example, the participant 

may count internally to direct the behaviour in an attempt to match the MT. If the 

participants had used tacit knowledge in the current study, MT should have been 

similar in both GMI and UGMI conditions. This was not observed since MT in GMI 

was significantly quicker compared to UGMI.  

Fitts’ Law has been demonstrated to constrain MI in a similar manner to AE 

(Decety et al., 1989; Maruff et al., 1999). In support of the findings of Maruff et al., 

MT in AE and MI was found to be significantly greater for the small, more complex 

target task compared to the medium and large, less complex target tasks. These data 

provide further support for the theory of a common motor representation that is 
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accessed during MI and AE. In addition, the data confirm participants’ engagement 

in both MI tasks. 

Number of fixations 

The control condition data indicated that the fixations performed during this 

task were epiphenomenal rather than functional. Participants demonstrated a variable 

eye movement pattern in this condition (evidenced through the large standard 

deviations) that was inconsistent with the other experimental conditions. These data 

provide support the idea that the eye movements were task related in the AE, AO, 

GMI and UGMI conditions.  

There were significantly more fixations in AE compared to the covert 

conditions. The goal of the task was to point to a target as accurately and quickly as 

possible, in AE this included the coupling of two effectors, the limb and the eyes. 

During the AE of a pointing task an individual will typically produce anticipatory 

saccades to the target site before the limb arrives and remain there until the task is 

complete. Online comparison of the feedforward efferent motor command with 

visual and proprioceptive afferent feedback occurs to place the limb accurately at the 

target. If the placement of the first fixation provides incorrect or insufficient 

information, a corrective saccade and subsequent fixation occurs (Abrams et al., 

1990). In contrast to AE, in the covert conditions no additional fixations related to 

error correction of the limb trajectory were required and hence the number of 

fixations was less in this conditions. The results contradict those of Heremans et al. 

(2009), who reported no significant difference in the number of fixations between 

AE and visually assisted MI; this may be due to differences in task complexity. In 
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the Heremans et al. study, the relatively simple task involved a controlled cyclic 

wrist extension/flexion movement, whereas in the current study participants 

optimally performed (i.e., considered speed and accuracy) a gross motor movement. 

The findings highlight the fact that the neural overlap between conditions is not 

complete. For this metric, the covert conditions have no need, or appear unable, to 

simulate the fine adjustment of the motor representation that occurs in tasks that are 

guided by afferent feedback and sensory expectation. 

The number of fixations in the target zone in the UGMI condition was 

consistent with the other more visually assisted conditions. During object related 

perception, spatial information is suggested to be encoded in a spatial index 

associated with eye movements. During memory retrieval or MI, the spatial 

representation is reported to be accessed by executing the same eye movements as 

perception (Heremans et al., 2008; Ryan & Villate, 2009; Spivey & Geng, 2001). In 

the current study, the UGMI condition provided no task relevant information except 

the stationary limb and the HOME button. Jeannerod (1986) proposed that in 

visuomotor tasks the motor representation is permanently fed with information from 

two sources, conceptualised as a visual map and a proprioceptive map. The visual 

map encodes the position of the target with respect to the body using retinal 

information; the proprioceptive map encodes the static and dynamic proprioceptive 

signals from the limb. It is possible that the stationary limb provided the motor 

representation with the necessary inputs to be able to re-execute the accurate landing 

position of the target fixation. Others have also demonstrated that MI can be 

facilitated if the limb is in a position that is congruent with the task demand (Lorey 



 

77 

et al., 2009). These findings provide support for the PETTLEP approach to MI 

(Holmes & Collins, 2001). 

In agreement with others (e.g., Abrams et al., 1990; Heremans et al., 2008), 

the number of fixations to the target was not influenced by task complexity (i.e., 

target width). The AE of simple aiming tasks typically requires no more than two 

fixations at the target in order to determine the target’s location in the visuomotor 

workspace (Abrams et al.). A comparable fixation pattern was observed in this study 

and implies that the target location was optimally determined in all conditions. This 

suggests that in overt and covert conditions the number of fixations remains 

relatively robust to changes in task complexity, providing further evidence of a 

shared motor representation.  

Total fixation duration  

Fixation duration is reported to consist of three processes: visual field 

sampling; analysis of foveal information; and planning of the next saccade (Viviani, 

1990). In the current study, visual field sampling was controlled using a privacy 

screen, and planning of the next saccade, after target acquisition, was controlled with 

the HOME button that was constant across trials. Consequently, it was inferred that 

any difference in fixation duration was due to the analysis of foveal information and 

the computation of the motor plan. In AE and AO the fixation duration was 

significantly influenced by target size; fixation duration was longer for the small 

compared to the large target. Similar findings have been reported by others during 

the AE of near aiming tasks (Williams et al., 2002). These data indicate that the 

information processing demand increased as a function of task complexity in AE and 
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AO, and this may reflect additional cognitive processes associated with pre-

programming parameters (e.g., direction, force, and velocity) of the movement. 

Some authors (e.g., Desmurget et al., 1999; Kourtis, Sebanz, & Knoblich, 

2012; Mottet, Guiard, Ferrand, & Bootsma, 2001) suggest the scaling of the MT by 

task complexity is an emergent process; crude motor plans are formed during action 

preparation and continually updated during action performance. The online 

modulation of the motor output is achieved via the posterior parietal cortex that acts 

as a ‘neural comparator’, comparing eye signals (retinal and extra-retinal) to 

proprioceptive and efferent copy signals. In the current study, fixation duration was 

influenced by task complexity in AE and AO, but not in GMI or UGMI. This 

suggests that the amount of information processing was also an emergent process. It 

is possible that the internal, top down model used in MI is sufficient to generate 

crude motor plans (the MT was significantly different to AE but similarly influenced 

by task complexity) but is unable to simulate the dynamic feedback conditions. 

Other researchers (Heremans et al., 2009) have also reported no effect of task 

complexity on temporal fixation markers (e.g., the time between successive 

fixations) in cyclic aiming tasks. In contrast, and in agreement with others (Flanagan 

& Johansson, 2003), the similar and dynamic behaviour of fixation duration in AE 

and AO suggests the activation of an enhanced, dynamic motor representation that is 

shared by both conditions. These findings suggest that the sub-components of aiming 

tasks are processed differently in GMI and UGMI compared to AE and AO. These 

data corroborate the findings of Calmels et al. (2006) who reported that elite 

gymnasts, with medium – high MI ability, imagined a complex gymnastic routine in 

a temporally different format to that displayed in physical performance.  
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The lack of a main effect in fixation duration between conditions (with the 

target complexity data collapsed) appears to contrast with previous findings 

(McCormick et al., 2012). McCormick et al. (2012) reported fixation duration to be 

significantly longer in AO compared to MI conditions. These differences can be 

reconciled if the task designs are considered. In the McCormick et al. study, MT was 

fixed between the AO and MI conditions. In the present study, MT was self-

determined during the MI conditions and shown to be significantly longer than AE 

(and by extension AO, since the video recording of AE was presented in AO). 

Therefore, in agreement with McCormick et al., this suggests the time spent fixating 

in MI, relative to MT, was less than the time spent fixating in AE and AO, relative to 

MT.  

Imagery ability and manipulation checks 

All participants had at least average kinaesthetic and VI skills. The 

manipulation checks revealed that participants found the kinaesthetic component of 

the MI more difficult to perform than the visual component. The ability to maintain 

the temporal preservation of the organisation of movement during MI has been taken 

as evidence of kinaesthetic imagery (Lotze & Zentgraf, 2010). The overestimation of 

MT in MI may be indicative of sub-optimal kinaesthetic imagery. In contrast, the 

spatial accuracy in MI, evidenced through repeated fixations in the target look-zone, 

corroborates the above average scores recorded during the VI assessment. The 

manipulation checks suggest that participants found it easier to engage in AO 

compared to MI. In AO there were no instructions to ‘feel’ the movement, instead 

participants were requested to ‘observe with the intent to imitate’. The low scores for 

kinaesthesis suggest that participants did not include this modality when performing 
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AO. Thus, it appears that the temporal preservation of the movement in AO, as 

evidenced through fixation duration, is achieved via mechanisms other than 

conscious limb kinaesthesis. This could be an eye motor representation that is shared 

in AE and AO. 

Conclusion 

Using a single experimental paradigm, eye movements were measured to test 

the predictions of Jeannerod’s Simulation Hypothesis. All participants fixated the 

target look-zone, indicating that similar information was attended to across 

conditions. Fixation duration was influenced by task complexity in AE and AO. This 

suggests that dynamic manipulation of the motor representation in response to task 

constraints occurs similarly in AE and AO but not MI. As such, AO may be a more 

effective technique in supporting complex motor processes. The close similarity 

between AE and AO may support the use of AO as a prime to MI, if chronic 

immobility has compromised effective physical movement (e.g., stroke).  This 

research highlights the importance of considering the dynamic nature of the motor 

representation and its influence on behaviour in the covert conditions.
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4 Study 2: The influence of early ageing on eye movements during motor 

simulation         

4.1 Introduction 

Covert training processes such as AO and MI are increasingly proposed as 

adjuncts to physical therapy during the motor rehabilitation of older individuals 

(Ertelt et al., 2007; Page et al., 2007). The use of MI and AO in these populations has, 

however, generally assumed that the motor simulation skills of older individuals are 

unaffected by age. In healthy ageing, efficient movement can be compromised 

through: modifications within the musculoskeletal system (Kinoshita & Francis, 

1996; Narici & Maganaris, 2007); loss of sensorimotor and proprioceptive sensitivity 

(Klein, Rice, & Marsh, 2001; Leonard & Tremblay, 2007); a slowing in processing 

visual information (Briggs, Raz, & Marks, 1999); or, cognitive decline (Salthouse, 

1996). If, as neurophysiological studies increasingly demonstrate, the motor 

representation is shared between overt and covert conditions, then any detrimental 

age related changes associated with AE might also reduce the effectiveness and 

efficacy of AO and MI.  

The performance of overt and covert motor tasks is frequently compared using 

self-report inventories and brain mapping techniques. Although these are useful 

measures, the drawbacks with measures of neural activity has been previously 

discussed (see section 2.1.1) and self-reports rely on an individual’s introspective 

access to conscious awareness (Collet, Guillot, Lebon, MacIntyre, & Moran, 2011). 

An alternative method, the chronometry paradigm, compares the time taken to 

perform and imagine a motor act, with similar MT taken as evidence of MI ability 
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(Guillot & Collet, 2005b). An important aspect of this temporal relationship between 

AE and MI is that if task complexity is increased then MT increases similarly in AE 

and MI (Decety et al., 1989). Thus both the physical and mental performance of 

action is similarly constrained by Fitts’ Law (Fitts, 1954). Researchers frequently 

exploit this phenomenon and use MT as a manipulation check to ensure task 

compliance in the covert tasks (Gabbard, Cacola, & Bobbio, 2011; Heremans et al., 

2011). The temporal correspondence between AE and MI is not suggested to develop 

until late adolescence, with proficiency achieved once the neural systems supporting 

internal modelling have matured (Caeyenberghs et al., 2009). Whilst older adults 

demonstrate temporal congruency (Sirigu et al., 1996), they may also underestimate 

(Personnier, Kubicki, Laroche, & Papaxanthis, 2010); and overestimate (Skoura, 

Personnier, Vinter, Pozzo, & Papaxanthis, 2008) the imagined MT. It is has been 

suggested that the temporal inconsistency may be related to the task as younger 

individuals have been reported to over-estimate the imagined duration when more 

complex tasks are performed (Guillot & Collet, 2005b). The temporal inconsistency 

may, however, also reflect age-related changes in the cognitive mechanisms 

mediating the relationship between physical and mental practice (Skoura et al., 2008). 

Measuring ‘real time’ cognitive processing, in addition to MT, may offer a more 

comprehensive method of comparing overt and covert performance in this age group. 

One method of achieving this is by measuring eye movements (Heremans et al., 

2008; Moran, 2009) 

Contemporary research has compared the cognitive organisation of an action 

in AE, AO, and MI through the measurement of visual fixations (for a review see 

Causer, McCormick, & Holmes, 2013). These specific gaze parameters have been 
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extensively used by cognitive and sport psychologists to infer the focus of attention 

(Vickers, 2009). The number and spatial distribution of fixations is considered to 

reflect the visual information that an individual considers most important, the 

temporal distribution may be used to identify the relationship between the visual 

cues, and the duration is considered a measure of information processing demand 

(Zelinsky, 2013). In Chapter Three of this thesis, it was demonstrated that young 

adults attend the same visual cues in AE, AO, and MI but that the visual information 

processing demand is congruent between AE and AO only. These findings highlight 

the sensitivity of using this method and suggest that there are discrete differences as 

well as similarities in the cognitive organisation of overt and covert action, even in 

the absence of age related influences. 

At present there appears no research that has used eye movements to compare 

the cognitive processes of healthy, older adults during AE, AO, and MI. In studies 

that have examined eye movements in AE, older adults are reported to need more 

time to extract and process the visual information and programme the appropriate 

motor responses (Di Fabio, Greany, & Zampieri, 2003; Sekuler et al., 2000). These 

changes in gaze behaviour may not always accompany changes in motor performance 

(Chapman & Hollands, 2006). Chapman and Hollands (2006) compared eye 

movements during gait in healthy older and younger adults and reported gaze 

differences even when comparable MTs were achieved. This suggests that age related 

changes in cognitive processes might occur in the absence of physical decline, or to 

compensate for physical decline. This potentially challenges the efficacy of using 

mental practices techniques such as AO and MI for motor (re)learning in older adults. 

To date, two published studies (Heremans, et al., 2012a; Heremans, et al., 2012b) 
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have reported the eye movements of an older adult control group (> 60 years) during 

the AE and MI of a wrist flexion/extension task. In both studies, the number of 

fixations and inter-fixation amplitude was found to be congruent between the two 

conditions. Based on these findings Heremans et al. suggested that MI ability was 

preserved in older adult populations. Whilst the congruent eye movements do suggest 

cognitive organisation of the action was similar between AE and MI, the absence of a 

younger healthy control group makes it difficult to identify to what extent, if any, the 

performances were influenced by age-related changes.  

Many have considered age-related changes to manifest from 60 years onwards 

(for a review see Salthouse, 1996). Supporting this assumption, numerous studies 

have demonstrated performance breakdown when extremes of the adult age 

continuum are compared young adults (20-25 years) and older adults (70+ years). 

While overt age-related changes in motor tasks (for example an increase in reaction 

time) may not be apparent until over the age of 60, to achieve comparable reaction 

times with young adults older adults have to invest additional cognitive effort 

(Chapman & Hollands, 2006; Seidler et al., 2010). Thus, the cognitive techniques 

used to compensate for age-related changes may mask the observable onset of age-

related decline. In a recent review examining mental processes and ageing, Saimpont, 

Malouin, Tousignant, and Jackson (2013) provided evidence of age-related changes 

in participants of 55 years and older. Others (Rönnlund, Nyberg, Bäckman, & 

Nilsson, 2005) have also suggested that cognitive processes are relatively robust until 

the age of 55. These findings suggest it may be pertinent to investigate the influence 

of ageing in a slightly younger population than traditionally recruited. 



 

85 

The primary aim of this study was to compare the AE, AO, and MI of upper 

limb movement between healthy young and early ageing adults. Specific eye 

movements provided the primary dependent variables and additional measures (MT 

and self-reports) were used to triangulate the data and confirm participant compliance 

in the covert tasks. Based on the findings of others (Flanagan & Johansson, 2003; 

Heremans et al., 2012a), and the concept of shared neural networks in motor 

simulation (Jeannerod, 2001) it was hypothesised that the gaze strategy executed in 

AE would be preserved in MI and AO. It was expected the MT would be influenced 

by target size and, due to age related slowing, be increased in the older group. Based 

on the conflicting findings to date, no predications were made regarding whether the 

MT in MI would increase or decrease compared to AE.  

4.2 Methods 

A sample of 16 healthy participants was split equally into two age groups, old 

(mean age = 59 ± 7 years, 7 females) and young (mean age 30 ± 11 years, 7 females). 

Prior to testing it was confirmed that all participants: had normal or corrected to 

normal vision; were righted handed (old group = 94.75 ± 4.35; young group = 95.80 

± 4.85 years; EHI; Oldfield, 1971); had at least average MI ability (old group, VI = 

34.63 ± 6.37, kinaesthetic imagery = 33.25 ± 10.01; young group, VI = 31.88 ± 

10.35, kinaesthetic imagery = 34.25 ± 5.23; MIQ-RS; Gregg et al., 2010). Two 

participants in the older group were retired but still physically active, reporting 

cumulative walking of at least 60 minutes each day. The remaining participants were 

office workers or similar. All participants were naïve to the hypotheses being tested 

and provided written consent to take part. The protocol were approved by a 
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Departmental Ethics Committee at the Manchester Metropolitan University and 

conducted in accordance with the Declaration of Helsinki. 

Experimental procedure 

The experimental protocol is very similar to that used in Chapter Three (Study 

1). As a comprehensive description and rational of the methods section is given in 

section 3.2 (page 57), only a brief overview is reported here.  

Measures 

The MIQ-RS (Gregg et al., 2010; see Appendix B) was administered to 

measure MI ability. Following the recommendation of others (Fourkas, Ionta, & 

Aglioti, 2006; Goginsky & Collins, 1996), an in-house questionnaire (see Appendix 

D) was also administered post-experiment to subjectively assess participants’ MI and 

AO performance.  

Eye movements were recorded using an Applied Science Laboratories (ASL) 

Mobile Eye system (Bedford, Massachusetts). A fixation was defined as a stable gaze 

position (i.e., within 0.67 ° visual angle) that was maintained for at least 120 ms. Pilot 

testing of the task revealed no significant horizontal eye movements and therefore 

only vertical gaze was analysed.  ‘Look-zones’, areas equivalent to the target size 

plus a tolerance: large target = 6 mm
2
; medium target = 7 mm

2
; small target = 8 mm

2
; 

were determined during pilot testing and reflected the area most heavily populated by 

fixations during the current control phase of the physical movement. The tolerance 

accommodated for drift, compressions, expansions and individual gaze behaviour 

preference (Laeng & Teodorescu, 2002). The look-zones were overlaid onto each 
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target during post processing and all fixations within these zones were analysed. To 

eliminate experimenter distraction, the equipment was operated from outside the 

testing booth. A chin rest was used to restrict head movements and participants were 

requested to refrain from talking whenever possible. The equipment was calibrated 

immediately prior to the experiment using a 9 point grid which was presented on the 

tablet once the participants were seated appropriated. 

Goal directed movement task 

The VFT was used to examine the internal model associated with the motor 

planning processes involved in AE, AO and MI. The task was performed using a 

calibrated (pre-experiment) tablet (ST2220T, Dell United Kingdom Inc.) and a hand 

held stylus (normal pen size and weight). The experiment was hosted in DMDX 

(Forster & Forster, 2003) to precisely control the timing and presentation of 

participant instructions and the action related stimuli. Participants held the stylus in 

their right hand and performed the VFT in three conditions: (i) AE; (ii) MI; and (iii) 

AO.  In all conditions a HOME and FINISH button together with a TARGET square 

were presented on the tablet (see Figure 3.1). The HOME and FINISH buttons were 

positioned approximately 200 mm away from the participant’s torso (midline). The 

TARGET was vertically aligned with the HOME button and the amplitude between 

the closest edges of the HOME and TARGET was constant (185 mm). Three 

TARGET squares of different sizes were used: large (20 mm
2
), medium (9 mm

2
), and 

small (4 mm
2
). The different TARGETs led to task IDs of 4.2, 5.4 and 6.5 

respectively (ID = log2 (2A/W), Fitts, 1954). 
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Note: Unlike Study1, the UGMI condition was excluded from this study to reduce the 

experimental demands on the older individuals. Aside from the different age groups, 

this is the only aspect of the experimental protocol that differs between Study 1 and 

Study 2. 

In AE and MI, the HOME button was tapped to begin the task. In AE, 

participants physically moved the stylus to the TARGET, back to HOME and then to 

FINISH. In MI, the same action was imagined but without any concomitant 

movement to the TARGET button. The MT, the time from when the stylus left the 

HOME button until it pressed the FINISH button, was recorded in both AE and MI. 

In AO, the participants held the stylus and observed the previously recorded video of 

their movement.  

Control 

To ensure that the eye movements in the simulation conditions did not reflect 

random oculomotor behaviour a control condition was included. In this condition the 

TARGET, HOME and FINISH buttons were presented on the tablet and participants 

were instructed to count back slowly from 100. After 60 s (a time equivalent to the 

mean time spent performing a complete block of repeated tasks in AE) the 

participants were asked to rest. To ensure a maximally homogeneous task across all 

participants a series of instructions were issued. In AE, participants were requested 

‘to move the stylus as quickly as possible but not to risk improving speed at the 

expense of accuracy’. They were also informed that ‘two or more false starts or target 

misses during any block would result in that block being restarted’. In MI, 

participants were instructed to use MI from a first person egocentric, visual 
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orientation. To control the MI, a brief script was recited by the experimenter which 

described the scenario and the imager’s inner response to the scenario (Lang, 1979): 

‘see yourself accurately reach the square target, as if you were actually performing 

the movement’ and ‘feel your grip on the stylus, feel the muscles in your upper arm 

contract, feel your arm extend as you perform the movement’. Participants were 

requested to refrain from any upper limb movement in this condition. In AO, the 

participants were instructed to remain stationary and to ‘observe the action with the 

intention to imitate it at a later time’. 

Experimental procedure 

Participants were fitted with the eye tracking system and initially performed a 

single habituation block of the VFT using a target that was a different size (15 mm
2
) 

to the experimental tasks. Participants were then assigned to one of three starting 

series defined by target size (large, medium, small). Each series began with one block 

(11 repeated reach tasks) of AE, followed by one block of each of the other 

conditions, i.e. MI, AO, and Control, counterbalanced (see Figure 3.2). Each block 

consisted of 11 repetitions of the task followed by a 120 s rest. Following each rest 

period the calibration of the Mobile Eye was checked. At the end of the experiment 

each participant was debriefed fully and manipulation checks were performed to 

confirm participant compliance in the covert tasks.  

Gaze analysis 

The number of fixations and total fixation duration of the fixations located 

within the look-zones was computed. In addition, the inter-fixation distance, 
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calculated as the distance of the location of the first fixation from the HOME button 

following task onset was also computed. The first trial in each block was discarded 

since pilot testing revealed MT in this trial to be more variable. In total, the data 

reflected 1440 trials: 16 (participants) x 3 (conditions; AE, AO and MI) x 3 (target 

size; large, medium, small) x 10 (task repetitions per block). For the gaze metrics, the 

mean values per block were determined and used in the statistical analysis. The data 

in the control conditions represented performance at a block level and therefore 144 

trials were analysed: 16 (participants) x 3 (conditions; AE, AO and MI) x 3 (target 

sizes; large, medium, small). 

Statistical analysis 

To confirm participant compliance during MI, MTs were compared using a 2 

(condition: AE, MI) x 3 (target size: large, medium, small) x 2 (age: young, old) RM 

ANOVA. The temporal correspondence between AE and MI was further examined 

by calculating the within subject correlation coefficient (Bland & Altman, 1995, see 

explanation below). The total number of fixations was analysed using a 4 (condition: 

AE, MI, AO, control) x 3 (target size) x 2 (age) RM ANOVA. The control condition 

was included in this analysis to compare fixations in task related and task unrelated 

conditions. The differences in fixation duration were compared using a 3 (condition: 

AE, MI, AO) x 3 (target size) x 2 (age) RM ANOVA. The temporal correspondence 

of this metric between AE and AO, and AE and MI was further examined by 

calculating the within subject correlation coefficient (Bland & Altman 1995, see 

explanation below). To complete the analysis the primary inter-fixation distance was 

also compared using a 3 (condition: AE, MI, AO) x 2 (size: large, small) x 2 (age) 

RM AVOVA. This gaze parameter is particular susceptible to task strategy, and 
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controlling task strategy in aiming tasks, irrespective of task instructions, can be 

problematic (Gesierich,  Bruzzo,  Ottoboni, & Finos, 2008). Under conditions of low 

ID, individuals tend to adopt a strategy that focuses on speed, but under conditions of 

high ID they may adopt a strategy that focuses on accuracy (Lazzari, Mottet, & 

Vercher, 2009). As the size of the medium target was not vastly different to either the 

large or small target, the focus of the strategy could have been either speed or 

accuracy. The medium target was therefore excluded from the analysis to remove any 

confound related to task strategy. Note: The correlation coefficients for MT and 

fixation duration were calculated using the method proposed by Bland and Altman 

for repeated observations. This type of analysis was used to determine if an increase 

in the temporal dependent variables (MT and fixation duration) in AO or MI was 

associated with an increase in AE. To calculate the correlation coefficients for 

repeated observations the variances between subjects are removed and only the 

changes within subjects are examined. Bland and Altman caution that treating data 

from repeated observations as a simple sample may mask a true relationship or result 

in a relationship being incorrectly identified.  

The Shapiro-Wilks and Levene’s tests were used to identify normal 

distribution and equivalent variance. Sphericity was assumed if Mauchly’s test of 

sphericity was > 0.05. Effect sizes were calculated using partial eta squared values 

(ηp
2
) and the alpha level for significance was set at 0.05. Pairwise comparisons were 

Bonferroni corrected. All data are presented as means and, where appropriate, 

Greenhouse-Geisser corrected. 
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4.3 Results 

All participants complied with the task requirements. Task noncompliance 

accounted for 16 trials (2%) being retaken for the young group and 20 trials (3 %) 

being retaken for the older group. 

Chronometry measures  

Main effects were found for condition (F1, 14 = 4.649, p = 0.049, ηp
2 

= 0.249), 

target size (F2, 28 = 4.272, p = 0.024, ηp
2
 = 0.234) and age (F1,14 = 5.694, p = 0.032, 

ηp
2
 = 0.289). There were no significant interactions. Pairwise comparisons revealed 

MT was slower in MI (2.976 ± 0.993 s) compared to AE (2.538 ± 0.798 s). For target 

size, MT was quicker for the large target (2.571 ± 0.812 s) compared to the small 

target (2.887 ± 0.895 s, p = 0.035). Older participants took significantly longer to 

perform the task (3.178 ± 0.925 s) compared to younger participants (2.335 ± 0.801 s) 

and, based on Cohen’s guidelines (Cohen, 1988), exhibited weaker within subject 

correlations between AE and MI; a statistically significant within subject correlation 

was found for the young group  (r = 0.478, p < 0.05) and for the older group (r = 

0.258, p = 0.037; see Figure 4.1).  
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Figure 4-1: MT in MI plotted against MT in AE for the older adults (A) and young 

adults (B). Each point represents the mean MT of 10 repetitions to each target for 

each participant. Significant correlations were found for older and younger adults. 

See text (Statistical analysis) for further explanation.
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Total number of fixations  

There was a main effect for condition (F1.872, 26.211 = 29.811, p < 0.001, ηp
2
 = 

0.680), but not size (p = 0.366) or age (p = 0.310). Significantly more fixations were 

made in AE compared to all other states. There was a significant condition by age 

interaction (F 1.872, 26.211 = 4.342, p = 0.026, ηp
2
 = 0.237) and a significant condition by 

size interaction (F 2.704, 37.862 = 3.427, p = 0.030, ηp
2
 = 0.197; see Figure 4.2). 

Regarding the condition by age interaction, pairwise comparisons revealed that older 

individuals made more fixations in AE (17 ± 4) compared to AO (13 ± 3, p = 0.006), 

MI (13 ± 4, p = 0.029) and control (4 ± 5, p = < 0.001). Older participants also made 

significantly more fixations in AE compared to the younger group (13 ± 3, p = 

0.019). For younger participants there was no significant difference in the number of 

fixations between conditions: AE (13 ± 3), AO (11 ± 2) and MI (12 ± 2) but 

significantly fewer fixations were observed in control (6 ± 7, p = 0.045). The number 

of fixations made during AO and MI was not significantly different between groups. 

The condition by size interaction revealed that more fixations were made to the large 

target (6 ± 6) compared to the medium target (4 ± 7, p = 0.043) in the control 

condition only.  

Total fixation duration  

A main effect for size (F1.339, 18.742 = 9.734, p = 0.003, ηp
2
 = 0.410) but not 

condition (F1.356, 18.981 = 1.239, p = 0.305) was found. Pairwise comparisons revealed 

that the total fixation duration was significantly less at the large target (7.968 ± 3.250 

s) compared to the small target (10.010 ± 3.903 s; Figure 4.3).  
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Figure 4-2: Mean number of fixations within the target look-zone based on 10 reach 

actions (data are collapsed for target size).  

Figure 4-3: Total fixation duration during each block of 10 reach actions. Data are 

collapsed for condition as AE, AO, and MI were not significantly different.  
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There was a main effect of age (F1, 14= 7.351, p = 0.017, ηp
2
 = 0.344) that indicated 

older participants, compared to younger participants, fixated the target look-zone for 

longer (10.721 ± 3.115 s vs 7.040 ± 1.910 s). The fixation duration correlations 

between AE and AO, and AE and MI are illustrated in Figure 4.4. There was a 

significantly medium-large correlation between AE and AO for the young (r = 0.447, 

p = 0.006) and older (r = 0.360, p = 0.01l) group. The correlations between AE and 

MI were not significant and have been omitted. 

Inter-fixation distance 

The RM ANOVA revealed a significant size by age interaction (F1,14 = 5.465, 

p = 0.035, ηp
2
 = 0.281; see Figure 4.5). Simple effect analyses revealed the inter-

fixation distance was greater to the large target (175.323 ± 29.918 mm) compared to 

the small target (159.914 ± 38.311 mm, p = 0.019) for the younger participants only. 

There were no significant main effects.  
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Figure 4-4: Fixation duration in AE plotted against AO for the older group (A) and 

younger group (B). Each point represents the total target fixation duration during 10 

reach actions for each participant. 
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Figure 4-5: Primary inter-fixation amplitude per group. The * indicates a significant 

difference in the amplitude between target sizes for the young group only. 
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component as ‘neutral (not easy or hard)’ (4.00 ± 2.928). Participants preferred to 

perform AO compared to MI. 87.50% (7 participants) of the older group, and 75% (6 

participants) of the younger group perferred this simulation condition. 

4.4 Discussion 

Eye movements were measured in young and older adults to examine the 

influence of age on cognitive processes during the AE, AO, and MI of a goal directed 

action. The discussion is organised by dependent variable and self-reports have been 

included to supplement the findings. The chronometry data are discussed initially as 

this performance measure informs the interpretation of the data for the primary 

dependent variables.  

Chronometry measures  

The chronometry results indicated that all participants complied with the task. 

As hypothesised, older individuals took significantly longer to physically execute the 

tasks, however in both age groups the MT in AE and MI increased with target 

complexity. In both age groups the MT in MI was longer than the MT in AE and this 

may reflect the high degree of accuracy associated with the task (Guillot & Collet, 

2005a). This group-wide increase in mental MT does not necessarily indicate 

impairment, but may reflect the different time constants of each condition. In MI the 

agent has to manipulate the image consciously (i.e., generate, inspect, maintain, and 

transform the image; Dror & Kosslyn, 1994) and this is predicted to introduce an 

additional time cost (Jeannerod, 1997). 
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 The temporal relationship between AE and MI was weaker in the older group 

indicating a potential MI inaccuracy. MT is considered to be derived, in part, from 

muscular force, proposed to be part of the coded motor representation (Jeannerod, 

1997). As there was no overt movement in MI there was no limb or object upon 

which to exert the planned force. Consequently, the level of force encoded in the 

motor command may have manifest as time in the covert states; increases in felt force 

represented as increases in time (Decety et al., 1989). The inability of the older group 

to accurately represent MT in MI may, therefore, reflect a reduced ability to 

accurately predict muscular force as a result of a decline in sensorimotor control and 

a modified musculoskeletal system. In AE, this reduced ability may be counteracted 

by a greater reliance on proprioceptive and online visual feedback, which is partially 

absent in the MI condition (Chapman & Hollands, 2006; Klein et al., 2001). The self-

report data also appear to support these findings with older individuals rating the 

kinaesthetic component of their MI as ‘somewhat hard to feel’ in comparison to the 

younger group who rated it as ‘somewhat easy to feel’. In addition, given that MI is 

primarily a top-down process, the weaker temporal relationship could also be 

explained by an age related decline in cognitive function (Seidler et al., 2010). In 

support of this suggestion some, but not all, MI processes, such as the generation and 

maintenance of an image, are reported to become impaired with age (Dror & Kosslyn, 

1994).  

Number of fixations  

Older participants made more fixations during AE compared to the younger 

group. The increase in the number of fixations suggests that the gaze strategy was less 

economical in this condition (Vickers, 1996). The chronometry data would support 
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this interpretation given that the older group also took longer when performing the 

task physically. Goggin and Meeuwsen (1992) suggest that older individuals place a 

greater emphasis on the posture phase of a pointing movement in order to maintain 

task accuracy. Since no difference was observed in gross endpoint error between the 

younger and older group, it is possible that the older participants invested more effort 

in this component of the task to maintain performance. The reinvestment of effort in 

this manner would be supported by Attentional Control Theory (Eysenck, Derakshan, 

Santos, & Calvo, 2007). Given that the hands and eyes are reported to be tightly 

coupled (Helsen, Elliott, Starkes, & Ricker, 1998) it is possible that the additional 

fixations made by the older group represent the investment of this additional effort 

(Seidler et al., 2010). 

In contrast to the study’s hypothesis, the additional fixations executed during 

AE in the older group were not represented in the covert states. In MI and AO, 

fixations were fewer and similar in number to that of the younger group. These 

findings suggest that all participants adopted a similar gaze strategy in the covert 

conditions and both groups were equally proficient at the task. During AE, a crude 

feed-forward motor plan is generated and subsequently modulated by an error signal 

(the difference between the anticipated and actual position of the limb) determined 

through sensory feedback mechanisms (Desmurget & Grafton, 2000). In the covert 

conditions the feedback is significantly limited and therefore the magnitude of the 

error signal maybe insufficient to modulate the motor plan. In these conditions the 

simulated action appears to be based only on the initial feed-forward motor plan; in 

all trials there was at least one fixation to the target location to assist in coding the 

coordinates of the movement trajectory. This explanation would support the earlier 



 

102 

interpretation that the additional fixations observed during AE in the older group 

were related to the error correction phase concerned with stabilizing the hand at the 

target (Ghez, Scheidt, & Heijink, 2007). Indeed, direct evidence from studies of 

primate motor cortex suggests that the posture and movement phase of a reach action 

involve distinct processes (Kurtzer, Herter, & Scott, 2005). A dissociation between 

the reach and grasp components of upper limb actions has been proposed (Grafton, 

Arbib, Fadiga, & Rizzolatti, 1996; Jeannerod, 1997) and some authors (Edwards, 

Humphreys, & Castiello, 2003) report that in reach and grasp actions, the grasp 

component remains relatively robust to AO priming. The data from this study support 

these claims by demonstrating different gaze strategies during the sub components of 

the task in the covert conditions.  

Some of these findings may appear to contrast with others. For example, 

Heremans et al. (2012a) reported no differences in the number and location of eye 

movements made by a healthy, older control group during AE and MI. Differences in 

task demand may explain these conflicting findings. The Heremans et al. study 

required participants to physically and mentally perform a cyclic horizontal wrist 

flexion/extension action between two targets at two different indices of difficulty (4.5 

and 5.3), at rate of 0.5 Hz. This may be considered as a less demanding task 

compared to the present study where participants were requested to execute the task 

as quickly as possible while maintaining accuracy. In support of this claim, in the 

Heremans et al. study the participants typically made one eye movement per wrist 

movement during AE. This suggests that the initial feed forward motor plan may 

have been sufficient to guide a relatively simple task that involved little error 

correction. Given the earlier interpretation of the results, a similarity in the number of 
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fixations during overt and covert movement would be expected.  For both age groups, 

the number of fixations within the look-zones was not influenced by target 

complexity, suggesting that task demand was compensated by other gaze behaviour. 

Similar findings have been reported by others (Heremans et al., 2012a), and were also 

demonstrated in Study 1 of this thesis.  

Collectively, these data suggest that motor simulation in MI and AO may 

offer older individuals movement practice conditions that are not constrained by age-

related decline. Of particular importance to practitioners is that covert states do not 

appear to interpret the fine motor error corrections. The accuracy of the initial target 

fixation may, therefore, be critical to optimizing the mental practice benefits. 

Fixation duration 

Fixation duration was influenced similarly across all conditions supporting the 

concept of shared neural substrate. Compared to younger individuals, older adults 

fixated for longer but displayed relatively similar increases in fixation duration with 

increases in target complexity. The longer fixation duration may be a result of age-

related slowness associated with processing the visual information (Briggs et al., 

1999) or, in AE and AO, it may be related to a delay in the arrival of the hand at the 

target due to functional loss (Kinoshita & Francis, 1996).  

The correlational data suggest that the congruency of fixation duration was 

enhanced between AE and AO in both groups. These data imply that the factors 

influencing the temporal allocation of an individual’s attention in AE influenced 

attention in AO similarly. The self-report data support this interpretation given that 
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AO was rated as ‘very easy to engage in’ by both the older and younger groups, 

whereas the visual dimension of MI was given a lower rating, either ‘somewhat easy 

to see’ by the older group or ‘easy to see’ by the younger group. In addition, 88 % of 

older adults and 75 % of younger adults reported a preference for AO in comparison 

to MI. Collectively, the findings suggest that older individuals perform better at, and 

prefer, AO. The temporal congruency between AE and AO, and the preference for 

using AO, may be due to the common augmented feedback in these conditions. 

During AE and AO, the eye gaze strategy has been reported to work on a ‘just in 

time’ basis, where visual information is acquired and interpreted just at the point 

where it is required in the task (Flanagan & Johansson, 2003; Hayhoe & Ballard, 

2005). This strategy is suggested to be employed to minimise the load on short-term 

memory (Ballard, Hayhoe, & Pelz, 1995). In contrast, in MI there is no augmented 

feedback and the image is the interpretation (Pylyshyn, 2003). Thus, the fixation 

duration (the time spent dwelling on a particular visual cue) is tightly governed by the 

evolution of the action in AO (as it is in AE), but is decoupled from the online action 

in MI. It is possible that under dynamic conditions individuals prefer using AO 

because it involves a more familiar and economic eye gaze strategy (Pylyshyn, 2000). 

A factor contributing to the reduced congruency in the fixation duration 

between AE and MI may be attentional focus. During the AE and AO of near aiming 

tasks, individuals typically attend to the effect of an action rather than the limb 

movement required to achieve the action: they adopt a predictive, external attentional 

focus (Flanagan & Johansson, 2003; Williams et al., 2002). Attending to the moving 

limb is encouraged in acute movement rehabilitation, however, outside of this setting 

it may be detrimental to task performance (Hagemann et al., 2006; McNevin, Wulf, & 
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Carlson, 2000). In accordance with Langian theory (Lang, 1979), MI was facilitated 

in this study by including specific visual and kinaesthetic statements, referred to as 

stimulus and response propositions. It is possible, therefore, that the kinaesthetic 

response proposition ‘feel the muscles in your upper arm contract, feel your arm 

extend as you perform the movement’ encouraged a more internal, specific 

attentional focus than the external, general focus adopted during overt movement. 

Indeed, other researchers (Calmels et al., 2006) have also reported that conscious 

kinaesthetic sensations in MI (sensations that are typically absent during AE) cause a 

temporal discrepancy between AE and MI. These findings begin to highlight the 

multifarious influences on MI and the importance of the delivery instructions. 

Understanding how to control but not constrain MI for effective therapeutic use 

should be explored in future research. 

Taken together these findings demonstrate that although older adults fixate for 

longer, their visual information processing behaviour is influenced in a manner 

similar to younger adults. There is some indirect evidence of neural sharedness across 

conditions (all conditions were influenced by target size), however the enhanced 

congruency between AO and AE suggests that dynamic, rather than static, visual cues 

activate additional shared processes in these conditions. In view of these findings, 

including dynamic visual cues in MI or performing MI simultaneously with AO, may 

support a more effective gaze strategy may enhance the efficacy of MI as a 

movement practice tool (Vogt, Rienzo, Collet, Collins, & Guillot, 2013). A similar 

approach of using augmented visual feedback to correct suboptimal gaze during AE 

has been demonstrated in the sports and clinical domains (Crowdy, Kaur-Mann, 
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Cooper, Mansfield, Offord, & Marple-Horvat, 2002; Hagemann et al., 2006; Harle & 

Vickers, 2001). 

Primary inter-fixation distance 

The amplitude of the primary eye movement is considered to reflect the 

unmodified motor representation and is one of the first movements to be executed 

once a motor action has been programmed (Abrams et al., 1990). In this study, the 

primary inter-fixation distance was differentiated by target size in the young group 

only. Specifically, increases in the primary inter-fixation distance accompanied 

decreases in task complexity in AE, AO, and MI. This suggests that the younger 

group generated a motor representation based on task constraints. In contrast, the 

primary inter-fixation distance was not differenced by target size in the older group 

and this suggests that these individuals were either unable to modulate the amplitude, 

perhaps through functional loss, or executed a more conservative amplitude as a 

compensation mechanism.  

In relation to the first suggestion, hypometric saccades (smaller eye movement 

amplitudes) are reported to occur in senescence (Huaman & Sharpe, 1993; Irving, 

Steinbach, Lillakas, Babu, & Hutchings, 2006).  In this study however, the mean 

amplitude of the primary inter-fixation distance executed by the younger adults was 

within the range reported to still be achievable by healthy older adults.  Furthermore, 

Heremans et al., (2012a) reported that a healthy, older adult control group adapted 

their primary inter-fixation distance to different target distances in a horizontal 

aiming task. It therefore seems unlikely that the older adults in this study were unable 

to voluntary adjust the amplitude to reflect the target complexity. A more likely 
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explanation is that amplitude was constrained in the large target task as a 

compensation mechanism. The hand movement amplitude of older adults is 

suggested to behave differently to that of younger adults. The relative distance 

travelled in the primary sub-movement is reported to be substantially less in older 

adults, with the movement highly influenced by accuracy constraints (Ketcham, 

Seidler, Van Gemmert, & Stelmach, 2002). Altered muscle activation patterns and 

deficits in force modulation have been cited as possible causes for these age-related 

changes (Darling, Cooke, & Brown, 1989). Given that hand movement amplitude is 

suggested to be closely coupled with eye movement amplitude (Cotti, Guillaume, 

Alahyane, Pelisson, & Vercher, 2007), the conservative primary inter-fixation 

distance may assist the suboptimal hand movements by providing greater control 

during the terminal phase of the movement. Chapman and Hollands (2006) suggested 

that the central nervous system of older adults requires additional time to pre-plan 

movement and, to compensate for this, they adopt a less than optimal gaze strategy 

the prioritises the movement planning over online control.  

The eye movement amplitude adopted by each group in AE was preserved in 

AO and MI. This pre-programmed part of the movement therefore appears embedded 

within the motor representation and, as such, may lend itself well to correction 

through cognitive intervention. Cotti et al. (2007) demonstrated that the adaptation of 

voluntary saccades (eye movement amplitudes) to targets generalises to hand pointing 

movements, specifically the amplitude of the hand movement increases with the 

amplitude of the saccade. If this is true then executing larger saccades (i.e., increasing 

the eye movement amplitude) during the AO and MI of reach movements may offer 

opportunities to correct the AE of these tasks in older individuals. Indeed, in the 
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sports domain, cognitive interventions that involve the retraining of visual search 

strategies have been demonstrated to improve the biomechanics in far aiming tasks 

(Harle & Vickers, 2001). 

Control 

For both groups, there were significantly fewer fixations to the target look-

zone during the control condition. In addition, the number of fixations was 

differentiated by target size in the control condition but not in AE, AO, and MI.  

These findings highlight the difference between random eye movements made in the 

control condition and task related eye movements made in AE, AO, and MI. 

Conclusion 

There is evidence of age-related changes to gaze during AE but, due to the 

predicted incomplete neural overlap, some of these changes are associated with 

processes that are not represented in MI and AO. In this regard, the lack of neural 

sharedness has a facilitative effect and permits the practice of movement under 

conditions that are not influenced by functional loss. Some age-related changes in 

gaze are preserved across conditions, for example the eye movements linked to 

movement planning. As these sub-optimal eye movements appear part of the shared 

neural representation, opportunity exists to alter their behaviour during simulated 

movement. For example, in sport psychology and clinical rehabilitation, augmented 

visual feedback has been used to correct suboptimal gaze strategies. Given the posited 

neural sharedness between AE, AO, and MI, correcting sub optimal gaze behaviour in 

AO and MI should lead to a more optimal gaze pattern in AE. Re-learning movement 



 

109 

under these conditions, in absence of AE, reduces the risk of injury in this population. 

Regardless of age, healthy adults appear to perform more accurately, and prefer, 

simulation conditions that are supported by detailed visual information. This may be 

because the availability and processing of sensory information is more optimally 

matched to AE under these conditions. 
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5 Study 3: The influence of visual perspective on simulation procedures 

5.1 Introduction 

The influence of visual perspective on motor simulation remains unclear and 

is an area that has remained relatively unexplored (Morris et al., 2005).  Humans 

perform actions physically in a 1PP. In simulated motor learning, actions can be 

observed and imagined from many perspectives and visual angles to address the 

needs of the individual or the performance outcome (see Chapter Two). A suggested 

benefit of simulating movement from an alternative perspective, such as 3PP, is that 

it supplements the visual information that is ordinarily available during AE (Hardy, 

1997). In AO, this supplementary information may include information related to 

movement kinematics and information related to goal intention acquired from joint 

social gaze with the agent of the action. Studies presented earlier in this thesis have 

reported that younger and older individuals prefer performing, and perform more 

accurately, in AO (1PP) compared to MI (1PP), and it has been reasoned that this 

may be because the eye gaze representation in this covert process is most similar and, 

therefore, familiar, to AE. If this is true, it could be speculated that there would be 

little difference in the eye gaze representation between AO (3PP) and MI (3PP), 

given that actions are not physically performed in this perspective. In contrast, 

however, some have suggested that observation from a 3PP is as familiar as 

observation from a 1PP given the increased exposure to the actions of others across 

the lifespan (Vogt, Taylor, & Hopkins, 2003). Given that simulation procedures may 

involve actions presented in the 3PP, it would seem pertinent to understand the 

potential benefits (e.g., supplementary information) and drawbacks (e.g., reduced 
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motor familiarity) of this perspective. The main aim in this study, therefore, was to 

examine the influence of perspective on simulation procedures.  

During AO (3PP), observers tend to focus on the agent’s gaze (if this 

information is available) and it has been suggested this behaviour is natural and 

automatic (Griffin & Bock, 2000; Letesson & Edwards, 2012). This gaze strategy is 

suggested to allow the observer to obtain early cues regarding the intention of the 

observed agent. The sensitivity of gaze to action intention is highlighted by studies 

demonstrating that when an agent’s body movements are occluded, the nature of the 

action can still be inferred if the observer observes the agent’s gaze direction 

(Castiello, 2003). When visual information relating to an agent’s head or gaze is 

unavailable, as in the 1PP, observers fixate the stimulus end point in order to derive 

the specification of the movement (Mataric & Pomplum, 1998). In support of Mataric 

and Pomplum, earlier studies in this thesis have demonstrated that fixations to the 

stimulus end points occur during AO in a 1PP. Further, and in support of a shared 

motor representation, similar gaze behaviour is also executed in MI (1PP). To date, 

however, no research has comprehensively examined whether the eye movements 

executed during AO (3PP) are executed similarly during MI (3PP). If eye movements 

perform a functional role in MI (3PP) as they do in AO (3PP), then it is important to 

understand the degree to which the gaze is congruent. This was the focus of Part A of 

this chapter. 

Investigating whether the eye movements executed during AO (1PP or 3PP) 

are represented similarly during MI (1PP or 3PP) is an important test of the 

Simulation Theory (Jeannerod, 2001). From an applied point of view, it is also 

important to understand how the eye movements executed during AO (3PP) are 
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represented during MI (1PP) and, conversely, how the eye movements executed 

during AO (1PP) are represented during MI (3PP). For example, during motor 

rehabilitation individuals may be required to observe a therapist perform movement 

in the 3PP but simulate it (either through MI or through the early stages of AE) from 

the 1PP. Alternatively, in the sport domain, rock climbers may wish to inspect their 

form using MI (3PP) based predominately on visual information acquired in a 1PP. 

While it is generally accepted that humans can rotate objects mentally and, to a large 

extent, individual body parts such as the hands (Ionta, Perruchoud, Draganski, & 

Blanke, 2012; Sirigu & Duhamel, 2001), the cognitive processes associated with the 

rotation of a more complex action has not been examined fully. Given the increasing 

use of AO and MI as motor learning techniques it would seem pertinent to address 

this shortfall in the literature. Part B of this chapter addressed this issue.  

Part A: The influence of perspective on gaze congruency during simulation 

In Chapter Two, numerous studies demonstrating similar gaze behaviour 

durig AO (1PP) and MI (1PP) were discussed.  These findings suggest it may be 

intuitive to expect that the eye movements in AO (3PP) would be similarly 

represented during MI (3PP), and that the eye movements would include those related 

to the pursuit of early action understanding. Indeed, some of the theories discussed 

earlier (section 2.2.2), such as Kosslyn’s Visual Buffer Hypothesis (Kosslyn, 1987) 

and Thomas’ Perceptual Activity Theory (Thomas, 1999) would support this idea. 

Other researchers (Johanasson et al., 2010), however, posit that eye movements may 

be performed in VI to relieve the working memory load; eye movements do not have 

to be executed but are likely to be executed when the task is complex. In this 

explanation, it may be reasonable, therefore, to expect eye movements (fixations) to 
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be directed to critical aspects of the imagined scene/action (e.g., areas involved with 

hand-object interaction) rather than the model’s gaze. Elucidating the functional role 

of eye movements during MI is further complicated by the inherent differences 

between perception and mental imagery. Pylyshyn (2003) argued that scene 

perception is primarily a ‘bottom up’ process and that the acquired information is 

interpreted dynamically, whereas VI is a primarily ‘top down’ process that involves 

the representation of information that has already been interpreted. This explanation 

suggests that the gaze behaviour may behave differently in the two processes: in 

perception the eye movements may be influenced by the information processing 

demands; for example when the information to be interpreted is complex, fixation 

duration would be longer. In VI, however, the eye movements would be influenced 

less by information processing demands as the information has already been 

interpreted and stored in memory. Evidence from Chapters Three and Four would add 

support to this contention. In these studies, fixation duration was influenced by task 

complexity (information processing demand), with increases in fixation duration 

accompanying increases in task demand.  This effect was most apparent in AE and 

AO suggesting that information is interpreted differently in MI. These findings 

support the work of others (Hayhoe & Ballard, 2005; Williams et al., 2002) and 

suggest that for near aiming tasks individuals acquire and process visual information 

in AE and AO just at the point that is it is needed in a task.  

The contrasting views on the functional role of eye movements during MI, 

coupled with the paucity of studies that have investigated the influence of perspective 

on eye movements during simulation reduces the formulation of an evidence-based 

hypothesis. To date, only one study has investigated the influence of perspective on 
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eye movements during AO and MI (McCormick et al., 2012). McCormick et al. 

compared eye movements during MI and AO of a reach and place action presented in 

a 1PP and a 3PP. They reported both similarities and differences in the gaze metrics 

between perspectives and suggested that not all the visual information acquired in AO 

is presented in MI. Of particular interest to the current study was the finding that the 

number of fixations was differentiated by perspective in AO but not in MI. It is 

therefore possible that information relating to action intention and movement 

kinematics is acquired during AO but only the movement kinematics is represented in 

MI. If this is true, the eye movements in MI may not be a re-enactment of those 

executed during perception (Kosslyn, 1987), and the scene may not be inspected in a 

similar manner in MI and AO (Thomas, 1999). The purpose of Part A in the current 

study, therefore, was to extend the work of McCormick et al. and examine the extent 

to which information acquired during AO (1PP and 3PP) is represented in MI (1PP 

and 3PP).  

Part B: Prime perspective congruency 

During motor learning, AO frequently precedes AE or MI and is referred to as 

a ‘prime’. Priming involves presenting the performer with similar task-relevent visual 

information immediately before the task is performed. Priming is suggested to 

facilitate  performance by activating and strengthening the shared mental 

representation (Brass, Bekkering, & Prinz, 2001; for a more thorough explanation see 

Hesse, de Grave, Franz, Brenner, & Smeets, 2008).  Behavioural studies report that 

priming AE with AO reduces reaction time, and priming MI with AO improves MI 

ability (Rymal & Ste-Marie, 2009). Supporting the idea of a shared neural network, 

when AE is primed by AO (Brass et al., 2001), or MI (Ramsey, Cumming, Eastough, 
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& Edwards, 2010), faster reaction times have been recorded when the prime is 

congruent compared to incongruent. TMS studies have also demonstrated that when 

MI of simple hand movements is primed by AO, higher levels of motor excitablity 

are observed when the AO and MI involve congruent tasks (Fourkas et al., 2006; 

Vargas et al., 2004). Collectively, these studies suggest that an incongruent prime 

may activate dissimilar motor processes leading to an interference in the subsequent 

task.  

The sensitivity of the performance outcome to the congruency of the prime is 

highlighted in studies that have demonstrated interference effects when subtle 

differences are present. Brass et al. (2001) reported that when the task was congruent 

but the direction of the movement incongruent (i.e., finger tapping with palm facing 

down or finger tapping with palm facing up) interference effects were also 

introduced. The influence of prime congruency may have implications for the 

traditional way in which AO is delivered. For example, if an individual is required to 

observe an action from an anatomical 3PP prior to performing it (AE or MI) in a 1PP, 

the difference in movement direction difference could introduce interference, 

resulting in a less than optimal motor learning outcome.  

To date, interference effects have largely been examined using reaction time 

as the dependent variable (Brass et al., 2001; Ramsey et al., 2010). Reaction time 

may, however, not be the most accurate measure as some visuomotor tasks can be 

initiated without all of the visual information having been processed. For example, a 

grasping movement may be initiated with the orientation of the hand adjusted online 

(Hesse et al., 2008; Van Sonderen & Denier Van der Gon, 1991; also see the 

introductory chapter, section 2.4, eye movements). A more accurate and dynamic 
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measure may be eye gaze registration. In earlier chapters, it has been demonstrated 

that certain fixation parameters, for example the number of fixations and fixation 

duration, are linked to information processing demands and are highly influenced by 

task complexity. The measurement of these parameters in priming studies may reveal 

the effect of prior information of subsequent movement planning. The aim of Part B 

of this study was, therefore, to use gaze metrics to examine the influence of the prime 

perspective when MI is primed by AO. 

With respect to Part A of this study, it was hypothesised that similar eye 

movements to stimulus end points would be executed in MI and AO in both a 1PP 

and 3PP. Given the lack of previous empirical studies, no formal hypothesis was 

made regarding the eye movements relating to social gaze. With respect to Part B, it 

was hypothesised that the eye movements in MI would be influenced by the 

congruency of the prime perspective.  

5.2 Methods 

Nineteen participants were initially recruited for the study. Not all individuals 

perform voluntary eye movements during MI (Brown, 1968; Heremans et al., 2008), 

it was therefore important to test for this ability. Previous studies have reported that 

when task related eye movements are performed during MI (1PP), the eye movements 

mimic closely those of AE. Heremans et al. (2008) demonstrated that during the MI 

(1PP, unassisted by visual cues) and AE of a cyclic horizontal wrist movement 

between two targets, fixations are executed to both targets in a cyclic manner during 

both processes. Participants’ recorded eye movements were therefore inspected to 

ensure they attended the movement-related targets (Cup Pick Up, Cup Placement) in 
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during MI (1PP) a cyclic manner. The gaze strategy of eleven participants was 

identified as being unsuitable and this data was discarded. The remaining participants 

(N = 8, 43.25 yrs ± 5.42, five females) had normal or corrected to normal vision and 

were assessed as being right handed (mean laterality index: 92.26 ± 10.94; Oldfield, 

1971). All participants were naïve to the hypotheses being tested and provided 

written consent to take part. The protocol were approved by a Departmental Ethics 

Committee at the Manchester Metropolitan University and conducted in accordance 

with the Declaration of Helsinki. 

Measures 

MI ability characteristics were assessed using the Vividness and Movement 

Imagery Questionnaire -2 (VMIQ-2; Roberts et al., 2008) and the MIQ-RS (Gregg et 

al., 2007; see section 3.2 for a description). This VMIQ-2 questionnaire comprises 36 

items separated into 3 categories: 12 items for VI in a 1PP; 12 for VI in a 3PP; and, 

12 related to kinaesthetic imagery. The completion of this questionnaire requires 

participants to imagine a variety of tasks such as kicking a football or throwing a 

stone and to rate their vividness of the movement using a 5-point scale where 1 = a 

perfectly clear image and 5 = no image at all. In each category possible scores range 

from 12 (extremely good ability) to 70 (extremely poor ability). The MIQ-RS has 

been discussed in detail in section 3.2, page 58. All participants were assessed as 

having at least average imagery ability: global scores for the MIQ-RS = 75.89 ± 

14.64), global scores for the VMIQ-2 = 89.47 ± 20.57. 

Eye movements were recorded using an ASL Mobile Eye system (Bedford, 

Massachusetts). The average fixation duration in scene viewing is reported to be 
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approximately 330ms (Henderson, 2003), however, a fixation is usually defined by a 

lower threshold in the sports literature, typically > 100 ms (Vickers, 2007). In 

accordance with others who have examined cognitive performance during scene 

viewing (Liman & Zangemeister, 2012), a threshold slightly greater than that adopted 

in sports literature was selected. A fixation was defined as stable gaze within 0.8° 

visual angle for > 200 ms.  

Task and stimulus 

The stimuli in the experiment consisted of two 25 s video sequences of a 

repetitive grasp and place movement performed by a model, presented in a 1PP and a 

3PP (see Figure 5.1). Specifically, the movement involved a model (male, 27 years) 

reaching forward with his right hand to pick up a cup that was position 16 cm in front 

of his body, aligned with his left side. The cup was subsequently set down on a saucer 

positioned 16.81 cm away to the right. The movement was completed with the model 

returning his arm to the right side of his body, with palm faced downwards and 

resting on the table. The movement took 5 s to complete and was repeated 5 times in 

each video sequence.  The videos were presented on a 32” LCD screen (Logik, 

L32DIGB20) positioned at a distance of 87 cm from the seated participant. The 

participants placed their hands around the base of the chin rest to ensure they were in 

a neutral position (i.e. in a position that was incongruent to both MI (1PP) and MI 

(3PP). The experiment took place in a black booth to reduce visual noise. 

Participants’ eye movements were recorded during AO and MI in four target 

conditions:  (i) MI (1PP) preceded by AO in a congruent perspective; (ii) MI (1PP) 

preceded by AO in an incongruent perspective; (iii) MI (3PP) preceded by AO in a 
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congruent perspective; and (iv) MI (3PP) preceded by AO in an incongruent 

perspective. Conditions were randomised and counterbalanced. 

Prior to AO, participants were instructed to ‘observe with the intent to 

imagine the action in the same (or rotated) perspective at later time’. Subsequently, 

participants viewed the video and performed MI when instructed. The MI instructions 

prompted participants to use both kinaesthetic and VI (these processes had been 

explained prior to familiarisation) and to imagine the action five times. Participants 

were allocated 25 s to complete their MI (the same amount of time as AO) and during 

this time the LCD screen remained blank. The instructions and visual stimuli were 

presented using DMDX software (Forster & Forster, 2003). 

Participants performed 80 trials: 2 (simulation: AO and MI) x 5 (number of 

trials in each simulation) x 2 (perspective: 1PP and 3PP) x 2 (congruency) x 2 

(number of repeated blocks) during a total recording session of approximately 30 

minutes. Each block of trials was separated by a 60 s rest. Following each rest period 

the calibration of the eye tracker was checked.  
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Figure 5-1: Schematic overview of the experimental protocol. 
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Data analysis 

As social gaze has not yet been examined during MI it was difficult to predict 

accurately the gaze strategy during MI (3PP). Individuals have been reported to 

rotate, change the size or shape, reorganise or reinterpret their images during VI 

(Finke, 1989). In the absence of evidence suggesting otherwise, it is possible that 

some of these manipulations also occur during MI (3PP). An a posteriori approach 

to defining the ROIs was therefore adopted. In this approach ROIs are determined 

based on the regions most heavily fixated during the task. The method, also known 

as intelligent regionalisation, is suggested to be a valid for investigating cognitive 

processes linked to AO and MI (Liman & Zangemeister, 2012). The total scene 

viewing area = 480 (height) x 640 (width) pixels, where 1 pixel (px) = 1.4 mm. 

Note: Where applicable the data are reported in pixels as this unit of measurement is 

suggested to be appropriate when the stimulus is shown on a computer screen 

(Holmqvist et al., 2011). The ROIs included: the position of the cup at pick up (Cup 

Pick Up: 75 x 185 px); the position of the cup at placement (Cup Placement: 75 x 

185 px); and an anchor position (Anchor: 75 x 225 px; see Figures 5.2 and 5.3). The 

area outside of the task related ROIs but within the total scene viewing area was 

classified as the Outside ROI. The Anchor ROI was defined as the area surrounding 

the resting hand/lower arm in the 1PP (Figure 5.2), and an area of equivalent size 

surrounding the head/upper body in the 3PP (Figure 5.3). Using a similar approach 

as others (Laeng & Teodorescu, 2002), the ROIs were generously sized and allowed 

for individual differences in compression and expansion of the mental image. This 

ensured that a standard method of quantifying gaze could be applied across 

participants and conditions, irrespective of any idiosyncratic behaviour. For both 
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Part A and Part B, the number of fixations within the ROIs was computed and used 

to infer attention. The average fixation duration was also computed and used as a 

measure of information processing. With respect to Part A of the study, a vector 

analysis was performed to examine how social gaze was represented during MI. To 

achieve this, the group mean fixation location in each ROI was plotted for AO and 

MI, 1PP and 3PP. Subsequently, the distance between the mean fixation location in 

the Cup Placement ROI and the Anchor ROI (in AO and MI) was computed. The 

angle (β) between the Cup Pick Up, Cup Placement ROI and Anchor ROI, was also 

calculated using the Law of Cosines:                        (Figure 5.6b). 

Paired-sample t-tests were used to examine the differences in the inter-fixation 

distance and angle between AO (1PP) and MI (1PP), and AO (3PP) and MI (3PP).  

Statistical analysis 

Values for skewedness and kurtosis were used to identify normal distribution (Kim, 

2013). Sphericity was assumed if Mauchly’s test of sphericity was > 0.05. Effect 

sizes were calculated using partial eta squared values (ηp
2
) and the alpha level for 

significance was set at p < 0.05.  Pairwise comparisons were Bonferroni corrected. 

All data are presented as mean ± standard error. 
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Figure 5-2: ROIs defined in the 1PP. 

 

Figure 5-3: ROIs in the 3PP. For Figure 5.2 and 5.3: (a) Cup Pick Up; (b) Cup 

Placement; (c) Hand/Arm ROI; (d) Head/Torso.  
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5.3 Results  

Part A 

To address Part A of the study, the number of fixations and average fixation 

duration were compared separately using 2 (simulation type: AO, MI) x 2 

(perspective: 1PP, 3PP) x 4 (ROI: Cup Pick Up, Cup Placement, Anchor, Outside) 

RM ANOVAs.   

Number of fixations 

There were significant main effects for: simulation type (F1,7 = 18.343, p = 

0.004, ηp
2
 = 0.724), more fixations were made in AO (10 ± 0.189, p = 0.004) 

compared to MI (8 ± 0.552) and, ROI (F3,21 = 54.278, p < 0.001, ηp
2
 = 0.886), more 

fixations were made to the Cup Placement ROI (13 ± 0, p = 0.005) compared to the 

Cup Pick Up ROI (10 ± 0). Significantly fewer fixations (3 ± 1, p <0.001) were also 

made to the Outside ROI compared to the task-related ROIs (Cup Pick Up ROI = 10 

± 0, Cup Placement ROI = 13 ± 0, Anchor ROI = 10 ± 1). The main effect of ROI 

was qualified by a significant simulation type x ROI interaction (F3,21 = 27.448, p < 

0.001, ηp
2
 = 0.797). Pairwise comparisons revealed a greater number of fixations to 

the Cup Placement ROI in AO (18 ± 1) compared to MI (9 ± 1). In addition, in AO 

only, there was a significant difference in the number of fixations to the Cup Pick Up 

ROI (10 ± 0) compared to the Cup Placement ROI (18 ± 1; see Figure 5.4). There 

was a main effect for perspective, which approached significance (F1,7 = 5.011, p = 

0.060, ηp
2
 = 0.417); more fixations executed in the 1PP (10 ± 0, p = 0.060) compared 

to the 3PP (8 ± 1). 
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Figure 5-4: Number of fixations to the ROIs during AO and MI (perspective 

collapsed). 

Average fixation duration 

There was a main effect of ROI (F3,21 = 21.456, p < 0.001, ηp
2
 = 0.754), which 

revealed that average fixation duration was significantly greater in the Cup Pick Up 

ROI (0.421 ± 0.019 s) compared to Anchor ROI (0.252 ± 0.029 s). The average 

fixation duration in the Outside ROI (0.252 ± 0.029 s, p < 0.013) was also 

significantly less compared to the task-related ROIs (Cup Pick Up ROI = 0.421 ± 

0.019 s; Cup Placement ROI = 0.394 ± 0.014 s; Anchor ROI = 0.331 ± 0.018 s). The 

main effect of ROI was qualified by a significant ROI x simulation type interaction 

(F3,21 = 5.238, p = 0.007, ηp
2
 = 0.428). Pairwise comparisons revealed that the 
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average fixation duration in AO was significantly greater to the Cup Pick Up ROI 

(0.482 ± 0.037 s, p = 0.020) and Cup Placement ROI (0.436 ± 0.029 s, p = 0.038) 

compared to MI (Cup Pick Up ROI = 0.359 ± 0.011 s, Cup Placement ROI = 0.352 ±     

0.009 s) (see Figure 5.5).  The pairwise comparisons also revealed that in AO the 

average fixation duration was significantly less to the Anchor ROI (0.338 ± 0.023 s, 

p = 0.041) compared to the Cup Pickup ROI (0.482 ± 0.037 s). 

There was a main effect for perspective that approached significance (F 1,7 = 4.882, p 

= 0.063, ηp
2
 = 0.411). Average fixation duration was greater in the 1PP (0.368 ± 

0.018 s) compared to 3PP (0.330 ± 0.017 s in the 3PP). 

 

 

Figure 5-5: Average fixation duration in the ROIs during AO (perspective 

collapsed). 
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Vector analysis 

In the 3PP, the distance between the Cup Placement ROI and the Anchor 

ROI was significantly greater during AO (137.180 ± 4.851 px, p < 0.001) compared 

to MI (49.666 ± 7.243 px); (t)7 = 12.666, p < 0.001. There was also a significant 

difference in the angle abd in AO (70.000 ± 1.96°) and MI (29.111 ± 8.16°); (t)7 = 

5.994, p = 0.001. In the 1PP, the distance between the Cup Placement ROI and the 

Anchor ROI was significantly shorter in AO (44.628 ± 2.038 px) compared to MI 

(74.262 ± 13.863 px); (t)7 = -2.433, p = 0.045. There was a significant difference in 

the angle abc in AO (97.886 ± 6.321) compared to MI (70.018 ± 4.528); (t)7 = 

3.398, p = 0.011; see Figure 5.6). 
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Figure 5-6 (a and b): Group mean fixation location during AO and MI in the 1PP 

(Figure 5.6a) and in the 3PP (Figure 5.6b). Cup Pick up ROI (a), Cup Placement 

ROI (b), and Anchor ROI (c and d). β is the angle abc and abd (illustrated only on 

Figure 5.6b for clarity). 

300

330

360

390

420

450

480

420 450 480 510 540 570 600 630 660

V
er

ti
ca

l 
C

o
-o

rd
in

at
e 

(p
x

) 

Horiztonal Co-ordinate (px) 

AO, 1PP MI, 1PP

 a. 

  a. 

b. 

 b. 

c. 

c. 

300

330

360

390

420

450

480

420 450 480 510 540 570 600 630 660

V
er

ti
ca

l 
C

o
-o

rd
in

at
e 

(p
x

) 

Horizontal Co-ordinate (px) 

AO 3PP MI 3PP

 a. 

a. 

b. 

b. 

d. 

d. 

 β  



 

129 

Part B 

To examine the effects of prime perspective, the number of fixations and 

average fixation duration in MI were compared using two separate 2 (perspective: 

1PP, 3PP) x 2 (congruency: congruent, incongruent) x 5 (ROI: Cup Pick Up, Cup 

Placement, Correct Anchor, Incorrect Anchor, Outside) RM ANOVAs. In this 

analysis both of the Anchor ROIs were included to examine if an incongruent prime 

perspective resulted in fixations to the incongruent Anchor position during MI. For 

example, during MI (1PP) the Correct Anchor ROI would be the Hand/Arm ROI and 

the Incorrect Anchor would be the Head/Torso ROI. In contrast, during MI (3PP), 

the Correct Anchor would be the Head/Torso ROI and the Incorrect Anchor would 

be the Arm/Hand ROI. Significant differences in gaze metrics between the two MI 

conditions (congruent and incongruent AO prime) would suggest that the AO 

perspective does influence subsequent MI. Main effects and interactions for 

congruency are reported.  

Number of fixations 

There was a main effect of ROI (F4,28 = 34.622, p < 0.001, ηp
2
 = 0.832), 

which revealed that significantly fewer fixations were executed in the Outside ROI 

(4 ± 1, p = 0.006) compared to the task-related ROIs (Cup Pick up = 10 ± 1, Cup 

Placement = 10 ± 1, Correct Anchor = 10 ± 0, Incorrect Anchor = 0 ± 0). In addition, 

significantly fewer fixations (0 ± 0, p = 0.011) were made to the Incorrect Anchor 

ROI compared to all of the other ROIs. There was a significant perspective x 

congruency interaction (F1,7 = 8.388, p = 0.023, ηp
2
 = 0.545). Pairwise comparisons 

indicated that when MI (3PP) was preceded by an incongruent prime (i.e., the action 
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presented from the 1PP), the number of fixations (ROIs collapsed) was significantly 

greater (7 ± 0 fixations) compared to when MI was preceded by a congruent prime (5 

± 1 fixations) (see Figure 5.7). The perspective x congruency x ROI interaction also 

approached significance, F4,28 = 2.619, p = 0.056, ηp
2
 = 0.272.  Pairwise comparisons 

revealed that when MI (3PP) was preceded by an incongruent prime, a significantly 

greater number of fixations were made to the cup pick up ROI (12 ± 2, p = 0.051), 

compared to when the prime was congruent (8 ± 1). 

Figure 5-7: Number of fixations to the combined ROIs during MI preceded by a 

prime in a congruent and incongruent perspective. 
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Average fixation duration 

There were no main effects or interactions for congruency.  The average 

fixation duration was 0.268 ± 0.015 s in the congruent MI condition and 0.245 ± 

0.017 s in the incongruent MI condition. 

Data validation 

As the ROIs were generously sized, the intra-individual precision of the 

fixations within the ROIs was assessed using a RM ANOVA. The 2 (simulation 

type: AO, MI) x 3 (ROI: Cup Pick Up, Cup Placement, Anchor) x 2 (location: x co-

ordinate, y co-ordinate) RM ANOVA revealed a significant main effect for 

simulation type (F 1,7 = 29.284, p = 0.001 ηp
2
 = 0.807). The location of the fixations 

was less precise in MI (13.205 ± 0.632 px) compared to AO (7.956 ± 0.656 px). 

Given that there is variability in the data when full visual cues are provided, an 

increase in variability when visual cues are omitted was not surprising. An additional 

analysis was performed to assess the relative spatial accuracy of the eye movements 

in AO and MI. This was achieved by comparing the ratio of the inter-fixation 

distance between Cup Pick Up and Cup Placement, and between Cup Placement and 

Anchor. A non-significant difference between the ratios was deemed as evidence of 

spatial accuracy. The paired sample t-tests revealed no significant difference in the 

ratios for AO (2.488 ± 0.176) and MI (2.291 ± 0.363); t (7) = 0.513, p = 0.624. 

The data from the AO (1PP) and MI (1PP) congruent conditions were used in 

the analysis as there is only guiding literature for gaze behaviour in the 1PP 

(Heremans et al., 2008) but not the 3PP. These validation tests suggest that using 
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generously sized ROIs did not compromise the integrity of the data used to analyse 

the experimental conditions. 

5.4 Discussion 

This study investigated the influence of perspective, in particular social gaze, 

during the AO and MI of a simple reach-hand-place task (Part A). In addition, the 

influence of prime perspective was examined in conditions where MI was preceded 

by an AO prime, presented in either a congruent or incongruent perspective (Part B). 

Part A 

Part A of this study sought to examine how visual information acquired 

during AO (3PP) is presented during MI (3PP) and how this may differ compared to 

a 1PP. Participants observed a video of a reach-grasp-place action presented from a 

1PP and a 3PP and performed MI from the same perspective immediately 

afterwards. The similarity in gaze behaviour was assessed by comparing fixation 

parameters in task relevant ROIs. 

Number of fixations 

In both perspectives, the ROIs attended to in MI were similar to those 

inspected during AO and included the Cup Pick Up, the Cup Placement and the 

Anchor ROI. The increase in the number of fixations to the Cup Placement ROI in 

AO suggests this was an information rich area. As the eye movements in AO and AE 

are suggested to use the same motor plans (Flanagan & Johansson, 2003), the 

additional fixations to the Cup Placement ROI in AO may reflect a similar visual 
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search strategy to AE. In support of this suggestion, Williams et al. (2002) reported 

that in near aiming tasks skilled individuals fixate only one or two stimuli from a 

range of task related visual cues and that this represents a more economical gaze 

strategy. During AO, the visual information in this ROI may have been acquired to 

assist in the accurate placement of the cup onto the saucer during the ‘homing’ in 

phase of the movement (see Chapter Two, section 2.2). In MI, however, this 

particular ROI did not receive significantly more fixations than any other ROI (in 

1PP or 3PP). This suggests that the gaze strategy was not as economical in MI, or 

that the information was simply being represented in MI but interpreted in AO 

(Ballard, Hayhoe, & Pelz, 1995; Pylyshyn, 2003). If, as Johansson et al. (2010) 

argue, fixations are executed to relieve working memory, then the similar number of 

fixations to each ROI during MI would add support to the view that the 

subcomponents of the task are not differentiated by complexity during MI, and were 

simply being represented. It must be remembered, however, that the number of 

fixations only represents one aspect of the gaze strategy. To substantiate these 

claims, the average fixation time must also be considered (see Fixation duration 

section, this chapter). 

More fixations were executed in the 1PP compared to the 3PP, in both AO 

and MI. This finding suggests a different strategy was used in each perspective and, 

in support of a common motor representation, that the different strategies executed 

during AO were maintained during MI. These findings support, in part, those of 

McCormick et al. (2012) who reported that the number of fixations increased in the 

1PP compared to the 3PP for AO only. The contrasting findings for MI may be due 

to the different methods used to assess the eye movements. McCormick et al. 
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determined the ROIs a priori, based on the exact location of the visual stimuli during 

AO. In the current study, the ROIs were determined a posteriori and allowed for 

expansion, compression, and spatial repositioning of the image. This latter approach 

is suggested to be more appropriate than the a priori approach for investigating top-

down guided gaze strategies (Johansson, Holsanova, & Holmqvist, 2005; Liman & 

Zangemeister, 2012).  

The increase in the number of fixations in the 1PP (in AO and MI) may 

indicate that this perspective was more complex. Some (e.g., Lorey et al., 2009) have 

suggested that the 1PP, in contrast to the 3PP, provides a more ‘embodied’ 

experience during MI, although this may be influenced by the agent of the action and 

the body position adopted (Stevens, 2005). It is possible that the 1PP (AO and MI) 

generated a greater degree of kinaesthesis compared to 3PP.  This may have 

influenced the simulated kinematics of the action and increased task complexity. In 

accordance with Johansson et al. (2010), the increase in task complexity would have 

resulted in additional fixations to alleviate working memory load. 

The Cup Pick Up and Cup Placement were common ROIs in 1PP and 3PP, 

albeit 180° out of phase. The Anchor ROIs were, however, not common; in 1PP the 

Anchor ROI included the Hand/Arm resting position, and in the 3PP it included the 

Head/Torso position. In each perspective, fixations were made to the appropriate 

Anchor ROIs in AO and MI. As the Anchor ROI in the 3PP included the head and 

torso, it is possible that the eyes fixated different body parts during AO and MI. For 

example, they may have fixated on the model’s gaze during AO, but fixated 

elsewhere on the torso during MI.  Therefore, the specific location of gaze with the 
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Anchor ROIs was computed and compared between simulation conditions (see 

Vector analysis section, this chapter).  

Average fixation duration 

The average fixation duration was longer in AO compared to MI suggesting a 

reduced information processing demand in MI. This finding contrasts with the VI 

literature which reports that fixation duration increases in VI and memorisation tasks 

compared to perception (Jeannerod, Jouvet, & Jovet, 1962). The reduced fixation 

duration in MI could indicate that not all of the information processed in AO was 

represented (or required) during MI (Finke, 1989). Alternatively, the reduced 

fixation duration in MI could support Pylyshyn’s (2003) argument that the 

information had already been interpreted prior to MI.  There were no differences in 

the average fixation duration between the Cup Pick Up and Cup Placement ROIs. 

Given that additional fixations were made to the Cup Placement ROI in AO, this 

finding further supports the earlier interpretation that the Cup Placement ROI was 

deemed the most informative cue. These findings suggest that in AO, but not MI, the 

information is processed dynamically at the specific time it is needed in the task. The 

tight coupling of eye movements to task evolution has been described by others 

(Hayhoe & Ballard, 2005; Williams et al., 2002), and this ‘just-in-time’ approach to 

information acquisition may be responsible for the increased processing demand in 

AO. The apparent temporal uncoupling of the movement in MI may have 

implications if the action to be imagined has a strict gaze-effector co-ordination 

pattern such as in gait. In AO, fixation duration was significantly less in the Anchor 

ROI than in the Cup Pick Up ROI. This suggests that information processing 

demand was not high for this region in either perspective, and indicates that the 
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participants obtained the majority of their information from the stimulus end points 

(Mataric & Pomplum, 1998).  In MI, however, the participants fixated the Anchor 

ROI in a similar manner to the other ROIs. This finding further supports the view 

that the sub-components of the task in MI are being represented and not interpreted 

(Pylyshyn, 2003), and that the visual search strategy may  not be as economical as in 

AO (Williams et al., 2002).   

There was a difference in the average fixation duration between the 1PP and 

the 3PP which approached significance (p = 0.063). Similar to the discussion for 

number of fixations, it could be speculated that the increase in fixation duration 

reflected a more embodied experience in the 1PP (Lorey et al. 2009). As force is 

suggested to inform MT (duration) and is coded in the motor representation (Decety, 

et al. 1989), fixation duration may represent a gaze metric that is linked to movement 

kinaesthesis. Indeed, in the sport domain it has been suggested that the duration of 

the final fixation prior to movement onset in a basketball free throw reflects the 

cognitive processes involved in planning the direction, force and velocity of the 

upcoming movement (Vickers, 1996). More contemporary research has also 

demonstrated that in certain goal directed tasks (e.g., the golf putt) the QE duration 

extends beyond movement onset and supports the online control of the movement 

(Vine et al., 2013). It is possible that a similar phenomenon could occur during 

simulation with dynamic visual representation (whether perceived or imagined) 

linked to regulating the control of movement. Given that the literature surrounding 

the kinaesthetic imagery modality remains unclear, this particular fixation parameter 

may be a useful marker to inform the Simulation Theory debate. 

  



 

137 

Vector analysis 

One of the aims of this study was to determine if, and how, social gaze is 

represented during MI.  The results of the vector analysis suggest that the model’s 

head and eyes are used to anchor the action during AO (3PP). During MI (3PP) the 

action is anchored further down the torso towards the model’s arm and hand. This 

suggests that the eye movements executed during MI (3PP) do not reflect social gaze 

and are related to the movement kinematics. Further, the findings suggest that in MI 

(3PP), as in MI (1PP), the action is spatially-coupled to the perceived action. It may 

be intuitive to suggest that if the action is re-anchored to the effector during MI 

(3PP), the process could involve kinaesthetic elements. In his early work, however, 

Jeannerod suggested that the imagination of the self, or other, in action from a 3PP is 

primarily a visual process and does not elicit any kinaesthesis (Jeannerod, 1994). A 

surprising finding was that the mean anchor position in the 1PP was also different 

between AO and MI.  During MI, the mean fixation location in the Anchor ROI 

moved closer to the participant’s mid-line. This may suggest that the participants 

were using their own effector as the action’s anchor position. If this finding is 

considered in parallel with the earlier findings (that the number of fixations and 

average fixation duration is increased in the 1PP), it could be argued that the 1PP is a 

more embodied perspective. This may be because the information acquired through 

this perspective was more similar to the stored motor representation of the 

participant (Vogt et al., 2003), or because the participant’s body position was more 

aligned with the information presented in the 1PP (Ambrosini et al., 2012; Brady, 

Maguinness, & Choisdealbha, 2011).  
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Part B: 

Part B of this study examined the influence of prime perspective in 

conditions where MI was preceded by an AO prime. Participants observed a reach-

grasp-place action presented in a 1PP and a 3PP and subsequently imagined the 

action in either a congruent perspective or in an incongruent perspective (i.e., a 

perspective that was rotated by 180°). The main focus of this part of the study was to 

understand how the eye movements executed during AO (3PP) were represented 

during MI (1PP) and, conversely, how the eye movements executed during AO 

(1PP) were represented during MI (3PP).  

Number of fixations 

The use of two independent Anchor ROIs in this experiment confirmed that 

MI was performed in the 1PP and the 3PP. The Anchor ROI in the 1PP, which 

included the hand and arm, was offset to the Anchor ROI in the 3PP, which included 

the head and torso. Fixations to the appropriate ROI, in either perspective, therefore 

provided a measure of participant compliance in the task. There were no fixations to 

incorrect Anchor ROIs during the tasks in either the congruent or incongruent prime 

conditions.  This suggests that participants complied with the task and were able to 

mentally rotate a complex action. Further evidence of task compliance is that the 

number of fixations outside all of the ROIs was not significantly different between 

the congruent and incongruent conditions.  

There was an increase in the number of fixations to the ROIs when MI (3PP) 

was preceded by AO (1PP). Further analysis revealed that these fixations were made 
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to the Cup Pick Up ROI. In accordance with Johansson’s view (Johansson et al., 

2010) that eye movements during MI are linked to task complexity, this finding 

could suggest preceding MI (3PP) with an incongruent prime increases task 

complexity. The finding also supports previous work that has demonstrated an 

interference effect when movement type is congruent but movement direction is 

incongruent (Brass et al., 2001). In the current study, the movement direction was 

left to right in the 1PP, but right to left in the 3PP. The interference effect was not 

demonstrated when MI (1PP) was preceded by AO (3PP). This may suggest that the 

motoric coding of an action in the 1PP is relatively robust to interference. In support 

of this suggestion, a recent TMS study has suggested that congruent and incongruent 

motor simulation processes are managed simultaneously and appear to be temporally 

overlapped (Sartori, Betti, Perrone, & Castiello, 2014). Sartori et al. required 

participants to observe a soccer penalty kick in their direction, while simultaneously 

planning a complementary response action (i.e., parrying the ball).  Sartori et al.’s 

findings suggested that the participants could simultaneously observe in the 3PP and 

imagine (plan) in the 1PP. It remains to be tested whether it is possible to observe in 

the 1PP and imagine (plan) in the 3PP.  

Average fixation duration 

There were no main effects or interactions for average fixation duration. This 

suggests that the information processing demands during MI were not influenced by 

the congruency of the prime perspective. In Part A of the study, it was reported that 

average fixation duration was not influenced by task complexity during MI. This 

finding could suggest that the visual information during MI is simply a 

representation of an action that had already been interpreted during AO. If this is 
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true, it might be logical to expect a difference in the average fixation duration during 

the incongruent MI trials as the visual information acquired during AO is 

incongruent to the imagined action. The lack of any difference in the average 

fixation duration may suggest that the reach and grasp action used in this study, 

although complex compared to majority of studies in this area, was not sufficiently 

demanding or unique. As the action is likely to be observed repeatedly on a daily 

basis from a 1PP and the 3PP, its generation during MI may be a highly automatic 

task. Future studies should explore the use of a more demanding task. 

From an applied point of view, these findings indicate that there is little 

interference when an everyday action is observed from a 3PP and subsequently 

imagined from a 1PP. This suggests that if AO is used during motor rehabilitation, 

simple actions may be presented in a 1PP or a 3PP without compromising the quality 

of the learning outcome.  In contrast, however, the task demand in MI appears to be 

increased when it is performed in a 3PP but primed in a 1PP. These findings relate to 

a relatively simple, everyday task, the increase in task demand may be much greater 

for individuals who wish to use the MI (3PP) to improve form in highly skilled and 

complex movements.  

General summary 

In AO and MI (1PP and 3PP), task related eye movements are performed 

which may improve the cognitive economy of the task. In both perspectives the eye 

movements appear linked spatially and temporally to the evolution of the task in AO, 

but only linked spatially to the task in MI. In AO, information rich visual cues are 

fixated as a priority (e.g., the Cup Placement; Williams et al., 2002), and in MI, the 
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fixations may reduce working memory load (Johansson et al., 2010) and improve 

visual recall ability (Brown, 1968). The eye movements executed in the pursuit of 

social gaze in the 3PP were not represented similarly during MI. In this regard, the 

findings do not fully support the theory that the eye movements in MI re-enact those 

of perception (Kosslyn, 1987), or the Perceptual Activity Theory that the scene is 

inspected in MI in a similar way to perception (Thomas, 1999).  

A limitation with the current study concerns the size of the visual stimuli. 

Hesse et al. (2008) reported that the size of the prime stimuli influenced a subsequent 

grasp task, with individuals opening their hands wider in the smaller sized prime 

condition. Therefore, in order to maintain experimental control, the prime videos 

were filmed so that the cup and saucer were the same size in both perspectives. 

Although this resulted in the size of the upper limb in the 1PP being slightly larger 

than that in the 3PP, the size of the hand-object interaction remained constant.  

The findings from these studies and those of previous chapters are now 

considered in the context of a prototype rehabilitation aid, the AST toolkit. The AST 

prototype was conceived as a best practice model, informed by the published 

research discussed previously and the eye gaze studies of this thesis. User groups 

were envisaged as coming from across general motor dysfunction populations but 

with a focus on older stroke groups. The following chapter describes the AST toolkit 

prototype development and proposes future directions for integrating the findings 

from this and previous chapters into support for motor (re)learning populations.  
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6 Action simulation therapy as a rehabilitation aid: The development of a tool for 

patients with motor impairments 

6.1 Introduction 

Movement dysfunction in elderly individuals is common and exacerbated 

further as part of debilitating illnesses, many with severe disability including upper 

limb dysfunction. In extreme cases, such as stroke, many patients (41-45%) 

experience chronic motor impairments and limitations in activities of daily living 

(ADLs; Wade & Hewer, 1987) even after extensive neurological rehabilitation. 

Many individuals also live their lives in socially-isolated disengagement which can 

further debilitate the cognitive impairment that comes with conditions such as stroke 

(Holmes & Ewan, 2007). Patients often require long-term dependence at a 

considerable cost to primary carers and to the National Health Service (NHS). It is, 

therefore, important to optimise cognitive and motor support following illness. AO 

of upper-limb movements, linked to physical and occupational therapy interventions, 

can facilitate rehabilitation compared to physical therapy alone (Ertelt et al., 2007). 

Building on the findings of the previous studies reported in this thesis, the aim of this 

study was to develop a novel toolkit with therapeutic benefits using a mental 

practice-type approach for individuals with motor weakness and motor dysfunction. 

This chapter reports the design of the App-based Action Simulation Training (AST) 

toolkit to support movement dysfunction. The design has, as its central premise, 

Simulation Theory (Jeannerod, 2001) and eye movement metrics.  

A wealth of neuroscience research reported in this thesis indicates an 

interrelation between common sensory and motor processes, specifically regarding 
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AE, AO and MI. The potential relevance of these findings for improving methods in 

movement rehabilitation has been highlighted (c.f. Holmes, Cumming, & Edwards, 

2010). During AO, visual and motor cortical areas, typically involved during AE, 

become activated. This neural activity subserves simulation of the observed action 

by the observer (Jeannerod, 2001) and primes motor execution (Heyes, 2001). A 

large number of brain imaging studies have now demonstrated that AO engages 

other motor regions of the brain and can facilitate basic motor parameters such as 

force production as well as more complex imitation learning (for a meta-analysis see 

Caspers et al., 2010). These findings suggest that action simulation procedures may 

offer new ways of stimulating motor weakness, regeneration and plasticity when 

motor function has been compromised by age, stroke or neurodegenerative disease. 

In support of this concept, a recent Cochrane database systemic review concluded 

that mental practice in combination with other treatment was more beneficial that the 

other treatment alone for treating post-stroke upper limb dysfunction (Barclay-

Goddard, Stevenson, Thalman, & Poluha, 2011). 

Simulation procedures currently in use for clinical purposes can be 

subdivided into studies involving AO, MI, and mirror box procedures. In the first 

clinical trial involving AO, Ertelt et al. (2007) recruited 8 participants with moderate 

post-stroke hemiparesis who attended 18 AO training sessions (each 90 min long) 

over a 3-week period. In each session the patients were asked to watch three 6-min 

video sequences showing hand and arm actions of daily life of increasing 

complexity, each followed by imitative motor execution with the impaired upper 

limb using the same object as used in the video. Significant functional improvement 

was found for the AO group compared to a carefully matched control group and the 
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improvement was maintained 8 weeks post-training. fMRI during an independent 

object manipulation task identified significantly increased activations in the regions 

of the frontal primary motor cortex for the AO group, indicating markers of cortical 

plasticity stimulated by AO. Franceschini et al., (2010) used a similar AO and AE 

intervention in a larger trial involving three centres for neurorehabilitation and also 

found positive effects for their sample of chronic stroke patients.   

Evidence for the efficacy of MI in clinical rehabilitation has also been 

reported in three random controlled trials (RCTs). A small RCT by Liu and 

colleagues (2004) examined the effect of combined AE and MI, and found higher 

levels of independence on trained and untrained ADLs in the mental practice group. 

They failed, however, to find enhanced recovery on the standard Fugl-Meyer Motor 

Assessment (Fugl-Meyer, Jääskö, Leyman, Olsson, & Steglind, 1974). A second 

small RCT conducted by Page and colleagues (2007) found improved upper limb 

function after combined physiotherapy and MI training in chronic stroke patients. A 

third carefully controlled clinical trial (Ietswaart et al., 2011) did not find MI to be 

effective when delivered separate from AE in patients early post-stroke. This latter 

careful evaluation demonstrated that the key to mental practice efficacy may be 

found in the complex interplay between AE and MI (and AO). In support of this 

idea, Nedelko, Hassa, Hamzei, Schoenfeld, and Dettmers (2012) reported an 

increased neural activation when AO is combined with MI (compared to AO alone) 

and suggested that the higher order processes involved in MI, and the lower-order 

processes involved in AO complement each other when AO and MI are combined. 

The idea of combining AO and MI, which has roots in Jeannerod’s early integrative 
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account of AO and MI (Jeannerod, 1994, 2001), is supported by others (e.g., Holmes 

& Collins, 2001; Vogt et al., 2013) 

The third cluster of studies involves mirror box procedures (see review by 

Ramachandran & Altschuler, 2009) where individuals watch movements of their 

dysfunctional limb via a mirror in the spatial location of that limb. In two controlled 

trials, the ‘mirror therapy’ was found to improve the neurological status of post-

stroke patients immediately after the intervention as well as in a follow-up trial 

(Dohle et al., 2009; Michielsen et al., 2001). Mirror box therapy is similar to AO, 

involving prescribed AE and sensory afferents from the limb contralateral to the 

putatively observed limb. The difference, however, is that the patient is instructed to 

move the functional limb in order to replicate activity that would be observed in the 

paretic limb. In contrast, in AO, participants are typically still throughout the AO 

experience. 

This discussion provides evidence for the efficacy for combined AE, AO, and 

MI procedures in clinical rehabilitation. The appeal of mental practice as a 

potentially low-cost and effective neurorehabilitation technique for movement 

weakness and dysfunction, however, belies the difficulty of delivering these mental 

practice techniques (Holmes, 2007). Earlier chapters in this thesis have highlighted 

the sensitivity of mental practice techniques to delivery factors (see Wakefield et al., 

2013). In healthy individuals and under laboratory conditions, these delivery factors 

include the type of action that is simulated; the adoption of an allocentric, egocentric, 

specular or anatomical view; the agent of the movement; task compliance; task 

ability; task instructions; and priming. In the clinical domain, there are additional 

delivery factors related to the individual (for a review see Holmes, 2007) and to the 
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management of the resources that need to be considered. Holmes and Ewan (2007) 

reported some of these issues in their development of a structured AO aid for stroke 

rehabilitation. They provided patients with a large liquid crystal display screen to 

watch videos of meaningful movements and demonstrated positive change in 

psychological affect and physical activity levels. They reported that post-stroke 

individuals preferred simulation procedures from a 3PP and suggested that this may 

due to a decrease in the individual’s functional motor activity and an increase in the 

AO of others. The development of the concept tool, whilst effective for a case study, 

was logistically and financially unsuitable for wider delivery across hospital and 

community environments for a large number of patients. Further, Holmes and Ewan 

did not consider eye movements in their study design. These constraints highlight an 

important, and often over looked, reciprocal relationship that challenges the 

development and application of research in this, and other, domains; the ability to 

transfer training interventions effectively and efficiently from the ‘bench to the 

bedside’, or from the laboratory to the field (Harle & Vickers, 2001; Williams & 

Grant, 1999), and back again. 

6.2 Delivering action simulation procedures 

By drawing on recent technological advances from other domains, 

researchers are able to address some of the challenges associated with delivering 

action simulation procedures. In the sports domain, Harle and Vickers (2001) were 

some of the first researchers to report that a pre-shot and computer-based cognitive 

intervention influenced the gaze strategy of university basketball players and 

precipitated a positive change in the mechanics of a far aiming task. The participants 

improved their free throw accuracy by more than 22 %, and the intervention led to a 
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more economical visuomotor routine (a more stable and extended QE duration and a 

faster shot MT). More recently, Put et al. (2013) demonstrated a web-based approach 

to training the cognitive-perceptual skills of referees. Specifically, referees were 

asked to observe on-side and off-side passes during ‘staged’ football match scenarios 

in an attempt to improve the accuracy of their offside decision making skills. The 

videos were filmed from an aerial viewpoint and that of the assistant referee (i.e., 

3PP on the side line). The cognitive-perceptual skills of the referees were found to 

improve following the AO training and, importantly, the improvements transferred 

to a real-world setting. These findings suggest that multi-user AO interventions can 

train specific skills if tailored and delivered in an appropriate manner. In the clinical 

domain the use of interactive computer applications for training purposes has also 

been reported to improve motor function and participant engagement (Badia & 

Cameirao, 2012; Reinthal et al., 2012). Reinthal et al. (2012) used a within-subject 

pre to post-test paradigm that involved post-stroke individuals performing prescribed 

movements whilst observing themselves as an avatar in a video game. The authors 

reported motor improvement, as assessed by the Fugl-Meyer Motor Assessment 

(Fugl-Meyer, 1974), following the intervention. The authors commented that the 

level of self-initiated, goal directed practice was greater than that typically 

performed by individuals during traditional outpatient therapy. Motor (re)learning 

through a simulated environment (virtual reality) has also been suggested to be more 

superior to that achieved through AE because the tasks are less dangerous, more fun, 

and easier to learn due to the additional salient feedback that can be provided (for a 

review see Holden, 2005). Training via virtual reality allows the user to experience a 

simulation of a real world by using hardware devices to monitor movement 

kinematics and provide simulations of haptic and force feedback to the user. This 
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advantage can, however, be the biggest drawback; the peripheral equipment is often 

complicated and expensive and this may hinder the widespread adoption by health 

care centres and the general public. The AST toolkit considers the advantages and 

drawbacks of these emerging technologies to deliver a movement practice tool that is 

scientifically-rigorous, low-cost, portable, and widely accessible. The novel idea of 

combining covert processes such as AO and MI, as well as AE, offers prolonged 

opportunity to consolidate particular motor processes in a safe environment. This 

may be of particular importance in older groups where individuals may fatigue more 

quickly during traditional physical movement therapy sessions. 

User centred design 

Embedding motor rehabilitation inventions in interactive systems is still in its 

infancy. An individual’s motivation has been established as a fundamental process in 

motor learning (Bandura, 1962; Maclean, Pound, Wolfe, & Rudd, 2000), however, 

there appear few systems that have put the user at the heart of the design process. 

User centred design (UCD) is defined as “a philosophy based on the needs and 

interests of the user, with an emphasis on making products usable and 

understandable” (Norman, 2002; p.188). It is a process in which the needs of the 

users dominate the design of the interface, and the needs of the interface dominate 

the design of the rest of the system. Systems that are highly usable are considered to: 

(i) increase productivity; (ii) reduce human error; (iii) reduce training and support; 

and (iv), improve user acceptance and trust (Maguire, 2001). Cameirao, Badia, Oller, 

and Verschure (2010) developed the virtual reality based Rehabilitation Gaming 

System which used rehabilitative principles and psychometric evaluation to provide 

personalised and automated AE training for post-stroke patients. To assess usability 
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the authors asked the patients (N = 9) four questions regarding their experience of 

using the tool. The majority of respondents reported they that enjoyed the task and 

found the task was easy. Such a limited, discrete and disjointed assessment of 

usability may, however, lead to poor usability in the longer term (Gulliksen et al., 

2003). A key principle of USD is that representative users participate early and 

continuously throughout the system’s life cycle and that the development of the 

system involves an iterative process cycling between design ideas, prototyping and 

evaluation (Goransson, Gulliksen, & Boivie, 2003). When such an approach is 

adopted, the long-term engagement with the system, defined as the degree of 

voluntary use of a system along a wide period of time (Febretti & Garzotto, 2009), 

may be improved. Engagement and motivation have been identified as key factors 

associated with stroke (Tupper & Henley, 1987). Demotivated individuals are 

reported to invest less effort into rehabilitation programmes, resulting in slower 

progress (Holmes & Ewan, 2007). When progress is slow, individuals become 

increasingly frustrated and may disengage from their rehabilitation programme 

(Maclean, et al., 2000). As identified by others (Badia & Cameirao, 2012), the 

benefits of a simplistic motor rehabilitation interactive system is that is widely 

accessible, uncomplicated, and can be used in unsupervised setting. In terms of 

engagement, however, these features may also represent its greatest challenges; there 

is little motivational support and the limited sensitivity of performance measures 

may not always detect progress. In addition to usability, the ‘playability’ of an 

interactive system is also reported to influence long-term engagement. In the clinical 

domain, the motor function of patients is often different to that of healthy 

populations and highly personalised training plans, adjusted to the capability 

(‘playability’) of the patients, are required (Holmes, 2007). For example, research 
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has suggested that altering the speed of an action during mental practice can 

facilitate motor (re)learning (Heremans et al., 2012a; Louis et al., 2008). The default 

speed of the action may need to be set to match the capability of a user with specific 

motor dysfunction. Engaging interactive systems need to acquire behavioural 

information about the patient’s motor capabilities so that the speed of actions can be 

matched appropriately, and adjusted periodically, to suit the individual’s 

rehabilitation needs. The evidence reviewed in this section suggests that if effective, 

uncomplicated, and widely accessible motor rehabilitation interventions are to be 

developed, then the system’s usability and playability should be considered. These 

ideas are now evident within the United Kingdom’s NHS where individualised, 

stratified, patient centred medicine is promoted.  

Delivery factors 

Designing effective practice interventions for individuals in the clinical 

domain is complex. In the introductory chapter, two comprehensive sets of 

guidelines relating to the delivery of MI (see Figure 2.1) and AO (see Figure 2.2) 

were identified.  The guidelines for some delivery factors may be generalised to the 

clinical domain (e.g., tasks that are represented in the hMNS appear to respond well 

to mental practice in healthy and clinical populations), however, some factors such 

as optimum training duration remain unresolved.  Schuster et al. (2011) concluded 

that in healthy individuals an average of 4 x 17 minute sessions of MI a week for 3 

weeks (194 minutes) typically showed positive results. In outpatient therapy, 

however, the recommended duration is longer, with 12-16 x 36 minute sessions 

(432-576 minutes) typically required for significant motor improvement (Reinthal et 

al., 2012). Determining the optimum training duration by corroborating results from 
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clinical populations can also be difficult. In a clinical study involving chronic stroke 

patients (> 1098 days post stroke), Ertelt et al. (2007) reported performance gains 

following 18 sessions of combined AO and AE, (total AO therapy time = 810 

minutes). In contrast, Ietswaart et al. (2011) reported no performance gains in 

patients (< 180 days post stroke) following involving 12 x 45 minute sessions and 8 

x 30 minute session (total minutes = 780) of MI. In both studies, the mental practice 

time was similar but this did not lead to similar outcomes. The contrasting findings 

may have been due to a number of delivery factors such as the type of practice (AO), 

perspective, task complexity, and clinical factors such as the extent of functional or 

cognitive deficit, support systems, or number of days post-stroke, that were not 

controlled similarly in each study. These findings highlight the difficulty faced by 

researchers and practitioners in designing effective simulation procedures in the 

clinical domain. Indeed, a recent skills audit (Wilson, Smith, Stockley, & Holmes, 

2012) revealed that clinicians (physiotherapists and occupational therapists) used MI 

and AO asystematically during therapy and that they had little knowledge about how 

to design an effective intervention. This lack of expertise may be a consequence of 

the limited recommendations that are available through the National Clinical 

Guidelines for Stroke: “People with stroke should be taught and encouraged to use 

mental practice of an activity to improve arm function, as an adjunct to conventional 

therapy.” (Intercollegiate Stroke Working Party, 2012, p. 92). The availability of a 

standardised training package, or toolkit, which is underpinned by neuroscientific 

and clinical research, may assist researchers and practitioners in designing and 

implementing effective simulation training packages.  
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The influence of gaze  

The findings from the studies presented earlier in this thesis suggest there are 

additional delivery factors that need to be considered during simulation procedures. 

In Chapters Three and Four it was demonstrated that the use of visual cues, and in 

particular dynamic visual cues, significantly improve the congruency of the 

cognitive processes between mental and physical performance. These findings 

suggest that AO may be a more effective technique for actions that require temporal 

control. If MI is used for such actions, then dynamic cues should be included to 

enhance the temporal congruency with AE. The findings from Study 2 also revealed 

some age-related changes in the gaze strategy. There was evidence that primary 

fixation following the go signal significantly undershot the target in AE, AO and MI. 

This finding suggests that older individuals execute a less than optimal gaze strategy 

in both overt and covert motor performance. The location of the final fixation prior 

to movement onset is reported to be one of the trainable parameters of the QE 

(Vickers, 1996). Researchers have demonstrated that cognitive interventions can be 

used to optimise this gaze parameter and improve motor performance in athletic and 

clinical populations (Crowdy et al., 2002; Harle & Vickers, 2001). Of potential 

importance to individuals with cognitive decline is that in sport these strategies are 

reported to simplify the skill and lead to an economy in thought (Harle & Vickers, 

2001). Often cognitive interventions involve verbal task instructions to illustrate the 

task goal (Crowdy et al., 2002), or require some physical practice (Harle & Vickers, 

2001). For some clinical patients, these approaches may not always be appropriate; 

verbal instructions may increase cognitive load and physical practice may be 

temporarily impossible or present a safety risk. An alternative method of orienting 
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visual attention is through the use of exogenous visual cues (Hagemann et al., 2006). 

Hagemann et al. demonstrated that in a healthy, young population transparent red 

patches overlaid onto informative cues during AO can be used to orient attention and 

improve motor performance.  This may be a particularly useful method for orienting 

attention in the older, clinical population as it is suggested to permit attention to be 

focussed without increasing cognitive load (Moore, Vine, Cooke, Ring, & Wilson, 

2012).  The findings from the penultimate study of this thesis, Study 3, revealed that 

in MI (3PP), a model’s face and head were not attended to. In AO (3PP), however, 

they were inspected as a priority in an attempt to understand the goal intention of the 

model (Castiello, 2003; Letesson & Edwards, 2012). This may present a possible 

area for interference if psycho-sociological factors such as ethnicity, age and gender 

are not congruent between observer and observed. In support of this suggestion, 

increases in specific physiological responses (skin conductance; Sattler, 1970), and 

decreases in memory recognition (Zhao & Bülthoff, 2013) are reported to occur 

when other-race co-specifics, compared to similar-race co-specifics, are observed 

performing similar functions. It may, therefore, be prudent for motor cognition 

toolkits to control the model’s demographics if simulation-based neural benefits are 

not to be compromised. The findings from Study 3 also revealed some differences in 

fixation parameters (number of fixations, fixation duration) between 1PP and 3PP, 

which may be related to kinaesthesis. The data therefore support the inclusion of 

actions presented from a combination of perspectives to provide a more holistic 

motor learning experience.   

In summary, these findings suggest the importance of highlighting the spatial 

and temporal aspects of the task relevant cues along with clear instructions as to the 
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goal and intention of the task. These important factors were a priority for the 

development of the AST toolkit and derive directly from the eye movement studies 

reported in this thesis.  

The aim of this project was to design a structured AST toolkit based on 

current neuroscience, clinical research, and the findings of earlier eye movement 

studies in this thesis. The objective was to create a tool, based on a user-centre 

design, that could improve intra and inter clinic/laboratory reliability by controlling 

delivery factors during simulation procedures. The toolkit aimed to interface 

seamlessly between the laboratory and motor rehabilitation setting, thus facilitating 

the reciprocal ‘bench to bedside’ relationship and increasing ecological validity. 

6.3 Method 

This project was funded, in part, by a competitive university research award 

from the Knowledge Exchange and Innovation Fund. The project review committee, 

which included the Chair of the University Ethics Committee, approved the study.  

The development of the AST toolkit was based on the principles of UCD, 

formalised in the ISO-standard 13407 (ISO, 1999). The UCD process involved a 

multi-disciplinary team including older (healthy and clinical) adults, 

physiotherapists, occupational therapists, psychologists, researchers and software 

designers. Consultations with representative users (e.g., healthy and clinical adults, 

and clinicians) took place across a number of regional stroke support groups (e.g., 

stroke support groups in Crewe, Nantwich and Mid-Wales) and NHS hospitals in the 

NW of England and Mid-Wales over a period of four months. This permitted data 
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gathering from in-patient and community settings. Driven by a collaboration of 

evidence-based research, user requirements and software capability, the design 

process was highly iterative and cycled between proposals from the multi-

disciplinary team, prototyping (paper and modelling), and evaluation (see Figure 

6.1). A basic prototype AST toolkit was developed early in the design process to 

allow the concept of the tool to be discussed in a meaningful way and facilitate user 

data-driven decision making (Goransson et al., 2003). The functionality of the tool 

was determined through a mixed-methods approach that involved integrating data-

driven user requirements within a theory-driven framework. These approaches are 

explained below. 

Determination of user requirements 

The aim of this pilot work was to identify the users’ needs or requirements of 

post-stroke rehabilitation therapies from the patients’ and clinicians’ perspective. 

The philosophical framework adopted was a general inductive approach (Thomas, 

2003), as a description of the users’ needs was required. Semi-structured interviews 

were used based on a series of fixed questions with scope for users to expand on 

their responses.  This type of interviewing is suggested to be useful in situations 

where broad issues are understood but the range of interviewee’s responses to the 

issues may differ (Maguire, 2001). It was anticipated that the responses between 

patient and clinician would vary as professionals frequently evaluate recovery using 

defined quantitative bench marks whereas patients focus more on activities that bring 

meaning to their life pre-stroke (Doolittle, 1992).   
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Figure 6-1: Key human-centred design activities from ISO-standard 13407 (ISO, 1999). 
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Individual and private discussions with, and observations of, 9 individuals 

affected by a first stroke (4 acute and 5 chronic) were conducted in a series of single 

sessions over four months. Twenty clinicians (physiotherapists and occupational 

therapists) were also consulted (10 in a focus group and seven individually in 

repeated sessions) during that time. The focus group was used to establish a 

collective view and to identify user requirements early in the design process 

(Nielsen, 2000). Those approached had either been admitted to (patients) or worked 

in (clinicians) the rehabilitation unit of a general hospital. Individuals were asked to 

describe their experiences of rehabilitation. In particular, they were asked to 

comment on the effectiveness, efficiency and user satisfaction of current techniques 

and the proposed AST toolkit. The approximate length of the interviews and focus 

group was 30 and 90 minutes, respectively. All individuals who volunteered to be 

part of this study were reassured about confidentiality in the reporting of the findings 

and agreed to the anonymous data being included for academic use.  

Data analysis 

The data were read in detail to obtain an understanding of the themes and 

events covered in the text. Text segments specifically relating to usability were 

highlighted and categories subsequently determined. To achieve a complete analysis, 

the categories were revised and refined until a framework incorporating no more 

than eight themes was achieved (Thomas, 2003). Informal member checks to 

establish the credibility of the findings were carried out with the clinicians and 

patients who were met on more than one occasion.  
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Findings 

The analysis of the raw data yielded 8 first-order themes that were further 

thematised into four general themes: (i) independent learning; (ii) specificity of 

learning; (iii) competence; and (vi) engagement (see Figure 6.2). Some factors 

influencing usability are cited across higher order themes. 

Independent learning 

Both clinicians and users felt that current rehabiliation procedures were not  

efficient. Clinians felt they were limited to the amout of time they could devote to 

one-to-one therapy and were conscious of the lack of continuing rehabiliation in the 

community.  Patients felt that most of their time in the rehabiliation centre was spent 

doing little to help their recovery. One patient’s comments described this widespread 

issue: 

“I’m just sat here, I’ve been here all day, I could be doing something. It’s 

been like this for four weeks, I just move from one hospital to another but I don’t 

seem to be making any progress” 
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Figure 6-2: Hierarchical inductive analysis of users’ needs influencing rehabilitation 

therapies. CL = clinicians' responses, P = patients' responses.  

Raw data themes
1st order themes

Higher order 

themes

unrestricted therapy [P]

intuitive, easy to navigate [CL, P]

record of practice history [CL] autonomous

lowtime cost to clinican [CL] independent

learning

lack of motor (re)learning in the community [CL, P] proactive

self directed rehabilitation [P]

model's skin exposed in AO videos [CL]

correct position to perform movement [CL] specificity of specificity of 

patient led therapy [CL, P] learning learning

accurate demonstration of home exercises via video [CL]

complexity matched to motor ability of user [CL]

correct position to perform movement [CL]

not doing further damage by exercising [P] safety

family support during home exercise [P]

perform beyond own expectations during therapy [CL] competence

test myself, measure my own progress [P] 

fun tasks that progress in complexity [CL] achievement

complexity matched to motor ability of user [CL]

constructive [P]

frustrated at lack of progress [P]

early acceptance of motor impairment [P]

apathy towards rehabiliation (severe stroke) [CL] amotivation

forgetfulness[CL, P]

rural life - disconnected from clinical support team [CL]

low-cost [CL] accessibility engagement

easy to use [CL, P]

encouragement from others [P]

joint social gaze with model [P] social

alienated from pre-stroke life [P]
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Specificity of learning 

To improve the effectiveness of rehabiliation procedures, clinicans 

commented on the need for adjunct therapies to reflect clinical practice. They 

commented that the proposed AO videos should be filmed with the skin of the limb 

exposed and for the limb to be in a supported position. In addition, they commented 

that the tasks should meet the individual needs of the patient. The meaningfulness of 

the rehabiliation was highlighted by one patient’s comment: 

“my husband had a stroke a few years ago so I have to drive him around. I do 

all the driving, there is no one else, so I’ll still have to do that….I have to get this 

[points to paretic limb] working”. 

Competence 

Clinicans and patients indicated how important a sense of achievement was 

to user satisfaction during rehabilitation. A patient described how she had set her 

own achievement goals in the absence of any formal rehabiliation: 

“I use to be a school teacher [before the stroke], so I knew I had a good 

vocabularly, much better than I have now. So I started to carry a thesaurus around 

and look up words. I’d test myself to see how many  I could remember. It worked 

you know…slowly, but I did get better.” 
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Engagement 

Clinicians reported that the level of apathy towards self-directed 

rehabilitation in the clinical unit was high in some stroke individuals.  Engagment 

with the rehabilitation programme was particularly problematic following discharge. 

Some patients readily accepted their motor impairment and did little home exercise, 

and other patients forgot how, and when, to do the exercises. Clinicans felt that an 

accessbile toolkit that contained AO videos and a training log would support 

personal rehabiliation in the community, particularly in rural areas: 

“once the patients living in rural areas leave hospital we rarely see them 

again at out-patients or at local stroke clubs. Many live on farms and have no access 

to public transport, they are isolated and their progress never gets followed up.”  

The themes were integrated within the theory driven framework of Holmes 

and Calmels (2011)  and are further discussed in the results section.  

Theory driven framework 

The Behavioural Modification Hypothesis predicted by the PETTLEP model 

has been demonstrated to apply similarly in MI and AO (Holmes, Collins, & 

Calmels, 2006), suggesting that both processes are influenced by similar delivery 

factors (Wakefield et al., 2013). As such, the comprehensive theory-driven 

guidelines for delivering AO (Holmes & Calmels, 2011) were adopted as simulation 

wide delivery factors in the AST toolkit. In addition, based on the findings of the 

studies presented earlier in this thesis, eye movements were also considered as a new 

delivery factor. A revised set of guidelines is shown in Figure 6.3.  
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6.4 Results and discussion 

Researchers, clinicians, and patient users identified a need for adjunct 

rehabilitation methods to be low-cost, accessible, portable, inclusive and intuitive. 

The AST toolkit was developed in Xcode, the freeware integrated development 

environment designed for developing iOS Mac Apps (https://developer.apple.com). 

To increase accessibility, portability, and to permit ease of navigation of the tool 

through a touch screen interface, the iPad (trademark of Apple Inc.) was chosen as 

the initial device to deliver the rehabilitation therapy. Through appropriate selection 

on the user interface (see Figure 6.4(b)), structured AE, AO, and MI could be 

delivered discretely, or concurrently for enhanced cortical activity (Guillot, 

Moschberger, & Collet et al., 2013; Vogt et al., 2013). 

Observation content 

The AST toolkit was delimited to meaningful, upper limb actions known to 

be represented in the hMNS (e.g., grasp, grip, pinch and reach actions). The videos 

included audio information and were subdivided into three categories: (i) ADLs; (ii) 

action assessments; and (iii) specialised actions. The ADLs were subdivided into 

categories considered important in stroke rehabilitation (Nouri & Lincoln, 1987): 

domestic duties, personal care, communication, mobility and safety. Actions within 

these categories included, but were not limited to, washing up, counting money, 

putting toothpaste onto a toothbrush, making a call on a mobile phone, and reading a 

newspaper. 
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Figure 6-3: Revised delivery factors for the AST toolkit, based on the original delivery factors of Holmes & Calmels (2008). Diamonds indicate 

novel delivery factors determined through the eye gaze studies reported in this thesis. 
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The actions in the ‘action assessment’ category involved those typically performed 

during a patient’s in-hospital motor assessment. These actions were devised from a 

number of validated clinical motor assessment tools such as the Action Research 

Arm Test (ARAT; Lyle, 1981) and the Block and Box Test (BBT; Mathiowetz, 

Volland, Kashman, & Weber, 1985). In comparison to the ADLs, the actions in this 

category were less complex and typically involved simple movements such as 

pinching a pin, grasping a ball, and turning a screw. As the AE and MI performance 

of these tasks is measurable (e.g., time take to complete the task, number of tasks 

completed etc.), this action category permits ‘knowledge of results’ feedback to be 

given. This type of feedback is reported to accelerate learning and to be central to 

motor learning in a simulated environment (Holden, 2005). Future development of 

the AST toolkit could provide opportunities to measure the performance of the tasks 

in this category and for the clinician to ‘weight’ this feedback relative to the motor 

impairment of the individual. This action category was included following comments 

from clinicians that patients enjoyed the challenge associated with practising these 

tasks at the bedside. The category therefore addresses the usability needs for 

competence, engagement, and user satisfaction. To maintain consistency with 

rehabilitation techniques employed by therapists and address the usability needs for 

specificity of learning, the actions in this category were filmed with the skin of the 

upper limb exposed and the limb appropriately supported. In the 1PP, it was 

therefore possible for the user to adopt the same position as that of the model. Given 

that the model’s demographics could be matched to the user (see the observation 

agency section in this chapter), the AO provided an experience that was similar to 

self-observation and almost stratified therapy. The findings from Chapter Five and 

other research (Holmes & Collins, 2001; Stevens, 2005) suggest the congruency 
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between the overt and covert performance would be enhanced under these 

conditions.  

Future development of the AST toolkit could also provide a third category of 

upper limb movements called ‘personal rehabilitation’. This category could permit 

individualised actions to be uploaded by the user (or clinician) and incorporated 

within the training environment. These videos could be filmed during the physical 

and occupational rehabilitation sessions where, as reported by one of the clinicians, 

‘patients perform beyond their expectation and are surprised and pleased with their 

achievement afterwards’. The inclusion of personalised exercises may increase 

motivation and serve as a reminder of the accurate way in which to perform 

exercises in the home environment. This third category addresses the user’s needs 

for competence and engagement.  

Observation agency 

To optimise the visual similarity between the user and the observed model, 

all actions stored in the video repository were filmed using a number of models of 

different ages, ethnicity and gender. A demographic selection algorithm based on 

these factors was used to select the most appropriate model to perform the actions, 

see Figure 6.4(a). This delivery factor limits any potential interference from psycho-

sociological factors, addresses the PETTLEP model’s recommendations for 

behavioural matching during simulation procedures (Holmes & Collins, 2001), and 

meets the philosophy of Jeannerodian Simulation Theory. 
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Figure 6-4: Screen shots illustrating the AST toolkit's user set up page (a), ADL task selection page (b), and hypothetical historical data (c).
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Perspective 

The findings of Study 3 suggested that different cognitive processes are 

involved in the 1PP and 3PP. In addition, the preferred perspective of the user 

(patient) may be influenced by their motor skill or task goal.  Therefore, to provide a 

more holistic motor learning environment, actions from both perspectives were 

included in the toolkit. The videos in the 3PP were piloted with the model’s gaze 

averted and not averted. The qualitative analysis indicated greater user satisfaction 

during the AO of videos in which the model’s gaze was not averted, that is, when the 

user could engage visually with the model’s gaze. The results from Chapter Five 

indicated that joint social gaze between user and model did not detract from the time 

spent processing critical haptic cues. Where possible, therefore, the gaze of the 

model in the 3PP videos was not averted. This delivery consideration addresses the 

usability needs for social engagement and the model’s facial features and gaze 

should be seen as task-relevant cues.  

Visual cues 

Using a similar approach to others (Grant & Spivey, 2003; Hagemann, Strauss, 

& Canal-Bruland, 2006), the AST toolkit included exogenous visual cues to orient 

and retain attention. Transparent red patches were overlaid onto the videos (in AO) 

and still images (in MI) to provide a subtle increase in the perceptual salience of the 

information rich areas (see Figure 6.5). 
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Figure 6-5: Transparent red patches used to exogenously orient visual attention during an ARAT-derived coin pick up task in the 3PP (top), and 

an ADL presented in the 1PP (bottom). 
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In cognitive interventions that involve the correction of ineffective gaze strategies, 

the desired gaze strategy is frequently based on those of experts (Harle & Vickers, 

2001; Williams, Ward, & Chapman, 2003). In the AST toolkit, the placement of the 

red patches was therefore based on the eye movements (fixation location) executed 

by the younger, healthy individuals during the near aiming and reach-grasp-place 

actions in Studies 1, 2 and 3. Confirmation that these visual cues improved task 

performance can be drawn from the fact that when the visual cues were occluded 

(e.g., Study 1, UGMI condition), performance declined. It was anticipated that the 

use of saliency cues in this manner would help ensure that the task was attended to in 

the correct temporal and spatial manner, even if the pre-task instructions had been 

forgotten, ignored, or not fully understood (Underwood, Foulsham, & Humphrey, 

2009). In addition to the exogenous visual cues, a progress bar was displayed at the 

top of the screen to indicate the temporal progression of the movement during MI.  

As older individuals are reported to be less effective at maintaining temporal 

congruency between MI and AE (see results from Study 2 of this thesis), the timing 

bar could be used to assist the temporal simulation of the movement. One potential 

drawback of using augmented feedback is that it could create a specific type of 

learning that may detrimentally affect performance when the feedback is removed 

(Hayes, Elliott, & Bennett, 2013; Nieuwboer, Rochester, Müncks, & Swinnen, 

2009). Evidence from the sports and clinical domains, however, suggests that 

performance improvements acquired through AO based cognitive interventions are 

often retained many weeks after training (Ertelt et al., 2007; Harle & Vickers, 2001). 

It is possible that observing an action in the 3PP and imagining in a 1PP would limit 

the dependency on visual coding, although this hypothesis requires further testing.  
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The consideration of this delivery factor (visual cues) addresses the needs for 

competence and specificity of learning.  

Scheduling of training 

The AST toolkit is a voluntary adjunct to traditional physical therapy; it 

provides no set limits to practice time.  The information pages include the 

recommendation that mental practice time should at least equal that of the physical 

practice time prescribed by the clinical team. Delivered in this unrestricted manner, 

the AST toolkit addresses the usability need for independent learning; the time spent 

in active recovery can be increased without an additional time cost to the clinicians. 

Therapists from two independent hospitals raised concerns regarding their own time-

cost of implementing the AST toolkit. Other studies have also reported problems 

associated with therapist compliance due to logistical reasons (Bovend'Eerdt, Dawes, 

Sackley, Izadi, & Wade, 2010). To address these concerns, the AST toolkit has a 

simple graphical user interface with large, intuitive icons for easy selection and 

navigation. It has a moderate amount of error tolerance and contains self-help pages. 

The tool can be operated in ‘quick start’ mode using default parameters, or 

parameters can be user–defined when a more specialised approach is required. 

Targeted for clinical and at-home use, the AST toolkit can be operated without 

formal clinician input. 

Future development of the AST toolkit involving cloud-based storage could 

provide clinicians with historical data relating to exercise adherence (see Figure 

6.4(c)). This would ensure that the progress of all in- and outpatients in clinical care 

remains monitored.  
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Task instruction 

Each task is prompted by explicit instructions. Prior to AO, the instruction is 

to ‘observe the following movement with the intention of performing the movement 

at a later time’. This specific type of goal-directed instruction has been suggested to 

activate a more optimal neural profile with greater similarity to that of AE (Iacoboni 

et al., 2005). The instructional set has, therefore, been used in many of the current 

motor cognition studies and shown to elicit stronger MEP responses during AO in 

TMS studies (e.g., Hardwick, McAllister, Holmes, & Edwards, 2012).  

The instructions preceding MI included the generic Langian stimulus and 

response propositions, ‘imagine performing the movement you have just observed, 

recreate the image vividly in your mind and consider the physical sensations’. 

Although generic scripts are suggested not to facilitate the highest gains in 

performance (Williams, Cooley & Cumming, 2013), the scripts serve only as a 

prompt. Every MI task was preceded by AO, therefore the process was immediately 

primed (see Edwards et al., 2003) through contextually rich visual and audio 

information. The generic scripts prompt the visual and kinaesthetic recall of this 

recently acquired information.  

Temporally-altered motion 

Another important temporal aspect of simulation relates to the overall speed 

of the action. Study 2 of this thesis presented evidence that the physical and mental 

MT increases in healthy ageing. In post-stroke individuals MT is also reported to 

increase in AE, but it may increase or decrease in MI (Sirigu et al., 1996). Thus, a 
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movement presented at a generic speed during AO may be incongruent with the 

typical action speed of the individual and this may influence the training outcome. 

Evidence from the MI literature suggests that the speed of MI influences subsequent 

motor performance. Specifically, speeding up a movement in MI has been 

demonstrated to subsequently decrease MT in AE in healthy young individuals 

(Louis et al., 2008). While this may be a wanted outcome in some interventions, in 

some situations the speed of a movement may need to be decreased so that critical 

aspects of the tasks, which may be overlooked in error in AE, are attended to AO 

and MI. As recommended by others (Nieuwboer et al., 2007), mental training 

techniques need to be appropriately matched to the motor ability of the individual. 

Determining the most appropriate speed to deliver the AO and MI training is a 

challenge, and one that is typically over-looked by practitioners. The AST toolkit 

addresses this issue by assessing the mobility of the user through a simple timed 

dexterity task performed during user set up. The task can be performed at 

comparable speeds by either hand, thus permitting a basic determination of motor 

ability regardless of hand dominance or paretic limb side. Once the task is 

completed, an algorithm computes the difference between the user’s MT and the MT 

of the default AO action and adjusts the video speed accordingly. By periodically 

performing the timed physical task, the video speed can be adjusted to reflect any 

changes in performance. The user interface offers options to temporarily over-ride 

the user-defined speed to support the specific function of the simulation training 

(e.g., increase or decrease the task speed). This delivery factor addresses the 

usability needs for competence and specificity of learning. 
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The delivery and content of the actions was restricted to the performance of 

discrete or concurrent AE, AO, and MI. Contemporary research suggests that 

coordinative AO and MI, that is where the actions are different but can be 

coordinated with each other may offer additional benefits (for a review see Vogt et 

al., 2013). With respect to the clinical domain, it is possible that this type of practice 

scenario may be particularly beneficial for post-stroke individuals who experience 

difficultly in ordering the subcomponents of simple tasks, although this hypothesis 

remains to be tested. Another restriction of the AST toolkit was that all of the actions 

were presented in 2D. While this has some advantages, for example low-cost and 

reduced likelihood of experiencing cyber sickness (Holden, 2005), the approach may 

restrict depth perception. Future work will look to include the aerial perspective in 

the video repository as this perspective has been demonstrated to be effective in 

training cognitive perceptual skill (Put et al., 2013). The increasing availability of 

binocular eye gaze tracking systems will permit depth perception in AO and MI to 

be examined. 

The presented study is the first step in the delivery of a low cost adjunct to 

motor rehabilitation. An aim for future studies will be to evaluate the usability of the 

AST toolkit and to examine its transfer to improve movement performance in an 

applied setting. In many ways the toolkit represents an integrated AO-MI version of 

the PETTLEP model and it would be interesting to see some of the PETTLEP 

studies repeated using a sport-based version of the AST.  Williams and Grant (1999) 

suggested that valid training inventions should include: a competitive measure; a 

process measure; evidence of transfer into the real world; and a control group. These 

factors could be addressed in a clinical setting if the AST toolkit was tested in a pilot 
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RCT. With regards to the competitive measure, some of actions in the AST toolkit 

were devised from two clinical assessments of manual dexterity: the ARAT (Lyle, 

1981); and the BBT (Mathiowetz et al., 1985). Measures of performance could 

therefore be assessed using either the ARAT or BBT. Process measures may include 

grip strength of the affected hand, reaction time, spasticity, or perception (eye 

movements). Regarding transferability, the toolkit was developed as an App and, as 

such, it can interface seamlessly between the laboratory and motor rehabilitation 

setting. Finally, a control group, which is a condition of the RCT, could involve a 

sample of patients receiving standard card and performing lower limb exercises 

(currently not included in the AST toolkit). The findings of such an RCT could be 

used to update the National Clinical Guidelines for Stroke (Intercollegiate Stroke 

Working Party (2008) and inform patient-centred clinical services. 

Conclusion  

In this project a novel toolkit with therapeutic benefits was developed for 

individuals with motor weakness and motor dysfunction. The functionality of the 

tool was based on a user-centred design, underpinned by neuroscientific research and 

best practice.  The toolkit exploits the posited shared neural substrate between AE, 

AO, and MI, and maximises motor (re)learning by creating a highly useable and 

individualised training environment. By capitalising on accessible technology, the 

AST toolkit has potential to be deployed on a large scale and in remote areas. The 

USD ensures that the motor training tool is intuitive, engaging, and can be used to 

complement rehabilitation in hospital and after hospital discharge. In a similar 

manner to clinical evaluation, the toolkit can capture quantitative performance data 

thereby allowing the progress of an individual to be monitored over time.
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7 Epilogue 

This final chapter of the thesis aims to synthesise the findings from the 

programme of work. Throughout each study’s discussion, the theoretical and applied 

implications, limitations and specific applications have been embedded and 

integrated into an on-going development of ideas leading up to the main practical 

application demonstrated within the AST toolkit. In this chapter, a concise summary 

of the main theoretical and applied implications of the thesis are presented and future 

research directions are discussed.  

The programme of work was inspired by Jeannerod’s (1994) seminal work in 

motor cognition in which he claimed that a shared motor representation could 

explain a common mechanism for AE and MI. Jeannerod also implied that the same 

mechanism could apply to AO. Within the neural equivalence arguments made in the 

paper, he provided evidence from both physiological systems and more central brain 

markers to justify the existence of a shared motor representation. There was, 

however, little reference to eye movements and certainly no detail as to the eye gaze 

metrics that might add to the list of ‘functionally-equivalent’ indices. Many 

researchers in motor learning attest that eye-gaze metrics can be seen as indirect 

markers of attentional processes, albeit primarily visual attention. The functional 

validity of both MI and AO processes as contributors to motor learning therefore 

rests heavily on the congruence of the eye metrics in the covert states with those 

measured in execution conditions when the task is performed successfully or when 

compared against the eye gaze metrics of a skilled performer. To date, this eye gaze 

congruence across a range of ecologically valid and theoretically-driven conditions 
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(e.g., Fitts’ Law; different visual perspectives; different age groups) has not been 

investigated empirically. Further, and importantly, the application for (re)learning 

eye gaze patterns associated with coordinated movement patterns and through an 

integrated AE-AO-MI approach is novel and paves the way for many alternative 

versions that are developed for specific groups (stroke, Parkinson’s, chronic pain, 

sports performers etc.). 

The first goal of the research programme was to examine a range of eye gaze 

metrics across the three simulation states in order to provide a valid and reliable 

technique to test Simulation Theory. Chapter Three reported the findings of a Fitts’ 

Law task across the simulation conditions. The concept of a speed and accuracy 

trade-off being preserved in motor imagery had been proposed in 1989 by Decety et 

al. Here, the design was extended further by including not only an AO condition, but 

also by splitting the MI condition into guided and unguided conditions. Further, the 

objective eye movement markers were able to add greater granularity to the 

chronometry data that were published by Decety et al. and demonstrates the strength 

of triangulating methods. In the current study, there were differences between 

conditions for strategy and differences between eye movement metrics suggesting 

that researchers should consider the Simulation Theory differences as much as the 

search for congruence and reinforces the idea of combining techniques such as TMS 

with eye gaze methods. The overly simplistic view that the brain processes motor 

information across simulation states in exactly the same way has not helped to 

progress the understanding of motor cognition. In addition, future research will need 

to examine the meaning of the congruent-incongruent data. For example, increased 

MEPs during AO can reflect motor facilitation and motor inhibition – the same may 



 

177 

be true for some of the eye gaze metrics and this remains an interesting area of 

investigation.  

The main finding that AO had more eye gaze metric similarity than MI 

provided support for those who have raised concerns with the neural congruence 

mechanism as an explanation for MI effects (see review discussed in Chapter Two 

by Holmes & Calmels, 2008). The findings from this study informed the 

development of the design for the work reported in Chapter Four. Understanding the 

influence of speed and accuracy constraints on eye gaze metrics was important to 

many of the methodological considerations with older adult populations. The muscle 

atrophy effects associated with ageing could be expected to alter movement 

execution due to changes in muscle force afference through golgi tendon and muscle 

spindle proprioception and there is an extensive literature on this ageing effect (for a 

review see Narici & Maganaris, 2007). If planned MT is coded within the motor 

representation from felt muscle force (Jeannerod, 1994) then alterations to peripheral 

muscle structures and incongruence with central representations of the movement 

pattern are likely to alter MTs as was found in this study. More research in 

combination with other markers of muscle force (e.g., EMG, ultrasound scans) 

combined with eye movement metrics and chronometry may be able to provide 

further understanding of this complex age-related phenomenon. The increase in the 

MT by the older group highlighted an important issue related to behavioural 

matching and informed directly the management of video timing within the App 

design. Brain damage caused by stroke, for example, may leave the individual with 

significantly slowed motor function and determining the ‘matched’ video speed for 
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an individual at a given time that could be altered for motor improvement was 

important for both theoretical and patient adherence concerns.  

 Of particular interest to this research programme was whether any of these 

physiological changes would be manifest in the eye movement metrics during AE 

and how any changes would transfer to AO and MI conditions. The finding that the 

covert conditions were not constrained in the same way as AE was particularly 

important and has wide-ranging implications for patients and clinicians. In older 

adults, AO and MI retained many of the spatial and temporal characteristics of a task 

and this was particularly the case for AO. If motor function decline is primarily 

peripheral, then limiting the extent to which ineffective motor activity influences the 

motor representation would seem sensible. If, as indicated by the programme’s 

research findings, some of the eye movements in AO and MI are not differentiated 

by age, then regular practice with these covert techniques may slow the rate of motor 

function decline. The findings from the study reported in Chapter Four also indicated 

some age-related decline in eye movements that were consistent across AE, AO and 

MI. These finding suggest that there may be opportunities to modify ineffective eye 

movements in AE through AO and MI. This could be particularly useful in older 

populations where mentally simulating a movement with optimal eye gaze could 

lead to more functional eye gaze in AE thereby removing risk of trips or falls. The 

use of visual cues to relearn effective gaze strategies is clearly important and was fed 

into the design of the AST reported in Chapter Six.  

Corroborating the results from Chapter Three the other important finding 

from Chapter Four was the dissimilar eye movements between AO and MI. In AO 

(1PP), the eye movements were found to be temporally and spatially similar to those 
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executed in AE whereas in MI (1PP) the eye movements were only spatially similar. 

In Chapters Three and Four, however, the actions were simulated in a 1PP only and 

this raised the question of whether the dissimilar gaze between AO and MI also 

existed in 3PP. It was this concern, together with the lack of literature testing visual 

perspective and eye movements directly, and the knowledge that egocentric and 

allocentric position could significantly influence neural activity that informed the 

development of the study reported in Chapter Five. The data analysis in this study 

was novel and created specifically for this programme of work and allowed, for the 

first time, eye gaze to be used to comprehensively quantify MI in the1PP and 3PP. 

The main finding was that information relating to social gaze in AO (3PP) was not 

represented similarly during MI (3PP). If social gaze is a human evolutionary trait 

associated with empathy and action and intention understanding, then its absence 

during MI supports the idea that actions are interpreted in AO and represented (but 

not reinterpreted) in MI (Pylyshyn, 2003). If this is true, it may be important for 

individuals to attend to the correct spatial and temporal cues during AO so that the 

critical action information can be acquired and represented in subsequent MI. 

The empirical studies reported from across Chapters Three to Five have, 

throughout the critical and analytical discussions, made reference to the implications 

and applications of the theoretical work. The vision was always to ensure that the 

research was meaningful, practical, and accessible. With the Higher Education 

Funding Council for England’s focus on research impact, this research programme, 

from its inception, aimed to have impact reach and significance. It was for these 

reasons that the final study sought additional funding from the university to develop 

a fully-integrated AO-MI toolkit that could draw on the findings of the empirical 
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studies reported in this thesis. In addition, the intuitive, scientifically-rigorous toolkit 

brought together best practice MI and AO and had, as its fundamental theoretical 

basis, Jeannerod’s Simulation Theory. The AST toolkit is ready to be taken forward 

and tested in a feasibility RCT and a future aim will be to make the package 

available in the public domain. Additional components of the AST toolkit are likely 

to include: more complex, bimanual tasks; the ability to adjust image size; and, 

action videos filmed from a variety of angles.  

This thesis has reported, for the first time, a series of studies that have 

considered the congruence of AE, AO and MI though a range of eye movement 

markers in a single paradigm. Twenty years after he first proposed the Simulation 

Theory, the results provide substantial support for Jeannerod’s ideas although, with 

the advantage of advanced eye gaze technology, the detail in the extent of the neural 

equivalence can be seen. If eye gaze research is embedded in more comprehensive 

designs with fMRI, TMS and EEG, our understanding of the brain’s control of 

movement will be far richer. 
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9 Appendices 

Appendix A: The Edinburgh Handedness Inventory (Oldfield, 1971) 

Edinburgh	Handedness	Inventory	–	Oldfield	(1971)	

Name:		 	 	 	 	 	 	 Date:	

Please	indicate	your	preference	in	the	use	of	hands	in	the	following	activities	
by	putting	a	+	in	the	appropriate	column.	Where	your	preference	is	so	strong	
that	you	would	never	try	to	use	the	other	hand	unless	absolutely	forced	to,	put	
++.	If	you	are	really	indifferent	put	a	+	in	both	columns.		

Some	of	the	activities	require	both	hands.	In	these	cases,	the	part	of	the	task,	
or	object,	for	which	hand	preference	is	wanted	is	indicated	in	parentheses.	

Please	try	to	answer	all	the	questions,	and	only	leave	a	blank	if	you	have	no	
experience	at	all	of	the	object	or	task.		 	

	 Right	 Left	
	

Writing	 	 	

Drawing	 	 	

Throwing	 	 	

Scissors	 	 	

Comb	 	 	

Toothbrush	 	 	

Knife	(without	fork)	 	 	

Spoon	 	 	

Hammer	 	 	

Screwdriver	 	 	

Tennis	racquet	 	 	

Knife	(with	fork)	 	 	

Cricket	bat	(lower	hand)	 	 	

Golf	club	(lower	hand)	 	 	

Broom	(upper	hand)	 	 	

Striking	match	(match	hand)	 	 	

Opening	box/jar	(lid	hand)	 	 	

Dealing	cards	(card	dealing	hand)	 	 	

Which	foot	do	you	prefer	to	kick	with?	 	 	

Which	eye	do	you	use	when	using	only	one?	 	 	
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Appendix B: The Movement Imagery Questionnaire – Revised Second Version (Gregg et al., 2010)  

 

MIQ – RS 

Name:  

 

This questionnaire concerns two ways of mentally performing movements that are used by some 

people more than by others, and are more applicable to some types of movements than others.  

The first is attempting to form a visual image or picture of a movement in your mind.  The second 

is attempting to feel what performing a movement is like without actually doing the movement.  

You are requested to do both of these mental tasks for a variety of movements in this 

questionnaire, and then rate how easy/difficult you found the tasks to be. The ratings that you 

give are not designed to assess how “good” or “bad” you are at performing these mental tasks.  

They are attempts to discover the capacity individuals show for performing these tasks for 

different movements.  There are no right or wrong ratings or some ratings that are better than 

others. 

 

Each of the following statements describes a particular action or movement.  Read each statement 

carefully and then actually perform the movement as described.  Only perform the movement a 

single time.  Return to the starting position for the movement just as if you were going to perform 

the action a second time.  Then, depending on which of the following you are asked to do, either 

(1) form as clear and vivid a visual image as possible of the movement just performed, or (2) 

attempt to feel yourself making the movement just performed without actually doing it. 

 

After you have completed the mental task required, rate the ease/difficulty with which you were 

able to do the task.  Take your rating from the following scales.   

  

RATING SCALES: 

 

 

Visual Imagery Scale 

 

1        2               3          4              5       6           7  

    Very hard        Hard to    Somewhat     Neutral    Somewhat   Easy to   Very easy 

          to see        see            hard to      (not easy       easy to        see          to see 

                                                 see           not hard)        see 

 

 

 

Kinesthetic (feeling) Imagery Scale 

 

1        2               3           4              5      6       7  

    Very hard        Hard to    Somewhat     Neutral    Somewhat   Easy to   Very easy 

         to feel        feel          hard to       (not easy      easy to        feel          to feel 

                                                 feel           not hard)        feel 

 

Be as accurate as possible and take as long as you feel necessary to arrive at the proper rating for 

each movement.  You may choose the same rating for any number of movements “seen” or “felt” 

and it is not necessary to utilize the entire length of the scale.  

 

 

1. STARTING POSITION: Stand with your feet and legs together and your arms at your 

sides. 

 

    ACTION: Raise your one knee as high as possible so that you are standing 

on one leg with your other leg flexed (bent) at the knee. Now 

lower your leg so that you are again standing on two feet.  

 

    MENTAL TASK: Assume the starting position. Attempt to feel yourself making 

the movement just performed without actually doing it. Now rate 

the ease/difficulty with which you were able to do this mental 

task. 

 

1        2               3           4            5                6       7  

    Very hard        Hard to    Somewhat     Neutral    Somewhat   Easy to   Very easy 

         to feel        feel          hard to       (not easy      easy to        feel          to feel 

                                                 feel           not hard)        feel 

 

 

    RATING: _____________ 

 

 

 

 

2. STARTING POSITION: While sitting, put your hand on your lap and make a fist.       

   ACTION: Raise your hand above your head until your arm is fully 

extended, keeping your fingers in a fist. Next, lower your hand 

back to your lap while maintaining a fist. 

 

    MENTAL TASK: Assume the starting position. Attempt to see yourself making the 

movement just performed with as clear and vivid a visual image 

as possible. Now rate the ease/difficulty with which you were 

able to do this mental task. 

 

1        2               3     4           5           6                 7 

Very hard        Hard to    Somewhat     Neutral    Somewhat   Easy to   Very easy 

       to see      see          hard to     (not easy      easy to        see          to see 

                                               see         not hard)        see 

 

    RATING: _____________ 
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3. STARTING POSITION: Extend your arm straight out to your side so that it is parallel to 

the ground, with your fingers extended and your palm down. 

   ACTION: Move your arm forward until it is directly in front of your body 

(still parallel to the ground). Keep your arm extended during the 

movement and make the movement slowly. Now move your arm 

back to the starting position, straight out to your side. 

    

 MENTAL TASK: Assume the starting position. Attempt to feel yourself making 

the movement just performed without actually doing it. Now rate 

the ease/difficulty with which you were able to do this mental 

task. 

 

1        2               3           4             5      6       7  

    Very hard        Hard to    Somewhat     Neutral    Somewhat   Easy to   Very easy 

         to feel        feel          hard to       (not easy      easy to        feel          to feel 

                                                 feel           not hard)        feel 

 

 

    RATING: _____________ 

 

 

 

 

4. STARTING POSITION:  Stand with your arms fully extended above your head. 

    ACTION: Slowly bend forward at the waist and try and touch your toes 

with your fingertips.  Now return to the starting position, 

standing erect with your arms extended above your head. 

 

    MENTAL TASK: Assume the starting position. Attempt to see yourself making the 

movement just performed with as clear and vivid a visual image 

as possible. Now rate the ease/difficulty with which you were 

able to do this mental task. 

 

1        2               3     4        5           6              7 

Very hard        Hard to    Somewhat     Neutral    Somewhat   Easy to   Very easy 

       to see     see          hard to     (not easy      easy to        see          to see 

                                              see         not hard)        see 

 

 

    RATING: _____________ 

 

 

 

5. STARTING POSITION: Put your hand in front of you about shoulder height as if you are 

about to push open a swinging door. Your fingers should be 

pointing upwards. 

   ACTION: Extend your arm fully as if you are pushing open the door, 

keeping your fingers pointing upwards. Now let the swinging 

door close by returning your hand and arm to the starting 

position. 

     

  MENTAL TASK: Assume the starting position. Attempt to see yourself making the 

movement just performed with as clear and vivid a visual image 

as possible. Now rate the ease/difficulty with which you were 

able to do this mental task. 

 

1        2               3     4          5           6                7 

Very hard        Hard to    Somewhat     Neutral    Somewhat   Easy to   Very easy 

      to see     see          hard to     (not easy      easy to        see          to see 

                                              see         not hard)        see 

 

 

    RATING: _____________ 

 

 

 

 

 

6. STARTING POSITION: While sitting, put your hand in your lap. Pretend you see a 

drinking glass on a table directly in front of you. 

    ACTION: Reach forward, grasp the glass and lift it slightly off the table. 

Now place it back on the table and return your hand to your lap. 

 

    MENTAL TASK: Assume the starting position. Attempt to feel yourself making 

the movement just performed without actually doing it. Now rate 

the ease/difficulty with which you were able to do this mental 

task. 

 

1        2               3           4            5              6       7  

    Very hard        Hard to    Somewhat     Neutral    Somewhat   Easy to   Very easy 

         to feel        feel          hard to       (not easy      easy to        feel          to feel 

                                                 feel           not hard)        feel 

 

 

    RATING: _____________ 
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7. STARTING POSITION: Your hand is at your side. Pretend there is a door in front of you 

that is closed. 

    

 ACTION: Reach forward, grasp the door handle and pull open the door. 

Now gently shut the door, let go of the door handle and return 

your arm to your side. 

    

 MENTAL TASK: Assume the starting position. Attempt to feel yourself making 

the movement just performed without actually doing it. Now rate 

the ease/difficulty with which you were able to do this mental 

task. 

 

1        2               3           4             5      6       7  

    Very hard        Hard to    Somewhat     Neutral    Somewhat   Easy to   Very easy 

         to feel        feel          hard to       (not easy      easy to        feel          to feel 

                                                 feel           not hard)        feel 

 

 

    RATING: _____________ 

 

 

 

 

 

 

8. STARTING POSITION: Stand with your feet and legs together and your arms at your 

sides. 

     

  ACTION: Raise your one knee as high as possible so that you are standing 

on one leg with your other leg flexed (bent) at the knee. Now 

lower your leg so that you are again standing on two feet.  

  

 MENTAL TASK: Assume the starting position. Attempt to see yourself making the 

movement just performed with as clear and vivid a visual image 

as possible. Now rate the ease/difficulty with which you were 

able to do this mental task. 

 

1        2               3    4         5           6               7 

Very hard        Hard to    Somewhat     Neutral    Somewhat   Easy to   Very easy 

      to see    see          hard to     (not easy      easy to           see          to see 

                                             see         not hard)        see 

 

    RATING: _____________ 

 

 

9. STARTING POSITION: While sitting, put your hand on your lap and make a fist. 

    ACTION: Raise your hand above your head until your arm is fully 

extended, keeping your fingers in a fist. Next, lower your hand 

back to your lap while maintaining a fist. 

     

    MENTAL TASK: Assume the starting position. Attempt to feel yourself making 

the movement just performed without actually doing it. Now rate 

the ease/difficulty with which you were able to do this mental 

task. 

 

1        2               3           4            5                6       7  

    Very hard        Hard to    Somewhat     Neutral    Somewhat   Easy to   Very easy 

         to feel        feel          hard to       (not easy      easy to        feel          to feel 

                                                 feel           not hard)        feel 

 

 

    RATING: _____________ 

 

 

 

 

 

10. STARTING POSITION: Extend your arm straight out to your side so that it is parallel to 

the ground, with your fingers extended and your palm down. 

    ACTION: Move your arm forward until it is directly in front of your body 

(still parallel to the ground). Keep your arm extended during the 

movement and make the movement slowly. Now move your arm 

back to the starting position, straight out to your side. 

    

   MENTAL TASK: Assume the starting position. Attempt to see yourself making the 

movement just performed with as clear and vivid a visual image 

as possible. Now rate the ease/difficulty with which you were 

able to do this mental task. 

 

1        2               3     4         5           6                7 

Very hard        Hard to    Somewhat     Neutral    Somewhat   Easy to   Very easy 

      to see     see          hard to     (not easy      easy to          see          to see 

                                              see         not hard)        see 

 

     RATING: _____________ 
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11. STARTING POSITION: Stand with your arms fully extended above your head. 

    ACTION: Slowly bend forward at the waist and try and touch your toes 

with your fingertips.  Now return to the starting position, 

standing erect with your arms extended above your head. 

 

    MENTAL TASK: Assume the starting position. Attempt to feel yourself making 

the movement just performed without actually doing it. Now rate 

the ease/difficulty with which you were able to do this mental 

task. 

 

1        2               3           4             5           6       7  

    Very hard        Hard to    Somewhat     Neutral    Somewhat   Easy to   Very easy 

         to feel        feel          hard to       (not easy      easy to        feel          to feel 

                                                 feel           not hard)        feel 

 

   

    RATING: _____________ 

 

 

 

 

12. STARTING POSITION: Put your hand in front of you about shoulder height as if you are 

about to push open a swinging door. Your fingers should be 

pointing upwards. 

    ACTION: Extend your arm fully as if you are pushing open the door, 

keeping your fingers pointing upwards. Now let the swinging 

door close by returning your hand and arm to the starting 

position. 

   

   MENTAL TASK: Assume the starting position. Attempt to feel yourself making 

the movement just performed without actually doing it. Now rate 

the ease/difficulty with which you were able to do this mental 

task. 

 

1        2               3           4            5               6       7  

    Very hard        Hard to    Somewhat     Neutral    Somewhat   Easy to   Very easy 

         to feel        feel          hard to       (not easy      easy to        feel          to feel 

                                                 feel           not hard)        feel 

 

 

      RATING: _____________ 

 

 

 

13. STARTING POSITION: While sitting, put your hand in your lap. Pretend you see a 

drinking glass on a table directly in front of you. 

    ACTION: Reach forward, grasp the glass and lift it slightly off the table. 

Now place it back on the table and return your hand to your lap. 

     

MENTAL TASK: Assume the starting position. Attempt to see yourself making the 

movement just performed with as clear and vivid a visual image 

as possible. Now rate the ease/difficulty with which you were 

able to do this mental task. 

 

1        2               3   4          5           6                7 

Very hard        Hard to    Somewhat     Neutral    Somewhat   Easy to   Very easy 

       to see      see          hard to     (not easy      easy to        see          to see 

                                               see         not hard)        see 

 

 

      RATING: _____________ 

 

 

 

 

 

14. STARTING POSITION: Your hand is at your side. Pretend there is a door in front of you 

that is closed. 

    ACTION: Reach forward, grasp the door handle and pull open the door. 

Now gently shut the door, let go of the door handle and return 

your arm to your side. 

    

   MENTAL TASK: Assume the starting position. Attempt to see yourself making the 

movement just performed with as clear and vivid a visual image 

as possible. Now rate the ease/difficulty with which you were 

able to do this mental task. 

 

1        2               3     4         5           6              7 

Very hard        Hard to    Somewhat     Neutral    Somewhat   Easy to   Very easy 

       to see      see          hard to     (not easy      easy to        see          to see 

                                               see         not hard)        see 

 

 

 RATING: _____________ 
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Appendix C: The Vividness of Movement Imagery Questionnaire-2 (Roberts et al., 2008) 

 

 

Vividness of Movement Imagery Questionnaire-2 

 

Movement imagery refers to the ability to imagine a movement. The aim of this questionnaire is to determine the 

vividness of your movement imagery. The items of the questionnaire are designed to bring certain images to your mind. 

You are asked to rate the vividness of each item by reference to the 5-point scale. After each item, circle the appropriate 

number in the boxes provided. The first column is for an image obtained watching yourself performing the movement 

from an external point of view (External Visual Imagery), and the second column is for an image obtained from an 

internal point of view, as if you were looking out through your own eyes whilst performing the movement (Internal 

Visual Imagery). The third column is for an image obtained by feeling yourself do the movement (Kinaesthetic imagery). 

Try to do each item separately, independently of how you may have done other items. Complete all items from an 

external visual perspective and then return to the beginning of the questionnaire and complete all of the items from an 

internal visual perspective, and finally return to the beginning of the questionnaire and complete the items while feeling 

the movement. The three ratings for a given item may not in all cases be the same. For all items please have your eyes 

CLOSED. 

Think of each of the following acts that appear on the next page, and classify the images according to the degree of 

clearness and vividness as shown on the RATING SCALE. 

 

RATING SCALE.  The image aroused by each item might be: 

Perfectly clear and as vivid (as normal vision or feel of movement)  ……………  RATING 1 

Clear and reasonably vivid                                       ……………  RATING 2 

Moderately clear and vivid                                      ……………  RATING 3 

Vague and dim                                                         ……………  RATING 4 

No image at all, you only “know” that you are thinking of the skill.  ……………  RATING 5  
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 Watching yourself performing 

the movement (External Visual 

Imagery) 

 Looking through your own eyes whilst 

performing the movement (Internal 

Visual Imagery) 

 Feeling yourself do the movement 

(Kinaesthetic Imagery) 
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1.Walking 1 2 3 4 5  1 2 3 4 5  1 2 3 4 5 
2.Running 1 2 3 4 5  1 2 3 4 5  1 2 3 4 5 
3.Kicking a stone 1 2 3 4 5  1 2 3 4 5  1 2 3 4 5 

4.Bending to pick up a 

coin 
1 2 3 4 5  1 2 3 4 5  1 2 3 4 5 

5.Running up stairs 1 2 3 4 5  1 2 3 4 5  1 2 3 4 5 

6.Jumping sideways 1 2 3 4 5  1 2 3 4 5  1 2 3 4 5 

7.Throwing a stone into 

water 
1 2 3 4 5  1 2 3 4 5  1 2 3 4 5 

8.Kicking a ball in the air 1 2 3 4 5  1 2 3 4 5  1 2 3 4 5 

9.Running downhill 1 2 3 4 5  1 2 3 4 5  1 2 3 4 5 

10.Riding a bike 1 2 3 4 5  1 2 3 4 5  1 2 3 4 5 

11.Swinging on a rope 1 2 3 4 5  1 2 3 4 5  1 2 3 4 5 

12.Jumping off a high 

wall 
1 2 3 4 5  1 2 3 4 5  1 2 3 4 5 
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Appendix D: In house questionnaire for measuring imagery performance during the VFT 

 

In- house questionnaire 

Name:  

 

1. Using the scales below, please rate the ease/difficultly with which you were able to 

perform the imagery and observation reach and point task. The ratings that you give are not 

designed to assess how “good” or “bad” you are at performing these mental tasks. There are no 

right or wrong ratings or some ratings that are better than others. 

 

 

RATING SCALES: 

Visual Imagery Scale 

 

1        2               3          4              5       6           7  

    Very hard        Hard to    Somewhat     Neutral    Somewhat   Easy to   Very easy 

          to see        see            hard to      (not easy       easy to        see          to see 

                                                 see           not hard)        see 

 

 

Kinesthetic (feeling) Imagery Scale 

 

1        2               3           4              5      6       7  

    Very hard        Hard to    Somewhat     Neutral    Somewhat   Easy to   Very easy 

         to feel        feel          hard to       (not easy      easy to        feel          to feel 

                                                 feel           not hard)        feel 

 

 

 

 Visual Rating Kinaesthetic Rating 

Imagery   

Observation   

 

 

 

 

2. Please circle the mental task that you preferred using:      Imagery     Observation 

 


