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Abstract 

This thesis presents a novel adaptive scheme for energy management in stand-alone 

hybrid power systems. The proposed management system is designed to manage the 

power flow between the hybrid power system and energy storage elements in order to 

satisfy the load requirements based on artificial neural network (ANN) and fuzzy 

logic controllers.  

 The neural network controller is employed to achieve the maximum power point 

(MPP) for different types of photovoltaic (PV) panels, based on Levenberg 

Marquardt learning algorithm. The statistical analysis of the results indicates that 

the R
2
 value for the testing set was 0.99.  

 The advance fuzzy logic controller is developed to distribute the power among the 

hybrid system and to manage the charge and discharge current flow for 

performance optimization.  

The developed management system performance was assessed using a hybrid system 

comprises PV panels, wind turbine, battery storage, and proton exchange membrane 

fuel cell (PEMFC). To improve the generating performance of the PEMFC and 

prolong its life, stack temperature is controlled by a fuzzy logic controller.  

Moreover, perturb and observe (P&O) algorithm with two different controller 

techniques - the linear PI and the non-linear passivity-based controller (PBC) - are 

provided for a comparison with the proposed MPPT controller system. The 

comparison revealed the robustness of the proposed PV control system for solar 

irradiance and load resistance changes.  

Real-time measured parameters and practical load profiles are used as inputs for the 

developed management system. The proposed model and its control strategy offer a 

proper tool for optimizing the hybrid power system performance, such as the one used 

in smart-house applications. 

The research work also led to a new approach in monitoring PV power stations. The 

monitoring system enables system degradation early detection by calculating the 

residual difference between the model predicted and the actual measured power 

parameters. Measurements were taken over 21 month’s period; using hourly average 

irradiance and cell temperature. Good agreement was achieved between the 

theoretical simulation and the real time measurement taken the online grid connected 

solar power plant.  



 

 ii  

Declaration  

No portion of the work referred in this thesis has been submitted in support of an 

application for another degree or qualification at this, or any other university, or institute 

of learning.  

 

 

Date:             

Signed:        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 iii  

 

 

 

 

 

 

 

 

 

 

 

 

 

This dissertation is dedicated to my parents. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 iv  

Acknowledgements  

The printed pages of this dissertation hold far more than the culmination of years of 

study. These pages also reflect the relationships with many generous and inspiring 

people I have met since the beginning of my postgraduate work. The list is long, but I 

cherish each contribution to my development as a scholar and teacher. It is to them 

that I owe my deepest gratitude.  

First of all, to my loving parents, Maher and Nawal, who raised me with a love of 

science and supported me in all my pursuits. To my brother, Abdel Razzak, who have 

always supported, encouraged and believed in me.  

To my loving and supportive wife Rola, who loved and supported me during the final 

critical month of my dissertation, and made me feel like anything was possible. 

To my director of study Dr. Alhussein Albarbar, his wisdom, knowledge and 

commitment to the highest standard inspired and motivated me.  

To my invaluable network of supportive, forgiving, generous and loving friends 

without whom I could not have survived the process: Dalil, Ghalib, Fayad, Mahmoud, 

Khattab, Laith, Thanandorn, and Amer. Thank you for everything.  

And finally, to An-Najah National University and Manchester Metropolitan 

University for their partial financially support. 

 

 

 

 

 

 

 

 

 

Table of Contents 

Chapter 1: Introduction ............................................................................................................ 1 



 

 v  

1.1 Motivation ................................................................................................................. 2 

1.2 Renewable energy sources ........................................................................................ 5 

1.2.1 Solar energy ....................................................................................................... 6 

1.2.2 Wind energy ...................................................................................................... 8 

1.3 Power electronics .................................................................................................... 11 

1.3.1 Power electronics system ................................................................................ 11 

1.3.2 Power electronics industry .............................................................................. 12 

1.3.3 Applications for power electronics .................................................................. 12 

1.4 Research aim and objectives ................................................................................... 13 

1.5 Simulation environment .......................................................................................... 15 

1.6 Organisation of thesis .............................................................................................. 15 

Chapter 2: Literature Review ................................................................................................. 17 

2.1 Overview .................................................................................................................. 18 

2.2 Meteorological data collection for feasibility study ................................................ 19 

2.3 Modelling of hybrid system components ................................................................ 20 

2.4 Optimization sizing techniques for hybrid power system ....................................... 23 

2.4.1 Simulation and optimization software ............................................................ 23 

2.4.2 Optimization scenarios based on different meteorological data .................... 24 

2.4.3 Optimization techniques ................................................................................. 25 

2.5 System control for energy flow and management .................................................. 30 

2.6 Summery ................................................................................................................. 33 

Chapter 3: Photovoltaic Energy Conversions ......................................................................... 35 

3.1 Introduction to solar energy .................................................................................... 36 

3.2 Photovoltaic cells and efficiencies ........................................................................... 37 

3.2.1 Energy conversion operation by using crystalline silicon cell ......................... 39 

3.3 The mathematical modeling of solar cell, module and array .................................. 41 

3.3.1 The solar cell .................................................................................................... 41 

3.3.2 PV module and array ....................................................................................... 43 

3.4 PV panel sizing calculation ...................................................................................... 45 

3.5 Photovoltaic manufactures ..................................................................................... 46 

3.6 Summary .................................................................................................................. 47 

Chapter 4: Wind Power and Rotor Characteristics ................................................................ 48 



 

 vi  

4.1 Introduction to wind energy.................................................................................... 49 

4.2 The wind turbines .................................................................................................... 51 

4.3 The small wind turbines .......................................................................................... 53 

4.3.1 The small wind turbines components ............................................................. 53 

4.3.2 The noise of a small wind turbine ................................................................... 56 

4.3.3 The small wind turbines manufacturers .......................................................... 57 

4.4 The mathematical modelling ................................................................................... 58 

4.4.1 The power extraction from the wind .............................................................. 58 

4.4.2 The rotor power characteristics ...................................................................... 60 

4.4.3 The permanent magnet DC generator ............................................................ 62 

4.5 Summary .................................................................................................................. 64 

Chapter 5: Backup Power Systems: Batteries & Fuel Cells .................................................... 65 

5.1 Introduction ............................................................................................................. 66 

5.2 Batteries .................................................................................................................. 67 

5.2.1 Types of batteries ............................................................................................ 67 

5.2.2 The charge/discharge mechanism in Li-Ion battery ........................................ 69 

5.2.3 The mathematical modelling of Li-Ion battery ................................................ 70 

5.2.4 Battery storage bank sizing ............................................................................. 74 

5.3 Fuel cells .................................................................................................................. 76 

5.3.1 Types of fuel cells ............................................................................................ 76 

5.3.2 The proton exchange membrane fuel cell mechanism ................................... 77 

5.3.3 The proton exchange membrane fuel cell stack ............................................. 78 

5.3.4 The mathematical modeling of PEMFC ........................................................... 79 

5.4 Summery ................................................................................................................. 84 

Chapter 6: Hybrid Power System: Modelling & Simulation .................................................. 86 

6.1 Numerical simulation and experimental validation ................................................ 87 

6.1.1 The photovoltaic model................................................................................... 87 

6.1.2 The wind turbine model .................................................................................. 93 

6.1.3 The Li-Ion battery model ................................................................................. 96 

6.1.4 The PEMFC stack model .................................................................................. 98 

6.2 The power conditioners models ............................................................................ 100 

6.2.1 The DC/DC converters ................................................................................... 101 



 

 vii  

6.2.2 The DC/AC inverters ...................................................................................... 103 

6.3 Summery ............................................................................................................... 104 

Chapter 7: Hybrid Systems Energy Controller Based on Artificial Intelligence .................. 106 

7.1 Introduction ........................................................................................................... 107 

7.2 Artificial intelligence: overview ............................................................................. 108 

7.2.1 Artificial neural networks .............................................................................. 108 

7.2.2 Fuzzy expert system ...................................................................................... 111 

7.3 MPPT PV control systems ...................................................................................... 114 

7.3.1 Perturb and observe method ........................................................................ 115 

7.3.2 Artificial neural network method .................................................................. 118 

7.4 Intelligent energy distribution strategy ................................................................. 122 

7.4.1 Derivation of fuzzy logic controller for EMS .................................................. 125 

7.5 PEMFC temperature controller ............................................................................. 128 

7.6 Summary ................................................................................................................ 133 

Chapter 8: Simulation Results & Discussion ........................................................................ 135 

8.1 Evaluating the proposed MPPT ............................................................................. 136 

8.1.1 A comparison between P&O and ANN .......................................................... 137 

8.2 Case study: performance of PV power stations in Manchester ............................ 142 

8.2.1 Solar power plants in central Manchester: description ................................ 143 

8.2.2 Metrological data .......................................................................................... 145 

8.2.3 Results and comments .................................................................................. 146 

8.3 The proposed hybrid system and its control strategy ........................................... 148 

8.4 Summary ................................................................................................................ 157 

Chapter 9: Conclusions & Future Work ................................................................................ 158 

9.1 Summary ................................................................................................................ 159 

9.1.1 PV MPPT based on neural network ............................................................... 159 

9.1.2 Advanced fuzzy expert system ...................................................................... 160 

9.1.3 Dynamic modelling of hybrid system ............................................................ 161 

9.2 Conclusion ............................................................................................................. 164 

9.3 Contribution to knowledge ................................................................................... 165 

9.4 Future Works ......................................................................................................... 166 

References ............................................................................................................................. 167 



 

 viii  

Appendix ............................................................................................................................... 178 

Appendix A: Coefficient of determination (R2) .................................................................. 178 

Appendix B: Articles published from my work .................................................................. 179 

 



 

 ix  

Nomenclature  

AFC Alkaline Fuel Cell 

AI Artificial intelligence  

ANN Artificial neural network 

BS Battery Status 

BJTs Bipolar Junction Transistors 

CdTe Cadmium Telluride 

CO Charge Only 

CD Charge or Discharge 

CIGS Copper Indium Gallium di-Selenide 

CIS Copper Indium Selenide 

CST Crystalline Silicon Cells 

DMFC Direct Methanol Fuel Cell  

DO Discharge Only 

EERE Energy Efficiency and Renewable Energy 

EMS Energy Management Strategy  

FLC Fuzzy Logic Controller  

GTO Gate Turn-Off  

HAWT Horizontal Axis Wind Turbines 

HOGA Hybrid Optimization by Genetic Algorithms 

HOMER Hybrid Optimization Model for Electric Renewables  

HSWPS Hybrid Solar-Wind Power System  

HSWSO Hybrid Solar-Wind System Optimization  

IGBTs Insulated Gate Bipolar Transistors  

IGCT Integrated Gate Commutated Thyristors  

JRC Joint Research Centre  

LCE Levelised Cost of Energy  

Li-Ion Lithium-Ion  

LPSP Loss of Power Supply Probability  

MOSFETs Metal Oxide Semiconductor Field Effect Transistors  

MCFC Molten Carbonate Fuel Cell  

MCT MOS Controlled Thyristors  



 

 x  

MPP Maximum power point  

MPPT Maximum power point tracking 

NiCd Nickel Cadmium 

NiMH Nickel Metal Hydride 

OCV Open Circuit Voltage  

PBC Passivity Based Controller  

PMDC
 

Permanent Magnet DC  

P&O Perturb and Observe  

PAFC Phosphoric Acid Fuel Cell  

PV Photovoltaic  

P Proportional Action  

Pb Proportional Band  

PI Proportional Integral 

 
PEMFC Proton Exchange Membrane Fuel Cell  

REN21 Renewable Energy Policy Network for the 21st Century 

RERL Renewable Energy Research Laboratory  

SCR Silicon Controlled Rectifier  

SOFC Solid Oxide Fuel Cell  

SOC State Of Charge 

SMPS Switching Mode Power Supply  

TRIAC Triode AC  

USDE United States Department of Education 

VAWT Vertical Axis Wind Turbines  

WT Wind Turbine  

 

 

 

 

 

 

 

 



 

 xi  

List of Figures 

Figure 1.1- Projected availability of fossil and nuclear fuels (based on today’s rate 

consumption .............................................................................................................................. 2 

Figure 1.2 - Block diagram of a hybrid power generation system ............................................ 5 

Figure 1.3 - Renewable energy share of global final energy consumption ............................... 6 

Figure 1.4 - Cumulative Installed PV Power .............................................................................. 8 

Figure 1.5 – Growth in size of commercial wind turbine designs ............................................. 9 

Figure 1.6 - Modern wind turbine components ...................................................................... 10 

Figure 1.7 - Power electronic system diagram ........................................................................ 11 

Figure 3.1 - Solar Panel Roof Tiles ........................................................................................... 37 

Figure 3.2 - Solar cell diagram ................................................................................................. 40 

Figure 3.3 - General equivalent circuit of PV cell .................................................................... 42 

Figure 3.4 - PV cell, module, and array .................................................................................... 44 

Figure 3.5- General equivalent circuit of PV module .............................................................. 44 

Figure 3.6 - (a) P-V Curve for the Astronergy PV module at 1000W/m² and 554.5W/m²         

(b) I-V Curve for the Astronergy PV module at 1000W/m² and 554.5W/m² .......................... 45 

Figure 4.1 - UK installed wind power capacity 1990–2011 (operational) ............................... 49 

Figure 4.2 - (a) Vertical axis wind turbines (b) Horizontal axis wind turbines  ........................ 52 

Figure 4.3 - Components of a small wind turbine ................................................................... 53 

Figure 4.4 - Tilt up tower diagram ........................................................................................... 55 

Figure 4.5 - Comparison of decibel levels from a wind turbine .............................................. 56 

Figure 4.6 - Swept area of blades ............................................................................................ 60 

Figure 4.7 - Power flow and losses of wind turbines .............................................................. 61 

Figure 4.8 - Cp-λ characteristics of wind turbines for different values of pitch angle ............ 62 

Figure 4.9 - Equivalent circuit of a PMDC machine operated as generator ............................ 63 

Figure 5.1 - Projected growth of wind power and photovoltaic's, based on history 

through 2011 ........................................................................................................................... 66 

Figure 5.2 - Charge and discharge mechanism of Li-Ion rechargeable batteries  ................... 69 

Figure 5.3 - Battery model equivalent circuit .......................................................................... 70 

Figure 5.4 - Typical charge characteristic ................................................................................ 72 

Figure 5.5 - Nominal current discharge characteristic ............................................................ 73 

Figure 5.6- Series-parallel battery bank example configuration ............................................. 75 

Figure 5.7- Proton exchange membrane fuel cell ................................................................... 78 

Figure 5.8 - Proton exchange membrane fuel cell stack ......................................................... 79 



 

 xii  

Figure 5.9 - Detailed fuel cell stack model .............................................................................. 79 

Figure 5.10 - Typical polarization curve ................................................................................... 82 

Figure 6.1 - Block diagram of the developed hybrid power system ........................................ 87 

Figure 6.2 - Subsystem implementation of the PV model....................................................... 88 

Figure 6.3 - Dialog box of the PV model .................................................................................. 89 

Figure 6.4 - Implementation of the PV model ......................................................................... 89 

Figure 6.5 - I-V & P-V output characteristics (a-b) with different G (c-d) with different Tc .... 90 

Figure 6.6 - The experimental test rig ..................................................................................... 91 

Figure 6.7 - Results comparison for the simulation and experimental approaches during a 

sunny day on August (850W/m2, 44oC) ................................................................................... 92 

Figure 6.8 –Subsystem implementation of the wind turbine ................................................. 93 

Figure 6.9 – Implementation of the wind turbine DC generator model ................................. 94 

Figure 6.10 - (a) Dialog box of the WT model (b) Dialog box of the DC generator model ...... 94 

Figure 6.11 – (a) Pitch control (b) Subsystem implementation of the PI controller ............... 95 

Figure 6.12 - wind turbine characteristics ............................................................................... 95 

Figure 6.13 - Subsystem implementation of the Li-Ion battery model ................................... 96 

Figure 6.14 - Dialog box of the Li-Ion battery model .............................................................. 97 

Figure 6.15 – Dynamic discharge and charge of a 2.3Ah, 3.3V Li-Ion battery                                     

(a, b) simulated and experimental battery voltage (c, d) battery current variation                               

(e, f) estimated battery SOC (g, h) absolute error between the real & simulated voltage ..... 97 

Figure 6.16 - Subsystem implementation of the PEMFC stack model .................................... 98 

Figure 6.17 - Dialog box of the PEMFC model ......................................................................... 99 

Figure 6.18 - Simulations and datasheet results ................................................................... 100 

Figure 6.19 - Step-up boost converter .................................................................................. 101 

Figure 6.20 - Subsystem implementation of the DC/DC converter model with                           

(a) Duty cycle control (b) Input current reference  ............................................................... 102 

Figure 6.21 - DC/AC switching inverter ................................................................................. 103 

Figure 6.22 - Subsystem implementation of the DC/AC inverter model............................... 104 

Figure 7.1 - Block diagram of the proposed system .............................................................. 108 

Figure 7.2 - Architecture of a single artificial neuron ............................................................ 109 

Figure 7.3 - Popular activation functions used in ANN ......................................................... 109 

Figure 7.4 - Architecture of a multilayer perceptron ............................................................ 110 

Figure 7.5 - MPP of a PV module under different conditions ............................................... 114 

Figure 7.6 - P&O block diagram ............................................................................................. 115 

Figure 7.7 - P&O algorithm flow chart................................................................................... 116 



 

 xiii  

Figure 7.8 – Divergence of P&O from MPP ........................................................................... 117 

Figure 7.9 - The proposed PV control system ....................................................................... 118 

Figure 7.10 - Levenberg Marquardt algorithm flow chart..................................................... 121 

Figure 7.11 - Proposed energy management system algorithm ........................................... 122 

Figure 7.12 - Proposed fuzzy expert system for EMS ............................................................ 123 

Figure 7.13 - S-R type flip-flop for storing battery status ...................................................... 124 

Figure 7.14 – Subsystem implementation of the power management system .................... 124 

Figure 7.15 – Block diagram of fuzzy logic controller for EMS .............................................. 125 

Figure 7.16- Membership functions of the FLC ..................................................................... 126 

Figure 7.17 - Graphic illustration of inference mechanism ................................................... 127 

Figure 7.18 - Characteristics of ON/OFF temperature control action ................................... 128 

Figure 7.19 - Characteristics of proportional temperature control action ........................... 129 

Figure 7.20 - Characteristics of PID temperature control action .......................................... 129 

Figure 7.21 - Characteristics of fuzzy temperature control action  ....................................... 130 

Figure 7.23 - PEMFC temperature control based on fuzzy logic ........................................... 131 

Figure 7.24 - Membership functions of the fuzzy temperature controller ........................... 132 

Figure 8.1 - Actual & predicted PV operating voltage for the first 31 cases                                 

in the testing set .................................................................................................................... 137 

Figure 8.2 (a) Pmpp at 400W/m2, 10oC (Sharp’s) (b) Pmpp at different conditions ................... 138 

Figure 8.3 (a) PV (BP 485J) system current at MPP                                                                          

(b) PV (BP 485J) system voltage at MPP ................................................................................ 139 

Figure 8.4 (a) PV, battery and load power using the proposed NNC .................................... 139 

Figure 8.4 – PV, battery and load power (b: PBC, c: PI )........................................................ 140 

Figure 8.5 – Battery state-of-charge (a: NNC, b: PBC, c: PI) .................................................. 141 

Figure 8.6 - PV Array fault detection block diagram  ............................................................ 142 

Figure 8.7 (a) All Saints building PV array 1 ........................................................................... 143 

Figure 8.7 (b) All Saints building PV arrays 2 ......................................................................... 143 

Figure 8.8 - PV systems total yield (Sep 2009 – May 2011) .................................................. 145 

Figure 8.9 – Solar irradiation and panel temperature distribution during the 21 month’s 

period for Manchester (2009/2011) ..................................................................................... 146 

Figure 8.10 (a) System performances during 10 day of Jun 2010 ......................................... 146 

Figure 8.10 (b) System performances during 10 day of Dec 2010 ........................................ 147 

Figure 8.11 - Hybrid power system simulation model .......................................................... 148 

Figure 8.12 (a) Solar radiation and panel temperature profiles (b) Wind speed profile  

(c) Load demand profile. ....................................................................................................... 150 



 

 xiv  

Figure 8.13 (a) Total power of the solar power plant (b) Total power of the wind Turbine . 151 

Figure 8.15 - Power satisfied by PEMFC ................................................................................ 152 

Figure 8.16 – PEMFC stack operating temperature .............................................................. 153 

Figure 8.17 –Power satisfied by battery ................................................................................ 153 

Figure 8.18 - System response during the first case (a) Battery current change with           

respect to load profile (b) Battery SOC ................................................................................. 154 

Figure 8.19 - Power satisfied by battery................................................................................ 154 

Figure 8.20 - System response during the second case (a) Battery current change with 

respect to load profile (b) Battery SOC ................................................................................. 155 

Figure 8.21(a) - Power delivered to the grid ......................................................................... 156 

Figure 8.21(b) - Voltage and current waveforms in the grid side ......................................... 156 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 xv  

List of Tables 

Table 1.1 - Other application, for Power electronic ................................................................ 13 

Table 3.1 - Commercial Solar Cell Efficiency ........................................................................... 39 

Table 3.2 - Ideal factor (F) dependent on the PV technology ................................................. 43 

Table 3.3 - PV modules specifications ..................................................................................... 46 

Table 4.1 - Small wind turbines ............................................................................................... 57 

Table 5.1 - Common rechargeable battery types .................................................................... 68 

Table 5.2 - Comparison of fuel cell types ................................................................................ 77 

Table 6.1 - Experiment results for the Astronergy CHSM6610P-225 solar panel ................... 92 

Table 7.1 - Typical examples of the training set. ................................................................... 120 

Table 7.2 - Fuzzy logic rules ................................................................................................... 126 

Table 7.3 - Fuzzy logic rules for the temperature controller ................................................. 132 

Table 8.1 - Portion of the testing set ..................................................................................... 136 

Table 8.2 - PV system plant profile ........................................................................................ 144 

Table 8.3 - Sharp NU-180 specifications (1kW/m2, 25o C) ..................................................... 144 

Table 8.4 - PV/WT system specifications ............................................................................... 148 

Table 8.5 - PEMFC stack parameters ..................................................................................... 149 

Table 8.6 - Li-Ion battery parameters .................................................................................... 149 

Table 8.7 - Power conditioning units’ parameters ................................................................ 149 

 

 

 

 

 

 

 

 

 



 

 xvi  

List of Publications Based on this Work 
 

Natsheh, E.M., Natsheh, A.-R., & Albarbar, A. (2013) Intelligent Controller for 

Managing Power Flow within Standalone Hybrid Power Systems, IET Science, 

Measurement & Technology, In Press. 

Natsheh, E.M., & Albarbar, A. (2013) Hybrid Power Systems Energy Controller 

Based on Neural Network and Fuzzy Logic, Smart Grid and Renewable Energy, 4, 

(2), pp. 187-197. 

Natsheh, E.M., & Albarbar, A. (2012) Solar Power Plant Performance Evaluation: 

Simulation and Experimental Validation, Journal of Physics: Conference Series, 364, 

(1), pp. 1-13. 

Natsheh, E.M., & Albarbar, A. (2011) Photovoltaic Model with MPP Tracker for 

Standalone /Grid-Connected Applications, IET Conference on Renewable Power 

Generation, Edinburgh, UK. 

Natsheh, E.M., & Albarbar, A. (2011) PV System Monitoring and Performance of a 

Grid Connected PV Power Station Located in Manchester-UK, IET Conference on 

Renewable Power Generation, Edinburgh, UK. 

Natsheh, E.M., Albarbar, A., & Yazdani, J. (2011) Modelling and Control for Smart 

Grid Integration of Solar/Wind Energy Conversion System, 2
nd

 IEEE PES 

International Conference and Exhibition on Innovative Smart Grid Technologies, 

Manchester, UK. 

 



Hybrid Power Systems Energy Management Based on Artificial Intelligence 
 

Introduction  1  

 

 

Chapter 1 
 

Introduction 

 

This chapter provides an overview of renewable energy sources (solar and wind 

energy), power conditioner units, and then discuss the aim and objectives of 

the thesis. 
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1.1 Motivation 

The global warming caused by the abundance of CO2 in the atmosphere and the 

limitations of global resources of fossil and nuclear fuel has necessitated an urgent 

search for alternative sources of energy to meet the future demand.  It is also 

important to find alternative energy sources to minimize the negative environmental 

impact and to cover the continuously increasing demand of power supply. Figure 1.1 

shows the projected availability of fossil and nuclear fuels. 

 

Figure 1.1- Projected availability of fossil and nuclear fuels (based on today’s rate 

consumption (HTE 2012) 

Wind, solar and water energy which are non-pollution, free in their availability and 

renewable are considered as a promising power sources. However, due to their 

unpredictability and weather dependency, the integration of renewable energy sources 

to form a hybrid system is an excellent option for distributed energy production. 

A hybrid power system augments the photovoltaic (PV), wind turbine and fuel cell 

with a reversible energy storage system so that the overall system can cope with the 

power demands. The energy storage system can be implemented with either an ultra-

capacitor or a rechargeable battery banks. The chief merit of this architecture is that 

the power-capacity rating of the hybrid system is required to meet the average 
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demand only, rather than the peak demand. This makes the hybrid power system more 

cost-effective and energy-efficient than using the fuel cell alone in supplying the 

required power. 

However, one main problem for the hybrid system is related to the management and 

control of the energy distribution. The dynamic interaction between the load demand 

and the renewable energy source can lead to critical problems of stability and power 

quality that are not very common in conventional power systems. Therefore, 

managing flow of energy throughout the hybrid system is essential to ensure the 

continuous power supply for the load demand.   

In the literature, there are a few studies related to energy management of hybrid 

power system (Dursun & Kilic 2012). Beside the conventional approaches (Dursun & 

Kilic 2012; Onar et al. 2008; Mohamed & Koivo 2010; Ahmed et al. 2008; Ipsakis et 

al. 2009); which have afterwards been proven it’s instability in handling various 

changes in weather conditions (Zhou et al. 2010). Some advanced controlling 

techniques (such as genetic algorithms, fuzzy logic, and artificial neural networks) 

exist, which can readily incorporate human intelligence in complicated control system 

based on human knowledge and experience. The question is can these controlling 

techniques improve the system performance further (handle various changes 

dynamically without any major problems) (Zhou et al. 2010), and what’s the best 

application that it can be applied on. 

According to the World Bank, more than 2 billion people live in villages that are not 

yet connected to utility lines (Patel 2006). These villages are the largest potential 

market for stand-alone hybrid systems for meeting their energy needs.  

More, stand-alone hybrid system is technically more challenging to design than the 

grid-connected system because the use of fuel cells and battery. Accordingly, this 
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thesis presents an optimized adaptive management strategy for power flow in stand-

alone hybrid power systems, based on neural networks and fuzzy logic. The intended 

study will start by looking into design and evaluation parameters of individual 

systems. The system consists of solar photovoltaic panels, wind turbine, fuel cell 

system and batteries for energy storage. System components will be studied and 

modelled using MatLab/Simulink software packages to verify the I-V and power 

outputs characteristic. 

A major important for the theoretical study of hybrid system is the availability of 

models, which can be used to study the behaviour of hybrid system and software 

environment.  Therefore, a solar-wind hybrid power system model will be presented. 

The system will consists of (a) PV panels, to convert the sunlight into direct current, 

(b) wind turbine, to convert the kinetic energy from the wind into mechanical energy, 

(c) DC generator, to convert the mechanical energy from the turbine into electrical 

energy,  (d) MPPT, to operate the PV at the maximum power point (MPP), (e) fuel 

cells, which performs as a backup power source, (f) battery bank, to supply energy to 

the system when is needed and store it when is not needed, (g) DC/DC converters, to 

steps-up the voltage to a higher DC voltage, (h) DC/AC inverters, to generate AC 

waveform from the DC signal, (i) main controller, to ensure the continuous power 

supply for the load demand.  A schematic diagram of a basic hybrid system is shown 

in Figure 1.2. 
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Figure 1.2 - Block diagram of a hybrid power generation system 

 

1.2 Renewable energy sources 

Energy is a fundamental aspect to people’s life, and is essential not only for 

individuals but also for various sectors. It can be supplied from various resources 

which can be divided into two categories; renewable and non-renewable. Typical 

examples of non-renewable energy sources are petroleum, coal, and natural gas. As 

for renewable sources, these include energy generated from wind, solar, wave, 

geothermal, biomass and hydro. Both renewable and non-renewable energy sources 

can be used to produce secondary energy sources including electricity and hydrogen. 

According to the report by the Renewable Energy Policy Network for the 21
st 

Century 

(REN21) (REN21 2012), about 81% of the world’s energy consumption is supplied 

by fossil fuels, 16% from renewable sources and the rest from nuclear, as illustrated in 

Figure 1.3. The report indicates that renewable energy replaces fossil and nuclear 

fuels in four distinct markets: power generation, heating and cooling, transport fuels, 

and rural/off-grid energy services. 
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Figure 1.3 - Renewable energy share of global final energy consumption (REN21 2012) 

In this work our interest will be in the solar and wind energy. 

1.2.1 Solar energy 

Solar energy is produced from the sun. The sun forms its energy through 

thermonuclear reactions that converts hydrogen to helium. This process creates 

electromagnetic radiation and heat. The electromagnetic radiation (including infra-red 

light, visible light and ultra-violet radiation) streams out into space in all directions. 

While the heat remains in the sun, and is instrumental in maintaining the 

thermonuclear reaction (Miller 2002). 

Solar energy can be applied in different applications such as: heating, and cooling. 

Heating is the business for which solar energy is best suited. Solar heating has a very 

high efficiency because it requires no energy transformation.  

Solar energy can be converted to electricity, besides being used for heating and 

cooling, so most of our tools can be operated through solar power. The solar 

collectors that convert radiation into electricity can be either flat-plane collectors or 

focusing collectors, and the silicon components of these collectors are 

photovoltaic cells.  
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Photovoltaic solar cell is made of semiconductor material which converts the solar 

radiation into direct current electricity. In 1839, a French physicist Alexander 

discovered the PV effect while he was experimenting with an electrolytic cell made 

up of two metal electrodes (NREL 2012). Then Bell Laboratories produce the first 

silicon cell in 1954 (Rivera 2008). Previously due to the high power generation 

capacity per unit weight, PV technology was used to converts the sunlight into 

electricity for earth-orbiting satellites. After that matured in space applications, PV 

technology is now used in different applications ranging from powering remotes sites 

to feeding utility grids around the world. In the past the photovoltaic application has 

been limited to remote site and not connected to utility grid, due to the high cost of 

PV technology. But with the decreasing of PV cost, the PV module marketing has 

been growing at 25 to 30% annually during the last 5 years. In 2010 solar photovoltaic 

power (PV) was the leading renewable energy technology in terms of new capacity 

growth by almost 13,000 MW in Europe (EPIA 2012). The energy output of these 

new PV installations corresponds to the electricity production of two large coal-fired 

power plants. At the end of 2010, the cumulative installed capacity of PV in the EU 

amounted to more than 28,000MW, with an energy output that equals the electricity 

consumption of around 10 million households in Europe. “The growth of PV has 

simply been impressive in 2010. Decreasing cost, new applications, strong investor 

interest and continued political support have contributed to this development, making 

PV the number one green technology in terms of capacity addition in Europe”, said 

Ingmar Wilhelm, EPIA President. Figure 1.4 shows growth in PV cumulative total 

capacity from 2000 to 2010. This growth is attributed to the high cost of fossil fuels 

and the decrease in PV prices.  
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Figure 1.4 - Cumulative Installed PV Power (EPIA 2012) 

 

1.2.2 Wind energy 

Wind has always been an energy source used by several civilizations many years ago. 

The first use of wind power was to make possible the sailing of ships in the Nile River 

some 5000 years ago. Many civilizations used wind power for transportation and 

other applications. In the 1700s and 1800s, the Europeans used the wind energy to 

crush grains and pump water. Recently, there was small interest in using wind energy 

other than for battery charging for distant dwellings. These low-power systems were 

quickly replaced once the electricity grid became available. The sudden increases in 

the price of oil in 1973 stimulate a large number of government funded programs for 

research and development of wind turbines and other alternative energy technologies. 

In the United Kingdom’s this led to the construction of a series of wind turbines from 

100kW to 7.5MW (Rogowsky 2009). Figure 1.5, summarises the history of sizes of 

leading commercial wind turbines up to the present and illustrates a few concepts for 

the larges turbines of the near future.  
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Figure 1.5 – Growth in size of commercial wind turbine designs (WindFacts 2011) 

 

A wind turbine is a machine that converts the kinetic energy from the wind into 

mechanical energy; therefore the maximum energy delivered not only depends on the 

machine limits but also on wind speed. On the other hand, windmills convert the 

power of the wind into mechanical power. It is said that the first windmills on record 

were built by the Persians in approximately 900 AD (Manwell 2002). These 

windmills were used for any mechanical task such as water pumping, sawing wood 

and grinding grain.   

In July 1887, the world's first electricity generating wind turbine, which was a battery 

charging machine was installed by a Scottish scientist James Blyth to light his holiday 

home in Marykirk Scotland (Price 2004) but it was not until 1951 that the first utility 

grid-connected wind turbine to operate in the UK was built by John Brown & 

Company in the Orkney Islands (Price 2004; Musgrove 1976). Today's wind turbines 

are manufactured in a wide range of vertical and horizontal axis types. The size of 

these turbines ranges from a few Watts to several Million Watts. Figure 1.6 shows the 

components of a horizontal axis modern wind turbine. In some cases the generator is 
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connected directly to the rotor, therefore no gearbox is used. The generator converts 

the mechanical power in the rotor to electrical power.  

 

Figure 1.6 - Modern wind turbine components 
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1.3 Power electronics 

1.3.1 Power electronics system 

In electronic device most power electronics system divided into two stages: 

 Power stage 

 Control stage 

The power stage is responsible to transfer an amount of power from the input to the 

output, and the control stage is used to control that amount of power. A block diagram 

of the power electronic system with m sources and n loads is given in Figure1.7 

 

 

 

 

Figure 1.7 - Power electronic system diagram 

 

Where the input sources (electrical inputs) are like current, voltage ... etc., and the 

output signals are like voltages, currents...etc. 

The main function of a power electronic system is to forward the energy to the 

required load, and the power converter function is to convert the input to the required 

output energy using switching electronic devices.  

In these days there are four conversion circuits that are used in the power electronics 

circuits: 

a) Rectification (AC-DC) 

b) Inversion (DC-AC) 

Power Stage 

Control Stage 

Loads Input Sources 
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c) Conversion (DC-DC) 

d) AC-AC converter with same or different frequency. 

Our focus in this work will be, on the inversion and conversion. 

1.3.2 Power electronics industry  

Usually the utility system transmits and generates power at fixed frequency such as 

60 Hz or 50 Hz, while keeping the constant voltage at the consumer terminal. 

Nowadays people are using different electrical product that consumes energy from the 

AC or DC power supply and converts it to the required form, for example the product 

that is running on AC, will have a frequency that is similar, higher or smaller than the 

income frequency, for that there should be a power electronic interface between the 

utility system and the load, so the power can be controlled. 

Most of the power electronic component consists of a converter using a semi-

conductor switching device. And as we said before the converters can be classified as 

rectification (AC-DC), inversion (DC-AC), conversion (DC-DC) and AC-AC 

converter with same or different frequency. The purpose for using a semi-conductor 

switching device in the convertor is to increase the efficiency of conversion to the 

higher value. 

1.3.3 Applications for power electronics 

Nowadays power electronics is covering a wide range of industrial and commercial 

applications, including computers, telecommunication, aircraft, transportation, 

information processing and power utilities. 
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Additional to that, power electronics application can be found in telecommunication, 

utility systems, industrial, residential, commercial and transportation fields as shown 

in Table 1.1 

Table 1.1 - Other application, for Power electronic 

 

1.4 Research aim and objectives 

System control for energy flow and management is an essential part in developing any 

hybrid power system. However previous studies, as it will be explain in Chapter two, 

have used conventional approaches for controlling standalone hybrid power systems, 

Telecommunication 

• Battery chargers 

• Power supplies  

Utility systems 

• High voltage dc transmission (HVDC) 

• Supplemental energy sources (wind) 

• Energy storage system 

Industrial 

• Pumps 

•Fans 

•Machine tool (robots) 

•Lighting 

•Industrial laser 

Transportation 

•Battry charger for electric vehicles 

Residential 

•Ligithing 

•Electronics ( personal computer, other entertainment equipments ) 

•Air conditioning 

•Refrigeration and freezers 

Commercial 

•Lighiting 

•Computer and office equipments 

•Heating and air condition 
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which have afterwards been proven it’s instability in handling various changes in 

weather conditions.  

Therefore, the ultimate aim of this research is to develop a control algorithm to be 

more robust with ability to handle various changes, by establishing new management 

criteria depending upon informational data and the environmental changes. Hence, the 

developed algorithm will be designed to optimise the power flow between the hybrid 

power system and energy storage elements in order to satisfy the load requirements 

based on artificial neural network (ANN) and fuzzy logic controllers. The ANN 

algorithm will be used for maximizing the generated power based on maximum power 

point tracker (MPPT) implementation. The advanced fuzzy logic controller will be 

developed to distribute the power among the hybrid system and to manage the charge 

and discharge current flow for performance optimization. The developed management 

system performance will be assessed using a hybrid system comprises PV panels, 

wind turbine, battery storage, and proton exchange membrane fuel cell (PEMFC).  

To achieve the above mentioned aim, research objectives are outlined below:  

a) Review hybrid power system operation principles and methods used for hybrid 

solar-wind system optimization, i.e. graphical construction method, genetic 

algorithms, iterative technique...etc. 

b) Create a database comprises real weather parameters collected from central 

Manchester campus; i.e. irradiance, temperature, wind speed.  

c) Develop a generalized PV model to be representative to all photovoltaic cell, 

module, and array. 

d) Implement and analyse a MPPT controller model; to operate the PV at the 

maximum power point (MPP) using P&O algorithm and artificial neural 

network. 
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e) Validate and compare the developed model outcome with an empirical data 

collected from a real PV module 

f) Develop a grid connected hybrid system models, with a feedback controller; to 

balance the average power delivered to the grid. 

g) Implement and analyse a standalone solar-wind hybrid system model with 

energy storage system e.g. battery storage or ultra-capacitor bank. 

h) Develop algorithm for optimizing the energy captured by the PV/wind 

turbine/energy storage hybrid power system using artificial intelligence and 

adaptive based algorithms. 

i) Develop a fuel cell model for the standalone hybrid power system and 

combine it with the PV-wind turbine model developed in objective (g).   

j) Improve the control algorithm in objective (h), to include the fuel cell model 

that developed in objective (i). 

1.5 Simulation environment 

In order to meet our goals in this research, we will use the following tools: 

 MatLab which is a high-level language that enables the user to perform 

computationally intensive tasks in an easy-to-use environment where problems 

and solutions are expressed in familiar mathematical notation. 

 SIMULINK which is a commercial tool for modelling, simulating and 

analyzing multi domain dynamic system. 

1.6 Organisation of thesis 

The remaining chapters are organized as follows: Chapter two concentrate on 

reviewing the current state of the local meteorological data generation, modelling, 

optimization, and control technologies for the hybrid systems and try to find what 
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further work is needed. Chapters three, four and five introduce the dynamic behaviour 

of the photovoltaic, wind turbine, and backup power systems (batteries and fuel cells) 

respectively, and discusses the output characteristics of each. Chapter six present the 

dynamic simulation models for the hybrid PV/wind turbine/PEM fuel cell/Li-Ion 

battery power system. The proposed control structure will be addressed in 

Chapter seven. Here, two different MPPT techniques will be presented (P&O and 

neural network). To demonstrate the effectiveness of the proposed strategy, 

simulation results are presented in Chapter eight.  Finally, Chapter nine summarizes 

the work accomplished and proposed future research in this field of work.  
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Chapter 2 
 

Literature Review 

 

This chapter presents a review of the solar-wind hybrid power system. The review 

process includes meteorological data generation, modelling, optimization, and 

system control for energy flow and management. At the end of the review process the 

research question is formulated and the main purposes of this thesis are established. 
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2.1 Overview 

The demand for new and environmentally friendly energy system is growing 

worldwide. Solar and wind energy systems are taking the biggest share from, this 

current trend (Erdem 2010). To increase the energy reliability, solar and wind energy 

are used as dual energy sources. However, a drawback, common to solar and wind 

options, is their unpredictable nature and dependence on weather and climatic 

changes, and the variations of solar and wind energy may not match with the time 

distribution of load demand. This shortcoming not only affects the system’s energy 

performance, but also results in batteries being discarded too early. Therefore, a third 

energy system is needed to improve the energy supply reliability. Thus, the PEM fuel 

cell ideally fulfills the need for any start up power. When the solar-wind system 

energy output is insufficient, the fuel cell backups the supply system. However, fuel 

cell lifetime is less than 2000h for transportation and ~20,000h for stationary fuel 

cells (Wang 2011). In addition, battery charge-discharge cycle and battery bank 

energy efficiency gains importance. Therefore, managing flow of energy throughout 

the hybrid system is essential to increase the operation time of the membrane and to 

enable continuous energy flow.  

This chapter will concentrate on reviewing the current state of the local 

meteorological data generation, modelling, optimization, and control technologies for 

the hybrid power systems and try to find what further work is needed. 

 

 

 

 

 



Hybrid Power Systems Energy Management Based on Artificial Intelligence 
 

Literature Review 19  

2.2 Meteorological data collection for feasibility study 

The availability and magnitude of solar and wind energy at a particular site are 

determine by the climatic conditions. For different locations, climatic conditions, 

including solar radiation, air temperature, and wind speed. For better utilization of the 

wind and solar energy resources, an analysis of the characteristics of solar radiation 

and wind conditions at a potential site should be made at the stage of inception.  

The long-term system performance is one of the most important design criteria for 

stand-alone solar-wind hybrid power systems. Weather data containing hourly solar 

radiation, ambient temperature, and wind speed are required in the performance 

simulation of these systems. The global whether data could be obtained from local 

meteorological station and other sources like internet.  

Until now, a lot of researches have been done on the analysis of solar and wind 

energy resources. Among these studies, Mahmoudi (Mahmoudi et al. 2008), analyzed 

hourly wind speed and solar radiation measurement to assess the feasibility of using 

hybrid (wind, solar) energy conversion system to meet the energy required to power a 

seawater greenhouse in the Arabian Gulf country of Oman. Reichling and Kulacki 

(2008), modelled a hybrid solar wind power plant in south western Minnesota for a 

two year period, using hourly solar irradiation and wind speed data. Tina (Tina 

et al. 2006), estimates the long term performance of a hybrid solar-wind power system 

for both stand-alone and grid linked applications. Dihrab and Sopian (2010), 

presented a hybrid solar-wind system as a renewable source of power generation for 

grid-connected application in three cities in Iraq. The proposed system was simulated 

using MatLab, in which the input parameters for the solver were the meteorological 

data for the selected area and sizes of PV and wind turbines. Shakya (Shakya 

et al. 2005), studied the feasibility of stand-alone photovoltaic-wind turbine hybrid 
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power system incorporating compressed hydrogen gas storage in Australia (Cooma). 

Cooma has an average annual solar and wind energy availability of 1784 and 932 

kWh/m
2
, respectively. Elhadidy and Shaahid (2000), analyzed hourly wind speed and 

solar radiation measurements from a meteorological monitoring station in Dhahran, to 

study the impact of key parameters such as PV array area, number of wind turbines, 

and battery storage capacity on the operation of hybrid energy conversion systems, 

while satisfying a specific annual load of 41,500 kWh. Parametric analysis indicates 

that with two 10 kW wind turbines together with three days of battery storage and 

photovoltaic deployment of 30 m
2
, the diesel back-up system has to provide about 

23% of the load demand. Behave (1999), described a techno-economic study to 

design a hybrid solar-wind domestic power generating system for a site on the 

western coast of India. Solar radiation data for Bombay which is very close to the site 

and for which such data was available were used, while monthly average wind speeds 

for Alibag were used. Results show that the optimum system would be able to supply 

84.16% of the annual electrical energy requirement of the site. 

2.3 Modelling of hybrid system components 

The hybrid system consists of three power generation systems, photovoltaic arrays, a 

wind turbine and a fuel cell. The PV and wind turbine are used as the main power 

generation for the system and the fuel cell is assigned as a backup power generator for 

the continuous power supply. The control system of the hybrid power system uses the 

fuel cell as a backup power.  

The design of hybrid power system is mainly dependent on the performance of 

individual components. In order to predict the system’s performance, individual 

components should be modeled first and then their combination can be evaluated to 

meet the demand reliability. 
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Over recent years several modelling studies on hybrid renewable energy systems, 

have been conducted. Among them, Natsheh and Albarbar (2011), developed a solar 

power plant model which takes cell temperature and solar irradiance as its input 

parameters and outputs the power under different conditions. The model has been 

implemented using the MatLab/Simulink software package, and designed with a 

dialog box like those used in the Simulink block libraries. The proposed PV model 

has been verified through an experiment set-up to make sure the correctness and 

usability. Gow and Manning (1999), developed a general PV model which can be 

implemented on simulation platforms such as PSPICE or SABER and is designed to 

be of use to power electronics specialists. The model accepts irradiance and 

temperature as variable parameters and outputs the current–voltage (I–V) 

characteristic for a PV cell. Tsai (2010), implemented an insulation-oriented PV 

model using MatLab/Simulink software package. The proposed model takes ambient 

temperature as reference input and uses the solar insulation as a unique varying 

parameter. The cell temperature is then explicitly affected by the sunlight intensity.  

Kerr and Cuevas (2003) presented a new technique, which can determine the current–

voltage (I–V) characteristics of PV modules based on simultaneously measuring the 

open-circuit voltage as a function of a slowly varying light intensity. And they also 

have given a detailed theoretical analysis and interpretation of such quasi-steady-state 

Voc measurements. Borowy and Salameh (1996), presented a simplified model with 

which the maximum power output could be calculated for one certain PV module 

once solar radiation on the PV module and ambient temperature were found. Nishioka 

(Nishioka et al. 2003) analyzed the temperature coefficient dependence of system 

performance in order to estimate the annual output of a PV system in an actual 
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operating environment. It was found that the annual output energy of the PV system 

increased about 1.0% by an improvement of 0.1%/
o
C of the temperature coefficient.  

Natsheh (Natsheh et al. 2011) developed a novel model of smart grid-connected 

PV/WT hybrid system. The mode comprises photovoltaic array, wind turbine, 

asynchronous (induction) generator, controller and converters. Solar irradiance, 

temperature and wind speed data was gathered from a grid connected, 28.8kW solar 

power system located in central Manchester. Onar (Onar et al. 2008), modeled a hybrid 

wind/FC/UC power system for a grid independent user with appropriate power flow 

controllers. The proposed system can be used for non-interconnected remote areas or 

isolated cogeneration power systems with non-ideal wind speed characteristics. Khan 

and Iqbal (2005), presented the model of a small wind-fuel cell hybrid energy system 

and analyzed life cycle of a wind-fuel cell integrated system. The system consists of a 

400W wind turbine, a PEMFC, and a power converter. Kim (Kim et al. 2009), 

developed a grid-connected photovoltaic system model using PSCAD/EMTDC for 

electromagnetic transient analysis. The simulation model enabled extensive analysis 

of the control and dynamic performance of a PV system and its interaction behaviour 

with the power system, such as harmonics, and response to grid faults.  

Tremblay (Tremblay et al. 2007), developed a generic battery model for the dynamic 

simulation of hybrid electric vehicles; they used only the battery state-of-charge 

(SOC) as a state variable in order to avoid the algebraic loop problem.  El-Sharkh (El-

Sharkh et al. 2004), presented a dynamic model for a 5 kW PEM fuel cell system to 

predict the output voltage and study the transient response of a PEM power plant to 

load changes. The proposed dynamic model includes the fuel cell model, the gas 

reformer model, and the power conditioning unit.  
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Chayawatto (Chayawatto et al. 2009), developed a mathematical model of a DC/AC 

full-bridge switching converter with current control for PV grid-connected system 

under islanding phenomena; this phenomena occur when the grid system is 

disconnected for any reason and the distributed generation still supplies to any section 

of local loads. Zhou (Zhou et al. 2007) presented a simulation model for PV array 

performance predictions for engineering applications based on the I-V curves of a PV 

module. Five parameters are introduced to account for the complex dependence of PV 

module performance upon solar radiation intensities and solar radiation intensities and 

PV module temperatures. The author claims that this simulation model is simple and 

especially useful for engineers to calculate the actual performance of the PV modules 

under operating conditions, with limited data provided by the PV module 

manufacturers.  

2.4 Optimization sizing techniques for hybrid power system  

2.4.1 Simulation and optimization software 

Simulation software’s are the most common tools for evaluating performance of the 

hybrid systems. By using computer simulation, the optimum configuration can be 

found by comparing the performance and energy production cost of different system 

configurations. Several software tools are available for designing of hybrid systems, 

such as HOMER, HYBRID2, and HOGA. 

The Hybrid Optimisation Model for Electric Renewables (HOMER) program has 

been developed by NREL (National Renewable Energy Laboratory, USA) to optimise 

hybrid systems. HOMER is a time-step simulator using hourly load and 

environmental data inputs for renewable energy system assessment. It has been used 

extensively in previous renewable energy system case studies (Khan & Iqbal 2005; 
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Zoulias & Lymberopoulos 2007) and in renewable energy system validation tests 

(Rodolfo & Jose´ 2005). This program uses the kinetic battery model. However, the 

program’s limitation is that it does not enable the user to intuitively select the 

appropriate components for a system, as algorithms and calculations are not visible or 

accessible. 

HYBRID2 is hybrid system simulation software developed by the Renewable Energy 

Research Laboratory (RERL) of the University of Massachusetts. This program is 

very precise, as it can define time intervals from 10 min to 1 h. 

However, NREL recommends optimizing the system with HOMER and then, once 

the optimum system is obtained, improving the design using HYBRID2. 

The Electric Engineering Department of the University of Zaragoza (Spain) 

developed HOGA which is a hybrid system optimization program. The optimization 

is carried out by means of genetic algorithms, and can be mono-objective or multi-

objective. The simulation is carried out using 1-h intervals, during which all of the 

parameters remained constant.  

2.4.2 Optimization scenarios based on different meteorological data 

Some research use long period meteorological data (Koutroulis et al. 2006) or typical 

meteorological year data (Yang and Lu 2004) for the hybrid system optimizations. 

The time-series simulation method is the most commonly used renewable energy 

system optimization routine. Generally, most of the researchers used time-series 

meteorological station data for feasibility study and design of hybrid systems. The 

hybrid system’s behaviour is calculated based on the time-series meteorological input 

data, which usually have a resolution of 1-h intervals. Notton (Notton et al. 1996) and 

Baring-Gould (Baring-Gould et al. 2002), use incremental time-scales of 1 min and 

1h, respectively. Notton (Notton et al. 1996), also studied the effect of time step, input 
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and output power profile on the sizing result of stand-alone solar energy systems 

based on a simulation procedure. Other applications which also use time-series 

simulation method include Borowy and Salameh (1994), which developed an 

algorithm to optimize hybrid solar-wind system; the model proposed was based on a 

long-term hourly solar radiation and peak load demand data of the site chosen.  

However, the main disadvantages of the time-series simulation method are that: 

 It requires significant computational effort. 

 Meteorological data, especially wind data, may not be available for many 

locations.  

Hence, to improve the performance of hybrid system optimizations, many studies 

have been conducted to decrease the simulation time and the number of variables 

used. Among them, Celik (2003) developed a predictive algorithm which requiring 

monthly average values of solar radiations and wind speed. This algorithm enabled 

the estimation of system performance using simple wind distribution parameters and 

thus eliminating the necessity for time-series hourly data.  

2.4.3 Optimization techniques  

Increase the number of optimization variables, will significantly increase the 

complexity of simulation, resulting in an increase in the time and effort required. 

Therefore it is very important for designers to find a feasible optimization technique 

to select the optimum system configurations quickly and accurately. 

In this section, various optimization techniques for hybrid solar–wind system will be 

presented such as probabilistic approach, iterative technique, graphic construction 

methods, and artificial intelligence methods. Using feasible optimization method, 

optimum configurations which meet the load requirement can be obtained (Yang 

et al. 2008). 
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a)  Probabilistic approach 

Bucciarelli (1984), proposed a sizing method for treating storage energy variation as a 

random walk. The probability density for daily decrement or increment of storage 

level was approximated by a two-event probability distribution
1
 (Bagul et al. 1996). 

Gordon (1987) and Bagul (Bagul et al. 1996) modified this method further by using 

three-event probabilistic approach to overcome the limitations of conventional two-

event approach in matching the actual distribution of the energy generated by hybrid 

systems.  

Tina (Tina et al. 2006) presents a probabilistic approach based on the convolution 

technique (Karaki et al. 1999) to assess the long-term performance of a hybrid solar-

wind power system (HSWPS) for both stand-alone and grid-linked applications. The 

hybrid system performance is assessed by employing probabilistic models for both 

wind turbines and PV array. Finally, a numerical example application was included to 

illustrate the validity of the developed probabilistic model: the results are compared to 

those resulting from time- domain simulations.   

Disadvantage of this probabilistic approach is that it cannot represent the dynamic 

changing performance of the hybrid system (Zhou et al. 2010). 

b) Graphic construction method  

Borowy and Salameh (1996), presented a graphical construction technique for 

figuring the optimum combination of PV array and battery for a stand-alone hybrid 

solar-wind system, based on using long-term data of solar radiation and wind speed. 

The load demand for the hybrid system was determined by identifying the load 

                                                           
1 In probability theory, an event is a set of outcomes of an experiment (a subset of the sample space) to 

which a probability is assigned.  

 



Hybrid Power Systems Energy Management Based on Artificial Intelligence 
 

Literature Review 27  

consumption of a typical house in Massachusetts. In this study they assumed that the 

total cost of the system is linearly related to both the number of PV modules and the 

number of batteries. The minimum cost will be at the point of tangency of the curve 

that represents the relationship between the number of batteries and the number of PV 

modules. Then the optimum sizing of the PV array and the battery bank can be 

achieved. Markvart (1996) presented another graphical technique to optimally design 

a hybrid solar–wind power generation system by considering the monthly-average 

solar and wind energy values.   

The main disadvantage of this graphic construction method is that only two 

parameters can be included in the optimization process (Zhou et al. 2010).  

c) Iterative technique  

Kellogg (Kellogg et al. 1998), presented an iterative optimization method to select the 

PV module number and wind turbine size using an iterative procedure to make the 

difference between the demanded and generated power as close to zero as possible 

over a period of time. From this iterative procedure, several possible combinations of 

solar-wind generation capacities were obtained. The total annual cost for each 

configuration is then calculated and the combination with the lowest cost is selected 

to represent the optimum mixture. 

Similarly, Yang (Yang et al. 2007) proposed a Hybrid Solar-Wind System 

Optimization (HSWSO) model, which utilizes the iterative technique to optimize the 

capacity sizes of different components of hybrid power generation systems. Three 

sizing parameters are considered in the simulation, i.e. the rated power of wind 

system, capacity of PV system, and capacity of the battery bank. The HSWSO model 

consists of three parts: the model of the hybrid system, the model of Loss of Power 

Supply Probability (LPSP) and the model of the Levelised Cost of Energy (LCE). For 
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the desired LPSP value, the optimum configuration can be identified finally by 

iteratively searching all the possible sets of configurations to achieve the lowest 

Levelised Cost of Energy.   

The disadvantage of this technique is that it usually results in increased computational 

efforts and sub-optimal solutions (Zhou et al. 2010). 

d) Artificial intelligence (AI) methods 

AI is a term that in its broadest sense would mean the capability of a machine to 

imitate intelligent human behaviour (Negnevitsky 2004). Artificial Intelligence 

methods, such as genetic algorithms, fuzzy logic, and artificial neural networks, are 

selected because they have shown to be highly applicable to cases of non-linear 

systems, where the location of the global optimum is a difficult task. Yang (Yang et 

al. 2008), recommended an optimal sizing method to optimize the configurations of a 

hybrid solar-wind system employing battery banks. Based on a genetic algorithm, one 

optimal sizing method was developed to calculate the optimum system configuration 

that can achieve the customers required loss of power supply probability (LPSP) with 

a minimum annualized cost of system. The decision variables included in the 

optimization process are the PV module number, wind turbine number, battery 

number, PV module slope angle, and wind turbine installation height.  

Koutroulis (Koutroulis et al. 2006) proposed a methodology for optimum design of a 

hybrid solar-wind system. The advantage of this methodology is to suggest the 

optimum number and type of units ensuring that the 20-year round total system cost is 

minimized by genetic algorithms subject to the constraint that the load energy 

requirements are completely covered, resulting in zero load rejection. Rodolfo and 

Jose´ (2005) developed the HOGA program (Hybrid Optimisation by Genetic 
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Algorithms), a program that uses a genetic algorithm to design a PV-Diesel system 

(sizing). The program is developed using C
++

 programming language.  

Genetic algorithms are also widely used in the solution of power economic dispatch 

problems (Li 1998) and the design of large power distribution systems (Ramirez-

Rosado & Bernal-Agustin 1998) because of their ability to handle complex problems 

with linear or non-linear cost functions both, accurately and efficiently. Based on 

genetic algorithms, Yang et al. designed a hybrid solar–wind power generation 

project. It was built to supply power for a telecommunication relay station on a 

remote island, Dalajia Island, along the south-east coast of China (Yang et al. 2008; 

Yang et al. 2009). The electric use for the normal operation of the telecommunication 

station includes 1300W GSM base station RBS2206 consumption (24V AC) and 

200W for microwave communication (24V DC). According to the project 

requirement and technical considerations, continuous 1500W energy consumption is 

chosen as the demand load. In addition, based on the one year data of the project, 

Zhou (Zhou et al. 2008) studied the system behaviours and good 

performance observed. 

Kalogirou (2004), proposed an optimization model of solar energy systems by using 

genetic algorithms and artificial neural networks. The system is modelled using a 

TRNSYS computer program and the climatic conditions of Cyprus. The artificial 

neural network is trained using the results of a small number of TRNSYS simulations, 

to learn the correlation of solar-collector area and storage-tank size on the auxiliary 

energy required by the system from which the life-cycle savings can be determined. 

Subsequently, a genetic algorithm is used to estimate the optimum configurations, for 

maximizing life-cycle savings. Al-Alawi (Al-Alawi et al. 2007), developed an 

optimization mode of a PV-diesel water power system by using artificial neural 
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networks. The integrated system consists of photovoltaic modules, diesel generator, 

battery bank for energy storage and a reverse osmosis desalination unit. The proposed 

artificial neural networking model is designed to predict the diesel generators 

ON/OFF status at any given specific time and outlines the optimum power needed 

from the diesel generator at that time.  

2.5 System control for energy flow and management 

One main problem for the hybrid system is related to the supervision and control of 

the energy distribution. The dynamic interaction between the load demand and the 

renewable energy sources can lead to, critical problems of stability and power quality, 

that are not very common in conventional power systems. Therefore, managing flow 

of energy throughout the proposed hybrid system is essential to ensure the continuous 

power supply for the load demand. In the literature, there are a few studies related to 

power management for a stand-alone hybrid power system (Dursun & Kilic 2012). 

Among them, Dursun and Kilic (2012), presented three different power management 

strategies of a stand-alone hybrid power system. The system consists of three power 

generation systems, photovoltaic (PV) panels, a wind turbine and a proton exchange 

membrane fuel cell (PEMFC). PV and wind turbine is the main supply for the system, 

and the fuel cell performs as a backup power source. The proposed power 

management strategies for the hybrid power system satisfy the load and battery bank 

SOC. Ahmed (Ahmed et al. 2011) proposed power management strategy studied 

power fluctuations on a hybrid power system. The hybrid system consists of 

photovoltaic, wind turbine and fuel cell. The fuel cell is used to suppress the 

fluctuations of the photovoltaic and wind turbine output power. Onar (Onar et al. 

2006) proposed a power management strategy algorithm which dealt with a hybrid 

(wind turbine/fuel cell) power system containing an ultra capacitor bank. In this 
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algorithm, when the wind speed is sufficient, the wind turbine can meet the load 

demand. If the available power from the wind turbine cannot satisfy the load demand, 

the FC system can meet the excess power demand, while the UC can meet the load 

demand above the maximum power available from the FC system for short durations. 

Wang and Nehrir (2008), proposed a power management strategy for an AC-linked 

hybrid wind/PV/FC energy system. However, all of the early mentioned methods 

have used conventional approaches for controlling hybrid power systems, such as 

linear PI controller which has afterwards been proven it’s instability in handling 

various changes in weather conditions (Zhou et al. 2010; Tofighi & Kalantar 2011).    

In conventional approach, power electronics based DC-DC converters are used for 

maximum energy extract from solar energy resource and control the complete hybrid 

(Reddy & Agarwal 2007). Onar (Onar et al. 2008), and Das (Das et al. 2005), 

designed a PI controller for the power electronics of PV/wind turbine/fuel cell hybrid 

power system. Tofighi and Kalantar (2011) modelled a power electronic interface 

between a DC hybrid power source with photovoltaic main source and Li-ion battery 

storage as the secondary power source based on the Euler Lagrange framework. The 

dump load consumes the excess power of the PV system whenever the generated 

power is greater than the load power, and the battery does not need to be charged. The 

control signals are achieved by passivity-based control. Elgendy (Elgendy et al. 

2012), presents a comprehensive analysis evaluation, of the reference voltage 

perturbation with PI controller and direct duty ratio perturbation techniques, for 

implementing the P&O MPPT algorithm (see Section 7.3.1). Although the simplicity 

is the main feature of the direct duty ratio perturbation, they found that it has a slower 

transient response compared to the indirect method and worse performance at rapidly 

changing irradiance.   
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Beside the conventional approaches some advanced control techniques, such as 

genetic algorithms, fuzzy logic, and artificial neural networks (ANN) exist which can 

readily incorporate human intelligence in complicated control system based on human 

knowledge and experience.  

Previous studies showed that using the artificial intelligence in the hybrid vehicle can 

control the FC system within a specified high-efficiency region. Hajizadeh and Golkar 

(2007) presented a control strategy for active power flow in a hybrid fuel cell/battery 

distributed generation system. The proposed method includes an advance supervisory 

controller in the first layer which captures all of the possible operation modes. In the 

second layer, an advance fuzzy logic controller has been developed to distribute the 

power among the fuel cell and battery system, to satisfy the load power requirement 

with respect to dynamic restrictions of these systems such as fuel cell temperature, 

battery state of charge, power demand, fuel cell power, and battery power. Finally in 

the third layer, there are local controllers to regulate the set points of each subsystems 

to reach the best performance. Kim (Kim et al. 2008), presented an optimal method to 

design the relative power capacity between the fuel cell and the battery for a fuel 

cell/battery hybrid mini-bus. The power distribution is controlled based on the fuzzy 

logic, and the optimal engine sizes are determined based on the simulator considering 

with the component models to calculate the efficiency of the fuel cell and battery. Li 

(Li et al. 2009), presented a fuzzy logic based power management strategy that 

secures the power balance in a hybrid FC vehicular power system. Fuel cell output 

power was determined according to the driving load requirement by using fuzzy 

dynamic decision making algorithm along with fuzzy self-organizing map network.  
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2.6 Summery  

From the above mentioned research works it was noted that few publications were 

appearing in literature concerning optimising the energy captured by the hybrid power 

system (Dursun & Kilic 2012). However, all of the early mentioned methods have 

used conventional approaches (Elgendy et al. 2012; Dursun & Kilic 2012; Onar et al. 

2008; Reddy & Agarwal 2007; Ahmed et al. 2011; Ipsakis et al. 2009) for controlling 

stand-alone hybrid power systems, which has afterwards been proven: 

 Its instability in handling various changes in weather conditions (Zhou et al. 

2010; Tofighi & Kalantar 2011), with tracking efficiency less than 70% 

(Esram & Chapman 2007); 

 Its slow transient response to irradiance changes and high susceptibility to 

noise (Elgendy et al. 2012). 

Consequently, this resulted in developing other approaches led to more robust 

algorithm; by establishing new management criteria depending upon informational 

data and the environmental changes. However the questions that should be considered 

here are, under various operating conditions can this algorithm: 

 Increase the tracking response and consequently increase the tracking efficiency;  

 Remove the power fluctuations caused by the variability of the renewable sources; 

 Split the power between the power sources to sustain the efficiency of the system; 

 Maintain the battery SOC at a reasonable level; 

 Improve the generating performance of the PEMFC and prolong its life. 

Previous studies showed that using the artificial intelligence can: 

 Find the global optimum hybrid system configuration with relative 

computational simplicity and without any demerits like other approaches 

(Zhou et al. 2010): probabilistic, iterative, graphic construction...etc  
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 Control the FC in the hybrid vehicle system within a specified high-efficiency 

region (Kim et al. 2008; Li et al. 2009). 

Therefore, this research work will focus on developing a novel control algorithm 

(Natsheh & Albarbar 2013) based on artificial intelligence for the photovoltaic/wind 

turbine/fuel cell/energy storage hybrid power system. The proposed method will 

introduces an on-line energy management by a hierarchical controller between four 

energy sources comprises PV panels, wind turbine, battery storage, and PEMFC. The 

intended study will start by looking into design and evaluation parameters of 

individual systems. Chapters three, four and five will introduce the dynamic 

behaviour of the photovoltaic, wind turbine, and backup power systems respectively. 

While, Chapter six will presents the dynamic simulation models of individual 

systems. The proposed control structure will be addressed in Chapter seven.  

  



Hybrid Power Systems Energy Management Based on Artificial Intelligence 
 

Photovoltaic Energy Conversions  35  

 

 

Chapter 3 
 

Photovoltaic Energy 

Conversions  
 

This chapter outlines the dynamic behaviour of the photovoltaic (PV) system and 

discusses the nonlinearity of PV output characteristics. 

First, it summarizes the commercial solar cells used in PV module. Second, it shows 

the operational mechanism for crystalline silicon solar cell. Third, it describes the 

mathematical modelling for solar cell, module and array. Finally, it emphasise how 

to intensify the electricity generated from the solar panels. 
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3.1  Introduction to solar energy 

The sun is the original source of almost all the energy used on earth. The earth 

receives a stock ring amount of energy from the sun, as much energy falls on the 

planet each hour is the total human’s population uses in a whole years. 

Solar Panels made from photovoltaic cells (or PV for short). Simply broken-down 

photo means light and voltaic related to the production of electricity. Photovoltaic 

technology enables the creation of electricity using light. PV cells have at least two 

layers of semiconductors: one that's positively charged, and one that's negatively 

charged. When the light shines on the semiconductor the electric field across the 

junction between these two layers causes electricity to flow. The greater the intensity 

of light the stronger the electricity flow will be. 

Many sorts of PV panels are available for use. The PV tiles which replaced normal 

tiles are easy to install. Figure 3.1 shows the installation process. They can be 

installed onto a domestic house easily and they work very simply - any South facing 

roof is suitable. 

The light that hits the panels is converted into clean electricity. This is a silent 

operation here because there are no moving parts. The electricity generated by the 

panels comes in the form of a direct current. By installing an inverter, it is converted 

into alternation current, so it's in sync with the mains electricity and can be used 

normally. The clean electricity is then fed into the mains by the fuse board. By using 

meters, the amount of unused electricity generated can be measured and recorded; any 

spare electricity can be sold back to the electricity supplier. 

The amount of energy available from the sun differs depending on one’s location. For 

example, Edinburgh receives 800kWh/m
2
; London’s share is 1000kWh/m

2
; and 

Madrid gets 1500kWh/m
2
 per year (NWS 2012). Although the UK is considered a 
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country with a wet and cloudy climate, 800kWh/m
2
 is enough energy to power an 

energy efficient home. Only 10m
2
 of PV is needed to provide enough electricity to 

power such a home entirely from solar energy. Therefore, solar photovoltaic provide a 

simple and practical way for powering buildings with clean energy.  

  

Figure 3.1 - Solar Panel Roof Tiles (BGE 2012) 

 

3.2  Photovoltaic cells and efficiencies 

The performance of a solar cell is measured in terms of its efficiency in turning 

sunlight into electricity. Improving solar cell efficiencies while holding down the cost 

per cell remains one rather important goal of the PV industry.   

PV cells are generally made either from crystalline silicon, thin film, or from other 

types of technology as shown below. 

1) The Crystalline Silicon Technology (CST): 

Crystalline silicon cells are made from thin slices cut from a single crystal of silicon 

(monocrystalline) or from a block of silicon crystals (polycrystalline). CST is the 
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most common technology representing about 90% of the market today. Its efficiency 

ranges between 14% and 22%.   

Two main types of crystalline cells can be distinguished: 

 Monocrystalline (Mono c-Si) 

 Polycrystalline (or Multicrystalline) (multi c-Si) 

2) Thin film technology: 

Thin film modules are made by depositing extremely thin layers of photosensitive 

materials onto a low-cost backing such as stainless steel, glass or plastic. Thin Film 

manufacturing processes result in lower production costs compared to the more 

material-intensive crystalline technology. Such price advantage is counterbalanced by 

lower efficiency rates (7.3%-10.6%). However, this is an average value and not all 

Thin Film technologies have the same efficiency.  

Four types of thin film modules are commercially available at the moment 

 Amorphous Silicon (a-Si) 

 Cadmium Telluride (CdTe) 

 Copper Indium Selenide, Copper Indium Gallium diSelenide (CIS, CIGS) 

 Multi Junction Cells (a-Si/µc-Si) 

3) Other cell types: 

Several other types of more recently developed photovoltaic technologies have been 

commercialised or are still at the research level. The main ones are:  

 Concentrated photovoltaic: it is solar cells that are designed to operate with 

concentrated sunlight. They are built into concentrated collectors that use a 

lens to focus the sunlight onto the cells. The main idea is to use very little of 

the expensive semiconducting PV material while still collecting as much 

sunlight as possible.   
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 Flexible cells: based on a similar production process to thin film cells, when 

the active material is deposited in a thin plastic, the cell can be flexible. This 

opens the range of applications, especially for building integration (roofs-tiles) 

and end-consumer applications. 

A Summary for the efficiency of the commercial solar cell is listed in Table 3.1. 

 
Table 3.1 - Commercial Solar Cell Efficiency  

 

 

 

 

 

The cells efficiency decreases with increases in the temperature. Crystalline cells are 

more sensitive to heat than thin films cells. The output of a crystalline cell decreases 

approximately 0.5% with every increase of one degree Celsius in cell temperature. 

For this reason modules should be kept as cool as practically possible. For this reason, 

amorphous silicon cells may be preferred in very hot conditions because their output 

decreases by approximately 0.2% per degree Celsius increase. 

3.2.1 Energy conversion operation by using crystalline silicon cell  

In this work the PV panel used was made from crystalline silicon cells. Figure 3.2 

shows the operation of the silicon solar cell. It can be seen that when light strikes the 

cell, a certain portion of the light’s energy is absorbed within the semiconductor 

material. The energy knocks electrons loose, allowing electrons to flow freely. The 

Technology 
First Generation:   

Crystalline 

Silicon 

Second Generation: 

Thin Film 

Third 

Generation: 

PV 

 Mono Multi a-Si CdTe CI(G)S a-Si/µc-Si CPV 
DSSC/ 

OPV 

Cell 

Efficiency 
16-22% 14-18% 5.4-7.7% 9-12.5% 7.3-12.7% 7.5-9.8% 30-38% 2-4% 
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PV cells have one or more electric fields that act to force the electrons freed by light 

absorption to flow in a certain direction. The P-type silicon ("p" for positive) has free 

holes which are just the absence of electrons. The N-type silicon ("n" for negative) 

has free electrons.   

P-n junction is created when a p-type semiconductor is joined to an n-type 

semiconductor. Diffusion current is produced due to the concentration differences of 

holes and free electrons between the n- and p- regions: electrons flow from the n-side 

and fill holes on the p-side. This creates a region that is almost devoid of free charge 

carriers (i.e. free electrons or holes) and is therefore called the depletion zone.  

 

Figure 3.2 - Solar cell diagram (HTE 2012) 

There is in the depleted zone a net positive charge on the n-side and a net negative 

charge on the p-side in the depleted zone. Such situation results in an electric field 

that opposes any further flow of electrons. The more electrons move from the n-to the 

p-side, the stronger the opposing field will be, and eventually equilibrium will be 

reached in which no further electrons are able to move against the electric field.  
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The equilibrium conditions are disturbed when light hits the solar cell and the so-

called inner photo effect creates additional charge carriers that are free to move in the 

electric field of the depletion zone.    

The holes move towards the p-region and the electrons towards the n-region, thus 

creating an external voltage at the cell. This external voltage in a solar cell is material 

dependent and does not depend on the cell's surface area.  

3.3 The mathematical modeling of solar cell, module           

and array 

As mention in the earlier sections, the solar cell is basically a p-n junction fabricated 

in a thin wafer or a layer of semiconductor. The electromagnetic radiation of solar 

energy can be directly converted into electricity through the photovoltaic effect. When 

exposed to sunlight, photons with energy greater than the band-gap energy of the 

semiconductor are absorbed and they create some electron-hole pairs proportional to 

the incident irradiation. Under the influence of the internal electric fields of the p-n 

junction, these carriers are swept apart and they create a photocurrent which is 

directly proportional to solar insulation. The PV system naturally exhibits a nonlinear 

I-V and P-V characteristics which vary according to the solar irradiance and cell 

temperature.   

3.3.1 The solar cell 

The common mathematical model for the solar cell has been studied over the past 

three decades (Phang et.al. 1984). The circuit of the solar cell model is shown in 

Figure 3.3.  The model consists of a photocurrent, diode, parallel resistor (leakage 

current) and a series resistor. 
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Figure 3.3 - General equivalent circuit of PV cell 

The power output of a single diode solar cell is given by (Villalva et al. 2009).  

          IVP                                                                  (3.1) 

According to both the PV cell circuit shown in Figure 3.3 and Kirchhoff’s circuit 

laws, the photovoltaic current can be presented as follows (Villalva et al. 2009): 
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Where Igc is the light generated current; Ids is the dark saturation current dependant on 

the cell temperature; q is the electric charge (1.6 x 10
-19

 C); KB is the Boltzmann’s 

constant (1.38 x 10
-23

 J/K); F is the cell idealizing factor; Tc is the cell’s absolute 

temperature; Rs is the series resistance; and Rp is the parallel resistance. The 

photocurrent (Igc) which mainly depends on the solar irradiation and cell temperature 

is described as (Villalva et al. 2009):  

  GITTI scrcscgc                                            (3.3) 

Where μsc is the temperature coefficient of the cell’s short circuit current; Tr is the 

cell’s reference temperature; Isc is the cell’s short circuit current at a 25
o
C and 

1kW/m
2
; and G is the solar irradiation in kW/m

2
. Furthermore, the cell’s saturation 

current (Ids) varies according to the cell temperature and can be described as (Villalva 

et al. 2009): 
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Where Ioα is the cell’s reverse saturation current at a solar radiation and reference 

temperature; vg is the band-gap energy of the semiconductor used in the cell; and voc is 

the cells open circuit voltage. The cell ideal factor (F) is dependent on the cell 

technology as shown in Table 3.2. 

                           Table 3.2 - Ideal factor (F) dependent on the PV technology 

Cell Technology Ideal factor (F) 

Si-poly 1.3 

Si-mono 1.2 

a-Si-triple 5 

a-Si:tandem 3.3 

a-Si:H 1.8 

CdTe 1.5 

CIS 1.5 

AsGa 1.3 

 

3.3.2 PV module and array 

The output power of the solar cell is said to reach approximately 2W at 0.5V. To 

increase the power, the cells are connected in series-parallel configuration on a 

module. For photovoltaic systems, the PV array is the group of several PV modules 

which are connected in series and parallel circuits to generate the required voltage and 

current. Figure 3.4 shows this configuration. 
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Figure 3.4 - PV cell, module, and array 

The equivalent circuit for the solar module arranged in NP parallel and NS series 

branches is shown in Figure 3.5. 

 

Figure 3.5- General equivalent circuit of PV module 

The terminal equation for the current and voltage of the cell module comes out as 

follows (Kim & Youn 2005): 
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Where NS is the number of cells in series; NP is the number of cells in parallel. 
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3.4 PV panel sizing calculation 

At this stage, we shall calculate the number of modules that are needed to supply a 

load of 4.6kW in the city of Manchester, UK. First, we need the solar resource at the 

site. For example, the daily average solar irradiance and temperature during the month 

of June 2010 in Manchester is 554W/m² and 35
o
C respectively. The irradiance and 

temperature data were gathered during the day light (8:00am - 19:00pm) from central 

Manchester. Assume for the example the Astronergy CHSM6610P PV module which 

produces 225W at 1kW/m² and 25ºC. 

Using the formulas (3.2) to (3.6), we can compute the power generated by the 

photovoltaic module. The output characteristics for the PV module are shown in 

Figure 3.6 (a) and (b).     

  

Figure 3.6 - (a) P-V Curve for the Astronergy PV module at 1000W/m² and 554.5W/m²      

(b) I-V Curve for the Astronergy PV module at 1000W/m² and 554.5W/m² 

Now if we try to calculate the number of solar module needed by the system, we take 

the load power of 4.6kW and divide it by the power generated from the solar module 

(4600W) / (111) = 41.4. The result means that we will need 42 Astronergy solar 

modules to generate enough power for a load of 4.6kW.   

a b 
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3.5 Photovoltaic manufactures 

The photovoltaic modules are available in a range of sizes. Some are used in grid 

connected and others in standalone systems. Both types range from 80W to 300W. 

The performances of PV modules and arrays are generally rated according to their 

maximum DC power output (watts) under the Standard Test Conditions (STC). STCs 

are defined by the module (cell) operating temperature of 25ºC (77 F) and the incident 

solar irradiance level of 1000 W/m². Since these conditions are not always present, 

PV modules and arrays operate in the field with performance of 85 to 90 percent of 

the STC rating. Table 3.3 present the PV modules specifications used in this thesis. 

All the data was taken from the manufacture’s data sheet. 

Table 3.3 - PV modules specifications 

Solar Module 

Parameter 

Lorentz Mono-

Crystalline 

Sharp’s 

NUS0E3E 

Astronergy 

CHSM6610P 

Maximum power (PMPP) 95W 180W 225W 

Open circuit voltage (Voc) 20.6V 30V 36.88V 

Voltage  at MPP (Vamp) 17.2V 23.7V 29.76V 

Short circuit current (Isc) 6.2V 8.37A 8.27A 

Current at MPP (Iamp) 5.5V 7.6A 7.55A 

Temp coefficient for PMPP -0.38 (%/
o
C) -0.485 (%/°C) -0.46 (%/

o
C) 

Temp coefficient for Voc -58.7 (mV/°C) -104 (mV/°C) -0.129 (V /
o
C) 

Temp coefficient for Isc 5.3 (mA/
o
C) +0.053 (%/

o
C) +0.052 (%/°C) 

No. of cells (NS) 32 48 60 

Cell type Monocrystalline Monocrystalline Polycrystalline 
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3.6 Summary 

Photovoltaic module consists of solar cells which are generally made either from: 

 Crystalline silicon; 

 Thin films; or 

 Other technologies such as CPV, OPV, and DSSC  

Crystalline cells are the most common technology, and they are more sensitive to heat 

than thin film cells.  

During daylight, the PV system naturally exhibits nonlinear output characteristics (I-

V and P-V), which vary according to the sun radiation and cell temperature as 

mentioned in Section 3.3. However in the dark, the solar cell will remain inactive; yet 

it will work as a diode.  

The amount of electrical power generated by a solar panel is directly related to the 

intensity of light energy. According to the Joint Research Centre (JRC) of European 

Commission, every horizontal square meter of the UK receives solar energy between 

750 and 1,100 kWh each year. Some of this energy is received as direct sunlight and 

some as diffused sunlight.  

There are many factors that may affect the performance of photovoltaic panels. 

Among those are the shading, the collector azimuth, and the collector slope. 

Therefore, the solar industry uses solar windows while installing PV panels to 

determine the direction and availability of sunlight for a specific building or location. 

The next chapter presents the dynamic behaviour of the wind turbine conversion 

system and discusses the rotor power characteristics with respect to the wind speed 

and the rotor speed. 
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    Chapter 4 
 

Wind Power and Rotor 

Characteristics 
 

This chapter outlines the dynamic behaviour of the wind turbine conversion system. 

First, it gives a glimpse for the types, components, noise level, and manufactures of 

small wind turbine. Then, it provides explanations on how much power can be 

extracted from the wind, and how the wind turbine is modelled. 
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4.1 Introduction to wind energy 

Wind energy is a source of renewable power which comes from the air currents 

flowing across the earth's surface. The wind turbines harvest such kinetic energy and 

convert it into usable power which can provide electricity for home, school, farm, or 

business applications on small (residential) or large (utility) scales. 

The wind energy is one of the fastest growing sources of electricity and one of the 

fastest growing markets in the world today. Figure 4.1 shows a diagram for the 

growth of wind energy in the United Kingdom in particular. 

In March 2012, the installed capacity of wind power in United Kingdom came out at 

6,580MW, with 333 operational wind farms and 3,506 wind turbines (RES 2012). 

These growing trends can be attributed to the multi-dimensional benefits associated 

with wind energy: 

 Sustainable energy: wind is a renewable energy resource; it is inexhaustible 

and requires no "fuel" other than the wind that blows across the earth.  

 

Figure 4.1 - UK installed wind power capacity 1990–2011 (operational) 
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 Green power: the electricity produced from the wind power is said to be 

"clean" because its production causes no pollution or greenhouse gas release. 

As both health and environmental concerns are now considered serious threats 

to human health and to the environment, clean energy sources are becoming a 

growing demand. 

 Affordability: the wind power is very cost-competitive source of electricity. 

So wind turbines are manufactured and put in service around the world.  

 Economic Development: in addition to being affordable, the wind power is a 

locally-produced source of electricity that enables communities to keep energy 

dollars and to invest them in their economy. Job creation (manufacturing, 

service, construction, and operation) and tax base increase are other economic 

advantages for countries which utilize wind energy.  
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4.2 The wind turbines  

A wind turbine is a machine that converts the kinetic energy from the wind into 

mechanical energy. If the mechanical energy is then converted to electricity, the 

machine is called a wind generator (Gipe 2004). 

In the wind turbine business there are basically two types of turbines to choose from: 

 The horizontal axis wind turbines(HAWT); and  

 The vertical axis wind turbines (VAWT). 

The size of these modern wind turbines ranges from a few Watts (Small Wind 

Turbines) to several Mega Watts (Large Wind Turbines). HAWT dominate much of 

the wind industry. Horizontal axis basically means that the rotating axis of the wind 

turbine is horizontal or parallel with the ground. In big wind applications, HAWT are 

almost all users will ever see. However, in small wind and residential wind 

applications, VAWT have a good share of the market. The advantage of horizontal 

wind is that it could produce more electricity from a given amount of wind. So if you 

are trying to produce as much electricity as possible at all times, the horizontal axis is 

likely to be your choice. The disadvantage of horizontal axis, however, is that it is 

usually heavier than VAWT and it does not function well in turbulent winds. 

As for VAWT, the rotational axis of the turbine stands vertical or perpendicular to the 

ground. So, VAWT are primarily used in small wind projects and in residential 

applications. There are two main advantages for using a vertical axis:  

 The turbine generator and the gearbox can be placed lower to the ground thus 

making maintenance easier and construction costs lower ; and 

 The turbine does not need to be pointed towards the wind to be effective 

which makes it ideal for installations where wind conditions are not 

consistent. 
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Despite these advantages, VAWTs suffer from serious drawbacks. Among those are: 

 VAWTs have a very low starting torque. 

 As the VAWT are mounted closer to the ground, less wind speed will be 

available, which means less electricity will be produced. 

As a conclusion to the comparison between these two types of turbines, one could say 

that most of today's commercial machines are HAWT with three bladed rotors. While 

research and development activities on VAWT were intense during the end of the last 

century, VAWT could not evolve as a reliable alternative to the horizontal axis 

machines (Mathew 2006). Figure 4.2 shows VAWT and HAWT. 

  

Figure 4.2 - (a) Vertical axis wind turbines (VAWT) (b) Horizontal axis wind turbines 

(HAWT) 

 

 

 

a b 
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4.3 The small wind turbines 

Small wind turbines are wind turbines which have lower energy output than large 

commercial wind turbines. They are typically used for powering houses, farms and 

remote locations that usually consume less than 50kW of total capacity. Small units 

often have direct drive generators, direct current output, and a vane to point into the 

wind. For the purposes of this study, the turbines that will be used for optimization are 

the small horizontal axis with three blades. 

4.3.1 The small wind turbines components 

The basic components for small HAWT are shown in Figure 4.3 and they include: 

 

Figure 4.3 - Components of a small wind turbine 
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 Rotor/blades: the rotor drives the generator by harnessing the kinetic energy in 

the wind. The blades are usually made of fibreglass, metal, reinforced plastic 

or reinforced wood, and they are aerodynamically shaped to best capture the 

wind. The amount of energy a turbine can capture is proportional to the rotor 

sweep area. 

 Generator/Alternator: the generator is the part that produces electricity from 

the kinetic energy captured by the rotor. A generator produces direct current 

power or, if in use, an alternator produces alternating current power, 

depending on the application for the turbine. 

 Gearbox: most turbines above 10kW use a gearbox to match the rotor speed to 

the generator speed. 

 Nacelle:  the housing that protects the essential motorized parts of a turbine is 

called the Nacelle. 

 Tail vane (Yaw system): most small wind turbines use a simple tail vane that 

directs the rotor into the wind. 

 Control & protection system: the system is usually supplied as part of a small 

wind turbine package. Control systems vary from simple fuses, switches and 

battery charge regulators to computerized systems for control of yaw systems 

and brakes. The sophistication of the control and protection system varies 

depending on the application of the wind turbine.  

 Tower: the tower provides the support of the small wind turbine. The wind 

speed increases at higher heights, which means that the higher the tower the 

greater the power. Several types of towers are in use. Among those are:  

o The Guyed tower is used for the wind turbines from 500W to 10kW 

with simple structure, low cost and easy installation; this type is 
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especially suitable for home use. However, the tower is permanently 

supported by guy wires, and it needs much land space. 

o The Tilt Up tower is typically used on smaller turbines up to 5kW or 

so. The benefit of tilt up tower is that it can be raised and lowered for 

easy maintenance and repair as shown in Figure 4.4. Such good degree 

of flexibility will reduce the maintenance cost and protect the wind 

turbine in times of strong winds or typhoons. As a design limitation, it 

cannot be applied for large wind turbines from 10kW to 50kW. 

 

Figure 4.4 - Tilt up tower diagram (FWE 2012) 

 

o The self-supporting towers do not have any guy wires. These towers 

tend to be the heaviest and most expensive, and they can be used for 

wind turbines from 1kW and above. 
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4.3.2 The noise of a small wind turbine  

The noise of a small wind turbine varies depending on tower height and size of 

turbine. The manufacturer must specify the sound level in (dB) of the turbine at a 

given distance.  At a distance of 250m, a typical wind turbine produces a sound 

pressure level of about 45dB (Gipe 1993). Figure 4.5 offers a comparison of dBs.  

 
Figure 4.5 - Comparison of decibel levels from a wind turbine (Rivera 2008) 

The figure shows how a sound level of 45dB is below the background noise level 

produced in a home or an office. Most small wind turbines make less noise than a 

residential air conditioner. Still, before instalment, one must check that the noise level 

of the small turbine does not violate local regulations.  
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4.3.3 The small wind turbines manufacturers  

Today there are more than fifty manufacturers of small wind turbines worldwide, and 

they produce more than one hundred different models (Gipe 2004; Rivera 2008). 

Table 4.1 presents examples of small wind turbines available in the market today. 

These turbines are the ones mostly used in Europe and United States for small wind 

power applications.  

 

Table 4.1 - Small wind turbines 

Product 
Rotor  

Diameter 
(m) 

Rotor  
Area 
(m2) 

Weight Voltage 
(V) 

SouthWest (Air X) 1.14 1.02 13 12, 24, 48 Vdc 

SouthWest (Whisper 100) 2.1 3.46 47 12, 24, 48 Vdc 

SouthWest (Skystream 3.7) 3.72 10.87 154 120/240 AC 

Bergey (BWC XL.1) 2.5 4.91 75 24, 48Vdc 

Bornay (Inclin 250) 1.4 1.54 93 12, 24, 48, 220 Vdc 

Bornay (Inclin 600) 2 3.14 93 12, 24, 48, 220 Vdc 

Bornay (Inclin 1500) 2.7 5.73 93 12, 24, 48, 220 Vdc 

Bornay (Inclin 3000) 3.7 10.75 276 12, 24, 48, 220 Vdc 

Bornay (Inclin 6000) 3.7 10.75 342 12, 24, 48, 220 Vdc 

Abundant Renewable Energy 

(ARE442) 

7.2 40.72 1350 48Vdc 

Kestrel Wind (600) 1.6 2 44 12, 24, 48, 110, 200Vdc 

Kestrel Wind (800) 2.3 4.15 66.1 12, 24, 48, 110, 200 Vdc 

Kestrel Wind (1000) 3 7.07 88 12, 24, 48, 110, 200 Vdc 

Kestrel Wind (3000) 4 12.5 397 48, 110, 250Vdc 
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4.4 The mathematical modelling 

The wind turbine converts the kinetic energy from the wind into mechanical energy 

and then delivers it via a mechanical drive unit to the rotor of an electric generator.  

4.4.1 The power extraction from the wind 

The kinetic energy of a mass in motions is (Hugo 2007; Serway & Vuille 2011):  

2

2

1
mvE                                                          (4.1) 

The power in the wind Pw is given by the rate of change of energy (Hugo 2007): 

dt

dm
v

dt

dE
Pw

2

2

1
                                                    (4.2) 

Where Pw is the power output in (W), v is the wind speed (m/s), and
dt

dm
 is the mass 

flow rate per second.  

Also it was found that (Hugo 2007):  

dt

dx
A

dt

dm
s                                                       (4.3) 

Where 

v
dt

dx
                                                        (4.4) 

We get:  

vA
dt

dm
s                                                     (4.5) 

Where ρ is the air density in (kg/m
3
), As is the swept area of blades (m²), and 

dt

dx
is the 

distance change rate per second.  
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Hence, from Equation (4.2) and (4.5), the power in the wind can be defined as:  

3

2

1
vAP sw                                                     (4.6) 

As shown in Equation (4.6), the power in the wind (Pw) is a function of the air density 

(ρ), the swept area (As), and the wind speed (v). Increasing these factors will increase 

the power available from wind.  

  The air density  

The air density (ρ) changes slightly with air temperature and elevation. Cold air in the 

winter is denser than warm air in the summer. However at higher elevation the air is 

less dense than at lower elevation. The density of the air can be calculated using the 

ideal gas law as follows:     

TgasAR

p
                                                      (4.7) 

Where ρ is the air density (kg/m
3
), p is the absolute pressure (N/m

2
), Rgas is the gas 

constant, and AT is the absolute temperature.  

  The swept area 

The swept area refers to the area of the circle created by the blades as they sweep 

through the air; it is shown in Figure 4.6. 

The swept area of the turbine can be calculated from the length of the turbine blades 

using the equation for the area of a circle:    

2

4
rs DA


                                                         (4.8) 

Where Dr is the rotor diameter in meters. 
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Figure 4.6 - Swept area of blades (WTSA 2012) 

 

4.4.2 The rotor power characteristics 

In 1919, a German physicist Albert Betz discovered that no wind turbine can convert 

more than 16/27 (59.3%) of the kinetic energy of the wind into mechanical energy 

turning a rotor. The theoretical maximum power efficiency of any design of wind 

turbine is 0.59 (Betz factor) for an ideal, frictionless flow converter. In real cases, the 

wind turbine will always have a smaller maximum power coefficient than the Betz 

factor; this is due to many losses caused by the rotor design and construction (number 

of blades, weight, etc.).  

The power coefficient and the efficiency of a wind turbine system are different. The 

efficiency of a wind turbine includes the loss in the mechanical transmission, 

electrical generation, converter loss, etc., whereas the power coefficient is the 

efficiency of converting the power in the wind into mechanical energy in the rotor 

shaft. Figure 4.7 shows a diagram with the losses of a wind turbine system.  
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Figure 4.7 - Power flow and losses of wind turbines  

 

Using the power coefficient the mechanical power on the rotor can be calculated as 

function of wind speed (Muljadi 2001): 

3

2

1
vAcP spm 

 

Where Pm is the mechanical power on the rotor (W), cp is the rotor power coefficient, 

ρ is the air density (kg/m
3
), As is the swept area (m

2
), and v is the wind speed (m/s).

  

The power coefficient is usually given as a function of the tip speed ratio λ and the 

blade pitch angle β. In this thesis, the following power coefficient analytical function 

was used to model the wind turbine as demonstrated in (Lubosny 2003): 
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Where constants c1 to c6 are parameters that depend on the wind turbine rotor and 

Output Power 

Power Electronic Converter 

Losses in Power Electronics 

Generator 
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Power from Wind 

Losses in Rotating Blades and Rotor Mechanism 

(4.9) 

(4.10) 



Hybrid Power Systems Energy Management Based on Artificial Intelligence 
 

Wind Power and Rotor Characteristics  62  

blade design, λ is the tip speed ratio of the rotor blade, β is the blade pitch angle 

(degree), and λi is a parameter given in (4.9). 

1

035.0

08.0

11
3 





i  

The Cp- characteristics, for different values of the pitch angle β, are shown in 

Figure 4.8. The maximum value of Cp (Cp-max = 0.48) is achieved for β = 0
o
 and for 

 = 8.1. This particular value of is defined as the nominal value (nom).  

 

Figure 4.8 - Cp-λ characteristics of wind turbines for different values of pitch angle 

 

4.4.3 The permanent magnet DC generator 

The Permanent Magnet DC (PMDC) machine is used in a wide variety of applications 

due to its low price, high starting torque and easy control. Compared to other DC 

machine drives, the PMDC eliminates the need for separate field excitation and 

attendant electrical losses in the field windings (BEC 2012).  

(4.11) 
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When an electric machine is used as a generator, a prime mover is needed to drive the 

generator. In wind energy applications, the wind turbine is the prime mover of the 

generator. The equivalent circuit of the PMDC machine is shown in Figure 4.9.  

 

Figure 4.9 - Equivalent circuit of a PMDC machine operated as generator 

 

According to both the PMDC machine circuit shown in Figure 4.9 and Kirchhoff's 

voltage law, the electrical side of the PMDC generator can be presented as follows 

(Sharaf et al. 2007):  

dt

dI
LRIKV a

aaaamma  
 

Where Va is the generator output voltage (V), Km is the torque constant (N.m/A), m is 

the motor speed (rad/s), Ia is the armature current (A), Ra is the armature resistance 

(), and Laa is the armature inductance (H).   

On the mechanical side, the electromagnetic torque (Te) developed by the DC 

machine is proportional to the armature current Ia, as shown below (Sharaf et al. 

2007):  

ame IKT 
 

The applied torque produces an angular velocity ωm according to the inertia Jm and the 

friction Bm of the machine and load. The relations are described by (Sharaf et 

al. 2007) as follows: 

(4.12) 

(4.13) 
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mmLe
m

m BTT
dt
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Where Jm is the total inertia (Kg.m
2
), TL is the load torque (N.m), Te is the 

electromagnetic torque (N.m), and Bm is the viscous friction coefficient (N.m.s).  

4.5 Summary  

Modern wind turbines safely and efficiently turn wind into useable energy. They can 

rotate about either a horizontal or a vertical axis. More they come with different sizes. 

In this work small wind turbines are selected, since they are typically used for 

powering houses, farms and remote locations that usually consume less than 50kW of 

total capacity. They often have direct drive generators (permanent magnet), direct 

current output (see Table 4.1), and makes less noise than a residential air conditioner.  

The output power of wind turbine depends on the wind speed and the generator speed. 

A wind turbine can only extract part of the power from the wind, which is limited by 

the Betz limit (maximum 59%). This fraction is described by the power coefficient of 

the turbine (see Equation (4.16)), which is a function of the blade pitch angle and the 

tip speed ratio.  

The power extracted by the turbine increases as the wind speed increases. Therefore 

for safety consideration, a control system is needed to limit the generator output 

power to its nominal value for high wind speeds (see Section 6.1.2). 

The next chapter present the dynamic behaviours of the lithium-ion battery and the 

proton exchange membrane fuel cell. 

 

 

 

 

(4.14) 
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   Chapter 5 
 

Backup Power Systems:      

Batteries & Fuel Cells 

 

This chapter introduces and explains the dynamic behaviour and characteristics of 

Lithium-Ion (Li-Ion) battery and proton exchange membrane fuel cell (PEMFC). 

Hence, it shows the advantages of Li-Ion battery and PEMFC over other types of 

rechargeable batteries and fuel cells. Then, it describes the operational mechanism 

and the mathematical modelling for each. 
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5.1 Introduction  

The growth of photovoltaic and wind power generation systems has exceeded the 

most optimistic estimation, as shown in Figure 5.1 (Jacobson & Delucchi 2009; Jacobson 

& Delucchi 2010). And according to a 2011-projection by the international energy 

agency, solar power generators may produce most of the world’s electricity by 2060 

(Sills 2011).  

 

Figure 5.1 - Projected growth of wind power and photovoltaic's, based on history 

through 2011 

However, the natural variations in solar radiation, temperature, and wind speed cause 

power fluctuations in solar PV and wind turbine systems. 

To alleviate this problem and to meet sustained load demands during varying natural 

conditions, backup power sources are needed to be integrated with the solar-wind 

hybrid power system. Thus, fuel cells with reversible energy storage
2
 ideally fulfil the 

need for any start up power.  

 

                                                           
2
  Reversible energy storage is accomplished by devices that store energy to perform useful operation at 

a later time; such as batteries. 
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5.2 Batteries 

A battery is a device that converts chemical energy directly to electrical energy. It 

contains one or more cells. Each cell consists of three main parts: a positive electrode 

(terminal), a negative electrode, and a liquid or solid separating them called the 

electrolyte. When a battery is connected to an electric circuit, a chemical reaction 

takes place in the electrolyte causing ions (in this case, atom with a positive electrical 

charge) to flow through it one way. With electrons (particles with a negative charge) 

flowing through the outer circuit in the other direction. This movement of electric 

charge makes an electric current flow through the cell and through the circuit it is 

connected to (Dell & Rand 2001). 

Different types of batteries are produced for different applications. They can be used 

for storing solar power for satellites in space to powering heart pacemakers fitted 

inside people's chests. 

5.2.1 Types of batteries 

There are two types of batteries:  

 Primary batteries (disposable batteries): which are designed to be used once 

and discarded. 

 Secondary batteries (rechargeable batteries): which are designed to be 

recharged and used multiple times.  

Most of the batteries used today with hybrid power system are from the rechargeable 

type (Rivera 2008). There are several kinds of rechargeable batteries. Among them, as 

shown in Table 5.1: NiCd (Nickel Cadmium), NiMH (Nickel Metal Hydride), Lead-

Acid, and Lithium-Ion (Li-Ion). 
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Table 5.1 - Common rechargeable battery types 

Parameters NiCd NiMH Lead-Acid Lithium-Ion 

Nominal cell voltage (V) 1.2 1.2 2.1 3.6 

Energy density (Wh/kg) 40-60 30-80 30-40 150-250 

Specific power (W/kg) 150 250-1000 180 1800 

Charge/discharge 

efficiency (%) 
70%-90% 66% 70%-92% 99%

+
 

Self-discharge rate in 

(%/month) 
20% 30% 3%-4% 5%-10% 

Cycle durability
3
 (#) 1500 500-1000 500-800 1200-10000 

 

As shown in Table 5.1, Lithium-Ion battery has many advantages than other 

rechargeable batteries, such as (BU 2012): 

 High energy density: it is typically twice that of the standard Nickel Cadmium. 

 High cell voltage with 3.6 volts. 

 Low battery maintenance: an advantage that most other chemistries cannot 

claim.  

 Relatively low self-discharge: self-discharge is less than half that of Nickel-

based batteries. 

 High charge/discharge efficiency: more than 99%. 

 High cycle durability: it can last for many hundreds or even thousands of 

charge/discharge cycles. 

                                                           
3
 The total number of cycles a battery is capable of producing before it fails. 
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These characteristics have made the Li-Ion battery the fastest growing and most 

promising battery system for renewable energy applications (VT 2012; 

Richmond 2012). Therefore, Li-Ion battery is the rechargeable battery that will be 

investigated in this work. 

5.2.2 The charge/discharge mechanism in Li-Ion battery 

As with most batteries they have an outer case made of metal. This metal case holds a 

long spiral comprising three thin sheets pressed together: 

 A Positive electrode (cathode) 

 A Negative electrode (anode) 

 A separator 

The separator is a very thin sheet of micro-perforated plastic, which separates the 

positive and negative electrodes while allowing ions to pass through.  

The positive electrode is made of Lithium Cobalt Oxide, or LiCoO2. The negative 

electrode is made of Carbon. It can be seen from Figure 5.2, that during discharge, 

Lithium (Li
+
) ions carry the current from the negative to the positive electrode, 

through the electrolyte and separator diaphragm. 

 
Figure 5.2 - Charge and discharge mechanism of Li-Ion rechargeable batteries (HSW 2012) 
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During charging, an external electrical power source applies an over-voltage than that 

produced by the battery, forcing the current to pass in the reverse direction. The 

lithium ions then migrate from the positive to the negative electrode, where 

they become embedded in the porous electrode material in a process known 

as intercalation.  

5.2.3 The mathematical modelling of Li-Ion battery 

In the literature, several studies have been reported regarding to Li-Ion battery (Zhang 

& Lee 2011). In this work, the Li-Ion battery is modelled using a controlled voltage 

source in series with a constant resistance, as shown in Figure 5.3. 

 

Figure 5.3 - Battery model equivalent circuit 

 Discharge model: 

The discharge battery model used is based on the Shepherd model (Shepherd 1965) 

but, it can represent accurately the voltage dynamics when the current varies and takes 

into account the open circuit voltage (OCV) as a function of state-of-charge (SOC). 

The OCV varies non-linearly with the SOC. Therefore, a term concerning the polarisation 

voltage has been added 









it

itQ

Q
K  to better represent the OCV behaviour.  
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The battery voltage (Vbatt) obtained can be described as (Tremblay & Dessaint 2009): 

)exp(* itBAi
itQ

Q
KiRit

itQ

Q
KEV obatt 





                    (5.1) 

Where Eo is the battery constant voltage
4
 (V), K is the polarization constant (Ah

-1
), 

Q is the maximum battery capacity (Ah), it (∫ i dt) is the actual battery charge (Ah), 

R is the internal resistance (Ω), i is the battery current (A), i* is the low frequency 

current dynamics
5
 (A), A is the exponential zone amplitude (voltage drop during the 

exponential zone) (V), and B is the exponential zone time constant inverse (Ah) 
−1

.   

 Charge model: 

The battery charge behaviour, especially the end of the charge characteristic, is 

different and depends on the battery type. In Li-Ion battery the voltage will increase 

rapidly when the battery reach the full charge, as shown in Figure 5.4. This 

phenomenon can be modeled by the polarisation resistance term 








it

Q
K . The 

polarisation resistance increases until the battery is almost fully charged (it = 0). 

Above this point, the polarisation resistance increases suddenly. 

Theoretically, when it = 0 (fully charged), the polarisation resistance is infinite. This 

is not exactly the case in practice. Actually, experimental results have shown that the 

contribution of the polarisation resistance is shifted by about 10% of the capacity of 

the battery (Tremblay & Dessaint 2009). Hence the polarization resistance of the 

charge model can be described as: 

 
Qit

Q
K

1.0
Resistance Pol.


                                            (5.2) 

                                                           
4 It’s the battery voltage when there is no flowing current. 
5
 The filtered current (i*) has been added to solve the algebraic loop problem due to the simulation of 

electrical systems in Simulink. 
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Figure 5.4 - Typical charge characteristic 

 

Similar to the discharge model, the exponential voltage for the Li-Ion battery is the

)exp( itBA  term. Hence, the battery voltage obtained can be described as (Tremblay 

& Dessaint 2009): 

)exp(
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* itBAi
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Q
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                  (5.3) 

The main feature of this battery model is that the parameters can easily be deduced 

from a manufacturer’s discharge curve. Figure 5.5 shows a typical discharge 

characteristic for Li-Ion battery. As shown, the first section represents the exponential 

voltage drop when the battery is charged. Depending on the battery type, this area is 

more or less wide. The second section represents the charge that can be extracted 

from the battery until the voltage drops below the battery nominal voltage. Finally, 

the third section represents the total discharge of the battery when the voltage drops 

rapidly. 
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. 

Figure 5.5 - Nominal current discharge characteristic 

 

The three necessary points used to extract the model parameters are: the fully charged 

voltage, the end of the nominal zone and the end of the exponential zone. With these 

three points, it is possible to solve, using Equation (5.1), the following set of 

Equations (5.4), (5.5) and (5.6). For the fully charged voltage (Vfull), the extracted 

charge is 0 (it = 0) and the filtered current (i*) is 0 because the current step has just 

started: 

  AiREV ofull                                              (5.4) 

For the end of the exponential zone, the factor B can be approximated to 














exp

3

Q
since 

the energy of the exponential term is almost 0 after 3 time constants (Tremblay & 

Dessaint 2009).  

In steady state the filtered current is equal to (i). Hence, the exponential zone voltage 

(Vexp) can be described as:  

  )
3

exp( exp

exp

exp

exp

exp Q
Q

AiRiQ
QQ

Q
KEV o 


                   (5.5) 

And the nominal zone voltage (Vnom) can be given by: 
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                 (5.6) 
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5.2.4 Battery storage bank sizing 

Calculating the number of batteries needed for a solar-wind hybrid power system 

mainly depends on the days of autonomy desired. Days of autonomy are the number 

of days a battery bank will supply a given load without being recharged by a wind 

turbine, PV array or another source. For critical loads 5 days of autonomy are 

recommended. If the load being supplied is not critical then 2 to 3 autonomy day are 

commonly used. A critical load is a load that must be used all the time (Rivera 2008).  

Another important factor is the maximum depth of discharge of the battery. The depth 

of discharge refers to how much capacity will be used from the battery. Most systems 

are designed for regular discharge values between 40 to 80 percent (Rivera 2008). 

Hence, and according to (Sandia 1995), the required battery bank capacity (BC-R) for a 

hybrid renewable energy system can be calculated as follow:  

 
DODM

NI
B DC

RC                                                      (5.7) 

Where IC is the Amp-hour consumed by the load in a day (Ah/day), ND is the number 

of autonomy days, and MDOD is the maximum depth of discharge. 

The number of batteries to be connected in parallel (NB-P) to reach the Amp hours 

required by the system can be calculated as follow (Rivera 2008): 

C

RC

PB
B

B
N 

                                                       (5.8) 

Where BC is the capacity of the selected battery (Ah). 

While, the number of batteries to be connected in series (NB-S) to reach the voltage 

required by the system can be calculated as follow (Rivera 2008): 

 
V

V

SB
B

S
N                                                        (5.9) 

Where SV is the DC system voltage (V), and BV is the battery voltage (V). 
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Now let's size a battery bank needed to supply 4800Wh per day to a DC electric load. 

Assume that: 

 The DC voltage of the battery bank is 24V. 

 The number of autonomy days is 2 days. 

 The maximum depth of discharge is 44.44%. 

 The selected rechargeable battery is (12V-450Ah) Li-Ion 

Then, by using the Equations from (5.7) to (5.9) we can calculate the batteries 

required by this system as follow:  

Ah
M

NI
B DC

RC 900
4444.0

2200

DOD






 

2
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900
 

C
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Figure 5.6 shows the example battery bank wired connection. 

 
Figure 5.6- Series-parallel battery bank example configuration 
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5.3 Fuel cells 

A fuel cell is an electrochemical device which combines a fuel and oxygen to deliver 

power.  Hydrogen is the most common fuel, but hydrocarbons such as natural gas and 

alcohols like methanol are sometimes used.  

Like a battery, individual cells can be combined together to form a stack that deliver 

power which is needed for the given application.  Unlike a battery, which is closed, a 

fuel cell is open on at least one side, the air side being invariably open.  

A fuel cell essentially consists of two electrodes (cathode and anode) separated by an 

electrolyte, which carries electrically charged particles from one electrode to the 

other. Usually the type of electrolyte is used to differentiate between different types of 

fuel cells (EERE 2012). 

5.3.1 Types of fuel cells  

Fuel cells are classified according to the electrolyte they employ. This classification 

determines the fuel required, the operating temperature range, the kind of catalysts 

required, and other factors. These characteristics, in turn, affect the applications for 

which these cells are most suitable. As shown in Table 5.2, there are several types of 

fuel cells currently under development, each with its own advantages, limitations, and 

potential applications (EERE 2012). They can be divided into high temperature fuel 

cell systems (Molten Carbonate Fuel Cell, Solid Oxide Fuel Cell) and low 

temperature systems (Proton Exchange Membrane Fuel Cell, Direct Methanol Fuel 

Cell, Alkaline Fuel Cell).  
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Table 5.2 - Comparison of fuel cell types 

 

Due to the low operating temperature (room temperature to 80
o
C), high efficiency, 

and fast start up, PEM fuel cells are the best candidate for residential application (El-

Sharkh et al. 2004). 

5.3.2 The proton exchange membrane fuel cell mechanism 

In a PEM fuel cell two electrodes are separated by a proton-conducting polymer 

membrane. As shown in Figure 5.7, hydrogen gas is supplied to one electrode (anode) 

and oxygen gas to the other (cathode). At the anode, a platinum catalyst causes the 

hydrogen to split into electrons and hydrogen ions. The polymer electrolyte 

membrane allows only the positively charged ions to pass through it to the cathode. 

While the negatively charged electrons travel along an external circuit to the cathode. 

Fuel Cell Name Electrolyte

 
Operating 

Temperature

 Electrical 

Efficiency 

Alkaline Fuel Cell (AFC) Potassium hydroxide 

(KOH) solution 

Room temperature 

to 90
o
C 

60-70% 

Proton Exchange 

Membrane Fuel Cell 

(PEMFC) 

Proton exchange 

membrane 

Room temperature 

to 80
o
C 

40-60% 

Direct Methanol Fuel Cell 

(DMFC) 

Proton exchange 

membrane 

Room temperature 

to 130
o
C 

20-30% 

Phosphoric Acid Fuel Cell 

(PAFC) 

Phosphoric acid 160-220
o
C 55% 

Molten Carbonate Fuel Cell 

(MCFC) 

Molten mixture of 

alkali metal carbonates 

620-660
o
C 65% 

Solid Oxide Fuel Cell 

(SOFC) 

Oxide ion conducting 

ceramic 

800-1000
o
C 60-65% 
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At the cathode, the hydrogen ions and the electrons combine with oxygen to form 

water (which flows out of the cell). 

 

Figure 5.7- Proton exchange membrane fuel cell (HTE 2012) 

 

5.3.3 The proton exchange membrane fuel cell stack 

In order to achieve the required output voltage several individual fuel cells must be 

combined to a unit called a fuel cell stack. These adjacent cells are connected by a 

separator plate (with horizontal and vertical grooves), which has a number of tasks:   

 Facilitate gas transport to and away from the cells. 

 Seal off adjacent cells and prevent fuel and oxidant leakage. 

 Provide the electrical connections between the cells. 

 Dissipate the heat produced in the cells. 

Figure 5.8 shows a diagram for a PEMFC stack containing three individual fuel cells. 

So simply by varying the number of individual cells, stack can be designed for any 

desirable output voltage. 
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Figure 5.8 - Proton exchange membrane fuel cell stack (HTE 2012) 

 

5.3.4 The mathematical modeling of PEMFC 

The modified PEMFC model
6
 used in this study is based on the dynamic PEMFC 

stack model developed and validated in (Souleman et al. 2009). The model combines 

the features of chemical and electrical models, and fuel cell parameters are obtained 

from manufacturer’s datasheets. Figure 5.9 shows the fuel cell stack as a controlled 

voltage source in series with a constant resistance.  

 
Figure 5.9 - Detailed fuel cell stack model 

                                                           
6
 To improve the generating performance of the PEMFC and prolong its life, stack temperature is 

controlled by a fuzzy logic temperature controller (see Section 7.5).   

Heat 

Air (O2) 

Air (O2) and Water (H2O) Hydrogen (H2) 

PEMFC 
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The fuel cell stack voltage (Vfc) is described as (Souleman et al. 2009): 

fcohm
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ln                          (5.10) 

Where Eoc is the open circuit voltage (V), N is the number of cells, A is the Tafel 

slope (V), Io is the exchange current (A), Ifc is the fuel cell current (A), Td is the 

response time (sec), and Rohm is the internal resistance (Ω). Equation (5.10) is derived 

from (Larminie & Dicks 2003) and represents the stack voltage considering only the 

activation losses (losses due to the slowness of chemical reactions at electrode’s 

surfaces). In (Larminie & Dicks 2003), these losses are modelled electrically by a 

parallel RC branch. Therefore, in a sudden change in stack current, the fuel cell 

voltage will exhibit a delay which is approximately 3 times the time constant (τ = RC) 

prior to equilibrium. This phenomenon is represented in Equation (5.10) by delaying 

the activation losses with a first order transfer function ( 

1
3

1

dsT
) with Td being the 

stack settling time. EOC, A, and i0, are determined as follows (Souleman et al. 2009): 
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Where EN is the Nernst voltage (V), KC is the voltage constant at nominal condition of 

operation, z is the number of moving electrons, Fc is the Faraday’s constant 

(96485 A.s/mol), PH2 is the partial pressure of hydrogen inside the stack (atm), PO2 is 

the partial pressure of oxygen inside the stack (atm), ∆G is the activation energy 
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barrier (J), T is the temperature of operation (K), Ru is Universal gas constant 

(8.3145 J/ (mol.K)), h is the Planck’s constant (6.626×10
−34

 J.s), and α is the charge 

transfer coefficient. The partial pressures, rates of conversion (utilizations), and 

Nernst voltage are determined as follows (Souleman et al. 2009): 
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Where x is the percentage of hydrogen in the fuel (%), Pfuel is the absolute supply 

pressure of fuel (atm), y is the percentage of oxygen in the oxidant (%), Pair is the 

absolute supply pressure of air (atm), Vfuel is the fuel flow rate (l/m), and Vair is the air 

flow rate (l/m). 

Knowing the Nernst voltage and the partial pressures of gases, the new values of the 

open circuit voltage and the exchange current can therefore be calculated using 

Equations (5.11) and (5.13) respectively. 

Fuel cell manufacturers provide specifications (usually given at nominal condition of 

operation) of their stacks which include the peak power, polarization curve, number of 

cell, operating temperature, efficiency, inlet pressures, etc. These data are used to 

obtain the models parameters. For the proposed model, in addition to (Eoc, i0, N A and 

Rohm), three more parameters (α, ΔG, Kc) are to be determined. Therefore, in addition 
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to the four points ((0, EOC), (1, V1), (Inom, Vnom), and (Imax, Vmin)) on the polarization 

curve (Figure 5.10), the following variables are needed: 

 Nominal stack efficiency in % 

 Number of cells in series 

 Nominal operating temperature in 
o
C 

 Absolute supply pressures in atm 

 Nominal air flow rate in liter/min 

 Nominal composition of fuel and air in % 

 
Figure 5.10 - Typical polarization curve 

 
At nominal conditions of operation, (N A, Rohm, and Io) parameters can be determined as 

follows: 

     
     1ln1ln

11

maxmax

min1max1






nomnom

nomnom

IIII

IVVIVV
AN                              (5.19) 

 
1

ln1






nom

nomnom

ohm
I

INAVV
R                                          (5.20) 








 


NA

REV
I ohmOC

o

1exp                                            (5.21) 



Hybrid Power Systems Energy Management Based on Artificial Intelligence 
 

Backup Power Systems 
  83  

With Eoc, i0 and N Α known and assuming that the stack operates at constant rates of 

conversion or utilizations at nominal condition. α, ΔG, and KC can be determined as 

follows: 
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And the nominal rates of conversion of gases are calculated as follows: 
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Where nom is the nominal LHV efficiency of the fuel cell stack (%), h
o
(H2O(gas)) is 

equal to 41.83×10
3 

J/mol, Vnom is nominal voltage (V), Inom is nominal current (A), 

Vair(nom) is the nominal air flow rate (l/min), Pair(nom) is the nominal absolute air supply 

pressure (pa), and Tnom is the nominal operating temperature (
o
C). From these rates of 

conversion, the nominal partial pressures of gases can be derived as follows: 
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In case that the polarizations carve is not provided by the fuel cell manufacturers, then 

at steady state and according to Equations (5.10) and (5.11), V1, Vnom, and Vmin can be 

calculated as follows: 

  ohmooc RINAEV  ln1                                           (5.31) 
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5.4 Summery 

Geographic and seasonal climatic conditions affect the solar-wind energy output. 

Therefore, a fuel cell/battery power system is used to improve the energy supply 

reliability. Due to the low operating temperature, high efficiency, and fast start up, 

PEM fuel cells are the best candidate for residential application. While for batteries 

Li-Ion is the best candidate due to the high density, low maintenance, high cycle 

durability, and high efficiency. 

The mathematical models for Li-Ion battery and PEMFC are presented in 

Sections 5.2.3 and 5.3.4, respectively. As illustrated, each model requires only few 

variables from manufacturer’s datasheets. For Li-Ion battery, the three necessary 

points used to extract the model parameters are: the fully charged voltage, the end of 

the nominal zone and the end of the exponential zone. While for PEMFC, in addition 

to the polarization curve (Figure 5.10), the following variables are needed: nominal 
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stack efficiency, number of cells, nominal operating temperature, absolute supply 

pressures, nominal air flow rate, and nominal composition of fuel and air. 

The next chapter will addressed the implementation and design for the proposed 

hybrid system model using MatLab/Simulink. 
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   Chapter 6 
 

Hybrid Power System:   

Modelling & Simulation 

 

In power applications and system design, modelling and simulation are essential to 

optimize control and enhance system operations. In this chapter, the dynamic 

simulation model is described for a hybrid power system comprises PV panels, wind 

turbine, fuel cells, battery bank, converters and controllers. The main controller, as 

will be presented in Chapter seven, will developed to ensure the continuous power 

supply for the load demand. 
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6.1 Numerical simulation and experimental validation 

The following subsections present the implementation of the PV/wind turbine/ 

PEMFC/Li-Ion battery system model. Modelling and simulation are implemented 

using MatLab/ Simulink and SimPowerSystem software packages. The block diagram 

of the developed hybrid power system is shown in Figure 6.1. 

 

Figure 6.1 - Block diagram of the developed hybrid power system 

 

6.1.1 The photovoltaic model 

A model of PV panel with moderate complexity which includes the series resistance, 

the saturation current of the diode, and the temperature independence of the 

photocurrent source is considered based on the Shockley diode equation (see 

Section 3.3). The PV model is built and implemented using Simulink to verify the 

nonlinear I–V and P–V output characteristics. The block diagram of the proposed 
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model
7
 is implemented and shown in Figure 6.2. The symbol f(u) in the Function 

block library shown in Figure 6.2 is a built-in function notation in Simulink. Each 

function uses a notation with a meaningful lettering to make it readable and 

maintainable; e.g. reverse saturation current function stands for the implementation of 

Equation (3.5). 

 

 

 

 

 

 

 

 

 

Figure 6.2 - Subsystem implementation of the PV model 

 

The PV model parameters are usually extracted from the manufactures data sheet, an 

extract of which can be seen in Table 3.3 (Section 3.5). The parameters required (PV 

panel) are the open circuit voltage, short circuit current, maximum power current, and 

maximum power voltage.  

Therefore, the proposed model is designed to have a dialog box as shown in 

Figure 6.3, in which the parameters of PV module can be configured in the same way 

for the Simulink block libraries.  

                                                           
7
 The develop model is suitable with all PV cell, module and array; in order to analyze the MPPT. 
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Figure 6.3 - Dialog box of the PV model 

 

The inputs for the proposed PV model are solar irradiation, cell temperature and PV 

manufacturing data sheet information. In this chapter, Astronergy CHSM6610P-225 

PV module is taken as an example. The proposed PV model was simulated using 

MatLab/Simulink, as shown in Figure 6.4.  

 

Figure 6.4 - Implementation of the PV model 

 

Both P-V and I-V output characteristics of generalized PV model for Astronergy PV 

module are shown in Figure 6.5. The nonlinear nature of PV module is apparent as 
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shown in the figures, i.e., the output power and current of PV module depend on the 

solar irradiance and cell temperature, and the cell terminal operating voltage as well. 

It was found from Figure 6.5(a) and 6.5(b) that, with increased solar irradiance, there 

is an increase in both the maximum power output and the short circuit current. On the 

other hand, we observed from Figure 6.5(c) and 6.5(d) that with an increase in the cell 

temperature, the maximum power output decreases whilst the short circuit 

current increases. 

 

  

  

Figure 6.5 - I-V and P-V output characteristics (a-b) with different G (c-d) with different Tc 

 

 

 

b 

c d 

a 
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The developed model was validated through a series of experiments as show in 

Figure 6.6. 

The experimental rig consists of one Astronergy CHSM6610P-225 solar panel, 

adjustable load resistance, and some measurement instrumentation.  

 

Figure 6.6 - The experimental test rig 

 

The PV module was placed at an inclination angle of 45
o
. A series of measurements 

were then conducted using the set up on a warm sunny day in August (850W/m
2
). 

Measurements were taken under different load setting, as shown in Table 6.1. 

Observation of temperature, solar irradiance, working voltage and output current of 

PV module were taken and recorded each time the load was changed. It was found 

that both simulated and measured results for the output power of PV module are in 

good agreement as shown in Figure 6.7. The difference is less than 1.35W and the 

standard deviation is 0.39W. This proves the correctness of the proposed model. 
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Table 6.1 - Experiment results for the Astronergy CHSM6610P-225 solar panel  

Load (Ω) Voltage (V) Current (A) Power (W) 

0.1 0.83 7.084 5.88 

0.2 1.53 7.02 10.74 

0.3 2.22 7.04 15.62 

0.4 2.91 6.96 20.25 

0.5 3.56 6.97 24.8 

0.6 4.27 6.94 29.63 

0.7 4.92 6.89 33.9 

0.8 5.6 6.889 38.58 

0.9 6.3 6.94 43.72 

1 7 6.96 48.72 

2 13.7 6.95 95.21 

3 20.7 6.9 142.83 

4 25.41 6.3 160.08 

5 27.57 5.5 151.63 

6 28.5 4.84 138 

7 29.4 4 118.1 

9 30.1 3.2 96.25 

12 30.58 2.6 79.3 

20 31.23 1.6 49.84 

40 31.72 0.8 25.37 

 

 

Figure 6.7 - Results comparison for the simulation and experimental approaches during a 

sunny day on August (850W/m
2
, 44

o
C) 
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6.1.2 The wind turbine model 

The amount of power that a wind turbine can extract from the wind depends on the 

turbine design. Factors such as the wind speed and the rotor diameter affect the 

amount of power that a turbine can extract from the wind. The wind turbine was 

modelled using the mathematical equations shown in Section 4.4. Figure 6.8 shows 

the wind turbine model which adopted for this study (Siegfried 1998). As illustrated, 

there are three inputs and one output. The three inputs are the generator speed, the 

pitch angle,
8
 and the wind speed. The output is the torque applied to the generator 

shaft.  

 

Figure 6.8 –Subsystem implementation of the wind turbine 

The built-in SimPowerSystem block model of a DC machine is used as a power 

generator driven by the wind turbine (MathWorks 2012). As shown in Figure 6.9, the 

rotor shaft is driven by the wind turbine which produces the mechanical torque 

according to the generator and wind speed values. Model parameters are entered via 

the dialog boxes, as shown in Figure 6.10. 

                                                           
8
 The pitch angle is controlled in order to limit the generator output power to its nominal value for high 

wind speeds. 
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Figure 6.9 – Implementation of the wind turbine DC generator model 

  

Figure 6.10 - (a) Dialog box of the WT model (b) Dialog box of the DC generator model 

 

A Proportional-Integral (PI) controller
9
 is used to control the blade pitch angle in 

order to limit the electric output power to the nominal mechanical power. The control 

system is illustrated in the figure below.   

                                                           
9
 The pitch angle change a little (Hwas & Katebi 2012), therefore PI controller has been selected. 

a b 
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Figure 6.11 – (a) Pitch control (b) Subsystem implementation of the PI controller 

Hence, the PI controller and desired pitch angle (β) can be expressed as follows: 

   dtppKppK neineP                                      (6.1) 

Where Kp is the proportional gain, Ki is the integral gain, pe is the electric output 

power, and pn is the nominal mechanical power. The PI controller will keeps the pitch 

angle constant at zero degree when the measured electric output power is under its 

nominal value. When it increases above its nominal value the PI controller will 

increases the pitch angle to bring back the measured power to its nominal value. As 

shown in Figure 6.12, the control system successfully maintains the generator output 

power to its nominal value for high wind speeds. 

 

Figure 6.12 - wind turbine characteristics 

Pe 

Pn 

β error a 

b 
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6.1.3 The Li-Ion battery model 

The model of the Li-Ion battery is implemented in MatLab/Simulink based on the 

mathematical equations shown in Section 5.2.3. It is implemented using several 

standard Simulink blocks as well as some of the SimPowerSystem blocks as shown in 

Figure 6.13. The output of this model is a vector containing three signals: state-of-

charge (SOC), battery current and battery voltage.  

 

Figure 6.13 - Subsystem implementation of the Li-Ion battery model 

 

The main feature of this battery model (see Section 5.2.3) is that the parameters can 

easily be deduced from a manufacturer’s discharge curve. Model parameters are 

entered via the dialog box as shown in Figure 6.14. 

In previous work (Tremblay & Dessaint 2009), the dynamic behaviour of the battery 

model has been validated with respect to current variation and the battery SOC. 

Figure 6.15 shows the dynamic discharge and charge of a 2.3Ah, 3.3V Li-Ion battery. 
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Figure 6.14 - Dialog box of the Li-Ion battery model 

 

 
                                  Discharge                                                            Charge 

Figure 6.15 – Dynamic discharge and charge of a 2.3Ah, 3.3V Li-Ion battery                                     

(a, b) simulated and experimental battery voltage (c, d) battery current variation                               

(e, f) estimated battery SOC (g, h) absolute error between the real and simulated voltage 

f 

g 

e 

d c 

a b 

h 
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It can be noted when the SOC between 20%-100%, the error between the real voltage 

(black solid line) and the simulated voltage (blue dotted line) is within 5%. When the 

SOC decreases below 20%, the error of the simulation model is around 10%. 

However, this is acceptable since the desired SOC limits
10

 are between 40% - 80%.  

6.1.4 The PEMFC stack model 

The dynamic PEMFC model
11

 described in Section 5.3.4 is built and implemented 

using MatLab/Simulink. The modified fuel cell model
12

 combines the features of 

chemical (Qiuli et al. 2006) and electrical models (Runtz & Lyster 2005). Hence, it’s 

suitable for electrical simulation programs and can represent the effect of operating 

parameters on the stack. The model is implemented as shown in Figure 6.16. 

 
Figure 6.16 - Subsystem implementation of the PEMFC stack model 

Fuel cell manufacturers provide specifications of their stacks which include the peak 

power, polarization curve, number of cell, etc. These data, as shown in Section 5.3.4, 

                                                           
10

 The proposed management system maintains the SOC at a reasonable level 40-80% (see 

Section 7.4). 
11

 The model requires only few variables from manufacturer datasheets (see Section 5.3.4 ) 
12

 The PEMFC stack model is modified to include a fuzzy logic temperature controller (see 

Section 7.5) 
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are used to obtain the models parameters. Model parameters are entered via the dialog 

box as shown in Figure 6.17.  

 

Figure 6.17 - Dialog box of the PEMFC model 

There are several methods which can be used to validate the model. The suggested 

validation approach consists of comparing directly the obtained polarization curve 

using the model with those of the manufacturers. Figure 6.18 shows the result for the 

6kW-45V, PEMFC stack (the NedStack PS6
13

). The dotted line shows the simulated 

curve whereas the solid line is the real curve (experimented curve) from datasheet. As 

describe in Section 5.3.4, the variables are extracted from the datasheet
1
 as follow: 

 Voltage at 0 A and 1 A = (65, 63) 

 Maximum operating point (Imax, Vmin) = (225, 37) 

 Nominal operating point (Inom, Vnom) = (133.3, 45) 

 Nominal stack efficiency = 55% 

 Operating temperature = 65
o
C 

 Number of cells in series = 65 

                                                           
13

 The datasheet can be found at http://www.fuelcellmarkets.com/content/images/articles/ps6.pdf. 
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 Nominal air flow rate = 297 l/min 

 Nominal composition of fuel and air = (99.99, 21) 

 Nominal supply pressure (H2, Air) = (1.5, 1) 

 

Figure 6.18 - Simulations and datasheet results 

It is observed that the real curve matches exactly the simulated one, which shows that 

the obtained parameters of this model can represent the fuel cells correctly
14

. 

6.2 The power conditioners models 

Power electronics refers to control and conversion of electrical power by 

semiconductor devices, wherein these devices operate as switches. It has applications 

that extend over the entire field of electrical power systems (see Section 1.3.3), with a 

power range from a few Watts to several Megawatts.  

The main task of power electronics is to control and convert electrical power from one 

form to another. The four main forms of conversion are: AC-to-AC rectification, DC-

to-AC conversion, DC-to-DC conversion, and AC-to-AC conversion 

In the following discussion, we will explain the basic characteristics of DC/DC 

converter, and DC/AC inverter. 

                                                           
14

 The level of accuracy of the model depends on the precision of data provided by the user. 
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6.2.1 The DC/DC converters 

To connect a photovoltaic, wind turbine or PEM fuel cell to an external power system 

(e.g. DC load), it is necessary to boost their voltage or to increase their number. 

Therefore, a DC averaged switched model converter is needed to regulate the output 

voltage before being supplied to other electronic devices.   

There are many DC-to-DC converters including the step-down (buck) converter, the 

step-up (boost) converter, the buck-boost converter and many others. The following 

will evaluate the step-up (boost) converter which is shown in Figure 6.19. 

 
Figure 6.19 - Step-up boost converter 

 

Boost converter is a class of switching mode power supply (SMPS), it contains at 

least one energy storage element, and at least two semiconductor devices (MOSFET 

and a diode). 

Semiconductor devices (MOSFET and diode) operate as an ideal power switch; OFF 

when the switch current is very close to zero, and ON when the voltage across is 

relatively small.  By applying net volt-seconds to inductor over one switching period 

(Ts), the boost converter output voltage can be calculated as follows: 

soinsin

Ts

L TDVVDTVdttV )1()()()(
0

                                    (6.2) 

Where VL is the inductor voltage, Vin is the input voltage, Vo is the output voltage, Ts 

is the switching period and D is the switch duty cycle (0 ≤ D ≤ 1).  
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Equal to zero and collect term: 

0)1()1(  DVDDV oin                                                 (6.3) 

Therefore, the voltage conversion ratio for the boost is: 

)1(

1
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DV

V
DR

in

o


                                                    (6.4) 

Consequently, from the above equations, a DC switch model converter is built and 

implemented using MatLab/Simulink. The proposed model is implemented as shown 

in Figure 6.20. 

 

 
Figure 6.20 - Subsystem implementation of the DC/DC converter model with

15
 (a) Duty 

cycle control (b) Input current reference (Natsheh & Albarbar 2011). 

                                                           
15 Choices for the boost DC/DC control variable (Erickson 2000): 

 Duty cycle D 

 Input current reference Iref 

 Input voltage reference Vref 

As mention in Section 1.3, in power electronics the control stage is used to control that amount of 

power needed (more information can be found in Chapter 7). 

a 

b 
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6.2.2 The DC/AC inverters  

A DC/AC switching inverter is developed, as shown in Figure 6.21.  

 

Figure 6.21 - DC/AC switching inverter 

The basic operation of the DC/AC switching inverter is to generate AC waveform 

from the DC signal, by operating each pair of switches S1-S3 and S2-S4 alternately 

with their duty cycle for each switching period. 

By applying net volt-seconds to the inductor over one switching period, the AC output 

voltage can be calculated as follow: 

    acdc

T

acdcL

s

L VVDVVDdttV
T

V
s

  1)(
1

0
                     (6.5) 

Where Vac is the AC voltage and Vdc is the DC voltage. Equal to zero and collect term: 

  012  acdc VVD                                             (6.6) 

Therefore, the voltage conversion ratio for the inverter is: 

12)(  D
V

V
DR

dc

ac                                            (6.7) 

With a voltage conversion ratio equal to (2D-1), an AC averaged switch model 

inverter is built and implemented using MatLab/Simulink (Natsheh & Albarbar 2012), 

to convert the direct current into alternating current, at a switching frequency greater 
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than the AC line frequency (50Hz - 60Hz). Losses are included due to output-port 

series resistance and input-port switching loss current. The proposed model is 

implemented as shown in Figure 6.22. 

 
Figure 6.22 - Subsystem implementation of the DC/AC inverter model 

 

6.3 Summery 

The availability of hybrid system model is important for its theoretical study, as it can 

be used to study its behaviour. In this chapter the dynamic simulation model is described 

for a PV, wind turbine, PEMFC, and Li-Ion battery. Modelling and simulation are 

implemented using MatLab/Simulink and SimPowerSystem software packages.  

 For PV panel: a generalized model has been developed and verified using Sharp’s 

NUS0E3E PV panel datasheet. More, the developed model was validated through 

a series of experiments. It was found that both simulated and measured results for 

the output power of PV module are in good agreement. The standard deviation 

is 0.39W. 

 For wind turbine: a PI controller has been implemented to control the blade pitch 

angle. Simulation result shows that the control system successfully maintains the 

generator output power to its nominal value for high wind speeds. 
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 For battery bank: the dynamic behaviour of a Li-Ion battery model has been 

validated with respect to current variation and the battery SOC. It was noted that 

when the SOC between 20%-100%, the error between the real voltage and the 

simulated voltage is less than 5%. 

 For fuel cells: the developed model has been validated by comparing directly the 

obtained polarization curve using the model with those of the manufacturers It 

was observed that the real curve matches exactly the simulated one. The level of 

model accuracy depends on the precision of data provided by the user. 

The next chapter addresses the implementation of the proposed control structure. 
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   Chapter 7 
 

Hybrid Systems Energy 

Controller Based on Artificial 

Intelligence 

 
 
This chapter presents a novel adaptive scheme for energy management in stand-

alone hybrid power systems. The proposed management system is designed to 

manage the power flow between the hybrid power system and energy storage 

elements in order to satisfy the load requirements based on artificial neural network 

(ANN) and fuzzy logic controllers. The developed management system performance, 

as illustrated in Chapter 6, was assessed using a hybrid system comprises PV panels, 

wind turbine (WT), battery storage, and proton exchange membrane fuel cell 

(PEMFC).  
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7.1 Introduction 

Hybrid power systems with fuel cells and batteries have the great potential to improve 

the operation efficiency and dynamic response. However, the price of PEMFC is high 

and its membrane lifetime is short (less than 2000 h for transportation and ~ 20,000 h 

for stationary) (Wang et al. 2011). In addition, the dynamic interaction between the 

load demand and the renewable energy source can lead to, critical problems of 

stability and power quality, that are not very common in conventional power systems. 

Therefore, managing flow of energy throughout the proposed hybrid system is 

essential to ensure the continuous power supply for the load demand. 

This chapter will present an optimized adaptive management strategy for power flows 

in stand-alone hybrid power systems. The method offers an on-line energy 

management by a hierarchical controller between four energy sources comprises 

photovoltaic panels, wind turbine, battery storage, and proton exchange membrane 

fuel cell. The proposed method includes a MPPT controller in the first layer, to 

achieve the maximum power point (MPP) for different types of PV panels; two 

different techniques will be presented (P&O and neural network). In the second layer, 

an advance fuzzy logic controller will be developed to distribute the power among the 

hybrid system and to manage the charge and discharge current flow for performance 

optimisation. Finally in the third layer, smart controllers are developed to maintain the 

stability of the PEMFC temperature and to regulate the fuel cell/battery set points to 

reach best performance. Figure 7.1 shows the proposed control structure for the 

hybrid generation system. 
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Each layer will be explained in detail later in this chapter, but before that an overview 

of Artificial Intelligence will be provided. 

 

Figure 7.1 - Block diagram of the proposed system 

 

7.2 Artificial intelligence: overview 

7.2.1 Artificial neural networks 

Artificial neural network has a form of multiprocessor computing system. It consists 

of a number of very simple and highly interconnected processors, called neurons, 

which are analogous to the biological neurons in the brain. The basic model of a 

single neuron is shown in Figure 7.2. 
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Figure 7.2 - Architecture of a single artificial neuron 

Figure 7.2 shows a single artificial neuron with an input vector p , a connection 

weight vector w, a bias b , an activation function f  and an output a . The output (a) of 

this neuron is defined as follows (Haykin 1998): 
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The effect of the bias b on the activation function f is a shift to the left or the right, 

depending on whether it is positive or negative. The activation function f can be taken 

from a set of activation functions (as piecewise-linear function, hard limit function, 

sigmoid function). Some of the most popular activation functions are shown in 

Figure 7.3. 

 

Figure 7.3 - Popular activation functions used in ANN 
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Using this basic model of a neuron as shown in Figure 7.2, different ANN 

architectures have evolved, among them feed-forward neural network. 

Feed-forward ANNs allow signals to travel in one way only; from inputs to outputs. 

They are extensively used in nonlinear system modelling (Hagan & Bemuth 1996). 

The earliest kind of neural network is a single layer perceptron network which 

consists of a single layer of output nodes; the inputs are fed directly to the outputs via 

a series of weights. In this way it can be considered the simplest kind of feed-forward 

network. 

The next popular feed-forward model, as shown in Figure 7.4, is the multi-layer 

perceptron. It is a feed forward neural network model that maps sets of input data onto 

a set of outputs. It has more than two layers. The layers are fully connected. So that, 

every neuron in each layer is connected to every other neuron in the adjacent forward 

layer.  

 

Figure 7.4 - Architecture of a multilayer perceptron 

A neuron determines its output in a way similar to Rosenblatt’s perceptron 

(Negnevitsky 2004).  

First, it computes the net weighted input: 





n

i

iiwxX
1

                                                          (7.2) 

Where n is the number of inputs and Ө is the threshold applied to the neuron.  
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Next, this input value is passed through the activation function
16

.   

Multi-layer networks use a variety of learning techniques, the most popular being 

back-propagation. In back-propagation, the learning law has two phases. First, a 

training input pattern is presented to the network input layer. The network then 

propagates the input pattern from layer to layer until the output pattern is generated by 

the output layer. If this pattern is different from the desired output, an error is 

calculated and then propagated backwards through the network from the output layer 

to the input layer. The weights are modified as the error is propagated. In this study, 

Levenberg Marquardt algorithm will be used in weights training. More information 

will be provided in Section 7.3.2. 

 

7.2.2  Fuzzy expert system 

Fuzzy logic is a type of logic that recognizes more than simple true and false values. 

It reflects how people think. It attempts to model our sense of words, our decision 

making and our common sense.  

Fuzzy logic is determined as a set of mathematical principles for knowledge 

representation based on degrees of membership rather than on crisp membership of 

classical binary logic (Zadeh 1965). 

In 1973, Lotfi Zadeh succeeded in outlined a new approach to analysis of complex 

systems (Zadeh 1973). He suggested capturing human knowledge in fuzzy rules. A 

fuzzy rule can be defined as a conditional statement in the form: 

                  IF x is A 

                  THEN y is B 

                                                           

16
Multilayer network learns much faster when the sigmoidal activation function is represented by a 

hyperbolic tangent (Caudill 1991; Guyon 1991). 

1
1

2
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Where x and y are linguistic variables, A and B are linguistic values determined by 

fuzzy sets on the universe of discourses X and Y, respectively. 

In general, a fuzzy expert system incorporates not one but several rules that describe 

expert knowledge. The output of each rule is a fuzzy set, but usually we need to 

obtain a single number representing the expert system output.  

To obtain a single crisp solution for the output variable, a fuzzy expert system first 

aggregates all output fuzzy sets into a single output fuzzy set, and then defuzzifies the 

resulting fuzzy set into a single number.   

Although there are several defuzzification methods (Cox 1999), the most popular one 

is the centroid technique. It finds the point where a vertical line would slice the 

aggregate set into two equal masses. Mathematically this centre of gravity can be 

expressed as (Negnevitsky 2004): 
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                                                     (7.4) 

Where x is an element of the universe X, A is a fuzzy set of the universe X, and µA(x) 

is the membership function of set A. 

In 1975, Mamdani built one of the first fuzzy systems to control a steam engine and 

boiler combination (Mamdani & Assilian 1975). He applied a set of fuzzy rules 

supplied by experienced human operators. 

In general, the Mamdani-style fuzzy inference
17

 process is performed in four steps: 

fuzzification of the input variables, rule evaluation, aggregation of the rule outputs, 

and finally defuzzification. 

                                                           
17

 Fuzzy inference can be defined as a process of mapping from a given input to an output, using the 

theory of fuzzy sets. 
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To shorten the time of fuzzy inference single spike, singleton, is used as the 

membership function of the rule consequent (Sugeno 1985). A singleton, or more 

precisely a fuzzy singleton, is a fuzzy set with a membership function that is unity at a 

single particular point on the universe of discourse and zero everywhere else. 

Sugeno-style fuzzy inference is similar to the Mamdani method. Sugeno changed only 

a rule consequent. Instead of a fuzzy set, he used a mathematical function of the input 

variable. The format of the Sugeno-style fuzzy rule is: 

                   IF x is A AND y is B 

                   THEN z is f (x, y) 

Where x, y and z are linguistic variables, A and B are fuzzy sets on universe of 

discourses X and Y, respectively, and f(x, y) is a mathematical function. 

The most commonly used zero-order Sugeno fuzzy model applies fuzzy rules in the 

following form: 

                         IF x is A AND y is B 

                         THEN z is k 

Where k is a constant. 

In this case, the output of each fuzzy rule is constant. In other words, all consequent 

membership functions are represented by singleton spikes. 

The result (crisp output) is then obtained by finding the weighted average of these 

singletons.  

It was found (Negnevitsky 2004) that Mamdani method is widely accepted for 

capturing expert knowledge. It allows us to describe the expertise in more intuitive, 

more human-like manner. However, for systems with many parameters Mamdani-

type fuzzy inference entails a substantial computational burden. On the other hand, 

the Sugeno method is computationally effective and works well with optimization and 
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adaptive techniques, which makes it very attractive in control problems, particularly 

for dynamic nonlinear systems. Therefore in this work, system with many parameters 

(Section 7.4) Sugeno method has been used, whereas for system with few parameters 

(Section 7.5) Mamdani method has been used. 

7.3 MPPT PV control systems  

The output characteristics of the PV model with different solar irradiance and cell 

temperature are nonlinear. Furthermore, the solar irradiation is unpredictable, which 

makes the MPP of the PV module change continuously, as shown in Figure 7.5. 

 

Figure 7.5 - MPP of a PV module under different conditions 

Hence tracking the maximum power point (MPP) of a photovoltaic array is an 

essential part of a PV system. As such, many maximum power point tracking (MPPT) 

techniques have been developed and implemented (Esram & Chapman 2007). Among 

these techniques, hill-climbing MPPT such as perturb and observe (P&O), which is a 

simple algorithm that does not require previous knowledge of the PV module 

characteristics and is easy to implement with analogue and digital circuits. 
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In the literature there are two methods for implementing P&O algorithm: direct 

method (duty ratio perturbation) and indirect method (reference voltage/current 

perturbation). 

In the direct methods, the MPP is searched by continuously perturbing the duty cycle 

of the DC-DC converter. Although the simplicity is the main feature of this method, it 

has a slower transient response compared to the indirect method and worse 

performance at rapidly changing irradiance (Elgendy et al. 2012). 

In this section, intelligent control technique using artificial neural network is 

associated to an MPPT controller in order to increase the tracking response and 

consequently increase the tracking efficiency. Afterward, in chapter 8, to evaluate the 

performance of the proposed PV control system, a comparison between the indirect 

P&O algorithm and the proposed MPPT controller system is carried out, under 

different operating conditions. 

7.3.1 Perturb and observe method 

The problem considered by MPPT techniques is to automatically find the optimum 

voltage (VMPP) or current (IMPP) at which a PV array should operate, under a given 

solar irradiance and temperature.  

Perturb and observe method is the most commonly used technique because of its 

simplicity and ease of implementation (Natsheh & Albarbar 2011). It requires two 

inputs: measurement of the current (Ipv) and measurement of the voltage (Vpv) (see 

Figure 7.6). 

 

Figure 7.6 - P&O block diagram 
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The P&O algorithm operates by periodically perturbing (incrementing or 

decrementing) the PV array terminal voltage or current, and comparing the PV output 

power with the previous one. If it is positive the control system moves the PV array 

operating point in the same direction; otherwise, it is moved in the opposite direction. 

In the next perturbation cycle the algorithm continues in the same way. Figure 7.7 

shows the flow chart of P&O algorithm. 

 

Figure 7.7 - P&O algorithm flow chart 

The main problem of this method can be seen when solar radiation rapidly change. As 

illustrated in Figure 7.8, starting from an operating point A, if atmospheric conditions 

stay approximately constant, the voltage perturbation (ΔV) will bring the operating 
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point to B and the perturbation will be reversed due to a decrease in power. On the 

other hand, if the irradiance increases and shifts the power curve from P1 to P2 within 

one sampling period, the operating point will move from A to C (this represents an 

increase in the power and the perturbation is kept the same). Consequently, the 

operating point diverges from the MPP and will keep diverging if the irradiance 

steadily increases.   

 

Figure 7.8 – Divergence of P&O from MPP (Wasynczuk, 1983) 

Furthermore, P&O technique may cause many oscillations around the MPP, and this 

slows down the response of the system (see Section 8.1). Hence, to remove power 

fluctuates and to keep the load voltage stable, different controller has been used along 

with the P&O. Among these controllers: feedback controller (Natsheh & 

Albarbar 2011), linear PI (Elgendy et al. 2012), and non-linear passivity-based 

controller (PBC) (Tofighi & Kalantar 2011). 
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7.3.2 Artificial neural network method 

A neural network is an artificial representation of the human body that tries to 

simulate its learning process. In other words, ANN is an adaptive system that changes 

its structure based on internal or external information that flows through the network. 

The aim of using ANN here is to optimize the response of the MPPT, in order to 

increase the tracking efficiency. Figure 7.9 shows the structure of the proposed PV 

control system.  

 

Figure 7.9 - The proposed PV control system 

As shown the neural network control (NNC) is used to estimate the PV array 

operating voltage (Vref) which corresponds to Pmax at any given solar radiation and cell 

temperature.  It consists of three layers. The input layer is composed of three nodes in 

inputs that are; the solar radiation (G), cell temperature (Tc) and the cell’s open circuit 

voltage (Voc) at a 25
o
C and 1kW/m

2
. The hidden layer composed of four nodes whose 

function of activation is hyperbolic tangent sigmoid transfer function
18

. The output 

                                                           
18

 It's a neural transfer function which calculates the layer's output from its net input. 
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layer is composed of one node that is the optimum operating voltage (Vref) whose 

function of activation is of linear type.  

The links between the nodes are all weighted. The link between nodes 3 and 7 is 

labelled as having a weight of w37 in Figure 7.9. Once the NN model architecture is 

defined, data are collected and fed to the model. The network is then trained to 

recognize the relationships between the input and output parameters. The proposed 

NN controller uses the Levenberg Marquardt training algorithm. In this algorithm the 

interlayer connection weight and the processing element’s thresholds are first 

initialized to small random values. The network is then presented with a set of 

training patterns. Each set is composed of three inputs (solar irradiance, temperature, 

cells open circuit voltage), and one output. The output or rather the targeted output 

(ideal Vref) is generated from an applied MatLab code which analyzes the output P-V 

characteristics of the validated PV model. 

Prior to conducting the network training operation using the LM algorithm, a training 

set of 2000 cases were obtained from four different PV panels, namely: Lorentz 

mono-crystalline, Sharp’s-NUS0E3E, BP-485J, and Astronergy-CHSM6610P. The 

cell’s open circuit voltage (Voc) is used as a reference variable to select from among 

the four PV panels. This training data set covers the different solar radiation and 

temperature conditions that could possibly take place. Typical examples of the 

training patterns used as part of the training set are shown in Table 7.1. 
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Table 7.1 - Typical examples of the training set. 

Input 1 

Solar radiation 

(W/m
2
) 

Input 2 

Cell temperature 

(
o
C) 

Input 3 

Open-circuit voltage 

at (25
o
C, 1kW/m

2
) 

Output 

Optimum operating 

voltage (V) 

700 30 30 22.705 

650 25 30 23.615 

1000 50 30 19.065 

400 20 20.6 17.245 

850 35 20.6 15.88 

150 10 20.6 16.335 

650 30 36.88 28.165 

450 20 36.88 29.985 

900 40 36.88 26.345 

The training patterns were presented repeatedly to the neural network model and the 

adjustment was performed after each iteration whenever the network’s output is 

different from the desired output. The increment of weights ∆W can be obtained as 

follows: 

  eJIJJW
tt 

1
                                                (7.5) 
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Where J is the Jacobian matrix, µ is the learning rate, e is the error vector containing 

the output errors for each input vector used on training the network, I is the identity 

matrix, F (xi, w) is the network function evaluated for the i
th

 input vector of the 
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training set using the weight vector w and wj is the j
th

 element of the weight vector w 

of the network. The Jacobian is approximated by using the chain rule of calculus and 

the first derivatives of the activation functions. This process continues until the mean 

square error (MSE) converged and is measure at less than 0.01. Figure 7.10 shows the 

flow chart of Levenberg Marquardt algorithm.  

 

Figure 7.10 - Levenberg Marquardt algorithm flow chart 
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7.4 Intelligent energy distribution strategy  

The energy management strategy (EMS) should determines the split power between 

the photovoltaic, wind turbine, PEMFC stack and battery while satisfying the load 

power requirement with respect to dynamic restrictions to the battery and FC stack. In 

this work, the EMS acts based on certain scenarios, as shown in Figure 7.11. 

 

 

Figure 7.11 - Proposed energy management system algorithm 
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Frequent power demand variations and unpredictable load profile are unavoidable. 

Adding to this, the nonlinear subsystems add to the complexity of the structure of 

hybrid system. Hence, an advance fuzzy expert system according to the weather 

variations, load demand and battery SOC is presented. Figure 7.12 shows the 

proposed fuzzy expert system for EMS. 

 
Figure 7.12 - Proposed fuzzy expert system for EMS 

A fuzzy logic controller (FLC) is used to decide the optimum operation of the 

PEMFC/battery system. As shown in Figure 7.11, there are five possible 

operating modes.  

 In grid mode, the excess power of the PV/WT goes to the grid. In this case the 

back-up power system is off (fuel cell/battery). 

 In charge mode, the battery storage is charged by the PV/WT when the load 

demand is lower than the power generated or/and it’s charged by the fuel cell 

when the SOC is low.  

 In battery mode, the power demand is provided only by the battery while the 

fuel cell is switched off. This mode is suitable for low power demand.  
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 In hybrid mode, both fuel cell and battery system contributes to fulfil the 

remaining energy demand needed:  

)()()()( tPtPtPtP BFCHL                                            (7.7) 

This mode is suitable for high power demand. 

The FLC and battery management system maintains the SOC at a reasonable level 

(40-80%). Also, they prevents against voltage collapse by controlling the power 

required from the battery (PB) (see Figure 7.11). An S-R type flip-flop has been used 

for storing battery status (BS), as shown in Figure 7.13. 

 
Figure 7.13 - S-R type flip-flop for storing battery status 

The power management system controls the reference power of the PEMFC stack 

(FC_Pref) by splitting the power demand (PL) as a function of the available power of 

the battery and the PV/WT system (PH) (see Figures 7.11 & 7.14).  

 

Figure 7.14 – Subsystem implementation of the power management system 
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7.4.1 Derivation of fuzzy logic controller for EMS 

The block diagram of fuzzy logic controller is shown in Figure 7.15.  

 

Figure 7.15 – Block diagram of fuzzy logic controller for EMS 

The FLC relates the outputs to the inputs using a list of if-then statements called rules. 

The if-part of the rules describes the fuzzy sets (regions) of the input variables. For 

ease of computation, the fuzzy variables PH, PL, and SOC are described by fuzzy 

singleton, meaning that the measured value of these variables are used in the interface 

process without being fuzzified. Specifically the fuzzy rules are in the form: 

Rule i: IF PH is Ai and PL is Bi and SOC is Ci, THEN FCE is Di and BS is Ei 

Where Ai, Bi, and Ci are fuzzy subsets in their universes of discourse, and Di, Ei are 

fuzzy singletons. Each universe of discourse is divided into three fuzzy subsets: L 

(Low), M (Medium), and H (High). The fuzzy subsets and the shape of membership 

function are shown in Figure 7.16. 
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Figure 7.16- Membership functions of the FLC 

These degrees of membership are evaluated to obtain the output controller, and the 

then-parts of all rules are averaged and weighted by these degrees of membership. 

The core of the rule set of the fuzzy controller is illustrated as follows. 

Table 7.2 - Fuzzy logic rules 

1-3 IF PH is L and PL is L\M\H and SOC is L,  

THEN FCE is ON and BS is CO 

4-6 IF PH is M and PL is L\M\H and SOC is L,  

THEN FCE is OFF\ON\ON and BS is CO 

7-9 IF PH is H and PL is L\M\H and SOC is L, 

THEN FCE is OFF\OFF\ON and BS is CO 

10-12 IF PH is L and PL is L\M\H and SOC is M,  

THEN FCE is OFF\ON\ON and BS is CD 

13-15 IF PH is M and PL is L\M\H and SOC is M, 

THEN FCE is OFF\OFF\ON and BS is CD 

16-18 IF PH is H and PL is L\M\H and SOC is M,  

THEN FCE is OFF and BS is CD 

19-21 IF PH is L and PL is L\M\H and SOC is H, 

THEN FCE is OFF and BS is DO 

22-24 IF PH is M and PL is L\M\H and SOC is H,  

THEN FCE is OFF and BS is DO 

25-27 IF PH is H and PL is L\M\H and SOC is H, 

THEN FCE is OFF and BS is DO 

  

Note: CO means charge only, DO means discharge only, and CD means charge or discharge. 
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For example, if we assumed that PH, PL and SOC are 600, 641, and 48.2, respectively. 

Then from Figure 7.16, PH, and PL belongs to L and SOC belongs to L and M (rule 1 

and 10). Thus the two possible combinations are: (1) PH is L, PL is L and SOC is L (2) 

PH is L PL is L and SOC is M. For each case we calculate the weighting factor using 

the fuzzy AND operator (product), as shown in Figure 7.17, and obtain the 

corresponding singleton values Di and Ei.  Ei can be either 0 (DO), 1 (CO) or 2 

(CD
19

). 

Then, the backup power system (FC/battery) status is computed using the centre of 

gravity method (Negnevitsky 2004). This gives FCE = 0.159 ≈ 0 (off) and BS = 1.8 

≈ 2 (battery operates in the normal mode; it can discharge or charge. In this case it 

will discharge 41W to the load).  

 

 

 

Figure 7.17 - Graphic illustration of inference mechanism 

                                                           
19

 Battery SOC is in the desired limit (40<SOC<80), so it can be either charged or discharged. 

Rule 1 

Rule 10 

Each column of plots (yellow) show how the 

input variable is used in the rules 
Each column of plots (blue) show 

how the output variable is used in 

the rules 

 

Each plots show how the output of each 

rule is combined to make an aggregate 

output and then defuzzified 

Each row of plots 

represents one rule 
This line provides a 

defuzzified value 

BS 

AND AND 

AND AND 
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7.5 PEMFC temperature controller 

The operating temperature of the stack is an important controlled variable, which 

impacts the performance of the PEMFC
20

. Hence, in order to improve the generating 

performance of the PEMFC and prolong its life, it must be controlled efficiently. 

In the last three decades, different approaches have been implemented for solving 

temperature control system, among these controllers:  

 On/off (switch) control: an on/off controller is the simplest and least expensive 

form of control available. For example, it will turn on the cooler (e.g. fan) when 

the process variable is above the set point and turn it off when the process variable 

is below the set point. However, although the simplicity is the main feature of this 

control, the process temperature will be cycling continually, going from below set 

point to above, and back below as shown in Figure 7.18.  

 
Figure 7.18 - Characteristics of ON/OFF temperature control action (Coulton 2013) 

Proportional control: proportional controls are designed to eliminate the cycling 

associated with on/off control.  Hence, with proportional action (P), the controlled 

object no longer switches as a direct result of the set value. It compares the difference 

between the set value and the process variable, and then controls the output 

                                                           
20

 One of the limitations of the previous FC stack model was the heating and cooling system (Souleman 

et al. 2009). 
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proportional to the deviation. This proportional action temperature control is active 

within user-zone around the set point called the proportional band (Pb). Proper 

adjustment of the proportional band will result in smooth control. However, it is rare 

that the temperature stabilizes exactly on the set point, it is usually becomes stable 

with some deviation called offset, as shown in Figure 7.19. 

 
Figure 7.19 - Characteristics of proportional temperature control action (Coulton 2013) 

 
 PID control: this controller combines proportional control with two additional 

adjustments, integral and derivative, which helps the unit automatically 

compensate for changes in the system. Hence, the purpose of the integral and 

derivative actions is to automatically compensate for any steady state offset 

inherent with a proportional controller.  

The controller measures the rate of the temperature increase and moves or resets 

the proportional band up or down depending on the offset. Figure 7.20 shows the 

characteristics of PID temperature control action. 

 

Figure 7.20 - Characteristics of PID temperature control action (Coulton 2013) 
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 Fuzzy logic control: as mention earlier in this chapter, fuzzy logic is a simple way 

to arrive at a definite conclusion based upon ambiguous, vague, imprecise, or 

missing input information. It attempts to model our sense of words, our decision 

making and our common sense. In short fuzzy logic attempts to mimic human 

thought process. 

Previous studies showed that fuzzy logic provides a more efficient and resourceful 

way to solve temperature control systems (Underwood 2005). Moreover, fuzzy 

logic can control nonlinear systems that would be difficult or impossible to model 

mathematically. 

A temperature controller working with fuzzy logic would compare the set point 

with the actual temperature to establish how far from the set point the temperature 

is. Then using the fuzzy rules, the controller would add more or less cool/heat.  

As shown in Figure 7.21, with fuzzy logic, the control output is smooth; despite a 

wide range of input variations. 

 
Figure 7.21 - Characteristics of fuzzy temperature control action (Coulton 2013) 

 

Consequently, in this work, the PEMFC stack model described by Souleman 

(Souleman et al. 2009), is modified to include a fuzzy temperature controller. Scheme 

of the temperature control system is presented in Figures 7.22 and 7.23. 
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Figure 7.22 - Schematic diagram of the PEMFC system 

 

Figure 7.23 - PEMFC temperature control based on fuzzy logic 

The main function of this control system is to maintain the temperature stable and 

equal to the stack operating temperature (e.g. 65
o
C). The FLC is used to control the 

airflow from the heater and cooler fans, based on the error temperature
21

.  In case of 

cold start-up (temperature error is large negative), the heater fan (F1) needs to be on. 

On the contrary, if the stack temperature is hot (temperature error is large positive), 

the cooler fans (F2) speed needs to be at the high level. Triangular membership 

functions and centroid defuzzification method are adopted. The membership functions 

are shown in Figure 7.24.  

 

 

                                                           
21

 It's the difference between the set point and the actual (stack) temperature. 
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Figure 7.24 - Membership functions of the fuzzy temperature controller 

Table 7.3 shows the rule base of the temperature FLC.   

Table 7.3 - Fuzzy logic rules for the temperature controller 

Temperature Error Fan Airflow Temperature Error Fan Airflow 

Large Negative (LN) F1-Low Medium Positive (MP) F2-Medium 

Zero Error (ZE) F2-Low Large Positive (LP) F2-High 

 

Over time, the control system calculates the cooling/heating effect inside the stack, 

taking into account the thermal isolation and cooling/heating activities. And based on 

these equations the output temperature will be calculated as follow (Natsheh & 

Albarbar 2013; Larminie & Dicks 2003):  

 
S

FanFCFCAFC
CM

H
KTTTT


 )(KT                                 (7.8) 

  
   dtTtT FCFC                                                  (7.9) 
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Where TA is the ambient temperature, TFC is the FC stack temperature, KT is the 

thermal isolation multiplier, KFan is the cooling/heating factor, H is the heat generated 

in a fuel cell, M is the whole stack mass, and CS is the average specific heat capacity 

of the stack. 

To calculate the heat generated in a fuel cell, Equation (7.10) is applied (Larminie & 

Dicks 2003). 

1
48.1


FC

S
V

PH                                                         (7.10) 

Where Ps is the power produced by the stack, and VFC is the stack voltage. 

7.6 Summary 

Energy management strategy is one of the important tasks in developing hybrid power 

system. Hence, this chapter presents a novel adaptive scheme for energy management 

in stand-alone hybrid power systems. The method introduces an on-line energy 

management by using a hierarchical controller between four energy sources: 

photovoltaic (PV) panels, wind turbine, battery storage, and proton exchange 

membrane fuel cell (PEMFC). The proposed method includes 

 A feed-forward, back-propagation neural network controller in the first layer, 

which is added in order to achieve the maximum power point (MPP) for the 

different types of PV panels. Here, a training set of 2000 cases were obtained from 

four different PV panels namely: Lorentz mono-crystalline, Sharp’s-NUS0E3E, 

BP-485J, and Astronergy-CHSM6610P. This data set has covered different solar 

radiation and temperature conditions that could possibly take place.  

 In the second and third layer, an advanced fuzzy expert system has been 

developed to optimize performance by distributing the power inside the hybrid 

system and by managing the charge and discharge of the current flow. Here, 
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Sugeno fuzzy logic controller is used to decide the optimum operation of the 

PEMFC/battery system. As shown in Figure 7.11, there are five possible operating 

modes: grid mode, PV-charge mode, FC-charge mode, battery mode, and hybrid 

mode.   

 Finally, and in the third layer, Mamdani fuzzy logic controller is presented to 

control the airflow from the heater and cooler fans, based on the error 

temperature. The main function of this control system was to maintain the stability 

of the PEMFC temperature (65
o
C).  

Next, to demonstrate the effectiveness of the proposed strategy, Chapter 8 presents 

and discusses the simulation results which derived from the proposed hybrid system 

model. 
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   Chapter 8 
 

Simulation Results & Discussion 

 

In the previous chapters the dynamics simulation models for each of the: PV array, 

wind turbine, PEM fuel cell, and Li-Ion battery were explained and shown. Afterward, 

in Chapter 7, an optimized energy management based on a hierarchical controller 

has been implemented to satisfy important objectives such as: optimal operation of 

PV panel, battery charge balance, optimal operation of FC, and load following. 

In this chapter the simulation results of the proposed hybrid system and its control 

strategy shown in Figure 7.1 will be discussed. Here, P&O algorithm with linear and 

non-linear controllers are provided for a comparison with the proposed MPPT 

controller system. Moreover, a case study will be presented in Section 8.2 for 

monitoring a 28.8kW solar power plant located in central Manchester. 
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8.1 Evaluating the proposed MPPT 

Training neural networks is considered a very important stage in developing the 

network system model, the output usually depends on the parameter settings of the 

network and the type of inputs which is fed to the network, any misuse in sitting 

configuration or input may give incorrect prediction output.  Hence, to insure network 

accuracy, the network must be tested on a continuous basis and should be monitored 

during the training and testing operations. Once the neural network is trained, as 

shown in Section 7.3.2, the next step is to test the network to judge its performance 

and to determine whether the prediction results confirm with the actual results. Using 

the 400 cases allocated for the testing set, the model input parameters were entered 

consecutively for each case and a prediction for the optimal Vref was obtained. 

Table 8.1 shows, a portion of these cases that were used in the testing process. 

 

Table 8.1 - Portion of the testing set 

Astronergy CHSM6610P 
Open-circuit voltage 

at (25oC, 1kW/m2) (36.88V) 

Sharp’s NUS0E3E 
Open-circuit voltage 

at (25oC, 1kW/m2) (30V) 

Lorentz mono-crystalline 
Open-circuit voltage 

at (25oC, 1kW/m2) (20.6V) 

Case 
# 

Solar 
radiation 
(W/m2) 

Cell 
temperature 

(oC) 

Case 
# 

Solar 
radiation 

(W/m2 

Cell 
temperature 

(oC) 

Case 
# 

Solar 
radiation 
(W/m2) 

Cell 
temperature 

(oC) 

4 700 35 18 640 80 26 500 65 

7 550 10 19 550 50 27 680 50 

8 480 13 20 400 10 28 540 75 

9 240 17 35 500 20 29 700 88 

10 1000 25 39 900 45 30 470 64 

 

The prediction results were then compared with the actual results of the 400 cases. 

The statistical analysis of these results indicates that the R
2
 value (coefficient of 
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determination
22

) for the testing set was 0.99. This result demonstrate that the MPPT-

NNC model developed in this work can predict the optimal Vref for any trained PV 

panels, at any environmental conditions with high accuracy. The graphical results of 

the first 31 cases in the testing set are shown in Figure 8.1.   

 

Figure 8.1 - Actual and predicted PV operating voltage for the first 31 cases in the testing set 

 

8.1.1 A comparison between P&O and ANN 

The simulation results of the PV system using an ANN and classical P&O algorithm 

are discussed in this section. Figure 8.2 compares the optimum PV power (Pmpp) 

obtained from the classical P&O and the proposed NNC algorithm. 

From Figure 8.2(a, b), it’s shown that by using the ANN the optimum power will be 

more steady and close to the theoretical power as compared to the classical P&O 

algorithm
23

. 

 

                                                           
22

 In statistics, the coefficient of determination indicates how well a model predicts future outcomes (Di 

Bucchianico 2008).  
23

 Despite the P&O algorithm is easy to implement it has a common problem. The array terminal 

voltage is perturbed every MPPT cycle; therefore when the MPP is reached, the output power oscillates 

around the maximum, resulting in power loss in the PV system. This is especially true in constant or 

slowly-varying atmospheric conditions (see Figure 8.2 (a)). 
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Figure 8.2 (a) Pmpp at 400W/m
2
, 10

o
C (Sharp’s) (b) Pmpp at different conditions 

 

 

Moreover, to evaluate the performance of the proposed PV control system, a 

comparison between the P&O
24

 (with PI and PBC), and the proposed NNC is carried 

out for a set of solar radiation. The comparison is made in a system comprises: PV 

panels, MPPT control, battery, and DC-DC converter. The rated power of the PV 

system is 680W. During the comparison, solar irradiance, load profiles and models 

parameters are equal to those presented in reference (Tofighi & Kalantar 2011).   

If the reference voltage (Vr) is assumed at 100V and the SOC is at 70%, the system 

response to changes in solar irradiance and load resistance is given in the following 

                                                           
24

 In P&O technique (indirect method), the output voltage reference is used as the control parameter in 

conjunction with a controller (e.g. PI controller) to remove power fluctuates. 

b 

a 
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figures. Figure 8.3 shows the PV system voltage and current, which were obtained 

based on the MPPT-NNC algorithm. 

 

Figure 8.3 (a) PV (BP 485J) system current at MPP (b) PV (BP 485J) system voltage at MPP 

 

The PV, battery and load power under the change in solar irradiance and load 

resistance are shown in Figure 8.4. 

 

Figure 8.4 (a) PV, battery and load power using the proposed NNC 

 

a 

a 

b 

PV 

Load 

Battery 
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Figure 8.4 – PV, battery and load power (b: PBC (Tofighi & Kalantar 2011), c: PI (Tofighi & 

Kalantar 2011)) 

As shown, linear PI controller has shown its instability in handling various rapid 

changes in solar radiation
25

, though the change was only from 750W/m
2
-900W/m

2
. 

While non-linear PBC even if it has a few power fluctuations, the simulation results 

of the proposed NNC show better transient performance, with low overshoot, short 

settling time and zero steady-state error.  

Figure 8.5 presents the SOC of the battery storage to demonstrate the charge and 

discharge modes.  In this case, the initial SOC of the battery storage is 70. The battery 

                                                           
25

 This prove that the operation control of hybrid power system is not a linear problem (Tofighi & 

Kalantar 2011; Rodolfo & Jose´ 2005) due to the uncertain renewable energy supplies, load demands 

and the non-linear characteristics of some components. 

c 

b 



Hybrid Power Systems Energy Management Based on Artificial Intelligence 
 

Simulation Results & Discussion 141  

will be in the discharge mode between (6.5s and 8s), since the load power exceeds the 

generated power of PV system; which is evident in Figure 8.4. 

 
 

 
 

 

 
Figure 8.5 – Battery state-of-charge (a: NNC, b: PBC (Tofighi & Kalantar 2011), 

c: PI (Tofighi & Kalantar 2011)) 

 

 

b 

c 

a 
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8.2 Case study: performance of PV power stations 

in Manchester 

 
PV system owners must be assured that their photovoltaic system operates well and 

that their investment will pay off. Regardless of which system they operate, plant 

parks, individual systems or private systems, failures and defects must be detected and 

repaired immediately. This could be achieved by and only by optimizing these system 

performance and eliminate any degradation at early stage.  

Consequently, in this section, a new approach is proposed for PV system monitoring. 

The block diagram of the developed system is shown in Figure 8.6.  

 

Figure 8.6 - PV Array fault detection block diagram (Natsheh & Albarbar 2011) 

As shown in Figure 8.6, the developed monitoring system enables early system 

degradation to be identified via the calculation of the residual difference in power 

generation between the computer model
26

 and the actual PV panels. In this study, 

irradiance, temperature and system output power are gathered from a 28.8kW grid 

connected solar power system. 

 

                                                           
26

 The implementation and design for the proposed PV model has been addressed previously in 

Chapter 6. 
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8.2.1 Solar power plants in central Manchester: description 

In 2009, Manchester Metropolitan University (MMU) installed three PV power 

stations on its campus in Manchester with a combined maximum power of 55.8kW 

(enough power to light 7200 100-watt light bulbs, power 960 student laptops, boil 40 

kettles or supply electricity to 10 houses). Figure 8.7(a), shows the 28.8kW PV power 

plant designated as (All Saints building) PV array 1. Figure 8.7(b) shows the (All 

Saints building) PV array 2. Both power stations use the Sharp NU-180 (E1) PV 

panels and they were placed at an inclination angle of 10
o
, and azimuth angle of 30

o
. 

 

Figure 8.7 (a) All Saints building PV array 1 

  

Figure 8.7 (b) All Saints building PV arrays 2 
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As shown in Figure 8.7, the solar power plant is divided into two buildings. 

Building 1 has its PV system located on the sixth floor with a total of 160 PV panels. 

Building 2 has its array spread over two floors (floor 6 and 4). There are 150 panels in 

total, 78 PV panels on floor 6 and 72 on floor 4. Table 8.2 shows the PV system 

plant profile. 

Table 8.2 - PV system plant profile 

 MMU All Saints Building 1 MMU All Saints Building 2 

Location Manchester, UK Manchester, UK 

Commissioning 8th July 2009 6th July 2009 

System power 28.80kWp 27.00kWp 

Anticipated annual 
output kWh 

17250 16063 

PV modules 160 Sharp NU-180 (E1) 150 Sharp NU- 180 (E1) 

Azimuth angle 30° 30° 

Angle of inclination 10° 10° 

Active area 185.7043 m2 174.0978 m2 

 

Table 8.3 shows the specifications for Sharp NU-180 PV panel, which has been used 

in the PV power stations.  

Table 8.3 - Sharp NU-180 specifications (1kW/m
2
, 25

o
 C) 

Maximum power (Pm) 180W Temp coefficient for Pm - 0.485% / °C  

Open circuit voltage (Voc) 30V Temp coefficient for Voc -104 mV / °C 

Voltage at Pm (Vamp) 23.7V Temp coefficient for Isc + 0.053% / °C 

Short circuit current (Isc) 8.37A No. of cells and 

connections 

48 in series 

Current at Pm  (Iamp) 7.6A   
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The total power delivered to the national grid by the PV systems since their 

commissioning back in 2009, is shown in Figure 8.8. Due to the weather, one might 

think that PV arrays in Manchester would not produce much power, however as these 

results show that is not the case. 

 

Figure 8.8 - PV systems total yield (Sep 2009 – May 2011) 

 

8.2.2 Metrological data 

The main input parameters for the PV power stations are solar radiation and cell 

temperature. The daily average solar radiation and temperature data for Manchester 

were collected from monitoring on the 28.8kW grid connected solar power system 

located on tower block within MMU campus, data were collected over 21 month’s 

period as monthly average data. The daily average data obtained from the mentioned 

source can be used further to find the incident solar irradiation on the PV arrays. This 

data set was started back in 2009 when the systems were commissioned. The solar 

irradiation and panel temperature distributions throughout the 21 month’s period for 

Manchester are illustrated in Figure 8.9. 



Hybrid Power Systems Energy Management Based on Artificial Intelligence 
 

Simulation Results & Discussion 146  

 

Figure 8.9 – Solar irradiation and panel temperature distribution during the 21 month’s 

period for Manchester (2009/2011) 

  

8.2.3 Results and comments  

The proposed PV model was simulated using MatLab to monitor the 28.8kW grid 

connected PV power station by calculating the residual difference between the model 

predicted and the actual measured power parameters (Natsheh & Albarbar 2012). 

Measurements were taken over 21 month’s period; using hourly average irradiance 

and cell temperature. These real-time parameters are used as inputs of the developed 

PV model. The performance of the system is shown in Figure 8.10(a) and 8.10(b).  

 
Figure 8.10 (a) System performances during 10 day of Jun 2010 
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Figure 8.10 (b) System performances during 10 day of Dec 2010 

It was found from Figure 8.10(a) that the system has a good performance, since the 

residual difference between the model prediction and the actual power is less than 

1.70kW. The difference caused due to the clouds, dust, wire, and aging. Ageing had 

small effect on data measurement because the system was purchased in July 2009 and 

hence is still relatively new. Also it can be observed from Figure 8.10(b) that system 

degradation will be indicated when the residual difference is above 1.90kW; due to 

shading, snow cover and panel fault. 
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8.3 The proposed hybrid system and its control strategy 

The simulation results of the PV/WT/PEMFC/battery hybrid system using ANN and 

fuzzy logic are discussed in this section. Simulation results are obtained by 

developing a detailed MatLab/Simulink software package, as shown in Figure 8.11.  

 

 

 

 

 

 

 

 

 

 

 

Figure 8.11 - Hybrid power system simulation model 

The specifications of the renewable power sources used are given in Table 8.4. 

 Table 8.4 - PV/WT system specifications  

PV Sharp’s (NU-180) at 
(1kW/m2, 25o C) 

 
Wind turbine  

 

Maximum power (Pm) 180 (W) Peak Output Power 3200 (W) 

Open circuit voltage 30 (V) Base wind speed 11 (m/s) 

Voltage at Pm 23.7 (V) Base rotational speed 520 (rad/s) 

Short circuit current 8.37 (A)   

Current at Pm 7.6 (A)   

 

Energy Management Subsystem  

6kW Renewable Power Systems 

1.3kW/h Li-Ion Battery  

6kW Fuel Cell Stack  

Hybrid Solar-Wind Power System for 

Resident Applications 

Load Profile 
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The specifications of the PEMFC stack and Li-Ion battery system are given in 

Table 8.5 and 8.6. 

                         Table 8.5 - PEMFC stack parameters 

Voltage at 0A and 1A 65 (V), 63 (V) 

Nominal operating point 133.3 (A), 45 (V) 

Maximum operating point 225 (A), 37 (V) 

Number of cells 65 

Operating temperature 65 (oC) 

Nominal Air flow rate 300 (l/m) 

Nominal supply pressure [Fuel , Air ] 1.5(bar), 1 (bar) 

Nominal composition  [H2, O2, H2O(Air)] 99.95, 21, 1 (%) 

                               

                        Table 8.6 - Li-Ion battery parameters 

Nominal [voltage, capacity] 200 (V), 5.8783 (Ah) 

Fully charged voltage 232.8 (V) 

Maximum capacity 6.5 (Ah) 

Internal resistance 0.307 (Ω) 

Exponential zone  [voltage,  capacity] 216.07 (V), 0.319 (Ah) 

 

Finally, Table 8.7 shows the power conditioning units’ parameters include DC-DC 

and DC-ac converters. 

                      Table 8.7 - Power conditioning units’ parameters 

DC-DC Converter  

Resistance 0.2 (Ω) 

Capacitance 3300 (µF) 

Inductance 200 (µH) 

DC-AC Inverter  

AC line RMS voltage 120 (V) 

AC line frequency 60 (Hz) 

Output port series resistance 0.8 (Ω) 

Switching loss current 0.04 (A) 
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In the simulation process, the aim is to observe the proposed system behaviour under 

different operating condition. The solar radiation, panel temperature, wind speed and 

user load profiles are all used to test the performance of the proposed hybrid system 

model, as shown in Figure 8.12 (a), (b), and (c).  

 
Figure 8.12 (a) Solar radiation and panel temperature profiles (b) Wind speed profile 

(c) Load demand profile. 

 

As shown, simulation results are obtained for the time interval between 0 and 840 sec. 

The power demand profile has a significant effect on determining the EMS. In this 

study, a practical load profile for two family members in resident application (Dursun 

& Kilic 2012) is established, as shown in Figure 8.12 (c). From this load profile it is 

c 

a 

b 
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evident that the average power demand is less than 2.4kW. The load profile during 

peak load periods (0 to 120 sec, 240 to 360 sec, and from 420 to 540 sec) varies from 

3 to 4.5kW, as illustrated in Figure 8.12 (c). However, due to weather condition, the 

output power of the PV/WT system varies from 1.3 to 3.5kW, as shown in 

Figure 8.13. Therefore, a PEM fuel cell with a reversible ESS was added to the 

renewable power system. The battery bank system is capable of sustaining the extra 

load of 1.3kW for 1h during peak load demand periods. While, the 6kW PEMFC can 

meets the remaining extra power and protect the battery from over-discharging. 

 

Figure 8.13 (a) Total power of the solar power plant (b) Total power of the wind Turbine 

Moreover, according to the proposed EMS algorithm, which shown in Section 7.4, 

battery SOC level is determining the operation of the PEM fuel cell, during peak load 

demand periods. Hence when the:  

 SOC is low (≤ 40.5%), the remaining energy is satisfied by the PEMFC stack, 

and the extra power will be used to charge the battery (SOC goes high).  

b 

a 



Hybrid Power Systems Energy Management Based on Artificial Intelligence 
 

Simulation Results & Discussion 152  

 SOC is high (≥ 80%), the remaining energy is satisfied by the battery bank 

only. At this time, the battery bank discharge current is very high and the 

battery bank terminal voltage drops significantly.   

 SOC is between 40.5% and 80%, the remaining energy is satisfied by either 

the battery bank or by the hybrid PEMFC/battery system. 

Therefore in the following subsections two cases have been tested during the 

simulation. The rated power of the PV/WT system is 6kW; the solar radiation, wind 

speed and user load profiles are the same for the three cases (Figure 8.12). 

 

8.3.1 First case 

The initial SOC of the battery storage is 33%. Hence, when the SOC is low (time 

intervals 0 to 120sec), the peak load demand is satisfied by the PEMFC stack, and the 

extra power will be used to charge the battery (SOC goes high), as shown in 

Figure 8.15. However, during that time, the PEMFC stack power is very high. 

Consequently, in order to maintain the stack temperature stable and equal to the stack 

operating temperature (65
o
C), a fuzzy logic temperature controller has been added, as 

shown in Section 7.5. Figure 8.16 shows the stack temperature during that period.  

 
Figure 8.15 - Power satisfied by PEMFC 
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Figure 8.16 – PEMFC stack operating temperature 

 

On the other hand, when the SOC is above 40.5%, then the remaining energy is 

satisfied by either the battery bank (480 to 540sec, and from 660 to 720sec) or by the 

hybrid PEMFC/battery system (240 to 360sec, and from 420 to 480sec)
27

, as shown in 

Figures 8.15 and 8.17 

 
Figure 8.17 - Power satisfied by battery 

 

The power met by the battery introduces a current change at the battery bank terminal 

as depicted in Figure 8.18 (a). When the battery current is positive (time intervals 240 

to 360sec, 420 to 540sec, and from 660 to 720sec), energy is transferred to the load by 

the battery bank. When the battery current is negative, the battery bank is recharged. 

Figure 8.18 (b), shows the SOC of the battery during the simulation. 

                                                           
27

 To increase the life time of the back-up system, both FC and battery system contributes to fulfil the 

remaining energy demand needed. This mode is suitable for high power demand (hybrid mode); see 

Section 7.4. 
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Figure 8.18 - System response during the first case (a) Battery current change with respect to 

load profile (b) Battery SOC 

 

8.3.2 Second case 

The initial SOC of the battery storage is 89%. The system response to changes in solar 

irradiance and load profile is presented in the following figures. 

The peak load demand is satisfied by the battery bank as shown in Figure 8.19.  

During this case the PEMFC is off; since the battery SOC is high.  

 
Figure 8.19 - Power satisfied by battery 

Peak load demand is satisfied by the PEMFC 

stack. Extra power will be used to charge the 

battery 

a 

b 
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Figure 8.20(a), shows the variation of the battery bank current between positive and 

negative according to the required load demand. From Figures 8.19 and 8.13, it is 

evident that the PV/WT system and battery bank together share this load requirement. 

Figure 8.20(b), shows the SOC of the battery during the simulation. 

 
Figure 8.20 - System response during the second case (a) Battery current change with respect 

to load profile (b) Battery SOC  

Consequently, from the previous Figures (8.19 and 8.20), it’s clear that during peak 

load demand (load power requirement is higher than the power generated by the 

PV/WT system) the PV/WT system supplies the available power and the battery bank 

supplies the remaining extra power (0 to 120sec, 240 to 360sec, 420 to 540sec, and 

from 660 to 720sec). On the other hand, when the produced power by the PV/WT 

system is more than the required power of load, and the SOC of the battery is below 

80%, the extra power of the PV/WT will be used to charge the battery and the SOC 

goes high (540 to 660sec and from 780 to 840sec). Otherwise, if the SOC is above 

Extra power of the PV/WT 

system goes to the grid 

b 

a 
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80%, based on the EMS it is not in the safe charge mode. In this case the excess 

power goes to the grid as shown in Figure 8.21(a).  

 
Figure 8.21(a) - Power delivered to the grid 

 

The simulated grid side inverter voltage and current waveforms are shown in 

Figure 8.21(b). It can be seen that the line current is pure sinusoidal and in phase with 

the grid voltage. 

 
Figure 8.21(b) - Voltage and current waveforms in the grid side 

 

From the first and second cases the results show that the proposed model and its 

control strategy illustrate excellent performance under various operating conditions, 

and maintained the state-of-charge at a reasonable level.  
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8.4 Summary 

The results presented in this Chapter demonstrate the robustness of the developed 

hybrid system model. It was found that the hybrid topology exhibits excellent 

performance under various operating conditions, and maintain the SOC between 40% 

- 80%. Moreover, to investigate the validity of the proposed MPPT controller system, 

P&O algorithm with linear and non-linear controllers were provided. The results of 

the proposed system have low overshoot, short settling time and zero steady-state 

error compared with those of the P&O controller results.  

On the other hand, this Chapter presents a new approach for PV system monitoring; 

by calculating the residual difference between the model predicted and the actual 

measured power parameters. Measurements were taken over 21 month’s period; using 

hourly average irradiance and cell temperature. Good agreement was achieved 

between the theoretical simulation and the real time measurement taken the online 

grid connected solar power plant. With this system it is possible to identify PV 

generation problems quickly and improve long term system health and efficiency. 
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   Chapter 9 
 

Conclusions & Future Work 

 

Following is a summary and conclusion of the proposed stand-alone hybrid power 

system. Also, some of the future research that can be done in this subject will be 

given. 
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9.1 Summary 

This thesis presents a novel adaptive scheme for energy management in stand-alone 

hybrid power systems. The proposed management system was designed to manage the 

power flow between the hybrid power system and energy storage elements in order to 

satisfy the load requirements based on artificial neural network (ANN) and fuzzy 

logic controllers.  

9.1.1 PV MPPT based on neural network  

Tracking the maximum power point (MPP) of a photovoltaic (PV) array is an 

essential part of a PV system. As such, many maximum power point tracking (MPPT) 

techniques have been developed and implemented. Among these techniques, hill-

climbing MPPT such as perturb and observe (P&O), which is a simple algorithm that 

does not require previous knowledge of the PV generator characteristics and is easy to 

implement with analogue and digital circuits. However, the main problem of this 

technique can be seen when solar radiation rapidly change. In addition, P&O 

technique may cause many oscillations around the MPP, and this slows down the 

response of the system. In the literature there are two ways for implementing P&O 

algorithm: direct method (duty ratio perturbation) and indirect method (reference 

voltage/current perturbation). In the direct methods, the MPP is searched by 

continuously perturbing the duty cycle of the DC-DC converter. Although the 

simplicity is the main feature of this method, it has a slower transient response 

compared to the indirect method and worse performance at rapidly changing 

irradiance. In this study, as illustrated in Section 7.3.2, intelligent control technique 

using artificial neural network was associated to an MPPT controller in order to 

increase the tracking response and consequently increase the tracking efficiency. 
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The neural network controller was employed to achieve the MPP for different types of 

PV panels, based on Levenberg Marquardt learning algorithm. Here, a training set of 

2000 cases were obtained from four different PV panels namely: Lorentz mono-

crystalline, Sharp’s NUS0E3E, BP-485J, and Astronergy CHSM6610P. This training 

data set covers the different solar radiation and temperature conditions that could 

possibly take place. 

9.1.2 Advanced fuzzy expert system 

Frequent power demand variations and unpredictable load profile are unavoidable. 

Adding to this, the nonlinear subsystems add to the complexity of the structure of 

hybrid system. Hence, an advanced fuzzy expert system according to the weather 

variations, load demand and battery SOC, was developed to distribute the power 

among the hybrid system and to regulate the fuel cell/battery set points to reach best 

performance. Here, a fuzzy logic controller was used to decide the optimum operation 

of the fuel cell/battery system. As shown in Figure 7.11, there are five possible 

operating modes: grid mode, PV-charge mode, fuel cell-charge mode, battery mode, 

and hybrid mode.  

 In grid mode, the excess power of the PV/WT goes to the grid. In this case the 

back-up power system is off (fuel cell/battery). 

 In charge mode, the battery storage is charged by the PV/WT when the load 

demand is lower than the power generated or/and it’s charged by the fuel cell 

when the SOC is low.  

 In battery mode, the power demand is provided only by the battery while the 

fuel cell is switched off. This mode is suitable for low power demand.  
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 In hybrid mode, both fuel cell and battery system contributes to fulfil the 

remaining energy demand needed. This mode is suitable for high power 

demand.  

 

9.1.3 Dynamic modelling of hybrid system 

To develop an overall energy management strategy for the system and to investigate 

the system performance, dynamic models for the main components in the proposed 

hybrid system have been developed as mentioned in Chapter 6. The models are as the 

following: 

a) Photovoltaic model 

A generalized PV model which is representative of all photovoltaic cell, module, 

and array has been developed as shown in Section 6.1.1. The proposed model 

takes cell temperature and solar irradiance as its input parameters and outputs the 

power under different conditions. The P-V characteristic curves of the PV model 

under different irradiances (at 25 ◦C) are given in Figure 6.5 (a). It is noted from 

the figure that the higher the irradiance, the larger are the short-circuit current and 

the open-circuit voltage. As a result, the larger will be the output PV power. 

Temperature also plays an important role in the PV performance because the two 

parameters (Igc, Ids) in Equation (3.2). The effect of the temperature on the PV 

model performance is illustrated in Figure 6.5 (c). It is noted from the figure that 

the lower the temperature, the higher is the maximum power and the larger the 

open circuit voltage.   

Afterward, the outcome of the developed model is further validated and supported 

by a case study carried out through monitoring a 28.8kW solar power plant 

located in central Manchester. Measurements were taken over 21 month’s period; 

using hourly average irradiance and cell temperature. It was found that system 



Hybrid Power Systems Energy Management Based on Artificial Intelligence 
 

Conclusions & Future Work 162  

degradation could be clearly monitored by determining the residual (the 

difference) between the output power predicted by the model and the actual 

measured power parameters. With this novel approach (Natsheh & 

Alhussein 2012) it is possible to identify PV generation problems quickly and 

improve long term system health and efficiency (see Section 8.2).  

 

b) Wind turbine model 

The amount of power that a wind turbine can extract from the wind depends on 

the turbine design. Factors such as the wind speed and the rotor diameter affect 

the amount of power that a turbine can extract from the wind. The wind turbine 

was modelled using the mathematical equations shown in Chapter 3. In this 

model, whereas the inputs are the wind speed, pitch angle, and generator speed, 

the output is the torque applied to the generator shaft. The pitch angle, as shown in 

Figure 6.11, is controlled in order to limit the generator output power to its 

nominal value for high wind speeds. 

 The built-in SimPowerSystem block model of a DC machine is used as a power 

generator driven by the wind turbine. The proposed wind turbine DC generator 

model is implemented as shown in Figure 6.9. 

 

c) Li-Ion battery model 

The model of the Li-Ion battery is implemented in MatLab/Simulink using several 

standard Simulink blocks as well as some of the SimPowerSystem blocks. In this 

model, the output is a vector containing three signals: state-of-charge, battery 

current and voltage. The model is implemented as shown in Figure 6.13.  

In previous work (Tremblay & Dessaint 2009), the dynamic behaviour of the 

battery model has been validated with respect to current variation and the battery 
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SOC. Results shows that the error between the real voltage and the simulated 

voltage is within 5%, for SOC between 20% - 100%, during the discharge and the 

charge mode. When the SOC decreases below 20%, the error of the simulation 

model is around 10%. This is quite acceptable, since the desired SOC limits is 

between 40% - 80%. 

 

d) Proton exchange membrane fuel cell (PEMFC) model 

PEMFC is an electrochemical device that converts chemical energy into electrical 

energy. They show great performance in residential applications due to the low 

working temperature and fast start-up. In this work, the PEMFC stack model 

described by Souleman (Souleman et al. 2009), is modified to include a fuzzy 

temperature controller. Scheme of the temperature control system is presented in 

Figures 7.22 and 7.23. The main function of this control system was to maintain 

the temperature stable and equal to the stack operating temperature. 

Hence, the modified fuel cell model (see Figure 6.16) combines the features of 

chemical and electrical models, and it has two important dynamic properties. 

These properties are fuel/air flow and temperature. State of these dynamic 

properties will change according to any disturbances on surrounding operating 

conditions and load changes.  

As shown in Figure 8.11, the proposed hybrid system model has been implemented 

using the MatLab/Simulink software package, and designed with dialog boxes like 

those used in the Simulink block libraries. Such a model is easy to be used for the 

implementation on MatLab/Simulink modelling and simulation platform, especially, 

when there is now a solar-wind-hydrogen energy system model which can be used for 

modelling, analysing and teaching in the field of renewable energy conversion 

systems. 
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9.2 Conclusion  

The analysis of simulation results has shown that the adaptive algorithm developed is 

suitable for stand-alone hybrid power systems. This control algorithm is capable of: 

 Extracting maximum power from the PV panels with tracking efficiency 

exceed 94.5%. 

 Splitting the power between the power sources to sustain the efficiency of the 

system. 

 Regulating the PEMFC on/off status according to external 

environmental changes and to load demand expectation 

 Optimizing the generating performance of the PEMFC by maintaining the 

temperature stable and equal to the stack operating temperature (e.g. 65%). 

Simulation results were obtained by developing a detailed dynamic hybrid system 

model. Real-time measured parameters and practical load profile for two family 

members in resident application have been used as inputs for the developed algorithm.  

Results show that the proposed hybrid system exhibits excellent performance under 

various operating conditions, and maintained the battery SOC at a reasonable level 

40% - 80%. Hence, from the results, it’s clear that during peak load demand when the 

SOC is: 

 Low, the remaining required energy is satisfied by the PEMFC stack, and the 

extra power will be used to charge the battery. 

 High, the remaining required energy is met by the battery bank only. 

 Medium, based on the PV/WT power level, the remaining required energy is 

satisfied by either the battery bank or by the hybrid PEMFC/battery system.   

On the other hand, simulation results show that when the produced power by the 

PV/WT system is more than the required power of load, and the SOC of the battery is 
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below 80%, the extra power of the PV/WT will be used to charge the battery and the 

SOC goes high. Otherwise, if the SOC is above 80%, based on the EMS it is not in 

the safe charge mode. In this case the excess power goes to the grid. 

Moreover to investigate the validity of the proposed MPPT controller system, P&O 

algorithm with two different controllers’ techniques, linear PI and non-linear 

passivity-based controller (PBC) were provided. The comparison is made in a system 

comprises: PV panels, MPPT control, battery, and DC-DC converter. The comparison 

demonstrate that linear PI controller proven it’s instability in handling various 

(rapidly) changes in solar radiation; although it was only from 750W/m
2
-900W/m

2
. 

While non-linear PBC even if it has a few power fluctuations, the simulation results 

of the proposed neural network controller shows better transient performance, with 

low overshoot, short settling time and zero steady-state error. 

9.3 Contribution to knowledge 

This research work has made the following contributions to knowledge: 

 Developed an automated tool for optimizing hybrid power system 

performance, such as that used in smart-house or electric car applications. 

 Presents a new approach for PV system monitoring, by calculating the residual 

difference between the model predicted and the actual measured power 

parameters. 

 Developed an adaptive scheme for energy management in stand-alone hybrid 

power systems based on artificial neural network and fuzzy logic controllers. 
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9.4 Future Works 

Although the proposed system was proven, by simulation, there are still many areas 

which could benefit from additional research and development activity before this 

technology can be feasible for industrial application. Most of these areas are targeted 

at improving efficiency and increasing overall energy yields. Among them, besides 

constructing a hardware prototype, photovoltaic/wind turbine monitoring systems. 

Photovoltaic or wind turbine system owners must be assured that their system 

operates well and that their investment will pay off. Regardless of which system they 

operate, plant parks, individual systems or private systems, failures and defects must 

be detected and repaired immediately. This could be achieved by and only by 

optimizing these system performance and eliminate any degradation at early stage.   

In this study a novel approach has been proposed for PV system monitoring (Natsheh 

& Albarbar, 2011); by calculating the residual difference between the model predicted 

and the actual measured power parameters (see Section 8.2). However, this approach 

can be enhanced by including the artificial intelligent. A feed-forward back-

propagation neural network model can be trained to predict the generated power of 

PV or WT. Then the residual different can be calculated using sensors and 

microcontroller. Moreover, in case the residual exceeded the healthy threshold a text 

message can be sent from the microcontroller to the owner handset.  
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Appendix 

Appendix A: Coefficient of determination (R2) 
 

In statistics, the coefficient of determination (denoted R
2
 and pronounced R-square) 

indicates how well a model predicts future outcomes. R-square can take on any value 

between 0 and 1, with a value closer to 1 indicating that a greater proportion of 

variance is accounted for by the model. For example, an R-square value of 0.9234 

means that the fit explains 92.34% of the total variation in the data about the average. 

R-square is defined as follow: 
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Where SSR is the sum of squares of the regression, SST is the total sum of squares, y is 

the original value, x is the mean of the original data, and f is the predicted value.  
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