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ABSTRACT 

Little is understood regarding the phylogeny and metabolic capabilities of the earliest 

colonists of volcanic rocks, yet these data are essential for understanding how life becomes 

established in, and interacts with the planetary crust, ultimately contributing to critical zone 

processes and soil formation.  Here we report the use of molecular and culture-dependent 

methods to determine the composition of pioneer microbial communities colonising the 

basaltic Fimmvörðuháls lava flow at Eyjafjallajökull, Iceland, formed in 2010. Our data show 

that three to five months post eruption, the lava was colonized by a low-diversity microbial 

community dominated by Betaproteobacteria, primarily taxa related to nonphototrophic 

diazotrophs such as Herbaspirillum spp., and chemolithotrophs such as Thiobacillus. 

Although successfully cultured following enrichment, phototrophs were not abundant 

members of the Fimmvörðuháls communities, as revealed by molecular analysis, and 

phototrophy is therefore not likely to be a dominant biogeochemical process in these early 

successional basalt communities. These results contrast with older Icelandic lava of 

comparable mineralogy, in which phototrophs comprised a significant fraction of microbial 

communities and the non-phototrophic community fractions were dominated by 

Acidobacteria and Actinobacteria.  
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INTRODUCTION 

Despite their global abundance and environmental and ecological significance, surprisingly 

little is known regarding the initial colonists of freshly-deposited volcanic rocks. Volcanic 

rocks play a significant role in the global carbonate-silicate cycle as they weather [1-5], 

while some of the most fertile soils in the world are of volcanic origin [6-8]. Understanding 

how newly-formed volcanic substrates become colonised by microbial communities, which 

may ultimately play a role in rock weathering, soil formation and plant ecosystem 

development, is an essential task in earth sciences.  

The surface of unvegetated volcanic lavas are an extreme, but nevertheless viable 

habitat for microorganisms [9-12]. They can be subject to desiccation, exposure to UV 

radiation, temperature fluctuations and low organic and nitrogen availability. One of the first 

studies of microbial colonisation of freshly-deposited volcanic rock occurred on the island of 

Surtsey, Iceland, formed during the 1963-1968 volcanic eruptions off the southern Icelandic 

coast. These lavas provided a unique laboratory for the investigation of biological 

establishment and succession on newly deposited volcanic substrata. Phototrophs were 

already observed by 1968 [13] and subsequent culture-based and microscopy investigations 

reiterated the importance of chlorophytes, lichens and mosses to ecosystem development on 

the island [14-17]. A further study reported the presence of cyanobacteria, including 

Anabaena and Nostoc on the Icelandic Island of Heimaey, eighteen months after an eruption 

in 1973 [18]. 

Molecular-based studies on the microbiota of volcanic substrates have only emerged 

within the past few years, revealing that such habitats are capable of harbouring significant 

microbial diversity [11-12]. The study of a 1959 cinder deposit in Hawaii revealed a diverse 

community comprising Cyanobacteria, Acidobacteria and Alphaproteobacteria and the 

presence of organisms specifically capable of CO-oxidation [19-20]. On unvegetated 

volcanic substrates at the Mount St. Helens volcano, seventeen years after the eruption, 
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Ibekwe et al. [9] recorded the presence Alpha- and Betaproteobacteria and Actinobacteria, 

while Gomez-Alvarez et al. [11]  found that in Hawaiian deposits formed in 1959, microbial 

communities were dominated by Acidobacteria and Alphaproteobacteria, with a large 

percentage of unclassified sequences. Recent molecular investigations of weathered, 

unvegetated Icelandic volcanic rocks revealed diverse microbial communities which, 

although differing in composition amongst volcanic rocks of different mineralogies, 

contained significant proportions of Acidobacteria, Actinobacteria and Proteobacteria [12, 

21]. Cyanobacteria were abundant only in volcanic glasses [12]. 

In the aforementioned and indeed similar molecular studies of volcanic substrates, 

sampling began well after the establishment of microbial communities, with the substrates in 

these investigations ranging in age from seventeen years [9] to material deposited circa 0.8 

Mya [12, 21-22], with no current existing reports of molecular analyses of freshly-deposited 

volcanic material. In the present study, we sought to redress this lack of in-depth 

characterisation of the earliest microbial colonists of freshly-deposited volcanic substrates.  

In March and April 2010, eruptions of the Eyjafjallajökull volcano in Southern Iceland 

produced a new lava flow of basaltic composition, the Fimmvörðuháls flow, offering an 

opportunity to 1) identify the earliest microbial colonists of this globally abundant geological 

substrate and 2) compare these microbial communities with those of previous studies of older 

Icelandic volcanic substrates [10, 12, 21-22] less than 50 km away. In particular, we sought to 

test the hypothesis, using a combination of molecular and cultivation-dependent methods, that 

phototrophs are abundant colonists on the newly-available habitat offered by volcanic 

eruptions.  

 

MATERIALS AND METHODS 
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Field site and sampling 

Samples were collected from the Fimmvörðuháls lava flow, which was erupted from the 

Eyjafjallajökull volcano between 20 March and 12 April 2010 from the Magni and Móði 

craters (Fig. 1). The flow is located between the Eyjafjallajökull and Mýrdalsjökull glaciers in 

southern Iceland and comprises mildly alkalic olivine basalt lava (<2% phenocrysts of 

olivine, plagioclase and clinopyroxene; [23], forming lobes that cover an area of 1.3 km
2
 with 

an average thickness of 10-20 m (estimated volume: 20 million cubic metres; [24]).  

On 5 July 2010, nine readily accessible sampling sites (named 1 – 9) were established 

on the lava flow. The sites were located in three loose clusters of three along a transect, 

relatively close to the source of the flow, as shown in Fig. 1. The maximum distance between 

clusters was 0.48 km. The sampling sites described in this study are located within the area 

delineated by coordinates 63°38'13.20"N, 19°27'1.08"W and 63°38'23.10"N, 19°26'31.80"W. 

Replicate (three) samples of lava, weighing approximately 60-250 g, were taken from each 

site. The maximum distance between replicates was approximately 2 m. Further samples were 

taken on 31 August 2010 from the same sites.  

The samples, taken from the surface of the lava flow, comprised the lava and 

associated eruption ash deposits contained within the fractures and pore spaces. Samples, 

removed using a rock hammer sterilized in ethanol, were broken directly into sterile plastic 

bags (Whirlpak, Fisher Scientific, UK) without handling, double bagged and  boxed 

immediately after collection. Samples were frozen for molecular analysis (-20 °C), or 

subjected to culture-based analyses following collection. Additional samples of lava from 

each site were fixed in 2% formaldehyde for subsequent cell counts. Samples were labelled 

according to the month (J - July or A - August), site of retrieval and replicate number.  
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Geochemical analyses 

Whole-rock major and minor element compositions were obtained using an ARL 8420+ dual 

goniometer wavelength-dispersive X-ray fluorescence (XRF) spectrometer (Thermo 

Scientific,  USA). XRF analysis was carried out on glass discs (major element concentrations) 

prepared by fusing one part finely powdered lava sample, with five parts of FluXana flux 

(20% lithium tetraborate/80% lithium metaborate mix) [25], or on pressed powder pellets 

(trace elemental compositions) [26]. Four individual samples from each of the nine sampling 

sites were analysed. 

Three finely-ground 25 mg samplesfrom each site in July were examined for their 

nitrogen, organic carbon and total sulfur concentrations. Carbon content was determined 

using a Europa ANCA-SL elemental analyser coupled to a continuous flow mass 

spectrometer (Europa GEO 20-20, Knutsford, UK) with a detection limit of 0.001%.  

Nitrogen analysis was carried out using a Carlo Erba NA2500 Elemental Analyser (Glasgow, 

Scotland) with a detection limit of 0.001%. Sulfur was measured using a LECO SC 444 (St. 

Joseph, MI, USA) instrument with a detection limit of 0.001%.  

 

Direct isolations and enrichment cultures 

To test for the presence of certain functional microbial groups, we attempted their direct 

isolation in the laboratory using samples from sites 1, 5 and 9. Unless otherwise stated, all 

samples from these sites and sampling period were processed identically. Subsamples of lava 

were crushed to a maximum size of 1 cm under sterile conditions in a laminar flow hood and 

shaken at 100 rpm at 21 °C for 1.5 h in 10 mL double distilled H2O, before plating onto solid 

media (100 µL undiluted sample), or inoculating into 20 mL of liquid media (500 µL plus 

fragments).  
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To test for the presence of phototrophs, samples were incubated in BG11 broth (pH 

7.2) [27] for enrichment. Chemolithotrophs capable of oxidising sulfur were enriched in 

sulfur-oxidizers (SOX) broth (pH 7.0-7.2) [28]. The presence of nitrogen-fixing organisms in 

samples collected in August 2010 was tested using nitrogen-free Norris agar (pH 7.2) [29], 

prepared using 1.5% Noble agar.  Plates and broths were incubated at room temperature 

(21°C). Following 46 days growth in broth, cultures were plated in duplicate (100 µL) onto 

the corresponding solid media for isolation. Solid BG11 and SOX plates contained 2% Noble 

agar. BG11 broths and plates were incubated under natural light conditions. Solid media 

incubations were for 10-14 days. To test for the presence of heterotrophs, organisms were 

isolated on two solid media; nutrient agar (Oxoid, Fisher Scientific, UK) (pH 7.3 – 7.4) and a 

1/100 nutrient agar (pH 6.7) prepared with 2% Noble agar (BD Biosciences, UK).  

 

Identification of isolates 

Colonies representative of the dominant morphologies present in each sample, in addition to a 

selection of some of the less common morphologies observed on the various media, were 

subcultured three to six times to obtain pure cultures. Selected bacterial isolates were 

subjected to colony PCR with universal eubacterial primers pA and pH [30-32] to amplify 

almost complete 16S rRNA genes, or in the case of cyanobacteria, pA and CYA781R [33], 

amplifying partial 16S rRNA genes. Primers 817f and 1536r [34] were used to amplify partial 

18S genes from selected fungal isolates. Each 50 µL reaction mixture contained 0.2 µM each 

primer, 200 µM each dNTP (New England Biolabs, UK), 2.5 U Taq DNA polymerase, 2 mM 

MgCl2 and 1X PCR buffer (200mM Tris-HCl (pH 8.4), 500 mM KCl) (Invitrogen 

Corporation, UK). Amplifications were performed in a G-Storm GS1 thermal cycler (GRI 

Ltd., UK), with an initial denaturation at 94 ºC for 5 min, followed by thirty-five cycles of 94 

ºC for 1 min, 55 ºC for 40 s and 72 ºC for 40 s, with a final extension for 10 min at 72 ºC. 
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Sequencing of Bacteria and phototrophs was performed with pA.  In instances where these 

sequences suggested new species, additional sequencing with com1 (as a forward primer) [35] 

and/or pH was performed (Mclab, USA or GATC Biotech, Germany) to provide a more 

complete gene sequence of at least 1 kb.  

 

Direct cell counts 

Microbial numbers were calculated per gram of dry weight of lava. Counts were performed 

on all replicate samples from sites 1, 5 and 9. To enumerate microbes, 100 µL of dd H2O 

containing powdered lava (approximately 0.01 to 0.04 g, crushed as described below) was 

added to 900 µL of ddH2O and 100 µL of a solution of 1X SYBR
®
 Green I DNA binding dye 

according to the manufacturer’s instructions (Invitrogen, UK). The solution was vacuum 

filtered onto black 0.2 µm Nuclepore polycarbonate filters (Whatman,  UK). Microorganisms 

were enumerated under at least 30 fields of view on a Leica DMRP fluorescence microscope 

(Leica Microsystems, Germany) using an excitation waveband of 450-490 nm (Leica filter 

cube I3) and an emission long band cutoff filter of >515 nm. A two way analysis of variance 

(ANOVA) was performed on the data in Microsoft Excel. 

 

DNA extraction 

DNA was extracted from all samples from site 5 and one random chosen sample each from 

sites 1 and 9 at each sampling period. Lava was crushed to a powder in a laminar flow hood 

using a sterilized metal container and plunger as described previously [36]. Total DNA was 

extracted from all samples (~10 g each), using a PowerMax Soil DNA Isolation Kit (MoBio 

Laboratories, UK). Extraction was performed according to manufacturer’s instructions, with 

the exception of an extended incubation period of 2.5 h after the addition of buffer C2 
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(designed for the removal of PCR inhibitors), and a 1 mL elution volume. DNA was 

quantified, in triplicate, by NanoDrop. 

 

Bacteria 16S rRNA gene clone libraries  

Amplification of 16S rRNA genes from basalt communities was performed with universal 

eubacterial primers pA and pH, and products purified before cloning into the pCR4
® 

vector as 

previously described [12]. Inserts were sequenced with pA (GATC Biotech, Germany). 

Chimera detection was performed through greengenes [37]. Following chimera removal, all 

libraries were normalised to that containing the smallest number of sequences. Sequences 

were aligned over E. coli nucleotide positions 100 – 785 in MOTHUR (version 1.25.1) [38] 

against the greengenes core database set, and a distance matrix generated in Phylip [39] 

(version 3.6). This distance matrix was used in MOTHUR to group sequences into operational 

taxonomic units (OTUs) at 97% sequence identities. Following MOTHUR normalisation, 

richness and diversity estimates were calculated, and samples compared by Libshuff [40] 

using MOTHURr, and principal component analysis (PCA) using PRIMER 5 (version 5.2.0). 

Classification of clones was performed through the RDP [41] (release 10). Sequences 

representative of each OTU were also searched against those deposited in GenBank, through 

the NCBI blastn program, revealing the closest cultured and uncultured sequences.  

 

Comparison of isolates and 16s rRNA gene clones  

16S rRNA gene sequences from both isolates and clone libraries were aligned over E. coli 

nucleotide positions 134 – 730 and OTUs  generated in MOTHUR at 97% sequence 

identities, as described above. Using these data, a bootstrapped (1000 iterations) Neighbor-

Joining phylogenetic tree was constructed with MEGA4 [42] using representative sequences 
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from each OTU and related GenBank sequences from cultured and uncultured organisms. The 

process was repeated with the same sequences to generate a Maximum Likelihood tree. 

 

RESULTS 

Geochemical analyses  

Average elemental compositions of lava from the nine sampling sites were as follows 

[equivalent oxide, mean (standard deviation)]: SiO2, 47.37 (0.90); Al2O3, 14.88 (0.17); Fe2O3, 

13.29 (0.34); MgO, 8.11 (0.39); CaO, 9.50 (0.39); Na2O, 2.83 (0.27); K2O, 0.72 (0.12); TiO2, 

2.90 (0.15); MnO, 0.19 (0.01); P2O5, 0.39 (0.01); total, 99.71 (0.35) These data show that the 

lava samples were of a basaltic composition according to the Total Alkali Silica (TAS) 

classification scheme of igneous rocks [43], having a mean Na2O+K2O content of 3.55%. 

These data are in agreement with Sigmundsson et al. [23]. 

Nitrogen was below detection using the method employed in all the samples analysed. 

The organic carbon content of the samples was determined to be less than 0.001% wt. The 

total sulfur concentration in all of the samples examined was 0.021% (±0.014) wt. 

 

Identification of isolates   

The identities of isolates relative to the closest 16S or 18S rRNA gene sequences of cultured 

organisms (GenBank deposits), are given in Table 1. Bacterial isolates were primarily 

members of the Actinobacteria and Proteobacteria phyla. Isolated fungi were members of the 

Ascomycota. Many bacterial isolates shared the greatest sequence identity with uncultured 

organisms from a variety of sources, many of these from Antarctic environments, glaciers and 

freshwater habitats. Among the isolates was a taxon represented by four isolates and 

displaying a maximum of 92% sequence identity (16S rRNA genes) to any sequence currently 

deposited in public databases. The closest cultured relatives of this taxon are Alicyclobacillus 
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spp., members of the phylum Firmicutes, and include an isolate from Antarctic geothermal 

soil (AJ607430). All isolate 16Sr RNA gene sequences have been deposited in GenBank 

under accession numbers JF417993 to JF418153 and JF706699 to JF706701. 

 

Direct cell counts 

The average cell counts (with standard deviations) for lava samples from July and August, per 

g of material dry weight, were 1.58 x 10
6
 (1.27 x 10

6
) and 2.58 x 10

6
 (2.15 x 10

6
), 

respectively. Averages for the individual sites, for each season, are given in Fig. 2. A two way 

ANOVA indicated a significant difference in counts among sites (P=0.009), while no seasonal 

effect of season was observed (P=0.138). 

 

DNA extraction 

Concentrations of DNA (ng/µ) in extracted samples from July and August (respectively) were 

as follows: site 1 (5.4 and 4.2), site 5 (4.4, 4.2, 4.7 and 4.0, 4.5, 5.0) and site 9 (4.7 and 4.0). 

Subsequent 1 ml elutions from the DNA extraction filters (see above) resulted in addition 

DNA recovery (not shown). 

 

 

Bacteria 16S rRNA gene clone libraries 

Upon removal of chimeras (an average of 2.8% of sequences) up to 106 clone sequences 

remained in each library. However, for the purpose of meaningful comparisions, and 

statistical analyses, samples were randomly normalized to the smallest library, containing 82 

clones. 

Diversity and richness of Fimmvörðuháls bacterial communities was low (Fig. 3), as 

determined at 97% sequence identities (OTUs). The recovery of OTUs reached or approached 

saturation using <100 clones (not shown) andcoverage estimates for samples ranged from 87 
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to 99%. Shannon diversity indices ranged from 1.40 to 2.49 (average 2.07), while Chao1 [44] 

richness ranged from 8.0 to 46.5 (average 24.5).  

Sixty-three individual OTUs (97% sequence identities) were identified amongst 

normalised libraries. The identities of the two most abundant OTUs in each library, 

accounting for nine OTUs due to shared OTUs between samples, are given in Table 2, 

relative to the nearest cultured and uncultured sequences deposited in GenBank. Together 

these OTUs accounted for almost 82% of sequenced clones and individually accounted for 2.0 

– 29.7% of clones among all libraries. The most abundant library OTU (OTU63), accounting 

for up to 9.4 – 48% of sequences per library, was identified as belonging to the genus 

Herbaspirillum, a group known to possess diazotrophic members, while OTU59 and OTU54 

(together accounting for 16.1% of sequences, were likewise affiliated with known nitrogen-

fixing genera. OTU45 and OTU49, together accounting for 13.9% of library sequences, were 

affiliated with iron and H2 oxiders, and OTU38 with a known sulfur-oxidizing 

chemolithotroph, Sulfuricurvum (Table 2). The remaining fifty-four library OTUs identified 

accounted for 0.3% of library clones on average (range 0.1 – 1.4%), and were affiliated with 

sequences recovered from a variety of habitats, particularly glacial and soil environments (not 

shown) and most closely related to taxa known for nitrogen-fixing and chemolithotrophic 

nutrition. Among the sixty-three identified clone OTUs, 52% were unique to one sample and 

were mostly representative of one or two clones. Clone 16S rRNA gene sequences have been 

deposited in GenBank under accession numbers HQ898914 to HQ900366. 

Phylum Proteobacteria sequences and the Betaproteobacteria in particular, were 

numerically dominant in all libraries. The Betaproteobacteria comprised 57.7 – 97.1% of 

clones in each library (and 70% of sequenced clones combined) while Epsilonproteobacteria 

also contributed significantly (22 – 29%) to a number of samples (Fig. 4), corresponding to 

OTU38 described above. Despite the numerical dominance of Betaproteobacteria sequences 
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in all samples, Libshuff analysis comparing individual samples revealed significant 

differences in clone library composition, both within and between sampling sites. Sample 

pairings for which non-significant differences were observed are given in Supplementary 

Table S2. PCA performed on libraries also revealed variability among samples, with one 

sample from site 5 in July particularly different from all others, separated along the first 

component axis (Supplemental Material). The two principal components shown together 

accounted for 42.3% of the variability observed among lava samples. 

 

Identification of cultured species also contained within clone libraries 

Following alignment of isolate and clone 16S rRNA gene sequences, ninety-two OTUs were 

identified at 97% sequence identity, including twenty-eight represented by isolates only. 

Among these isolate-only OTUs,  two were identified as Arthrobacter (represented by 

twenty-seven and seven isolates), most closely matching sequences from Svalbard soil 

(Arctic) and Livingston Island (Antarctica), respectively. A Sphingobacterium OTU was 

represented by 12 isolates most similar to sequences from temperate grassland (Fig. 4a). 

Other OTUs represented solely by isolates were affiliated with  the genera Rhizobium, 

Variovorax, Thiobacillus and Firmicutes. Nine OTUs were represented by both clone and 

isolate sequences, including four of the abundant library OTUs (OTUs 49, 54, 60 and 63) 

described in Table 2.  The most abundant OTU, affiliated with the genus Herbaspirillum and 

corresponding to OTU63 of clone libraries, comprised 282 clone and 10 isolate sequences. 

Other OTUs, their abundance in libraries and among isolate sequences and their phylogenetic 

affiliations are shown in Fig. 4. 
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DISCUSSION 

The eruption of the basaltic Fimmvörðuháls lava flow from the Eyjafjallajökull volcano in 

southern Iceland, during March and April 2010, provided an opportunity to investigate the 

colonisation of fresh lava in the immediate aftermath of the eruptions. While investigations of 

colonists of newly deposited Icelandic lava has been previously undertaken on the island of 

Surtsey [13 – 17], revealing an abundance of phototrophs, our study is the first to undertake 

such a detailed analyses of lava flow microbial communities at such an early stage of 

colonisation. We sampled the lava flow on two occasions within the first three to five months 

post eruption, employing both traditional culture-based techniques in concert with molecular 

methods to characterise the pioneer bacterial inhabitants. 

 Contrary to our expectations based on Surtsey reports, both our molecular and culture-

based results revealed that the early microbial colonists of the Fimmvörðuháls lava flow were 

not composed primarily of phototrophs but rather by organisms, primarily 

Betaproteobacteria, affiliated with known diazotrophs, chemolithotrophs and heterotrophs. 

Unlike other studies which have shown the abundance of phototrophs in early successional 

volcanic materials [18] and deglaciated soils [45, 46] and inferred the important role of 

phototrophs in the establishment of pioneer communities, we recovered only a few 

phototroph-related sequences from our clone libraries and only succeeded in isolating 

cyanobacteria or diatoms following prior enrichment. Early reports from Surtsey detected 

mosses, lichens and algae by microscopy and culture-based approaches [16, 17, 47]. 

However, these observations were generally made on substrata at least a few years post-

deposition, rather than within months as in the present study, and methodological limitations 

precluded a detailed community molecular analysis. In contrast, our data show that while 

phototrophs were present in Fimmvörðuháls communities at the very early stages of basalt 
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colonization, they represented only a negligible proportion of the molecular diversity of 

organisms on the lava. 

 While our approach does not allow us to unequivocally prove the in-situ activities of 

isolated organisms or of taxa observed within 16S rRNA gene clone libraries, the abundance 

in each sample community of taxa affiliated with chemolithotrophs, heterotrophs and 

nitrogen-fixers, together with the available information regarding carbon, nitrogen and sulfur 

content of samples and the paucity of phototrophs, suggests that an early stage of 

chemolithotrophy and heterotrophy precedes an important role for phototrophs within the 

Fimmvörðuháls flow.  

 The accumulation of nitrogen in early primary successional environments can be a 

limiting factor in ecosystem development [46, 48-50] and nitrogen-fixing microorganisms are 

therefore often abundant colonizers in nitrogen-deficient terrestrial habitats [51]. Increases in 

nitrogen availability facilitate colonization by later successional species [48, 51]. Nitrogen 

was below detection in the Fimmvörðuháls lava flow following the eruptions, thus making 

diazotrophy a potentially important requirement for early pioneers in the nitrogen-limited 

basalt. The isolation of a diversity of nitrogen-fixing organisms on nitrogen-free agar plates, 

together with the abundance of library 16S rRNA gene sequences affiliated with diazotrophic 

taxa, suggests that diazotrophy was represented in phylogenetically diverse organisms. 

Despite the low organic carbon content, the lava flow hosted a diversity of 

heterotrophs. We hypothesise that the Fimmvörðuháls heterotrophs may have used either 

organic carbon derived from chemolithotrophic metabolism within the lava, and/or the 

airborne input of low amounts of atmospheric organic carbon compounds [52]. Atmospheric 

inputs of microbes may also contribute to the organic carbon pool, via cell lysis and recycling 

of organic cellular constitutents.  Taxa we isolated in the laboratory included representatives 

of the Actinobacteria (Arthrobacter), Alphaproteobacteria (Sphingomonas) and many 



 17 

Betaproteobacteria including Polaromonas, Variovorax (Comamonadaceae) and Duganella, 

Herbaspirillum and Massilia (Oxalobacteraceae) species. These data are consistent with 

molecular sequencing data, which also revealed many heterotrophic Betaproteobacteria. The 

most abundant OTU was affiliated with Herbaspirillum, a genus which has previously been 

reported from 22-year-old volcanic deposits in Miyake-jima Island, Japan [53] and is known 

to contain representatives capable of growth under oligotrophic conditions.  

Substrates supporting potential chemolithotrophic metabolism within the 

Fimmvörðuháls lava could have included the reduced iron available in basalt minerals such as 

olivines (detected as total iron in XRF data). Sulfur was also detected in our samples and 

exhalations of sulfur gases was shown to have occurred during the eruptions [54]. 

Chemolithotrophic potential within the Fimmvörðuháls lava is suggested by the isolation 

sulfur-oxidising Thiobacilli, and multiple independent isolations of a novel taxon on SOX 

media which failed to grow in the absence of thiosulfate. Furthermore, clone library OTUs 

affiliated with Thiobacillus and Rhodoferax were observedand an abundant OTU affiliated 

with the facultatively anaerobic genus Sulfuricurvum was particularly abundant in samples 

three months after the eruption, constituting up to 30% of clones. These data suggest the 

presence of other uncultured chemolithotrophic organisms capable of metabolising sulfur 

and/or iron.  

Compared to older (~1,750 yrs old), weathered crystalline Icelandic lava of 

comparable mineralogy previously studied [21], where microbial numbers were of the same 

order of magnitude as in the present study, the diversity and richness of bacterial communities 

within Fimmvörðuháls lavas, as determined by community 16S rRNA gene clone library 

analysis, were substantially lower.  The Chao1 [44] and Shannon values we obtained were 

24.5 and 2.07, as compared to 165 and 4.04 at the same sequence similarity cutoff (97%) on 

the older Icelandic basaltic lava flow [21] less than 50 km away.  Low species diversity in 
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Fimmvörðuháls lava is not surprising given the very short time available for colonisation and 

community development. Diversity in successional communities from other environments has 

been observed to increase over time. For example, the Shannon index on newly exposed 

glacial forefields in Peru increased from 0.8 in newly exposed material to above 4.5 for 500 

year old soils [44]. Increases in species richness have been observed in Arctic glacial soils 

covering a 150-yr time span [55]. Site 5, located to the south west of the Módi crater (Fig. 1), 

is closest to the craters; perhaps close enough that the elevation of Módi may provide some 

shelter to site 5, resulting in a reduced input of airborn microbes from the wind and a 

comparatively lower cell count from samples from this site. 

The bacterial community composition of the newly colonised Fimmvörðuháls basalt, , 

being dominated by Betaproteobacteria, contrasts with that of older Icelandic rocks. Ancient 

Icelandic crystalline lava of basaltic and rhyolitic composition (~1,750 yrs old), analysed in 

the same manner as the present study, were dominated by Actinobacteria and Acidobacteria 

and harboured many other phyla, including Cyanobacteria and difficult-to-culture phyla such 

as Verrucomicrobia and Gemmatimonadetes. All of these rocks contained less than 5% 

Betaproteobacteria [21]. Similar results were reported for ancient Icelandic volcanic glasses 

[12]. While the Fimmvörðuháls flow was dominated by Betaproteobacteria, community 

variations were observed among samples, indicating community heterogeneity on small 

spatial scales, similarly to the ancient basalts. Such small-scale heterogeneity was also 

observed in weathered Icelandic lavas [12, 21].  

Many of our isolates, including some of the most numerous species, remained 

undetected in clone libraries. Considering the high library coverage achieved by sequencing, 

and the use of the same primer set for both isolate identification and library construction, 

failure to detect isolated species within libraries may be due to incomplete extraction of 

community DNA, particularly in the case of sporulating species of Arthrobacter and 
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Firmicutes, and/or that cultivation resulted in significant bias towards rare organisms. 

Culturable fungi, which increased in abundance in August, could not be detected by fungal-

specific PCR of community DNA and attempts to detect Archaea by molecular methods 

(FISH and PCR) also proved unsuccessful (not shown). Despite optimisation of a PCR 

protocol to detect algal 18S rRNA genes, we did not detect algae in our community DNA 

extracts (not shown), further evidence that despite their presence in many samples, as detected 

by enrichment culture, the abundance of algae was very low. 

In conclusion, our data show that three to five months post deposition, the 

Fimmvörðuháls lava flow contained microbial communities characterized by low diversity 

and abundant Betaproteobacteria affiliated with diazotrophic, heterotrophic and 

chemolithotrophic taxa. Our observations show that even three months after their eruption, 

lava flows may be host to functionally distinct microbial communities of low diversity. Some 

of the most abundant OTUs observed in these samples could not be affiliated to a genus, 

evidence that the newly lava flows harbour novel organisms with unknown contributions to 

early biogeochemical cycles. We conclude that potentially biogeochemically active 

communities were established remarkably quickly after the Fimmvörðuháls eruptions and that 

future studies of primary succession on such volcanic materials must begin within days and 

months after the appearance of the new habitat. 
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Table 1. Fimmvörðuháls isolates and their closest cultured relatives currently deposited in GenBank, as determined by partial 16S rRNA gene 

sequence comparison. In instances where the closest cultured organism or organisms are unclassified, the nearest classified cultured organism is 

also shown. Where multiple Fimmvörðuháls isolates returned the same hit (usually representing isolates within the same OTU; see text), the 

accession number of only one Fimmvörðuháls isolate is given. For ease of reporting, data for Arthrobacter, Pseudomonas and Sphingomonas, 

species isolated in abundance, are condensed. Accessions in bold font indicate those isolates which are cluster within within the most abundant 

clone library OTUs, as determined during Mothur analysis (see text and Table 2). 

 

solate (this 

study) 

GenBank 

Accession  

% 

Match 

Phylum Nearest Cultured Organism 

(GenBank) 

Environment  Reference 

Photoautotrophs       

JF418020 
(B)

 FJ002185
 
 97 Bacillariophyta Pennate diatom sp, CCAP 1008/1  unpublished study 

JF418123 
(B)

  D11348
 
 92 Chlorophyta Chlorella saccharophilia   Oyzizu et al. 1992 

JF418116 
(B)

 EU912438 94 Chlorophyta Vaucheria litorea chloroplast   Rumpho et al. 2008 
JF418019 

(B)
 AM709632 98 Cyanobacteria Pseudanabaena sp. PCC 6903  Marin et al. 2007 

JF418021 
(B)

 GU935361 98 Cyanobacteria Pseudanabaenoideae sp. drinking water reservoir sediment unpublished study 
Bacteria       

JF418135 
(S)

 GQ477173 99 Actinobacteria Arthrobacter sp. RKS6-6  Himalayan glacial soil  unpublished study 
JF418068 

(NA)
 JQ977602 99 Actinobacteria Arthrobacter sp. Alb6 root, Tianshan Mts, China unpublished study 

JF418119 
(B)

 KC236857 99 Actinobacteria Arthrobacter sp. B2108 paddy soil unpublished study 
JF418087 

(NA)
 JX949837 99 Actinobacteria Arthrobacter sp. TMT1-38 Chinese glacier  unpublished study 

JF418081 
(NA)

 JQ977457 99 Actinobacteria Arthrobacter sp. Zs11 rhizosphere soil, Tianshan Mts, China unpublished study 
JF418036 

(N)
 JX876867 99 Actinobacteria Frondihabitans sp. GRS42 maple syrup unpublished study 

JF418063 
(NA)

 HQ728400 

EF540450 

97 

97 

Unclassified 

Actinobacteria 

 

Bacterium M25  

Leifsonia sp.  

Arabidopsis thaliana phyllosphere 

Semi-coke 

unpublished study 

unpublished study 

JF418118 
(B)

 

 

KC618504 100 Actinobacteria Rhodococcus erythropolis rhizosphere soil unpublished study 
JF418034 

(N)
 HQ113383 99 Alphaproteobacteria Caulobacter sp. BSL1 Daphnia magna digestive tract Martin-Creuzburg, Beck & 

Freese 2011 
JF418035 

(N)
 AB531422 100 Alphaproteobacteria Mesorhizobium sp. IV-10 grassland soil Kasahara and Hattori, 1991 

JF418133 
(S, N)

 DQ490353
 
 99 Alphaproteobacteria Methylobacteriaceae bacterium  volcanic deposit Kilauea volcano 

Hawaii 

unpublished study 
JF418045 

(N, NA)
 JQ977299 100 Alphaproteobacteria Rhizobium sp. Axs14 rhizosphere soil, Tianshan Mts., China unpublished study 

JF417995 
(NA)

 JQ396566 99 Alphaproteobacteria Rhizobium sp. MN6-12 Arctic rhizosphere unpublished study 
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solate (this 

study) 

GenBank 

Accession  

% 

Match 

Phylum Nearest Cultured Organism 

(GenBank) 

Environment  Reference 

JF418114 
(NA)

 NR029327 97 Alphaproteobacteria Sphingomonas asaccharolytica Y-345 type strain unpublished study 
JF418101 

(NA)
 HQ825039 99 Alphaproteobacteria Sphingomonas sp. cryoconite hole, Austria Lee et al.2011 

JF418097 
(N, NA)

 Z23157 100 Alphaproteobacteria Sphingomonas sp. BF14 air-handling system Hugenholtz et al. 1995 
JF418111 

(NA)
 JX949544 97 Bacteroidetes Mucilaginibacter sp. MDB2-30 Chinese glacier unpublished study 

JF418079 
(NA)

 EF550172
 
 99 Betaproteobacteria Acidovorax sp. arsenic contaminated soil, China Fan et al. 2008 

JF418028 
(N)

 GU213404 

JX304660
 
 

99 

99 

Betaproteobacteria 

Betaproteobacteria 

Beta proteobacterium 224 

Herbaspirillum sp. JJ2206 

fresh granite, Damma Glacier 

Korean soil 

unpublished study 

unpublished study 

JF418093 
(N, NA)

 FR682708
 

JX304660
 

99 

99 

Betaproteobacteria 

Betaproteobacteria 

Beta proteobacterium R-36369 

Herbaspirillum sp. JJ2206 

soil, Dronning Maud Land, Antarctica 

Korean soil 

Peeters, Ertz & Willems 2011 

unpublished study 
JF418105 

(NA)
 AY561571

 
 98 Betaproteobacteria Beta proteobacterium RG-4 vadose zone sediment Fredrickson et al. 2004 

JF418103 
(NA)

 GQ354570
 
 98 Betaproteobacteria Duganella sp. HMD2171 mesotrophic artificial lake unpublished study 

JF418100 
(NA)

 AB495152 99 Betaproteobacteria Duganella zoogloeoides  Tani et al. 2011 
JF418127 

(B)
 EU130968 99 Betaproteobacteria Hydrogenophaga sp. water treatment filter Magic-Knezev, Wullings & 

Van der Kooij 2009 
JF418038 

(N, NA)
 D84572 99 Betaproteobacteria Janthinobacterium sp. S21104  Mitsui et al. 1997 

JF418117 
(B)

 JX177700
 
 99 Betaproteobacteria Limnobacter sp. 2D3 Baltic sea surface water unpublished study 

JF706699 
(NA, B)

 NR044274 98 Betaproteobacteria Massilia brevitalea type strain Zul, Wanner & Overmann 2008 
JF418121 

(B)
 GQ200828 99 Betaproteobacteria Massilia sp. M1 raw milk unpublished study 

JF418065 
(NA)

 JX950006 99 Betaproteobacteria Massilia sp. TMT2-56-2 Chinese glacier unpublished study 
JF418044 

(N)
 HM224491 99 Betaproteobacteria Massilia sp. TPD44 permafrost  headwaters, Urumqi River unpublished study 

JF418122 
(B)

 AB769202 99 Betaproteobacteria Methylibium sp. UTPF84a rice paddy field soil unpublished study 
JF418089 

(NA)
 FR682711 99 Betaproteobacteria Polaromonas sp. soil, Dronning Maud Land, Antarctica Peeters, Ertz & Willems 2011 

JF418129 
(S)

 AJ316618 96 Betaproteobacteria Thiobacillus plumbophilus DSM6690   
JF418113 

(NA)
 JQ977458 99 Betaproteobacteria Variovorax sp. Zs13 rhizosphere soil, Tianshan Mts, China unpublished study 

JF418026 
(N)

 CP000359 97 Deinococcus-

Thermus 

Deinococcus geothermalis DSM11300  unpublished study 
JF418012 

(NA)
 EF093134

  

 

99 Deinococcus-

Thermus 

Deinococcus sp. VTT Scottish stone monument Suihko et al. 2007 
JF418144 

(S, B)
  HE613268

DQ999995 

AJ607430 

92 

93 

92 

Firmicutes 

Firmicutes 

Firmicutes 

Alicyclobacillus sp.  

Bacillales bacterium 

Alicyclobacillus pohliae 

human blood 

opalinus clay 

geothermal soil, Antarctica 

unpublished study 

unpublished study 

Imperio, Viti & Marri 2008 

 JF418088 
(NA)

 KC865283 99 Firmicutes Staphylococcus warneri 11BP cherry (Prunus avium) Serradilla et al. in press 
JF417999 

(NA)
 FM955889 100 Gammaproteobacteri

a 

Pseudomonas moorei algal mat, Midre Lovenbreen 

glacier,valbard 

unpublished study 
JF418010 

(S, NA)
 JQ977479 100 Gammaproteobacteri

a 

Pseudomonas sp. Bma1 rhizoplane, Tianshan Mts,, China unpublished study 
Fungi       

JF418149 
(NA)

 JX982602 99 Ascomycota Cladosporium cladosporioides India unpublished study 
JF418153 

(NA)
 EU940042 100 Ascomycota Mniaecia nivea M167 A bryosymbiont.  Stenroos et al. 2010 

JF418150 
(NA)

   JX470336 100 Ascomycota Cladosporium cladosporioides  Moon-1 Rover internal surface unpublished study 
JF418147 

(NA)
 JX303663 99 Ascomycota Aureobasidium pullulans ZH1 Athletes foot-infected skin unpublished study 

JF418152 
(NA)

 AF548077 99 Ascomycota Microdochium nivale UPSC 3273  Wu et al. 2003 
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Table 2. The most abundant OTUs (defined at 97% sequence similarity) among Fimmvörðuháls clone libraries. The two most abundant OTUs 

from each library, nine in total among all libraries due to abundance of certain OTUs in multiple libraries, are shown, and an accession number 

for a clone representative of that OTU. Number in parenthesis after OTU designation refers to alternative OTU designation in the combined 

clone library and isolate dataset (see text and Fig. 4; boxed branches). Cumultative contributions of each OTU to all libraries, their average and 

range of contribution, in addition to their nearest cultured and uncultured GenBank matches are also shown. Information regarding the known 

nutritional abilities of the associated cultured genera are also provided, and are discussed in the text. 
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OTU and 

accession 

% in 

libraries 

(of total) 

Average 

% per 

library 

(range) 

Isolates  GenBank – closest uncultured Genbank – closest cultured organism 

Accession % 

id 

Source Accession % id Genus/ 

species 

Source (where 

disclosed) 

Nutrition associated 

with genus 

OTU63 (73) 

HQ899770 

29.7 29.8  

(9.4-48.0) 

Yes  JQ684286 

FM872918 

 

99 

99 

 

Permafrost soil  

Floor dust 

 

FR682708 

 

JX304660 

99 

 

99 

Beta proteobacterium 

R-36369 

Herbaspirillum sp. 

Antarctic soil Diazotrophic 

OTU45 (44) 

HQ899746 

10.0 10.4 

(0.0-36.3) 

No KC620647 98 Acid mine drainage 

sample 

AJ316618 96 Thiobacillus 

plumbophilus 

DSM6690 

 Galena,  H2 and iron 

oxidizer 

OTU54 (71) 

HQ899721 

9.8 9.7 

(1.0-25.5) 

Yes  JN178902 99 Kartchner Caverns, 

USA 

NR074725 99 Polaromonas sp. 

JS666 

 Nitrogen fixation 

OTU38 (37) 

HQ899891 

9.0 9.0 

(0.0-29.9) 

No DQ228366 99 Bench glacier 

 

AB080643 97 Sulfuricurvum kujiense Underground 

crude oil 

storage cavity 

Sulfur-oxidizing 

chemolithotroph 

OTU60 (76) 

HQ898929 

7.5 7.5 

(0.0-17.2) 

Yes JF703392 99 Root and rhizosphere 

soil 

D84572 99 Janthinobacterium sp. 

S21104 

  

OTU59 (53) 

HQ899732 

6.3 6.3  

(0.0-23.4) 

No JF189275 

KC286734 

99 

98 

Human skin 

Glacial snow 

 

EU636046 

 

HQ699437 

 

FJ812350 

97 

 

97 

 

96 

Antarctic bacterium 

GA0L 

Actimicrobium 

antarcticum 

Herbaspirillum sp. 

Collins glacier 

 

Seashore water, 

Antarctica 

Soil 

Diazotrophic 

OTU49 (87) 

HQ899197 

3.9 3.7  

(0.0-28.4) 

Yes KC620646 98 Acid mine drainage 

sample 

AJ316618 96 Thiobacillus 

plumbophilus 

DSM6690 

 Galena,  H2 and iron 

oxidizer 

 

OTU62 (55) 

HQ900023 

2.2 2.2  

(0.0-12.8) 

No AB488378 95 Rice paddy soil HE613268 

AB362268 

95 

94 

Alicyclobacillus sp. 

Alicyclobacillus sp. 

Human blood 

Subseafloor 

sediment 

 

OTU47 (45) 

HQ899794 

2.0 1.9  

(0.0-10.4) 

No KC110974 97 Soil microcosm NR_074693 98 Methylotenera 

versatilis  

 Methylotroph 
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Fig. 1. Location map.  Hillshade map generated from LiDAR data collected on NERC Airborne Research and Survey Facility Flight UR10/02 on 

16 September 2010 and filtered with Sun's denoising algorithm (Stevenson et al., 2010).The sampling sites, denoted by numbers 1, 5 and 9, are 

located on the Fimmvörðuháls lava flow, between the Eyjafjallajökull and Mýrdalsjökull glaciers, in Southern Iceland. Flows (delineated by a 

broken line), originated from two craters, their positions as indicated by triangles (inset map;  box denotes area of main map). 

 

 

 

 

 

 

 

 

 

 

 

 



 32 

Fig. 2. Abundances of cells detected by fluorescent microscopy in lava samples (cells/g dry weight). Abundances correspond to the average for 

the three replicates for each site and season. Error bars represent standard deviations. 
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Fig 3. Richness and diversity of 16S rRNA gene clone libraries. Chao1 richness, and Shannon 

and Simpson diversity indices of individual Fimmvörðuháls lava samples, calculated in 

MOTHUR using 16S rRNA gene clone library sequences at 97% sequence identity. Upper 

and lower confidence intervals are also shown. 
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Fig. 4. Classification of 16S rRNA gene clones. Phylum- (and Proteobacteria sub-phylum) 

level classifications of bacterial 16S rRNA gene clones from July and August lava libraries. 

‘Weathered’ represents basalt lava from the Icelandic Hnausahraun lava flow, erupted circa 

150-300 A.D. (Kelly et al. 2011)  and is given for comparison. All samples were analysed in 

the same manner. ‘Others’ refers to other phyla, each represented by a maximum of two 

clones in any Fimmvörðuháls library. 
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Fig. 5.  Neighbor-Joining (NJ) phylogenetic tree, based on an alignment of 16S rRNA gene 

clones and isolate sequences from the Fimmvörðuháls lava flow. Numbers following OTU 

designations indicate the number of sequences represented by the OTU. a) full tree; b) 

expansion of Betaproteobacteria cluster of full tree. * indicates the OTU is represented by 

isolates only (number given in parentheses). ** Indicates the OTU is represented by both 

isolates and clones (numbers, respectively given in parentheses). The remaining OTUs are 

represented solely by clones (number given in parentheses). Highlighted OTUs represent 

those most abundant in libraries (Table 2). Values at nodes represent bootstrap values for the 

Maximum Likelihood (in parentheses) or Neighbour-Joining tree respectively, and are shown 

only where values exceeded 60% in one or both trees.  
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Figure 5 (a) 
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Figure 5 (b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  


