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Abstract 

The work presented in this thesis describes the research, modelling and experimentation 

which were carried out so as to explore the use of electromagnetic pulse induction for the 

detection of nearby or on-body threat items such as handguns and knives.  Commercially 

available finite difference time domain electromagnetic solver software, Vector 

Fields, was used to simulate the interaction of a low frequency electromagnetic pulse 

with different metal objects. The ability to discriminate between objects is based on 

the lifetime of the induced currents in the object, typically around 100 (µs).  

Lifetimes are different for a different objects, whether they are weapons or benign 

objects. For example hand grenades, knives, and handguns are clearly threat objects 

whereas a wrist watch, mobile phone and keys are considered benign. 

Electromagnetic pulse Induction (EMI) relies on generating a time-changing but 

spatially uniform magnetic field, which penetrates and encompasses a concealed 

metallic object. The temporally changing magnetic field induces eddy currents in the 

conducting object, which subsequently decay by dissipative (i.e. resistive) losses.  

These currents decay exponentially with time and exhibit a characteristic time 

constant (lifetime) which depends only upon the size, shape and material 

composition of the object, whilst the orientation of the object is irrelevant. This 

aspect independence of temporal current decay rates forms the basis of a potential 

object detection and identification system. This thesis investigates the possibility of 

detecting, resolving and identifying multiple objects if they are close together, for 

example located on an individual. The mathematical analysis used for the 

investigation implements the generalised pencil of function (GPOF) method. The 

GPOF algorithm decomposes the signal into a discrete set of complex frequency 

components; providing the capability to obtain the time constants from data. It was 

possible to effectively count and identify multiple metallic objects carried in close 

proximity providing that the objects do not have very similar time constants. The 

simulation results, which show that multiple objects can be detected, resolved and 

identified by means of their time constants even when they are close together, are 

presented.    
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Chapter 1  
 

 

GENERAL INTRODUCTION 

1.1 Preview 

Technologies for the detection of various concealed and buried metallic objects, 

especially IED's (Improvised Explosive Devices), are currently of great topical 

interest. Although there have been many studies, throughout the world, to curb and 

prevent security threats in public places, such as concealed weapons and explosive 

devices and buried ordnance (e.g. landmines) there is still no single sensor which 

provides a complete solution to these problems. 

Sensors capable of the detection of concealed, buried and hidden objects, both 

metallic and non-metallic, which can also discriminate between threat items (suicide 

vests, guns, knives, hand grenade and other deadly weapons) and non-threat items 

(mobile phone handsets, jewellery and keys) would provide a very significant 

enhancement of capability to security forces. These threats represent a considerable 

challenge facing today’s law enforcement community [1]. In this field, the screening 

techniques used for the detection of buried or concealed metal items are used in 

banks, airports, public events and entrances of sensitive buildings, as well as at the 

gates of prisons and courts. However such EMI devices cannot detect hidden objects 

at any significant distance. To detect hidden objects they must be close to the 

detection device in order to ensure sufficient sensitivity. According to the research 

presented here, there is no device that can detect and identify concealed metallic 

objects on the body with a high certainty of detection and identification and a low 

probability of false alarms. 

1.2 Aim of project 

The aim of this project was to demonstrate the feasibility of detection and 

identification of multiple conducting objects using EMI to excite circulating eddy 

currents within the object. The results were realised by numerical simulation using a 

finite element time domain electromagnetic solver that was capable of modelling 
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metallic objects of both threat and non-threat types. These objects were of different 

shapes, sizes and materials. Modelling was carried out for singular objects; grouped 

objects and in a variety of orientations and positions. The results were processed to 

determine the fundamental time constant for these configurations of objects. 

To detect and distinguish concealed metallic objects it is necessary to propagate 

electromagnetic pulses to induce eddy currents to flow in the concealed or buried of 

metallic objects. Analysis of the reflected (received) signals that take the form of 

exponentially damped function field amplitudes provide the basis for the 

determination of the time constant for the metallic object and thereby permits crude 

identification of object type. 

1.3 Objectives 

The objectives of this research are to: 

 Design the modelling for several metallic objects of a range of representative 

materials, threat and non-threat targets, by a Finite Element Simulation 

program. 

   Find the fundamental time constants for many various shapes and sizes such 

as spheres and cylinders, and other more representative objects separately and 

with more than one object together, in various degrees of proximity. 

  Develop the electromagnetic pulse induction methodology to detect the 

concealed and buried metallic targets in group and mix items together on the 

body or in a bag. 

 Find and use a robust mathematical analysis technique generalised pencil of 

function (GPOF) to analyse time decay(s) curves to reliably find the time 

constants for targets, even when the targets are grouped together. 

1.4 Organization of the Thesis 

The thesis is organized as follows:  

Chapter 1: General Introduction: 

 This chapter offers an overview of the project topic of the thesis and presents 

the aims of the research, objectives, structure of the titles, novelty of research and 

publication papers. 
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Chapter 2: literature survey 

 This chapter reviews and discusses many individual methods employed at 

different frequency bands throughout the wide electromagnetic spectrum currently 

used or that are the subject of research to detect concealed metal objects, describing 

their advantages and disadvantages. Also, which of these methods are the most 

widespread and common, include the devices that are used for this proposal. 

Chapter 3: Electromagnetic Concepts 

 This chapter clarifies and explains the theoretical equations and methods 

necessary to describe the concepts of electromagnetic induction by using Maxwell’s 

equations and proves the mathematical steps that have been applied and describes the 

solutions found during the course of this research, such as boundary conditions and 

quasi-static solutions of Maxwell’s equations. 

Chapter 4: Simulation Program 

 This chapter presents the development and building of FE models for a range 

of objects such as spheres and cylinders, using several materials such as aluminium, 

stainless steel, titanium and copper, , as isolated items and in proximity. Furthermore, 

the methods for finding time decay(s) and for calculating the fundamental time 

constant theoretical for these shapes and comprised with the simulated results.  

Chapter 5: Using electromagnetic pulse induction (EMPI) for the detection of 

concealed metal objects: 

 This chapter presents the main contribution to new knowledge and the novelty 

of this research for using electromagnetic pulse induction at low frequencies to detect 

concealed and buried metallic objects, both from threat and non-threat targets, 

separately and mixed together as group (more than up to five items) on body or in a 

bag.   

Chapter 6: Conclusion and Future Work 

6.1Conclusion: In this section explains and interprets the results and observations that 

obtained from the simulation work and clarifies the features. 

6.2 Future Work: This section presents the steps to the stage of the future and to 

avoid mistakes and flaws also worthwhile proposals in order to provide adequate 

solutions to detect these concealed targets. 
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Pulses Induction for Detection of Metal Items (Non-threat Targets), Research 

day at Manchester Metropolitan University, 25
th

 April 2013. 

1.6 Contribution to Knowledge 

The project presented in this thesis led to investigation of the the possibility of 

detecting and identifying multiple concealed metal objects located on or about the 

human body. Detection is by means of electromagnetic pulse induction at low 

frequencies and the investigation is conducted using electromagnetic simulation tools. 

Models are applied for many objects of different materials, shapes and sizes such as 

spheres and cylinders also including easily carried weapons, for example a handgun, 

hand grenade, razor blade and knife, and commonly carried benign objects, such as a 

wrist watch, mobile phone and key. The materials simulated were (Aluminium, 

copper, titanium and stainless steel). 

In studying these phenomena we utilised a commercial finite difference time domain 

electromagnetic solver software called vector fields. The model consists of a 

transmitter coil that generates a primary magnetic field which induces eddy currents 

to pass and flow on any concealed or buried metallic objects. The resulting 

electromagnetic pulses (EMP) are induced in the receiver coil positioned some 

distance away. The exponential decay rate of the induced current provides a time 
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constant, which depends upon the size, shape and the material from which the object 

is made. The time constants are aspect independent, providing the basis for concealed 

object identification. 

The project demonstrated the ability to detect a number of objects and identify 

multiple metal targets in close proximity. The results show that multiple objects can 

be detected and identified even when the targets are close together. 
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Chapter 2  

 

Literature Survey 

2.1 Background 

This chapter examines recent developments in the field of concealed and buried 

metallic object detection. Many methods and means of utilising electromagnetic fields 

have been applied to the problem of identifying concealed objects and especially to 

determining whether the object detected constitutes a threat or not. Such methods 

include: millimetre waves, x-ray, electromagnetic waves and infrared, and may be 

passive or active in operation. There are devices available which are hand-held units 

and also as walk-through (portal) units that are used for concealed weapon detection, 

also extended-arm type metal detector shown in figure 2-1 that is used to find metal 

items buried or hidden under the ground, also the extended-arm metal detector is the 

same type of metal detector typically used in treasure hunting 
 
[2]. 

.  

 

 

 

 

 

 

 

 

2.2 Review of Current Concealed Objects Detection Research 

We will look concise for some research and previous study in this field that has been 

carried out in the past and present with their advantages and shortcomings:   

Hand Held 

Portal 

Walk Through 

An Extended Arm 

Figure 2-1: Types of metal detectors 
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2.2.1 Metallic Objects Detection by Using Gradiometer 

This work is based on the principle of distortion in the Earth's magnetic field resulting 

from ferromagnetic objects such as a hand grenade, handgun, razor blade and wrist 

watch that are worn by people when passing through the portal see figure 2-2, or used 

for locating objects buried in the ground, for example landmines and water pipes see 

figure 2-3, also buried in the wall; for example pipe work and safes.. These types are 

used in detection systems which are called Gradiometer metal detectors [3] see 

figure2-2, the model contains two magnetometers connected by  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

electrical at differential mode to reduce the effects of background fluctuations that 

would otherwise make false alarms. The gradiometer already responds to changes in 

the magnetic field of the Earth from the moving ferromagnetic objects and based on 

Figure 2-2: Gradiometer for detection metallic objects [4]. 

 

Figure 2-3: Magnetic gradiometer system (Bartington Instruments). 
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the magnitude of these interactions. The system can display the position of the metal 

object through transit of the portal. This technology was developed like those in the 

Idaho National Laboratory (INL), see Fig 2-2, which consists of 16 gradiometer 

located on two sides of the portal system; the data is collected from each gradiometer 

and the change in Earth’s magnetic field is calculated. In this way an image can be 

generated which reveals the presence of metal objects being carried by the 

person [5,6].    

In figure 2-3 an idea has been implemented by Bartington Instruments [7] which 

consists of two white cylinders that are the sensors that measure magnetic field 

strength allowing a  computer on the front of the harness to compute the gradient of 

the Earth's magnetic field. The battery is mounted on the front under the computer. 

This device is rather heavy. Other advanced electromagnetic techniques, such as a 

magnetic real-time tracking vector gradiometer using high resolution fluxgate 

magnetometers has been developed for incorporation into an unmanned underwater 

vessel to improve mine detection. The unit comprises three primary three axis sensors 

and one three-axis receive sensor [8]. 

The gradiometer for metal detection is considered a passive system because it requires 

ferromagnetic objects; non-ferrous contraband objects such as explosives, electronic 

batteries and non-ferrous metals like gold, Copper, Lead and Aluminium cannot be 

detected. For this reason the system is not practical for most cases. Furthermore it is 

deleteriously affected by vibration or movement induced errors that can cause false 

alarm events. It may be possible to reduce the effects of motion and vibration using a 

three-axis accelerometer to measure the change in the position of magnetometer and 

therefore apply directed magnetic compensation for any vibration or movement, this 

would clearly increase the additional circuit complexity and cost of the system. 
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2.2.2 Inductive Magnetic Fields 

This unit used to control and detection in open area and indoor to find the objects 

concealed at these areas, also used to detect hidden objects and contraband items in 

the bags or on individuals and buried objects as landmines. Each user has different 

security requirements, such as: airports, railway stations and courthouse security 

require preventing entry of firearms and metal objects that can be used to injure the 

people
 
 [9]. This technique uses active electromagnetic transmission to detect the 

metal objects, sees figures (2-4, 2-5). Two coils are used, one is a transmitter coil 

(source  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-4: Principle of EMI technique for concealed metal detection [10]. 

Figure 2-5: Metal detector with an object inside the detection space [2]. 
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coil) and other is a receiver coil (detector coil). When current pulses with frequency 

content around (5 KHz to 5 MHz)
 
[10,11] flow in the transmitter coil producing a 

time varying electromagnetic field around the coil that generates the primary 

magnetic field and induces an electromotive force in the metal object causing eddy 

currents to flow in the metal which generates the secondary magnetic field that can be 

sensed by receiver coil. In figure 2-4 the target is located under the coils as in the 

scenario for the detection of landmines. In figure 2-5 the target located between the 

coils as may be the case in a walk through portal. In both examples the technique is 

the same. 

Wide Area Metal Detection 
 
[12,13] (WAMD) uses the method of pulse induction for 

generating a time varying electromagnetic and relies on the time constants of the 

induced eddy currents as a method of target identification. The sensors use a 3D 

steerable magnetic field sensor 
 
[14] to generate and measure 3D time decay responses 

of the magnetic field of the target see figure 2-6. WAMD works for any electrically 

conductive or magnetisable objects, making this method a versatile system to scan for 

prohibited objects. WAMD can also be used for screening in a crowded area, reducing 

the need to screen for each person to be screened separately and without invading 

individual privacy see figure 2-7. 

 

 

 

 

 

 

 

 

 Figure 2-6: Diagram of a 3D steerable magnetic field sensor system [10]. 
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 There are many techniques developed by a number of researchers, such as those 

conducted at the University of Newcastle, using electromagnetic imaging techniques 

for the detection and classification of threat and non-threat objects [15].  

The inductive magnetic field method is not complete and still suffers a clear deficit in 

the inability to detect low conductivity and non-conductivities materials and also 

metal objects which are small in size. This difficulty arises because the signal 

generated by the body is comparable to that generated by the small objects and then 

the object passes undetected.  

2.2.3 Acoustic and Ultrasonic Detection 

The emission of acoustic waves with ultrasonic frequencies (> 20 kHz) into materials, 

whether metallic or non-metallic, can be used to ascertain physical properties of 

concealed objects. However the effects are dependent upon the shape, orientation, size 

and hardness of material, also the diameter of the detector antenna, wavelength of the 

acoustic signal emitted power [16] and it is therefore not a reliable method for 

identifying objects concealed on the human body. The antenna size and wavelength 

affect the minimum size of objects that can be detected on the body or buried in the 

ground , for example landmines pipes or in investigation of both shallow and deep sub 

bottom layers [17]. The sonic wave reflects from boundaries between materials with 

different acoustical properties, and audio frequencies (low frequency) can be 

Figure 2-7: Wide Area Metal Detector (WAMD) sensor system concept [12].  
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penetrate clothing or rough surfaces to detect and show hidden objects
 
[18], while 

ultrasonic detectors cannot penetrate thick clothing which makes it difficult to detect 

concealed objects under such scenarios
 
[19].  

There are some hand held weapon detectors that work by emitting acoustic waves  

and these systems generally function at  ranges of 1m – 5m . JAYCOR advanced 

Technology Company have developed a system which is a combination of radar and 

ultrasound for producing ultrasound images and can operate at 5m-8m distance 
 
[19]. 

As shown in figure 2-8 [20,21] a nonlinear acoustic method (NAC) for CWD has 

been developed which uses two sets of transducers to produce two ultrasonic beams 

of differing frequencies, f1 and f2, to project sonic waves over long distances and 

onto a small spot on the person. The ultrasonic frequencies are converted from 

ultrasonic to audio frequencies by non-linear interactions which produce the 

frequencies f1, f2, f1-f1, f1+f2. The difference, or beat frequency, frequency (f1-f2) is 

chosen for detection and since the low frequency, i.e. audio frequency range, can 

penetrate clothing and interact with the subject to detect concealed objects. Parametric 

acoustic arrays can be used to produce nonlinear acoustic effects and the concealed 

objects detection is dependent on acoustic signatures [22,23]. 

 

 

 

 

 

 

 

 

This technique is sensitive to solid objects and doesn’t inflict any harm on the body. 

Ultrasound can also be used for holographic imaging to detect the concealed 

objects [24], but some shortcomings are evident because there cannot be reliable 

differential or discrimination between threat serious items and contraband and also 

Figure 2-8: Crossed beam ultrasonic nonlinear acoustic generator for CWD [23]. 
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between benign items. Thick, dense clothing such as leather causes high acoustic 

reflection and targets concealed under it are difficult to detect.     

2.2.4 Target Recognition Using Electromagnetic Resonance 

Metal object detectors are used as instruments to search for dangerous or nuisance 

metal objects that can be hidden in baggage, containers or on the body. These devices 

are in some cases based on electromagnetic resonance (EMR) which utilise radar with 

frequencies (200 MHz – 2 GHz). At these frequencies the Radar Cross Section (RCS) 

varies in a rapid and oscillatory manner with frequency as is seen in Mie scattering. 

The resonant response in the object is related to its physical size and composition but 

is crucially also independent of the object’s orientation and is called a natural 

resonance frequency that can be used to characterize the object [25]. The Resonance 

based scattering exhibits some additional features that make it attractive for object 

identification programs as follows:  

 The scattered is larger in the resonance region than it is below this region 

(Rayleigh region). 

 The natural resonances are independent of the orientation of the object. 

 The resonance patterns of object uniquely identify the object. . 

 Several natural resonances can characterize an object over a large frequency 

band. 

The RCS depends on the ratio of wavelength to an object’s linear size
 
[26] and the 

RCS scattering falls in three regions which are termed Rayleigh, resonance (Mie) and 

the optical region. The RCS of a sphere as function of its circumference, measured in 

wavelengths, and normalized to the geometric cross section of the sphere can be seen 

in figure 2-12.  The resonance region of the sphere has many peaks that correspond to 

the natural resonances of the sphere. When the circumference is large compared to a 

wavelength, the oscillatory behaviour vanishes and the normalised RCS is now 

independent of frequency and equal to the physical cross section of the sphere. 

The target space is illuminated with either a pulse or swept frequency source and the 

signal reflected by the objects in the target space provides an electromagnetic 

signature for the objects [2]. The objects’ signatures are then compared to known 

signatures to determine whether or not these objects are present in the target 
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space [27]. This technique is considered safe and low power, hence suitable for 

human exposure, and also doesn’t invade the privacy of individuals.   

 

 

 
 

 

 

 

   

 

 

 

 

 

 

 

  

In spite of, the EMR has good specifications of safety for human and can be 

penetrates to away range for detection the concealed or hidden objects. However, the 

EMR has some inabilities, as noise corresponding to the signature of people 

contaminates the return signal. The signatures of people are different from person to 

person; also the signature of person with any object such as weapon can be similar to 

another person without weapon, potentially leading to false alarm high rates [28]. 

2.2.5 Concealed Object Detection Using Millimetre Waves 

Millimetre wave (MMW) imaging, offers the possibility for remote screening of 

persons for concealed metallic and non-metallic materials. Plastic explosives, drugs 

and other contraband concealed under layers of clothing can be seen in many 

circumstances when viewed in the millimetre-wave region of the electromagnetic 

Figure 2-9: Radar Cross Section is enhanced in the resonance region [25]. 
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spectrum. For the detection of concealed objects, the system is based on three major 

factors:  The apparatus is suitable in terms of over almost the entire millimetre-wave 

region. The MMW region does not present health risks and observations can be made 

remotely and with discretion as required. Active MMW systems emit very little 

radiation; the emitted power is some ten thousand times smaller than that emitted by a 

typical cell phone (the maximum rate (SAR) mobile standard for 2009 is 

1.6 to 2 W/kg). MMW images are less physically revealing than x-ray images, and 

this technology eliminates the problems with the use of ionizing radiation, as with x-

ray systems 
 
[29]. Millimetre waves can see through clothing and display the resulting 

image, with a reduced capability of revealing intimate anatomical details, also MMW 

systems have an enhanced standoff capability, when compared to x-ray imaging 

scanners and as such can be used to scan crowds and be used in public places. 

Furthermore,  millimetre wave sensors measure the emission temperature through the 

black body radiation that is emitted and (in the case of active systems) reflected from 

the source that reflects from the target whether metallic such as weapons or grenades, 

or non-metal, plastic explosives, bottles and other boxes
 
[30,31].  

There are two types of MMW screening systems, namely active and passive sensors. 

Active sensors are by formed by generating and emitting signals that are focussed 

onto  the objects/target in question,  interact with them and where signals are reflected 

back to the sensor, because the self generated (emitted) signals have known properties 

and often signal processing is used to enhance very weak emitted target signals from 

noise sources, for example, when detecting landmines. For example, in the work of 

Bosqetal, a novel active hyperspectral MMW scanning system was developed to 

detect of buried landmines that used a vector network analyzer collecting the 

backscattered MMW radiation from any buried objects
 

[32]. This method has 

demonstrated an ability to detect metallic object buried under 3 inches of dry soil 

[33]. The limitation of this method is that the emissions are usually weak.  

Passive MMW sensors operating at 94 GHz and other wavelengths have been 

reported 
 
[34].  Here, a set of receivers are spatially scanned over a target that form an 

emissivity map, where objects concealed on the boy
 
[35] show up because of differing 

contrast, see figure 2-10. At microwave and millimetre wave frequencies surfaces 

emit radiation that depends on parameters such as temperature and the amount of 

emissivity. Metal surfaces have are strong reflectors of RF that masks the natural 
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emissivity and which produce reflections from other sources in the scene, with the 

most significant being the sky. Figure 2-11 shows a passive MMW image formed 

from the temperature differences emitted from the target or reflected from the source. 

The output of the sensor is emissivity signals of objects in the MMW spectrum 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and measure with receiver
 
[36]. The MMW sensors can be penetrated clothing to 

detect concealed metal objects due to low emissivity and high reflectivity of objects 

such as metallic gun [28]. An imaging sensor working at 220 GHz has been 

demonstrated for passive MMW imaging
 
[37], which shows an acceptable image 

quality for detection of metallic and non-metallic objects. At this relatively short 

wavelength the MMW imaging is high resolution and clear for metallic and non-

metallic objects, the penetration of clothing is reasonably good, so the objects can be 

visually detected. The detection ability of concealed objects is dependent on the 

Figure 2-10: Images resolution of the MMW system using 94 GHz [35]. 

Figure 2-11: MMW images (imaging system) [36]. 
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operating wavelength and the wavelength dependent on object properties (e.g. the 

type of material and the size of the object). This system is basically FM diffraction 

limited radar, with diffraction limiting the spatial resolution and consequent object 

recognition. Developments of millimetre-wave systems for several years have led to 

commercial MMW systems, mainly operating at 30 GHz, 94 GHz or 220 GHz, 

designed for a range of checkpoint and stand-off people screening applications and 

these are now beginning to become more widely used in this the field
 
[38]. 

2.2.6 THz waves for concealed threat detection 

Since the past several years, there has been an increased interest in the potential of the 

technology for non-destructive and non-intrusive detection of concealed, buried 

objects such as weapons, explosives, electronic cells, contraband also chemical, 

biological agents and related devices. There are two methods to generate THz based 

on optics and electronics. The optics method uses a single frequency far-infrared 

laser, where THz wavelengths are generated by the mixing of two laser frequencies in 

a photo conducting antenna, or using femto-second laser pulses (time domain 

spectra TDS). These types of source are still at laboratory stage kind is developing, 

see figure 2-12 
  
[39-41]. The electronic method is by using electronic components, for 

example superconductor-insulator-superconductor (SIS), Schottky-burrier diode 

(SBD) hot electron bolometer HEB) mixer like heterodyne detectors [42]. There are 

three techniques for generating THz using an electronic method, harmonic multipliers, 

backward wave oscillators and quantum cascade lasers 
 
[43].  These types are now 

readily available and are replacing the laser mixing or pulsed laser approaches. 

 

 

 

 

 

 

 Figure 2-12: Illumination of Fresnel optics with THz source from 3m [39]. 
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Terahertz radiation can penetrate most non-metallic materials such as thin layers of 

cloth, plastics and (partially), leather whereas metals completely block or reflect THz 

waves.  Thus, this technology can be used in imaging detection systems suitable for 

the screening of personnel [44]. An example of sub-THz images taken at 640 GHz is 

shown in figure 2-13.  Here, a range of items are shown in pairs pairs, with the visible 

image shown on the left and the 640 GHz image on the right.  

 

 

 

 

 

 

 

 

 

 

 

 

So, when an object is carried on the body, whether metal or non-metal will show up as 

an area of contrast on a THz image when compared to the body alone. The human 

body has a high liquid content that will absorb nearly all T-Rays, with the energy 

being harmless for the skin. Figure 2-14: shows an active THz image of a person 

carrying a handgun, with the clothing appearing partially invisible and with a 

reflection of the weapon, but the person’s skin appears substantially dark [45]. 

There are some barrier materials that mask concealed threats, with every material 

having its own characteristic THz transmission spectra that must be taken into 

account. The detection of land mines using THz waves imaging has some unique 

considerations in terms of barrier materials, because the anti-personnel landmines are 

small items and contain minimal amounts of metal and ground penetrating radar 

systems, due to limited spatial resolution, cannot distinguish these small mines from 

rocks [46,47]. 

Figure 2-13: A range of threat and non-threat items imaged in the visible 

spectrum and at 640 GHz.  The 640 Ghz  image is on the right and and 

the visible image is shown on the left [45]. 
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THz waves have advantages of high resolution, the availability of a wide THz 

spectrum and the use of a non-ionizing form of radiation to illuminate human 

body [48]. However there are some drawbacks: THz has a limited output power when 

using electronic methods of generation (e.g. harmonic multipliers) and they are 

affected by the atmosphere, with strong absorbance at high frequencies 
 
[49].   They 

are high cost, complex and require significant processing. Additionally, they require 

special power sources, the scanning rate is slow (typically between 0.5 and 8 frames 

per second) and the video output still poor.  For the images shown here,  the 

wavelength close the infrared wavelength at femto-second laser as radiation 

source [50].  

2.2.7 Infrared Imaging 

During the last couple of decades a considerable  effort has been expended on 

developing methods of detecting metal and non-metal objects concealed on a person 

beneath clothing, in detecting contraband, devices or buried in the ground and walls, 

these methods have included the use of infrared imaging technology. This technology 

is primarily used for night vision applications and the principle of the theory is that 

the infrared radiation emitted by the human body is absorbed by clothing after that re-

emitted. In figure 2-15 infrared radiation is used to show the image of a concealed 

weapon with two clothing types, both a thin cotton shirt and a medium weight jacket. 

Figure 2-14: 640 GHz image (left) of a toy gun under shirt. Visible image (right) [45]. 
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In the case of a weapon concealed beneath cloth using a mid-wavelength infrared 

between (3-5 micron) the image of concealed weapon is partly clear. In figure 2-16, 

the wavelength has been lengthened to 8-12 micron consequently, the image of 

concealed weapon will be clearer as they should penetrate fabric better. Normally, in 

the cases of loose and thick clothing, the emitted infrared radiation will be diffused 

over a large area, which reduces the ability to detect hidden objects [51]. 

The infrared radiation (IR) is generally transmissible through the air, can penetrate 

through smoke and mist more readily than visible radiation.  However, IR is affected 

by atmospheric conditions such as rain or fog. So, IR is attenuated by the processes of 

scattering and absorption, with IR and visible radiation exhibiting similar degrees of 

attenuation, with gaps caused by absorption of various molecules, as shown in 

Figure 2-15: Image of weapon concealed beneath a thin cotton shirt (left) and 

               a medium weight jacket (right) with mid wave (3-5 micron). 

Figure 2-16: Image of weapon concealed beneath a thin cotton shirt (left) and 

                    a medium weight  jacket (right) with long wave (8-12 micron). 
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figure 2-17
 
[52]. IR can be used for detection of buried objects as the landmines and 

pipes. This study relied on the soil thermal diffusivity and meteorological parameter 

and the shape [53]. The difficulty in observing IR from concealed 

 

 

 

 

 

 

 

 

objects becomes worse as the object temperature approaches that of the body, which 

is likely to occur when the object is concealed on the body for a reasonable amount of 

time, because the maximum contrast on an IR image is strongly dependent on the  

temperature of the body and the object
 
[54]. 

2.2.8 X-ray Imaging 

The x-ray technology employed in these devices for detecting illicit hidden objects is 

of low energy and penetrates few millimetres into body. Variants of the technology 

are deployed for the inspection of items and baggage at security checkpoints in 

airports [55]. This technique of x-ray differs from devices used in the medical field. In 

the medical field, x-ray imaging relies on the absorption of incident x-rays for 

imaging, whereas the x-ray system of concealed object detection relies on  the 

interaction of an x-ray photon with an electron bound to an atom and is called 

Compton scattering or the backscattering effect/phenomena in quantum 

mechanics [2]. This interaction occurs when an electron absorbs some of an x-ray’s 

energy, whereas the absorbed energy is transferred to the kinetic energy that reduces 

the energy of the x-ray photon interacting with an electron, with the scattered x-ray 

photon used for imaging. X-ray imaging systems can provide high spatial resolution 

to identify concealed and hidden objects on the body, within cases and containers and 

Figure 2-17: Transmission of visible and IR radiation through the atmosphere [51]. 
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in the ground, also its ability to penetrate clothing is high and, as such, the technique 

can be usefully employed for the detection of metallic and non-metallic 

objects [56,57], consequently weapons, explosives, chemicals, drugs, biological 

agents, landmines and related devices can be found, see figure 2-18. 

The x-ray system is sufficiently fast for high productivity applications, so within a 

few seconds can make scans of person with high precision. 

 

 

 

 

 

 

 

There are some shortcomings of using x-ray imaging, these x-ray systems emit low 

dosages, however, there may be safety concerns surrounding ionizing x-ray radiation 

and the United State Food and Drug Administration (USFDA) does not have an 

official position on the safety of these devices. In addition when an examination the 

person requires multiple scans, , furthermore it raises privacy issues.  

2.3 Discussion 

The literature survey has presented a limited study in the field of the detection of 

concealed and buried objects, using different methods that are either deployed or 

which are the subject of relevant research. The detection has to rely on the signal 

responses from object picked by the sensors. However, many technologies are 

currently employed for the detection of concealed objects. Many kinds of detection 

sensors are in the process of being developed or are currently deployed, together with 

many signal processing techniques which aim to improve the detection accuracy from 

both an academic and an industrial aspect, including using the Gradiometer, inductive 

the magnetic fields, acoustic and ultrasonic, millimetre waves, THz technology, 

infrared imaging, x-ray imaging and electromagnetic resonance. The outline is 

Figure 2-18: Sample X-ray Images [55]. 
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illustrated in figure 2-19 to show EM spectrum used to detect the hidden objects by 

the techniques described here.  

 

 

 

 

 

 

 

 

 

 

 

The technologies described in this section form a summary of their lead purpose, their 

deficiencies in performance in terms of vulnerability to weather factors, lights and 

distance from the devices. Here they are summarised in terms of their performance 

and the following definitions indicate to knowledge threat or contraband hidden 

objects and ban it: 

1. Detection: the discrimination process for targets of possible interest from their 

environs. 

2. Identification: determination of threat or contraband. 

3. Classification: determination of the contraband or threat's characteristics. 

Table 2-1 briefly refer to the techniques used in terms of their response to items as 

well as its form and the energy used for interrogation at the detection distance, the 

portability of the devices and proximity at which they operate.   

 

 

 

Figure 2-19: Electromagnetic spectrum and corresponding technologies. 
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Table 2-1: The different techniques for detection concealed objects 

No. The Technique Devices Signature Distance Portability 

1.  
The Gradiometer Passive Near Transportable & Portable 

2.  
Inductive the magnetic fields Active Near Transportable 

3.  
Acoustic & ultrasonic detection Active Far Portable 

4.  
Electromagnetic resonances Active Far Transportable 

5.  
Millimetre waves Passive or Active Far Transportable & Portable 

6.  
THz technology Active Near Transportable 

7.  
Infrared imaging Passive Far Transportable 

8.  
X-ray imaging Active Near Transportable 

 

The Gradiometer is one device for the identification and detection of ferromagnetic 

objects only; it has high ability for penetration and it is harmless passive 

system. A challenge identified for Gradiometer is that it cannot detect non-

ferromagnetic objects and the Gradiometer is dependent on the distortion of the 

earth’s magnetic field, which changes from day to night; this affects the sensitivity of 

device. From a general review of papers, it can be assumed that the device is large, 

expensive and costly. As for the inductive magnetic field type systems (i.e. 

conventional metal detectors), these are active system with a high penetration ability, 

but metallic objects only can be detected and identified; also the technique requires a 

signature database to compare with a target. This technique has low sensitivity and 

small size metal materials typically remain undetected when carried on the body. 

With regard active acoustic technology, whether sonic or ultrasonic, these are 

harmless, but detect rigid objects, including metal or non-metal. Furthermore the 

technique suffers through a lack of penetration through many clothing types and it 

does not distinguish between threat and non-threat items. The electromagnetic 

resonance (EMR) is an active system safe for humans also it has penetration ability 

from a short distance to detect concealed items, whether they be metal or non-metal 

targets. However the EMR suffers from an inability to distinguish between threat or 

benign equipment and tools, because the technique requires a signature database for 

people which are different from person to person. Furthermore, EMR has a limited 
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ability to detect buried items in the ground such as landmines and distinguish between 

them and, cans or pipes which can cause false alarms. The MMW technique is 

commonly used for the detection of hidden objects or in the search for contraband and 

more is an appropriate technology for deployment at airport security gates, as well as 

in the detection and the search for buried land mines or pipe bombs.  MMW systems, 

whether they be active or passive, are portable or transportable by vehicle or movable 

by hand. The MMW wave is not ionizing and consequently is harmless to the body 

and it has high penetration ability for most clothing types. In some cases it can detect 

both metallic and non-metallic objects. However, MMW detection is mostly based on 

an imaging technology approach, and usually requires complex automated image 

analysis software for object classification, making the system complex and costly.  

THz technology can be used for active imaging systems, has high resolution and 

detects metallic and non-metallic items. Such systems do, however, have some 

drawbacks: it isn’t necessary capable of stand=off detection, is affected by the 

atmosphere and THZ can be absorbed by the atmosphere at low frequencies 

consequently the imaging quality produced is poor. Furthermore, the technology is 

very expensive, making multiple pixel imagers very difficult to achieve.  Infrared 

imaging (IR) technology is a passive system and is known to be used at night to detect 

both metallic and non-metals hidden targets. However IR imaging has low penetration 

through all but very thin clothing and cannot differentiate objects at the same 

temperature, furthermore IR is affected by atmospheric factors (e.g. rain, fog). X-rays 

are active systems, with an ability to penetrate all clothing and baggage, and high 

resolution.  Similarly they also can detect metals and non-metallic objects. The 

disadvantages are safety concerns for the body and a violation of privacy.  The ability 

to detect concealed threats at standoff distances is severely restricted. 

2.4 Summary 

Through this study of techniques and technologies, old and modern, which has 

identified and briefly described a range of current detection methods, it can be 

concluded that more research and development is required to overcome gaps in the 

capability matrix. There is no technique that is fully capable of detecting hidden, 

buried and concealed objects, without drawbacks. Table 2.2 identifies the main 

capabilities of technologies that operate within the electromagnetic 
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spectrum   Table 2-2: A summary of the techniques that have been described in this 

Chapter, with their respective capabilities and the characteristics:  

Table 2-2: Main issues of the different techniques for detection concealed objects 

No. The Technique Devices Penetrable Objects Disadvantage  

1.  
The Gradiometer High 

Ferromagnetic 

metallic targets 

Non-ferromagnetic 

targets undetectable 

2.  
Inductive  magnetic fields High Only metals 

Location information 

is lacking & not 

enough sensitivity.  

3.  
Acoustic & ultrasonic detection Medium Hard objects 

Penetration deficient & 

scanning deficient 

4.  
Electromagnetic resonances High Metals & others 

High false alarms & 

needs a signature 

database. 

5.  
Millimetre waves High Metals & others 

High cost & complex 

system 

6.  
THz technology Medium Metals & others 

Lack of stand-off 

detection capability, 

can be absorbed & 

expensive 

7.  
Infrared imaging Low Metals & others 

Low penetration, 

affected by the 

atmosphere and by 

temperature 

8.  
X-ray imaging High Metals & others 

Safety concerns, & 

privacy violation.  

Lack of standoff 

capablility. 

 

All of these variant technologies are used in the detection of hidden or buried objects, 

whether metal or non-metal, some of which presents an image and whereas others 

produce different signals that denotes existence of an item. For instance, x-ray 

imaging technology has the best results to show and detect concealed objects; it has a 

high penetrative ability, produces an exceptionally clear image, it is the most modern 

equipment suitable for the detection of hidden objects metals and others, but it has 

implications for the health of the body and its users, as well as privacy issues. Also 
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studied and presented here are EM spectra  alone or by combination (EM induction, 

EM resonance and Gradiometer), which are complementary approaches to make an 

improved system capable of operation in more circumstances. 

The research presented in this thesis outlines a method of detecting concealed objects 

using a variation of the commonly accepted method of Electromagnetic Pulse 

Induction (EMPI). The variation on this existing method allows for the detection and 

potential identification of multiple objects concealed in close proximity. The 

identification of the concealed object enables classification algorithms to provide 

information about it, for example if the object is considered as a threat or benign.  
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Chapter 3  

 

Electromagnetic Induction concept 

 

3.1 Introduction 

The inductions of electromotive force by changing magnetic flux were first observed 

by Faraday and by Henry in early nineteenth century from their pioneering 

experiments have developed modern generators, transformers, etc. This chapter is 

primarily concerned with the mathematical formulation of the law of electromagnetic 

induction. 

3.2 Maxwell’s Equations 

       Maxwell brought together a unifying set of equations which relate all 

electromagnetic field quantities. These equations are usually written in vector 

notation as 

t




D
JH        (3.1) 

t




B
E        (3.2) 

 D.        (3.3) 

0 B.        (3.4) 

 

where J (A/m
2
) is the electric current density and ρ (C/m

2
) is the surface charge 

density, E (V/m) is the electric field and B (T) is the magnetic induction, H (A/m) is 

the magnetic intensity, D (C/m
2
) is the electric field displacement. Each of these 

equations represents a generalization of certain experimental observations: 

- Equation 3.1 represents is a time varying extension to Ampere’s law. 

- Equation 3.2 is the differential form of Faraday’s law of electromagnetic induction. 
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- Equation 3.3 is the Gauss’s law for electricity, which in turn derives from 

Coulomb’s law. 

- Equation 3.4 is the Gauss’s law for magnetism, usually said to represent the fact that 

single magnetic poles (monopoles) have never been observed, i.e. the net magnetic 

flux entering any volume is zero, consequently a magnetic flux line is continuous; 

there are no “sources” of magnetic flux. 

The electromagnetic field is described by four field vectors; E, B, D and H. Then the 

relationship between them are required to solve the electromagnetic field equation, the 

electric displacement D is defined as 

PED  o        (3.5) 

Where    is permittivity= 2

oo c/1  , and equals (          F/m). In the absence 

of dielectric material, the polarization P=0.  For the following work, it will be 

assumed that all materials are non-polarisable, and thus the electric field and the 

electric displacement are directly proportional 

ED o        (3.6) 

The magnetic intensity H is defined to be related to B through the intrinsic 

magnetization M is 

)H(MBH 



o

1
      (3.7) 

This equation M is explicitly written as a function of H. The magnetization vector M 

is defined as the average magnetic moment per unit volume in the material or, 

equivalently, the magnetic dipole polarization per unit volume.  

For a non-magnetic material, such as copper, there is no magnetization (M=0) and 

thus the magnetic intensity and the magnetic field density are related simply by 

HB o         (3.8) 

The functional relationship of the magnetization with the magnetic field, M(H) helps 

classify the three main classes of magnetic materials: diamagnetic, paramagnetic, and 
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ferromagnetic. The constitutive laws for the different magnetic materials are shown in 

figure 3-1. In diamagnetic and paramagnetic materials the magnetization M and has 

relationship with the magnetic intensity H and depend on the nature of magnetic 

material. In large class of materials there exists an approximately linear relationship 

between M and H, if the material is isotopic as well as linear. 

HM m        (3.9) 

 

 

 

 

 

 

 

 

 

where m  is the magnetic susceptibility at figure 3-1(a,b) and the magnetic 

susceptibility of a diamagnetic material is negative
  

[58-60] and the magnetic 

induction is weakened by the presence the material. The paramagnetic materials have 

positive susceptibilities
 
and the magnetic induction is strengthened by the presence the 

material. In spite of m is function of the temperature and sometimes varies quite 

drastically with temperature, it is generally safe to say that m  for paramagnetic and 

diamagnetic materials is quite small i.e ( 1m   ). 

Metals derived from iron or steel are ferrous metals. In ferromagnetic materials it is 

more energetically favourable for the permanent magnetic moments throughout the 

material to be aligned. This is in contrast to a dipole interaction; it is not energetically 

favourable to have dipoles moments aligned. Throughout a ferromagnetic material 

there exist domains in which all moments are aligned. The orientation of 

b c a 

Figure 3-1: Different types of magnetic material: Diamagnetic (a),  

Paramagnetic (b) and ferromagnetic materials (c). 
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magnetization varies from domain to domain. When an external field is applied to the 

material, domain walls move such that regions that are magnetized opposite to the 

field are reduced in size. 

3.3 Boundary Conditions 

The boundary conditions that must be satisfied by the electric and magnetic fields at 

an interface between two media are deduced from Maxwell’s equations exactly as in 

the static case. The boundary condition applied to the magnetic induction from the 

Maxwell’s equation as equation 3.4
 
[61]. Maxwell’s equations in differential form 

describe the field at points where the divergence and curl of the fields exist. These 

requirements thus exclude surfaces where Eand Hare discontinuous. Conditions on 

the field vectors at the surface are derived by using the integral form of Maxwell’s 

equations. The derivation of boundary conditions can be found in numerous texts 

[62,63] and only the final results will be listed here. The normal component of the 

electrical field is a discontinuous function at an interface that separates regions of 

different conductivity and the normal component of magnetic flux density is a 

continuous at an interface that separates regions of different magnetic permeability. 

0).(ˆ

).(ˆ








21

21

BBn

DDn
o

      (3.10) 

where ρ is surface charge density. The tangential components of electric and magnetic 

fields are continuous functions. 

0)(ˆ

0)(ˆ





21

21

HHn

EEn

      (3.11) 

3.4 Quasi-static Solution of Maxwell’s Equations 

      When using Maxwell’s equations, the displacement current term tD  in 

equation 3.1 will be omitted. To establish the validity of this assumption we can 

follow the steps
 
[64]. The curl of equation 2.1 can be combined with equation 3.2 and 

Ohm’s law EJ   to give a dimensionless equation in E alone. 
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t

D
 JH 



       (3.12) 

E
D





0

t
       (3.13) 

     

 

And       
                  (3.14) 

 

Then the ratio is 

1





t

J

D
       (3.15) 

 

when applied Ohm’s law and equation (3.13), the equation (3.15) becomes 

 

1
   i 0





       (3.16) 

 

Where  2 , 1 , 12

0 1085.8   F/m, 610  S/m, and 

 

2

2

0 a  




  

where a=0.1 m, )m/H(104 7

0

 , 

Then the ratio of the coefficients (equation 3.16) is 13104.7  . 

 

3.5 Electromagnetic Induction 

In 1824, Oersted discovered that current passing though a coil created a magnetic 

field capable of shifting a compass needle. After a few years, Faraday and Henry 

discovered just the opposite. They have noticed a changing magnetic field would 

induce current in closed circuit. This process of generating electrical current 

in a conductor by placing the conductor in a changing magnetic field is called 

electromagnetic induction or just induction. It is called induction because the current 

is said to be induced in the conductor by the magnetic field. Induction is measured in 

unit of Henries (H). When induction occurs in an electrical circuit and affects the flow 

of electricity it is called inductance. The inductance is divided into two types. 



46 

 

3.5.1 Self Inductance  

Any electric circuit which produces a magnetic field and it carries current, if the 

current changes then the magnetic field will change and causing flux linkage with the 

circuit
 
[65] see figure 3-2 (a,b).  

 

 

 

 

 

 

 

 

 

 

Thus for a rigid stationary circuit the only changes in flux result from changes in the 

current. That is, 

dt

d

d

d

dt

d I

I





       (3.17) 

Then ( Idd ) is a constant, equal to ( I ) and called the incremental inductance. In 

any case, the inductance L is defined as 

Id

d
L


        (3.18) 

and     
  

  
      (3.19) 

from equations (3.17), (3.18) and (3.19) it follows that the expression for the induced 

electromotive force (emf) 

    
  

  
       (3.20) 

 where    the electromotive force. 

Figure 3-2: (a,b): Electromagnetic induction - self-inductance circuits. 

(b) (a) 
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As an illustration of the use of equation (3.18) for the calculation of inductance 

the self inductance of a solenoid coil will be calculated, such a coil is shown 

in figure (3-2)b. From Ampere’s law the magnetic induction inside the Solenoid coil is 

 

l

 No I
B


        (3.21) 

where, N is number of turns, l the length and I the current in the coil. So the flux at 

each turn is 

l

A  N2

o I
       (3.22) 

The inductance is then simply: 

l

A N 
  

d

d
  L

2

o


I
      (3.23) 

The (mks) unit of inductance is the Henry (H), A is the cross section area of coil. 

3.5.2 Mutual Inductance 

If one circuit induces current flow in a second nearby another circuit will produce 

mutual inductance show figure 3-3 (a,b).  

 

 

 

 

 

 

 

 

 

(b) (a) 

Figure 3-3 (a,b): Electromagnetic induction - Mutual-inductance circuits. 
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This restriction can be lifted by assuming that there are n circuits, labelled 1,2,3,…n. 

The flux linking one of these circuits, say one labelled i, can be written 





n

j

ijiniiii

1

321 ......................   (3.24) 

The emf induced in the circuit can then be written as 

   











 





 n

1j

ijin1ii

dt

d

dt

d
...............

dt

d

dt

d
  (3.25) 

If each of the circuit is a stationary circuit, the only changes in the flux is that the 

result from changes in the current, thus 

dt

d

d

d

dt

d j

j

ijij I

I





       (3.26) 

The coefficients ( jij dd I ) are constants, independent of the current. 

The mutual inductance between circuit I and circuit j is defined by 

ji      ,
d

d
M

j

ij

ij 



I

      (3.27) 

The (mks) unit of mutual inductance are the Henries (H). 

To calculate the magnetic induction for this situation that produces from first winding 

l

 N 11o I
B


        (3.28) 

And consequently fluxes: 




















l

A N N 

l

A  N

1 21o
21

1

2

1o
11

I

I

      (3.29) 

From these fluxes the inductances can be became 
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l

A N
L

2

1o
1


       (3.30) 

l

A N
L

2

1o
1


       (3.31) 

From equation 3.18, then 

l

A NN
M 21o

21


       (3.32) 

Reversing the procedure and considering a current from another winding is 

l

A 2
2

No
2L


        (3.33) 

l

A NN
M 21o

12


       (3.34) 

thus demonstrating that for this case M12 = M21. Furthermore the equations (3.21), 

(3.22) and (3.23) may be combined to yield 

 2112 LLM        (3.35) 

3.6 Skin Depth 

In discussion steady currents we noted that the current density was uniform over the 

cross section of a cylindrical conductor show figure 3-4, if the source is oscillatory of 

some frequency, then the current is pushed toward the surface of the conductor [66]. 

 

 

 

 

 

 

 
Figure 3-4: Types of metal detectors. 
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The eddy currents can only be carried between the outer surface and a level (layer) of 

the metallic material, this phenomenon called skin depth ( ), and we simply state that 

calculated by 

f 

1

0r 
      (3.36) 

where f  is the frequency,  is the conductivity of metal material, 0  is magnetic 

permeability and. 1r  . The SI unit of skin depth is meter (m)
 
[67]. 

The skin effect due to effective resistance of the metallic materials also the skin depth 

is low where high frequency and vice versa, i.e. the skin depth changes with 

frequency and causing varies in the electrical field distribution on the surface layer. 

Farther more the skin depth depends on the conductivity of the metal and vary 

according the used the conductivity [68]. 

3.7 Summary 

This chapter provided a concise review the electromagnetic induction that relates with 

theoretical basic in this research and concept of the Maxwell’s equations and their 

application and impact of this project. As well as to clarify aspects of the simulated 

models to obtain on the good results and to avoid errors related to this project.    
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Chapter 4  

 

Simulation Program and Building the Model 

 

4.1 Introduction 

The most important concepts for pre-processing, analysis and post-processing of 

Opera-3d models are introduced. Building a geometry using the modeller, exploiting 

the symmetry to reduce the size of model to be solved and generating the finite 

element mesh are covered. Setting up the analysis by choosing appropriate material 

characteristics, solution type and a solver module are also discussed. Finally, the Post-

Processor is used to obtain and present results from the analysis. 

The simulation program is called Vector fields, version 13.0 - Opera-3d (an Operating 

environment for Electromagnetic Research and Analysis) is the pre and post-

processing system for well known electromagnetic analysis programs including 

TOSCA, ELEKTRA, SCALA, CARMEN, SOPRANO, DEMAG, QUENCH and 

TEMPO.  

Finite element discretization forms the basis of the methods used in these analysis 

programs. This widely applicable technique for the solution of partial differential 

equations requires special enhancements to make it applicable to electromagnetic field 

calculations. Access to these features is supported by the Opera-3d Geometric 

Modeller and pre-processor. These programs provide facilities for the creation of 

finite element models, specification of complicated conductor geometry, definition of 

material characteristics including, for example, nonlinear and anisotropic descriptions 

and graphical displays for examination of the data.  

Similarly, the Opera-3d Post-Processor provides facilities necessary for calculating 

electromagnetic fields and displaying them as graphs and contour maps. The Opera-

3d Post-Processor can also calculate and display many derived quantities and can plot 

charged particle trajectories through the calculated fields.  

This work used the ELEKTRA Transient Mode to build the models simulate the 

interacyion of electromagnetic fields with objects. 
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4.2 ELEKTRA Transient Mode 

ELEKTRA Transient (ELEKTRA/TR) analyses time dependent electromagnetic 

fields, including the effects of eddy currents, in three dimensions. There are three 

analysis options: the time variation can be transient (TR), steady state ac (SS) or eddy 

currents can be induced in moving conductors with a specified linear or rotational 

velocity in the presence of a static field (VL). VL can be applied to situations where 

the motion does not change the geometry, e.g. infinitely long rails or rotating disks. 

 

4.3 Model Great 

The Geometric Modeller provides facilities for creating models for use with the 

Opera-3d analysis modules and Post-Processor.  The Modeller manipulates any 

defined objects through operations such as transformations and combinations. Basic 

objects (blocks, cylinders, spheres, cones, pyramids and solenoids) can be created at 

any position in space Special primitives can be defined in the Modeller to define 

standard conductor shapes. These include racetrack coils, solenoids and others see 

figure 4-1(a,b). 

 

 

 

 

 

 

 

 

 

 

Figure 4-1: (a) solenoid great with parameter, (b) Solenoid dimension. 

 

4.4 Defining Material Properties 

The permeability of the magnetic materials will be defined using a nonlinear 

characteristic curve. If the analysis is run linearly the initial slope of the curve will be 

a b 
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used. If the analysis is run nonlinearly the curve will be used to match the 

permeability of each element to the flux density. The materials will be treated as 

isotropic. Material properties are assigned to material labels defined for each cell in 

the model. In order for eddy currents to flow in the radiation shield electrical 

conductivity must be defined. 

 

4.5 Boundary of Model 

Boundary conditions are used in two ways. Firstly they can provide a way of reducing 

the size of the finite element representation of symmetrical models. Secondly they are 

used to approximate the magnetic field at large distances from the model (far-field 

boundaries). On individual far field surfaces a boundary condition is applied. Valid 

boundary conditions are either relevant field components or perfect insulator. 

Boundary condition BCRADIUS is associated with the curved surface of a cylinder or 

sphere see figures 4-2(a,b). 

One of the NORMAL or TANGENTIAL field conditions or the radiation condition 

should be applied on all exterior boundaries and must be defined the sides of 

boundary.  

 

 

 

 

 

 

 

 

 

 

Figure 4-2: (a) Model boundary, (b) Cross section of model boundary. 

 

The magnetic field must be determined in the free space that surrounds the magnet, 

and this must also be included as part of the model. In the real world, this space 

extends to infinity. In a finite element model though the free space region is 

a b 
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terminated at a finite distance from the region of interest, such that the termination 

does not significantly affect the accuracy. 

4.6 Mesh Size  

The final stage before creating a database and solving it is to create the model body 

and mesh the model. The mesh generation of the finite element mesh is performed in 

the Modeller and is a two stage process:  

• Surfaces of models (cells) are initially meshed into triangles.  

• Starting from the surface mesh, each cell is subdivided into a tetrahedral. 

To prepare the model for meshing, the user must first execute the step model create 

model body. This selects all entities as bodies, and performs a Boolean Union, 

without regularisation. The result is one body with all cells retained. 

4.7 Mesh Control 

The element size can be controlled on vertices, edges, faces or cells within a model. 

This allows the mesh to be refined in areas of interest where high accuracy is required 

or where the field is changing rapidly. The element size can be controlled in several 

ways [69] 

• The Maximum element size is the maximum side length of an element. As each 

cell is meshed it is high-lighted by its outline. Constructing the volume mesh takes a 

few minutes and results in a mesh with about 280,000 elements and about 50,000 

nodes,. These numbers of elements and nodes depend on the design and structure of 

the model.  

• The Maximum angle between elements defines the maximum angle between the 

normal to adjacent elements on a curved surface. 

• The Maximum deviation from surface defines the maximum distance between the 

centroid of the planar surface element and the real curved surface it represents 

see figure 4-3(a,b,c). 
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Figure 4-3: (a) Surface mesh parameter, (b) Volume mesh parameter, 

(c) Model meshing. 

4.8 Skin Depth and Meshing 

The electromagnetic skin effect is the penetration depth of the field inside conductive 

materials is dependent on the three parameters: electric conductivity, magnetic 

permeability and frequency.  

The skin/surface meshing is controlled by two considerations, the penetration depth 

according to the perpendicular to the conductor, and the gradient of the state variable 

according to the tangent. The meshing on the surface is related to the type of element, 

and the skin meshing in boundary accurate check of the element sizes quadrangular 

mesh form anisotropy, automatic meshing based on spatial distribution of the mesh 

size. To fine layer elements, the material is modelled by its boundaries with boundary 

finite elements on which particular boundary condition are introduced. 

4.9 Post Processing 

When the analysis has finished, the model starts running the solver, the database is 

automatically activated and the results generated are stored. There are two ways in 

which the model can be saved to file, first the model geometry and information on 

materials and analysis settings can be saved in (an opc file) which can be read by 

a b 

c 
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edited by the Modeller, second and analysis database (an op3 file) must be saved for 

ELEKTRA/TR to analyse. 

This chapter presents the software and the simulation models used to investigate the 

electromagnetic induction using cylinders and spherical models of varying 

dimensions and materials including copper, titanium, aluminium, and stainless steel.  

In addition, a comparison between the theoretical and simulation results is presented.  

4.10 Simulation Program and Building the Model 

Numerical simulation is carried out using the commercially available finite element, 

time domain, electromagnetic solver software from Vector Fields. The first issue that 

is addressed in modelling of the various EMI scenarios is that of specifying the 

external magnetic field. This field should be spatially uniform over a sufficient 

volume that the modelled objects can be moved within this volume without unwanted 

effects from spatial magnetic field gradients across the objects. The effect of a 

spatially varying magnetic field across the object would be to introduce a degree of 

aspect dependence to the time constants and thus degrade the property of aspect 

independence upon which the method relies. A large, circular coil is suitable for the 

purpose of generating a spatially uniform field. The magnetic field is uniform over 

distances that are commensurate to typical concealed metallic objects such as weapon 

sizes (~20 cm) providing the coil is much larger than this size. Accordingly, a coil 4 

metres in diameter was chosen as being suitable for this purpose and called 

transmitter coil that can transmit step pulse of current causing eddy currents to flow 

and excited in target metal object. The eddy currents scatter a signal that will be 

detected by a receiver coil. The receiver coil is 2 metres in diameter that receives the 

signal after being reflected from the object and take exponential form of decaying 

transient at the same time following sudden changes in the magnetic field. Yet not so 

large as to render computation time excessive on a standard PC. It should be stated 

that this choice of magnetic field source may very well be suboptimal when 

consideration is given to the design of a practicably deployable device. In this case, 

several smaller coils may be arranged to give a plane where the magnetic field is 

uniform or long parallel wires carrying current may instead be used to achieve 

uniformity of field in the desired sensing region.  
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In order to study the effect that varying object separation has on the ability to detect 

and discriminate objects within close proximity using EMI it is necessary to be able to 

alter the position of the various objects within the coil, without moving the object(s) 

into a region where there is significant magnetic field gradient see Figure 4-4. 

A graph illustrating the calculated magnitude of magnetic field gradient, expressed as 

a percentage (i.e. % change per metre), from a 4 metre diameter coil as a function of 

distance from the coil centre and distance from the plane of the coil. The magnetic 

field strength is normalised by the axial field magnetic strength in the plane of the 

coil, evaluated at the coils centre. 

 

 

 

 

 

 

 

 

 

In fact the 4 metre diameter coil provides a very uniform magnetic field over a 

considerable region around the coil centre; see Figure 4-5. The axial and radial field 

components are normalised by to the axial component of the magnetic field, in plane 

and at the coil centre. The central region of the coil, extending one metre from the 

centre and one metre from the plane of the coil, has a normalised magnetic field 

gradient which is less than 2.5% per metre giving a maximum change of ~ 0.5% for a 

20 cm sized object. This value is more than adequate for this EMI application; 

therefore we may move our objects within a ~3 m
3  

cylindrical volume located at the 

centre of the coil without encountering problems. 

 

Figure 4-4: Variation of magnetic field gradient with distance from the centre of coil. 
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The finite time domain solver creates a mesh (of finite elements) on which Maxwell’s 

equations is solved, the mesh must have an element size which is sufficiently small to 

resolve the interaction of the electromagnetic fields within the conductor. The scale of 

the mesh size required can be judged by computing the skin depth of the metal 

conductors from which the objects are being modelled. 

4.11 Electromagnetic Theory for targets Detection and Identification 

There is published work in the field of EMI for a variety of uses, concealed metallic 

objects detection; ground penetrating radar for unexploded ordnance detection and 

mining. These applications rely on the same phenomena and share a common 

theoretical underpinning.  

4.11.1 Time Constant for Sphere 

In studying the electromagnetic induction for regular shape sphere in the three axes 

show figure 4-6 the expression for the vector potential outside sphere is [70-73]  
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Figure 4-5: Simulation model – sphere between the transmitter coil and receiver coil. 
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The quantities of equations are defined as follows: 
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‘‘t’’ is a time of initiation of the current step, and R is the radius in spherical 

coordinates.  
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By using quasi-static solution of Maxwell’s equations, the primary magnetic field 

around the sphere increases by amount due to currents induced flowing through the 

sphere and after applied equation 4.5 over equation 4.1, and then can obtain the 

following expression for three axes of the fields: 
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Figure 4-6: The magnetic fields caused by currents induced in the sphere. 



60 

 

and 
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where, aa

R

a B , B , E   are the only components of the anomalous fields caused by 

current induced in the sphere and expressed in spherical coordinate system centred on 

the sphere [74-76].  

There are three different parts of time response of electromagnetic fields as follows: 

 The early stage (early time). 

 The intermediate stage (intermediate time). 

 The late stage (late time). 

Thus, during the early stage of time domain behaviour at ( 0t  ), the electromagnetic 

field is 
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The early stage (early time response) behaviour persists over longer times. In 

particular in the case of a perfectly conducting sphere, induced currents are present 

only on the surface of the sphere at all time and, in theory they do not decay [77]. 

Next consider the behaviour at relatively large times, during the late stage of time 

domain field, the field is almost entirely determined by the exponentials  
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The late time is defined by inequality 
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
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Then, the late time for transient field will be observed and the components of the 

electromagnetic field and can be written as 
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The parameter 
2

1
 is called the time constant 0  for the spherical conductor, and 
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where, 0  is absolute permeability of free space and equals (        H/m),   is 

conductivity and a is radius of sphere. 

The equation (4.18) is important for determine the time constant theoretically for the 

sphere and already applied in these results. 

4.11.2 Mesh size calculation for Models 

The maximum mesh size required is 







 ,  , where   might typically be 10 (i.e. 10 is 

target maximum mesh element size at generate surface mesh in the model). The 
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electromagnetic frequency can be well estimated by taking the reciprocal of the 

fundamental time constant for a sphere, also with Equation (3.36), where 
r = 1. 

Substituting this into Equation (4.18) gives the expression and the typical frequency 

constant of decaying electromagnetic field: 
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and topical λ of decaying in the vacuum: 

2

2

0 a   c

f

c




        (4.20) 

then the topical skin depth in object is: 
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For example the typical object in (a = 0.1 m) and conductivity ( 176 m.S1010  ) 

the skin depth can be calculated from equation (4.21) as 

cm8.1
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2
3
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
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4.11.3 Time Constant for Cylinder 

To study the electromagnetic induction for regular shape solid cylinder in the three 

axes show figure 4-7 the equation of the vector potential is: 

 

 

 

 

 

 

 

 

 

 Figure 4-7: The magnetic fields caused by currents induced in the cylinder. 
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For using quasi-static solution of Maxwell’s equations, the magnetic field flows 

through the cylinder and produces the eddy currents around the cylinder, the step 

response function in time domain is
 
[78] 
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In terms of the positive real decay time constants  
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and the roots of the transcendental equation given the time constants: 
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the magnetic polarizability is derived 

  











 





 

1
2

0rr

/t

r3 )t(u
a  )1)(2(

e6
)t(a 2)t(M   (4.25) 

where )t(  is dirac delta function and )t(u is step function, and by a Fourier or 

Laplace transform could be taken to give the relative permeability of the shape as 

function of frequency to find the roots. These roots would give the magnetic 

polarizability in frequency domain, then the equation becomes [78]: 
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where, h is height of cylinder. The equation (4.27) is time constant for solid cylinder. 
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4.11.4 Time Constant of Simulation Models 

 The time constant can also be determined from the models by using simulation 

program for any metallic objects. The time domain dependence of the induced voltage 

on the secondary of the receiver coil can be expressed [79-81] as 
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where nA   and n  are the amplitudes and time constants respectively, of the n
th

 eddy 

current mode circulating in the object. In general, an analytic solution giving the 

values of nA   and n  is not possible for all, but a few very simple cases where 

symmetry allows for an analytical expression. A conducting sphere is one such 

case [82,83]. For a sphere of radius R; conductivity   and relative permeability
r , 

the time constants n  are given by 
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where n  are the solutions of the equation 
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The time dependence given by Equation (4.23) simplifies further for times which are 

long, when compared to the time constants of the higher (n ≥ 2) order modes. In this 

late time regime, after the excitation pulse or the switching off of the current in the 

primary coil that provides the spatially uniform magnetic field, the voltage induced in 

the secondary coil is simply  
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Thus we may identify an object by its aspect independent, fundamental time constant 

which is dependent only upon the shape, size and material that form the object.  
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When M multiple objects are present within the magnetic field the detected signal, 

again for times which are long compared to high order modes, will simply be the 

superposition of the signals for the objects individually, 
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And equation (4.32) can be written 
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 Where 
0

1
b


 , i.e b is the quantity that obtained from fitting curve by MATLAB.  

 

The results obtained are processed with MATLAB program (non-linear fitting 

algorithms) for calculation the time constant, and the fitting curve applied to sphere is 

shown in figure 4-8 and an exponential decay curve appears as straight line with slop 

being the time constant. The slop of line (time constant) is extracted by curve fitting 

of transformed data. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4-8: Curve fitting of time constant for sphere. 
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4.12 Determination Time Constant of Sphere 

In this section calculate time constant for sphere theoretically and from the simulation 

models shows table 4-1 below. The expression shows the potential of using the time 

constant in identifying a many spheres for different radii and many materials 

(Stainless steel, Titanium, Aluminium and Copper). All spheres of different materials 

and the same radii will be characterised by a scattered electromagnetic field and time 

constant will be different. Thus the spheres can be classified, at least within the 

precision with which the time constant of the decaying magnetic field can be 

determined. 

Table 4-1: Equation of time constant of sphere (modeling and theoretically) 

Time constant from Simulation  

 (s) 0  

Time constant from Theoretical equation 

(s) 0  

)
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4.12.1 Time Constant for Stainless steel Sphere 

Numerical simulation is carried out using the commercially available finite element, 

time domain. A large, circular coil is suitable for the purpose of generating a spatially 

uniform field over distances that are commensurate to all sizes and shapes. 

The model was validated by simulation of stainless steel spheres of conductivity 

1.1×10
6
 S.m

-1 
and of different radii. The fundamental time constants from the 

simulations were compared to theoretical equation and the simulated results agree 

well with theory, see Table 4-2, and time decays are appeared clearly in the figure 4-9  
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Table 4-2: Stainless steel spheres for many radii 

Material Radius Simulation (ms) lTheoretica (ms) 

Stainless Steel 

3.0 cm 0.1212 0.1260 

4.0 cm 0.2212 0.2241 

5.0 cm 0.3502 0.3501 

6.0 cm 0.5068 0.5042 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.12.2 Time Constant for Titanium Sphere 

Variations of the simulation and theoretical time constants for titanium spheres of 

conductivity 1.67×10
6
 S.m

-1
 of different radii are shown in Table 4-3. The decaying 

time responses of the same spheres are plotted in Figure 4-10.  

 

 

 

 

 

Figure 4-9: Time constant for different radii of stainless steel spheres. 
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 Table 4-3: Titanium spheres for different radii 

Material Radius Simulation  (ms) lTheoretica  (ms) 

Titanium 

3.0 cm 0.1955 0.1913 

4.0 cm 0.3405 0.3402 

5.0 cm 0.5310 0.5315 

6.0 cm 0.7619 0.7654 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

4.12.3 Time Constant for Aluminium Sphere 

Comparison of theoretical and simulation values of the time constants for three 

Aluminium spheres conductivity 3.38×10
7
 S.m

-1
 with different radii is given in Table 

4-4 whilst the decaying time responses are shown in Figure 4-11.  

 

 

 

 

 

 

Figure 4-10: Time constant for different radii of titanium spheres. 
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Table 4-4: Aluminium spheres with different  radii 

Material Radius Simulation  (ms) lTheoretica (ms) 

Aluminium 

3.0 cm 4.228 4.4 

4.0 cm 7.707 7.7 

5.0 cm 12.19 12.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.12.4 Time Constant for Copper Sphere 

The conductivity of the Copper sphere is 5.8×10
7
 S.m

-1
 considered somehow large 

compared to that of Aluminium, Titanium or Stainless steel. The time decays are 

longer see figure 4-12. 

Table 4-5; Copper spheres for two radii 

Material Radius Simulation (ms) lTheoretica (ms) 

Copper 

3.0 cm 6.68 6.6 

4.0 cm 11.82 11.6 

 

 

Figure 4-11: Time constant for different radii of aluminium spheres. 
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4.12.5 Time Constant for Two Spheres Together 

 The influence of the separation of two stainless steel spheres radii (4 cm and 6 cm) 

was simulated at varying separations figure 4-13. The separation indicated between 

objects is for their closest surfaces and there is no electrical contact for the zero 

separation case see table 4-6. Both fundamental time constants where accurately 

recovered irrespective of the separation between the two spheres. This important as it 

suggests that multiple spheres can be detected and identified by means of their time 

constants even when they are positioned close together. The radius of sphere one 

(R=4cm) and the radius of sphere two (R=6cm), Table 4-6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4-13: Model of two stainless steel sphere (R=4cm and R=6cm). 

 

Figure 4-12: Time constant for different radii of copper spheres. 
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Table 4-6: Two stainless steel spheres (R=4cm and R=6cm) together 

Material Target 

Distance 

between two 

spheres 

Time constant 

for sphere 1 

0.2212 (ms) 

Time constant 

for sphere 2 

0.5068  (ms) 

Stainless 

Steel 

Sph.1 & Sph.2 100 cm 0.2208 0.5257 

Sph.1 & Sph.2 50 cm 0.2149 0.5288 

Sph.1 & Sph.2 25 cm 0.2202 0.5268 

Sph.1 & Sph.2 0.2 cm 0.2225 0.5260 

Sph.1 & Sph.2 0.0 0.2218 0.5274 

 

4.13 Determination Time Constant for Cylinder 

In this section the cylindrical models of various sizes (radii and length)  and materials 

are studied. The cylinder shapes are a solid cylinder positioned between two coils see 

figure 4-14. The materials are stainless steel and titanium. The time constant of the 

induced eddy current decay of the cylinder is obtained theoretically and from 

simulation models. The results are shown in table 4-7. The cylinder dimensions are 

the same for the stainless steel and titanium cylinders. 

Table 4-7: Equation of time constant of cylinder (modelling and theoretically) 

Time constant  from simulation 

(s) 0  

Time constant from Theoretical equation 

(s) 0  
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4.13.1 Time Constant for Stainless steel Cylinder 

A large circular coil is used like the one used previously with the sphere, which is also 

convenient for cylinder. The coil generates a pulse of uniform magnetic field 

symmetrical around the cylinder and include, and conductivity 1.1×10
6
 S.m

-1
.  

The simulation model is confirmed the simulated results concurred with theoretical 

ones, see table 4-8, and time decaying responses are in the figure 4-15.    

Table 4-8: Stainless steel cylinders for many sizes 

Material Target Length Radius Simulation (ms) lTheoretica  (ms) 

Stainless Steel 

Cylinder_1 4 cm 2 cm 0.0622 0.0614 

Cylinder_2 8 cm 4 cm 0.2483 0.2457 

Cylinder_3 10.0 cm 4.0 cm 0.3088 0.3071 

Cylinder_4 10.0 cm 6.0 cm 0.4607 0.4607 

Figure 4-14: Model of cylinder. 
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4.13.2 Time Constant for Titanium Cylinders 

Various sizes of Titanium cylinder models with the conductivity 1.67×10
6
 S.m

-1
 were 

used. The theoretical and simulated values of the time constants are compared in table 

4-9 and the decaying time responses are plotted in figure 4-16. 

Table 4-9: Titanium cylinders for many sizes 

Material Target High Radius Simulation (ms) lTheoretica (ms) 

Titanium 

 

Cylinder_1 2 cm 4 cm 0.0936 0.09327 

Cylinder_2 8 cm 4 cm 0.3736 0.3730 

Cylinder_3 10.0 cm 4.0 cm 0.4660 0.4663 

Cylinder_4 10.0 cm 6.0 cm 0.6990 0.6995 

 

Figure 4-15: Time constant for stainless steel cylinder different sizes.  
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4.13.3 Time Constant for Aluminium Cylinder 

In the case of Aluminium conductivity 3.38×10
6
 S.m

-1 
only one cylinder size 

(radius=2 cm, height=4 cm) was used conductivity were used. This was due to the 

limitation of the simulation software. Hence, only one simulation results is presented 

in Table 4-10 with the decaying time response plotted in figure 4-17. 

 

Table 4-10: Aluminium cylinder  

Material Target High Radius Simulation (ms) lTheoretica (ms) 

Aluminium Cylinder 4 cm 2 cm 2.1109 2.1 

 

 

 

 

Figure 4-16:  Time constant for titanium cylinder different sizes.  
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4.13.4 Time Constant for Copper Cylinder 

For the Copper cylinder models, one simulation model of cylinder with 

parameter  (r = 2 cm, h = 4 cm) and conductivity is 5.8×10
7
 S.m

-1
, because the 

computer also can not make any processing for high parameter over this size of 

cylinder. Again, only one simulation result which agrees with the theoretical one, see 

table 4-11 and decaying time responses of figure 4-18.   

 

Table 4-11: Copper cylinder 

Material Target High Radius Simulation (ms) lTheoretica (ms) 

Copper Cylinder 4 cm 2 cm 3.2016 3.2 

 

 

 

 

 

Figure 4-17: Time constant for aluminium cylinder. 
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4.13.5 Time Constant for Two Cylinders Together 

Two separate cylinders have been used of stainless steel with following dimensions 

and different distances between them see figure 4-19:  

 Cylinder 1 has length 4 cm and radius 2 cm. 

 Cylinder 2 has length 8 cm and radius 4 cm. 

  

 

 

 

 

 

 

 

 

 

 

Figure 4-18: Time constant for copper cylinder. 

 

Figure 4-19: Model of two stainless steel cylinders 
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The time constant is found for many distances of separation of two cylinders and no 

electrical connect for the zero separation targets and the results are very close and 

validated see table 4-12: 

Table 4-12: Two stainless steel cylinders together 

Material Target 

Distance 

between two 

cylinders 

Time constant 

for cylinder 2 

0.0622 (ms) 

Time constant for 

cylinder 1 

0.2483 (ms) 

Stainless 

Steel 

Cly.1 & 

Cly.2 
100 cm 0.0620 0.2744 

Cly.1 & 

Cly.2 
50 cm 0.06366 0.2766 

Cly.1 & 

Cly.2 
0.0 cm 0.06287 0.2714 

 

4.14 Summary 

The simulation models demonstrate the feasibility of detecting metallic objects which 

is found to depend on their physical characteristics; size and material composition of 

metallic spheres and cylinders. These models were applied to several different forms 

and dimensions individually. 

As can be seen the tables from (4-2) to (4-5) and (4-8) to (4-11) there is good 

agreement between the theoretical and simulation results obtained for the fundamental 

time constants of various objects of various sizes and materials. 

The effect of the separation between two targets was also investigated using two 

spheres of radii 4cm and 6 cm see table (4-6). Both time fundamental time constants 

where accurately recovered irrespective of the separation between the two spheres.  

Similarly, two cylinders were used as two targets together with different distances and 

the results are in table 4-9.  
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This is an important result as it suggests that multiple objects or targets can be 

detected and identified by means of their time constants even when they are close 

together, for example when carried in a bag, providing they are not in direct electrical 

contact. The simulation models have shown that the time decay is sensitive to the 

shape, size and material composition that affects in the conductivity and which in turn 

affect the skin depth of target.   
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Chapter 5  

 

Using Electromagnetic Pulse Induction 

for the Detection of Concealed Metal Objects 

 

5.1 Introduction 

In this chapter, the use of electromagnetic pulse induction to detect  concealed and 

buried metal objects is simulated, with time constants  and decay curves calculated for 

a range of representative cases; both  threat non-threat, of several objects with 

different shapes and sizes. The threat objects are a revolver type handgun, a hand 

grenade, a knife and a razor blade.  The non-threat objects are; a mobile phone, key 

and wrist watch. The decay curves etc are determined from the objects separately, and  

two or more together , using stainless steel material. The threat and non-threat objects 

by themselves or in combination are modelled with a finite element models (FEM) 

simulation solver program from Vector Fields. 

Pulse Induction Techniques for the detection and identification of metallic objects 

have been reported and studied as a possible method for concealed weapon 

detection both on the human body and in carried baggage [84-90]. Electromagnetic 

Pulse Induction (EMI) relies on generating a rapidly changing, spatially uniform 

magnetic field which penetrates and encompasses the concealed metallic object. The 

temporally changing magnetic field induces eddy currents in the conducting object 

which then decay by dissipative (resistive) losses. These currents decay exponentially 

with time and have a characteristic time constant which depend only upon the size and 

shape of the object and the materials from which it is made; the orientation of the 

object does not influence the time constant [91-97] . It this aspect independence which 

forms the basis of a simple object identification system: a library of time constants, 

measured a-priori, can be compared with the measured time constant of an unknown 

sample to assess the presence or absence of a particular object or objects of interest. 

EMI for concealed object detection has one important advantage over resonant 

electromagnetic aspect independent phenomena: that is the human body has a very 
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much smaller perturbing effect in EMI than at the microwave 

frequencies         (~ 0.4 – 2 GHz) required for excitation of natural resonances of 

typical concealed threat objects such as handguns and knives. At microwave 

frequencies the human body is opaque and therefore scatters and reflects microwave 

energy very effectively, undermining the ability to extract clean and uncluttered 

signatures from concealed objects [98-106]. EMI operates at much lower frequencies 

~ 10 KHz, where the human body is nearly transparent, does not support appreciable 

eddy currents and is therefore ‘invisible’ [107]. In the case where excitation occurs at 

frequencies where the electromagnetic wavelength is comparable with the concealed 

object size (Mie scattering regime), resonant effects give a second aspect independent 

parameter: resonant frequency and decay time. However, because EMI operates at 

large electromagnetic wavelengths when compared to the object size, the concealed 

object is electrically small, and there is no resonant condition and consequently there 

is only one aspect independent parameter. EMI is at a disadvantage here as mapping 

an object in complex frequency space (two independent parameters) provides a less 

degenerate and more robust identifier than is possible with a single, aspect 

independent parameter 
 
[108].   

 5.2 Object Counting and Identification 

A pre-requisite of a security screening system based on EMI is the capability to detect 

and classify multiple objects that may be within close proximity to one another. As an 

example, a person could quite conceivably be carrying a handgun in a briefcase 

a knife in their pocket and may well also have a mobile phone and other benign 

objects on their person. A robust and effective EMI based system is required to detect, 

count and identify these objects whatever their separations. Without doubt, the most 

serious problem posed by application of aspect independent EMI techniques is that of 

a single parameter being used to identify a concealed object, the fundamental time 

constant. 

There is an inherent degeneracy in this approach which may well prevent certain 

objects that share similar time constants being counted as individual items and 

therefore discriminated from one another. To ascertain whether this problem is 

significant enough to seriously limit the effectiveness of an EMI system requires the 

measurement or simulation of a very wide variety of objects, both threat and non-
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threat, which may be encountered. In this study present a representative of seven 

commonly carried objects: A wristwatch, key and mobile phone handset as 

representative of benign (non-threat) objects and a knife, handgun, razor blade and 

hand grenade as representative of threat objects. 

Non-linear recursive fitting algorithms are not particularly suitable for the extraction 

of multiple time constants from a decaying temporal signal of the form of 

Equation (4-15). The fitting is sensitive to the starting points and is slow and 

computer intensive. The greatest problem is counting the number of objects present, 

as this is generally unknown a-priori and applying a model with an increasing number 

of fit parameters, terms and starting points quickly results in an unwieldy and 

unreliable method.  

In this case it is better to use the application of the generalised pencil of function 

(GPOF) method
 
[109], which is a far more suitable and rapid algorithm for the 

intended application as it is a generalised Eigen value problem and therefore does not 

need multiple iterations to arrive at a solution. The GPOF algorithm decomposes the 

signal into a discrete set of complex frequency components; in the case of an 

exponentially decaying signal of the form of Equation (4-25), only the real parts of 

the complex frequency are non-zero and the imaginary (oscillatory) frequencies are 

ignored. The number of objects M is unknown but can be estimated, in the absence of 

degeneracy of time constants, by iteratively increasing the model order (the number of 

complex frequencies expected) of the GPOF algorithm until any new complex 

frequencies found have amplitude which is lower than a preset threshold value. See 

Figure 5-1. Comparison of the time constants thus obtained can then be made with a 

library of time constants for common or expected objects and a list of likely carried 

objects may then be formed. Output may be an autonomous alarm or informing the 

user, by a computer screen, that a person is carrying only benign objects or that a 

person is likely to be carrying a threat object or objects. 
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Figure 5-1: Flowchart depicting the processing steps and application 

of the GPOF algorithm to extract multiple time constants 

from the receiver coil time data. 
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5.3 Time Constant of Threat Objects 

In this study, the threat metal objects consist of stainless steel that have a relative 

magnetic permeability and a conductivity of 1.1×10
6
 S.m

-1
. The targets are a hand 

gun, a hand grenade, a knife and a razor blade, both as a single target and as a set of 

separated multiple targets, see figure 5-2. 

 

 

 

 

 

 

 

The target is positioned centrally, between the coils, as shown in figure 5-3. The time 

constant for each target alone is shown in table 5-1 and the calculated decay curve for 

each can be sees in figure 5-4. The hand grenade has by far the longest time constant, 

which is related to its near spherical and smooth shape, giving rise to relatively long 

lived eddy current distributions. The long lasting decay curve of the hand grenade is 

shown plotted separately in figure 5-5. 

Table 5-1: Time constants of threat objects 

Material Targets 

Time Constant 

τ (ms) 

Stainless 

steel 

Hand Grenade 0.250 

Hand Gun 0.0724 

Knife 0.0638 

Razor Blade 0.0074 

 

Hand Grenade  Knife    Hand Gun 

 

Razor Blade 

 Figure 5-2: Four items of threat objects. 
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Figure 5-3: Model diagram for gun, showing the size of the coils 

and positioning of the threat item. 

 

Figure 5-4: Time decays for hand gun, knife and razor blade. 

Figure 5-5: Time decay for hand grenade. 
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The aspect independence of the time constant of objects is the central and key effect 

on which the potential of EMI for concealed threat screening rests. A handgun was 

simulated in four different orientations as shown in figure 5-6 and the fundamental 

time constant recovered, there is little variation between the aspects, see table 5-2.  

 

 

 

 

 

 

 

 

 

Table 5-2: Influence gun orientation on the time constant 

  

Also, the knife was simulated in four different orientations, see figure 5-7. The time 

constant is validated with minor changes between the results, as shown in table 5-3. 

 

 

Material Object & orientation 

Time Constant 

τ (ms) 

Stainless steel Handgun 

Side on 0.0724 

Barrel up 0.0721 

Barrel down 0.0720 

Flat 0.0736 

Side on 

 

Flat 

 

Barrel down 

 

Barrel Up 

 

Figure 5-6: Orientations of handgun. 
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Table 5-3: Influence of knife orientation on the time constant 

 

 

 

 

 

 

The knife is considered an important and common sample for the detection of threat 

objects. Simulations using this model verified good and clear results for many 

orientations. The collapsing magnetic field induces an electromotive force in the 

metal target and the force causes eddy current to flow in the metal object. There is no 

energy to sustain the eddy currents, so they begin to decrease with a characteristic 

decay time that dependent on the size, shape and electrical and magnetic properties of 

metallic objects. From table 5-3 it can be seen that knife response for each position, 

the results of positions have similar transient profile. When generating the magnetic 

field around the knife, consequently the decay currents generate a secondary magnetic 

field, and the time rate-of-change of the field is detected by magnetic field of the 

Material Object & orientation 
Time Constant 

τ (ms) 

Stainless 

steel 
Knife 

Side on 0.0621 

Head up 0.0612 

Head down 0.0642 

Flat 0.0638 

Side on Flat Head up Head down 

Figure 5-7: Orientations of knife. 
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received coil. The time constant is similar for the four positions. It probes the 

insensitivity of time constant to target orientation. 

Four objects were simulated in single aspect. These were simulated individually and 

their characteristic time constant obtained by the process described in figure 5-8. The 

time constants for these objects are presented in table 5-4. 

Application of the simple algorithm is described to the simulations of multiple 

objects, comprising combinations of the four objects listed in table 5-4, successfully 

retrieves the fundamental time constants of the individual objects reasonably 

accurately. There is some discrepancy of time constant values, notably in these items 

that contain more objects. The razor blade seems to pose the greatest problem, the 

fundamental time constant is not accurately estimated when it is included in a group 

of other objects. The inaccuracy is probably due to the small size of the razor blade 

relative to the other objects; the small size giving a much shorter fundamental time 

constant and a weaker contribution to the signal compared to the other, larger, objects. 

This results in the signals from the larger objects dominating and a greater inaccuracy 

in the retrieved time constant.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-8: Model diagram for gun, knife and razor blade. 
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Table 5-4: Groups of threat objects and the fundamental time constants.  

Comparison is made to the time constants obtained for the Individual objects 

 

5.4 Time Constant of non-Threat Objects 

In this section, a study is made of non-threat metal objects of stainless steel material 

with a relative magnetic permeability of unity  and a conductivity of 1.1×10
6
 S.m

-1
. 

The targets are: mobile phone, key and wrist watch with single target and separated 

see figure 5-9.   

 

 

 

 

 

 

 

 

Objects 

Hand grenade 

0.250 ms 

Handgun 

0.0724 ms 

Knife 

0.0638 ms 

Razor blade          

0.0074 ms 

Hand grenade 

& handgun 
0.250 0.0747 - - 

Hand grenade 

& knife 
0.250 - 0.0663 - 

Handgun & 

knife 
- 0.085

 
0.066 - 

Handgun, 

knife & razor 

blade 

- 0.0776 0.0735
 

0.0072 

Mobile phone Wrist watch Key 

Figure 5-9: Three items of non-threat objects. 
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The item is placed centrally, between the coils, as shown in figure 5-10. The time 

constant and decay curve was calculated for each individual item, see table 5-5. 

Table 5-5: Time constant of representitive non-threat objects 

Material Targets 
Time Constant 

 τ (ms) 

Stainless 

steel 

Mobile Phone 0.0241 

Wrist Watch 0.0516 

Key 0.0172 

 

The wrist watch has comprises a reasonably large shape with enough of metallic 

material to produce relatively long lived eddy current distributions around the watch, 

see figure 5-11, followed by the mobile phone and then finally the key. The key poses 

the greatest difficultly to detect, because the small size giving a much shorter 

fundamental time constant and a weaker contribution to the signal compared to other 

benign items. So, a smaller sized object, as expected, produces a shorter time decay 

when compared to larger objects. However, the data analysis and fitting methods 

described here produces the possibility of detecting items of a small size and shape 

hidden or concealed amongst several other items, or in clothing. 

  

 

 

 

 

 

 

 

 Figure 5-10: Model diagram for key. 
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Three objects mobile phone, key and wrist watch were simulated together in a single 

aspect. The objects were simulated individually and their characteristic time constant 

obtained by a mathematical process, see figure 5-12. The fundamental time constants 

of these objects are presented in table 5-6. 

 

 

 

 

 

 

 

 

 

 

Figure 5-11: Time decays for mobile phone, wrist watch and key. 

 

Figure 5-12: Model diagram for mobile phone, wrist watch and key. 
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Table 5-6: A comparison of two, three objects together and the 

                  fundamental time constants comparisons made to the  

                  time constants obtained for the Individual objects 

    

 

 

 

 

 

 

 

The results of calculating fundamental time constants for combinations comprising of 

the three objects were reasonably good when compared with individual objects, to an 

acceptable precision. There is a slight difference in the results in cases of two objects 

together and individual result of fundamental time constant. A small object can be 

difficult to detect because it reflects a weak signal and thus produces a short time 

decay, as happened with the key.  

The time decay of a key was short, which indicates that the key poses  a problem 

requiring more attention.  In practical situations, it is possibly too small to present a 

threat.. The inexactness was probably due to the small size of the key relative to the 

other items and re going to study with multiple other objects in the next. 

5.5 The Detection of Small Objects 

5.5.1 Sensitivity the of time constant to Key & Razor Blade 

The purpose of this study is to determine the likelihood of detection of small objects, 

especially those which could constitute serious human threats. This study uses a key 

and razor blade. The razor blade is important target that can be concealed at any 

position and around the human body or in a bag. The razor blade is considered to be 

one of several items that pose a threat to people. These two small objects and different 

shapes of stainless steel material were simulated together see figure 5-13. 

Objects 

Mobile Phone 

0.0241 ms 

Watch 

0.0516 ms 

Key  

0.0172 ms 

Mobile Phone & 

Watch 
0.0261 0.0541 - 

Mobile Phone & key 0.0256 - 0.0153 

Watch & key - 0.0539 0.0124 

Mobile Phone , Watch 

& Key 
0.0262 0.0537

 
0.0118 
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The targets are placed between two coils towards the middle, the fundamental time 

constant calculated as see the table 5-7.  

Although the two small objects, the simulation results did discriminate between the 

two objects concealed together, with no significant changes between the razor blade 

and a small change in the value of the key time constant.                  

Table 5-7: Two small objects ( key & razor blade) 

Target 
Key 

0.0172  ms 

Razor Blade 

0.0074  ms 

Razor Blade & Key 0.0201 0.00734 

 

5.5.2 Sensitivity of time constant to Key, Razor Blade & Wrist Watch 

The key, razor blade and wrist watch were modelled together. These objects are two 

small targets and one larger target (the wrist watch), forming mixed items, both threat 

and benign, with different shapes and sizes but the same material, stainless steel. The 

fundamental time constant is determined as displayed in table 5-8.                 

Figure 5-13: Model diagram for key and razor blade. 

 



93 

 

 Table 5-8: Three small objects ( key, razor blade & wrist watch) 

Target 
Watch 

0.0516 ms 

Key 

0.0172  ms 

Razor Blade 

0.0074  ms 

Blade, Key & Watch 0.0556 0.0193 0.0070 

 

This data indicates that a small object does affect  other objects within the same 

group; the razor blade and key fundamental time constant values are changed 

somewhat.  This change   will not necessarily be  a hindrance in detecting hidden 

metal objects because the magnitude of the change is within a few percent.. The eddy 

currents are generated around the biggest object (wrist watch) more than small objects 

(key & razor blade) and the reflected signal from the watch is significantly stronger 

than those from the key and blade. Despite this, it still appears to be possible to detect 

and identify the small items.  

5.6 Resolution of Multiple Concealed Metallic Objects by Using 

Electromagnetic Pulse Induction 

Given the importance of detecting metal objects, especially when they are mixed with 

other items or hidden in bags and clothing,  we have applied up to seven targets to the 

simulation program. The seven objects were simulated in a single aspect and the 

influence of these objects on the fundamental time constants is investigated. These 

targets are three (non-threat) benign objects (mobile phone, wrist watch and key) and 

four threat objects (hand gun, hand grenade, knife and razor blade).  These are quite 

obviously different shapes and sizes, with the same component material being used in 

each case,  stainless steel with a conductivity of 1.1×10
6
 S.m

-1
. The objects were 

simulated individually and their characteristic time constants obtained by the process 

described in Figure 5-1. The processing of simulation program applied between two 

objects up to five objects together by many different and mix targets, threat and non-

threat objects, see figure 5-14. The fundamental time constants for these objects are 

presented in table 5-9, along with the retrieved time constants for groups composed of 

different numbers of the seven simulated objects. The hand grenade has by far the 

longest time constant, which is related to its near spherical and smooth shape, giving 
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rise to relatively long lived eddy current distributions. Application of the fitting 

algorithm described in section (4.11.4) to the simulations of multiple objects, 

comprising combinations of the seven objects is listed in table 5-9.  It can be seen that 

the algorithm successfully retrieves the fundamental time constants of the individual 

objects reasonably accurately. There is some inconsistency of time constants with 

small changes, especially in groups that contain more objects. Once again, the key and 

the razor blade together pose a problem; here, the fundamental time constant is not 

accurately estimated when it is included in a group of other objects. Once again, this 

situation of inaccuracy is probably due to the small size of the key and razor blade 

ratio to other objects. Because, as already mentioned,  small sizes produces  much 

shorter fundamental time constant and  weaker contribution to the signal compared to 

the large objects, which results in the signals from the larger objects dominating and a 

greater inaccuracy in the retrieved time constant.  

 

 

Figure 5-14: Group of different metallic objects. 
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Table 5-9: Groups of two to five objects and the fundamental time constants 

obtained from these groupings; comparison with the Individual objects  

 

Objects 

Hand 

grenade 

0.250 ms 

Handgun 

0.0724 ms 

Knife 

0.0638 

ms 

Razor 

Blade 

0.0074 

ms 

Wrist 

watch 

0.0516 

ms 

Mobile 

phone   

0.0241 

ms 

Key         

0.0172 ms 

Hand grenade & 

handgun 
0.250 0.0747 - - - - - 

Hand grenade & knife 0.250 - 0.0663 - - - - 

Handgun & knife - 0.085
 

0.066 - - - - 

Mobile phone & watch - - - - 0.0541 0.0261 - 

Mobile phone & key - - - - - 0.0256 0.0153 

Wrist watch & key - - - - 0.0539 - 0.0124 

Handgun, knife & 

razor blade 
- 0.0776 0.0735

 
0.0072 - - - 

Mobile phone , watch 

& key 
- - - - 0.0537 0.0262 0.0118 

Razor blade , key & 

watch 
- - - 0.007 0.0556 - 0.01937 

Hand grenade, 

handgun & wrist 

watch 

0.253 0.086
 

- - 0.0520 - - 

Hand grenade, 

handgun, wrist watch 

& knife 

0.252 0.0774 0.0795
 

- 0.043
 

- - 

Hand grenade, 

handgun, wrist watch, 

knife & mobile phone 

0.250 0.0751 0.0655 - 0.0536 0.0209
 

- 

Hand grenade, 

handgun, knife, mobile 

phone & key 

0.232
 

0.0691 0.0656  - 0.0251 0.00925
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The simulations demonstrate the feasibility of being able to detect, count and identify 

a range of commonly carried metallic objects and also a range of weapons. 

Discrimination of weapons from benign objects is feasible, by the objects simulated, 

as the fundamental time constants are sufficiently distinct. The presence of multiple 

objects within the sensor range does not prevent counting and identification, although 

the accuracy of the determination of the individual objects fundamental time constants 

is made worse as the number of objects increases. The reason for this worsening of 

performance is undoubtedly due to the interaction (scattering) of the magnetic fields 

from the objects, i.e. the eddy currents flowing in one object give rise to a changing 

magnetic field which induces eddy currents in neighbouring objects and therefore 

blurs the time constants. The distortion of time constants when multiple objects are 

present is not so strong as to prevent the counting and identification of up to five 

objects from one another, with the possible exception of the key. Smaller objects such 

as a key or razor blade are more difficult to indentify due to their smaller cross section 

when compared to objects such as a handgun, hand grenade or wrist watch. This is not 

expected to constitute a serious problem as most threat objects are significantly larger 

than key or razor blade. This work demonstrates that many concealed metal objects 

with different sizes and shapes also various materials can be simultaneously detected, 

whether together or individually, by using the electromagnetic pulse induction. 

Through the simulated results can be find the small sensitive metal objects that pose 

dangerous for human and usually concealed or smuggled between the items and 

devices. The electromagnetic pulse induction by simulation models demonstrates the 

ability to effectively count and identify multiple objects carried in close proximity 

providing that the objects do not have very similar time constants. 

5.7 Summary 
 

Using the electromagnetic pulse induction for detection of metal objects has been 

validated successfully, and applied to several threat targets such as handgun, hand 

grenade, razor blade and a knife and non-threat targets for example mobile phone, 

wrist watch and key. These targets (objects) were different sizes and shapes but of the 

same material which was stainless steel. The study has shown the orientation, 

sensitivity of small objects, size, shape and the material component. The pulse of 
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current causing eddy current to flow and excited in the metal object and generate 

scatter signal after reflection from the object and which takes an exponential form that 

decays with time. This is the time constant which is determined for each target 

separately and together as group.  

This study achieved its purpose for detection of metallic objects and finds the time 

constant for each target. It can be noted the time constant does not change for the 

handgun and knife for many orientations; neither it is affected by position. 

Investigations were performed to detect objects in a variety of conditions; using 

combinations involving a single and multiple objects up to a maximum of five targets.  

It was possible to detect individual targets within a group of objects. Smaller objects 

such as a razor blade were also detectable.  
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Chapter 6  

 

CONCLUSION AND FUTURE WORK 

  

6.1 Conclusion 

This thesis has presented advanced feature based techniques for the detection and 

identification of metallic objects. The research is conducted using a finite element 

time domain electromagnetic solver, to simulate electromagnetic pulse induction with 

low frequency electromagnetic fields. The approach involves inducing eddy currents, 

by a transmitted electromagnetic pulse signal; into the concealed object and 

measuring the characteristic decay time of the received the signal. Comparison of the 

measured decay time with a library of time constants is the basis of object detection 

and identification..  

The feasibility study of detecting and identifying multiple objects they are grouped in 

close proximity and the work been achieved through an integrated study of a group of 

targets for this purpose. Furthermore to improve the detection results and reduce the 

false alarm rates for metallic objects detection especially the threat targets. 

The literature survey has identified some advantages and disadvantages of the 

detection of concealed and buried metal objects by several different techniques. The 

technologies reviewed include magnetic gradiometer, inductive magnetic field, 

acoustic and ultrasonic, EMR, MMW, THz, IR, X-Ray. All these technologies need to 

meet the main requirements of high penetration of clothing or soil for detection the 

metallic objects concealed under clothing or underground; suitable stand-off distance 

and accurate discrimination of threat and non-threat items for reliable and effective 

deployment. From this brief review it is evident that electromagnetic induction based 

techniques offer a good solution, because of the ability to identify multiple objects 

grouped together, unlike other reviewed technologies. EMI offers both good 

penetration ability and high resolution advantages for metallic objects can be detected 

with no ionising radiation hazard. 



99 

 

The comparison of different techniques is necessary, the advantages and 

disadvantages of different techniques need to be understood. Most of the concealed 

metal object methods described here are complementary. New concealed metal object 

systems need to be an amalgamation of the technique mentioned above permitting a 

reduction in the number of false alarms.  

In this research to detect the concealed metallic objects by using the electromagnetic 

pulse induction and low frequency with simulation models which is used in the 

detection applied in the testing models to verify the effect of this method over many 

figures of spheres and cylinders with different sizes and material components. The 

models were validated by simulation of stainless steel cylinders and spheres of 

different radii. The fundamental time constants from the simulations were compared 

to the theory results are done it perfect and agree very well. This validation permits us 

more confidence to the model complex targets of different sizes. 

The important at this research the progress is found the several concealed metallic 

objects (threat and non-threat) that pose a dangerous on the human in a way directly 

or indirectly with different sizes, shapes and mix jointly of two objects up to five 

objects simultaneously at the same material, and find the results of fundamental time 

constant and the time decay for these metallic objects. From result of detection on the 

testing data set comes out, it is easy to obtain the conclusion that the electromagnetic 

pulse induction has very good effect on the targets detection result. 

The influence of the separation of two objects is also investigated, two spheres and 

two cylinders of many materials components; copper, aluminium, stainless steel and 

titanium where are applied simulated at varying separations. From these important 

results can be suggesting detection and identified the multiple metallic objects of their 

time constants even when they are close together. It is very important consequence as 

it suggests that multiple metallic objects can be detected, counted and identified even 

when the targets are close together. So that we apply that to a group of threat objects 

and non-threat objects were seven targets; hand grenade, hand gun, knife, razor blade, 

mobile phone, wrist watch and key at same materials components, all they simulated 

individually and with each other. The sensitivity for gun and knife of multi-
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orientations (different directions) were acceptable and little variation in the 

fundamental time constant.  

Then the simulations demonstrate the feasibility of being able to detect, count and 

identify a range of commonly carried objects and whether a range of threat or non-

threat objects. It can be Discriminated of weapons from benign objects is feasible, at 

least for the objects simulated, as the fundamental time constants are sufficiently 

distinct. 

The results of fundamental time constant for two objects together or more as group 

(multi objects), mixed targets and different sizes also different shapes whichever 

threat and benign targets were agreement and satisfied the result of single target and at 

the same time, can be detected, counted and identified multi targets up to five targets 

when applied close together as group and the fundamental time constant was clear and 

little change for results, but no affect on the result, in spite of the accuracy of the 

determination of the individual objects' fundamental time constants is made worse 

increasing number of objects especially the small targets such as key and razor blade. 

The reason is due to the eddy currents flowing in the object give rise to a changing 

magnetic field which induces eddy currents in neighbouring (around) objects and 

therefore blurs the fundamental time constants that already affect on the small targets.     

The small objects for example key and razor blade are more difficult to indentify due 

to their small cross section when compared to another objects, such as a handgun, 

hand grenade or wrist watch. This is not expected to pose a serious problem because 

the threat objects are bigger than the key and the razor blade.  

From these proves, can be detecting at the same time many concealed, hidden and 

buried metal objects with different sizes, shapes and various materials components, 

whether these objects as group or individual by using a finite element time domain 

electromagnetic pulse induction solver. Through the simulated results can be find the 

small sensitive metal objects that constitute dangerous for human and usually 

concealed or smuggled between the items, devices and in the baggage or containers. 

The electromagnetic pulse induction by simulation models demonstrate the ability to 
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effectively count and identify multiple objects carried in close proximity providing 

that the objects do not have very similar time constants. 

 

 

6.2 Future Work and Recommendation 

In this work has shown the potential of the using the electromagnetic induction for 

metal objects detection and identification by using the fundamental time constant as 

parameter to discrimination and classification the multiple items of threat and non-

threat objects.  

 This investigation is ready to extend to the laboratory that this work will 

enhance the capability of current screening procedures; it is not complicated 

and low price and will be activated. 

 

 Multiple metal objects can be include over five objects with different materials 

in the concealed target detection system to have more views of the items and 

improved detection. 

  

 Make signature database to discriminate the threat and benign targets by 

collected the signal response of classes of many metallic objects. 

  

 It is very important to make test for sensitivity of concealed metal items to 

target materials components.    

  

 To development this work and obtained the robust pattern recognition system, 

need to use another signals of pulses and low frequency.  

  

 When using simulation software must be taking into account time factor, it is 

very important used high quality of hardware (computer) in terms of fast 

processor and high memory to get the perfect results.  
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1.2 The Hand Grenade: 
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1.4 The Key: 
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1.6 The Mobile Phone: 
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Resolution of Multiple Concealed Threat Objects using Electromagnetic Pulse 

Induction 

Abdulbast Elgwel
1
, Stuart William Harmer

2
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3
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4 

Sensing & Imaging Group, Manchester Metropolitan University, England 

Abstract: The detection and identification of conducting objects using electromagnetic pulses 

to excite circulating eddy currents within the object is demonstrated by numerical simulation 

using a finite element time domain electromagnetic solver. The ability to discriminate 

between objects is based on the decay rate of the induced currents in the object, typically ~ 

100 µS. The decay rates are different for a wide variety of everyday objects, allowing threat 

objects such as handguns, grenades and knives to be discriminated from benign objects such 

as mobile phones handsets, watches, keys, etc. Crucially, the time constant characterising an 

object depends only upon the electrical properties of the object (conductivity) and the shape 

and size of the object; the orientation of the object is irrelevant. This aspect independence of 

temporal current decay rate forms the basis of a potential object detection and identification 

system. By application of an algorithm based on the generalized pencil of function method, 

the authors demonstrate the ability to effectively count and indentify multiple objects carried 

in close proximity providing that the objects do not have very similar time constants.  

1. Introduction 

Pulse Induction techniques for the detection and identification of metallic objects have been 

reported and studied as a possible method for concealed weapon detection [1]-[7], both on the 

human body and in carried baggage. Electromagnetic Pulse Induction (EMI) relies on a 

generating a rapidly changing, spatially uniform magnetic field which penetrates and 

encompasses the concealed metallic object. The temporally changing magnetic field induces 

transient eddy currents [8]-[13] in the conducting object which then decay by dissipative 

(resistive) losses. These eddy currents decay exponentially with time and have a characteristic 

time constant which depends only upon the size and shape of the object and the materials 

from which it is made; the orientation of the object does not influence the time constant [14]-

[20]. This aspect independence which forms the basis of a simple object identification system: 
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a library of time constants, measured a-priori, can be compared with the measured time 

constant of an unknown sample to assess the presence or absence of a particular object or 

objects of interest. EMI for concealed object detection has one important advantage over 

resonant electromagnetic aspect independent phenomena: that is the human body has a very 

much smaller perturbing effect in EMI than at the microwave frequencies (~ 0.4 – 2 GHz ) 

required for excitation of natural resonances of typical concealed threat objects such as 

handguns and knives [21]-[27]. At microwave frequencies the human body is opaque and 

scatters and reflects microwave energy very effectively [28], undermining the ability to 

extract clean and uncluttered signatures from concealed objects [24], [26]. EMI operates at 

much lower frequencies ~ 10 KHz, where the human body is nearly transparent, does not 

support appreciable eddy currents and is therefore ‘invisible’ [19]. In the case where 

excitation occurs at frequencies where the electromagnetic wavelength is comparable with the 

concealed object size (Mie scattering regime), resonant effects give a second aspect 

independent parameter: resonant frequency and decay time. However, because EMI operates 

at large electromagnetic wavelengths when compared to object size, the concealed object is 

electrically small, and there is no resonant condition and consequently there is only one aspect 

independent parameter. EMI is at a disadvantage here as mapping an object in complex 

frequency space (two independent parameters) provides a less degenerate and more robust 

identifier than is possible with a single, aspect independent parameter [29].   

2. Theoretical Basis 

There is published work in the field of EMI for a variety of uses, concealed weapons 

detection [1]-[7]; non destructive testing [30]-[32] ground penetrating radar for unexploded 

ordnance detection [18] and mining [17]. These applications rely on the same phenomena and 

share a common theoretical underpinning. The time domain dependence of the induced 

voltage on the secondary, receiver coil can be expressed as [1], 


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where nA   and n  are the amplitudes and time constants respectively, of the n
th
 eddy current 

mode circulating in the object. In general, an analytic solution giving the values of nA   and 

n  is not possible for all, but a few very simple cases where symmetry allows for an 

analytical expression. A conducting sphere is one such case [13], [16]. For a sphere of radius 

R; conductivity   and relative permeability , the time constants n  are given by, 
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where n  are the solutions of the equation, 
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The time dependence given by Equation 1 simplifies further for times which are long, when 

compared to the time constants of the higher (n ≥ 2) order modes. For example the higher 

order modes of a sphere possess shorter time constants than the fundamental, see Equation 2, 

and it is assumed that this is true for other, more complex, objects. In this late time regime, 

after the excitation pulse or the switching off of the current in the primary coil that provides 

the spatially uniform magnetic field, the voltage induced in the secondary coil is simply  
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Thus we may identify an object by its aspect independent, fundamental time constant which is 

dependent only upon the shape, size and material that form the object.  

When M multiple objects are present within the magnetic field the detected signal, again for 

times which are long compared to high order modes, will simply be the superposition of the 

signals for the objects individually, 
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3. Object Counting and Identification 

A pre-requisite of a security screening system based on EMI is the capability to detect and 

classify multiple objects that may be within close proximity to one another. As an example, a 

person could quite conceivably be carrying a handgun in a briefcase, a knife in their pocket 

and may well also have a mobile phone and other benign objects on their person. A robust 

and effective EMI based system is required to detect, count and identify these objects 

whatever their separations. Without doubt, the most serious problem posed by application of 

aspect independent EMI techniques is that of a single parameter being used to identify a 

concealed object, the fundamental time constant. There is an inherent degeneracy in this 

approach which may well prevent certain objects that share similar time constants being 

counted as individual items and therefore discriminated from one another. As can be seen 

from Equation 2, an object's time constant may be matched by an appropriately sized sphere. 
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To ascertain whether this problem is significant enough to seriously limit the effectiveness of 

an EMI system requires the measurement or simulation of a very wide variety of objects, both 

threat and non-threat, which may be encountered. In this study the authors present a 

representitive study of six commonly carried objects: A wristwatch, key and mobile phone 

handset as representative of benign objects and a knife, handgun and hand grenade as 

representative of threat objects.  

Non-linear recursive fitting algorithms are not particularly suitable for the extraction of 

multiple time constants from a decaying temporal signal of the form of Equation 5. The fitting 

is sensitive to the starting points and is slow and computer intensive. The greatest problem is 

counting the number of objects present, as this is generally unknown a-priori and applying a 

model with an increasing number of fit parameters, terms and starting points quickly results in 

an unwieldy and unreliable method. The authors have investigated the application of the 

Generalised Pencil of Function (GPOF) method [33]-[34], which is a far more suitable and 

rapid algorithm for the intended application as it is a generalised Eigen value problem and 

therefore does not need multiple iterations to arrive at a solution. This approach is suggested 

by Geng et al. [19] for the extraction of time constants from non resonant objects.The GPOF 

algorithm decomposes the signal into a discrete set of complex frequency components; in the 

case of an exponentially decaying signal of the form of Equation 5, only the real parts of the 

complex frequency are non-zero and the imaginary (oscillatory) frequencies are ignored. The 

number of objects M is unknown but can be estimated, in the absence of degeneracy of time 

constants, by iteratively increasing the model order (the number of complex frequencies 

expected) of the GPOF algorithm until any new complex frequencies found have amplitude 

which is lower than a preset threshold value. See Figure 1. Comparison of the time constants 

thus obtained can then be made with a library of time constants for common or expected 

objects and a list of likely carried objects may then be formed. Output may be an autonomous 

alarm or informing the user, by screen, that a person is carrying only benign objects or that a 

person is likely carrying a threat object or objects.  

The simulated transient data were windowed by selecting the temporal data 100 μS after the 

current driving the magnetic field is turned off. This is done to weight the fundamental 

resonance of the object. If this is not done spurious detections can arise, as higher order time 

constants can have sufficient amplitude to confuse the system, meaning a single object could 

be counted as two or more objects and the higher order time constants possibly mistakenly 

identified as being the fundamental time constants of other objects which are not actually 

present. 100 μS was chosen as this is the longest time constant of the limited objects 

simulated, with the exception of the hand grenade which has an unusually long time constant. 
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However this choice of waiting 100 μS is a somewhat arbitrary choice as the exact start of the 

late time is dependent on the object; for spheres the start of the late time region is given as the 

period of the fundamental time constant [13] and for handgun sized objects as ~ 100 μS [6]. A 

threshold discriminator of 5% of the maximum amplitude is applied to the amplitudes 

extracted using GPOF, below this value the associated time constant is not recorded.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Flowchart depicting the processing steps and application 

of the GPOF algorithm to extract multiple time constants 

from the receiver coil time data. 

 

 

4. Simulation 

Numerical simulation is carried out using the commercially available finite element, time domain, 

electromagnetic solver software from Vector Fields. A large, circular coil is suitable for the purpose of 

generating a spatially uniform field over distances that are commensurate to typical concealed weapon 
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sizes (~20 cm). The model was validated by simulation of stainless steel spheres (conductivity 1.1×10
6
 

sm
-1

) and different radii. The fundamental time constants from simulations were compared  to Equation 

2, and the simulated results agree well with theory see table I.  

Table I: Comparison of theoretical and simulated recovered time constants 

for stainless steel spheres of different radii 

 

 

 

 

 

The influence of the separation of two spheres (radii 4 and 6 cm) where simulated at varying 

separations, see Table II and both time fundamental time constants where accurately recovered 

irrespective of the separation between the two spheres. This important as it suggests that multiple 

objects can be detected and identified by means of their time constants even when they are located 

close together, for example when carried in a bag, providing they are not in direct electrical contact.  

Table II: Influence of object separation on two stainless steel spheres (radii 4 and 6 

cm respectively). The separation indicated between objects is for their closest 

surfaces and there is no electrical contact for the zero separation case. 

 

 

 

 

 

 

 

 

 

 

5. Results  

The aspect independence of the time constant of objects is the central and key effect on which 

the potential of EMI for concealed threat screening rests. A handgun was simulated in four 

different orientations (see figure 3) and the fundamental time constant recovered in the 

Material 
Radius 

cm 

Time Constant µS 

(simulation) 

Time Constant µS 

(theory) 

 

Stainless 

Steel 

3.0 121 126 

4.0 221 224 

5.0 350 350 

6.0 507 504 

Material 
Objects 

separation    - cm 

Time Constant one 

- µS 

Time Constant two - 

µS 

Stainless 

Steel 

100 221 526 

50 215 529 

25 220 527 

0.2 223 526 

0.0 222 527 
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absence of noise, there is little variation between the aspects, see Table III. Similar aspect 

independence is reproduced for the other simulated objects listed in Table IV. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Examples of simulations of a handgun and hand grenade in the space between 

the drive (larger coil) and receiver (smaller coil) and some orientations of handgun used 

to validate the aspect independent nature of an object's time constant - see Table III. 
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Table III: Influence of object orientation 

 

 

 

 

 

 

 

 

Six objects were simulated in a single aspect, three benign objects and three threat objects. 

These were simulated individually and their characteristic time constants obtained in the 

absence of noise by the process described in Figure 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Five of the six items and their fundamental time constants as measured 

Material 
Object & orientation 

Time Constant 

µS 

Stainless steel Handgun 

Side on 72.4 

Barrel up 72.1 

Barrel down 72.0 

Flat 73.6 

Mobile Phone 

24.1 µS 

Wrist Watch 56.1 

µS 

Hand Grenade 250 

µS 

Knife   63.8 

µS 

Key           17.2 

µS 
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when the object is simulated individually without noise; the handgun is shown in Figure 3 and 

has a fundamental time constant of 72.4 μS. See table IV for grouped objects results. All 

objects are stainless steel. 

Table IV: Groups of two to five objects and the fundamental time constants 

obtained from these groupings; comparison is made to the time constants 

obtained for the Individual objects. 

 

The time constants for these objects are presented in Table IV along with the retrieved time 

constants for groups composed of different numbers of the six simulated objects. The time 

constants are retrieved under noise free conditions (SNR of _) and with different levels of 

Gaussian noise applied (SNR of 100, 50 and 10). The hand grenade has by far the longest 

time constant, which is related to its near spherical and smooth shape giving rise to relatively 

                                                           
5
 Results with a greater than 10% discrepancy to the individually measured time constants 

 

Objects 

 

SNR 

Hand 

grenade 

250 µS 

Handgun 

72.4 µS 

Knife 

63.8 µS 

Wrist 

watch 

51.6 µS 

Mobile 

phone   

24.1 µS 

Key         

17.2 µS 

Hand grenade & 

handgun 

Infinity 250 74.7 - - - - 

100 245.01 34.05 - - - - 

50 240.16 14.52 - - - - 

10 224.26 - - - - - 

Wrist watch & 

key 

Infinity - - - 53.9 - 12.4
5
 

100 - - - 44.22 - - 

50 - - - 46.60 - - 

10 - - - 51.30 - - 

Hand grenade, 

handgun & wrist 

watch 

Infinity 253 86.0
1 

- 52.0 - - 

100 237.69 64.4 - - - - 

50 215.17 59.06 - - - - 

10 201.77 - - - - - 

Hand grenade, 

handgun, wrist 

watch & knife 

Infinity 252 77.4 79.5
1 

43.0
1 

- - 

100 235.85 27.63 
- - 

- - 

50 210.27 39 
- - 

- - 

10 204.001 - 
- - 

- - 

Hand grenade, 

handgun, wrist 

watch, knife & 

mobile phone 

Infinity 250 75.1 65.5 53.6 20.9
1 

- 

100 231.96 74.84 - - 
- 

- 

50 226.47 43.6 - - 
 

- 

10 230.88 32.46 - - 
- 

- 

Hand grenade, 

handgun, knife, 

mobile phone & 

key 

Infinity 232
 

69.1 65.6 - 25.1 9.25
1 

100 222.20 54.19 33.46 - - 
- 

50 221.46 30.55 - - - 
- 

10 212.24 26.58 - - - 
- 
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long lived eddy current distributions. Application of the simple algorithm described to the 

simulations of multiple objects, in the absence of noise, comprising combinations of the six 

objects listed in Table IV, successfully retrieves the fundamental time constants of the 

individual objects reasonably accurately. There is some discrepancy of time constants, 

notably in groups that contain more objects. The key seems to pose the greatest problem, the 

fundamental time constant is not accurately estimated when it is included in a group of other 

objects (See Table IV). The inaccuracy is probably due to the small size of the key relative to 

the other objects; the small size giving a much shorter fundamental time constant and a 

weaker contribution to the signal compared to the other, larger, objects. This results in the 

signals from the larger objects dominating and a greater inaccuracy in the retrieved time 

constant. However this interpretation seems to be incompatible with the data obtained for two 

spheres in proximity; see Table II, where the larger sphere's time constant is less accurately 

determined than the smaller. 

When noise is added to the signal at a relatively low level (SNR of 100), the identification of 

multiple objects is significantly impaired, with only the largest and dominant objects being 

counted and the smaller objects either missing or their time constants considerably corrupted 

to the extent that identification would not be possible. For example, in the case where the 

handgun, hand grenade and wristwatch are presented together, only the handgun and hand 

grenade are counted for an SNR of 100; the wristwatch is absent. As the SNR increases the 

situation worsens, for an SNR of 10, using the same example scenario, only one object is 

counted (the hand grenade) and the time constant is highly corrupted (~20% different from 

accepted value). With five items present the addition of noise prevents the smaller objects 

from being counted and corrupts the time constants so that identification is not feasible, in 

fact only the hand grenade, which has a large cross section and long time constant, seems to 

remain detectable and identifiable.  

 

7. Summary 

The simulations demonstrate the feasibility of being able to detect, count and identify a range 

of commonly carried objects and also a range of weapons. However, this capability is lost if 

the signal is noisy and under these conditions smaller objects are not detected and aspect 

independent time constants are significantly corrupted, rendering identification unlikely. SNR 

must be better than 100 if the proposed technique is to have reasonable chance of success. If 

SNR can be kept suitably low then discrimination of weapons from benign objects is feasible, 

at least for the objects simulated, as the fundamental time constants are sufficiently distinct. 
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The presence of multiple objects within the sensor range does not prevent counting and 

identification, although the accuracy of the determination of the individual objects' 

fundamental time constants is made worse increasing number of objects. The reason for this 

worsening of performance is undoubtedly due to the interaction (scattering) of the magnetic 

fields from the objects, i.e. the eddy currents flowing in one object give rise to a changing 

magnetic field which induces eddy currents in neighbouring objects and therefore blurs the 

time constants. In the absence of noise, the distortion of time constants when multiple objects 

are present is not so strong as to prevent the counting and identification of five objects from 

one another, with the possible exception of the key, see Table IV. Smaller objects such as a 

key or coins are more difficult to indentify due to their smaller cross section when compared 

to objects such as a handgun, hand grenade or knife. This is not expected to constitute a 

serious problem as most threat objects are significantly larger than a key or a coin. This 

investigation is now being extended to the laboratory, where a demonstrator system is now 

being built and it is anticipated that this work will enhance the capability of current screening 

procedures. 
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