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Abstract 
 

This thesis presents research that combines the benefits of intelligent tutoring 

systems (ITS), conversational agents (CA) and learning styles theory by constructing 

a novel conversational intelligent tutoring system (CITS) called Oscar. Oscar CITS 

aims to imitate a human tutor by implicitly predicting individuals’ learning style 

preferences and adapting its tutoring style to suit them during a tutoring 

conversation. 

ITS are computerised learning systems that intelligently personalise tutoring 

based on learner characteristics such as existing knowledge and learning style. ITS 

are traditionally student-led, hyperlink-based learning systems that adapt the 

presentation of learning resources by reordering or hiding links. Research suggests 

that students learn more effectively when instruction matches their learning style, 

which is typically modelled explicitly using questionnaires or implicitly based on 

behaviour. Learning is a social process and natural language interfaces to ITS, such 

as CAs, allow students to construct knowledge through discussion. Existing CITS 

adapt tutoring according to student knowledge, emotions and mood, however no 

CITS adapts to learning styles. 

Oscar CITS models a human tutor by directing a tutoring conversation and 

automatically detecting and adapting to an individual’s learning styles. Original 

methodologies and architectures were developed for constructing an Oscar Predictive 

CITS and an Oscar Adaptive CITS. Oscar Predictive CITS uses knowledge captured 

from a learning styles model to dynamically predict learning styles from an 

individual’s tutoring dialogue. Oscar Adaptive CITS applies a novel adaptation 

algorithm to select the best tutoring style for each tutorial question. The Oscar CITS 

methodologies and architectures are independent of the learning styles model and 

subject domain. Empirical studies involving real students have validated the 

prediction and adaptation of learning styles in a real-world teaching/learning 

environment. The results show that learning styles can be successfully predicted 

from a natural language tutoring dialogue, and that adapting the tutoring style 

significantly improves learning performance. 
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Chapter 1 Introduction  
 

This thesis presents research investigating whether an automated conversational 

agent tutoring system can mimic a human tutor by picking up cues from individual 

learners and adapting its tutoring style to suit them during a tutoring conversation. 

The research involves the capture of knowledge from a learning styles model to 

develop an approach for predicting learning styles from an individual’s tutoring 

dialogue and a strategy for adapting the tutoring style to match. The Oscar 

Conversational Intelligent Tutoring System (CITS) was designed to model a human 

tutor by directing a tutoring conversation and automatically detecting and adapting to 

an individual’s learning preferences. This chapter provides the context and 

motivation of this research, a summary of contributions and a thesis outline.  

1 Background and Motivation 

The design of the Oscar Conversational Intelligent Tutoring System (CITS) 

presented in this thesis adopted principles from three main areas of research, namely 

intelligent tutoring systems, learning styles and conversational agents. 

The increasing complexity of computer systems and their interfaces has led to a 

move towards creating intuitive, human-centred interfaces (O’Shea et al., 2011). 

Conversational agents (CAs) are computer systems that allow us to communicate 

with computers intuitively using natural language (O’Shea et al., 2011). However, 

traditionally conversational agents can only mimic human conversation, but unlike 

humans do not pick up and react to social cues during a conversation (Becker et al., 

2007). This lack of social intelligence can have a negative, demotivating effect on 

users, damaging their confidence in the intelligence of the computer system 

(D’Mello et al., 2009). If conversational agents could detect and react to 

conversational cues in social situations, they could provide an improved, more 

human-like tutoring solution.  

In the context of this thesis, the social situation being modelled is a learning 

environment. Learning is inherently a social process (Moreno et al., 2001), and 

during face-to-face tutorials human tutors automatically pick up behavioural cues 

from students about their understanding and learning preferences, and adapt their 

teaching style to aid learning. Learning styles describe the way that groups of people 
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prefer to receive and process information, for example by viewing diagrams rather 

than textual descriptions, or by active experimentation rather than observation 

(Honey and Mumford, 1992). Matching teaching styles to individual differences such 

as learning styles has been shown to improve learning (Felder and Silverman, 1988), 

but there are many models of learning styles and the choice of model is fundamental 

(Coffield et al., 2004a). 

Intelligent tutoring systems (ITS) extend the traditional computerised learning 

systems ‘one-size-fits-all’ approach by capturing and modelling individual traits used 

to personalise the instruction (Brusilovsky and Peylo, 2003). This involves 

presenting learning material in a style and order to suit the learner (e.g. by presenting 

learning material matched to preferred learning styles), and also proactively helping 

learners, e.g. by giving intelligent feedback on incomplete or erroneous solutions and 

guidance to assist learners in constructing solutions to problems. Most ITS are 

student-led with menus or hyperlinks to topics, sometimes designed specifically to 

capture individual traits (Cha et al., 2006). A few ITS mimic a human tutorial by 

including CA interfaces which enable learners to construct their own knowledge 

through discussion (Graesser et al., 1999; Rahati and Kabanza, 2010; Dzikovska et 

al., 2010). Conversational ITS (CITS) have been extended to detect and react to 

learners’ emotions (D’Mello et al., 2010b), however no attempt has been made to 

detect and react to learning style during a tutoring conversation.  

The motivation for this research came from the need for an Intelligent Tutoring 

System that could mimic a human tutor by directing a tutoring conversation, 

dynamically detecting and adapting to student learning styles during the conversation. 

Two main research questions were identified: 

1. Is it possible to predict a student’s learning style from a two-way tutoring 

discourse with a conversational agent tutor? 

2. Does adapting to a student’s learning style during a two-way tutoring discourse 

with a conversational agent tutor improve learning? 

This thesis describes how the novel Oscar CITS addresses these challenges, 

including how: 

 Oscar uses an example learning styles model as the basis for capturing learner 

behaviour, modelling learning style and designing an adaptive tutorial 

conversation; 
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 Oscar’s innovative predictor module mimics a human tutor by using detected 

learner characteristics to dynamically predict learning style during a tutoring 

conversation; 

 the flexible design of Oscar’s adaptation algorithm incorporates both student 

preferences and the adaptive capability of individual tutorial questions; 

 Oscar mimics a human tutor by adopting a tutor-led, conversational approach 

incorporating intelligent adaptation, problem solving support and solution 

analysis;  

 the generic methodologies and architectures for developing Oscar CITS allow the 

free choice of learning styles model and subject domain; 

 empirical studies involving real students have validated both the prediction and 

adaptation of learning styles in a real-world teaching/learning environment.  

2 Research Goal and Objectives 

The research goal of this thesis is to develop a conversational intelligent tutoring 

system that dynamically predicts an individual’s learning styles from their tutoring 

conversation and adapts its tutoring style to suit the learner’s preferences. There are 

currently no CITS that can mimic a human tutor by dynamically personalising a 

tutoring conversation based on learning styles. 

The objectives of this research are: 

 To review learning styles models and the methods used to model and adapt to 

learning styles in ITS. 

 To develop a methodology for creating a Predictive CITS (PCITS) that can 

dynamically model student learning styles during a two-way tutoring discourse. 

 To design an architecture for a PCITS that dynamically predicts student learning 

styles. 

 To design an adaptation algorithm for an Adaptive CITS (ACITS) that can 

dynamically adapt tutoring to student learning styles. 

 To develop a methodology for creating an ACITS that can dynamically adapt 

tutoring to student learning styles during a two-way tutoring dialogue. 

 To design an architecture for an ACITS that dynamically adapts to student 

learning styles. 
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 To validate both methodologies and architectures by implementing two 

prototypes and evaluating their success by conducting studies. 

 To improve the reuse of the architectures and methodologies by removing any 

dependence on a particular learning styles model or subject domain.  

3 Contributions 

The most significant contributions of this work are: 

 Proof of the concept that it is possible to predict student learning styles from a 

two-way natural language tutoring dialogue with a CA. 

 The generic methodology for creating an Oscar conversational intelligent tutoring 

system that can dynamically predict learning styles from a natural language 

tutoring dialogue.  

 Generic tools to aid development of a predictive CITS, including: 

o Logic rules that match behaviour captured during a natural language 

tutoring dialogue to learning styles. 

o Question styles and templates that can aid in the development of 

conversational tutoring scenarios to predict learning styles. 

o 3-level model of a tutorial conversation. 

 The architecture for a conversational intelligent tutoring system that can 

dynamically predict learning styles from a natural language tutoring dialogue.  

 The generic methodology for creating a conversational intelligent tutoring system 

that can adapt tutoring to suit individuals’ learning styles during a natural 

language tutoring dialogue.  

 The general dynamic adaptation algorithm that combines both the strength of 

learning style and the strength of adaptation available for individual tutoring 

questions to produce the best fitting adaptation per question.  

 The architecture for a conversational intelligent tutoring system that adapts its 

tutoring to suit individuals’ learning styles during a natural language tutoring 

dialogue.  

 Two prototype CITS and results from empirical studies that validate the generic 

architectures and methodologies for a predictive and adaptive CITS that 

personalises tutoring to individuals’ learning styles. 
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The generic tools, methodologies and architectures listed are independent of the 

learning styles model and subject domain. These contributions are expected to be of 

value to researchers and practitioners in the fields of learning styles and 

conversational intelligent tutoring systems (CITS).  Researchers can use these 

contributions as a starting point for future projects and practitioners can follow the 

methodologies and architectures to create CITS that can predict and adapt to learning 

styles models selected for their curriculum. 

4 Thesis Outline 

The thesis is organised into twelve chapters. The nature of the research and 

design of the Oscar Conversational Intelligent Tutoring System (CITS) led to a 

considerable amount of experimental work, resulting in a large amount of 

documentation. To aid the reader, at the end of each chapter there is a summary list 

of chapter highlights. 

As three substantial areas of research are brought together for this project, the 

background review of literature and existing work is described over three separate 

chapters. Chapter 2 introduces theories of learning styles, outlining current debates 

on the nature of learning styles and describing several common learning styles 

models. The use of models in computerised learning systems, criticisms and 

challenges in learning styles research are discussed. Chapter 3 describes 

conversational agents and different approaches to implementing text-based CAs, 

followed by a review of two successful pattern-matching text-based CAs and the 

challenges in CA research. In Chapter 4, Intelligent Tutoring Systems and methods 

of introducing ‘intelligence’ are described. Particular interest is paid to intelligent 

personalisation, with a detailed review of adaptation to learning styles including 

methods of modelling student learning styles and ways of introducing adaptation. 

Next there is an appraisal of the use of CAs to deliver tutoring and a review of the 

most sophisticated conversational ITS (CITS), followed by a discussion of the 

research challenges in the field of ITS. 

Following the background review, the aspects of existing methods for 

incorporating learning styles into ITS which applied to a conversational ITS were 

analysed. Chapter 5 presents the investigations into the first research question, 

namely how to identify learning styles from a natural language tutoring dialogue 
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with a CA. A generic methodology and architecture for creating a CITS to predict 

learning styles (Oscar Predictive CITS) is described in Chapter 6, and its 

implementation is presented in Chapter 7. Chapter 8 describes in detail the empirical 

validation of the generic methodology and architecture, presenting the design and 

results of three studies investigating the success of Oscar Predictive CITS in terms of 

predicting learning styles, learning gain and student feedback. 

Next, the question of how to introduce adaptation to student learning styles into a 

conversational ITS was considered. Chapter 9 presents a generic methodology and 

architecture for creating a CITS that adapts to individual learning styles (Oscar 

Adaptive CITS). The implementation of Oscar Adaptive CITS and the methodology 

and results of the empirical evaluation are described in Chapter 10. The second 

research question is tested here: does adapting to student learning style during a 

natural language tutoring discourse with a CA increase learning gain. 

In Chapter 11, the generic nature of the Oscar CITS is demonstrated by 

summarising the steps required to create a predictive CITS and adaptive CITS for a 

different learning styles model and subject domain. 

Chapter 12 concludes the thesis by highlighting its contributions and describing 

its limitations and future direction. 
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Chapter 2 Learning Styles  

1 Introduction 

There has been much research over the past 50 years devoted to individual 

differences and learning. As the process of teaching has moved from traditional 

teacher-led instruction towards a more co-operative inquiry-based approach, the 

question of how best to support and encourage learners must be considered. Learning 

styles were selected for this research as they represent a significant aspect of the 

complex process of learning that could be applied to add human-like social 

intelligence to computerised learning systems. 

This chapter introduces some of the proposed theories of learning styles and 

illustrates the breadth, complexity and challenges of research in this area. Also 

considered is the use of learning styles theories in practice, and how they can be 

applied to add a social element and enhance learning in computerised learning 

systems.  

2 Learning Styles 

In simple terms, learning styles describe the way in which groups of people 

prefer to learn. However, there are several contradictory theories about learning, and 

therefore no single agreed definition. Some learning theories are based on 

psychological theories such as personality traits and intellect whereas others focus on 

brain functioning or the learning environment. This broad range of research has 

produced many conflicting models of learning styles. The Coffield review of 

„Learning styles and pedagogy in post-16 learning‟ (Coffield et al., 2004a) aimed to 

appraise the overwhelming amount of theoretical and empirical research on learning 

styles in an educational context. Coffield et al. critically reviewed 13 popular 

learning styles models, having identified the existence of 71 different learning styles 

models, and 3800 related articles.  

There have been various attempts to classify different research approaches, with 

Curry (1983) developing three categories relating to a student‟s instructional 

preferences, information processing style and cognitive style. Coffield et al. (2004a) 

organised learning style theories into five „families‟ depending on whether learning 
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styles are thought to be fixed (e.g. inherited or personality traits) or open to change 

(e.g. affected by the environment or context):  

 Constitutionally-based learning styles and preferences – learning styles are fixed 

genetically (e.g. Dunn and Dunn, 1974). 

 Cognitive structure – learning styles are fixed habits linked to personality (e.g. 

Gardner, 1983). 

 Stable personality type – learning styles are one part of relatively stable 

personality type (e.g. Myers, 1962). 

 „Flexibly stable’ learning preferences – learning styles are stable but different by 

situation (e.g. Honey and Mumford, 1992). 

 Learning approaches and strategies – personal, environmental and curriculum 

factors influence learning strategies (e.g. Entwistle, 1998). 

The next section will summarise six commonly used learning styles models 

across the five families, selected based on Coffield‟s review (2004a) and their 

application in technology enhanced learning.   

3 Common Learning Style Models 

3.1 Dunn & Dunn Learning Style Model 

Like several of the popular learning styles models, the Dunn and Dunn model 

(Dunn and Dunn, 1974; Dunn and Griggs, 2003) has changed from its initial version 

in 1974 following additional research. Coffield et al. (2004a) placed the model in the 

family of theorists who believe that learning styles are based on inherited traits, and 

although Dunn and Dunn acknowledge external factors like the environment, they 

believe that learning styles are fixed. The Dunn and Dunn model is popular in the 

USA, being used in a large number of primary schools, as it distinguishes between 

children and adults. The model was adopted for iWeaver (Wolf, 2002), an adaptive 

computerised learning environment that teaches Java programming. iWeaver 

matches learning material to learner preferences for two aspects of the model: 

perceptual (part of physiological) and psychological. 

The model describes learning styles over five aspects called stimuli, each with 

several factors, as follows: 

 Environmental includes preferences for sound, light, temperature and 

seating/furniture design.  
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 Emotional incorporates learner levels of motivation, persistence, responsibility 

and need for structure. 

 Sociological describes preferences for learning alone, in pairs, with peers, as a 

team, with an authority or in varied approaches (and for children, motivation 

from teachers and parents). 

 Physiological describes perception inclinations (visual, auditory, kinaesthetic or 

tactile), time of day energy levels, the need for food and drink and for mobility. 

 Psychological (which was added in later versions of the model) characterises 

preferred information processing as global or analytic and impulsive or reflective. 

The Dunn and Dunn learning styles model is assessed using a questionnaire that 

results in a high or low preference for each factor in the model. There are three 

different age levels of the Learning Styles Inventory for children (Dunn et al., 1996) 

with 104 questions answered using a 3-choice or 5-choice Likert scale. The Building 

Excellence Inventory for adults (Rundle and Dunn, 2000) has 118 questions 

answered on a 5-choice Likert scale. 

The Dunn and Dunn model is easily understandable and incorporates motivation, 

social interaction and physiological and environmental factors. The model may also 

be applied widely to children and adults. However, the simplicity of the model‟s 

connections between brain function and psychological/physiological preferences has 

been questioned (Coffield et al., 2004a) and the model describes instructional 

preferences rather than learning. 

3.2 Gardner’s Multiple Intelligences Theory 

In his theory of Multiple Intelligences, Gardner (1983, 1993) proposed that there 

is more to intelligence than the widely accepted traditional definition. Gardner‟s 

theory of multiple intelligences expands the traditional notion of intelligence (based 

on IQ testing) to describe eight different aspects of intelligence, as follows: 

 Visual/Spatial – known as „picture smart‟, spatial intelligence describes the 

ability to visualise spaces internally in the mind, e.g. for navigation or playing 

chess. 

 Linguistic/Verbal – known as „word smart‟, linguistic intelligence describes the 

ability to use words to express ideas and understand other people. 



Chapter 2: Learning Styles 

10 

 Logical/Mathematical – known as „number smart‟, logical/mathematical 

intelligence describes the ability to reason and understand causal systems or 

manipulate numbers. 

 Bodily/Kinesthetic – known as „body smart‟, bodily/kinaesthetic intelligence 

describes the capacity to use ones body skilfully. 

 Musical/Rhythmic – known as „music smart‟, musical intelligence is the capacity 

to think in music, hearing, recognising and repeating patterns. 

 Interpersonal – known as „people smart‟, interpersonal intelligence is the ability 

to understand other people. 

 Intrapersonal – known as „self smart‟, intrapersonal intelligence refers to an 

introspective and reflective understanding of oneself, ones abilities, desires, 

reactions and weaknesses.  

 Naturalistic – known as „nature smart‟, naturalistic intelligence describes the 

ability to nurture and relate information to the environment. 

Although not specifically related to learning, Gardner proposes that teaching 

should broaden its traditional linguistic and logical focus to incorporate different 

activities that better serve students with strengths in different intelligences. Gardner 

has not defined a test to assess an individual‟s Multiple Intelligences, as he believes 

it to be “more of an artistic judgement than of a scientific assessment” (Gardner, 

1983). The EDUCE adaptive computerised educational system (Kelly and Tangney, 

2006) successfully uses Gardner‟s Multiple Intelligences theory as a basis for 

dynamically modelling learning characteristics and delivering adaptive learning 

material. However, the model has been criticised as it does not redefine intelligence, 

but rather describes different abilities and skills.  

3.3 Myers-Briggs Personality Types 

The Myers-Briggs Type Indicator (MBTI) (Myers, 1962) categorises an 

individual‟s personality type and their approach to relationships. Although MBTI is 

not a learning styles model, Coffield et al. (2004a) reviewed it as part of the family 

of theories proposing that learning styles is one observable aspect of personality. The 

scope of MBTI includes learning and it is widely used in consultancy and training as 

a career development and managerial tool (Furnham and Medhurst, 1995). The 

MBTI model has also been used in computerised learning, for example El Bachari et 

al. (2010) who designed an adaptive e-learning system based on learner personality. 
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MBTI classifies a person‟s type according to four dichotomies (The Myers and 

Briggs Foundation): 

 Extroversion/Introversion describes the preferred focus of an individual as on the 

outer world of people and things (extravert) or inner world of thoughts and ideas 

(introvert). 

 Sensing/Intuition describes the way individuals perceive information – from their 

five senses (sensing) or from patterns and possibilities in the information 

(intuition).  

 Thinking/Feeling categorises the way individuals evaluate information – based on 

logical judgements such as true or false (thinking) or on subjective evaluations 

such as better or worse (feeling). 

 Judging/Perceiving describes how individuals live their outer life – preferring a 

structured and decided (judging) or flexible and adaptive (perceiving) lifestyle. 

The MBTI is evaluated using Form M (Myers and McCaulley, 1998), a 93-

question forced-choice questionnaire resulting in one of sixteen MBTI types (based 

on combinations of the dichotomies, e.g. ISTJ). The dichotomies are not independent, 

as each MBTI type represents a set of complex relationships between dichotomies 

known as type dynamics, and described by positive and negative traits. 

3.4 Honey & Mumford’s Learning Styles Model 

The Honey and Mumford (1992, 2006) learning styles model was based on the 

influential Learning Style Inventory (Kolb, 1976), and is widely used in the UK for 

personal and organisational development. The model has also been used in a number 

of technology-enhanced learning systems, for example INSPIRE (Papanikolaou et al., 

2003) which adapts its teaching of computer architecture to suit learner preferences. 

Honey and Mumford believe that under-utilised learning styles can be strengthened 

by following the actions given in the model. Honey and Mumford define four 

learning styles, as follows: 

 Activists like to take direct action, try things out, participate and be the centre of 

attention. They are enthusiastic and welcome new challenges. Activists are more 

interested in the present than the past or the broader context. 

 Reflectors are thoughtful, preferring to think things through before taking action. 

They are good listeners, are happy to repeat learning and like to keep a low 

profile. 
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 Theorists are logical, analytical and objective and prefer a sequential approach. 

They pay attention to detail and like to see how things fit together overall. 

 Pragmatists are practical, enjoy experimenting with new ideas and like to solve 

problems by seeing how things work in practice. 

Learning styles are assessed using the Learning Styles Questionnaire (LSQ). 

There are two versions of the LSQ, the 40-item and 80-item versions, which use a 

number of yes/no questions to assess the strengths of the four learning styles. The 

four resulting scores are then compared to a list of group norms that categorise the 

learning style preference as very strong, strong, moderate, low or very low.  

The Honey and Mumford model describes the learning cycle in four stages: 

experiencing, reviewing, concluding and planning. The descriptions of preferred 

learning styles are designed to help learners maximise their learning over each stage 

of the learning cycle, and advice is given on how to strengthen under-utilised styles. 

The wide adoption of the model in business reflects its ease of use and practical 

advice, however no specific advice is given for educators so it may not be 

appropriate in higher education.  

3.5 Felder-Silverman Learning Styles Model 

The Felder-Silverman (FS) learning styles model (Felder and Silverman, 1988) 

was developed to describe the learning styles in engineering education and suggest 

different teaching styles to address learners‟ needs. The FS model defined five 

dimensions of preferred learning style: perception (sensory-intuitive), input (visual-

auditory), organisation (inductive-deductive), processing (active-reflective) and 

understanding (sequential-global). Following further research and additional 

sampling, Richard Felder removed the organisation dimension from the model and 

altered the input dimension to visual-verbal (thus verbal includes both written and 

spoken words) (Felder and Henriques, 1995).  

The four dimensions of learning style defined in the FS model each relate to a 

stage in the process of receiving and processing information as follows: 

 Perception – learners are sensory or intuitive depending on the type of 

information they prefer to perceive, e.g. external or internal. Sensing learners 

prefer facts and experimentation, are patient with detail, comfortable with 

symbols (e.g. words) and careful but slow. Intuitive learners prefer principles and 

theories, are bored by detail, uncomfortable with symbols and quick but careless. 
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 Input – learners are visual or verbal according to the way they prefer to receive 

external information, e.g. diagrams or explanations. Visual learners remember 

what they see, like pictures and diagrams and prefer visual demonstration. Verbal 

learners remember what they hear, like discussion and prefer verbal explanation. 

 Processing – learners are active or reflective according to the way information is 

converted into knowledge, e.g. discussion or introspective consideration. Active 

learners like to do something with information (discuss or test), they are 

experimentalists and process information by testing an idea. Reflective learners 

like to examine and manipulate information internally, are theoreticians and 

process information by postulating explanations and drawing analogies. 

 Understanding – learners are sequential or global depending on their progression 

towards understanding, e.g. continual steps or large jumps. Sequential learners 

like to follow a linear reasoning process, can work with partially understood 

material and prefer information presented in a steady progression of complexity. 

Global learners make intuitive leaps, have difficulty working with material they 

have not understood and prefer to jump directly to complex material. 

There are 16 (2
4
) learning styles overall (an example being sensory/visual/ 

active/sequential). Each learning style dimension may be thought of as an axis with 

the opposite learning styles at each end (as illustrated in Figure 2.1), and learners are 

placed on each axis according to the strength of their preferred learning style. By 

defining independent dimensions the FS model describes the detail of learner 

tendencies, including the strength of preference as well as the nature of learning 

styles.  

LEARNING STYLE

PERCEPTION DIMENSION

Preferred type of information

SENSORY                                 INTUITIVE

external                                       internal

INPUT DIMENSION

Preferred way to receive external information

VISUAL                                   VERBAL

diagrams                              explanations

PROCESSING DIMENSION

How information is converted into knowledge

ACTIVE                                 REFLECTIVE

discussion                              introspective 

                                               consideration

UNDERSTANDING DIMENSION

Progression towards understanding

SEQUENTIAL                               GLOBAL

continual steps                           large jumps

 

Figure 2.1. FS Model Dimensions 

The Index of Learning Styles (ILS) (Felder and Soloman, 2008) is an instrument 

to assess Felder-Silverman learning styles. The ILS is a 44-question forced-choice 
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self-assessment questionnaire with 11 questions per learning style (see Appendix 1). 

For each dimension, answers are compared and result in a learning style and a score 

from 1 to 11 (in steps of 2). Scores of 1 or 3 place the learner at the centre of the axis 

and indicate a low preference for that learning style, which Felder and Silverman call 

neutral preferences. 

The FS model is frequently adopted by technology-enhanced learning systems 

(Dag and Gecer, 2009), e.g. CS383 (Carver et al., 1996) teaches computer systems, 

CooTutor (Wang et al., 2006) teaches spatial geometric transformation and Li et al. 

(2010) report an adaptive course on web technologies. Reasons for this popularity 

include: 

 it is more feasible to implement a small number of dimensions (like the FS 

model); 

 FS dimensions are distinct and independent; 

 the FS model contains detail of typical behaviour for each learning style; 

 there are descriptions of teaching styles that match preferred learning styles; 

 the model was specifically designed for engineering students, and many 

computerised learning systems are applied to teaching computer science courses. 

The FS model was developed with the purpose of improving teaching styles in 

engineering education. Its strengths lie in the detailed descriptions of learner 

behaviour tendencies and suggestions for teaching styles, and the fact that it 

describes both learning style preference and the strength of that preference. However 

it is recognised by the model that, as with most generalisations, the actual behaviour 

of students will not always conform to the tendencies described in the model.  

3.6 Entwistle’s Approaches and Study Skills Inventory for Students (ASSIST) 

Entwistle‟s research (Entwistle, 1981, 1998) focuses on students‟ strategies for 

learning, proposing that learning styles are not fixed by inherited characteristics, but 

are affected by the learning environment. The model describes students‟ approach to 

learning and intellectual development and applies to students within higher 

education. Entwistle‟s model differentiates between a learning style (a student‟s 

preferred way of approaching learning) and a learning strategy (a student‟s approach 

to a specific task based on the perceived requirements).  
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Three main approaches to learning are described by the model (Entwistle et al., 

2001) as follows: 

 Deep approach – this describes students who intend to understand ideas for 

themselves, taking an active interest and personal engagement in learning. 

 Surface approach – these students intend to cope with the course requirements, 

memorising facts and studying without reflecting on purpose or meaning. 

 Strategic approach – this approach describes students who intend to achieve the 

highest possible grades by gearing the work to particular lecturers and being alert 

to assessment requirements. 

The ASSIST inventory (Entwistle, 1997) aims to measure undergraduate 

students‟ approaches to learning and their perceptions about the impact of course 

organisation and teaching. The inventory has 66 questions answered using a 5-choice 

Likert scale over three sections: what is learning, approaches to studying and 

preferences for different types of course and teaching. 

ASSIST is intended to be used as a diagnostic tool for lecturers, students and 

course teams aiming to promote an environment that encourages the deep approach 

to learning. The strength of the model is its aim to describe strategies and approaches 

to learning and the attitude toward development of intellectual skills in higher 

education. However, the model is complex and not easy for non-specialists to apply, 

and has not been adopted by any computer-enhanced learning systems.  

4 Challenges for Theories of Learning Styles 

As has been described, there has been a large amount of research into learning 

styles leading to much controversy about the nature of learning. The lack of firm 

conclusions leaves a number of challenges and open questions, as follows: 

 There is no holistic model of learning styles. A large number of learning style 

models exist, with inconsistent findings on their stability, similarity, differences 

and appropriateness to education. The major review undertaken by Coffield et al. 

(2004a) attempted to clarify the position.  

 There is much disagreement on the nature of learning styles, in particular over 

whether they are fixed or change over time, environment, subject or history of 

learning experience. Coffield grouped learning styles models based on the 
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biggest area of difference – the argument over whether learning styles are god-

given traits or skills and strategies.  

 Which model is most appropriate for the situation? There is a lot of overlap, and 

some models are too complex to understand and implement by teachers, e.g. 

Entwistle. 

 Does matching to learning styles in education work? Do mismatched learning 

styles stimulate motivation or does this depend on personality? If learning styles 

change over time, is it more helpful not to match to learning styles? Some 

approaches believe that matching to learning styles improves learning (Hsieh et 

al., 2011), whereas others think that learners benefit from mismatching (Felder 

and Brent, 2005; Smith et al., 2002).  

 How feasible is it to match different teaching styles? In practice, do teachers have 

time to plan different formats of learning material, or adapt teaching based on 

learner feedback? Matching to learning styles in computerised learning systems 

requires a lot more development time and effort, extra resources, etc. so do the 

gains justify this?  

 How accurately can learning styles be measured? How is this done in practice, 

and how often (if they change)? Are questionnaires completed properly by 

learners, who find them time-consuming? Coffield et al. (2004a) checked the 

validity of questionnaires, but if they are not completed accurately the results will 

be affected. 

Despite the variety of opinions in this field, it is widely accepted that individual 

differences exist (Felder and Brent, 2005) and that learning preferences reflect 

individual traits (Entwistle, 1988; Honey and Mumford, 1992). Coffield concluded 

that the choice of model matters fundamentally in post-16 learning. 

5 Learning Styles in Practice 

In practice, learning styles are used in different ways, often reflected by the 

choice of model. For example, Honey and Mumford‟s model (1992) is used in 

business for personal and organisational development (e.g. in management training 

for staff coaching and development (Avon and Somerset Constabulary)), whereas 

Entwistle‟s (1997) ASSIST is used by educators wishing to promote an environment 

for deeper learning. In education, the formal assessment questionnaires are most 
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often used to improve student self-awareness, but it is not common for lecturers to 

use the results of a formal tool when planning to teach a course. Instead, a lecturer 

will typically use their knowledge and experience of different groups of learners to 

incorporate different types of material and activities (Felder and Brent, 2005). During 

tutorials, lecturers will intuitively pick up informal behavioural cues from students 

that indicate their level of understanding and their preferred learning style, and use 

these observations to adapt their teaching style accordingly. 

For example, in the FS model (Felder and Silverman, 1988) typical learner 

behaviours and associated teaching styles are described for each learning style. This 

information is useful to lecturers when informally grouping types of learners.  

Although opinions on the usefulness of learning styles in education vary, their 

application to experimental research in computer-based education systems has shown 

that matching learning material to students‟ preferred learning styles can enhance 

their learning (Walters et al., 2000; Paredes and Rodriguez, 2004; Rasmussen, 1998; 

Riding and Grimley, 1999; Graff, 2003; Allinson and Hayes, 1996; Felder and Brent, 

2005). 

6 Conclusion 

This chapter has introduced the broad area of research on learning styles and 

contrasted some of the many opposing theories. The Coffield (2004a) review 

organised learning styles theories into five families on a continuum, according to 

their biggest difference: the belief of whether learning styles are fixed by genetics or 

change according to the environment. Six common learning styles models across this 

continuum were summarised. The controversies in the debate on learning styles has 

resulted in a number of open questions and a lack of firm conclusions. Coffield 

(2004a) concluded that the choice of learning styles model in post-16 learning is 

fundamental. 

In practice, learning styles are used mostly in education by learners for self-

understanding. Workload and time constraints mean that formal assessment is rarely 

used by teachers during course design. Instead, teachers are more likely to use their 

experience and knowledge of learning preferences to informally group learners and 

adapt their teaching. Computer-based education systems are increasingly used to 

augment the student learning experience as well as for distance learning. By 
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including knowledge of learning styles and delivering suitable learning material, 

some social intelligence may be added to computerised learning systems to improve 

the learning experience. A number of studies (Felder and Brent, 2005; Cooper, 2002; 

Smith et al., 2002) have shown that matching learning material with learning styles 

in computerised learning systems has improved learning outcomes. A computerised 

learning system that could automatically determine and adapt to an individual‟s 

learning styles could offer enhanced learning experiences without the time cost to 

human tutors. 

7 Chapter Highlights 

 Learning styles describe the way groups of people prefer to learn. 

 There are numerous theories of learning styles with a wide range of views on 

their stability. 

 Coffield et al. (2004a) organised and critically reviewed learning styles research 

in the context of post-16 education. 

 There are many challenges and open questions in learning styles research that 

remain under debate. 

 The choice of learning styles model is fundamental, but overlap and inconsistent 

descriptions make it a difficult choice. 

 In practice, teachers rarely use formal assessment of learning styles when 

designing courses. 

 Computerised learning systems that personalise teaching according to learning 

styles can enhance learning. 
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Chapter 3 Conversational Agents  

1 Introduction 

Communicating with a computer using natural language has been a goal in 

artificial intelligence for many decades, stimulated by the „Turing Test‟ (Turing, 

1950). Turing‟s test was proposed to move the research community on from debating 

whether machines can think, to developing machines that could imitate humans well 

enough to fool a judge. Early attempts to pass the Turing test involved using 

computer programs (conversational agents) called chatterbots that used tricks during 

a conversation to create an illusion of intelligence (Weizenbaum, 1966).  

Conversational agents (CAs) enable people to communicate with computers 

using natural language. The term CA has been used broadly to describe textual, 

spoken or embodied conversational systems (O‟Shea et al., 2011), but they all share 

the key challenge of understanding the user input and responding appropriately. In 

expert systems (such as tutoring, Graesser et al., 2008b) CA interfaces can engage 

users in discussion by replicating human communication (e.g. classroom learning), 

helping users to build motivation and confidence by drawing on their own experience. 

This chapter will introduce different approaches to implementing CAs, and then 

describe pattern-matching text-based CAs. Two successful text-based CAs will be 

reviewed and finally the challenges in developing more human-like CAs discussed. 

Despite the difficulties in developing CAs, natural language interfaces are desirable 

as an intuitive and familiar method of communicating with computer systems. 

Therefore CAs are an ideal solution for communicating with intelligent tutoring 

systems as they allow students to construct knowledge by asking questions and 

discussing problems as with a human tutor.  

2 Conversational Agents 

Conversational agents (CAs) allow people to interact with computer systems 

intuitively using natural language dialogues (O‟Shea et al., 2011). CA interfaces are 

intuitive to use and have much to offer businesses with an online presence, adding a 

„friendly face‟ to websites by offering users additional support and advice (Lee et al., 

2001), for example ANNA, a CA guide to IKEA‟s website (Inter IKEA Systems BV, 

2004)). In addition, CAs can act as cost-reducing and profit-enhancing tools, 
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managing emails and SMS messages, supporting sales and aiding customer retention 

by detecting and reporting dissatisfaction from their conversations (VirtuOz, 2007). 

As well as adding natural language ability to computer interfaces (Owda et al., 2011), 

CAs offer the traditional benefits of computer systems: they present consistent advice, 

do not require rest and are available for use at all times of the day. CAs have been 

used effectively in many applications, such as web-based guidance (Latham et al., 

2010), database interfaces (Owda et al., 2011) and computerised learning (D‟Mello 

et al., 2010a).  

There are three main types of CA:  

 The first text-based CAs were designed with the sole aim of holding a 

conversation, and are known as chatbots (Carpenter, 2007). More complex text-

based CAs, such as goal-oriented textual CAs, are designed to address specific 

problems in a well defined subject domain. Goal-oriented textual CAs follow a 

goal-oriented methodology such as ConvAgent‟s InfoChat (Convagent Ltd., 

2005).  

 Spoken dialogue systems are also usually goal driven but use a spoken rather than 

textual interface (Sadek, 1999).  

 Embodied CAs additionally mimic human gesture and body language during a 

conversation (Cassell, 2000). 

In the context of this thesis, the term CAs refers to text-based CAs. It is relatively 

straightforward to add voice capability to a textual CA, which widens access and 

gives the appearance of a more human-like interface. By adding a voice capability to 

a textual CA intelligent tutoring system, D‟Mello et al. (2010a) found that students 

progressed more quickly through the curriculum. 

CAs conduct a conversation by accepting natural language user input and 

producing an appropriate response. Responses usually consist of predefined „canned 

text‟ that can be changed to reflect the conversation context using variables. For 

example, variables can be used to include a name, e.g. „How are you feeling today, 

Bob‟. However, there are a number of different approaches to understanding user 

input in CAs:  

 The natural language processing (NLP) approach (Khoury et al., 2008) seeks to 

understand the user input by studying the constructs and meaning of natural 

language and by applying rules to process important parts of sentences. Whilst 
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sophisticated, NLP requires a lot of computational power that impacts on speed 

and scalability for real-time use over the Internet. Another problem with NLP is 

that user utterances are expected to be grammatically correct, which is often not 

the case. 

 Pattern matching systems (Wallace, 2009; Convagent Ltd., 2005) use an 

algorithm to match key words and phrases within an utterance to pattern-based 

stimulus-response pairs rather than attempting to understand the input. Although 

limited to existing stimulus patterns, the pattern matching approach does not 

require grammatically correct or complete input. However, developing a set of 

stimulus-response pairs (known as a script) is a complex and time-consuming 

task. 

 The AI method (O‟Shea et al., 2010) compares the semantic similarity of phrases 

(Li et al., 2004) to decide on the meaning of the input. Research into semantic 

similarity measures is in its infancy and despite aiming to reduce the 

development time and effort of scripting CAs, the benefits are not yet fully 

realised. 

CAs are ideally suited to simple question-answering systems as they are intuitive 

to use and allow users direct, non-linear access to information of interest. However, 

for systems requiring lengthy dialogue (such as tutoring), the time and expertise 

required to develop sophisticated CA scripts that adequately mimic human 

conversation is a challenge rarely tested. 

3 Pattern-matching Text-based CAs 

Most text-based CAs adopt the pattern matching approach as it is currently the 

one that works best for extended dialogues (O‟Shea et al., 2011). The pattern 

matching approach requires the development of conversation scripts, a similar idea to 

call centre scripts, which match key input words and phrases to suitable responses. 

Scripts usually contain numerous patterns, leading to many hundreds of stimulus-

response pairs in the CA‟s knowledge base, which demonstrates the complexity and 

time required to script a CA. Scripts are initially developed by anticipating user 

utterances and writing stimulus-response pairs to match them. CA scripts require 

considerable maintenance, needing continuous improvement by reviewing incorrect 

CA responses from conversation histories and modifying or adding stimulus-
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response pairs to address the problem. This requires considerable language expertise, 

and is labour intensive and time consuming.  

A CA script is made up of a set of pattern-based stimulus-response pairs 

(hereafter called rules) containing a set of stimulus patterns, the rule‟s current status 

and a response pattern. Wildcards are used within patterns to match any number of 

words, broadening the rules to match utterances containing specific key phrases. As 

pattern matching CAs match key words within an utterance, they do not require 

grammatically correct or complete input. One of the biggest challenges is 

understanding the context of non-specific user utterances such as “What does it mean” 

and “Yes, do you?”. Different topic groups and conversation histories are used to 

help find appropriate matches, for example, the meaning of a user utterance “Yes, 

please show me” can only be understood in relation to the current context and 

previous utterances of the conversation. 

An algorithm decides the best fitting rule to fire, thus producing a CA response. 

CA scripts may be grouped into topics and may be linked together in a tree or graph 

structure (Sammut, 2001), sometimes over various levels (e.g. a script filter to 

capture abusive language). The organisation of the scripts and the efficiency of the 

matching algorithm have a direct impact on the real-time use of CAs as interfaces. 

Pattern-matching textual CAs can be applied to general (chatbots) or goal-based 

conversations (e.g. gathering information to provide guidance (Crockett et al., 

2009)), depending on the development methodology adopted. Two successful 

pattern-matching text-based CAs will now be reviewed. 

3.1 Artificial Linguistic Internet Computer Entity (ALICE) 

ALICE (Wallace, 2009) is a freely available text-based chatbot that was ranked 

the „most human computer‟, winning the Loebner Prize (an annual Turing test 

competition (Loebner, 2011)) three times. ALICE implements pattern matching 

using an XML-type scripting language called Artificial Intelligence Markup 

Language (AIML). By making ALICE and AIML available free, the distributed 

development of around 41,000 rules (called categories) that can be matched to user 

utterances has been possible. The categories are held in a tree structure by an object 

called the GraphMaster that implements a pattern storing and matching algorithm 

that works in real time. The knowledge base (or ALICE‟s „brain‟) can be 
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downloaded along with the specifications for AIML and ALICE software from 

ALICE AI Foundation (2007). 

Table 3.1 shows an example of an AIML category, which consists of a pattern 

and a template (response). The pattern consists of a key phrase that contains a 

wildcard (*) to match any number of words. The words matched to the wildcard can 

be retrieved for use in the response using <star/>. In the example template, a variable 

(called predicates in AIML) value is retrieved to tailor the response to the dialogue 

partner. The predicate name will have been set previously in the dialogue using the 

markup <set name=”name”>Dylan</set>. Variables (called predicates) allow 

information about the conversation to be stored, for example predicates are 

commonly used to bind pronouns (such as he) to subjects (such as Einstein). 

Table 3.1. Example AIML Category 

<category> 

     <pattern>CAN I PLAY * TURING TEST</pattern> 

     <template> 

          We are already playing the Turing Game,  

          <get name="name"/> 

          .  Now it's your turn. 

     </template> 

</category> 

Source: ALICE AI Foundation, 2007 

The AIML recursion operator acts like a „goto‟ command, recursively matching 

categories to divide up utterances or spot keywords. The conversation context is 

managed by storing the last utterance, and also by grouping categories into topics 

that are treated like ordinary words added to an utterance. AIML scripts may be 

written using a Knowledge Wizard tool that generates linguistic variations for simply 

phrased questions, such as “Who is Turing?”. However, anticipating user utterances 

and writing patterns to match these is a skilful and time-consuming job. 

The use of ALICE and AIML is widespread as the chatbot is provided freely as 

open source. This allows the distributed development of the knowledge base with 

new patterns being added by many users. The set of patterns also evolves to improve 

incorrect responses noted from conversation histories by making patterns more 

specific. However, this strategy creates the problem of managing the knowledge base, 

particularly with regard to duplicate categories that must be removed by the ALICE 

AI Foundation. 

AIML is a fairly simple scripting language, and patterns may only contain 

alphanumeric characters which may be insufficient for some applications. The 
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restriction of only one pattern per category means that scripts are long and difficult to 

maintain, as there are many synonyms, and AIML‟s use of recursion to address 

synonyms does not lead to shorter scripts. The dialogue context is managed very 

simply by appending topic names to categories, and there is no mechanism for 

grouping or navigating categories to capture utterances on a particular subject. 

ALICE and AIML rely on a very large knowledge base to manage general chat, 

however for many practical applications a goal-oriented CA is better suited. 

3.2 InfoChat 

InfoChat is a commercially available goal-based CA marketed by ConvAgent Ltd 

(2005). InfoChat has been successfully used in online advice and guidance systems, 

such as Adam, the Student Debt Advisor (Crockett et al., 2009) and the Bullying and 

Harassment Advisor (Latham et al., 2010). InfoChat implements pattern matching 

using a sophisticated scripting language, PatternScript (Michie and Sammut, 2001). 

Scripts are made up of rules that consist of stimulus patterns and responses, where 

each pattern matched to an input generates a response. PatternScript includes more 

features than AIML, such as shorthand features like macros (discussed below) and 

the ability to have numerous patterns within a single rule. This leads to shorter and 

better organised scripts which makes development and maintenance more efficient. 

PatternScript also allows scripts of rules to be organised into contexts that manage 

particular parts of a conversation.  

Table 3.2. Example PatternScript Rule 

<What-is-Bullying> 

a:0.01 

p:50  *<explain-0> * bullying* 

p:50  *bullying *<explain-0>* 

p:50  *<remind-0> * bullying* 

p:50  *bullying *<remind-0>* 

p:50  *<explain-0>* a bully* 

p:50  *a bully*<explain-0>* 

r:  Bullying is persistent, threatening, abusive, malicious, 

intimidating or insulting behaviour, directed against an 

individual or series of individuals, or a group of people.  
*<set BullyDef true> 

Source: Latham, Crockett & Bandar 2010 

Table 3.2 shows an example PatternScript rule that consist of an activation level, 

a number of patterns with associated strengths and a response. In the rule, <What-is-

Bullying> is the rule name; a is the activation level used for conflict resolution 

(Michie, 2001); p is the pattern strength followed by the pattern that is matched 
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against the user utterance and r is the CA response. As each rule can contain many 

patterns, each matched individually, PatternScript scripts are shorter and easier to 

maintain than AIML scripts.  

In the example (Table 3.2), patterns contain the wildcard (*) that matches any 

number of words, which can later be retrieved for use in the response. Patterns also 

contain macros (in the example <explain-0> and <remind-0>) that contain a number 

of standard patterns for synonyms which are each matched separately. The macro 

facility reduces the number of patterns needed in rules and simplifies maintenance, as 

synonyms need only be added once but are used by all scripts. Variables are set (and 

their values may be recalled) as part of the response; in the example the variable 

BullyDef is set to „true‟ using the *<set> command. 

PatternScript‟s naming of rules allows the incorporation of features for 

controlling a conversation, such as the promotion, demotion or killing off of rules 

within the scripts. The setting of variables can also be used to restrict rules. These 

features along with the setting of activation levels for rules and patterns (strengths) 

enable scripts to be fine tuned and the priority of certain key words and phrases to be 

represented.  

PatternScript allows the scripts to be developed modularly by grouping rules into 

sets called contexts (Sammut, 2001). Structuring scripts into contexts adds contextual 

information to user utterances to aid their understanding. There is always a current 

context representing the current state of the conversation. Rule responses may push 

control to a new context, and this recursive system is used to move the conversation 

towards its goal. Levels of contexts may also be used for filtering (e.g. responding to 

abusive language) or backup scripts (when no suitable pattern matches the input).  

PatternScript has a number of sophisticated features for matching patterns and for 

controlling the dialog by promoting or demoting rules. PatternScript also allows 

scripts to be clearly organised into contexts, promoting modular development. The 

ability to associate numerous patterns with a rule and to define macros for common 

expressions leads to smaller and more maintainable scripts. However, as well as 

adding control, the use of PatternScript‟s complex features adds the necessity for 

considerable expertise in developing and maintaining CA scripts. With 

PatternScript‟s features for managing conversations and organising scripts, InfoChat 

lends itself to goal-oriented implementations. InfoChat has been successfully 
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employed as a goal-based CA where the conversation domain is tightly defined 

(O‟Shea et al., 2011). 

4 Challenges for Text-Based CAs 

Despite many decades of research, the success of CAs as intuitive computer 

interfaces is limited. A number of challenges remain that influence development and 

maintenance costs, including:  

 The development of CA scripts is a time consuming and labour intensive process, 

which has an impact on development costs. 

 Development of CA scripts is anticipatory (what will users say) and backward-

looking (correcting incorrect responses by making more specific patterns) leading 

to a lengthy development time. 

 The biggest challenge of scripting CAs is the coverage of all possible user 

utterances. Although this is more of a problem for chatbots that require general 

knowledge, goal-oriented CAs must also employ mechanisms to manage 

unexpected utterances in a way that appears intelligent. 

 Skills in developing dialogues are crucial, as CA responses must be carefully 

written to maintain the conversation and, in goal-oriented CAs, to steer the 

conversation towards its goal.  

 Developers of CA scripts must be highly skilled in selecting patterns of key 

words to match the required user utterances and give a sensible response. 

 The maintenance of CA scripts is a complex task as rules interact and compete 

with each other and changes to even one rule can destabilise a CA. It is therefore 

essential that scripts and rules are organised coherently, for example using 

contexts, to minimise maintenance effort. 

 The use of CA interfaces over the Internet requires systems to cope with large 

numbers of conversations simultaneously in real time. Response time must be 

fast enough to maintain a consistent dialogue, and there are limitations in 

scalability with some sophisticated CA approaches, such as NLP (O‟Shea et al., 

2011). 

 When applied to extended conversations rather than answering direct questions, 

e.g. about products, CAs lack the social intelligence of humans. To genuinely 

mimic human behaviour, CAs additionally need to be able to pick up and react to 
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user affect, such as mood, personality, boredom, confusion or frustration (Becker 

et al., 2007).  

Despite these challenges, CAs are able to communicate adequately with users in 

clearly defined domains. The recent move toward incorporating human-like social 

behaviour into CAs aims to improve the user experience by making CAs seem more 

natural (and less robotic). Some research has been done in detecting and responding 

to human social behaviour in CAs. Kumar et al. (2010) incorporated social 

conversational skills based on Bales (1950) Socio-Emotional Interaction Categories 

into a CA tutor for a collaborative learning environment. Graesser et al. (2008a) 

investigated the relations between emotions and learning with their CA tutor, 

AutoTutor, by correlating dialogue characteristics with emotional states recorded by 

learners. Mairesse et al. (2007) detected personality type from conversation and text 

using linguistic cues. Ma et al. (2005) estimated emotions from text-based 

conversation using keyword spotting. Ovesdotter et al. (2005) used machine learning 

to predict emotion from text, using children‟s fairy tales. 

However, the goal of making conversations with computers seem human enough 

to pass the Turing test is still a long way off. 

5 Conclusion 

This chapter has introduced conversational agents, which allow the 

communication with computer systems using natural language. Text-based 

conversational agents were described. Two successful text-based CAs were 

contrasted, both of which adopt the pattern-matching approach which can cope with 

grammatically incomplete and incorrect utterances. The ALICE chatbot relies on a 

large knowledge base of rules for general conversations, but for goal-based situations 

such as tutoring, InfoChat is more powerful and the features of the PatternScript 

language offer more sophisticated scripting of a CA. The many challenges in 

developing CAs that can work in real time for extended dialogues were described. 

The main challenges include the complex, labour-intensive and time-consuming 

development and maintenance of CA scripts, the ability to respond in real time and 

the coverage of user utterances. Finally, the challenge of incorporating human-like 

social intelligence into CAs was introduced. Humans instinctively pick up and 

respond to verbal signals (e.g. “show me” instead of “tell me”) that indicate different 
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preferences for receiving information during a conversation. Developing CAs that 

can mimic this social intelligence will make them less robotic and easier to interact 

with. The application of social behaviour to CAs depends on the situation. For 

example, in computerised learning systems CAs need to detect and react to cues from 

learners indicating their preferred learning styles to make the learning experience 

more effective in promoting a deep understanding. A CA tutor that could actively 

discuss problems and solutions using natural language and react to social signals 

during the conversation could widen access to and help support face-to-face learning. 

6 Chapter Highlights 

 Conversational agents (CAs) enable natural language communication with 

computer systems. 

 Most text-based CAs use a pattern-matching approach as it can cope with 

grammatical and spelling errors and is fast enough to respond in real time. 

 Developing CA scripts is a complex, labour-intensive and time-consuming task. 

 Once text-based conversation is working adequately, voice tools can be plugged 

in to enhance communication. 

 ALICE and InfoChat are successful text-based pattern-matching CAs. 

 A recent challenge for CAs is to incorporate human-like social intelligence. 

 Computerised learning systems can benefit from CA interfaces that allow 

learners to discuss problems and construct knowledge. 
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Chapter 4 Intelligent Tutoring Systems  

1 Introduction 

Computerised learning systems were traditionally information-delivery systems 

developed by converting tutor or distance-learning material into a computerised 

format (Brooks et al., 2006). The popularity of the Internet has enhanced the 

opportunities for e-learning, however most online systems are still teacher-centred 

and take little account of individual learner needs (Spallek, 2003). Within the field of 

computerised learning systems, adaptive educational systems attempt to meet the 

needs of different students by offering individualised learning (Brusilovsky and 

Peylo, 2003). Intelligent Tutoring Systems (ITS) are adaptive systems that use 

intelligent technologies to personalise learning according to individual student 

characteristics, such as knowledge of the subject, mood and emotion (D‟Mello et al., 

2009; Graesser et al., 2008a) and learning style (Yannibelli et al., 2006).  

There has been a wealth of research into adaptive computerised educational 

systems like ITS as they offer benefits such as being available at a time and place to 

suit the learner whilst offering individualised instruction, guidance and instant 

feedback. ITS can also help to widen access to education, and are cost effective 

compared to human one-to-one tutoring. This chapter aims to give an overview of 

the current state of ITS research and the challenges still to be overcome. The chapter 

brings together the three key areas of learning styles, conversational agents and 

intelligent tutoring systems, demonstrating the need for a socially intelligent 

conversational agent tutor and justifying this research.  

This chapter will outline the current methods of including intelligence into ITS 

and consider the use of natural language interfaces such as conversational agents in 

ITS. Existing research methods of applying learning styles to enhance ITS will be 

discussed, along with the different approaches to modelling and adapting to learning 

styles. A number of unresolved challenges for future ITS research are then described. 

2 Intelligent Tutoring Systems 

Intelligent Tutoring Systems (ITS) are adaptive educational systems that employ 

intelligent technologies to provide individualised instruction (Graesser et al., 2005c). 

ITS build a model of the goals, preferences and knowledge of the student, and use 
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this to adapt the teaching to the individual and to provide intelligent assistance. 

Adaptive Hypermedia Systems (AHS) are a type of adaptive educational system that 

create pages containing hyperlinks or menu items adapted to individual students. 

Although sometimes defined as distinct from ITS (Brusilovsky and Peylo, 2003), in 

the context of this thesis AHS are defined as a specific type of ITS that use 

hyperlinks and are concerned with just one aspect of intelligent tutoring: 

personalising learning material (known as „curriculum sequencing‟). Therefore in 

this thesis, the term ITS is used, which encompasses AHS. 

There are three main approaches to intelligent tutoring: intelligent solution 

analysis, problem solving support and curriculum sequencing (Brusilovsky and Peylo, 

2003).  

Intelligent solution analysis adds intelligence to ITS by giving students detailed 

feedback on incomplete or erroneous solutions, helping them learn from their 

mistakes. In SQLTutor (Mitrovic, 2003) a technique called constraint based 

modelling is used to model the syntax and semantics of SQL. Student solutions are 

compared to the constraint model and intelligent feedback is given on errors so that 

students can learn from their mistakes. 

Problem solving support techniques offer learners intelligent assistance to reach a 

solution. This approach adopts the constructivist style of teaching, as used by human 

tutors, to prompt learners to construct their own knowledge and encourage a deeper 

understanding of a topic. In ActiveMath (Melis, 2001) intelligent support is offered 

for mathematical theorem proving and in CIRCSIM-tutor (Woo Woo et al., 2006), 

hints help students diagnose physiology problems. 

Curriculum sequencing systems introduce adaptation by presenting students with 

learning material in a sequence and style best suited to their needs. Curriculum 

sequencing is the technique most widely used by ITS and AHS (Brusilovsky and 

Peylo, 2003). Personalisation was traditionally based on existing knowledge, aiming 

to improve the learning experience by focussing the tutoring on topics that are 

unknown or require improvement. In ELM-ART (Weber and Brusilovsky, 2001) 

student knowledge is modelled and presentation is adapted with the annotation of 

learning resource links to indicate recommended resources. Recently personalisation 

has been extended to include other individual characteristics that might affect 

learning, such as the learner‟s emotions (Ammar et al., 2010; Graesser et al., 2006), 

personality (Leontidis and Halatsis, 2009) or learning style (Popescu, 2010). D‟Mello 
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et al. (2010b) mimicked human tutors in encouraging engagement by adapting to 

learner‟s emotions such as boredom or frustration. A review of ITS adaptation based 

on learning styles will be described further in section 3. 

In order to personalise learning using curriculum sequencing, ITS capture and 

represent student characteristics in an individual student model and then use that 

information as a basis for adaptation. The student model therefore plays a central role 

in an ITS, and contains information about individual student characteristics (e.g. 

learning style) as well as subject knowledge. The gathering and updating of 

information in the student model („student modelling‟) may be static (captured once 

at the start of the course, e.g. a learning styles questionnaire (Papanikolaou et al., 

2003)) or dynamic (continuously or periodically during tutoring, e.g. preferred 

learning resource choices (Popescu, 2010)). Although dynamic student modelling 

offers the advantage of a more current student model, the gathering of reliable 

information is difficult (as it is often uncertain and imprecise) and sometimes results 

in a weak student model (Brusilovsky and Millan, 2007). There are two main 

approaches to student modelling (Brusilovsky, 1996): 

 Collaborative modelling is where the student provides information and feedback 

on preferences, e.g. Papanikolau et al. (2003) gathered student learning styles 

preferences at the start of a tutoring session by asking students to complete a 

questionnaire. Students could then directly alter their learning preferences in the 

model.  

 Automatic modelling is where information on student behaviour is gathered 

during a tutoring session rather than explicitly from the student, e.g. Garcia et al. 

(2007) used a history of student choices to model learning style and Ammar et al. 

(2010) used facial expression recognition to model learner emotion. 

Adaptation is incorporated in ITS by two different approaches: adaptive 

presentation, which involves presenting different learning content, and adaptive 

navigation, which involves recommending or reordering learning content 

(Brusilovsky and Peylo, 2003). Adaptive navigation is normally only found in 

adaptive hypermedia systems (AHS), where students have the initiative to select 

learning material from a menu of links. In the context of this thesis, adaptation refers 

to the adaptive presentation of learning content matched to individual student 

characteristics. 
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Of the three intelligent techniques used in ITS, curriculum sequencing is the most 

commonly found. However, curriculum sequencing alone is little better than 

selecting chapters from a book. By combining all three intelligent approaches, an ITS 

can get close to offering the support available from a human tutor. Few ITS 

incorporate all three intelligent approaches (Graesser et al., 2005a; Woo Woo et al., 

2006; Melis, 2001) as they are complex and time-consuming to develop. However, 

combining all three technologies adds benefits by offering a more effective learning 

experience and intelligent support that can help to build confidence and motivation 

(Graesser, 2008b).   

The next section will outline the modelling and adaptation of individual learning 

styles in ITS.  

3 ITS and Learning Styles 

Most ITS personalise learning by adapting to a student‟s existing knowledge of a 

particular subject. The extension of ITS to adapt to other student characteristics, such 

as learning style, is a new area of research. As described in Chapter 2, learning styles 

describe the way groups of people prefer to learn. Research is divided on whether 

adapting to individual learning styles in computerised learning systems improves 

learning (Hsieh et al., 2011; Rasmussen, 1998; Riding and Grimley, 1999; Graff, 

2003) or makes no difference (Ford and Chen, 2000; Shih and Gamon, 2002) to 

learning outcomes. However, learning styles have been widely used to enhance ITS 

by presenting learning material matched to individual students‟ preferred styles 

(Popescu, 2010; Villaverde et al., 2006; Garcia et al., 2007; Wang et al., 2006; Stash 

and De Brau, 2004; Spallek, 2003). When adapting to learning styles in ITS there are 

two main challenges: 

 How will learning styles be modelled? 

 How will the system adapt to individual learning styles?  

Each of these key questions will now be discussed. 

3.1 Modelling Learning Styles 

As discussed in Chapter 2, there are conflicting opinions about whether learning 

styles are fixed traits or whether they change over time, by subject or the 

environment. Similarly, the way in which learning styles are assessed by ITS is under 
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debate – whether the modelling of learning styles should be static (measured at the 

start of the learning) or dynamic (modelled periodically or continuously). There are 

two main methods for ITS to model learning styles: explicitly using the measuring 

instrument defined by the learning styles model, or implicitly using learner behaviour 

in the ITS. 

3.1.1 Collaborative Modelling Using Questionnaires 

The simplest way to measure learning styles is using the formal assessment 

described in the adopted learning styles model, normally a questionnaire (Wang et al., 

2006; Spallek, 2003). However completing questionnaires is onerous for students, 

who do not always lend enough time or attention to complete them accurately. It is 

also difficult to avoid unintended influences in the questions, with some answers 

perceived as being better (Popescu, 2009). Also, as the modelling is static, if learning 

styles change over time or subject, the student model will not be accurate. These 

problems can lead to an unreliable student model (Yannibelli et al., 2006). The „open 

model‟ approach allows students to modify their profile directly, and has been used 

to extend static modelling using questionnaires (Papanikolau et al., 2003). Whilst the 

open model approach gives increased learner control and feedback on the quality of 

the system model, it also increases the learner‟s workload and relies on the learner‟s 

understanding and knowledge of their preferred learning style.  

Some examples of ITS that use questionnaires to model learning styles are: 

 CS383 (Carver et al., 1999) was one of the first AHS to adapt to learning styles, 

modelling three dimensions of the Felder and Silverman model using the Index 

of Learning Styles (ILS) (Felder and Soloman, 1998). 

 CooTutor (Wang et al., 2006) models the Felder and Silverman learning styles 

using the ILS questionnaire. 

 INSPIRE (Papanikolau et al., 2003) uses the Learning Styles Questionnaire to 

model learning styles (Honey and Mumford, 1992). Learners can also directly 

modify the student model to reflect their preferences. 

 AES-CS (Triantafillou et al., 2004) models the field dependence or independence 

(Witkin, 1962) of learners using a questionnaire. Learners may also alter the 

behaviour of AES-CS by changing options such as the amount of feedback given.  

 iWeaver (Wolf, 2003) uses a questionnaire to initialise the model of the Dunn 

and Dunn (1974) learning styles. Learners are given an explanation of their 
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learning style and recommendations for style of resources, but may adjust the 

model by choosing other styles of resource. After each module, learners give 

feedback on the learning resources they use, with a ranked list which is used to 

adjust the student model. 

 

In summary, although collaborative modelling of learning styles using 

questionnaires is the simplest method, the model will only be accurate if students 

lend enough time and attention to complete the questionnaire properly (Garcia et al., 

2007). 

3.1.2 Automatic Modelling Using Learner Behaviour  

Implicit modelling of a student‟s learning style involves building and updating a 

student model automatically based on the student‟s behaviour and actions while they 

use an ITS for learning (Villaverde et al., 2006; Stash and De Brau, 2004; Garcia et 

al., 2007). Modelling learning style dynamically and continually updating the student 

model enables an ITS to adapt to changes in learning style over time or for different 

subjects. Implicit modelling removes any requirement for input by the student so 

they can concentrate on their learning task; however it is difficult to extract enough 

reliable information to build a robust student model. Some ITS have overcome this 

problem by designing interfaces with the goal of collecting data to model learning 

styles (e.g. Cha et al., 2006). However the main goal of an ITS is to intelligently help 

students to learn, so interface design should focus on promoting learning. Another 

way to overcome the problem of reliability is to adopt a mixed-modelling approach, 

initially modelling learning style using a questionnaire and then dynamically 

updating the model (e.g. Paredes and Rodriguez, 2004). 

The types of learner behaviour used to model learning style include navigation 

and browsing patterns, the choice of resources (including time spent and frequency 

of access), the use of chat forums and test performance (Popescu, 2009).  

There have been many different approaches to the automatic modelling of 

learning styles, including: 

 Bayesian networks are probabilistic models that have been used to model the 

relationships between learning styles and behaviour factors. Garcia et al. (2007) 

used Bayesian networks to infer student learning styles from a history of their 

behaviour in using the ITS. Three dimensions of the Felder and Silverman (1988) 



Chapter 4: Intelligent Tutoring Systems 

35 

model were modelled, with precisions of 58-77%. Enhancing the Bayesian model 

improved precisions to 66-80% (Garcia et al., 2008). EDUCE (Kelly and 

Tangney, 2004) offers different resources styled using four of the Gardner (1983) 

multiple intelligences, and uses Naïve Bayes to predict which resources students 

prefer, based on past choices.  

 Artificial neural networks are computational models inspired by the neural 

structure of the brain, which have been used to classify student learning styles 

based on behaviour. Villaverde et al. (2006) used a neural network to determine 

student learning style for three dimensions of the Felder and Silverman (1988) 

model. The neural network analyses recent student behaviour in an ITS to 

automatically model learning style, achieving an accuracy of 69.3%. Hsu et al. 

(2010) used fuzzy inference rules to construct a neural network that identifies the 

relationship between learning activities and learning style. However, neural 

networks are less reliable for large amounts of input data (i.e. behaviour factors), 

(e.g. only ten behaviour factors (input neurons) were used by Villaverde et al., 

2006) so this may not be enough to accurately model learning style. The opaque 

nature of neural networks also means that no information is learned about which 

behaviour factors are most significant in predicting a learning style. 

 Genetic algorithms are adaptive heuristic search algorithms that mimic the 

process of evolution by natural selection. Yannibelli et al. (2006) adopted a 

genetic algorithm approach to model three dimensions of the Felder-Silverman 

(1988) learning styles model based on student behaviour in an ITS. 

 Rule based methods involve modelling learning styles using rules that map 

patterns of behaviour extracted from learning styles models to learner behaviour. 

The DeLes tool (Graf et al., 2009) uses a rule-based method to infer student 

learning styles from their behaviour in a general Learning Management System 

(e.g. Moodle, 2011). DeLes models students using the Felder-Silverman (1988) 

model, and achieved precisions of 73-79%. WELSA (Popescu, 2009) also uses 

rule-based modelling (based on over 100 patterns of behaviour gathered from  

choice of learning resources, navigation and communication) to model learning 

styles using the Unified Learning Style Model (Popescu et al., 2007). 

 Decision trees are models that can predict the value of a variable (e.g. learning 

style) based on a number of input variables (e.g. behaviour factors). Cha et al. 
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(2006) designed their ITS interface to capture behaviour related to the Felder and 

Silverman (1988) model, using decision trees and Hidden Markov Models to 

classify learning styles from learner choices and behaviour. Ozpolat and Akar 

(2009) used the NBTree algorithm to classify student learning styles from the 

content of learning objects rather than behaviour (using keywords matched in 

Internet search terms). Chen and Liu (2008) used decision trees and K-means 

clustering to automatically identify cognitive styles from learning patterns. 

 Other research has involved plotting clusters of types of learners against 

behaviour factors, including a „dead band‟ where the learning style is classified 

as „unknown‟ (as in Sanders and Bergasa-Suso, 2010). Klasnja-Milicevic et al. 

(2011) clustered learners based on their learning style and then used the 

AprioriAll pattern mining algorithm to extract behavioural patterns from log 

files. By comparing learner behaviours to each cluster, learning style was 

identified and learning material recommended. 

 

Central to all of these automatic modelling methods is the capture of behaviour 

characteristics during use of the ITS. It is difficult to decide on the most appropriate 

behaviour to model and selecting typical behaviours that discriminate between 

learning styles requires a detailed analysis of the chosen learning styles model. Even 

then, students do not always behave stereotypically as suggested by learning styles 

models (Coffield et al., 2004a; Garcia et al., 2007). There are clear differences in the 

number of behaviour characteristics used by ITS to model learning styles – e.g. 

Garcia et al. (2007) capture 11, Cha et al. (2006) capture 58 and Popescu (2010) 

captures over 100. This does not always lead to different levels of precision in 

modelling learning styles, as different modelling methods and learning styles models 

have different requirements. 

This section has described the main methods of modelling learning styles, either 

from explicit learner information gathered from learning styles questionnaires or 

implicitly from learners‟ behaviour while using an ITS. The next section outlines 

how adaptation to individual learning styles is approached. 

3.2 Adaptation to Learning Styles 

ITS normally adapt by presenting learning material matched to student 

preferences with the aim of making learning easier and more effective. Opinion is 
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divided about whether learning styles are static or dynamic (see Chapter 2) and some 

researchers (Felder and Spurlin, 2005) argue that learners should be presented with 

mismatched content to strengthen their weaker learning styles. This longer term goal 

has not yet been incorporated into ITS, which are concerned with providing an 

effective learning experience for the current topic.  

Having modelled the student learning style, the method of adapting the tutoring 

to suit individual preferences must be considered. Learning style models normally 

describe several aspects (or dimensions) of student preference relating to stages of 

the learning process (see Chapter 2). To adapt to all learning styles in a model would 

require creating multiple copies of learning material, which is a large and time 

consuming development task. For example, in the Felder and Silverman (1988) 

model there are 32 different learning styles. To overcome this problem, some ITS 

only adapt to a subset of learning style aspects. For example, iLessons (Sanders and 

Bergasa-Suso, 2010) and LSAS (Bajraktarevic et al., 2003) adapt to a single 

dimension of the Felder and Silverman (1988) model. However the problem is that it 

is difficult to decide which aspects of learning style to model, and also only part of a 

student‟s learning style is being addressed. EDUCE (Kelly and Tangney, 2006) 

models half of Gardner‟s (1983) multiple intelligences, but must still provide four 

versions of learning resources. Also, by selecting the most preferred learning style, 

students are only presented with one type of learning resource. The literature does 

not provide details of adaptation algorithms or conflict resolution when two aspects 

of learning styles are equally strongly preferred. Some ITS (Carver, 1999; Kelly and 

Tangney, 2006) have addressed this issue by relying on students‟ initiative to select 

different types of learning resource from a list of links. An adaptation algorithm that 

selects a variety of learning resources based on several aspects of a student learning 

style may provide a richer learning experience. 

Some examples of ITS which adapt to learning styles are: 

 CS383 (Carver, 1999) implements adaptive navigation according to three 

dimensions of the Felder and Silverman (1988) model by reordering a list of 

media elements ranked with the most suitable items for an individual‟s learning 

style at the top. 

 MANIC (Stern and Woolf, 2000) provides adaptive material using the 

„stretchtext‟ technique, where basic material is presented to all learners which can 

be enriched with supplementary adaptive material, such as different media or 
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instruction styles. MANIC does not adopt a particular learning styles model, but 

incorporates aspects of different models, e.g. Felder and Silverman (1988). 

 EDUCE (Kelly and Tangney, 2006) adapts the presentation of learning material 

according to the Gardner (1983) theory of multiple intelligences. Adaptive 

presentation is implemented using page variants, which involves creating 

different versions of each page with different presentations of the content suited 

to multiple intelligences. Learners may go back and choose other versions of the 

learning material using links. Adaptive navigation is provided with direct 

guidance (using the „next‟ button) and also link hiding (hiding links to 

unmatched resources). Adaptation is selected based on the strongest of four 

intelligences included. Learners can also choose to turn off the adaptivity, and 

take the initiative in choosing resources to view. 

 INSPIRE (Papanikolau et al., 2003, 2006) allows learners to select a goal and 

adapts according to their level of knowledge, progress and learning style. 

Curriculum sequencing and adaptive navigation are based on learners‟ goals, 

progress and knowledge whereas adaptive presentation style is based on the 

Honey and Mumford (1992) learning styles. 

 The iLessons AHS (Sanders and Bergasa-Suso, 2010) adapts links to material 

retrieved from the Internet based only on the Active/Reflective Felder and 

Silverman dimension. 

 

As discussed above, no adaptation algorithm or details of conflict resolution for 

choosing between two equally preferred aspects of learning style have been 

published. For simplicity and to avoid the need for many versions of learning 

resources, adaptation is often restricted to a subset of learning style dimensions (e.g. 

a single dimension as in Sanders and Bergasa-Suso, 2010; Bajraktarevic et al., 2003). 

However, by only adapting to one dimension of their learning style, such ITS only 

partially address a student‟s learning preferences. The challenge of reducing 

development time of multiple copies of adaptive learning resources whilst still 

providing the best adaptive learning experience for students remains unresolved. 

3.3 Summary of Learning Styles in ITS 

Extending ITS to adapt tutoring based on individuals‟ preferred learning styles 

has been shown to enhance students‟ learning experiences (Sangineto et al., 2007; 
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Kelly and Tangney, 2005; Triantafillou et al., 2004). The inclusion of alternate 

approaches to learning and instruction based on individual preferences adds a 

human-like social intelligence to ITS. However, the decision of how best to model 

individual learning styles is a complex task, and many different approaches to 

automatic modelling have been tried. The choice of adaptation method is equally 

complex and dependent on the extent of student initiative within the ITS. ITS that 

adapt to individual learning styles offer advantages over classroom tutorials, where 

human tutors do not generally have time to assess and adapt to individual learning 

styles. 

4 Conversational Interfaces to ITS 

ITS are normally designed to be student-directed, with a system of menu choices 

or hyperlinks that are reordered or ranked to recommend a particular sequence to 

learners (Klasnja-Milicevic et al., 2011). Whilst this design simplifies the analysis of 

student behaviour, it does not truly teach the students but rather assists in self-

learning, and is often little different to recommending chapters of a book. Although 

rarely employed, conversational interfaces allow a more natural, teacher-led learning 

experience which supports the construction of knowledge used by human tutors (Chi 

et al., 2001). Conversational agents (CA) are complex and time consuming to 

develop (see Chapter 2), however the benefits of constructivist styles of learning are 

widely accepted (Sharples, 2005; Graesser et al., 2008b). CAs add another dimension 

of intelligence to ITS, as they can mimic the main method of human tutor 

communication, i.e. conversation, allowing students to experience collaborative 

problem solving similar to with human tutors. Conversational ITS (CITS) can act as 

personal tutors that are available at any time and place, and which provide instant 

answers to questions, feedback, and support. Moreno et al. (2001:179) suggest that as 

learning is an “inherently social process”, using CITS “learners interpret their 

relation with the computer as a social one involving reciprocal communication”. To 

mimic a human tutor, ITS should support the construction of knowledge through 

discussion: “it seems necessary for future generations of ITSs to incorporate natural 

language capabilities.” (Chi et al., 2001:518).  
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Despite the development barriers, there has been some success in enhancing 

learning using CA interfaces, for example: 

 The best-known and most-developed CITS is AutoTutor (Graesser et al., 1999), 

which teaches computer literacy and will be reviewed separately in section 4.1. 

Why2-Atlas (VanLehn et al., 2002) was developed alongside AutoTutor and 

helps students build understanding of conceptual physics problems. RMT (Arnott 

et al., 2008) is also a descendent of AutoTutor which includes an animated CA 

tutor to teach introductory research methods using natural language. 

 CIRCSIM-tutor (Woo Woo et al., 2006) incorporates a CA to engage medical 

students in discussion to solve physiology problems, modelling the diagnosis of a 

patient and enabling students to practice causal reasoning and the application of 

knowledge. CIRCSIM-tutor asks questions and produces hints to help students 

construct knowledge, however its understanding of language is limited to only a 

few student initiatives, and is very much linked to the field of medical diagnosis. 

 TeachMed (Rahati and Kabanza, 2010) is an adversarial CITS that enables 

students to interview virtual patients to diagnose medical problems. In 

TeachMed, the CITS attempts to persuade students about the rationale of tutoring 

hints by selecting an appropriate argument. However, the natural language 

capability of TeachMed is very limited (in fact, students are offered move 

choices and must use text templates to reply). 

 Beetle II (Dzikovska et al., 2010) is a CITS for tutoring basic electronics. 

Students are shown fixed slides with questions, are able to experiment using the 

circuit simulator and then explain their answers in natural language. Although 

hints are given in natural language, the tutoring content is not adaptive. 

 AVIS (Kumar et al., 2010) is a CA tutor with „social conversational skills‟ that 

supports small teams of learners in a collaborative learning scenario. AVIS plays 

the part of a tutor in a team working on a computer-aided mechanical engineering 

design project by implementing social interaction strategies such as encouraging 

inactive members. AVIS annotates student utterances with semantic categories 

and identifies inactive students to trigger social interaction strategies. However, 

the social strategies described can be expected to be integrated into any CITS 

mimicking a human tutor (e.g. cheerfulness, reassurance) and so engaging 

inactive students appears to be the only novel feature. 
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As discussed in sections 2 and 3, adapting tutoring to individual differences can 

aid learning. Some CITS adapt to subject-independent learner characteristics such as 

emotions (Kumar et al., 2010, Graesser et al., 2008a), however none consider student 

learning styles during tutoring. As described in Chapter 2, learning styles research 

suggests that students process and represent knowledge in different ways, and so 

prefer different styles of teaching. Adapting a conversational tutorial style to match 

individual preferences could improve student confidence and motivation, enhancing 

the learning experience. Incorporating adaptation to individual learning styles into a 

CITS remains an opportunity for improvement. 

Extending CITS to incorporate spoken interfaces would widen access to ITS 

further and is a relatively straightforward task, however there are technology 

limitations to overcome before this is practical (D‟Mello et al., 2010a). The biggest 

challenge for CITS (as for CAs) is understanding user input: when a CA does not 

understand the learner, “such breakdowns in comprehension run the risk of eroding 

the learner‟s confidence in the intelligence of the agent.” (Graesser et al., 2005a:162). 

The best-known CITS, AutoTutor (Graesser et al., 1999), has been the focus of 

extensive research for over a decade and will now be reviewed separately. 

4.1 AutoTutor Conversational ITS 

AutoTutor (Graesser et al., 1999, 2004, 2005a) is a sophisticated CITS that 

allows students to construct knowledge about computer literacy and Newtonian 

physics through discussion. AutoTutor uses an animated CA to present tutoring 

questions and engage in mixed initiative dialogue whilst guiding the student towards 

constructing a solution. As well as showing AutoTutor‟s response textually on screen, 

the animated CA speaks the text and shows appropriate facial expressions and 

gestures, although it is the dialogue content rather than the animation and speech that 

influences learning (Graesser et al., 2003). All intelligent technologies described in 

section 2 are implemented. A detailed model of learner knowledge is created by 

comparing student answers to a database of expectations and misconceptions 

associated with the tutorial question (using the latent semantic analysis approach 

(Graesser et al., 2005b)). During the conversation AutoTutor coaches the student to 

cover expectations and corrects misconceptions using a set of dialog moves such as 

giving feedback, prompting for more information and correcting bad answers. 

Students can ask a broad range of questions (known as inquiry learning) which 
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AutoTutor interprets and then responds by retrieving a „canned text‟ answer from an 

ebook. AutoTutor was shown to improve learning gain (Graesser et al., 2003), 

however studies were conducted in a controlled laboratory setting rather than in a 

natural learning environment, and so participants were less liable to distractions. 

One of the main problems with CA interfaces is the time and complexity of 

developing conversation scripts. Lesson authoring tools have been created for 

AutoTutor to enable the tutoring domain to be changed while reusing the CA 

components of the system (Susarla et al., 2003). 

Students communicate with AutoTutor by typing in their utterance into a text box, 

although recently a speech recognition facility has been included (D‟Mello et al., 

2010a). The speech facility did not improve learning gain when compared to typed 

conversation, but more content was covered (as speaking is more efficient than 

typing) although speech recognition errors affected student feedback.  

New research has involved extending AutoTutor to adapt to learner emotions as 

well as their knowledge (D‟Mello et al., 2009; Graesser et al., 2008a). Emotions such 

as boredom and frustration are modelled using sensors to detect facial expressions 

and body posture as well as dialogue patterns. AutoTutor responds by, for example, 

giving a hint to a frustrated student or giving a challenging problem to a bored 

student. Adapting to emotions improved deeper learning for students with low 

knowledge, however some students were irritated by the empathic AutoTutor 

(D‟Mello et al., 2010b). 

As described above, the extensive research on AutoTutor has contributed much 

to the CITS field. Despite promising results, experiments using AutoTutor were 

conducted in a controlled laboratory setting and not in a real-life learning 

environment, where learning is affected by other factors, like distractions. For 

example, the detection of boredom and confusion from dialogue patterns alone was 

poor (D‟Mello et al., 2008). The necessity for sensors to detect emotion in a real-life 

learning environment has many difficulties as facial recognition is a complex task. 

As well as requiring cameras with sufficient resolution (which is expensive), 

successful recognition of emotions requires a consistent environment, for example 

adequate lighting and learners seated in a fixed position. These barriers constrain the 

widespread use of AutoTutor in real learning environments, and significantly restrict 

its accessibility to strictly controlled laboratory environments. 
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4.2 Summary of Conversational ITS 

Conversational interfaces to ITS can more effectively mimic face-to-face 

tutorials as they are conducted through natural language dialogue. CITS can help to 

improve learner confidence and motivation as they are intuitive to use and learners 

can construct knowledge and solutions to problems through discussion. However, 

CA technology is in its infancy, and developing a convincing „intelligent‟ CA 

interface is challenging and time consuming. Although social factors such as mood 

have been incorporated, the accuracy of detecting emotion from dialogue alone is 

poor. Learning styles represent a significant aspect of the complex process of 

learning which could enhance learning in CITS (see Chapter 2). Yet there are 

currently no Conversational ITS that can detect learning styles from tutoring 

dialogue and adapt the conversational tutoring to individual‟s learning styles.  

5 Challenges for ITS 

ITS are not in widespread use, despite offering many advantages over traditional 

computerised learning systems. This may be due to the lengthy development time or 

the lack of interoperability and reusability between adaptive systems (the „open 

corpus problem‟ (Brusilovsky and Henze, 2007)). There are a number of challenges 

and open questions in ITS research, as follows: 

 Like most expert systems, ITS are complex and time consuming to develop. For 

example, Murray (1999) reported that one hour of ITS instruction requires an 

estimated 100 hours of development time. Aside from the challenges of replicating 

human intelligence in tutoring, such as solution analysis and problem solving 

support, deciding on the best factors to model and use for the personalisation of 

learning is not straightforward (as discussed in sections 2 and 3).  

 The development and maintenance of adaptive tutorial presentations is a labour 

intensive process requiring the design of multiple copies of the same content in 

different styles. Authoring tools aim to speed up development time (e.g. Stash et 

al., 2004), but the time spent capturing adaptive material from human tutors is 

much more significant than that spent formatting learning resources. The 

question of how best to reduce development time of adaptive learning resources 

whilst still providing the best adaptive learning experience for students remains 

open. 



Chapter 4: Intelligent Tutoring Systems 

44 

 The design of learning resources for reuse has not been implemented widely for 

ITS, as it has in virtual learning platforms (SCORM, 2004). The reuse of learning 

resources could reduce development time and cost, but ITS are typically 

proprietary systems with their own learning resources. iLessons (Sanders and 

Bergasa-Suso, 2010) is an AHS that reuses learning resources retrieved from the 

Internet which have been annotated (with respect to teaching/learning style) by 

human tutors. However, reusing learning resources can lead to an incoherent 

learning experience as portability needs to be considered during the development 

of the resources (Boyle, 2003). Incorporating adaptable learning resources into a 

learning design framework (such as Boyle, 2010) could bring the benefits of 

reuse into ITS research. KOD Packager (Karagiannidis and Sampson, 2004) 

includes templates that extend the learning resource metadata to describe factors 

of individual learner characteristics, e.g. learning style.  

 There is some debate about whether ITS are significantly better than existing 

learning management systems or than reading a book (Woo Woo et al., 2006; 

Graesser et al., 2004).  

 Scalability is important. The use of ITS over the Internet requires systems to cope 

with large numbers of individual tutorials simultaneously in real time, and 

response times must be fast enough to maintain student motivation. 

 It is a complex task to create a computer system that appears intelligent, e.g. 

Woolf et al. (2001) identified difficulties in generating believable, life-like responses 

in an instructional dialogue.  

 There are open questions when introducing adaptation, such as which models of 

individual differences should be adopted, which behaviour characteristics best 

indicate and discriminate between learning styles, what type of adaptation to 

include and which intelligent techniques are best for dynamically modelling and 

adapting to learning preferences (Papanikolaou et al., 2006). 

 

The main barrier to the prevalent adoption of ITS lies in their lengthy 

development, which requires a sophisticated method of adding „intelligence‟ and the 

production of different styles of learning material. However, the many benefits 

offered by accessible, individualised tutoring in an environment of financial 

restrictions and increasing workloads indicate a promising future for ITS. 
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6 Conclusion 

Learning is a complex process, and so the design of computerised learning 

systems should incorporate different approaches to tutoring to accommodate the 

variety of different learners. ITS have the opportunity to offer something more than 

information delivery – offering personalised one-to-one tutoring is rarely possible in 

higher education environments. Also human tutors rarely have time to diagnose and 

adapt to learning styles on an individual basis. Instead, they use knowledge of 

learning styles to informally group learners and adapt their teaching style to the 

general population of the classroom. ITS can give instant feedback and individual 

assistance in constructing solutions to problems, and promote a deeper understanding 

of the topic. Delivered via the Internet, ITS tutoring is available anywhere at any 

time, and learners can repeat the same topic until they understand. However, ITS are 

not widely used. There are a number of challenges for ITS, including the lengthy 

development time, the reusability of learning material and a lack of real social 

intelligence. Incorporating individual aspects such as mood and learning styles 

makes ITS more socially intelligent and can improve the learning experience.  

Many ITS are student directed, however some students lack the initiative and 

maturity to take responsibility for their own learning. Conversational interfaces can 

add a social element to ITS, as learning is tutor-led and conducted through a natural 

language dialogue. Conversational ITS (CITS) aim to mimic a human tutor by 

supporting the construction of knowledge through discussion, and learners can draw 

on their experience of classroom tutorials, helping to increase confidence. Learners 

see the conversational ITS as a collaborative partner, which can improve engagement 

and motivation. “By mimicking the conversational interaction of a human tutor….. 

[CITS] is seen as providing the student with “a conversational partner” or a 

“simulated social presence” well-suited to the social and conversational processes of 

learning” (Friesen, 2009:103). Although CITS have been extended to adapt to mood 

and emotion, there are no CITS that adapt tutoring to individual learning style 

preferences. With respect to this research, the personalisation of a learning 

experience by tutoring in a style suited to an individual‟s learning styles represents a 

human-like social intelligence. If it were possible to extend such automated 

personalisation to an ITS with a natural language interface, a more socially 

intelligent and human-like conversational ITS would result. 
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This chapter has given an overview of the current state of research into Intelligent 

Tutoring Systems. The methods of including intelligence were outlined, and a review 

of how ITS personalise tutoring to individual learners. Drawing on the overview of 

learning styles theories in Chapter 2, the methods employed by ITS to model and 

adapt to learning styles in order to improve learning effectiveness were discussed. No 

adaptation algorithms or methods for dealing with conflict when several learning 

styles are equally preferred have been published. The benefits of including 

conversational agents (described in Chapter 3) as interfaces to conduct tutoring in 

ITS were described, and the outstanding challenges for ITS research listed. 

7 Chapter Highlights 

 Intelligent Tutoring Systems (ITS) extend traditional content-delivery 

computerised learning systems by using intelligent technologies to personalise 

learning. 

 ITS add intelligence by curriculum sequencing, problem solving support and 

intelligent solution analysis. 

 ITS personalise learning based on domain-specific factors, i.e. existing 

knowledge, and learner-specific factors such as emotion, mood and learning 

style. 

 Incorporating adaptation requires the building of a student model that is used to 

direct the adaptive navigation or presentation of the tutorial. 

 Learning styles are modelled explicitly using formal evaluation (questionnaires) 

or implicitly from learner behaviour. 

 Adaptive presentation requires multiple copies of learning material in different 

styles. 

 Conversational interfaces are rare in ITS despite allowing learners to construct 

knowledge through discussion. 

 There are no Conversational ITS that adapt to individual learning styles. 

 Research into ITS is an active area with many challenges and open questions. 
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Chapter 5 Predicting Learning Styles from a Natural 
Language Dialogue 

1 Introduction 

In Chapter 3 the benefits of natural language interfaces in offering intuitive, 

human-like interaction through conversation were described. Chapter 4 introduced 

Intelligent Tutoring Systems (ITS) and the advantages of personalised tutoring in 

improving motivation and the effectiveness of the learning experience. Online ITS 

present flexible learning at any time and place at a fixed delivery cost and at a 

learner‟s own pace. Conversational Intelligent Tutoring Systems (CITS) offer a more 

human-like tutoring experience by employing natural language interfaces to tutor 

through discussion. Like human tutors, CITS can apply the constructivist approach to 

learning which enables students to construct their own knowledge about a subject 

through discussion, and leads to a deeper understanding of the topic. As discussed in 

Chapter 4, although CITS are rare as they are complex to develop, some CITS exist 

that can detect emotion as well as existing knowledge (D‟Mello et al., 2010b) to 

personalise tutoring. Chapter 2 described how learning experiences can be made 

more effective when a range of teaching styles are used which take account of 

different learning styles. Although several ITS personalise learning according to 

learning style, there are no CITS that mimic a human tutor by dynamically predicting 

and adapting to learning styles during a tutoring conversation. If it were possible to 

mimic a human tutor by picking up cues from students about their learning styles 

during a tutoring conversation, a CITS could dynamically predict learning styles and 

adapt its tutoring style to individual learners. 

This chapter will describe the development of an approach for predicting learning 

styles from a natural language tutoring dialogue with a CITS. As no existing CITS 

can predict learning styles from a natural language dialogue, a number of different 

prediction methods will be investigated which can then be assessed empirically. The 

combination of different strategies results in an original methodology for extracting 

knowledge from a learning styles model in order to dynamically predict learning 

styles from a two-way natural language tutoring conversation. The methodology is 

independent of a particular learning styles model, so an exemplar model (the Felder-

Silverman (1988) model) has been chosen for illustration. 
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2 Detection of Learning Styles 

As discussed in Chapter 4, ITS detect learning styles in two different ways – 

using the assessment built into the learning styles model (usually a questionnaire) or 

by analysing learner behaviour throughout tutoring. The problem with questionnaires 

is that learners find them time consuming and onerous to complete, so often do not 

complete them accurately, leading to incorrect assessment of learning styles 

(Popescu, 2009). There is also some debate in the literature about whether learning 

styles change over time or are different for different subjects (as discussed in Chapter 

2). Therefore predicting learning styles dynamically throughout the tutoring session 

could address these problems. Menu-based ITS have analysed typical learner 

behaviours (associated with learning styles) to predict learning styles (Hsu et al., 

2010; Garcia et al., 2008; Villaverde et al., 2006; Kelly and Tangney, 2004), 

sometimes being designed specifically to collect such data (Cha et al., 2006). 

However, none have attempted to predict learning styles from a natural language 

tutoring conversation.  

In order to develop a strategy for predicting learning styles from a natural 

language tutoring dialogue it is necessary to adopt an example learning styles model. 

As described in Chapter 2 (section 3.5), the Felder-Silverman (FS) learning styles 

model (Felder and Silverman, 1988) describes the learning styles of engineering 

students over four dimensions that relate to the process of receiving and 

understanding information (see Figure 5.1). 

LEARNING STYLE

PERCEPTION DIMENSION

Preferred type of information

SENSORY                                 INTUITIVE

external                                       internal

INPUT DIMENSION

Preferred way to receive external information

VISUAL                                   VERBAL

diagrams                              explanations

PROCESSING DIMENSION

How information is converted into knowledge

ACTIVE                                 REFLECTIVE

discussion                              introspective 

                                               consideration

UNDERSTANDING DIMENSION

Progression towards understanding

SEQUENTIAL                               GLOBAL

continual steps                           large jumps

 

Figure 5.1. Dimensions of the Felder-Silverman Learning Styles Model 

 The FS model has been adopted by many of the Intelligent Tutoring Systems 

(ITS) that adapt to student learning styles (Dag and Gecer, 2009; Garcia et al., 2007; 

Cha et al., 2006; Wang et al., 2006; Sancho et al., 2005; Yannibelli et al., 2006; 
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Villaverde et al., 2006). As described in Chapter 2 (section 3.5) the FS model offers 

benefits to ITS as: 

 it includes detailed descriptions of learning behaviour and teaching styles,  

 it has a small number of dimensions that are distinct and independent, 

 it describes engineering students who often make up experimental groups.  

The FS model was selected as an exemplar learning styles model for the 

development of this generic methodology for these reasons as the participants of the 

initial experimental studies will be undergraduate engineering students.  

A number of different methods of predicting learning styles from natural 

language tutoring dialogues will be considered, including: 

  An evaluation of the FS model evaluation instrument to establish the most 

accurate predictor questions. 

 An analysis of learning style knowledge in the FS model. 

 Mapping of behaviour cues which discriminate between learning styles to a 

natural language tutoring dialogue. 

 An analysis of words and phrases that may be indicative of learning style. 

 The development of logic rules to encapsulate the learning styles knowledge 

extracted from the FS model. 

3 Index of Learning Styles Study 

The first step in creating a strategy to detect the learning styles of engineering 

students during a tutoring conversation was to consider the assessment used by the 

FS model. The Index of Learning Styles (ILS) (Felder and Soloman, 1997) is an 

instrument used to assess the FS learning styles. The ILS is a self-assessment 

questionnaire (see Appendix 1) containing 44 questions, 11 questions for each of the 

four learning style dimensions. For each question there are two possible answers (a 

and b), and learners must choose the answer that applies most of the time. After 

completing all questions, the total number of a and b answers for each FS dimension 

are compared, and the higher total represents the learning style. For example, for the 

Active/Reflective FS dimension, if the questionnaire totals are a=3 and b=8, the 

overall learning style is Reflective as the total of b answers is higher. 

Incorporating all 44 questions from the ILS questionnaire into a single tutorial in 

order to implicitly detect learning styles is not practical. Therefore, if assessment 
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questions from the ILS questionnaire were to be incorporated into a tutorial, it would 

be necessary to reduce the number of questions. The ILS questionnaire has been 

analysed to add semantic information (Graf et al., 2007), but if only a subset of 

questions are selected from the ILS questionnaire, criteria will be needed to select the 

best questions. For the purpose of the research presented in this thesis, a study was 

designed to analyse the ILS questionnaire with the aim of discovering which 

questions best predict an individual‟s learning style. The set of „best predictor‟ 

questions could then be considered for inclusion in a conversational tutorial to assist 

in predicting learning styles. This study, reported in Latham et al. (2009) will now be 

described.  

3.1 Experimental Design 

The aim of the study was to extract the subset of questions from the ILS 

questionnaire whose answers most often agreed with the overall learning style, i.e. 

they are best at predicting the overall result. The sample size was determined using 

the non-probability quota sampling approach (Walonick, 2010), with a target sample 

size of 100 randomly selected adults aged over 18. This approach was most 

appropriate because the population of adults over 18 is unknown and the ILS 

questions will be examined for relationships with learning styles rather than to draw 

conclusions about the population. The actual sample group size for the study was 108 

participants. All participants were adults who were studying (or had previously 

studied) on a computing graduate or post-graduate qualification. Participants for this 

study were selected from this group because the participants in the initial 

experimental studies will be undergraduate computing students. 

3.2 Methodology 

Each participant was asked to complete the ILS self-assessment questionnaire, 

either online, on paper or using an emailed electronic form. The ILS questionnaire 

and its results were then analysed. Each question of the ILS relates to one of the four 

dimensions of the model. For each complete questionnaire, the answer to each 

question was compared to the overall result for the related learning style dimension. 

Each question was assigned a score as follows:  

 where the question answer matched the overall result for the learning style 

dimension, a score of 1 was assigned; 
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 where the question answer did not match the overall result for the learning style 

dimension, a score of 0 was assigned.  

Once the results of all participant questionnaires were compiled, each question 

was associated with an overall score, which was then converted into a percentage. 

The percentage indicates each question‟s accuracy in predicting the overall result of 

the learning style dimension. The questions were then organised by learning style 

dimension and sorted according to the prediction accuracy. The accuracy level for 

best predictor questions was empirically set at 70% as this level gave the best 

accuracy and distribution of questions across the learning style dimensions. Those 

questions with a prediction accuracy of at least 70% were included in the subset of 

„best predictor‟ questions.  

3.3 Results and Discussion 

Of the 108 participants, 5 questionnaires were incomplete as not all questions had 

been answered – these were excluded, leaving 103 completed questionnaires. Table 

5.1 shows the distribution of learning styles across the sample group of 103. Most FS 

dimensions have an approximately equal split, except for the Visual/Verbal 

dimension, where there are twice as many Visual learners as Verbal. This was 

expected, as the FS model states that there are more Visual learners than Verbal. 

Table 5.1. ILS Study Distribution of Learning Styles 

LEARNING STYLE n % 

Active 52 50% 

Reflective 51 50% 

Sequential 53 51% 

Global 50 49% 

Sensory 59 57% 

Intuitive 44 43% 

Visual 69 67% 

Verbal 34 33% 

 

Table 5.2 shows the resulting best ILS predictor questions for each learning style 

dimension, using a boundary of 70% accuracy. Of the 44 questions on the ILS 

questionnaire, 26 questions (spread over all four dimensions) could predict the 

overall learning style with an accuracy of at least 70%, and 17 questions with at least 

75% (denoted by * in Table 5.2). The three best predictor questions had an accuracy 

of 84%, and all related to the Visual/Verbal dimension. 
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Table 5.2. Best Predictor Questions in the ILS Questionnaire 

FS 

DIMENSION 

PREDICTION 

ACCURACY ILS QUESTION 

Active/ 

Reflective 

77% *Q17 When I start a homework problem, I am more likely to (a) 

start working on the solution immediately (b) try to fully 

understand the problem first 

77% *Q25 I would rather first (a) try things out (b) think about how 

I‟m going to do it 

 74% Q33 When I have to work on a group project, I first want to (a) 

have “group brainstorming” where everyone contributes 

ideas (b) brainstorm individually and then come together as 

a group to compare ideas 

 73% Q5 When I am learning something new, it helps me to (a) talk 

about it (b) think about it 

 71% Q9 In a study group working on difficult material, I am more 

likely to (a) jump in and contribute ideas (b) sit back and 

listen 

Sequential/ 

Global 

78% *Q44 When solving problems in a group, I would be more likely 

to (a) think of the steps in the solution process (b) think of 

possible consequences or applications of the solution in a 

wide range of areas 

76% *Q24 I learn (a) at a fairly regular pace. If I study hard, I‟ll “get 

it” (b) in fits and starts. I‟ll be totally confused and then 

suddenly it all “clicks” 

 75% *Q36 When I am learning a new subject, I prefer to (a) stay 

focused on that subject, learning as much about it as I can 

(b) try to make connections between that subject and related 

subjects 

 71% Q28 When considering a body of information, I am more likely 

to (a) focus on details and miss the big picture (b) try to 

understand the big picture before getting into the details 

 70% Q12 When I solve math problems (a) I usually work my way to 

the solutions one step at a time (b) I often just see the 

solutions but then have to struggle to figure out the steps to 

get to them 

Sensory/ 

Intuitive 

83% *Q10 I find it easier (a) to learn facts (b) to learn concepts 

79% *Q38 I prefer courses that emphasize (a) concrete material (facts, 

data) (b) abstract material (concepts, theories) 

 78% *Q6 If I were a teacher, I would rather teach a course (a) that 

deals with facts and real life situations (b) that deals with 

ideas and theories 

 78% *Q22 I am more likely to be considered (a) careful about the 

details of my work (b) creative about how to do my work 

 77% *Q2  I would rather be considered (a) realistic (b) innovative 

 77% *Q18 I prefer the idea of (a) certainty (b) theory 

 71% Q42 When I am doing long calculations (a) I tend to repeat all 

my steps and check my work carefully (b) I find checking 

my work tiresome and have to force myself to do it 

 70% Q30 When I have to perform a task, I prefer to (a) master one 

way of doing it (b) come up with new ways of doing it 
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FS 

DIMENSION 

PREDICTION 

ACCURACY ILS QUESTION 

Visual/Verbal 84% *Q7 I prefer to get new information in (a) pictures, diagrams, 

graphs, or maps (b) written directions or verbal information 

 84% *Q11 In a book with lots of pictures and charts, I am likely to (a) 

look over the pictures and charts carefully (b) focus on the 

written text 

 84% *Q31 When someone is showing me data, I prefer (a) charts or 

graphs (b) text summarizing the results 

 83% *Q27 When I see a diagram or sketch in class, I am most likely to 

remember (a) the picture (b) what the instructor said about it 

 78% *Q3 When I think about what I did yesterday, I am most likely to 

get (a) a picture (b) words 

 76% *Q23 When I get directions to a new place, I prefer (a) a map (b) 

written instructions 

 72% Q19 I remember best (a) what I see (b) what I hear 

 72% Q43 I tend to picture places I have been (a) easily and fairly 

accurately (b) with difficulty and without much detail 

3.4 Conclusion 

The results showed that for the sample some questions in the ILS questionnaire 

are more accurate than others in predicting the overall learning style. If incorporating 

a limited number of ILS questions into a CITS to predict learning styles, it is best to 

select those questions that most accurately predict the overall learning style. It is 

recognised that all questions in the ILS are significant for assessing both the overall 

learning style and its strength. However, if replacing the completion of the ILS 

questionnaire with an implicit prediction of learning styles, the study results suggest 

a starting point of questions that best indicate overall learning style tendencies. The 

resulting subset of the best ILS predictor questions for each learning style dimension 

can now be considered when developing a strategy for predicting learning styles 

from a natural language dialogue.  

4 Analysis of Learning Style Behaviour Traits  

Human tutors use their knowledge of learning styles and behaviour in order to 

pick up cues from students about their learning preferences. Knowledge of the 

behaviour traits associated with learning styles is essential for predicting learning 

styles from a natural language dialogue. Felder and Silverman (1988) described 

dominant learner behaviours for each learning style in their model. Several ITS infer 

learning styles automatically from learner behaviour (Garcia et al., 2007; Cha et al., 

2006; Wang et al., 2006), however not all of the behaviour characteristics used can 
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be captured during a tutoring conversation. For example, student navigation and 

menu choices can be captured in an AHS but do not apply to a tutor-led conversation. 

This section describes a study undertaken to consider the implications of behaviour 

characteristics described in the FS model for predicting learning styles from a natural 

language dialogue.  

4.1 Aim 

The aim of the study was to extract from the FS model a list of behaviour 

characteristics for each FS dimension which could be used to predict learning styles 

from a natural language tutoring conversation.  

4.2 Methodology 

The FS model describes typical behaviour characteristics of each learning style. 

For clarity and ease of analysis, all behaviour information described in the FS model 

for each learning style was extracted and summarised in a table of common learner 

behaviour.  

Next, each behaviour trait in the table of common learner behaviour was assessed 

using the following criteria: 

1. Is it possible to map the behaviour trait onto a two-way online 

conversational tutorial? 

2. How could the behaviour trait be used to implicitly predict learning styles? 

Where it was found that a behaviour trait could be mapped onto a tutorial 

conversation and used to predict learning styles, the trait was included in a summary 

table along with a description of how it could be used to predict learning styles.  

4.3 Results and Discussion 

Table 5.3 shows a summary of common learner behaviour for each learning style. 

Where possible, the table contrasts related learning characteristics which distinguish 

the different dichotomies of each FS dimension.  

Table 5.4 lists the subset of behaviour characteristics extracted from the FS 

model that can be mapped onto a two-way tutorial dialogue to predict learning styles. 

It was not possible to map all behaviour traits in Table 5.3 onto a two-way 

conversational tutorial, for example 
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 „work well in groups‟ (Active) and „work better alone‟ (Reflective) and 

 „strong in convergent thinking and analysis‟ (Sequential) and „divergent thinking 

and synthesis‟ (Global) 

could not be assessed by a two-way conversation.  

Table 5.3. Typical Learner Behaviour Characteristics extracted from the FS model 

SENSOR INTUITOR 

Prefer facts, data, experimentation Prefer principles and theories 

Prefer solving problems using standard methods Prefer innovation 

Dislike surprises Dislike repetition 

Patient with detail Bored by detail 

Do not like complications Welcome complications 

Good at memorising facts Good at grasping new concepts 

Careful but slow Quick but careless 

Comfortable with symbols (eg. words) Uncomfortable with symbols 

VISUAL VERBAL 

Remember what they see Remember what they hear, or what they hear then 

say 

Like pictures, diagrams, flow charts, time lines, 

films 

Like discussion  

Prefer visual demonstration Prefer verbal explanation 

 Learn by explaining to others 

ACTIVE REFLECTIVE 

Do something with information – 

discuss/explain/test 

Examine and manipulate information 

introspectively 

Active experimentation Reflective observation 

Do not learn much in passive situations (lectures) Do not learn much if no chance to think (lectures) 

Work well in groups Work better alone 

Experimentalists Theoreticians 

Process information by setting up an experiment 

to test an idea, or try out on a colleague 

Process information by postulating 

explanations/interpretations, drawing analogies, 

formulating models 

SEQUENTIAL GLOBAL 

Follow linear reasoning processes Make intuitive leaps 

Can work with material they have only partially 

or superficially understood 

Difficulty working with material not understood 

Strong in convergent thinking and analysis Divergent thinking and synthesis 

Learn best when information is presented in a 

steady progression of complexity and difficulty 

Sometimes better to jump directly to more 

complex and difficult material 
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Table 5.4. Aspects of Learner Behaviour for Predicting Learning Styles from a Natural 

Language Tutorial Dialogue 

BEHAVIOUR BY LEARNING STYLE IMPLICATION FOR LEARNING STYLE PREDICTION 

Sensor  

Prefer facts, data, experimentation Perform better in questions with facts, examples and 

results 

Dislike surprises Prefer introductions, overviews and working in a 

sequential predictable order 

Careful but slow Consider timing interactions and number of errors 

Comfortable with symbols (e.g. words) Consider amount of discussion with the tutor 

Intuitor  

Prefer principles and theories Perform better in theory questions  

Dislike repetition Present information usually only once 

Bored by detail Perform better where information is summarised  

Quick but careless Consider timing interactions and number of errors 

Uncomfortable with symbols Consider amount of discussion with the tutor 

Visual  

Remember what they see Perform better in questions with diagrams, pictures, 

movies 

Like pictures, diagrams, flow charts, 

time lines, films 

Perform better in questions with pictures, diagrams, flow 

charts, time lines, films 

Prefer visual demonstration Perform better in questions with visual walkthroughs 

rather than textual explanation 

Verbal  

Remember what they hear, or what they 

hear then say 

Perform better in questions with movies and sound clips 

Like discussion  Consider amount of discussion with the tutor 

Prefer verbal explanation Perform better in questions with movies, sound clips and 

tutor explanations 

Learn by explaining to others Consider amount of discussion with the tutor 

Active  

Do something with information – 

discuss/explain/test 

Consider amount of discussion with the tutor; perform 

better in questions with practical exercises 

Experimentalists Perform better in practical questions 

Process information by setting up an 

experiment to test an idea, or try out on 

a colleague 

Consider amount of discussion with the tutor; perform 

better in questions with practical exercises 

Reflective  

Examine and manipulate information 

introspectively 

Consider amount of discussion with the tutor 

Theoreticians Perform better in theoretical questions 

Sequential  

Follow linear reasoning processes Perform better when information presented in a steady 

progression of complexity and difficulty 

Learn best when information is 

presented in a steady progression of 

complexity and difficulty 

Perform better when information presented in a steady 

progression of complexity and difficulty 

Global  

Sometimes better to jump directly to 

more complex and difficult material 

Perform better where information is summarised and 

when they can attempt problems in one go. 
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4.4 Conclusion 

The analysis of the FS model produced a list of behaviour traits (Table 5.4) for 

each FS dimension that could be used to predict learning styles from a two-way 

natural language tutoring conversation. Those behaviour traits not included in the 

final subset may be considered for inclusion in future work, for example by adding a 

group discussion facility.  

5 Mapping of Behaviour Cues 

The FS model describes typical behaviours for each different learning style. An 

examination of the ILS questionnaire (Appendix 1) and its best predictor questions 

(Table 5.2) illustrates that the questions have been designed to test the aspects of 

behaviour summarised in Table 5.3 and Table 5.4. When considering the extracted 

subset of FS learner characteristics for detecting learning style (Table 5.4) it became 

clear that each learning style could be categorised by a small number of behaviours 

that differentiated it from its opposite. For example, as seen in Table 5.4, Sequential 

learners are more successful when information is presented step-by-step in increasing 

difficulty, whereas Global learners learn more effectively when information is 

summarised and they can attempt difficult problems straight away. By applying this 

behaviour to a tutorial conversation, e.g. by incorporating questions that allow 

learners to choose to attempt a solution immediately or be guided through the steps 

of a solution, it may be possible to predict the learning style on the Sequential/Global 

dimension.  

In order to map the behaviour characteristics in Table 5.4 to a tutoring 

conversation to predict learning styles, it was first necessary to decide which aspects 

of behaviour need to be captured. Each aspect of behaviour in Table 5.4 was studied 

in turn and the list was reorganised according to behaviour, with similar behaviours 

grouped together. For example, as both Verbal and Active learners like discussion, 

they were grouped together under the „like discussion‟ behaviour category. Next, this 

list of behaviours was reduced further by considering the behaviour that would need 

to be captured from a natural language conversation. For example, the „like 

discussion‟ category now became the „discussion‟ category and included also the 

Sensor (like discussion), Intuitor (do not like discussion) and Reflective (do not like 

discussion) learning styles. The result of this analysis was a list of behaviour cues to 
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be captured during the conversational tutorial which could be used to predict learning 

style. Table 5.5 lists the behaviour to be captured during a tutorial conversation in 

order to predict learning styles, and relates each behaviour variable to the learning 

styles it may be used to predict.  

Table 5.5. Learner Behaviour Cues to be Captured During Tutoring 

BEHAVIOUR VARIABLE TO BE CAPTURED LEARNING STYLE 

Number of discourse interactions Sensor, Intuitor, Verbal, Active, Reflective 

Number of questions asked Sensor, Intuitor, Verbal, Active, Reflective 

Tutorial duration Sensor, Intuitor, 

Reading time Sensor, Intuitor,Visual, Verbal 

Number of errors due to not reading the question Sensor, Intuitor 

Right answer after seeing an image Visual 

Right answer after seeing a movie/walkthrough Visual, Verbal, Active 

Right answer after an explanation of theory Intuitor 

Right answer after seeing an example Sensor 

Choose to be guided through the steps of solving a 

problem 

Sensor, Sequential 

Choose to solve a problem straight away Intuitor, Global 

Score for practical questions  Active, Sensor 

Score for theoretical questions  Reflective, Intuitor 

6 Use of Language 

Mairesse et al. (2007) found that it was possible to determine an individual‟s 

personality type by looking at the type of vocabulary they used. As learning style is 

linked to personality (see Chapter 2), it may be possible that the type of vocabulary 

used can indicate an individual‟s learning style. Özpolat and Akar (2009) mapped a 

short list of key words to FS learning styles, and analysed student search terms to 

successfully predict learning styles for three of the four FS dimensions.  

It was decided that a list of key words and phrases would be drawn up for each 

learning style so that the learner‟s discourse could be examined to see if learning 

style could be inferred by the use of these words. For example, the key word show 

(e.g. “Can you show me an example”) may indicate a Visual learning style, whereas 

the keyword tell (e.g. “Can you tell me what to do”) may indicate a Verbal learning 

style. 

A starting point for drawing up a list of key words was the FS model, which used 

a number of particular words in its description of the dominant behaviour preferences 

for each learning style. The key words list in Ozpolat and Akar (2009) only produced 

results for Visual learners, so it was extended by analysing the FS model and 
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extracting a list of indicative words and phrases mapped to each learning style. This 

initial key words list was then expanded using a thesaurus to produce an initial set of 

key words and phrases that were indicative of learning style (Table 5.6).  

The process of discovering associations between key words and particular 

learning styles requires experimentation and analysis of tutoring dialogues, so the 

content of the list will be tested and expanded by analysing actual tutoring discourse 

once the Oscar CITS has been developed for a particular domain. 

Table 5.6. Key Words and Phrases which may be Indicative of Learning Style 

LEARNING STYLE KEY WORDS/PHRASES 

Sensory detail, overview, outline, review, introduction, basic principles, 

essentials, intro, sequential, consecutive, continuous, persistent, 

regular, serial, steady, subsequent, successive, example, case, practical, 

exemplar, illustration, lesson, prototype, sample, specimen, stereotype, 

real world 

Intuitive summary, summarise, breakdown, brief, condense(d), succinct, digest, 

rundown, overview, outline, review, principle, basis, fundamental, 

theory, theoretical, approach, argument, assumption, basis, concept, 

foundation, idea, in principle, ideology, outlook, philosophy, position, 

premise, proposal, rationale, supposition, theorem 

Visual see, illustrate, inspect, look, observe, scan, view, watch, picture, 

depiction, drawing, illustration, image, impression, portrayal, 

representation, diagram, chart, graph, figure, layout, table, show, 

display, demonstrate, present(ation), simulation, video 

Verbal discuss, confer, consider, consult with, debate, discourse, go into, 

review, explain, analyse, break down, clarify, clear up, define, 

describe, get across, go into detail, spell out, tell, advise, declare, 

divulge, express, fill in, impart, inform, instruct, let know, mention, 

report, say, speak, state, forum 

Active practical, realistic, applied, empirical, experimental, working, exercise, 

interactive, action, activity, drill, examination, operation, problem, 

study, task, test, discuss, confer, consider, consult with, debate, 

discourse, go into, review, explain, analyse, break down, clarify, clear 

up, define, describe, get across, go into detail, spell out, example, case, 

exemplar, illustration, lesson, prototype, sample, specimen, stereotype 

Reflective principle, basis, fundamental, theory, approach, argument, assumption, 

basis, concept, foundation, idea, ideology, outlook, philosophy, 

position, premise, proposal, rationale, supposition, theorem 

Sequential example, case, exemplar, illustration, lesson, prototype, sample, 

specimen, stereotype, in steps, sequential, consecutive, continuous, 

persistent, regular, serial, steady, subsequent, successive, subsections, 

parts, detail 

Global summary, summarise, breakdown, brief, condense(d), succinct, digest, 

rundown, overview, outline, review, overall, whole 
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7 Logic Rules 

In order for a CITS to dynamically predict learning styles it will be necessary to 

convert the captured knowledge of FS behaviour factors and keywords into logic 

rules. The set of logic rules will continually increment student learning style values 

as the tutoring conversation takes place.  

The analysis of the FS model described in this chapter produced a list of learner 

behaviour cues to be captured during tutoring and linked to associated FS learning 

styles (Table 5.5). This knowledge of behaviour events must be converted into logic 

rules. Some of the behaviour cues can be directly converted to logic rules, for 

example: 

IF learner shown image/diagram  

AND learner gives correct answer 

THEN  increase VISUAL; 

This example logic rule is generated from the behaviour cue „Right answer after 

seeing an image‟, linked to the Visual learning style (Table 5.5). If a learner does not 

know the answer, is shown an image and then gets the answer right, this visual 

presentation has helped their understanding so the Visual learning style value should 

be incremented.  

Other behaviour cues that rely on comparisons rather than the occurrence of 

events can also be converted into logic rules, for example: 

IF learner_interaction_count > average_interaction_count  

THEN  increase SENSOR  

 AND increase VERBAL  

 AND increase ACTIVE; 

 

IF learner_interaction_count < average_interaction_count  

THEN  increase INTUITOR  

 AND increase REFLECTIVE;  

These example logic rules are generated from the behaviour cue „Number of 

discourse interactions‟, linked to the Sensor, Intuitor, Verbal, Active and Reflective 

learning styles (Table 5.5). If, during a set number of questions, a learner‟s 

conversation has an above average number of interactions, then it can be inferred that 

the learner enjoys discussion and therefore the Sensor, Verbal and Active learning 

style values should be incremented. If, however, a learner‟s conversation has a below 
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average number of interactions, this indicates they do not enjoy discussion and so the 

Intuitor and Reflective learning style values should be incremented. 

Additionally, the knowledge of key words and phrases linked to learning styles 

can be converted into logic rules, for example: 

IF learner-word IN {see, show, picture, diagram}  

THEN increase VISUAL; 

This example logic rule was generated using some of the key words linked to the 

Visual learning style (Table 5.6). (Note that the word set linked to Visual learners 

has been reduced in this example for clarity, but would actually contain all associated 

key words and phrases.) If a learner utterance contains a word in the key word set, 

the Visual learning style value should be incremented.  

The full set of 29 logic rules devised for the FS model are given in Appendix 2. 

As the set of logic rules is based on learner behaviour and language during a 

conversational tutorial, the logic rules may be mapped to other learning styles models 

which associate the behaviour with different groups of learners. For example, the 

logic rules for the Visual FS learning style shown above may be adapted to match the 

Visual-Spatial intelligence from Gardner‟s Theory of Multiple Intelligences (1983), 

as follows: 

IF learner shown image/diagram  

AND learner gives correct answer 

THEN  increase VISUAL-SPATIAL; 

 

IF learner-word IN {see, show, picture, diagram}  

THEN increase VISUAL-SPATIAL; 

Similarly, the logic rules related to the „Number of discourse interactions‟ 

behaviour may be applied to the Learning Styles Questionnaire (Honey and 

Mumford, 2006) Activist and Reflector learning styles, as follows: 

IF learner_interaction_count > average_interaction_count  

THEN  increase ACTIVIST;  

 

IF learner_interaction_count < average_interaction_count  

THEN  increase REFLECTOR;  

Therefore, the set of logic rules produced is generic as it can be used to predict 

learning styles for other models. It is anticipated that the set of generic logic rules 

will be expanded to include additional learner behaviour as other learning styles 

models are adopted. 
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8 Conclusion 

Natural language interfaces are intuitive for humans, as we use conversation to 

communicate in real life. A more intuitive and familiar interface for a tutoring 

system can help learners feel more confident, which can improve their motivation 

and the effectiveness of their learning. Conversational interfaces can also adopt the 

constructivist style of tutoring used by human tutors, and thought to aid a deeper 

understanding of a subject. Implicitly predicting learning style during a tutoring 

conversation removes the requirement for learners to complete onerous and time-

consuming questionnaires. By continually predicting learning style during tutoring, 

any changes to learning style or differences in learning style for different subjects 

can be automatically picked up and adapted to.  

This chapter has outlined the methodology and strategies for predicting learning 

styles implicitly from a two-way tutoring conversation with a CITS. In order to 

demonstrate the methodology for developing prediction strategies, an example 

learning styles model was adopted – the Felder-Silverman (FS) model. Knowledge of 

learning styles was extracted from the FS model and applied to a natural language 

tutoring dialogue. The first analysis considered the FS model assessment 

questionnaire, the ILS. A study was undertaken whose results show that some 

questions are more accurate than others in predicting the overall learning style, and 

so the number of questions incorporated into a tutorial can be reduced. 17 of the 44 

questions were identified as having 75% or better accuracy in predicting the overall 

learning style, with the three best predictor questions predicting the overall learning 

style 84% of the time. Next, an analysis of the FS model was presented, with a 

summary of behaviour linked to learning styles from which a set of behaviour 

characteristics were extrapolated which could be used to predict learning styles. This 

subset was further analysed to produce a list of behaviour cues that could be captured 

from a tutoring dialogue and utilised to predict learning styles. Finally, the use of 

language during a tutorial conversation was considered, and a list of key words and 

phrases that could be indicative of learning style drawn up.  

After analysing the FS model, the knowledge captured about learner behaviour 

and language was converted into a set of logic rules which increment learning style 

values following events during a tutoring conversation. The set of logic rules is 
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generic as it is based on learner behaviour, which can be used to predict learning 

styles for other models. 

The original methodology described in this chapter is generic, and so can be 

applied to other learning styles models to extract the knowledge required to predict 

learning styles from a natural language dialogue. 

9 Chapter Highlights 

 An original, generic methodology for automatically predicting learning styles 

from a two-way tutoring conversation with a CITS was described. 

 An empirically derived subset of the best predictor ILS questions was presented. 

 An analysis of learning style behaviour traits in the FS model, and their 

implication for predicting learning styles from a natural language dialogue was 

described. 

 A set of learner behaviour cues to predict learning styles from a natural language 

tutoring dialogue was created. 

 A list of key words and phrases which may be indicative of learning style was 

produced. 

 Behaviour cues for implicitly predicting learning styles from a tutoring dialogue 

were encapsulated into logic rules. 
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Chapter 6 A Methodology and Architecture for Developing a 
CITS to Predict Learning Styles 

1 Introduction 

Computerised learning systems offer flexible learning at any time or place, via 

the Internet, at a fixed cost. Computerised learning systems allow students to learn at 

their own pace, and as well as being adopted for distance learning, they can support 

classroom courses. As described in Chapter 4, Intelligent Tutoring Systems (ITS) are 

computerised learning systems that adopt artificial intelligence (AI) techniques to 

personalise online tutoring, adding intelligence to make a learning experience more 

than just a computerised book. ITS most often personalise tutoring by adapting the 

learning content according to individual factors such as existing knowledge and 

learning style. Chapter 2 described how learning styles are important during the 

process of learning as they affect how a person receives and processes information. 

Human tutors try to include different styles of learning material and introduce 

different methods (e.g. tutorials, labs, lectures) to open up learning to all students. 

ITS that incorporate learning styles can improve the effectiveness of a learning 

experience (Walters et al., 2000; Paredes and Rodriguez, 2004). Conversational 

Intelligent Tutoring System (CITS) use natural language dialogue to conduct 

tutoring, and although conversation is a more human-like way of interacting than a 

menu, the complexities of developing conversational agent (CA) interfaces (see 

Chapter 3) means that they are not commonly adopted by ITS. There are currently no 

Conversational Intelligent Tutoring Systems (CITS) that mimic a human tutor by 

dynamically predicting and adapting to learning styles whilst directing a tutoring 

conversation. 

Chapter 5 described a methodology for extracting knowledge from a learning 

styles model which could be used to predict learning styles from a natural language 

tutoring dialogue. However, a learning styles knowledge base is only one component 

required in a Conversational Intelligent Tutoring System (CITS) that can 

dynamically predict learning styles. Also required is the tutoring subject knowledge, 

and components with the ability to manage and conduct a tutoring conversation. 

This chapter introduces a novel CITS called Oscar CITS which, during a tutoring 

conversation, can dynamically predict an individual’s learning style and adapt its 

tutoring style accordingly. Throughout this thesis, the term Oscar CITS refers to the 
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overall system that both predicts and adapts to learning styles. However, due to the 

complexity of the design, development and experimental analysis involved, the 

functions of prediction and adaptation have been separated. In this thesis, the 

research relating to the automatic prediction of learning styles during a tutoring 

conversation will be known as the Oscar Predictive CITS (PCITS). The research 

relating to the adaptation of a tutoring conversation to an individual’s learning styles 

will be known as the Oscar Adaptive CITS (ACITS).  

In this chapter, section 2 gives an overview of the Oscar CITS. Next, an original 

methodology is proposed for developing Oscar Predictive CITS, a CITS that can 

automatically predict learning styles during a tutoring conversation. The 

methodology is independent of the learning styles model and tutoring domain as the 

PCITS construction is based around capturing learner behaviours during tutoring. A 

generic architecture for Oscar PCITS is proposed, which is modular for ease of 

development and maintenance and to integrate flexibility in the choice of learning 

styles model and tutoring domain. 

2 Oscar Conversational Intelligent Tutoring System 

The Oscar CITS is a novel conversational intelligent tutoring system that 

dynamically predicts a student’s learning style during a tutoring conversation, and 

adapts its tutoring style to suit the preferred learning style. Oscar’s pedagogical aim 

is to provide the learner with the most appropriate learning material for their learning 

style leading to a more effective learning experience and a deeper understanding of 

the topic. Rather than being designed with the purpose of picking up learning styles 

(such as Cha et al., 2006) the Oscar CITS attempts to mimic a human tutor by 

leading a two-way discussion and using cues from the student dialogue and 

behaviour to predict and adapt to their learning style. Oscar’s natural language 

interface and classroom tutorial style are intuitive to learners, enabling them to draw 

on experience of face-to-face tutoring to feel more comfortable and confident in 

using the CITS. Oscar CITS is a personal tutor that can answer questions, provide 

hints and assistance using natural dialogue, and which favours learning material to 

suit each individual’s learning style. The Oscar CITS offers 24-hour personalised 

learning support at a fixed cost.  
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As described in Chapter 4, Brusilovsky and Peylo (2003) identified three main 

strategies to including intelligence in Intelligent Tutoring Systems (ITS): curriculum 

sequencing, intelligent solution analysis and problem solving support. The Oscar 

CITS will combine all three intelligent technologies with a conversational interface, 

aiming to build the confidence of the learner and improve motivation and deep 

understanding of the subject. Oscar’s intelligent approach includes presenting 

learning material in the sequence and style most suited to the individual’s knowledge 

and learning style (curriculum sequencing), analysing and giving feedback on 

incomplete and erroneous solutions (intelligent solution analysis) and giving 

intelligent hints and discussing questions (problem solving support).  

In summary, the main features of the innovative Oscar CITS are: 

 Oscar mimics a human tutor by adopting a tutor-led, conversational approach. 

 Oscar’s natural language interface is intuitive to use and enables learners to 

actively discuss problems and solutions. 

 Like human tutors, Oscar supports constructivist learning by incorporating 

problem solving support and intelligent solution analysis techniques. 

 Oscar implicitly predicts an individual’s learning style by capturing and 

modelling learner behaviour during a tutoring conversation. 

 Oscar aims to improve the learning experience by intelligently adapting its 

tutoring style to match individual’s learning styles. 

 Oscar CITS is generic, allowing the free choice of learning styles model and 

subject domain. 

 

The Oscar Predictive CITS (PCITS) is a CITS that incorporates the automatic 

prediction of learning styles during a tutoring conversation. The construction of 

Oscar PCITS will now be described. First, an original generic methodology for 

developing Oscar PCITS will be proposed, followed by a generic architecture for 

constructing Oscar PCITS. 

3 A Generic Methodology for Creating Oscar PCITS 

CITS are complex and time-consuming to develop, requiring expertise in 

knowledge engineering (the capture and formatting of expert knowledge (O’Shea et 

al., 2011), i.e. tutoring, learning styles, domain knowledge) and CA scripting. 
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Formalising the development of a CITS which can be applied to different learning 

styles models and tutoring domains will help to speed up the development. 

The proposed generic methodology for creating an Oscar PCITS consists of three 

phases as shown in Table 6.1. The first phase of the methodology relates to the 

creation of the learning styles predictor module and the second phase to the tutorial 

subject domain. The third phase incorporates the learning styles predictor and tutorial 

conversation into a PCITS architecture. Each phase will now be described. 

Table 6.1. 3-Phase Methodology for Creating Oscar PCITS. 

Phase 1: Create the Learning Styles Predictor Module 

1.1. Select a Learning Styles Model 

a. Reduce the learning styles model if necessary 

b. Extract the behaviour characteristics 

1.2. Map learning style behaviour to the conversational tutoring style 

1.3. Analyse the learning styles model for language traits 

1.4. Adapt the generic logic rules to predict learning styles 

Phase 2: Design a Tutorial Conversation 

2.1. Capture the tutorial scenario and questions (including movies, voice, images, examples, etc.) 

from human tutors in a specific domain 

2.2. Determine the conversational structure/style  

2.3. Map tutorial questions onto the generic question styles and templates  

2.4. Script Conversational Agent natural language dialogue for each tutorial question using the 3-

level model  

2.5. Link tutorial dialogue to logic rules through Conversational Agent variables 

Phase 3: Construct the PCITS Architecture 

3.1 Methodology Phase 1: Create the Learning Styles Predictor Module 

Phase 1 of the Oscar PCITS Methodology involves the analysis of a learning 

styles model in order to create a Learning Styles Predictor module for the PCITS. 

The steps in this phase have been devised following the development of strategies for 

predicting learning styles from natural language described in Chapter 5.  

3.1.1 Step 1.1: Select a Learning Styles Model 

The first step in creating the learning styles predictor module requires the 

selection of a learning styles model (Felder and Silverman, 1988; Honey and 

Mumford, 1992). To illustrate Phase 1 of the methodology, the Felder-Silverman 

(FS) model (Felder and Silverman, 1988) was selected as the initial experimental 

group will be university engineering students (see Chapter 5, section 2).  

Next, if the chosen learning styles model or its assessment tool is large, it may be 

possible to reduce the model to allow its implicit inclusion into a tutoring 
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conversation. As described in Chapter 5, section 3, a study was undertaken to reduce 

the FS model by investigating the FS model’s evaluation tool, the Index of Learning 

Styles (ILS) (Felder and Soloman, 1997). The experiment found that 17 questions 

predicted the overall learning style result in at least 75% of cases, with the top three 

questions predicting the result in 84% of cases (Table 5.2). The resulting subset of 

the best ILS predictor questions formed the basis of learning styles prediction by the 

Oscar PCITS. 

The final part of Step 1.1 is to extract from the model the typical learner 

behaviour characteristics for each learning style. As described In Chapter 5, section 4, 

for clarity and ease of analysis the behaviour characteristics were extracted from the 

FS model and summarised in a table of common learner behaviour (Chapter 5, Table 

5.3).  

3.1.2 Step 1.2: Map Learning Style Behaviour to the Conversational Tutoring Style 

To map learning style behaviour to the conversational tutoring style, each 

behaviour characteristic extracted in step 1.1b is assessed using the following criteria: 

1. Is it possible to map the behaviour trait onto a two-way online conversational 

tutorial? 

2. How could the behaviour trait be used to implicitly predict learning styles? 

All behaviour traits that can be mapped onto a tutorial conversation and used to 

predict learning styles should be included in a summary table along with a 

description of how they could be used to predict learning styles. In Chapter 5, section 

4 this subset of behaviour traits for the FS model is shown in Table 5.4.  

Next, it is necessary to decide which aspects of behaviour need to be captured 

during a tutoring conversation. Each behaviour trait in the summary table (Table 5.4) 

needs to be studied in turn and the list reorganised according to behaviour, with 

similar behaviours grouped together. For example, as both Verbal and Active 

learners like discussion, they should be grouped together under the ‘like discussion’ 

behaviour category. Next, this list of behaviours should be reduced further by 

considering which behaviour needs to be captured from a natural language 

conversation. For example, the ‘like discussion’ category would now become the 

‘discussion’ category and additionally include the Sensor (like discussion), Intuitor 

(do not like discussion) and Reflective (do not like discussion) learning styles. The 

result of this analysis is a list of behaviour cues to be captured during a 
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conversational tutorial which can be used to predict learning style. In Chapter 5, 

Table 5.5 lists the behaviour to be captured during a tutorial conversation to predict 

FS learning styles. 

3.1.3 Step 1.3: Analyse the Learning Styles Model for Language Traits 

As described in Chapter 2, the vocabulary used in natural language dialogue was 

found to indicate personality type (Mairesse et al., 2007) and learning style (Ozpolat 

and Akar, 2009). Step 1.3 of the methodology involves analysing the learning styles 

model to extract any language traits that could be indicative of learning style. In 

Chapter 5 section 6, indicative words and phrases used to describe behaviour traits 

were extracted from the FS model and mapped to learning styles. This key words list 

should then be expanded using a thesaurus to produce an initial set of key words and 

phrases indicative of learning style (e.g. as seen in Table 5.6).  

The process of discovering associations between key words and particular 

learning styles requires experimentation and analysis of tutoring dialogues, so the 

content of the list must be tested and expanded by analysing actual tutoring discourse 

once the Oscar PCITS has been developed for a particular domain (see Chapters 7 

and 8). 

3.1.4 Step 1.4: Adapt the Generic Logic Rules to Predict Learning Styles 

The final step in phase 1 of the methodology is to convert the knowledge of the 

learning styles model (the captured behaviour and language traits gathered from steps 

1.2 and 1.3) into a set of logic rules. The aim of the logic rules is to continually 

increment student learning style values following events during the tutoring 

conversation. The analysis of the FS model described in Chapter 5 produced a set of 

29 logic rules based on learner behaviour and language to be captured (Appendix 2). 

As this set of logic rules relates to learner behaviour during a tutoring conversation, 

the rules are generic and can be adapted for different learning styles models (as 

demonstrated in Chapter 5, section 7). For different learning styles models, the set of 

generic logic rules should be adapted, and extended if required to include additional 

learner behaviour defined by the chosen model. Table 6.2 shows two examples of 

logic rules developed using the behaviour cues from step 2.2 (Chapter 5, Table 5.5) 

and mapped to the FS model. The first example, rule 1, is generated from the 

behaviour cue ‘Right answer after seeing an image’ and is linked to the Visual 
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learning style. If a student does not know the answer, is shown an image and then 

gets the answer right, this visual presentation has helped their understanding so the 

Visual learning style value is incremented. Rule 2 is generated from the ‘Number of 

errors due to not reading the question’ behaviour, linked to the Intuitor and Visual 

learning styles. If the answer to a question is given in the explanation text and a 

student gets the answer wrong, this behaviour indicates they are careless and not 

comfortable with reading text, so the Intuitor and Visual learning style values are 

incremented. 

Table 6.2. Example Logic Rules to Adjust Student Learning Style Values Based on 

Tutoring Conversation. 

1. Example rule to test whether presenting information visually helps the student’s information 

perception: 

IF  student shown image/diagram  

AND  student gives correct answer 

THEN  increase VISUAL; 

 

2. Example rule to test how comfortable the student is with words and with detail: 

IF  answer is given in the explanation text 

AND  student does not know the answer  

THEN  increase INTUITOR 

AND  increase VISUAL; 

The full list of 29 logic rules developed for the FS model is given in Appendix 2. 

The logic rules will be applied during a tutoring conversation to dynamically predict 

learning styles. Some of the behaviour cues listed in Chapter 5, Table 5.5, such as 

duration and number of interactions, will be assessed at set times during a tutoring 

conversation rather than continually throughout the tutoring. The set of logic rules 

resulting from this step can be applied during a tutoring conversation to dynamically 

predict learning styles.  

This section has described the steps in phase 1 of the generic Oscar PCITS 

methodology to create a Learning Styles Predictor module using the FS model as an 

example.  

3.2 Methodology Phase 2: Design a Tutorial Conversation 

Phase 2 of the methodology involves capturing the tutorial from expert human 

tutors and iteratively developing a tutorial conversation with input from the human 

tutors.  
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3.2.1 Step 2.1: Capture the Tutorial Scenario and Questions from Human Tutors in a 

Specific Domain 

The first step in designing a tutorial conversation is to capture a tutorial scenario 

from human tutors. After deciding on the subject domain for the tutorial, interviews 

should be conducted with expert human tutors in the chosen domain to identify 

important concepts for the tutorial syllabus. Next, a number of tutorial questions and 

a multiple choice question (MCQ) test need to be devised which cover the agreed 

learning outcomes of the tutorial. To capture the tutorial scenario, a document 

(known as the ‘tutorial conversation blueprint’) should be produced in consultation 

with tutors which contains a conversation script for each question, including a set of 

possible learner answers and tutor’s responses to these. For each following learner 

response, a further tutor response should be written, and so on, until each question 

reaches a conclusion. The resulting tutorial conversation blueprint contains a number 

of different learning paths for each tutorial question, depending on individual learner 

knowledge and responses. Resources such as examples, movies, images etc. should 

be embedded into the tutorial conversation blueprint as appropriate. The MCQ test 

will be used to test learners’ knowledge and understanding at the end of the tutoring 

session. Capturing human tutor expert knowledge when designing the tutorial 

conversation is an iterative process, however by planning and detailing the dialogue 

at this point, the development of the conversational agent will be more efficient.  

3.2.2 Step 2.2: Determine the Conversational Structure/Style  

A CITS that attempts to mimic a human tutor must be able to manage a tutoring 

conversation on a number of levels, each with a different goal. Step 2.2 of the 

methodology determines the structure of the CA tutorial conversation. Drawing on 

experience of classroom tutorials (Department for Education and Skills, 2004a, 

2004b), three parts of a tutorial conversation with separate goals were distinguished 

and a three-level model of a tutorial conversation was designed for use in the PCITS 

(Figure 6.1). At the highest level (the ‘social level’), Oscar PCITS needs the ability 

to maintain a natural language tutorial conversation, and like a human tutor must 

pick up cues if the learner is not engaging in the tutorial (e.g. use of bad language) 

and choose to end the session. At the main ‘tutoring level’, Oscar PCITS directs the 

tutorial, explains topics and asks questions, guiding the learner towards an 

understanding of the topic. This may involve Oscar PCITS giving feedback on 
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erroneous or incomplete solutions (intelligent solution analysis), explaining the topic 

using different methods if required, such as practical examples (curriculum 

sequencing) and giving hints to help the learner construct a solution (problem solving 

support). During a tutorial, learners may wish to discuss a related topic to help their 

understanding, requiring a deeper ‘discussion level’ with the ability to discuss and 

explain a predefined set of Frequently Asked Questions related to the domain.  

Tutorial 

Question

FAQs and Discussion

Swear Filter / End Session Social Level

Tutoring Level

Discussion Level

LEARNER

RESPONSE END 

SESSION

Oscar CITS

 

Figure 6.1. 3-Level Model of a Tutorial Conversation. 

The implication of this structure of a natural language tutorial is that it is 

necessary to develop mechanisms and conversations that can work at all three levels 

when applying the Oscar PCITS to a learning styles model and subject domain. As 

part of this step, a list of FAQs and answers should be captured from the human 

tutors, scripted in natural language and added to the tutorial conversation blueprint. 

3.2.3 Step 2.3: Map Tutorial Questions onto the Generic Question Styles and 

Templates  

The third step in phase 2 of the methodology links the captured tutorial questions 

to the behaviour characteristics identified in phase 1 step 1.2. This is done by 

mapping tutorial questions to a set of generic question styles and templates.  

During the development of the Learning Styles Predictor module (Phase 1 steps 

1.1 and 1.2), questions and behaviour from the FS model were mapped to a 

conversational tutoring style. To gather the behavioural information identified in 

phase 1 as indicative of learning style, a set of generic styles and templates of tutorial 

questions was developed. The templates will speed up the development of Oscar 

PCITS tutorials for different domains whilst still offering the flexibility to include 
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different styles of question as the domain dictates. The goal is to develop a toolkit by 

expanding the set of question styles and templates over time as the Oscar PCITS is 

applied to different learning styles models and domains requiring different 

approaches to tutoring.  

Four generic styles of tutorial question were devised, as follows: 

 Practical Style: practical problems and exercises that test the application of 

knowledge. These will indicate whether a learner performs better in practical 

questions. 

 Theoretical Style: theoretical questions to test understanding and knowledge, 

which will indicate whether a learner performs better in theoretical topics. 

 Process Style: questions where learners can ask to be guided through a process or 

choose to attempt to solve the question all at once. This will indicate a learner’s 

preferred approach to tackling complex practical questions. 

 Trick Question Style: ‘trick questions’ where part of the answer is given in the 

explanatory text, which will test the learner’s attention to detail and reading 

skills. 

Further to the generic styles of question described above, two generic question 

templates were represented diagrammatically to show the flow of the tutorial 

conversation and the use of different hints and explanations. Figure 6.2 shows a 

generic question template that could be applied to both practical and theoretical 

question styles. The generic question template is designed to offer hints to students 

about the question answers and also to gather information about the type of help 

which is most effective (which may indicate their learning style). In Figure 6.2, the 

question is asked in box 1 and if the learner responds with the correct answer at any 

point, they are given feedback and taken to the next question (response 2). If the 

learner does not know the answer or their answer is wrong, Oscar explains the 

concept and repeats the question (response 3). If the learner still does not know the 

answer or their answer is wrong, Oscar shows an example and repeats the question 

(response 4). If the learner still does not know the answer or their answer is wrong, 

Oscar shows a movie clip and asks the question again (response 5). If the learner is 

still unable to answer correctly, Oscar shows an image or diagram to explain the 

concept and repeats the question (response 6). Finally, if the learner still does not 

know the correct answer, Oscar tells them the answer, suggesting that they revise the 
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topic (showing additional resource links), then asks if they wish to continue with the 

tutorial (response 7). If the learner wishes to continue, they are taken to the next 

question; if not the tutorial is ended. 

1. QUESTION: Can 

you tell me….

3. Explain 

concept. Repeat 

question

Type it in then 2. Well done Next Q

ANSWER

YES

ANSWER

NO/DON’T KNOW/WHAT

5. Show movie. 

Repeat question

6. Show image. 

Repeat question

7. Give answer, suggest 

revise, show links. Want to 

quit?

END 

session

OK, we’ll continueNO

DON’T KNOW/WHAT

DON’T KNOW/WHAT

DON’T KNOW/WHAT

YES

ANSWER

ANSWER

4. Show example. 

Repeat question
ANSWER

DON’T KNOW/WHAT

ANSWER

START

 

Figure 6.2. Generic Question Template with Hints 

The second generic question template, in Figure 6.3, adopts the Process generic 

question style, where a learner has a choice of approach to performing a complex 

task or following a process. In box 1 the question is asked, and the learner is asked 

whether they wish to be guided through the process or to attempt the solution in one 

step. The example process in the template in Figure 6.3 has three steps, but the 

template can be extended to fit any number of steps as required. If the learner wants 

to attempt the task in one go, they are asked to solve the problem (response 2) 

straight away. Following this selection, if the solution is correct, the learner is given 
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feedback and taken to the next tutorial question. If there are errors or omissions, the 

learner is given feedback on the errors and given two more chances to solve the 

problem. If there are still errors or omissions after the third attempt (response 3), the 

learner is provided with step by step guidance, starting at the process step containing 

the problem. However, if after box 1 the learner asks to be guided through a process 

in steps, the Oscar PCITS gives an explanation of the first step and asks for a partial 

answer (response 4). If the learner gives a correct answer, they are given guidance 

for the next steps in turn. However, if the learner does not know the answer or gives 

an incorrect answer, they are shown extra resource(s) (e.g. a movie, example or 

image) and asked for the answer to step 1 again (response 5). If the learner still does 

not know or gives an incorrect answer, they are given the answer and moved on to 

the next step (response 6). This process is repeated for all steps until the learner 

completes the answer or has been given the answer for each step, when they are 

taken to the next tutorial question. 

1. QUESTION: Answer 

in one go or step-by-

step?

4. Step 1 – what is the 

answer?
Next Q2. OK, have a go

ONE GO

STEP-BY-STEP

Feedback on errors – 

try again

RIGHT

Step 2 – what is the 

answer?

That’s right well done

3. Feedback on errors 

– try again

RIGHT

ERRORS

RIGHT

ERRORS

WRONG

RIGHT

5. Show extra 

resource, ask again

WRONG/DK

6. Tell them answer

WRONG/DK

Good, Step 3 – what is 

the answer?

Show extra resource, 

ask again

RIGHT

RIGHT

RIGHT

START

WRONG/DK

RIGHT

Tell them answer

WRONG/DK

Show extra resource, 

ask again
RIGHT

WRONG/DK

Tell them answer

WRONG/DK

  KEY: 

  DK = Don’t Know

 

Figure 6.3. Generic Question Template with Choice of Approach 
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The generic templates and styles of tutorial question described in this section are 

intended as a proof of concept, and will be extended as requirements arise for 

different kinds of tutoring appropriate to different domains. 

In this step of the methodology, tutorial questions are mapped onto the generic 

styles and templates (with extra resources included as required) and any resulting 

changes in dialogue are recorded in the tutorial conversation blueprint. 

3.2.4 Step 2.4: Script Conversational Agent Natural Language Dialogue for each 

Tutorial Question using the 3-Level Model  

Step 2.4 of the methodology involves creating Conversational Agent (CA) scripts 

to conduct the tutoring dialogue defined in steps 2.1, 2.2 and 2.3 (and recorded in the 

tutorial conversation blueprint). First, it is necessary to adopt a text-based CA that 

can capture and receive information using variables. Variables are used by the CA to 

collect information about behaviour and knowledge during the conversation and to 

receive information about learning styles and knowledge for adapting the 

conversation. As described in Chapter 2, there are different approaches to designing 

text-based CAs, but CAs will normally define an appropriate scripting language for 

developing conversation scripts. Text-based CA scripts are sometimes organised into 

modules called contexts that manage a particular part of a conversation (Sammut, 

2001) and simplify the scripting of lengthy dialogues. The structure of the CA scripts 

is dependent on the CA and scripting language selected. 

Before the scripting of the tutorial conversation can begin it is necessary to 

organise the CA scripts by applying the 3-level tutorial conversation model (Figure 

6.1) as described in the tutorial conversation blueprint. Once the structure of the 

scripts has been defined, the CA dialogue needs to be scripted for each tutorial 

question across each level of the 3-level tutorial conversation model.  

3.2.5 Step 2.5: Link Tutorial Dialogue to Logic Rules through Conversational Agent 

Variables 

The final step in phase 2 of the methodology links the behaviour captured by the 

tutorial conversation to the set of logic rules (produced in phase 1) that predict 

learning styles.  

1. First include the related learning styles in the tutorial conversation blueprint, 

which is the human-readable record of the tutoring conversation. Moving through 

the tutorial conversation blueprint, for each learner behaviour found, annotate the 
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document with the learning style defined in the associated logic rule. The logic 

rules from Phase 1 step 1.4 specify which learning styles are to be incremented 

when particular events occur (e.g. for the FS model, incrementing the Sensory 

learning style value after an example is shown).  

2. Next, the CA scripts must be updated to capture the behaviour by setting variable 

values when particular rules fire.  

3. Now that the tutorial conversation has been fully scripted for a CA it must be 

tested and verified by expert human tutors. 

This section has described the steps of the generic methodology to design a 

tutoring conversation for a specific domain. 

3.3 Methodology Phase 3: Construct the PCITS Architecture 

Once the learning styles predictor module and the tutorial conversation have been 

designed, it is necessary to incorporate them into a PCITS architecture. The PCITS 

will require a number of components, including a CA, a Tutorial Knowledge Base, a 

Graphical User Interface (GUI) and a Student Model. The components will be 

described in section 4, which proposes a standard Oscar PCITS architecture that is 

generic and incorporates the required components. 

4 Oscar PCITS Architecture 

The Oscar PCITS is independent of a particular learning styles model and of the 

subject domain being taught. As such, it is important that the Oscar PCITS 

architecture allows for the learning styles model and tutoring domain to be 

changeable by keeping the system knowledge separate from the functionality. 

Additionally it is important for the adoption of the Oscar PCITS that the 

development time of tutorials be minimised. Therefore, a modular architecture is 

most appropriate as it allows individual modules to be reused and replaced as 

necessary.  

Typical adaptive educational systems contain student, domain, pedagogical and 

presentation components (Wenger, 1987). A PCITS additionally requires a 

conversational agent component that can manage a natural language dialogue. 

A general expert system architecture (Latham, Crockett & Bandar, 2010) was 

adapted for the Oscar PCITS. Figure 6.4 shows the proposed generic architecture of 
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the Oscar PCITS, which has been designed in a modular structure with component 

reuse in mind. The generic architecture allows alternative tutorial knowledge bases 

and CA scripts developed following phase 2 of the methodology to be simply 

‘plugged in’ to adapt the tutoring to new subjects. Similarly, different learning styles 

models may be applied by replacing the Learning Styles Predictor component 

(created following the methodology phase 1). 

 

Controller
Graphical User 

Interface

Conversational 

Agent

Learning Styles 

Predictor

Scripts

User

Student Model

Tutorial 

Knowledge Base

 

Figure 6.4. Generic Oscar PCITS Architecture 

Controller 

The controller is the central manager of the system, responsible for 

communicating with all components and managing the learner interaction. All 

communication and information passed between modules passes through the 

controller. In practice, this component may be combined with the GUI module.  

 

Graphical User Interface (GUI) 

The GUI is the user interface, responsible for display, managing events (such as 

clicking of buttons etc.) and sending communication to and from the user. The 

display consists of a webpage that provides instructions, displays questionnaires, 

tests, images, documents, interactive movies and a chat area which is used to 

communicate with the user. As Oscar PCITS directs the tutoring conversation, no 

navigation buttons are included as there is no menu system. 

The modular nature of the architecture means that the GUI component could be 

changed to reflect the application needs, such as being deployed as an application on 

a smartphone or including a speech and voice recognition module.  
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Student Model 

The student model component is responsible for knowing all information about 

individual students, such as their identifier and password, level of knowledge, topics 

visited, test scores and learning styles. The student model component receives and 

sends information from and to the controller about the student. The student model is 

recorded in a student model database.  

 

Conversational Agent (CA) 

The conversational agent component is responsible for accepting natural 

language text and information about topic and learning style from the GUI, tutorial 

knowledge base and learning styles predictor components via the controller, and 

generating a natural language response. The CA accesses a database of conversation 

scripts (related to but not linked to the tutorial knowledge base) in order to match the 

input to rules that generate a response. The CA records the dialogue in log files that 

can be accessed by the controller. 

The CA selected must allow information to be passed in and out using variables.  

 

Tutorial Knowledge Base 

The tutorial knowledge base is responsible for managing course information, 

such as topics and their breakdowns, related tests and teaching material, which is 

accessed from a Tutor Material database. All tutor information is related to a 

particular tutorial module and will be categorised according to teaching style (related 

to learning style).  The tutorial knowledge base will receive information and 

instructions from the GUI, learning styles predictor and CA components via the 

controller, and will send information to the GUI and CA via the controller. 

 

Learning Styles Predictor 

The learning styles predictor component is responsible for accessing information 

about learning styles and related teaching styles, held in a learning styles database. 

This component will receive information from the CA, GUI and student model to 

predict a student’s learning style. Given learning style values from the student model 

and teaching material values from the knowledge base, this component will apply an 

adaptation algorithm to determine the most appropriate adaptation for an individual 

tutorial question. This module is developed by following phase 1 of the Oscar PCITS 

methodology. 
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An implementation of the Oscar PCITS architecture will be described in the next 

chapter, Chapter 7. 

5 Conclusion 

This chapter has proposed a novel conversational intelligent tutoring system 

called Oscar that can predict and adapt to an individual’s learning styles whilst 

directing a tutoring conversation. Natural language interfaces are intuitive for 

humans, as we use conversation to communicate in real life. A more intuitive and 

familiar interface for a tutoring system can help learners feel more confident, which 

can improve their motivation and the effectiveness of their learning. Conversational 

interfaces can also adopt the constructivist style of tutoring used by human tutors, 

and thought to aid a deeper understanding of a subject. Oscar PCITS includes the 

three main intelligent technologies offered by ITS – curriculum sequencing based on 

individual learning style and existing knowledge, intelligent solution analysis and 

problem solving support. Implicitly predicting learning style during a tutoring 

conversation removes the requirement for learners to complete onerous and time-

consuming questionnaires. By continually predicting learning style during tutoring, 

any changes to learning style or differences in learning style for different subjects 

can be automatically picked up and adapted to. Adapting the tutorial to an 

individual’s preferred learning style aids the effectiveness of the learning experience. 

An original, generic methodology was proposed to construct Oscar PCITS. The 

three-phase methodology is independent of the learning styles model and tutoring 

domains selected. Phase 1 of the methodology instructs the development of a 

Learning Styles Predictor module, detailing the extraction and analysis of knowledge 

from the selected learning styles model and the design of logic rules that apply this 

knowledge for learning styles prediction. A set of generic logic rules were 

extrapolated from the logic rules created for the exemplar FS model, which can be 

applied to other learning styles models as they are based on learner behaviour. 

Phase 2 of the methodology directs the design of a tutorial conversation, from the 

capture of a tutoring scenario to the design of the conversation and scripting of the 

CA. A three-level model of a tutorial conversation was proposed and a set of generic 

tutorial question styles and templates developed to allow for quicker development 
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and more consistent tutorial styles. Finally, phase 3 of the methodology requires the 

construction of the PCITS architecture. 

A generic architecture was proposed for Oscar PCITS, which is modular to allow 

for component reuse and easier and quicker development and maintenance. The 

architecture is independent of the choice of learning styles model and the tutoring 

domain applied.  

To validate the proposed generic methodology and architecture for Oscar PCITS, 

an experimental study is required. The next two chapters will describe an 

implementation of Oscar PCITS and experiments conducted to investigate Oscar 

PCITS’ success in tutoring and predicting learning styles.  

6 Chapter Highlights 

 Oscar CITS is a novel conversational intelligent tutoring system that 

automatically predicts and adapts to learning style while directing a tutoring 

conversation. 

 Oscar CITS is independent of the learning styles model selected and the tutoring 

domain. 

 An original, generic methodology was proposed to construct an Oscar Predictive 

CITS (PCITS) which can automatically predict learning styles during a tutoring 

conversation. 

 Oscar’s innovative predictor module mimics a human tutor by using detected 

learner characteristics to dynamically predict learning style from a natural 

language tutoring dialogue. 

 A set of generic logic rules to predict learning styles was created. 

 A three-level model of a tutorial conversation was proposed. 

 A set of generic tutorial question styles and templates were developed. 

 A generic, modular architecture for assembling Oscar PCITS was proposed. 
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Chapter 7 Implementation of Oscar Predictive CITS 

1 Introduction 

The Oscar Predictive CITS (PCITS) proposed in Chapter 6 can dynamically 

predict a student‟s learning styles whilst directing a tutorial conversation. A generic 

methodology and architecture for developing the Oscar PCITS were proposed, which 

are independent of learning styles model and subject domain. Chapter 5 explored the 

strategy and methodology for predicting learning styles from a natural language 

dialogue, using Felder-Silverman (1988) as an example learning styles model.  

This chapter will present the development of a prototype Oscar PCITS following 

the methodology and architecture, and utilising the generic designs, proposed in 

Chapter 6. The prototype Oscar PCITS delivers a conversational tutorial for the 

subject domain of the database language Sequential Query Language (SQL). The 

learning styles model adopted for the prototype Oscar PCITS is the Felder-Silverman 

(FS) model. In order to validate the methodology and architecture, the prototype 

Oscar PCITS will then be tested empirically, as described in Chapter 8. 

2 Implementing Oscar PCITS 

To validate the methodology and architecture proposed in Chapter 6, a prototype 

Oscar PCITS was implemented. The remainder of this chapter will describe the 

development of the prototype Oscar PCITS with reference to the 3-Phase 

Methodology proposed in Chapter 6 and repeated in Table 7.1. 

3 Phase 1: Creating the Learning Styles Predictor Module 

For the prototype Oscar PCITS, the FS model was adopted (Felder and Silverman, 

1988) as it has a small number of dimensions (which is more feasible to implement) 

and it models the learning styles of engineering students, who will make up the initial 

experimental groups (see Chapter 5, section 2). Following steps 1.1, 1.2 and 1.3, the 

FS model was examined to extract the knowledge of behaviour and language traits 

indicative of learning styles. The resulting knowledge was further analysed, resulting 

in a table of behaviour characteristics (Table 5.5) and key words (Table 5.6) to be 

captured during a tutoring conversation. The final step in phase 1 (step 1.4) is to 
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convert the FS knowledge into a set of logic rules that can continually increment 

learning style values during tutoring (see Appendix 2). Chapter 5 describes in detail 

these steps of the methodology and the studies conducted using the FS model.  

Table 7.1. 3-Phase Methodology for Creating Oscar PCITS. 

Phase 1: Create the Learning Styles Predictor Module 

1.1. Select a Learning Styles Model 

a. Reduce the learning styles model if necessary 

b. Extract the behaviour characteristics 

1.2. Map learning style behaviour to the conversational tutoring style 

1.3. Analyse the learning styles model for language traits 

1.4. Adapt the generic logic rules to predict learning styles 

Phase 2: Design a Tutorial Conversation 

2.1. Capture the tutorial scenario and questions (including movies, voice, images, examples, etc.) 

from human tutors in a specific domain 

2.2. Determine the conversational structure/style  

2.3. Map tutorial questions onto the generic question styles and templates  

2.4. Script Conversational Agent natural language dialogue for each tutorial question using the 3-

level model  

2.5. Link tutorial dialogue to logic rules through Conversational Agent variables 

Phase 3: Construct the PCITS Architecture 

4 Phase 2: Designing the Tutorial Conversation 

For the prototype Oscar PCITS the subject domain of the database Sequential 

Query Language (SQL) was selected. This subject was chosen because the target 

audience for the pilot study is undergraduate computing students, for whom a 

Databases course including SQL is compulsory. Additionally, SQL is widely taught 

in undergraduate computing courses and so the opportunity for reusing an SQL 

tutorial is high. The tutorial conversation was designed following phase 2 of the 

methodology, as described in the following sections. 

4.1 Step 2.1: Capturing the Tutorial Scenario 

The first step in designing a tutorial conversation was to capture knowledge and 

information from human tutors. The scope of the tutorial was considered first, in 

terms of its length, the syllabus and learning outcomes. Interviews were conducted 

with undergraduate level database course tutors to identify important SQL concepts 

for the tutorial syllabus. It was decided that a revision tutorial for basic SQL would 

be of most benefit to undergraduate students of several taught units. This decision 

was based on the fact that basic SQL is taught as part of several units, and included 

in examinations, however the use of SQL is a skill that may be forgotten if not used 

regularly. An online revision tutorial would offer students personal assistance in 
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revising basic SQL at a time and place to suit them, such as during the examination 

period when formal teaching has ceased.  

After taking into account the SQL taught in several unit syllabuses, a syllabus for 

the revision tutorial was developed which covered some basic SQL commands and 

concepts. Ten tutorial questions (Table 7.2) and a multiple choice question (MCQ) 

test (see Appendix 4) were devised to cover the learning outcomes of the tutorial. 

The syllabus was accepted by SQL lecturers based on their knowledge of student 

requirements. The MCQ test is required to assess existing knowledge before the start 

of the tutorial and the same MCQ test is then used to assess learning gain after 

completion of the tutorial. Twelve questions that test the knowledge and use of SQL 

covered in the tutorial syllabus were selected from an existing set of MCQ test 

questions used to support teaching of SQL in the department. The MCQ test was 

assessed by SQL lecturers who agreed it adequately assessed the learning outcomes 

from the tutorial syllabus. The syllabus was accepted by SQL lecturers based on their 

knowledge of student requirements. 

To capture the tutorial scenario, a document was produced (called the „tutorial 

conversation blueprint‟) in consultation with lecturers which contained a 

conversation script for each question, including possible learner answers and tutor‟s 

responses to these. For each learner response, a further tutor response was written, 

and so on, until each question in the tutorial had a number of different paths 

depending on individual learner knowledge and responses. The design of the tutorial 

conversation was a time consuming and iterative process, however by planning and 

detailing the dialogue at this point, the development of the conversational agent was 

more efficient. Resources such as examples, movies, images etc. were embedded into 

the tutorial conversation as appropriate. The resources were gathered or created 

where necessary, to support the prediction of various learning styles.  Appendix 3 

shows an excerpt of the tutorial conversation blueprint document. 

4.2 Step 2.2: Determining the Conversation Structure/Style 

The three-level model of a tutorial conversation defined in the methodology (see 

Chapter 6, Figure 6.1) was applied to the tutorial conversation scenario. As the main 

„tutoring level‟ dialogue was written during step 2.1, this involved adding the „social 

level‟ and the „discussion level‟ conversation to the tutorial conversation blueprint 

document.  
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For the social level, an existing set of common off-task user dialogue and 

responses developed for the ConvAgent Student Debt Advisor (ConvAgent Ltd, 

2005) was adapted. This set of dialogue included swearing, general social comments 

and indicators of boredom, e.g. “How long is your hair”, “I am bored”, “Why should 

I answer”, “Are you real”, “Tell me again”. The dialogue set was adapted to remove 

the unrelated (i.e. pertinent to debt advice) comments, and to amend the responses to 

relate to the tutorial, e.g. by reminding students that they need to focus on their study. 

By analysing actual dialogue from tutoring sessions, it is anticipated that this 

dialogue set can be expanded and reused for future implementations. 

The discussion level required a list of Frequently Asked Questions (FAQs) and 

answers to be captured from interviews with SQL lecturers and added to the tutorial 

conversation blueprint document, along with related resources such as examples and 

diagrams. Again, it is anticipated that this set of SQL-related FAQs be expanded on 

analysis of actual tutoring dialogues. 

4.3 Step 2.3: Mapping Tutorial Questions to Generic Styles and Templates 

In Chapter 6, a set of generic question styles and templates was described, which 

capture different learner behaviour characteristics (identified in phase 1 step 1.2). In 

this step, each tutorial question was considered alongside the generic question styles 

and templates, to see if a style or template could be applied. If so, the question was 

reorganised where necessary to follow the template, and additional resources (such 

as diagrams) were gathered or created where necessary. The tutorial dialogue was 

then updated in the tutorial conversation blueprint document. Table 7.2 maps each 

tutorial question to the generic question styles and templates.  

Table 7.2. SQL Revision Tutorial Outline 

Tutorial Question Styles Applied Templates Applied 

Question 1 – DDL  Theoretical Hints 

Question 2 – DML  Theoretical Hints 

Question 3 – SELECT *  Practical  

Question 4 – Datatypes  Practical, Trick Question Hints 

Question 5 – Query with join  Practical, Process Choice of Approach, Hints 

Question 6 – Functions Theoretical Hints 

Question 7 – Query with functions  Practical Hints 

Question 8 – GROUP BY  Theoretical Hints 

Question 9 – Query with range  Practical, Process Choice of Approach, Hints 

Question 10 – DISTINCT  Theoretical Hints 
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Appendix 5 shows diagrams that are examples of applying the generic question 

templates to tutorial questions.  

4.4 Step 2.4: Scripting the Conversational Agent Dialogue 

This step of the development methodology is the complex and time-consuming 

task of developing the CA scripts for the tutoring dialogue. For the prototype, the 

Convagent Ltd (2005) InfoChat CA was selected as it is a text-based CA that allows 

information to be captured and received using variables. InfoChat adopts a pattern 

matching approach, which will be best suited to student dialogue as it is flexible 

enough to cope with bad grammar, misspellings and use of „text-chat‟ language. 

InfoChat CA scripts must be scripted using the PatternScript language (Michie and 

Sammut, 2001). Scripts are made up of rules that consist of patterns and responses, 

where each pattern matched to an input generates a response. PatternScript allows the 

scripts to be developed modularly by grouping rules into sets called contexts 

(Sammut, 2001).  

4.4.1 Organisation of CA Scripts 

Before starting to develop the CA scripts, it was important to decide on a strategy 

for organising and navigating script contexts to manage the tutoring dialogue. As 

described in Chapter 2, Sammut (2001) described a way of managing conversations 

by grouping rules into sets, called contexts. Each context contains rules pertaining to 

a particular topic or goal of the conversation, thus adding contextual information to 

the current user utterance. There is always a current context representing the current 

state of the conversation. PatternScript allows control to be passed between contexts, 

which is useful in a structured conversation, such as a tutoring dialogue. 

In Step 2.2 of the methodology (Section 2.2), the tutoring conversation was 

mapped to the three-level model. The organisation of contexts for this model adopts 

the filter and backup context approach proposed by Sammut (2001). Figure 7.1 

shows the application of these special scripts to the tutoring conversation, which will 

be described below:  

1. The social level of the conversation is managed using a filter context. All 

learner utterances will first be „filtered through‟ this context to pick up 

any bad or abusive language, or any signs of boredom, and give an 

appropriate response (such as ending the session if swearing is detected, 
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or giving a motivating message to bored learners). The assumption is that 

most utterances will pass through the filter context and down to the 

current context which manages the current tutoring question (the tutoring 

level).  

2. Within a tutoring question context, a mechanism is required to cope with 

unmatched utterances, as it is not possible to anticipate all of the possible 

utterances a learner may make. Each tutoring question context must 

contain a „catch-all‟ rule whose purpose is to push all unmatched 

utterances down to a backup context (the discussion level).  

3. The backup context contains rules scripted to discuss FAQs. Where an 

utterance does not match any rule in the backup context, control will be 

returned to the tutoring question context where the CA should give a 

response which asks for more information and reminds the learner of the 

tutoring question, in the hope of getting the conversation back on track. 

Question   

Contexts

Backup Contexts

Filter Context Social Level

Tutoring Level

Discussion Level

LEARNER

RESPONSE END 

SESSION

Oscar CITS

 

Figure 7.1. Management of Conversation Levels Using Different Types of Contexts 

When organising the tutoring level CA scripts, it was initially planned to map a 

single context to each tutorial question. However during development it became 

apparent that this would not be sufficient for every question as some of the contexts 

contained too many rules which became too complex to manage. For questions 

applying a generic question template (see section 4.3) more than one context was 

required, as described below.  

The Hints question template (Chapter 6, Figure 6.2) has two main paths: 

1. The learner is asked the question, gives the answer and moves on. 
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2. The learner does not know the answer, or gives the wrong answer. The 

learner is then presented with different hints until they give the correct 

answer or the answer is explained. 

Therefore, two contexts are required as follows: 

1. A context to ask the question and determine if the learner knows the 

answer. If the learner knows the answer, control will be passed to the next 

question. If not, control will be passed to the related „hints‟ context. 

2. A context to give hints and help the learner remember the answer. Once 

the answer is given, control will be passed to the next question. 

 

The Choice of Approach question template (Chapter 6, Figure 6.3) has a number 

of paths: 

1. The learner is asked the question, and whether they wish to answer in one 

go or step by step. 

2. Path 1: the learner answers in one go. They are given three attempts to get 

the right answer. If the learner gives the right answer, they move on to the 

next question. Otherwise, they are given help with the steps of the process 

where errors are apparent. 

3. Path 2: the learner is given guidance on each step of the process, until 

they give the correct answer and move on to the next step. Finally, they 

move on to the next question. 

Therefore, at least four contexts are required depending on the number of steps in 

the process, as follows: 

1. A context to ask the question and determine how the learner wishes to 

answer – in one go or step by step. 

2. A context to ask the question and determine if the learner knows the 

answer. If the learner knows the answer, control will be passed to the next 

question. If not, after three attempts, control will be passed to the context 

related to the step in the process containing the error. 

3. A context to ask the question relating to the first step in the process, and 

determine if the learner knows the answer. If the learner knows the 

answer, control will be passed to the next step in the process. If not, help 

the learner remember the answer. Once the answer is given, control will 

be passed to the next step in the process. 
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4. A context to ask the question relating to the second step in the process, 

and determine if the learner knows the answer. If the learner knows the 

answer, control will be passed to the next step in the process (or next 

question). If not, help the learner remember the answer. Once the answer 

is given, control will be passed to the next step in the process (or next 

question). 

5. Further contexts similar to 3 and 4 above, one for each step in the process. 

Q1_start

Q2_start

Q1_extra

Q3_start

Q2_extra

Q4a_start

Q3_extra

Q4a_extra

Q4b_start

Q4b_extra

Q5_start

Q5_stepsQ5_onego

STOP

WRONG/DK  

WRONG/DK

WRONG/DK

WRONG/DK

WRONG/DK

ANSWER IN STEPS/ DK
ANSWER ALL AT ONCE

WRONG (3 ATTEMPTS)/DK

CORRECT

CORRECT

CORRECT

CORRECT

CORRECT

CORRECT CORRECT/ ANSWER 

GIVEN

CORRECT/ ANSWER 

GIVEN

CORRECT/ ANSWER 

GIVEN

CORRECT/ ANSWER 

GIVEN

CORRECT/ ANSWER 

GIVEN

CORRECT/ ANSWER 

GIVEN

  KEY: 

  DK = Don’t Know

 

Figure 7.2. Tutoring Conversation Flow Through Contexts  
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Figure 7.2 shows the flow of control through contexts for the first five tutoring 

questions. In the diagram, for question 5 three of the four „steps‟ contexts have been 

omitted for clarity. Navigation is managed by rules within the scripts, with control 

being pushed to new contexts specified within the rule response. 

4.4.2 Scripting the Tutorial Conversation 

Once the strategy for organising the scripts had been devised, the process of 

scripting the tutoring conversation could begin. The tutoring conversation blueprint 

document contained a walkthrough for each question‟s dialogue, and so this dialogue 

needed to be translated into PatternScript. As mentioned previously, each rule in a 

PatternScript context contains a number of patterns that match the user input, and a 

response that forms the CA output. Each user utterance in the tutoring conversation 

blueprint document maps to at least one rule in the CA script. A simple example of 

an FAQ rule (named <FAQ-select1>) from one of the tutorial scripts is shown in 

Table 7.3. In the rule, a is the activation level used for conflict resolution (Michie, 

2001); p is the pattern strength followed by the pattern that is matched against the 

user utterance. r is the CA response. Also seen in the example is the wildcard (*) and 

macros (<explain-0>) containing a number of standard patterns that are each matched 

separately. When the rule fires, the variable FAQ is set to „true‟ by the *<set> 

command. 

Table 7.3. Example CA script: FAQ rule. 

<FAQ-select1> 

a:0.01 

p:50  *<explain-0> *select* 

p:50  *select* <explain-0>* 

p:50  *<remind-0> *select* 

p:50  *select* <remind-0>* 

p:50  *<confused-0> *select* 

p:50  *select* <confused-0>* 

r:  The SQL SELECT command is used to retrieve data from  

 one or more database tables. *<set FAQ true> 

 

The procedure followed for scripting each context was as follows: 

1. Create a text file with a unique name for the context. 

2. Create a starting rule that fires when the context is invoked. 

3. Create a „catch-all‟ rule that fires when no patterns match, and moves 

control to the backup context. 

4. Script all CA rules for the context. 
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5. Test the individual context to check that rules fire when expected, and 

amend any patterns, pattern strengths or activation levels as necessary. 

Repeat until it works. 

 

The procedure followed for scripting each rule was as follows: 

1. Create a unique rule name for the user utterance. 

2. Consider the user utterance. Extract the important words and create a 

pattern to match the utterance, using the wildcard to match unimportant 

words. 

3. Consider different ways of phrasing the utterance, e.g. using words in a 

different order, and create patterns for each different phrase. 

4. Consider words with the same meanings as the important words, and 

create macros that will substitute those words into the pattern. Update the 

pattern to refer to macros. 

5. Create the tutor response. This may involve creating the output utterance, 

setting the value of variables and moving between contexts. 

 

Using PatternScript it was possible to tightly control the conversation by 

applying logic that used the setting of variables by the CA script to communicate 

with the controller. An example was when the CA response required an image or 

movie to be shown – a variable was set within the script, its value being the image 

name, and the controller then used this variable to direct the GUI to show the right 

image along with the CA response.   

Scripting languages are not powerful enough to check rigid expressions requiring 

case-sensitivity, non-alphanumeric symbols or the syntax of programming code, such 

as SQL queries. As some of the tutorial questions required SQL queries to be written, 

regular expressions were used to check the syntax of the code. Variable values were 

then set and passed to the CA to indicate whether the student utterance gave the 

correct answer, used the correct syntax, or contained a common error (e.g. incorrect 

case of a String). The CA could then use the variable value to issue an appropriate 

response. An example regular expression is shown in Table 7.4. The expression 

checks a WHERE clause condition against allowable SQL statements.  
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Table 7.4. Example Regular Expression 

[Ww][Hh][Ee][Rr][Ee]\s+[Cc][Oo][Uu][Rr][Ss][Ee]\.[Cc][Rr][Ss]_[Tt][Ii][Tt]
[Ll][Ee]\s*=\s*'Database Systems'\s*;* 

|[Ww][Hh][Ee][Rr][Ee]\s+[Cc][Rr][Ss]_[Tt][Ii][Tt][Ll][Ee]\s*=\s*'Database 
Systems'\s*;* 

|[Ww][Hh][Ee][Rr][Ee]\s+[A-Za-
z]{1,5}\.[Cc][Rr][Ss]_[Tt][Ii][Tt][Ll][Ee]\s*=\s*'Database Systems'\s*;* 

 

Applying the regular expression in Table 7.4, all of the following allowable SQL 

statements would match and be accepted as correct: 

WHERE course.crs_title=‘Database Systems’ 

WHERE  CRS_TITLE = ‘Database Systems’; 

Where c.crs_title =‘Database Systems’; 

 

However, the following incorrect statements do not match: 

Where course_title=‘Database Systems’; 

Where c.crs_title = ‘database systems’; 

Where crs_title = Database Systems 

For the SQL revision tutorial, there were 38 contexts containing around 400 rules 

to manage the tutoring conversation, which demonstrates the complexity of the task. 

4.5 Step 2.5: Linking the Tutorial Dialogue to Logic Rules 

The final step in phase 2 of the methodology links the behaviour captured by the 

tutorial conversation to the set of logic rules from phase 1 that predict learning styles. 

The tutorial conversation blueprint document was updated for each learner behaviour 

event by noting the learning style(s) to be incremented as defined in the associated 

logic rule. The logic rules from Phase 1 (step 1.4) specify which learning styles are to 

be incremented when particular events occur (such as incrementing the Sensory 

learning style value after an example is shown).  

Next, the CA scripts were amended to match the updated tutorial conversation 

blueprint document. For all CA scripts, each rule related to a behaviour event defined 

by a logic rule (as recorded in the tutorial blueprint document) was amended so that a 

variable would be set when that rule fired. Variables will be used to record behaviour 

information during the conversation.  
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Once the CA scripts had been updated they were fully tested using an InfoChat 

test engine to allow scripting errors to be diagnosed and corrected and to check that 

patterns and variable setting performed as expected. The validation of the scripted 

tutoring dialogue by tutors could not be done until the Oscar PCITS prototype 

architecture had been partially constructed to include the GUI and CA components. It 

was then possible to view resources linked to the dialogue during the tutoring 

conversation.  

This step completes the design of the tutoring conversation, and the scripting of 

the CA to direct the tutoring. The next section will describe phase 3, the construction 

of the Oscar PCITS architecture. 

5 Phase 3: Construct the Oscar PCITS Architecture 

The Oscar PCITS architecture proposed in Chapter 6 and shown in Figure 7.3 

was adopted. The prototype Oscar PCITS components were developed using 

Microsoft .net C# and ASP and built on a dedicated web server. The student model, 

tutorial knowledge base and learning styles predictor databases were developed using 

mySQL. The conversational agent used, by permission of ConvAgent Limited, was 

InfoChat and scripts were developed using its associated scripting language, 

PatternScript. The construction of the components will now be described. 

 

Controller
Graphical User 

Interface

Conversational 

Agent

Learning Styles 

Predictor

Scripts

User

Student Model

Tutorial 

Knowledge Base

 

Figure 7.3. Oscar PCITS Architecture 

Controller 

The controller is responsible for managing the tutorial, and for communicating 

with all components. At the start of the first tutoring session, no initial learning style 
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values will exist for a student. During the tutoring conversation, learning style values 

will be incremented depending on the learner‟s tutoring conversation. Periodically, 

the value pairs of each learning style dimension will be compared to reveal the 

student‟s overall learning style tendency for that dimension (i.e. the greater value). 

Learning style values depend on an individual‟s unique tutoring session, and if no 

evidence is gathered relating to a particular learning style dimension, that learning 

style will remain unclassified. 

 

Graphical User Interface (GUI) 

The user interfaces for most ITS show a number of windows on-screen at once, 

e.g. windows showing a menu of hyperlinks, explanation text, images or examples. 

Some ITS that predict learning styles have been designed with that end in mind (Cha 

et al., 2006) – i.e. their interface shows a menu of hyperlinks selected to capture user 

choices which are used to predict learning style. CITS like AutoTutor (Graesser et al. 

1999) also have a screen divided into sections, one of which is a chat window where 

the tutoring conversation takes place.  

The goal of Oscar PCITS is to mimic a human classroom tutorial. It was decided 

to keep the design of the GUI very simple but containing the elements that may be 

present in a face-to-face tutorial. Therefore the GUI contains a single chat box where 

the two-way tutoring conversation takes place. Relevant images, examples and 

exercises are displayed alongside the chat window when required, as in a classroom 

where a human tutor displays images or draws diagrams and examples on the 

whiteboard. Multimedia resources such as movies pop up in new windows of the 

browser, thus mimicking the display of such movies on a separate video screen in a 

classroom. 

When designing the Oscar PCITS GUI, there were a number of considerations: 

 Oscar PCITS is to be delivered online, and so must work in the standard 

Internet browsers (Mozilla Firefox, Internet Explorer, Safari). 

 Oscar PCITS aims to mimic a human tutor by directing the tutoring 

conversation, therefore there will be no menu or user navigation. Users may 

ask to leave the session as part of the conversation, or close the browser. 

 The conversation „chatbox‟ will not display a history of the conversation as 

this is not available in a face-to-face tutorial, however learners could of 

course ask for reminders or repetitions as part of the conversation. 
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 As Oscar PCITS is intended to hold an individualised conversation, there will 

be no facility for group discussion amongst learners in the initial prototype. 

However discussion of topics will be possible with Oscar. 

 

The prototype Oscar PCITS GUI is shown in Figure 7.4.  

 

 

Figure 7.4. Oscar PCITS Learner Interface 

 

Student Model 

For the prototype Oscar PCITS, the student model contains three main database 

tables, as shown in Figure 7.5. 
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Results
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Figure 7.5. Student Model Class Diagram 

 The Student table records the student registration number and password, a 

numerical value for each learning style (which has been predicted by Oscar 
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new window 
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diagrams, examples 
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PCITS) and the last question the student attempted. Learning styles are held 

in eight values, one value representing each pole of the four dimensions, 

rather than one value per dimension. A student‟s overall learning style at any 

point in time is indicated by comparing the two values for each dimension, 

with the larger value representing their learning style. For a full Oscar PCITS 

with several tutorials, a separate table would be required to record the 

student‟s progress (i.e. last question) in each tutorial module. 

 The Results table records the student answers and scores for associated MCQ 

tests. In Figure 7.5, for brevity Q1..Q12 indicates twelve attributes (as does 

and Q21..Q31), one for each test answer. In a full Oscar PCITS a student 

would have several results records, one for each tutorial module attempted. 

 The ILS table was created for experimental reasons only, to record the 

student‟s answers to the Index of Learning Styles (ILS) questionnaire (Felder 

and Soloman, 1997), which measures FS learning styles, and the resulting 

scores for each learning style. In Figure 7.5, for brevity Q1..Q44 indicates 44 

attributes, one for each ILS question. This table would not exist in a full 

Oscar PCITS, as it would not be necessary to compare Oscar PCITS learning 

style predictions with a formal questionnaire. 

 

Conversational Agent (CA) 

A CA module was written to interface with the adopted InfoChat CA which 

accessed the set of CA scripts. The design of the CA scripts followed steps 2.4 and 

2.5 of phase 2 of the Oscar PCITS methodology, described in Section 4. The CA 

scripts are related to (but not linked to) the Tutorial Knowledge Base component.  

The InfoChat CA records two log files of the conversation: 

 A log file records the natural language text input, the scoring of all matched 

rules, the movement through contexts, the winning rule that fires and the 

resulting natural language text response. This log aids the testing of scripts, 

allowing adjustments to rules and patterns to ensure that the best fitting rule 

fires. The log file is only used during the development stage of the CA for 

debugging and improving CA scripts.  

 A state file records the current context and variable values at the current point 

in the conversation. Whilst also useful for testing of scripts, variables are used 
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to pass information to and from the CA, and may be set by the controller or 

by the CA scripts. 

A third log file for the CA component was included to record the timing of the 

tutoring conversation during experimentation, as follows: 

 A time log records a narrative record of the conversation with date and time 

stamps for each interaction. This log file allows the tutoring dialogue to be 

reviewed separately from the technical detail, as it does not contain script 

information. It also enables the analysis of timings, word and interaction 

counts during experimentation. 

 

Tutorial Knowledge Base 

This module was developed by following steps 2.1 to 2.3 of phase 2 of the Oscar 

PCITS methodology, as described in Section 4. For the prototype Oscar PCITS, the 

tutorial knowledge base contains two main database tables, as shown in Figure 7.6. 

 

Modules

PK ModID

 Qcount

 TestQcount

 StartContext

Tests

PK ModID

PK Qno

 Qtext
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 Btext
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 Answer

1..1 0..*

 

Figure 7.6. Tutorial Knowledge Base Class Diagram 

 The Modules table has a record for each tutorial module, recording the 

number of tutorial and test questions and the starting context name of the CA 

script. 

 The Tests table has a record for each module MCQ test question, recording 

the text of the question text and its four answer choices, and the correct 

answer. 

The tutorial knowledge base is related to (but not linked to) the CA scripts that 

deliver the tutorial conversation. 

 

Learning Styles Predictor 

This module was developed by following phase 1 of the Oscar PCITS 

methodology, as described in Section 3. For the prototype Oscar PCITS, the learning 
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styles predictor module implements the FS model logic rules. The logic rules 

increment learning style values in the student model based on learner behaviour 

during the conversation. The required behaviour information is extracted from the 

CA log files. Implementation of the adaptation of tutoring to learning styles will 

occur in a later prototype. 

6 Example Learner Dialogue 

Table 7.5 shows an example dialogue snippet from a tutoring conversation with 

Oscar PCITS that demonstrates problem solving support.  

Table 7.5. Example Tutoring Dialogue Showing Problem Solving Support 

Utterance Dialogue 

33. Oscar> Now, in our books table suppose we want to store the price of the book where 

the maximum price of a book is 99.99. What would be the datatype? 

34. Learner> VARCHAR2  

35. Oscar> I'm sorry, that's wrong. Check your spelling and try again - type in the datatype 

for book price (with a maximum of 99.99). 

36. Learner> VARCHAR2 MAX 99.99 

37. Oscar> That's still wrong.  Take a look at the table of common datatypes - can you now 

type in the datatype for book-price where the maximum price is 99.99? 

38. Learner> NUMBER(2,2) 

39. Oscar> That's correct - we need a datatype of NUMBER(2,2) in order to show the 

decimal point in book-price, with a maximum of 99.99. 

 

In Table 7.5, the question adopts the „hints‟ question template to prompt the 

learner to construct their knowledge and answer the question, rather than giving them 

the answer. In utterance 33, Oscar continues a question about datatypes. The learner 

gives the wrong datatype in utterance 34, and next Oscar indicates that the answer is 

wrong and gives the learner a second chance to answer in case of spelling or typing 

errors, repeating the question. In utterance 36 the learner tries again, still with the 

wrong answer. Oscar gives feedback that the answer is wrong (utterance 37), and 

helps by showing an image of the most common datatypes to see if the learner is able 

to pick out the required answer. In this action, Oscar is helping the learner by 

reminding them of the common datatypes and asking them to think about the correct 

datatype rather than simply telling them the answer. In utterance 38 the learner enters 

the correct datatype, extended to include the decimal places, and Oscar then confirms 

that they have the right answer and repeats the solution to reinforce the knowledge.  
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In Table 7.6, a second example dialogue snippet shows Oscar PCITS‟ intelligent 

solution analysis technique. The question requires learner to write a query, and 

adopts the „choice of approach‟ template where learners can choose to answer in one 

go or in stages. In the example, the learner has chosen to write a query with step by 

step guidance from Oscar PCITS. Throughout this dialogue, a diagram showing the 

database tables and the partially written query is shown (like the example in Figure 

7.4). In utterance 58, Oscar reminds the learner of the requirement of final stage of 

the query and asks the learner to type in a join condition. In utterance 59, the learner 

types in an SQL statement that is almost right, but is missing two apostrophes. Oscar 

analyses the statement and tells the learner that their statement would not generate 

the right results, as they have not used the correct syntax for a string (utterance 60). 

Oscar asks the learner for the symbol representing strings, and the learner types in 

“ which is incorrect (utterance 61). Oscar then encourages the learner to try again 

(utterance 62), and the learner answers correctly (utterance 63). Finally, Oscar 

confirms that the answer is correct, displays the completed query in an image to 

reinforce the knowledge and gives positive encouraging feedback. 

Table 7.6. Example Tutoring Dialogue Showing Intelligent Solution Analysis 

Utterance Dialogue 

58. Oscar> The final part of our query is a condition to choose all course titles that are 

called 'Database Systems'. As we want this condition to be included as well as 

the join, we need to use the AND operator.  Can you type in the second join 

condition to complete the query? 

59. Learner> AND course.crs_title = Database Systems 

60. Oscar> That's nearly right, but this join statement would not match any of our course 

titles because we have not indicated that Database Systems is a string.  Can you 

remember the symbol we use to indicate strings? 

61. Learner> “ 

62. Oscar> You're nearly there. Have a think about VARCHAR2 SQL datatypes and type 

in the symbol we use to show that Database Systems is a string. 

63. Learner> „ 

64. Oscar> That's right, so we have finished, and our final query is now shown in the 

picture. Well done. 

7 Conclusion 

This chapter has presented the practical implementation of the Oscar PCITS 

methodology and architecture proposed in chapter 6 for an example learning styles 

model, the Index of Learning Styles, and an example subject domain, SQL. The first 

phase of the methodology, relating to the learning styles knowledge, was described 
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in detail in Chapter 5. The implementation of the second phase involved the 

development of a tutoring conversation for SQL revision designed to pick up learner 

behaviour relevant to predicting learning styles.  

The implementation of each step in phase 2 was described, starting with the 

design of the tutorial by capturing the tutoring scenario from human tutors and 

structuring the conversation by applying the three-level model of a tutorial 

conversation. Next, the generic styles and templates given in the methodology were 

applied to the tutorial questions and their structure was updated. Once the tutorial 

conversation had been fully designed, it was scripted for the InfoChat CA using the 

PatternScript language. This complex task involved devising mechanisms for 

organising and navigating the CA scripts during the tutorial conversation for the 

three conversation levels. The process scripting of the CA was then described, and 

the logic used to manage the conversation using variables was explained. Finally, the 

tutorial conversation and CA scripts were linked to the logic rules for predicting 

learning styles using variables. 

Phase 3 of the methodology involved constructing the architecture for Oscar 

PCITS proposed in Chapter 6. The implementation of each component was 

described. 

The resulting prototype Oscar PCITS will be used to experimentally validate the 

methodology and architecture, and will be described in the next chapter. 

8 Chapter Highlights 

 Prototype Oscar PCITS developed following the generic methodology and 

architecture from Chapter 6. 

 Oscar PCITS delivers an online SQL revision tutorial and implicitly predicts 

learning styles (FS model) during tutoring. 
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Chapter 8 Learning Styles Prediction Experiments 

1 Introduction 

The Oscar Predictive CITS (PCITS) proposed in Chapter 6 can dynamically 

predict a student‟s learning styles whilst directing a tutorial conversation. In order to 

validate the methodology and architecture proposed in Chapter 6, a prototype Oscar 

PCITS was developed. Chapter 7 presented the implementation of the prototype 

Oscar PCITS applied to the subject domain of the database language Sequential 

Query Language (SQL) and the Felder-Silverman (FS) learning styles model (Felder 

and Silverman, 1988).  

In this chapter, three real-world experimental studies will be described, which 

were undertaken to investigate the success of Oscar PCITS in predicting learning 

styles during tutoring. There are seven main hypotheses identified relating to the 

prediction of learning styles, which are tested in 14 different experiments. 

Additionally, the Oscar PCITS‟ ability to tutor effectively was investigated by 

considering student learning gain and qualitative feedback from learners gathered 

from a user evaluation questionnaire. The results support six of the seven hypotheses, 

showing that it is possible to automatically predict learning styles from a tutorial 

conversation with a CITS in a real educational setting. On average, learners 

completing the Oscar PCITS tutorial achieved a positive learning gain and users 

valued the conversational tutoring style. 

2 Experimental Design 

In order to validate the methodology and architecture proposed in Chapter 6, an 

empirical study was undertaken that evaluated the success of Oscar PCITS in 

predicting learning styles. This section will outline the design of the experiment, 

describing the hypotheses made for predicting learning styles and the planned 

method of evaluation.  

2.1 Hypotheses to be Tested 

The main hypothesis for the experimental studies is: 

H: It is possible to estimate a learner’s learning style from a two-way 

tutoring discourse with a conversational agent (CA) tutor. 
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This hypothesis requires a conversational agent tutor to be scripted to deliver a 

tutoring session to a single learner. The learner‟s behaviour and discourse during the 

tutoring session will be recorded and analysed to identify patterns of behaviour 

which may be indicative of particular learning styles. For example, can the number 

of words used by the learner indicate a particular learning style? Chapter 5 described 

the analysis of the FS model to extract typical behaviours for different learners. The 

hypothesis will be tested by comparing the results of the analysis to those of a formal 

learning style questionnaire completed by the learner. The main hypothesis may be 

broken down into several constituent parts each referring to separate aspects of 

learner behaviour, as described below. 

 H1: certain key phrases uttered during a CA tutoring conversation is indicative 

of learning style. 

Can any link be found between the sort of vocabulary used by the learner and 

their learning style? For example, if a learner asks “show me an example”, does the 

use of the phrase “show me” (maybe as opposed to “give me”) indicate a more visual 

learning style? Key words and phrases uttered by a learner will be compared to their 

FS learning style as assessed using the Index of Learning Styles (ILS) evaluation 

instrument (Felder and Soloman, 1997).  

 

 H2: the time taken for a particular tutor-learner interaction is indicative of 

learning style. 

The FS model suggests that time taken can be indicative of particular learning 

styles. For example, learners with a Sensory learning style are slow (as opposed to 

those with an Intuitive learning style who are quick). The tutorial duration will be 

calculated and compared to the overall group average to show whether the learner is 

the same as, slower than or quicker than the average.  The results will then be 

compared to the learning style as assessed using the formal ILS questionnaire.  

 

 H3: the success of a learner in a particular style of tutoring question is indicative 

of learning style. 

As discussed in Chapter 5, some learners prefer more theoretical questions 

(representing a Reflective learning style) and some more practical questions 

(representing an Active learning style). The success of the learner in these different 

types of tutoring question will be compared by considering whether the learner 
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answered the question correctly. The results will then be compared to the learning 

style as assessed using the formal ILS questionnaire. 

 

 H4: the amount of discussion a learner enters into with the tutor is indicative of 

learning style. 

Some learners may prefer to discuss a question with the tutor (indicating a Verbal 

learning style) while others use more succinct language (indicating a more Visual 

learning style, for example). The total learner word count and the average word count 

per learner utterance will be compared to the overall group average to show whether 

the learner is the same as, more verbose than or less verbose than the average. The 

results will then be compared to the learning style as assessed using the formal ILS 

questionnaire. 

 

 H5: the success of a learner after experiencing a particular style of tutoring is 

indicative of learning style. 

Some learners show preference for information presented in a particular way, for 

example by viewing a diagram or movie as opposed to a verbal explanation. The 

success of the learner in different types of information presentation will be compared 

by considering whether the learner answered the question correctly after a particular 

style. The results will then be compared to the learning style as assessed using the 

formal ILS questionnaire. 

 

 H6: a lack of attention to detail in answering questions is indicative of learning 

style. 

Some learners may be patient with detail (suggesting a Sensory learning style) 

while others may be bored by detail and prone to making small errors (suggesting an 

Intuitive learning style). Some tutoring questions should be designed to test this 

attention to detail by presenting the answer in the explanatory tutor text. The 

conversation logs will be studied to see whether the learner makes mistakes even in 

these cases. The results will then be compared to the learning style as assessed using 

the formal ILS questionnaire. 

 

 H7: choosing to be guided through a process (or not) is indicative of learning 

style. 
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Some learners prefer to follow a linear reasoning process (suggesting a 

Sequential learning style) while others prefer to make intuitive leaps (suggesting a 

Global learning style). Some tutoring questions should offer learners the choice of 

being guided through a complex task or of making an attempt at the answer straight 

away. The learner choices will be considered, and the results will then be compared 

to the learning style as assessed using the formal ILS questionnaire. 

2.2 Evaluation Criteria 

In addition to evaluating the Oscar PCITS prediction of learning styles by testing 

the hypotheses stated in section 2.1, Oscar PCITS‟ ability to tutor effectively will be 

investigated. Evaluation of the Oscar PCITS will therefore take place on three levels: 

1. Prediction: Can Oscar PCITS predict learning styles dynamically from a two-

way tutoring discourse? How successful is the prediction of learning styles?  

2. User evaluation: How successful do learners feel the tutoring system is, and 

would they use Oscar PCITS in practice?  

3. Learning gain: Does Oscar PCITS successfully tutor learners, i.e. do they 

learn anything?  

2.2.1 Prediction of Learning Styles 

This criterion evaluates the first research main question (stated in Chapter 1, 

Section 1), „Is it possible to predict a student‟s learning style during a two-way 

tutoring discourse with a conversational agent tutor?‟. As part of the anonymous 

registration with Oscar PCITS, each participant will be asked to complete the formal 

ILS questionnaire. The ILS questionnaire results will be recorded in the student 

model, and will be compared to the data gathered during the experiment to determine 

the accuracy of each particular variable in predicting a participant‟s learning style. 

2.2.2 Qualitative User Evaluation 

In addition to evaluating the prediction of learning styles, Oscar PCITS‟ ability to 

tutor effectively was investigated. A user evaluation feedback questionnaire was 

designed to gather qualitative user feedback following the Oscar PCITS tutorial. The 

feedback questionnaire consists of eight questions to be rated using a six-point 

LIKERT scale, four questions requiring a Yes/No answer, and three open questions, 

as shown in Table 8.1. A six-point LIKERT scale was selected rather than the more 
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usual five-point LIKERT scale in order to force participants to express an opinion 

one way or another rather than selecting the centre rating.  

Table 8.1. Oscar PCITS User Feedback Questionnaire 

Please rate your experience of the following using the scale provided: SCALE 

1. Instructions High 6/5/4/3/2/1 Low 

2. Screen layout and design High 6/5/4/3/2/1 Low 

3. Tutoring High 6/5/4/3/2/1 Low 

4. How well did Oscar understand you? High 6/5/4/3/2/1 Low 

5. Did you find the tutoring helpful? Yes 6/5/4/3/2/1 No 

6. Was the conversation natural? Yes 6/5/4/3/2/1 No 

7. Was the conversation frustrating? Yes 6/5/4/3/2/1 No 

8. Do you feel Oscar helped you to revise? Yes 6/5/4/3/2/1 No 

9. Would you use a resource like Oscar:  

a. Instead of attending a face-to-face tutorial? Yes/No 

b. Instead of learning from a book? Yes/No 

c. As well as classroom tutoring? Yes/No 

d. Would you use the resource at all? Yes/No 

10. What else could Oscar have done to help you learn?  

11. Please state 3 positive points about using the Oscar computer tutor  

12. Please state 3 negative points about using the Oscar computer tutor  

2.2.3 Learning Gain 

A frequently used measure of effective tutoring (Kelly and Tangney, 2006; 

Graesser et al., 2003; Lee et al., 2004) involves evaluating whether participants have 

increased their understanding of the topic at the end of the Oscar PCITS tutorial. 

Clearly success in implicitly predicting learning styles would be pointless unless 

some learning has also taken place during the tutorial. The pre-test/post-test approach 

was adopted (Kelly and Tangney, 2006; Graesser et al., 2003; Lee et al., 2004) 

whereby the same Multiple Choice Question (MCQ) test is completed before the 

tutoring conversation begins (pre-test) and after the tutoring ends (post-test). 

Learning gain will be evaluated by comparing the MCQ pre-test score to the MCQ 

post-test score to see whether test scores have improved, as follows: 

Eq. 1. Learning gain = post-test score - pre-test score 

3 Experimental Methodology 

This section will describe the experimental methodology in testing the ability of 

Oscar PCITS to deliver an effective tutorial and to dynamically predict learning 

styles. For the experimental study, Oscar PCITS has been implemented to deliver a 

revision tutorial for SQL, based on the content of several undergraduate modules 
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within the Department of Computing and Mathematics. However, by selecting basic 

SQL content and deciding on a revision tutorial, the Oscar PCITS SQL revision 

tutorial is suitable for any individual who has previous experience of SQL. 

Initially, it was decided that a controlled pilot study of ten participants should 

take place to check that sufficient aspects of behaviour were being recorded during 

the tutorial, and to assess whether any areas of the tutorial or hypotheses required 

expansion. Following this small initial pilot study, a larger study was undertaken in a 

real teaching/learning environment, however there were difficulties in attracting 

sufficient numbers of participants who completed the full online tutorial. Finally, the 

Oscar PCITS SQL revision tutorial was integrated into a final year undergraduate 

module within the department, and a „natural learning environment‟ study was 

undertaken. No participants in any study had previous experience using Oscar PCITS. 

As the experimental methodology was the same for all studies, the descriptions in 

this section relate to all three unless otherwise stated. 

3.1 Description of Participants 

Study 1 

Ten participants were chosen whose first language was English and who had 

previous experience of an undergraduate ORACLE SQL course (but with various 

levels of expertise). This controlled study took place in an office setting where 

participants could be unobtrusively observed during their tutorial session with Oscar 

PCITS. Participants completed the tutorial individually in a single session. 

Study 2 

There were 43 participants in this study who had previous experience of an 

undergraduate SQL course and various levels of SQL expertise. A number of „SQL 

Revision Laboratories‟ were timetabled to coincide with the revision period before 

the examinations took place. The laboratories were advertised to undergraduate and 

Masters students studying units that covered SQL. Additionally, several lecturers 

requested that their students complete the Oscar PCITS SQL Revision tutorial during 

timetabled laboratories for second year Information Systems units. The study took 

place in a „natural learning environment‟: participants commenced the Oscar PCITS 

revision tutorial in the laboratories, and those who did not complete the tutorial in a 

single session continued the revision via the Internet at another time. 
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Study 3 

There were 61 participants in this study, which also took place in a real 

teaching/learning environment. All participants were studying on the Advanced 

Database Applications unit, which is a final year unit for a computer science degree 

at Manchester Metropolitan University. The Oscar PCITS SQL revision tutorial was 

integrated into the first teaching week and during the timetabled laboratories, 

participants were asked to complete the revision tutorial. As basic SQL is a 

prerequisite, revision of SQL is important to the understanding of more complex 

SQL taught during the unit. In order to promote full completions of the tutorial, 

participants who completed the Oscar PCITS revision tutorial were awarded marks in 

recognition of their engagement. Participants commenced the Oscar PCITS revision 

tutorial in the laboratories, and those who did not complete the tutorial in a single 

session were able to continue the revision via the Internet at another time. 

3.2 Methodology 

For each study, participants were asked to revise their knowledge of SQL by 

completing the natural language Oscar PCITS SQL Revision tutorial. Each 

participant followed an individual learning path depending on their existing 

knowledge, behaviour and dialogue. The participant interaction with Oscar PCITS 

will be detailed in section 3.3. During the tutorial, each participant‟s current tutorial 

question was recorded in the student model to allow participants to end the tutoring 

session and restart the tutorial from the same question at a convenient time. All 

dialogue from the tutoring conversation was recorded in log files, along with values 

of the behaviour variables used to predict learning style described in Chapter 5. 

Following the study, the data gathered during participant interactions was analysed to 

explore the success of the tutorial in predicting participant learning styles. The 

experimental analysis will be described in section 3.4. Additionally, an evaluation of 

the success of the tutorial in terms of participant learning gain and the participant 

feedback was completed.  

The next sections will describe the participant interaction and experimental 

analysis undertaken for all studies. 
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3.3 Participant Interaction 

For all three experimental studies, participant interactions followed the same 

steps, as illustrated in Figure 8.1. After the anonymous registration, participants 

completed an online version of the formal ILS questionnaire which was recorded in 

the student model. Before starting the conversational tutorial, participants were 

presented with a pre-tutorial 12 question MCQ test, known as the pre-test, to assess 

their existing SQL knowledge. The pre-test results were stored in the student model. 

Next, Oscar PCITS directed a two-way conversational SQL revision tutorial that 

took on average 43 minutes, with each participant following an individual learning 

path depending on their existing knowledge and the dialogue. There were ten main 

tutorial questions. At the end of the tutorial, participants completed the same MCQ 

test (known as the post-test) to assess their learning gain, with the results being 

stored in the student model. Next, Oscar PCITS presented participants with a 

comparison of their test results (indicating their learning gain) and some feedback on 

their tutorial performance. Finally, participants were asked to complete a user 

feedback questionnaire.  

Anonymous Registration

Formal ILS Questionnaire

Pre-tutorial MCQ Test 

(‘pre-test’)

Conversational Tutoring 

Session

Post-tutorial MCQ Test 

(‘post-test’)

Test Results Comparison 

and Oscar’s Feedback

User Evaluation 

Questionnaire

START

END

 

Figure 8.1. Experimental Oscar PCITS Tutorial Interaction 
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3.4 Experimental Analysis 

The data gathered from the experiments was analysed to determine whether and 

how well the Oscar PCITS predicted learning styles. There were fifteen experiments 

designed to test the hypotheses in section 2.1. As described in Chapter 5, logic rules 

were incorporated into the Oscar PCITS which increment participant learning style 

values during the tutorial conversation. The logic rules incorporate several aspects of 

learner behaviour, some of which will also be considered separately in order to 

investigate whether they can be used to predict learning style within the Oscar 

PCITS. The analysis of results is different for each experiment, so will now be 

described separately.   

Experiment 1: Logic Rules 

In Chapter 5 the creation of logic rules by mapping various aspects of learner 

behaviour to the FS model was described. This experiment considers the learning 

styles scores resulting from the application of the logic rules to each participant‟s 

behaviour during the conversational tutorial. The logic rules increment associated 

learning style scores if behaviour is present. Resulting scores are held in eight 

learning style values in the student model, one for each possible learning style (i.e. 

Sensory, Intuitive, Visual, Verbal, Active, Reflective, Sequential, Global).  

The learning style scores will be compared for each FS dimension to give a 

prediction of overall learning style tendency for that dimension. For example, for the 

processing dimension if the score for Active is higher than the score for Reflective, 

the participant is predicted to be Active. Where scores are equal, the learning style 

dimension is unclassified and will be excluded from the analysis. To assess the 

accuracy of learning style prediction, the predicted learning style for each dimension 

will be compared to the ILS questionnaire results. The number of correct predictions 

for each learning style is counted to produce an accuracy value that is the percentage 

of correct predictions for each learning style. This experiment tests the hypotheses 

H5, H6 and H7 defined in section 2.1 and generates prediction accuracies for all 

learning style dimensions. 

 

Experiment 2: Extended Logic Rules 

This experiment extends Experiment 1 by including additional criteria for some 

logic rules. A number of logic rules increment learning style values if a particular 

type of learning resource has been viewed by a participant, for example if an image 
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has been viewed the Visual learning style score is incremented. Similar logic rules 

exist for other resources mapped to learning styles, such as examples and movies. In 

Experiment 2, for such logic rules the learning style value is only incremented if the 

participant is presented with the resource AND responds with a correct answer to the 

tutorial question directly following that resource.  

As in Experiment 1, learning style scores will be compared to produce a 

prediction of learning style for each dimension, and the result compared to the ILS 

questionnaire result to generate a prediction accuracy percentage. This experiment 

tests the hypotheses H5, H6 and H7 defined in section 2.1 and generates prediction 

accuracies for all learning style dimensions. 

Experiment 3: Tutorial Question Style  

The FS model relates a learner‟s preference for practical or theoretical topics to 

their learning style. This experiment considers the style of tutorial questions where 

participants gave the correct answer, and counts the number of correct theoretical 

questions and the number of correct practical questions. The number of correct 

answers will be compared, taking into consideration the possible number of correct 

answers for theoretical and practical questions using the formula below: 

 

Eq. 2.  
Correct practical questions compared to Correct theoretical questions 

Total practical questions  Total theoretical questions 
 

Participants who have performed equally well in both styles of question are 

unclassified and will be excluded from the analysis. Where participants have 

performed better in practical questions, the Oscar PCITS predicts their learning style 

to be Active and Sensory. Participants who have performed better in theoretical style 

questions are predicted to be Reflective and Intuitive. The Oscar PCITS prediction 

will be compared to the ILS questionnaire results and the number of correct 

predictions counted for each learning style, to produce a prediction accuracy 

percentage. This experiment tests the hypothesis H3 defined in section 2.1 and 

generates prediction accuracies for the perception (Sensory/Intuitive) and processing 

(Active/Reflective) learning style dimensions. 

 

Experiment 4: MCQ Question Style  

Experiment 4 is similar to Experiment 3, but it considers improvements in MCQ 

test questions. Each MCQ test question is related to a tutorial question, and can 

therefore be related to a style of either theoretical or practical, as described for 
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Experiment 3 (see Appendix 6). This experiment investigates whether a preference in 

tutoring style has led to more improvements in related MCQ test questions. For each 

participant, the results of the post-test will be compared to those for the pre-test. 

Each MCQ test question where the answer for the pre-test was incorrect but for the 

post-test was correct (i.e. the participant has improved their answer following the 

tutorial) will be related to the tutoring style. The totals for practical and theoretical 

improvements, taking into account the opportunity for improvement, will be 

compared as follows: 

Eq. 3.  
Improved practical questions compared to Improved theoretical questions 

Incorrect practical questions 

(pre-test) 

 Incorrect theoretical questions 

(pre-test) 

Participants who have improved equally in both styles of question are 

unclassified and excluded from the analysis. Participants who have improved more in 

practical questions are predicted to be Active and Sensory, whereas participants who 

have improved more in theoretical style questions are predicted to be Reflective and 

Intuitive. The Oscar PCITS prediction will be compared to the ILS questionnaire 

results and the number of correct predictions counted for each learning style, to 

produce a prediction accuracy percentage. This experiment tests the hypothesis H3 

defined in section 2.1 and generates prediction accuracies for the perception 

(Sensory/Intuitive) and processing (Active/Reflective) learning style dimensions. 

 

Experiment 5: Word Count 

The FS model states that Verbal learners learn better by discussing a subject. 

This experiment considers the total word count for participant utterances during the 

tutorial dialogue, and compares the total to the average word count for participant 

utterances across the sample. Where a participant has an above average word count, 

Oscar PCITS predicts they are Verbal learners, and where they have a below average 

word count, they are predicted to be Visual learners. The predicted learning style will 

be compared to the ILS questionnaire results, and the correct predictions counted for 

each learning style to produce a prediction accuracy percentage. This experiment 

tests the hypothesis H4 defined in section 2.1 and generates prediction accuracies for 

the input (Visual/Verbal) FS dimension. 
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Experiment 6: Number of Interactions 

Similar to Experiment 5, this experiment considers the amount of discussion by 

counting the number of discourse interactions during the tutoring session. An 

interaction is defined as one participant response, which (like in a spoken face-to-

face conversation) may consist of a single word or any number of sentences. Each 

participant‟s number of interactions will be compared to the average number of 

interactions across the sample. Where a participant has an above average number of 

interactions, Oscar PCITS predicts they are Verbal learners, and where they have a 

below average number of interactions, they are predicted to be Visual learners. The 

predicted learning style will be compared to the ILS questionnaire results, and the 

correct predictions counted for each learning style to produce a prediction accuracy 

percentage. This experiment tests the hypothesis H4 defined in section 2.1 and 

generates prediction accuracies for the input (Visual/Verbal) FS dimension. 

 

Experiment 7: Word Count per Interaction 

As in the previous two experiments, this experiment also measures a participant‟s  

preferred amount of discussion by considering the average number of words uttered 

by a participant per interaction. Each participant‟s „word count per interaction‟ will 

be calculated by dividing the total participant word count by the number of 

interactions. Each participant‟s word count per interaction will be compared to the 

average word count per interaction across the sample. Where a participant has an 

above average word count per interaction, Oscar PCITS predicts they are Verbal 

learners, and where participants have a below average word count per interaction, 

they are predicted to be Visual learners. The predicted learning style will be 

compared to the ILS questionnaire results, and the correct predictions counted for 

each learning style to produce a prediction accuracy percentage. This experiment 

tests the hypothesis H4 defined in section 2.1 and generates prediction accuracies for 

the input (Visual/Verbal) FS dimension. 

 

Experiment 8: FAQ Count 

Experiment 8 considers a participant‟s preference for discussing a problem and 

asking questions by counting the number of Frequently Asked Questions (FAQs) 

they ask during the tutorial. As described in Chapter 6 the discussion layer of the 

tutorial conversation enables participants to ask questions related to the topic which 
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have been scripted as FAQs. The number of FAQs asked will be counted for each 

participant and compared to the average number of FAQs asked across the sample. 

Where a participant asks an above average number of FAQs, Oscar PCITS predicts 

they are Verbal learners, and where they ask a below average number of FAQs they 

are predicted to be Visual learners. The predicted learning style will be compared to 

the ILS questionnaire results, and the correct predictions counted for each learning 

style to produce a prediction accuracy percentage. This experiment tests the 

hypothesis H4 defined in section 2.1 and generates prediction accuracies for the input 

(Visual/Verbal) FS dimension.  

 

Experiment 9: Tutorial Duration 

The FS model states that Sensory learners are careful but slow, whereas Intuitive 

learners are quick but careless. This experiment will consider the duration of the 

tutoring conversation. For each participant, the tutorial duration will be compared to 

the average duration across the sample. Where a participant has an above average 

tutorial duration, Oscar PCITS predicts they are Sensory learners, and where they 

have a below average tutorial duration they are predicted to be Intuitive learners. The 

predicted learning style will be compared to the ILS questionnaire results, and the 

correct predictions counted for each learning style to produce a prediction accuracy 

percentage. This experiment tests the hypothesis H2 defined in section 2.1 and 

generates prediction accuracies for the perception (Sensory/Intuitive) FS dimension. 

 

Experiment 10: Time per Interaction 

Similarly to Experiment 9, this experiment considers the average duration of a 

participant interaction. In this case, „time per interaction‟ will be calculated by 

dividing the total duration by the number of interactions. Each participant‟s time per 

interaction will be compared to the average time per interaction across the sample. 

Where a participant has an above average time per interaction, Oscar PCITS predicts 

they are Sensory learners, and where they have a below average time per interaction, 

they are predicted to be Intuitive learners. The predicted learning style will be 

compared to the ILS questionnaire results, and the correct predictions counted for 

each learning style to produce a prediction accuracy percentage. This experiment 

tests the hypothesis H2 defined in section 2.1 and generates prediction accuracies for 

the perception (Sensory/Intuitive) FS dimension. 
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Experiment 11: Reading Time 

Experiment 11 considers a participant‟s aptitude with words by investigating 

their reading speed. The hypothesis is that the longer a student takes to read 

instructions (i.e. the less comfortable the student is with words), the more they tend 

towards the Sensory and Visual learning styles. The time taken to read ten Oscar 

words (known in this section as „reading time‟) will be calculated for each participant, 

using the following formula: 

Eq. 4.  Tutorial duration (seconds)  10 
 Number of Oscar words 

 

Each participant‟s reading time will be compared to the average reading time 

across the sample. Where a participant has an above average reading time, Oscar 

PCITS predicts they are Sensory and Visual learners, and where they have a below 

reading time, they are predicted to be Intuitive and Verbal learners. The predicted 

learning style will be compared to the ILS questionnaire results, and the correct 

predictions counted for each learning style to produce a prediction accuracy 

percentage. This experiment tests the hypothesis H2 defined in section 2.1 and 

generates prediction accuracies for the perception (Sensory/Intuitive) and the input 

(Visual/Verbal) FS dimensions. 

 

Experiment 12: Approach to SQL Queries 

In Experiment 12, the learner‟s approach to writing SQL queries will be 

considered. The FS model describes Sequential learners as preferring information to 

be presented in a steady progression of complexity and difficulty, whereas Global 

learners prefer to jump directly to more complex and difficult material. Following the 

generic „choice of approach‟ question template in Chapter 6 (Figure 6.3), two 

questions in the tutorial (Q5 and Q9) were written with a choice of approach to 

writing SQL queries to solve a problem. For each question, participants who attempt 

the query straight away will be predicted to be Global learners whilst participants 

who ask for guidance will be predicted to be Sequential learners. Each participant 

has two predictions, one for each question. The predicted learning style will be 

compared to the ILS questionnaire results, and the correct predictions counted for 

each learning style to produce a prediction accuracy percentage. This experiment 
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tests the hypothesis H7 defined in section 2.1 and generates prediction accuracies for 

the understanding (Sequential/Global) FS dimension. 

 

Experiment 13: Attention to Detail 

Following the generic question styles described in Chapter 6, one question in the 

tutorial has been written as a „trick question‟, where the answer to the question is 

given in the explanatory text. This question (Q4) will test the participant‟s attention 

to detail and reading skills. In this experiment, participants who do not answer the 

question correctly have not read the text carefully and so are predicted to be Visual 

and Intuitive learners. Participants who answer correctly are predicted to be Verbal 

and Sensory learners. The predicted learning style will be compared to the ILS 

questionnaire results, and the correct predictions counted for each learning style to 

produce a prediction accuracy percentage. This experiment tests the hypothesis H6 

defined in section 2.1 and generates prediction accuracies for the perception 

(Sensory/Intuitive) and the input (Visual/Verbal) FS dimensions. 

 

Experiment 14: Key Phrases 

As described in Chapter 5, a list of key words and phrases that may be indicative 

of learning style has been drawn up. This experiment involves counting the 

occurrences of the key words and phrases (see Table 5.6) and comparing their 

occurrence to the related learning style. When a participant utters a key word or 

phrase, their learning style is predicted to be the learning style mapped to that key 

word or phrase. The predicted learning style will be compared to the ILS 

questionnaire results, and the correct predictions counted for each learning style to 

produce a prediction accuracy percentage. This experiment tests the hypothesis H1 

defined in section 2.1 and generates prediction accuracies for all FS dimensions. 

4 Results and Discussion 

This section will present the collated results of all three studies, although each 

study was also analysed individually. The collated results represent a sufficiently 

large sample size so that sensible conclusions may be drawn. In cases where the 

results of individual studies showed different characteristics, they will also be 

discussed separately. 
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4.1 Overall Results 

Not all participants from studies 2 and 3 completed the full tutorial session. 

Participants with only partially complete tutorial sessions were excluded from most 

of the analysis. Exceptions are Experiments 11 to 14, which require particular events 

to have taken place. Of those participants who completed the tutorial, 2 participants 

were excluded as they had not accurately completed the ILS questionnaire, 

answering „a‟ for all questions. Therefore, for Experiments 1 to 10, 75 participant 

interactions were analysed. 

Table 8.2. Learning Style Distribution 

Learning  Study 1 Study 2 Study 3 All Studies 

Style n % n % n % n % 

Sensory 2 20% 12 60% 31 69% 45 60% 

Intuitive 8 80% 8 40% 14 31% 30 40% 

Visual 8 80% 19 95% 38 84% 65 87% 

Verbal 2 20% 1 5% 7 16% 10 13% 

Active 4 40% 10 50% 29 64% 43 57% 

Reflective 6 60% 10 50% 16 36% 32 43% 

Sequential 3 30% 14 70% 28 62% 45 60% 

Global 7 70% 6 30% 17 38% 30 40% 

 

Table 8.2 shows the distribution of learning styles for the studies, assessed by the 

ILS questionnaire, and Figure 8.2 represents this data spread graphically. As 

expected, the split of learning styles assessed by the ILS questionnaire was not equal 

across the sample. Although on the whole three of the four FS dimensions were 

approximately equally spread, the Visual/Verbal dimension contained many more 

Visual than Verbal learners. This finding supports the observation in the FS model, 

which states that “most people of college age and older are visual”. This has 

implications for the analysis of results for predicting the Visual/Verbal learning 

styles, as the dataset is so biased towards the Visual learning style. 

Table 8.3 shows the participant learning gain results, calculated using Eq. 1. as 

described in section 2.2.3 (post-test - pre-test). Note that during study 2, two 

participants did not complete the post-test and so have been excluded from the 

analysis, leaving 73 participants whose learning gain was calculated.  Note also in 

Table 8.3 the much lower average learning gain for study 3. This may be explained 

by participant motivation – participants of studies 1 and 2 wanted to revise SQL and 

actively engaged with the tutorial. For study 3, where participants were required to 

complete the tutorial but where the results of their learning „did not count‟,  
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Study 1 Study 2 Study 3 Total
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Figure 8.2. Learning Style Data Distribution 

engagement with the SQL revision tutorial was much more variable. Also, study 3 

took place in a real teaching/learning environment where negative factors such as 

distractions are expected to affect engagement. In study 3, six participants‟ test 

scores remained unchanged and 31 participants improved their test scores by an 

average of 19%, with three improving to achieve full marks. However, there were 

also eight participants whose test scores decreased by 16%. Even including these 

unchanged and decreased scores, the average learning gain for study 3 was 11%.  

Table 8.3. Learning Gain Results 

Study n Learning Gain 

  Mean 

(/12) 

Standard 

Deviation 

Mean 

% 

Study 1 10 2.4 2.011 20% 

Study 2 18 2.167 2.149 18% 

Study 3 45 1.267 2.082 11% 

Total 73 1.575 2.074 13% 

 

Figure 8.3. Percentage Learning Gain 
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The learning gain results show that participants increased their learning of SQL 

and improved their test results by an average of 13%. Therefore, the Oscar PCITS 

SQL revision tutorial did help participants learn. The results of each experiment 

testing the prediction of learning styles will now be discussed separately, followed by 

a summary of the participant feedback on using Oscar PCITS. 

4.2 Experimental Results 

The collated study results of the experiments to assess the prediction of learning 

styles are given in Table 8.4. As mentioned previously, the sample of 75 complete 

tutorial sessions has been supplemented for Experiments 11 to 14, as they do not 

require completed sessions, rather the requirement is that particular events have 

taken place. 

In Table 8.4, the first line „prior probability‟ is included for comparison, and 

represents the likelihood of predicting a learning style based on the distribution of 

learning styles across the sample of 75. This is a better comparison than simply using 

50% because the spread of learning styles across the sample is not exactly equal. 

This is particularly true for the Visual/Verbal learning style dimension where 87% of 

participants are Visual. 

The accuracies listed in Table 8.4 represent the ability of Oscar PCITS to predict 

a participant‟s learning style for that experimental measure. For example, in 

Experiment 1, Oscar PCITS has an accuracy of 80% in predicting the Intuitive 

learning style. This means that when a participant is predicted to be Intuitive using 

this measure, the prediction is accurate 80% of the time. For example, say a group of 

20 students from a sample of 50 were predicted using the Experiment 1 measure to 

be Intuitive learners. If the ILS results agree that 16 of those 20 learners are Intuitive, 

however the ILS results show the remaining 4 are Sensory learners, the measure is 

accurate 80% of the time. 

Note that for experiments where there are two predictions for each learning style 

because two comparisons were made (to the sample mean and median), only the best 

result is reported in Table 8.4. Each experiment‟s results will now be discussed 

separately. 
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Table 8.4. Experimental Results: Accuracy of Prediction of Learning Styles 

 n Sensory Intuitive Visual Verbal Active Reflective Sequential Global 

Prior Probability 75 60% 40% 87% 13% 57% 43% 60% 40% 

Experiment 1 – 

Logic Rules 

75 4% 80% 68% 10% 100% 0% 82% 33% 

Experiment 2 – 

Extended Logic 

Rules 

75 4% 77% 48% 30% 84% 0% 80% 33% 

Experiment 3 – 

Tutorial Question 

Style 

75 36% 50% - - 53% 73% - - 

Experiment 4 – 

MCQ Question 

Style 

73 60% 48% - - 52% 45% - - 

Experiment 5 – 

Word Count  

75 - - 57% 30% - - - - 

Experiment 5a – 

Word Count  

49 - - 55% 40% - - - - 

Experiment 6 – 

Number of 

Interactions 

75 - - 48% 20% - - - - 

Experiment 7 – 

Word Count per 

Interaction 

75 - - 60% 70% - - - - 

Experiment 8 – 

FAQ Count 

75 - - 60% 20% - - - - 

Experiment 9 – 

Tutorial Duration 

75 67% 67% - - - - - - 

Experiment 10 – 

Time per Interaction 

75 49% 67% - - - - - - 

Experiment 11 – 

Reading Time 

75 49% 63% 72% 50% - - - - 

Experiment 11b – 

Q1 Reading Time 

95 51% 78% 47% 71% - - - - 

Experiment 12a – 

Approach to SQL 

Queries (Q5) 

89 65% 38% - - - - 74% 48% 

Experiment 12b – 

Approach to SQL 

Queries (Q9) 

76 70% 56% - - - - 70% 61% 

Experiment 13 – 

Attention to Detail 

94 59% 28% 94% 17% - - - - 

Experiment 14 – 

Key Phrases 

95 0% - 85% 0% 50% - 0% - 

 

Experiment 1: Logic Rules 

For experiment 1, depending on the participant‟s path through the tutorial, 

learning styles were incremented by logic rules mapped to the FS model (described 

in Chapter 5). Figure 8.4 shows a comparison of the Oscar PCITS prediction 

accuracy for this experiment with the prior probability across the sample. It can be 
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seen from the results that using this measure alone the Oscar PCITS is better at 

predicting learning styles than the prior probability for just three of the eight learning 

styles.  

 
Figure 8.4. Experiment 1 Logic Rules Results 

When compared to the ILS questionnaire results, Oscar accurately predicted an 

Intuitive learning style in 80% of cases, however it was not possible to predict a 

Sensory learning style, with an accuracy of only 4%.  

For the Visual learning style, even though Oscar PCITS accurately predicts 

Visual participants in 68% of cases, the unequal spread of participants for this 

dimension means that this is worse than the prior probability of 87%. Oscar PCITS 

predicts Verbal participants in 10% of cases (compared to a prior probability of 13%). 

The very unequal spread of participants for the Visual/Verbal dimension means that 

it will be difficult to draw firm conclusions for this dimension. 

Oscar PCITS accurately predicted an Active learning style in 100% of cases; 

however it was not possible to predict a Reflective learning style using this measure. 

The characteristics of reflective learners described in the FS model suggest that they 

spend time after learning to reflect on what they know and put it together as 

knowledge. As this activity happens after learning, it may not be possible to predict a 

reflective learning style during a tutorial. However, these results are not intended to 

be taken in isolation, and the combination of different analyses may improve 

accuracy.  

Sequential participants were predicted with an accuracy of 82%, however Oscar 

PCITS was not able to predict Global participants using this method, with an 

accuracy of only 33%. This experiment has shown that logic rules are successful in 
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predicting three learning styles, Intuitive, Active and Sequential, when compared to 

the prior probability. The Visual learning style prediction of 68% is not significant 

when compared to the prior probability. 

 

Experiment 2: Extended Logic Rules 

In experiment 2, some of the logic rules used to predict learning style in 

Experiment 1 were extended so that a learning style is only incremented where a 

particular style of resource has been shown if the participant then got the right 

answer directly afterwards. 

The only learning style whose prediction accuracy improved was the Verbal 

learning style, where the prediction accuracy rose to 30%. Although very low, 

compared to the prior probability of 13% this accuracy is significant, but as 

previously stated, the spread of learning styles for the Visual/Verbal dimension 

across the sample is so uneven that no firm conclusions may be drawn from this data. 

The accuracy of predicting all other learning styles remained the same or was lower 

than in Experiment 1. Therefore we can conclude that using this measure of extended 

logic rules does not improve prediction accuracies overall. 

Experiment 3: Tutorial Question Style  

This experiment considers a participant‟s success in answering different styles of 

tutorial questions, and predicts a learning style depending on whether the participant 

is more successful in practical or theoretical questions. Participants who do better in 

theoretical questions are predicted to be Reflective and Intuitive, and in practical 

questions Active and Sensory. There were 70 participants who showed a preference 

for practical or theoretical tutorial questions; those participants whose success was 

the same for both question styles remained unclassified. Oscar PCITS was unable to 

predict the Sensory learning style, with an accuracy of just 36%. Intuitive 

participants could only be predicted in 50% of cases, but this was more accurate than 

the prior probability of 40%. Active participants could not be predicted, with an 

accuracy of 53%, but the Reflective learning style could be predicted in 73% of 

cases. The results of this measure show that it was the most successful factor in 

predicting the Reflective learning style, with the accuracy of 73% being far better 

than the prior probability of 43%. 
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Experiment 4: MCQ Question Style  

Similar to experiment 3, this experiment considers a participant‟s preference for 

different styles of tutorial questions using improvements in the related MCQ test 

questions to predict learning style. Participants who do better in theoretical questions 

are predicted to be Intuitive and Reflective, and in practical questions Sensory and 

Active. There were 56 participants who showed more improvements in test questions 

related to a particular style of tutoring question; the remaining participants were 

unclassified. Figure 8.5 shows a comparison of the results of Experiments 3 and 4 

with the prior probability. The results for this experiment are worse than Experiment 

3 for predicting Intuitive and Reflective participants (those who do better in 

theoretical questions), but the prediction accuracies of 48% and 45% respectively are 

still slightly higher than the prior probabilities of 40% and 43% respectively. The 

Oscar PCITS prediction accuracy for the Active learning style of 52% is slightly 

worse than Experiment 3 and lower than the prior probability. Although the Oscar 

PCITS prediction of Sensory participants in this experiment is nearly double that of 

Experiment 3, at 60% it is still only the same as the prior probability. The results 

indicate that although this measure can predict the Intuitive and Reflective learning 

styles more accurately than the prior probability, the predictions are less accurate 

than using the similar measure in Experiment 3.  

 

Figure 8.5. Comparison of Experiments 3 and 4 Results 

 

Experiment 5: Word Count 

This experiment compares the participant word count from the tutorial 

conversation to the mean and median across the sample to predict a Visual or Verbal 
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learning style. The Oscar PCITS prediction accuracies of 57% for Visual participants 

and 30% for Verbal participants both resulted from a comparison with the sample 

mean word count. A further set of results of this experiment, shown in Table 8.4 as 

Experiment 5a, were gathered by analysing the subset of participants who completed 

the tutorial in a single session. During Study 3 in particular, it was observed that only 

around half of participants completed the tutorial in one session. As this represented 

a large group, it was decided to investigate whether prediction accuracies for this 

subset were different to those across the whole sample. For Experiment 5a, 

prediction results across the whole sample were slightly different, with 55% of 

Visual and 40% of Verbal participants being predicted successfully (compared to the 

prior probability for the sample of 90% for Visual and 10% for Verbal learning 

styles). However for Study 3, predictions were better for those participants who 

completed in a single session, with 62% of Visual and 50% of Verbal participants 

being predicted successfully. These comparative results are presented in Figure 8.6, 

along with the prior probability figures, which were approximately the same for 

Study 3 as for the collated figure for all studies.  

 

Figure 8.6. Experiment 5 Results 

The best accuracies for predicting Visual participants are lower than the prior 

probability, and although the Verbal predictions are higher than the prior probability 

they are still very poor. This may be because each participant‟s tutorial has been 

personalised depending on their dialogue during the tutorial and prior knowledge of 

the subject, so tutorials are of different lengths and learning style is not the only 

differentiating factor. Interestingly, the mean word count for Visual learners (168.3) 
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was higher than that for Verbal learners (136.1), so there is no evidence to support 

Hypothesis H4. The results may also be affected by the uneven distribution of this 

learning style dimension, with 87% of participants having a Visual learning style.  

  

Experiment 6: Number of Interactions 

For experiment 6, the number of tutoring discourse interactions was counted for 

each participant and compared to the mean and median values across the sample to 

predict a Visual or Verbal learning style. The prediction accuracies of 48% for 

Visual and 20% for Verbal learners indicate that this measure has not been successful 

in predicting learning styles. This may result from the different learning paths taken 

by each participant during the tutorial, depending on their dialogue and prior 

knowledge of the subject, so tutorials are of different lengths and learning style is not 

the only differentiating factor. Also, the uneven spread of Visual/Verbal learning 

styles across the sample may be another contributing reason. Like experiment 5, the 

mean number of interactions for Visual learners (49.5) is higher than that for Verbal 

learners (44.8), offering no evidence to support hypothesis H4. 

 

Experiment 7: Word Count per Interaction 

In experiment 7, each participant‟s word count per interaction was compared to 

the sample mean and median word count per interaction to predict a Visual or Verbal 

learning style. The prediction accuracies of 60% for Visual and 60% for Verbal 

participants, when compared to the prior probability of 87% and 13% respectively 

indicate that this measure is successful in predicting Verbal learners, but not Visual 

learners.  

To investigate whether the method of calculating word count per interaction 

(using session totals) was affecting the result, more detailed analysis was done. A list 

of the student word count for every interaction was produced for each participant, 

which was used to calculate the mean, median and mode word count per interaction. 

These figures were compared to the sample averages (mean and median) and the 

prediction accuracies recalculated. The additional analysis had no effect on the 

Visual prediction results, but the Verbal prediction accuracy increased to 70% when 

comparing the mean participant word count per interaction with the sample median. 

Interestingly, the mean word count per interaction calculated for the set of Visual 

participants (mean 2.85, median 1.69) was slightly higher than for the set of Verbal 
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participants (mean 2.59, median 1.2) but not significantly so. The results suggest that 

this measure can predict Verbal learners, but the uneven distribution of the 

Visual/Verbal participants in the experiment mean that no firm conclusions may be 

drawn. 

 

Experiment 8: FAQ Count 

In experiment 8, the number of FAQs asked during the tutorial was counted for 

each participant and compared to the mean and median values across the sample to 

predict a Visual or Verbal learning style. The prediction accuracies of 60% for 

Visual and 20% for Verbal learners show that FAQ count is not a successful measure 

for predicting learning styles. On the whole, the level of discussion with the PCITS 

was very low, with the median number of FAQs asked being 0 and the mean only 

0.69. This appears to be a cultural problem, with observations noting that participants 

habitually „googled‟ the answers to questions rather than asking the Oscar PCITS.  

The participant who asked the most questions (8 FAQs) was a Visual learner 

(although with an ILS strength of only 1), as were the two participants who asked the 

second highest number of 4 FAQs. Indeed, the mean FAQ count for Visual learners, 

at 0.77, was far higher than that for Verbal learners of 0.2. Although this result is 

most likely caused by the uneven distribution of Visual/Verbal learners, there is no 

evidence to support the hypothesis that Verbal learners can be predicted from the 

amount of discussion measured by the number of FAQs asked.  

 

Experiment 9: Tutorial Duration 

In experiment 9, the duration of each participant‟s tutoring session was compared 

to the mean and median duration across the sample to predict a Sensory or Intuitive 

learning style. The prediction accuracies of 56% for Sensory and 67% for Intuitive 

learners indicate that this measure was not successful in predicting learning styles. 

During analysis, it was observed that for Study 3 half of all participants (22 

participants) did not complete the tutorial in one session, i.e. during the timetabled 

laboratory. All participants in the other studies completed the tutorial in one session. 

The 23 participants who completed the tutorial in a single session were analysed 

separately, and the prediction of Sensory learners in this group was more accurate at 

67%.  
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The results highlight the inherent problem with comparing duration when each 

participant‟s tutoring session follows an individual path and so it is not possible to 

compare like with like. 

 

Experiment 10: Time per Interaction 

In experiment 10, each participant‟s time per interaction was compared to the 

sample mean and median to predict a Sensory or Intuitive learning style. The 

prediction accuracies of 49% (Sensory) and 60% (Intuitive) suggest that this measure 

was successful in predicting Intuitive learners. 

To investigate whether the method of calculating average time per interaction 

(using session totals) affected the result, more detailed analysis was done. For each 

participant, the actual time for each interaction was listed and the mean, median and 

mode calculated. These figures were then compared to the sample average time per 

interaction. The additional analysis resulted in poorer prediction for Sensory learners, 

but better prediction of Intuitive learners, with an increased accuracy of 67%.  

 

Experiment 11: Reading Time 

For Experiment 11, the mean and median time taken to read 10 Oscar words was 

calculated for each participant and compared to the mean and median values across 

the sample to predict a Sensory/Intuitive and Visual/Verbal learning style. Compared 

to the prior probability the results indicate that the measure is successful in predicting 

the Intuitive (63%) and Verbal (50%) learners who have below average reading time, 

although the highest prediction accuracy achieved (72%) is for Visual learners. 

The sample mean reading time (12.1) differed from the median (10.37) by almost 

2 seconds. As each participant‟s learning path is individual, different numbers of 

Oscar words will be presented, however the indication is that the median is the most 

appropriate measure for comparison in this case.   

To overcome the problem of comparing reading time for different learning paths 

more detailed analysis was undertaken to compare the reading time of a single piece 

of text. The only text that could be guaranteed to be identical for every participant 

was at the start of the tutorial. Therefore Experiment 11b compares the reading time 

of tutorial Question 1 to the mean and median values across the sample to predict a 

Visual or Verbal learning style. Reading time was calculated for 95 participants who 

had completed Question 1. The results were mixed, with poor predictions of Intuitive 
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and Visual participants (those with a below average reading time) but good 

predictions of Sensory and Verbal participants (those with above average reading 

times). The prediction accuracies for the Intuitive (78%) and Verbal (71%) learning 

styles are much higher than the prior probabilities of 40% and 13% respectively. The 

results show that this measure is the best predictor of Verbal learning style, thus 

supporting the hypothesis H2.  

 

Experiment 12: Approach to SQL Queries 

This experiment predicted learning styles depending on a participant‟s approach 

to writing SQL queries. As there are two questions of this style, Table 8.4 reports 

results for tutorial question 5 as Experiment 12a and those for question 9 as 

Experiment 12b. This experimental analysis requires the completion of tutorial 

question 5 or 9 rather than the whole tutorial session, so the sample for 12a included 

89 participants, and for 12b there were 76 participants. For the Sensory/Intuitive 

learning style dimension, the best predictions came from Experiment 12b, with 70% 

and 56% respectively, compared to 65% and 38% from Experiment 12a and the prior 

probability of 60% and 40%. For the Sequential/Global learning style dimension the 

results are mixed, with the best prediction for Sequential of 74% resulting from 

Experiment 12a, but the best prediction for Global of 61% resulting from Experiment 

12b. However, all prediction accuracies for the Sequential/Global dimension 

compare favourably to the prior probability of 60% and 40%. Therefore the results 

from this experiment seem to support the hypothesis H7. 

 

Experiment 13: Attention to Detail 

This experiment predicts learning style depending on a participant‟s answer to a 

„trick question‟. As this experimental analysis relies on tutorial question 4 rather than 

a completed tutorial session, it included a sample of 94 participants. For the 

Sensory/Intuitive learning style dimension, the prediction accuracies of 59% and 28% 

are worse than the prior probability for the sample of 62% and 38% respectively. 

However, predictions for the Visual/Verbal learning style dimension were better than 

the prior probability at 94% and 17% respectively, and this measure produced the 

most accurate prediction overall for the Visual learning style. Therefore the results 

support hypothesis H6, a lack of attention to detail in answering questions is 

indicative of learning style. 
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Experiment 14: Key Phrases 

This experiment predicts learning styles in the event of key words or phrases 

from a predefined list being uttered by a participant. As this experimental analysis 

does not require a complete tutorial session, the sample group contained 95 

participants. 41 participants (43% of the sample) uttered at least one of the key 

phrases during the tutorial conversation, however only six of the list of 138 key 

words/ phrases (4%) were uttered. In Table 8.4, the prediction accuracies presented 

are the mean accuracy for each learning style and not the highest accuracy, as this 

would be misleading. Table 8.5 lists the results for each key phrase uttered during 

tutorials, and their accuracy in predicting the related learning style. In Table 8.5, n 

refers to the number of participants who uttered the key phrase. It can be seen that 

the key word „show‟, which relates to the Visual learning style, is the most uttered 

with 32% of participants uttering the word (between one and four times, totalling 53 

times during the tutorial). The 85% prediction accuracy for the key word „show‟ is 

equal to the prior probability across the sample, as there is such an uneven 

distribution of students along the Visual/Verbal dimension. The frequency of key 

word utterances was normally one (30 participants, 73%), and therefore bore no 

relation to the prediction of learning styles. As the number of key phrases uttered is 

so small, it is not possible to draw any conclusions from this measure, and therefore 

the results do not support hypothesis H1. 

Table 8.5. Experiment 14 Results: Key Phrases 

Key Phrase n Sensory  Visual Verbal Active Sequential 

Prior Probability 95 62%  85% 15% 59% 60% 

see 1 -  100% - - - 

show 39 -  85% - - - 

picture 1 -  100% - - - 

tell 2 -  - 0% - - 

discuss 1 -  - 0% 100% - 

example 1 0%  - - 0% 0% 

 

It was observed that participants were reluctant to enter into discussion with 

Oscar PCITS, with a median of only 156 words uttered during the tutorial. This lack 

of discussion meant that there was a smaller chance of key words or phrases being 

uttered by participants. The lack of discussion may be due to the culture of 

Engineering students, with 85% of participants having a Visual learning style (Garcia 

et al. 2007 reported a similar observation, with 79% of participants making no use of 
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forum and chat facilities). Alternatively the lack of discussion may be related to the 

subject domain. 

4.3 Participant Evaluation 

In general, the user feedback from the studies showed that Oscar was well 

received, understandable and helpful. 46 participants across all three studies 

completed the feedback questionnaire, with 10 participants from study 1, 10 

participants from study 2 and 26 participants from study 3. Table 8.6 gives the 

collated results for questions 1 to 9 (three open questions will be described 

separately).  

Table 8.6. Participant Evaluation Questionnaire Results 

Please rate your experience of the following using 

the scale provided: 

SCALE 

 High 6 5 4 3 2 1 Low 

1. Instructions 42% 31% 16% 9% 0% 2% 

2. Screen layout and design 37% 28% 24% 0% 4% 7% 

3. Tutoring 51% 20% 16% 7% 4% 2% 

4. How well did Oscar understand you? 37% 15% 22% 11% 11% 4% 

5. Did you find the tutoring helpful? 72% 7% 15% 2% 0% 4% 

6. Was the conversation natural? 43% 22% 15% 9% 7% 4% 

7. Was the conversation frustrating? 33% 7% 13% 9% 20% 20% 

8. Do you feel Oscar helped you to revise? 59% 15% 11% 4% 4% 7% 

9. Would you use a resource like Oscar:       

a. Instead of attending a face-to-face tutorial? Yes 35% No 65%   

b. Instead of learning from a book? Yes 52% No 48%   

c. As well as classroom tutoring? Yes 85% No 15%   

d. Would you use the resource at all? Yes 89% No 11%   

 

It can be seen from Table 8.6 that 87% of participants rated the tutoring highly 

(Question 3), with 51% awarding the tutoring the highest rating of 6. In Question 5, 

94% of participants found the tutoring helpful, with 72% giving the highest rating of 

6. The only negative responses (i.e. rated 1 or 3) for Question 5 came from study 3 – 

100% of participants in studies 1 and 2 thought that the tutoring was helpful. This 

may again be explained by the level of motivation of participants, as in study 3 

participants were not revising SQL for assessment, and so may not have appreciated 

any direct benefit. In Question 6, 80% of participants rated the tutoring conversation 

as natural, however in Question 7, 52% of participants found the conversation 

frustrating. In Question 8, 85% of participants felt that Oscar PCITS had helped them 

to revise. Of those seven participants (15%) who did not feel that Oscar PCITS 
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helped them to revise, five (11%) came from study 3, with one (2%) each from 

studies 1 and 2. 

The results from Question 9, which investigates whether participants would 

choose to use a resource like the Oscar PCITS, are interesting, with an astounding 

35% of participants stating that they would use Oscar PCITS tutorial instead of 

attending a face-to-face tutorial. Surprisingly, for study 3 the answers to this question 

were almost equal, with 46% of study 3 participants stating that they would use 

Oscar PCITS instead of attending face-to-face classes. Slightly more than half of the 

participants (52%) stated that they would use Oscar PCITS instead of reading a book, 

and 85% of participants would use Oscar PCITS to support classroom tutoring. 

Overall, 89% of participants stated that they would use a resource like Oscar PCITS 

if it were available. From these results it can be concluded that most people found the 

Oscar PCITS tutoring helpful, and would use Oscar PCITS to support their studies. 

The three remaining questions on the feedback questionnaire were open 

questions, asking for the participants to state what else could be included to assist in 

learning, three positive and three negative points about using Oscar. Where possible, 

the answers were grouped into categories, as reported in Table 8.7. Note that in Table 

8.7 n is the number of participants who answered the question, and not the number of 

answers given. 

Table 8.7. Open Question Results 

 n % 

13. What else could Oscar have done to help you learn? 44 96 

Nothing – it‟s great 14 32 

More resources (examples, movies, pictures) 8 18 

More questions 3 7 

14. Please state 3 positive points about using the Oscar computer tutor 46 100 

Easy to use 23 50 

Helpful 20 43 

Step-by-step guidance 18 39 

Flexible 11 24 

Fast 11 24 

Hints 8 17 

15. Please state 3 negative points about using the Oscar computer tutor 45 98 

Oscar doesn‟t always understand  13 29 

GUI 12 27 

Questions difficult to understand 6 13 
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When openly asked for comments, half of the group commented that the 

conversational interface was natural and easy to understand and 43% found Oscar‟s 

tutoring helpful. 39% of respondents found the step by step guidance positive and 17% 

thought the hints given were good, with one learner remarking “it encouraged me to 

think rather than simply giving me the answer”. When asked for negative comments, 

29% of respondents noted that Oscar did not always understand their input and 13% 

found the tutoring questions sometimes difficult to understand. Some quotes from the 

open questions are shown below: 

 “doesn‟t just give you the answer straight away” 

 “you could do it without the need for a tutor to be present” 

 “can work at your own pace” 

 “can revise at any point (day/night)” 

 “would stop academics being asked basic questions!” 

 “easy to understand, helpful tips” 

 “breaks down questions” 

 “you can just say you don‟t know” 

  “easier than reading sql code from a book” 

 “non-judgemental” 

 “interactivity, real-time, social” 

  “impersonal and slightly cold way to revise” 

  “is like having your own friendly tutor” 

 “I did learn something therefore would find it helpful” 

 “simple feedback can be given to each student where an instructor can 

only deal with a single student” 

 “no choices about topics to cover” 

 “good at understanding of language” 

 “doesn‟t always understand me” 

4.4 General Observations 

During the timetabled laboratory sessions, it was possible to unobtrusively 

observe the way that participants interacted with the Oscar PCITS. It was noticed 

that participants habitually opened a new browser window and „googled‟ the answers 

to questions rather than asking the Oscar PCITS. The Oscar PCITS is designed to 
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direct an individual, personalised tutorial and so no conclusions can be drawn about 

whether the lack of engagement in discussion with Oscar PCITS would occur when 

participants complete the tutorial alone. Such distractions are to be expected in real 

learning environments and it would appear that the availability of the Internet and its 

quick and easy access to a wealth of knowledge has changed the culture of learning. 

For study 3, it was observed that half (23) of all participants did not complete the 

tutorial in a single session. Separate analysis of this group revealed several marked 

improvements in prediction accuracies (e.g. 100% of Sensory learners were predicted 

by Experiment 4, 100% of Verbal learners were predicted by Experiments 9 and 12b). 

However, when analysing separately the group of participants completing in more 

than one session across all three studies, most prediction accuracies were not 

significantly higher. 

4.5 Additional Analysis 

Further analysis related to (but not part of) the reported results was carried out. 

The prediction accuracies were calculated for the subset of participants who had a 

strong learning style preference (i.e. with an ILS score of 5 or more) as in Cha et al. 

(2006). When considering the Neutral group (i.e. participants with an ILS score of 1 

or 3) separately, prediction accuracies for the Neutral group ranged between 58-88% 

for Experiment 2. However, removing the group of Neutral learners resulted in a 

much smaller number of participants (e.g. only 28 Sequential/Global learners) and 

the prediction accuracy results were lower.  

Experiments have been undertaken (which are not part of the work submitted in 

this thesis) to use the behaviour captured during a tutoring conversation to build a 

fuzzy classification tree for two FS dimensions (perception (sensory-intuitive) and 

understanding (sequential-global)). Early results show that the model has increased 

the predictive accuracy of the Oscar CITS and discovered some interesting 

relationships amongst the variables (Crockett et al., 2011). 

5 Experimental Results Summary 

The experimental results supported six of the seven hypotheses, as follows: 

 H2: the time taken for a particular tutor-learner interaction is indicative of 

learning style – supported by experiment 10 and 11 results. 
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 H3: the success of a learner in a particular style of tutoring question is indicative 

of learning style – supported by experiment 3 and 4 results. 

 H4: the amount of discussion a learner enters into with the tutor is indicative of 

learning style – supported by experiment 7 results. 

 H5: the success of a learner after experiencing a particular style of tutoring is 

indicative of learning style – supported by experiment 1 results. 

 H6: a lack of attention to detail in answering questions is indicative of learning 

style – supported by experiment 1 and 14 results. 

 H7: choosing to be guided through a process (or not) is indicative of learning 

style – supported by experiment 1 and 12 results. 

 

There was no evidence supporting hypothesis H1 (certain key phrases uttered 

during a CA tutoring conversation is indicative of learning style). As described in 

Section 4.2 Experiment 14, there was a general lack of discussion with the Oscar 

PCITS and although 43% of the sample uttered key words, 73% uttered only a single 

key word. Analysis of tutoring dialogues failed to show any commonly uttered key 

words or phrases that could extend the set. As the number of key phrases uttered is so 

small, it was not possible to draw any conclusions. 

The experimental results show that all eight learning styles could be successfully 

predicted with better accuracy than the prior probability (Table 8.8). Therefore, the 

main hypothesis (It is possible to estimate a learner‟s learning style from a two-way 

tutoring discourse with a conversational agent (CA) tutor) is supported. However, it 

must be borne in mind that the uneven distribution of participants for the 

Visual/Verbal dimension prevents firm conclusions from being drawn. 

Table 8.8. Best Learning Styles Predictions 

 Prior 

Probability 

Prediction 

Accuracy 

Experimental Measure 

Sensory 60% 70% Experiment 12b Approach to Queries (Q9) 

Intuitive 40% 80% Experiment 1 Logic Rules 

Visual 87% 94% Experiment 13 – Attention to Detail 

Verbal 13% 71% Experiment 11b – Q1 Reading Time 

Active 57% 100% Experiment 1 Logic Rules 

Reflective 43% 73% Experiment 3 – Tutorial Question Style 

Sequential 60% 82% Experiment 1 Logic Rules 

Global 40% 61% Experiment 12b Approach to Queries (Q9) 
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A comparison of results with other CITS is not possible as no other CITS can 

predict learning styles.  

On a superficial level, the results compare favourably with menu-based ITS that 

predict FS learning styles (Popescu, 2009; Ozpolat and Akar, 2009; Garcia et al., 

2007; Graf, 2009). However it is inappropriate to compare prediction accuracies with 

these ITS because the method of tutoring is markedly different, e.g. some behaviour 

analysed relies on student initiative, such as the selection or navigation of particular 

resources from a menu. Also, despite adopting the FS these ITS classify learning 

styles differently, introducing a third „Neutral‟ class for each dimension that 

describes learners with low strength learning styles (i.e. those at the centre of the 

dimension). The method of calculating prediction accuracy for these ITS uses 

different scoring, by awarding a 0.5 score if the learning style prediction is 

mismatched with a Neutral classification, rather than a zero score for all mismatches 

used by Oscar PCITS. In the case of Ozpolat and Akar (2009) this method of scoring 

is particularly misleading as, although they report accuracies in the range of 53.3-

73.3%, their results show that their method only managed to classify learners as 

Visual or Neutral across all dimensions. 

Some results do not include the whole student group. In iLessons (Sanders and 

Bergasa-Suso, 2010), which analyses student navigation and interaction with the 

Internet to infer learning styles, „dead bands‟ were introduced for „unknown‟ 

classifications, and these learners were removed from the results. In Cha et al. 

(2006), all Neutral learners (i.e. those scoring 1 or 3 on the ILS questionnaire) are 

removed from the analysis, and so the results are only based on learners with a 

moderate to strong preference. However, Neutral learners are a large group who still 

need to be identified, and reducing the number of participants in this way (e.g. Cha et 

al., 2006 analysed only 23 of 70 participants for the Active/Reflective dimension) 

diminishes the validity of the results.   

6 Conclusion 

This chapter has described the experiments conducted to validate the Oscar 

PCITS methodology and architecture proposed in Chapter 6. Oscar PCITS was 

implemented to direct an SQL revision tutorial to undergraduate students and to 

predict FS learning styles during the conversation, as described in Chapter 7. Three 
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studies were described, including an initial pilot study of ten participants followed by 

two larger uncontrolled studies of 105 participants. The uncontrolled studies 

involved real students in a real teaching/learning environment. The success of Oscar 

PCITS was evaluated in three ways, to investigate:  

1. Can Oscar predict learning styles from a two-way tutoring discourse?  

2. How do participants rate Oscar PCITS and would they use it? 

3. Does Oscar PCITS successfully tutor participants? 

To evaluate the prediction of learning styles, fourteen experiments were devised 

that tested seven hypotheses. The results supported six of the seven hypotheses, and 

showed that Oscar PCITS was successful in predicting all eight FS learning styles in 

a real teaching/learning environment. Additionally, 89% of participants said they 

would use Oscar PCITS if it were available. Participants did learn from the tutorial, 

improving test results by an average of 13%, although it is recognised that any 

revision activity is likely to lead to learning gains. 

Participants valued Oscar PCITS as it offers a personalised tutorial online which 

can be done at their own pace, accessed at any time and place. Participants 

appreciated Oscar PCITS‟s intelligence in the instant feedback, problem solving 

support and hints, and the fact that they could repeat the tutorial until they fully 

understood the topic. However, there was a cultural problem in asking Oscar PCITS 

for help, participants instead searching the Internet for an answer. This may result 

from the novelty of the CITS, or the fact that most participants were Visual learners, 

who may not naturally ask questions or open discussions. A future prototype could 

consider removing access to the Internet to attempt to force more interaction. 

The uneven distribution of undergraduate learners on the Visual/Verbal FS 

dimension, as noted in the FS model (Felder and Silverman, 1988), begs the question 

whether it is important for a PCITS to classify this dimension. 87% of participants in 

the studies were Visual learners, and so although Oscar PCITS predictions were 

more accurate (at 94% for Visual, 71% for Verbal), if adopting the FS model the 

importance of predicting Visual/Verbal learning styles should be considered 

carefully. 

It can be concluded that the experimental studies described in this chapter 

successfully validate the generic Oscar PCITS Methodology and Architecture 

proposed in Chapter 6 in a real educational setting. However, before conclusions 

may be drawn about non-computing subject domains it is necessary to implement 
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Oscar CITS and empirically test its prediction of learning styles with different 

learning style models. 

The next stage of the research is to produce a methodology for developing a 

CITS that can adapt to an individual‟s learning style while directing a tutoring 

conversation. The next two chapters will propose such a methodology and present 

the implementation and experimental analysis of the resulting CITS. 

7 Chapter Highlights 

 Three real-world studies were undertaken to validate the Oscar PCITS 

methodology and architecture proposed in Chapter 6. 

 The studies involved 115 participants, resulting in 75 completed tutorials and 46 

completed evaluation questionnaires. 

 14 experiments investigated the prediction of all four FS learning style 

dimensions. The results showed that all eight learning styles were predicted 

successfully in a real teaching/learning environment. 

 The results showed a mean learning gain of 13% in test scores following the 

Oscar PCITS tutorial. 

 User feedback results showed that 87% of participants rated the tutoring highly, 

94% found the tutoring helpful and 89% stated that they would use a resource 

like Oscar PCITS if it were available.  
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Chapter 9 A Methodology and Architecture for Developing 
an Adaptive CITS 

1 Introduction 

Chapter 4 described how Intelligent Tutoring Systems personalise tutoring by 

adapting to individual factors such as existing knowledge (Weber and Brusilovsky, 

2001), emotion (D’Mello et al., 2009) and learning styles (Sanders and Bergasa-Suso, 

2010). Conversational ITS (CITS) are less common than menu-based ITS, and there 

are no CITS that adapt their teaching to suit an individual’s preferred learning styles. 

In Chapter 6, the Oscar CITS was proposed, which is a CITS that can automatically 

predict and adapt to learning styles during a tutoring conversation. Chapters 5, 6, 7 

and 8 described the design, development and experimental analysis of Oscar 

Predictive CITS (PCITS), which was successful in predicting learning styles from a 

natural language tutorial. The generic methodology and architecture of Oscar PCITS 

(proposed in Chapter 6) were validated empirically and Oscar PCITS was also 

successful in improving learning. As described in Chapter 4, a CITS that can adapt 

its tutoring style to match student learning styles could lead to an enhanced learning 

experience and higher learning gains. 

In this chapter, the achievements of the Oscar PCITS are used as a basis for 

designing a CITS that dynamically adapts its teaching style to match student learning 

styles. This chapter proposes an original methodology and architecture for 

developing the Oscar Adaptive CITS (ACITS) that can automatically adapt to a 

student’s learning style during the tutoring conversation. The proposed methodology 

and architecture are generic, with the flexibility to adopt different learning styles 

models and tutoring domains. The adaptive CITS construction is based around 

delivering preferred teaching styles for individual learners during tutoring. An 

original generic adaptation algorithm is proposed which takes into account both the 

strength of each learner’s preference and the availability of adaptations to select the 

best adaptation for each tutorial question. 

2 Oscar Conversational ITS  

As described in Chapter 6, the Oscar CITS is a novel CITS that can both predict 

and adapt to an individual’s preferred learning style whilst holding a tutoring 
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conversation. The pedagogical aim is to enhance the learning experience by 

providing the learner with tutoring material suited to their learning styles. Although 

the nature of learning styles has been questioned by some authors (Coffield et al., 

2004a), others have found that matching teaching styles to learning styles can lead to 

greater learning (Felder and Brent, 2005; Allinson and Hayes, 1996). Studies in 

computer-based education systems have shown that adapting the teaching style to 

student learning styles can enhance learning (Kelly and Tangney, 2006; Tsianos et 

al., 2008; Walters et al., 2000). 

Oscar CITS aims to mimic a human tutor by leading a tutoring dialogue and 

employing intelligent techniques to assist learners in constructing a deeper 

understanding of the topic. Oscar’s natural language interface is familiar and 

intuitive to learners, helping to build confidence and motivation. Oscar CITS is 

available online, allowing learners to study when and where they choose at a fixed 

cost. 

3 Devising the Adaptation Strategy 

The Oscar Adaptive CITS (ACITS) is a CITS that incorporates the automatic 

adaptation of a tutoring conversation to an individual’s learning styles. Although no 

CITS adapts to learning styles, there are a number of approaches used by ITS to 

adapt to student learning styles, as reviewed in Chapter 4, section 3.2. The simplest 

and most common adaptation strategy is to adapt to a single aspect of learning style 

(Sanders and Bergasa-Suso, 2010; Bajraktarevic et al., 2003). The disadvantage of 

selecting only one learning style is that this does not truly describe the student’s 

preference for each step of the learning process, e.g. in the Felder-Silverman (1988) 

(FS) model there are four learning style dimensions. Therefore only a partial 

adaptation could be achieved. There are also difficulties when adapting to more than 

one aspect of learning style: 

 The requirement for multiple versions of learning resources to suit different 

learning styles is a barrier to the development of an ITS (see Chapter 4). For 

example, in the FS model there are 32 separate learning styles. 

 In real life it may not be appropriate or possible to incorporate every category 

of tutor material into every tutorial question, i.e. provide adaptations for every 

learning style, and still present a coherent learning experience.  
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 To overcome these problems, one strategy is to adapt to the strongest student 

learning style thus reducing the number of adaptive resources required, e.g. 

the FS model has four dichotomous dimensions, so eight versions of adaptive 

resource would be needed. However, adaptation is still only partial, and 

although reduced the development barrier still exists. Also, additional 

strategies are required to deal with conflict (when preference for several 

learning styles is equally strong). 

It was thus concluded that the Oscar Adaptive CITS adaptation strategy needed 

to consider not only the strength of the student’s learning style but also the 

availability of adaptation for each individual tutorial question. This would mean that 

students could be presented with the most appropriate tutoring material by 

considering all of their preferred learning styles and also the available adaptations for 

each question in the tutorial. The implication of such an adaptation mechanism for 

students is that they will be presented with the best fitting tutoring material whilst 

still encountering a coherent learning experience. Students may also experience more 

than one learning style adaptation during a tutorial, and such a variation in style 

should help to improve their interest and motivation. The implication of the selected 

adaptation strategy for developers is that tutorials that contain adaptations for only 

some of the learning styles can still be successfully used whilst the learning material 

is built up over time. As well as addressing an important development barrier by 

allowing partially complete adaptations to be used, such an approach allows tutorials 

to be tested and changed at an early stage before too much time has been committed 

to the development.  

The Oscar ACITS adaptation approach is considerably more complex than 

adapting to a single aspect of a student’s learning style, requiring an algorithm for 

conflict resolution when more than one learning style dimension wins. However, the 

Oscar ACITS adaptation approach aims to offer a more rounded and complete 

learning experience whilst still presenting a coherent tutorial.  

A generic methodology and architecture for the construction of Oscar ACITS 

will now be proposed. 



Chapter 9: A Methodology and Architecture for Developing an Adaptive CITS 

142 

4 A Generic Methodology for Creating an Oscar Adaptive CITS 

In Chapter 6, a generic three phase methodology was proposed for constructing 

an Oscar Predictive CITS that could predict learning styles whilst directing a natural 

language tutoring conversation. That methodology was followed to develop a 

prototype Oscar PCITS whose ability to predict learning styles and teach was tested 

empirically (Chapters 7 and 8). Thus validated, the methodology proposed in Chapter 

6 has been used as a basis for developing a new methodology to construct an Oscar 

Adaptive CITS that can dynamically adapt its tutoring to suit student learning styles. 

The proposed methodology is independent of the learning styles model and 

subject domain and consists of three phases, as shown in Table 9.1. Phase 1 instructs 

the creation of a Learning Styles Adapter module, and phase 2 the design of the 

adaptive tutoring conversation. Phase 3 incorporates the learning styles adapter 

module and tutorial conversation into an ACITS architecture. Each phase will now 

be described. 

Table 9.1. 3-Phase Methodology for Creating Oscar Adaptive ACITS. 

Phase 1: Create the Learning Styles Adapter Module 

1.1. Select a Learning Styles Model and extract the behaviour characteristics 

1.2. Map learning style behaviour to associated conversational tutoring style 

1.3. Map learning styles to teaching material categories 

1.4. Implement the generic adaptation algorithm for chosen learning styles model 

Phase 2: Design a Tutorial Conversation 

2.1. Capture the tutorial scenario and questions (including movies, voice, images, examples, etc.) 

from human tutors in a specific domain 

2.2. Determine the conversational structure/style  

2.3. Map tutorial questions onto the generic teaching material categories  

2.4. Score tutorial questions for adaptation to each learning style 

2.5. Script Conversational Agent natural language dialogue for each tutorial question using the 3-

level model  

Phase 3: Construct the ACITS Architecture 

4.1 Phase 1: Create the Learning Styles Adapter Module 

Phase 1 of the Oscar ACITS Methodology involves the analysis of a learning 

styles model in order to create a Learning Styles Adapter module for the ACITS. 

Steps 1.1 and 1.2 involve the selection and extraction of knowledge from a learning 

styles model, and are similar but not identical to steps 1.1 and 1.2 of the 

methodology for creating an Oscar Predictive CITS described in Chapter 6. 
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4.1.1 Step 1.1: Select a Learning Styles Model and Extract the Behaviour 

Characteristics 

The first step in creating the learning styles adapter module requires a learning 

styles model (Felder and Silverman, 1988; Honey and Mumford, 1992) to be selected. 

To illustrate Phase 1 of the methodology, the Felder-Silverman (FS) model (Felder 

and Silverman, 1988) was selected as the initial experimental group will be 

university engineering students.  

Once the model has been chosen, the typical learner behaviour characteristics 

described in the model must be extracted for each learning style. For the FS model, 

the behaviour characteristics were extracted and summarised in a table of common 

learner behaviour (as described in Chapter 5, shown in Table 5.3).  

4.1.2 Step 1.2: Map Learning Style Behaviour to Associated Conversational Tutoring 

Style 

To map learning style behaviour to the conversational tutoring style, first assess 

each behaviour characteristic extracted in step 1.1 to see if it can be mapped onto a 

two-way online conversational tutorial. If so, the behaviour trait should be included 

in a summary table, as described in Chapter 5, section 4 (see Table 5.4).  

Next, each behaviour trait in this subset must be mapped to the associated 

teaching style. In the exemplar FS model, teaching styles associated with typical 

learner behaviours are described for each learning style. This information was 

extracted and is summarised in Table 9.2. 

4.1.3 Step 1.3: Map Learning Styles to Generic Teaching Material Categories 

In step 1.3 it is necessary to decide which styles of teaching material need to be 

incorporated in a tutorial. Each teaching style extracted from the learning styles 

model in Step 1.2 (Table 9.2) needs to be studied and reorganised so that similar 

teaching styles are grouped together. A set of generic teaching material categories 

has been produced which can be expanded and mapped to the chosen learning styles 

model. For example using the FS model, in Table 9.2 the teaching styles associated 

with Global learners have been categorised in two ways: 

 ‘Present overview summary information’ can be categorised into 

‘Introductions and overviews’ teaching material (Table 9.3 category 1). 

 ‘Avoid detail’ can be categorised into ‘Explanation by bullet points and 

hyperlinks’ teaching material (Table 9.3 category 3). 
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Table 9.2. FS Learner Behaviour and Associated Teaching Styles 

LEARNING STYLE TEACHING STYLE 

Sensor  

Prefer facts, data, experimentation Present facts, examples and results 

Dislike surprises Include introductions, overviews and present 

material in a sequential predictable order 

Careful but slow Consider this if timing interactions 

Comfortable with symbols (e.g. words) Textual explanations and discussions OK 

Intuitor  

Prefer principles and theories Present principles rather than examples 

Dislike repetition Present information usually only once 

Bored by detail Summarise information e.g. bullet points 

Quick but careless Consider this if timing interactions 

Uncomfortable with symbols Favour bullet points and diagrams 

Visual  

Remember what they see Present diagrams, pictures, movies 

Like pictures, diagrams, flow charts, time lines, 

films 

Favour pictures, diagrams, flow charts, time lines, 

films 

Prefer visual demonstration Use visual walkthroughs (e.g. results of database 

queries using table snapshots and 

selecting/moving rows visually) rather than 

textual explanation 

Verbal  

Remember what they hear, or what they hear 

then say 

Favour movies and sound clips 

Like discussion  Use the CA to discuss the topic 

Prefer verbal explanation Favour movies, sound clips and CA explanations 

Learn by explaining to others Use the CA to discuss the topic 

Active  

Do something with information – 

discuss/explain/test 

Use the CA to discuss the topic, include practical 

exercises 

Experimentalists Include practical exercises 

Process information by setting up an 

experiment to test an idea, or try out on a 

colleague 

Use the CA to discuss the topic, include practical 

exercises 

Reflective  

Examine and manipulate information 

introspectively 

Do not use CA for discussion 

Theoreticians Present principles rather than examples 

Sequential  

Follow linear reasoning processes Present information in a steady progression of 

complexity and difficulty 

Learn best when information is presented in a 

steady progression of complexity and difficulty 

Present information in a steady progression of 

complexity and difficulty 

Global  

Sometimes better to jump directly to more 

complex and difficult material 

Present overview summary information and allow 

student to choose where to start. Avoid detail and 

only include full explanations when asked. 
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Table 9.3 lists all categories derived from the FS analysis that have been mapped 

to the associated learning styles. In Table 9.3 the teaching material categories are 

based on teaching styles, and so are independent of a particular learning styles model 

or subject domain. The generic teaching material categories should be expanded 

when different learning styles models are adopted which require different teaching 

styles. 

Table 9.3. Generic Teaching Material Categories Mapped to FS Learning Styles 

TEACHING MATERIAL CATEGORY FS LEARNING STYLES 

1. Introductions and overviews Sensor, Sequential, Global 

2. Textual explanation – theories and principles Intuitor, Verbal, Reflective, Sequential 

3. Explanation – bullet points and hyperlinks Intuitor, Global 

4. Practical examples Sensor, Active, Sequential 

5. Practical exercises Active, Sequential 

6. Graphics – movies, pictures, diagrams Intuitor, Visual 

7. Verbal – movies & sound clips Verbal 

8. Visual demonstrations (walkthroughs etc) Visual 

9. Discussion scripts – explanation, FAQs and    

 help for each subtopic 

Sensor, Verbal, Active 

 

The generic teaching material categories in Table 9.3 represents a list of the type 

of tutoring material required in an ACITS that adapts to student learning styles.  

4.1.4 Step 1.4: Implement the Generic Adaptation Algorithm for Chosen Learning 

Styles Model 

The final step in phase 1 (step 1.4) is to implement an algorithm that decides the 

most appropriate type of adaptation to be applied for each student’s individual 

learning path. An adaptation algorithm was developed that selects the most 

appropriate adaptation for each tutorial question individually. The adaptation 

algorithm is generic as it is independent of the learning styles model selected. The 

chosen learning styles model should be applied to the algorithm (shown in Table 9.4) 

and implemented to produce the Learning Styles Adapter component. The 

development of the algorithm will now be described. 

In Step 1.3 of the methodology, a list of generic teaching materials categories 

was produced (Table 9.3). When developing an ACITS tutorial, it may not be 

appropriate to incorporate all categories of teaching material and still present a 

coherent learning experience, so some learning styles may not be addressed. 

Consequently a strategy of adapting to only the student’s strongest learning style 

(like Sanders and Bergasa-Suso (2010) and Bajraktarevic et al. (2003)) may not 
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always be possible in real life, and also a single learning style does not completely 

describe the student’s learning preferences. Therefore it was concluded that the 

Oscar ACITS adaptation algorithm should consider both the strength of the student’s 

learning styles and the strength of adaptation for each individual tutorial question. 

This strategy ensures that students are presented with the most appropriate tutoring 

material to suit all aspects of their learning style and the available adaptations for 

each question in the tutorial. The implication of this adaptation mechanism for 

students is that they are presented with the best fitting tutoring material whilst still 

encountering a coherent learning experience. Learners may also experience more 

than one type of adaptation during a tutorial, and such a variation in style should help 

to improve their interest and motivation. The implication of the adaptation strategy 

for developers is that tutorials which contain adaptations for only some of the 

learning styles can still be successfully used whilst the learning material is built up 

over time. As well as addressing an important development barrier by allowing 

partially complete adaptations to be used, such an approach allows tutorials to be 

tested and changed at an early stage before too much time has been committed to the 

development. 

A novel adaptation algorithm was developed that selects the best fitting 

adaptation per question independently of the tutorial domain and the learning styles 

model adopted. While developing the adaptation algorithm, the FS model was used 

as an example learning styles model with four learning style dimensions. Although 

the assessment of FS learning styles results in a learning style preference being 

assigned for each dimension, the model suggests that the group of students who have 

no strong preference for a particular learning style should be given learning material 

including a mixture of styles. Taking this into consideration, an additional Neutral 

learning style category was introduced to group students with a low preference on a 

FS dimension. Such neutral students will be presented with a Neutral adaptation that 

includes a mixture of teaching material styles.  

Table 9.4 shows a logical representation of the generic Oscar ACITS adaptation 

algorithm. Seven assumptions are stated, as follows:  

1. For each learning style dimension d in the chosen model, each student’s 

preference is described by the tuple <c, s> where c is the learning style 

class and s is the score representing its strength. The values of c and s are 

assigned by an assessment (e.g. a questionnaire defined by the learning 
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styles model). For the FS model the student preference is evaluated using 

the Index of Learning Styles (ILS) (Felder and Soloman, 1997). 

2. A student is classed as Neutral if they have a low preference for the 

learning style (as defined by the learning styles model). In the FS model, 

neutral students are defined as having ILS learning style scores of 1 or 3 

(using the ILS scale 1 (weak) to 11 (strong)). 

3. Each tutorial question is assigned a score q for adaptation to each possible 

learning style (LS) based on the number of opportunities in the question 

to adapt to that learning style. For the Neutral learning style, q=0. The 

question scoring will be described in Section 4.2.4. 

4. MAX is a function that, given a list of numbers, returns the classes 

associated with the maximum numbers. For example, given a list of 

numbers (3,6,3) associated with learning style classes (vis, act, glo) MAX 

returns (act); given a list of numbers (3,6,6) associated with learning style 

classes (vis, act, glo) MAX returns (act, glo). 

5. W is the set of classes of winning (i.e. maximum) student question scores 

a.  

6. S is the subset of W containing classes of maximum student learning style 

scores s.  

7. Q is the subset of W containing classes of maximum question scores q. 

Following this algorithm, if the student is classed as Neutral for all learning style 

dimensions, they follow the Neutral adaptation learning path for every tutorial 

question. Otherwise, for each tutorial question:  

 for each learning style class c a student question score ac is calculated by 

multiplying the question score for that learning style qc with the student 

learning style score sc.  

 The learning style class c with the highest student question score ac wins.  

Additional rules are included for conflict resolution, i.e. selecting an adaptation 

when more than one maximum score a exists in W, the set of winning scores:  

 In the case where there is no clear winner (i.e. no single maximum score a), 

the learning style class in W with the maximum student score s wins (i.e. the 

student’s strongest learning style preference in the set of winners).  



Chapter 9: A Methodology and Architecture for Developing an Adaptive CITS 

148 

 If there is no clear winner again (i.e. the student has more than one learning 

style with the maximum score s), the question scores q for the learning style 

classes in W are compared, and the maximum question score q wins.  

 Finally, if there is still no winner, a learning style adaptation is selected 

randomly from the learning style classes in W. 

Table 9.5 shows examples of the adaptations selected by the algorithm (applied 

to the FS model) and of conflict resolution. 

Table 9.4. Generic Oscar ACITS Algorithm for Selecting Best Adaptation Per Question 

Assuming that: 

1. For each learning style dimension d in the learning styles model, each student is 

assigned a learning style tuple <c, s> where c is the class and s is the score. 

2. A student is classed as Neutral if they have a low preference for the learning style 

(as defined by the learning styles model). 

3. Each tutorial question is assigned a score q for adaptation to each possible learning 

style (LS) based on the number of opportunities in the question to adapt to that 

learning style. For the Neutral learning style, q=0. 

4. MAX is a function that, given a list of numbers, returns the classes associated with 

the maximum numbers. 

5. W is the set of classes of winning student question scores a.  
6. S is the subset of W containing classes of maximum student learning style scores s.  
7. Q is the subset of W containing classes of maximum question scores q. 

 

IF (FOR ALL d (c IS Neutral))  

   THEN ADAPT TO learning style class Neutral. 

ELSE  

   FOR EACH tutorial question 

   { 

      FOR EACH d 
               student question score ac = question LS score qc  student LS score sc. 
      W = MAX(student question scores ac). 

      IF |W| IS 1  

         THEN ADAPT TO learning style class c WHERE c   W. 

      ELSE  

      {  

          S = MAX(student LS scores sc WHERE c   W).   

          IF |S| IS 1 

              THEN ADAPT TO learning style class c WHERE c   S. 

          ELSE  

              Q= MAX(question scores qc WHERE c   W).   

              IF |Q| IS 1 

                  THEN ADAPT TO learning style class c WHERE c   Q. 

              ELSE  

                   ADAPT TO RANDOM (learning style class c) WHERE c   W. 

      } 

   } 

 

 

In Table 9.5, first the question learning style scores (q) are shown for three 

tutorial questions. Next, each student’s learning style dimension class and score     

<c, s> is listed, followed by (for each tutorial question) the calculated student 
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question scores (a), the set of winners (W) and the resulting adaptation. The strength 

of learning style preference is scored by the ILS as 1, 3, 5, 7, 9 or 11. Neutral 

learners have low preference for a learning style, i.e. ILS scores of 1 or 3.  

Table 9.5. Examples Demonstrating the Oscar ACITS Adaptation Algorithm 

Question Scores: 
Q1: NEU=0, SNS=3, INT=3, VIS=3, VRB=5, ACT=4, REF=0, SEQ=1, GLO=4 
Q2: NEU=0, SNS=2, INT=5, VIS=5, VRB=3, ACT=2, REF=1, SEQ=8, GLO=3 
Q3: NEU=0, SNS=0, INT=0, VIS=2, VRB=0, ACT=0, REF=1, SEQ=2, GLO=0 

Student 1 
Learning Style Scores: SNS=1, VIS=3, REF=3, SEQ=1 
Adaptation: NEUTRAL 

Student 2 
Learning Style Scores: SNS=7, VIS=9, ACT=11, SEQ=9 
Q1: SI=7*3=21, VV=9*3=27, AR=11*4=44, SG=9*1=9; winner=AR, Adaptation=ACT 
Q2: SI=7*2=14, VV=9*5=45, AR=11*2=22, SG=9*8=56; winner=SG, Adaptation=SEQ 
Q3: SI=7*0=0, VV=9*2=18, AR=11*0=0, SG=9*2=18; winner={VV,SG}, Adaptation=VIS 

Student 3 
Learning Style Scores: INT=3, VIS=3, ACT=5, GLO=5 
Q1: SI=3*3=9, VV=3*3=9, AR=5*4=20, SG=5*4=20; winner={AR,SG}, Adaptation=ACT 
Q2: SI=3*5=15, VV=3*5=15, AR=5*2=10, SG=5*3=15; winner={SI,VV,SG}, Adaptation=GLO 
Q3: SI=3*0=0, VV=3*2=6, AR=5*0=0, SG=5*0=0; winner=VV, Adaptation=VIS 
Key:  
  SI=Sensor/Intuitive; VV=Visual/Verbal; AR=Active/Reflective; SG=Sequential/Global 
  NEU=Neutral; SNS=Sensory; INT=Intuitive; VIS=Visual; VRB=Verbal; ACT=Active;  
  REF=Reflective; SEQ=Sequential; GLO=Global 

 

Each example in Table 9.5 will now be described: 

 Student 1 has no strong preference for any of the FS dimensions, scoring 1 or 

3, and so is classified as Neutral for all dimensions. Following the algorithm 

the neutral adaptation is applied to all tutorial questions. 

 Student 2 has strong preferences for all FS dimensions. For Q1, the student 

learning style score (shown first) is multiplied by the question learning style 

score, giving a student question score for that FS dimension. The winner is 

the FS dimension with the highest score; for Q1 the Active adaptation. For 

Q2 the winning adaptation is Sequential because, even though the student has 

a stronger preference for the Active learning style, the tutorial question offers 

more adaptations for the Sequential learning style. For Q3 there are two 

winners (Visual and Sequential), so first the student learning style scores are 

compared, followed by the tutorial question scores. As all scores are equal, 

the adaptation is selected randomly from the two winners, resulting in a 

Visual adaptation. 
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 Student 3 has a low preference for two FS dimensions (Intuitive and Visual) 

and a moderate preference for the Active and Global learning styles. For Q1, 

there are two winners, and as the student and question scores are equal, the 

Active adaptation was selected at random. For Q2, there are three winners, so 

the Global adaptation wins as it has the highest student learning style score. 

Q3 only adapts to three learning styles, so the clear winner is the Visual 

adaptation in this case. 

 

An implementation of the adaptation algorithm applied to the FS model is 

described in Chapter 10. This step completes phase 1 of the methodology, describing 

the creation of the Learning Styles Adapter component. 

4.2 Phase 2: Design a Tutorial Conversation 

Phase 2 of the methodology involves capturing the tutorial from expert human 

tutors and iteratively developing a tutorial conversation with input from the human 

tutors. Several versions of tutorial questions (incorporating different teaching styles) 

are needed to match particular learning styles. Several steps in Phase 2 of the 

methodology (steps 2.1, 2.2 and 2.5) follow the same process as steps in the earlier 

Oscar PCITS methodology (Chapter 6), which was successfully validated 

empirically as described in Chapters 7 and 8. 

4.2.1 Step 2.1: Capture the Tutorial Scenario and Questions from Human Tutors in a 

Specific Domain 

The first step in designing a tutorial conversation involves capturing the tutorial 

scenario from human tutors and documenting it in the tutorial conversation blueprint. 

This step in the methodology follows the same process described in Chapter 6, 

Section 3.2.1 (Oscar PCITS Methodology, Step 2.1).  

4.2.2 Step 2.2: Determine the Conversational Structure/Style  

To structure the tutorial conversation, first apply the 3-level model of a tutorial 

conversation (Chapter 6, Figure 6.1) following the same process described in Chapter 

6, Section 3.2.2 (Oscar PCITS Methodology, Step 2.2). As part of this process, a list 

of Frequently Asked Questions (FAQs) and answers is captured from human tutors.  

Next, the tutorial questions should be mapped onto the generic question 

templates (Chapter 6, Figures 6.2 and 6.3) as described in Chapter 6, Section 3.2.3 
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(Oscar PCITS Methodology, Step 2.3). Any extra resources from the application of 

question templates should be included as required, and the dialogue updates recorded 

in the tutorial conversation blueprint. 

4.2.3 Step 2.3: Map Tutorial Questions onto the Generic Teaching Material Categories  

Step 2.3 of the methodology requires the tutorial questions documented in the 

tutoring conversation blueprint to be mapped to the generic teaching material 

categories developed in Step 1.3 of the methodology (Section 4.1.3). This mapping 

highlights each question where no adaptation exists for a learning style, thus 

promoting further capturing of different styles of teaching material from human 

tutors. The result is a list of available teaching materials for each question, and thus 

adaptations to each learning style. 

 The generic teaching material categories (Table 9.3) were designed from the 

tutor’s point of view to simplify the development of consistent tutoring material for 

an ACITS. The standard organisation of tutor material into categories also facilitates 

modular development, as teaching materials can be expanded and added without the 

need for a total redesign of the tutoring conversation. This modular approach allows 

tutoring material to be developed in stages with no requirement for all learning styles 

to have adaptations before the ACITS can be used, and so speeds up the initial 

development. 

4.2.4 Step 2.4: Score Tutorial Questions for Adaptation to Each Learning Style 

In Step 2.4, each question is assigned a score for every learning style, which 

represents the number of opportunities for adaptation to that learning style. This is 

done using the mapping to teaching material categories resulting from Step 2.3. For 

each question, for each mapped teaching material category assign one point to every 

associated learning style (Table 9.3) each time the teaching material occurs. Where 

no adaptation exists for a learning style, the score assigned is zero. This scoring 

mechanism counts the number of adaptations a question has for each learning style, 

thus recording the strength of adaptation. 
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4.2.5 Step 2.5: Script Conversational Agent Natural Language Dialogue for each 

Tutorial Question using the 3-Level Model  

Step 2.5 of the methodology involves creating Conversational Agent (CA) scripts 

to conduct the tutoring dialogue defined in steps 2.1, 2.2, 2.3 and 2.4 (and recorded 

in the tutorial conversation blueprint). Before scripting the dialogue, it is necessary to 

organise the CA scripts in two ways: 

1. Apply the 3-level model, as described in Step 2.2 and recorded in the tutorial 

conversation blueprint. 

2. By learning style adaptation, as defined in the mapping produced in Step 2.3. 

The scripting of the CA dialogue follows the same process described in Chapter 6, 

Section 3.2.4 (Oscar PCITS Methodology, Step 2.4). 

4.3 Phase 3: Construct the ACITS Architecture 

Once the learning styles adapter module and the tutorial conversation have been 

designed, they must be incorporated into an ACITS architecture. The ACITS will 

require a number of components including a CA, a Tutorial Knowledge Base, a 

Graphical User Interface (GUI) and a Student Model. The components will be 

described in section 5, which proposes a standard Oscar ACITS architecture that is 

generic and incorporates the required components. 

5 Oscar ACITS Architecture 

The Oscar ACITS is independent of the learning styles model and subject domain 

being taught, so a modular architecture, which allows the reuse and replacement of 

individual modules, is most appropriate. The generic Oscar PCITS architecture 

proposed in Chapter 6 was validated empirically and proved successful in delivering 

online conversational tutorials (Chapters 7 and 8). Therefore the Oscar PCITS 

architecture was reused and adapted to suit the Oscar Adaptive CITS, as shown in 

Figure 9.1.  

The generic Oscar ACITS architecture allows alternative learning styles models 

(i.e. the Learning Styles Adapter module created following phase 1 of the 

methodology) and subject domains (i.e. tutorial knowledge base and CA scripts 

created following phase 2 of the methodology) to be applied. 
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Figure 9.1. Generic Oscar ACITS Architecture 

 

The main components of the architecture (described in Chapter 6, Section 5) have 

been reused, with some amendments relating to the adaptation of tutoring, which are 

summarised here. The controller and Graphical User Interface (GUI) modules 

manage the communication between components and the user. The student model 

module records information about the students, and was amended to also record the 

adaptations applied to each tutoring question. The conversational agent (CA) module 

is responsible for the natural language conversation. The tutorial knowledge base 

manages course information, and was amended to include available adaptations and 

adaptation scores for each tutorial question. The tutorial knowledge base and CA 

scripts are developed following phase 2 of the methodology. 

The learning styles adapter component is responsible for accessing information 

about learning styles and related teaching styles, held in a learning styles database. 

This component will receive information from the CA, GUI, tutorial knowledge base 

and student model to select the best adaptation for a student’s learning style. Given 

learning style values from the student model and tutorial question scores from the 

knowledge base, this component will apply the Oscar ACITS adaptation algorithm 

(section 4.1.4) to determine the most appropriate adaptation for each individual 

tutorial question. This module is developed by following phase 1 of the Oscar 

ACITS methodology. 

An implementation of the Oscar ACITS architecture will be described in the next 

chapter, Chapter 10. 
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6 Conclusion 

This chapter has proposed an original generic methodology and architecture for 

creating an Oscar ACITS that can dynamically adapt its tutoring to a student’s 

learning styles. Adapting tutoring material to a student’s learning styles aims to 

improve the effectiveness and the acceptance of tutoring with a CITS. It is hoped that 

this intelligent personalisation of tutoring will also increase student motivation and 

learning gain. The Oscar ACITS adaptation strategy considers both the strength of 

the student learning styles and the strength of available adaptations for the question. 

Students are given the best adaptation for each question separately, rather than only 

adaptations for their strongest learning style. Therefore the adaptation approach 

provides a variety of adaptations that address all aspects of the student’s learning 

preferences. This approach allows flexibility in developing tutorials so that a 

coherent learning experience can be developed, regardless of the extent of 

adaptations available for every learning style. It recognises that in real life it may not 

be possible to provide adaptive material for all learning styles. The novel adaptation 

algorithm is generalised, and can be adopted for any learning styles model with 

strengths of learning style. 

The proposed methodology is generic as it is independent of the learning styles 

model adopted and the subject domain taught. The methodology consists of three 

phases: 

 The first phase relates to the analysis of the learning styles model in order to 

create the Learning Styles Adapter module. During this phase, a generic set of 

teaching material categories was proposed, which allow a more standard and 

teacher-friendly development of tutoring material for an Adaptive CITS. Also 

proposed was the Oscar ACITS adaptation algorithm, which is generic as it is 

independent of the learning styles model selected.  The novel algorithm 

selects the best fitting adaptation for each tutorial question separately based 

on the strength of the student learning styles and also the strength of available 

adaptations for the question.  

 The second phase of the methodology directs the design and development of 

the tutorial conversation. After capturing the tutorial scenario from human 

tutors, the tutorial questions are structured and mapped to the generic 

teaching material categories. Questions are assigned adaptation scores, and 
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then scripted for the selected conversational agent. A modular development 

approach is encouraged, and materials may be expanded at any time, with 

only the need to update question scores before the new material is taken into 

account. 

 Phase 3 of the methodology involves constructing the ACITS architecture. A 

modular architecture based on that proposed in the earlier methodology is 

proposed, and most components require only minor amendments. 

 

In order to validate the proposed methodology and architecture and investigate 

the success of the adaptive tutoring an experimental study is required. The next 

chapter will describe the development of a prototype Oscar ACITS and report the 

experiments conducted to test the success of the adaptation mechanism. 

7 Chapter Highlights 

 Oscar ACITS is a novel conversational intelligent tutoring system that 

automatically adapts to learning styles while directing a tutoring 

conversation. 

 Oscar ACITS is independent of the learning styles model selected and the 

tutoring domain. 

 An original, generic methodology was proposed to construct an adaptive 

Oscar ACITS. 

 A set of generic teaching material categories to aid the development of an 

adaptive tutorial was created. 

 A novel generic adaptation algorithm was proposed, which considers both the 

student learning styles strength and the strength of adaptation of each tutorial 

question to select the best fitting adaptation. 

 A generic, modular architecture for Oscar ACITS was proposed. 
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Chapter 10 Adaptation to Learning Styles Experiments 

1 Introduction 

The Oscar ACITS proposed in Chapter 9 can dynamically adapt the style of each 

tutorial question to match a student‟s learning styles. A generic methodology and 

architecture for developing Oscar ACITS, which are independent of the learning 

styles model and subject domain, were proposed. In order to validate the proposed 

methodology and architecture, it is necessary to implement and empirically test the 

Oscar ACITS.  

This chapter will describe the implementation of a prototype Oscar ACITS 

following the methodology and architecture in Chapter 9. The prototype adopts the 

Felder-Silverman (FS) learning styles model (Felder and Silverman, 1988). Using the 

generic teaching material categories to aid development (described in Chapter 9), an 

SQL revision tutorial was developed that adapts to different learning styles. Finally, 

a number of components from the Oscar PCITS prototype were reused and modified 

in implementing the Oscar ACITS architecture. 

Next, a real-world study undertaken to validate the methodology and architecture 

proposed in Chapter 9 is described. Seven experiments were designed to test the 

hypotheses that adapting to a student‟s learning styles can improve the effectiveness 

and efficiency of an online conversational tutorial. As well as evaluating the success 

of Oscar ACITS adaptation approach, the study investigated the general success of 

the tutoring in terms of learning and user feedback. The experimental results show 

that the Oscar ACITS adaptation method has been successful in improving the 

learning of participants who experience a tutorial adapted to suit their learning styles. 

2 Implementing the Oscar Adaptive CITS 

To validate the methodology and architecture proposed in Chapter 9, a prototype 

Oscar ACITS was implemented following the 3-Phase Methodology proposed in 

Chapter 9 and repeated in Table 10.1. The development of the Oscar ACITS 

prototype will now be described. 
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Table 10.1. 3-Phase Methodology for Creating Oscar ACITS. 

Phase 1: Create the Learning Styles Adapter Module 

1.1. Select a Learning Styles Model and extract the behaviour characteristics 

1.2. Map learning style behaviour to associated conversational tutoring style 

1.3. Map learning styles to teaching material categories 

1.4. Implement the generic adaptation algorithm for chosen learning styles model 

Phase 2: Design a Tutorial Conversation 

2.1. Capture the tutorial scenario and questions (including movies, voice, images, examples, etc.) 

from human tutors in a specific domain 

2.2. Determine the conversational structure/style  

2.3. Map tutorial questions onto the generic teaching material categories  

2.4. Score tutorial questions for adaptation to each learning style 

2.5. Script Conversational Agent natural language dialogue for each tutorial question using the 3-

level model  

Phase 3: Construct the ACITS Architecture 

2.1 Phase 1: Create the Learning Styles Adapter Module 

For the prototype Oscar ACITS, the Felder-Silverman (FS) model was adopted 

(Felder and Silverman, 1988) (see Chapter 5, section 2) as it has a small number of 

dimensions (which is more feasible to implement) and it describes the learning styles 

of engineering students who will make up the initial experimental group.  

2.1.1 Steps 1.1 to 1.3 

Following steps 1.1 and 1.2, the FS model was examined to extract the 

knowledge of learning styles and associated teaching styles. The resulting knowledge 

was summarised in a table of behaviour characteristics and related teaching styles 

(Table 9.2). In step 1.3, this knowledge was grouped to devise a list of categories of 

teaching materials to be included in the tutorial, which was then mapped to the FS 

learning styles (Table 9.3). Chapter 9 described these steps of the methodology with 

examples from the analysis of the FS model.  

2.1.2 Step 1.4: Implement the Generic Adaptation Algorithm for Chosen Learning 

Styles Model 

The final step in phase 1 (step 1.4) was to implement the generic algorithm 

(Chapter 9, Table 9.4) that decides the most appropriate type of adaptation to be 

applied for each student‟s individual learning path.  

The FS model has four learning style dimensions, each with two opposite 

learning styles, so there are 8 learning styles plus the Neutral learning style. Learners 

are placed along each FS dimension according to the strength of their preference for 
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a particular learning style, measured using the Index of Learning Styles (ILS) 

instrument (Felder and Soloman, 1997). In Chapter 5 (Section 3), a study of the 

results of 108 ILS questionnaires showed them to be consistent with the FS model, 

which states that on the Visual/Verbal scale most engineering students were found to 

be Visual learners (Felder and Silverman, 1988). Considering that Oscar ACITS 

tutorials are conducted using a conversation (Verbal) with supporting images and 

diagrams throughout (Visual), and the Massa and Mayer (2006) study shows no 

difference in learning achievement when adapting multimedia teaching to 

Visual/Verbal learners, it was decided to exclude the Visual/Verbal FS dimension. 

Therefore for the Oscar ACITS prototype adaptation was implemented for the 

remaining three FS learning style dimensions: Sensor/Intuitor, Active/Reflective and 

Sequential/Global. 

The Oscar ACITS adaptation strategy states that learners with a neutral learning 

style class are given learning material adapted to a mixture of styles. In the FS model, 

neutral learners are defined as those with an ILS questionnaire score of 1 or 3 for a 

learning style, indicating a low preference and placing them at the centre of the 

dimension (as described in Chapter 2). 

Table 10.2 shows a pseudo-code representation of the adaptation algorithm 

applied to the three selected dimensions of the FS model. The algorithm receives a 

list of student learning style scores and a list of question scores and returns the best 

fitting adaptation for each question. This completes phase 1 of the methodology, the 

implementation of the Learning Styles Adapter module. 

2.2 Phase 2: Design a Tutorial Conversation 

For the Oscar ACITS prototype, the tutorial conversation designed for the Oscar 

PCITS prototype (Chapter 7) was reused and modified. The subject domain of the 

database Sequential Query Language (SQL) was chosen because undergraduate 

computing students, for whom SQL is compulsory, make up the study group. The 

tutorial conversation was designed following phase 2 of the methodology, as 

described in the following sections.  

2.2.1 Steps 2.1 and 2.2 

For the Oscar ACITS prototype, it was decided to reuse the tutorial developed for 

the Oscar PCITS prototype, which delivers an SQL revision tutorial.  
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Table 10.2. Domain-independent Pseudo-code Adaptation Algorithm Applied to the FS model 

Let: 

 the question scores be qSNS, qINT, qACT, qREF, qSEQ, qGLO, qNEU,  

 the student learning style classes be cSI, cAR cSG  

 the student scores be sSI, sAR, sSG,  

 the student question scores be aSI, aAR, aSG (where SI, AR and SG are the classes of learning style 

dimensions),  

 the set of winning student question scores be W. 

 

IF ((cSI==NEU) AND (cAR==NEU) AND (cSG==NEU))  

THEN  

 {adapt_to_class(NEU);}  // if all neutral learning styles, choose neutral adaptation 

ELSE      // calculate student question scores 

{  

 IF (cSI==SNS) THEN aSI=qSNS*sSI 

  ELSE IF (cSI==INT) THEN aSI=qINT*sSI 

  ELSE aSI=0; 

 IF (cAR==ACT) THEN aAR=qACT*sAR 

  ELSE IF (cAR==REF) THEN aAR=qREF*sAR 

  ELSE aAR=0; 

 IF (cSG==SEQ) THEN aSG=qSEQ*sSG 

  ELSE IF (cSG==GLO) THEN aSG=qGLO*sSG 

  ELSE aSG=0;  

 W = get_max_list(aSI, aAR, aSG);  // get list of winners – maximum scores 

 IF size(W) == 1 THEN   // if only one winner adapt to that class  

  { 

   IF MAX(aSI, aAR, aSG) == aSI THEN adapt_to_class(cSI); 

   ELSE IF MAX(aSI, aAR, aSG) == aAR THEN adapt_to_class(cAR); 

   ELSE adapt_to_class (cSG); 

  } 

 ELSE       // if >1 winner adapt to max student score in W 

  { 

   X = get_max_list_from(sSI, sAR, sSG,W); 

   IF size(X) == 1 THEN  // if only one winner adapt to that class  

   { 

    IF MAX(sSI, sAR, sSG) == sSI THEN adapt_to_class(cSI); 

    ELSE IF MAX(sSI, sAR, sSG) == sAR THEN adapt_to_class(cAR); 

    ELSE adapt_to_class (cSG); 

   } 

   ELSE    // if >1winner adapt to max question score in W 

   X = get_max_list_from(qSI, qAR, qSG,W); 

   IF size(X) == 1 THEN  // if only one winner adapt to that class  

   { 

    IF MAX(qSI, qAR, qSG) == qSI THEN adapt_to_class(cSI); 

    ELSE IF MAX(qSI, qAR, qSG) == qAR THEN adapt_to_class(cAR); 

    ELSE adapt_to_class (cSG); 

   } 

   ELSE    // if more than one winner adapt to Random in W 

    adapt_to_class(RANDOM(W)) 

  } 

} 

 

Key:  

  SI=Sensor/Intuitive; AR=Active/Reflective; SG=Sequential/Global 

  NEU=Neutral; SNS=Sensory; INT=Intuitive; ACT=Active; REF=Reflective; SEQ=Sequential;  

  GLO=Global 
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For step 2.1, the original capture of the tutorial conversation is described in 

Chapter 7, Section 4.1. The tutorial scenario consisted of ten tutorial questions (Table 

7.2) with resources that support the adaptation of tutoring to different learning styles 

and a multiple choice question (MCQ) test. 

For step 2.2, the captured tutorial conversation was structured by applying the 3-

level model of a tutorial conversation, as described in Chapter 7, Section 4.2. Then 

the tutorial questions were mapped to the generic question templates, as described in 

Chapter 7 Section 4.3. 

The resulting tutorial conversation was documented in the tutorial conversation 

blueprint document. Appendix 3 shows an excerpt of the tutorial conversation 

blueprint. 

2.2.2 Step 2.3: Map Tutorial Questions onto the Generic Teaching Material Categories  

In Step 2.3, the captured tutorial conversation was tailored to make it suitable for 

an adaptive tutorial. This was done by mapping the tutorial questions to the generic 

teaching material categories (Chapter 9, Table 9.3). Next, this mapping was 

reorganised to highlight the available adaptations per question, and learning styles 

requiring additional adaptive teaching material. Further interviews with human tutors 

were undertaken to gather more material to improve the adaptations in the SQL 

tutorial, such as introductions and more examples. The additional resources were 

then documented in the tutorial conversation blueprint document, agreed with 

human tutors and the mappings updated. Table 10.3 shows the final mapping of the 

SQL revision tutorial to learning style adaptations, derived from the mapping to 

teaching material categories. Every question also has a Neutral learning style 

adaptation which includes a mixture of styles. 

As many tutor material categories as possible were included in the design of each 

tutorial question. It is recognised that to make a coherent learning experience, some 

tutorial questions may not lend themselves to adaptation (e.g. Q3 in Table 10.3 has 

only two adaptations other than Neutral). This demonstrates the strength of the 

adaptation algorithm in considering both the individual question adaptations and 

student learning styles strengths over algorithms that require adaptive material for all 

learning styles, or those that adapt to just one dimension (see Chapter 9, section 3). 
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Table 10.3. Learning Style Adaptations in the SQL Revision Tutorial 

Question Neutral Active Reflective Sequential Global Sensor Intuitive 

Introduction        
Q1        
Q2        
Q3        
Q4        
Q5        
Q6        
Q7        
Q8        
Q9        
Q10        

2.2.3 Step 2.4: Score Tutorial Questions for Adaptation to Each Learning Style 

In Step 2.4, each tutorial question was assigned a score for every learning style 

representing the number (or strength) of opportunities for adaptation to that learning 

style. This was done for each question by simply counting the number of times each 

category of teaching material related to a learning style was available. Where no 

adaptations existed for a learning style, the score assigned was zero. The neutral 

learning style was always assigned a score of zero. Table 10.4 shows the final scores 

for the SQL revision tutorial. 

Table 10.4. Question Adaptation Scores 

Question Active Reflective Sequential Global Sensor Intuitive 

Introduction 0 0 1 2 1 1 

Q1 4 1 1 1 3 3 

Q2 2 1 1 1 2 2 

Q3 2 0 0 0 2 0 

Q4 5 3 3 1 5 4 

Q5 9 5 11 11 9 11 

Q6 3 2 2 1 3 3 

Q7 4 2 2 0 4 3 

Q8 3 2 2 0 3 2 

Q9 7 3 7 7 7 3 

Q10 4 2 2 0 4 2 

2.2.4 Step 2.5: Script Conversational Agent Natural Language Dialogue for each 

Tutorial Question using the 3-Level Model  

The development of scripts for the InfoChat CA (Convagent Ltd., 2005) is fully 

described in Chapter 7, Section 4.4. For the Oscar ACITS prototype, whilst the 
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organisation of the scripts over three levels into separate contexts stayed the same, 

multiple versions of the CA scripts representing different adaptations were required. 

During this step, for each learning style the Oscar PCITS prototype scripts were 

amended to match the mapped teaching material categories for that learning style (as 

documented in the tutorial conversation blueprint). For example for the Active 

learning style, CA scripts for tutorial questions based on the hints question template 

(see Chapter 7, Table 7.2) were amended to replace any detailed explanations of 

theory with hints based on practical examples and exercises.  

For each tutorial question, a CA script name was assigned to each learning style 

and to the Neutral learning style. Where a question score was zero for a learning 

style (i.e. no adaptation existed) the neutral CA script was assigned. The script names 

and scores were recorded for inclusion in the tutorial knowledge base component, 

which will be described in Section 2.3.  

2.3 Phase 3: Construct the ACITS Architecture 

The Oscar ACITS architecture proposed in Chapter 9, shown in Figure 10.1, was 

adopted. Oscar ACITS‟ modular structure allowed several of the components 

developed for the prototype Oscar Predictive CITS (described in Chapter 7, Section 

5) to be reused, speeding up development. 

Controller
Graphical User 

Interface

Conversational 

Agent

Learning Styles 

Adapter

Scripts

User

Student Model

Tutorial 

Knowledge Base

 

Figure 10.1. Oscar ACITS Architecture 

Controller 

The controller manages the tutorial and communicates with all components. The 

controller developed for the Oscar PCITS prototype (Chapter 7, section 5) was 
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reused but changed. For the Oscar ACITS prototype, additional functionality relating 

to dynamically selecting adaptations was required, as follows: 

 At the start of each tutoring question, retrieve the student learning style scores 

and tutorial question scores, and pass to the learning styles adapter 

component. 

 On receiving the start context from the learning styles adapter, pass to the CA 

and start the conversation.  

Apart from managing individual adaptations (as described above), the 

controller‟s management of the tutorial remained the same as in the Oscar PCITS 

prototype.  

 

Graphical User Interface (GUI) 

For the Oscar ACITS prototype, the GUI component created for the Oscar PCITS 

prototype (Chapter 7, section 5) was reused and required no changes. 

 

Student Model 

For the Oscar ACITS prototype, the student model developed for the Oscar 

PCITS prototype (described in Chapter 7, Section 5) was extended by adding the 

Session table to record the adaptations. This enables detailed information about the 

adaptive student learning experience to be analysed. The Oscar ACITS prototype 

student model class diagram is shown in Figure 10.2.  
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Figure 10.2. Student Model Class Diagram 

 The Session table has a record for every tutorial question a student has 

attempted, and records the adaptation applied. 
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Conversational Agent (CA) 

The CA module from the Oscar PCITS prototype, described in Chapter 7, 

Section 5, was reused for the Oscar ACITS prototype and required no changes. The 

design of the CA scripts followed step 2.5 of phase 2 of the Oscar ACITS 

methodology, described in Section 2.2.4. 

 

Tutorial Knowledge Base 

This module was developed by following phase 2 of the Oscar ACITS 

methodology, as described in Section 2.2. For the Oscar ACITS prototype, the 

tutorial knowledge base developed for the Oscar PCITS prototype (described in 

Chapter 7, Section 5) was extended to include a new table recording the adaptation 

details for each tutorial question, as shown in Figure 10.3. The adaptation scores are 

used by the Learning Styles Adapter module to determine the best adaptation for a 

tutorial question. The adaptation start contexts are passed to the CA at the start of 

each tutorial question. 

Modules

PK ModID

 Qcount

 TestQcount

Tests

PK ModID

PK Qno

 Qtext

 Atext

 Btext

 Ctext

 Dtext

 Answer

Adaptations

PK ModID

PK Qno

PK LS

 Score

 StartContext

1..1 0..*1..11..*

 
Figure 10.3. Tutorial Knowledge Base Class Diagram 

 The modules table was amended to remove the StartContext column, which is 

now recorded in the adaptations table. 

 The adaptations table has a record for each learning style for each module 

tutorial question, recording the adaptation score and the name of the CA 

script to start with (as there may be several linked contexts for a question, see 

section 2.2.4). 

The tutorial knowledge base is related to (but not linked to) the CA scripts that 

deliver the tutorial conversation. 

 

Learning Styles Adapter 

The learning styles adapter module contains the implementation of the adaptation 

algorithm. The learning styles adapter receives the question adaptation scores for 

each learning style from the tutorial knowledge base and the student learning style 
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scores from the student model (via the controller) and determines the best adaptation 

for each tutorial question. This module was developed by following phase 1 of the 

Oscar ACITS methodology. 

 

This completes the development of the Oscar ACITS prototype. The next section 

will show some example dialogue that demonstrates how the tutoring is adapted for 

different learners. 

2.4 Example Adaptive Learner Dialogues 

Examples of the Oscar ACITS tutoring style adaptation can be seen in the 

dialogue snippets logged during the experiments (Table 10.5 and Table 10.6).  

Table 10.5. Dialogue Snippet Logged During the Experiments: Adapting to a Sequential 

Learner. 

Utterance Dialogue 

87. Oscar> Now let's see if you can remember how to write a query which chooses 

values between a range. Look at the employees table. We need a query which 

displays the first and last names of all employees hired between 1 January 

1994 and 1 January 1995. The first step in writing a query is to state the 

information you need. For our query to display the first and last names of all 

employees hired between 1 January 1994 and 1 January 1995, which 

columns do we need? 

88. Student> dont know 

89. Oscar> Look again at the columns in the EMPLOYEES table. If we want to display 

the first and last names of all employees hired between 1 January 1994 and 1 

January 1995, which columns do we need? 

90. Student> first_name, last_name, hire_date 

91. Oscar> That's right, we need FIRST_NAME and LAST_NAME, so the first part of 

our query is shown in the picture. The next step in writing a query is to state 

which table the information is retrieved from. For our query to list the first 

and last names of all employees hired between 1 January 1994 and 1 January 

1995, type in the name of the table our information will be taken from. 

92. Student> employees 

93. Oscar> That's right, the table is EMPLOYEES. The last part of writing a query is the 

WHERE clause, which lets us restrict the rows selected to only those 

satisfying one or more conditions. We want to restrict the employees 

displayed to only those hired between 1 January 1994 and 1 January 1995. 

There are a number of ways to write this restriction in ORACLE SQL as 

dates can be represented in different formats. Type in the WHERE clause 

which limits the employees in this way. 

94. Student> where hire_date in('01-01-1994' && '01-01-1995') 

95. Oscar> One way to tackle this query is to use the BETWEEN keyword to specify a 

range. Complete the last line of the query shown - type in the WHERE clause 

to limit the employees displayed to those hired between 1 January 1994 and 

1 January 1995. 

96. Student> '01-01-1994' and '01-01-1995' 

97. Oscar> OK, excluding date conversion functions, ORACLE recognises dates in 3 

basic formats: '01-JAN-94', '01-January-94' and '01-January-1994'.  The 

picture shows two different ways in which the WHERE clause could have 

been written to give the right results. 
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Both example dialogues (Table 10.5 and Table 10.6) are taken from the same 

tutorial question where students are asked to write an SQL query, and both students 

were assigned to the Adapt experimental group (i.e. the adaptation matched their 

learning style). The student dialogue in Table 10.5 is an example of the tutoring style 

adapted to a Sequential learner, where Oscar guides the student through the steps of 

the query. Table 10.6 in contrast shows a student dialogue with tutoring adapted for a 

Global learner, where the student writes a query without initial guidance and learns 

from the feedback given about errors in their solution. 

Table 10.6. Dialogue Snippet Logged During the Experiments: Adapting to a Global 

Learner. 

Utterance Dialogue 

64. Oscar> Now let's see if you can remember how to write a query which chooses 

values between a range. Look at the employees table. Please type in a query 

which displays the first and last names of all employees hired between 1 

January 1994 and 1 January 1995. 

65. Student> select First_name, last_name from Employees where Hire_date between 1-

JAN-1944 and 1-Jan-1995; 

66. Oscar> I'm afraid your WHERE clause is not quite right. Check your spelling and 

type in the last part of our query which displays the first and last names of all 

employees hired between 1 January 1994 and 1 January 1995. 

67. Student> select First_name, last_name from Employees where Hire_date between 1-

JAN-1994 and 1-Jan-1995; 

68. Oscar> No. Excluding date conversion functions, ORACLE recognises dates in 3 

basic formats: '01-JAN-94', '01-January-94' and '01-January-1994'.  The 

picture shows two different ways in which the WHERE clause could have 

been written to give the right results. 

3 Experimental Design 

In order to validate the methodology and architecture proposed in Chapter 9, an 

empirical study was undertaken in a real-world natural learning environment. The 

study evaluated the success of Oscar ACITS in adapting its tutoring to individuals‟ 

learning styles. This section will describe the design of the experiment, including the 

hypotheses to be tested and method of evaluation. 

3.1 Hypotheses to be Tested 

There are two hypotheses to be tested, which relate to the success of the Oscar 

ACITS adaptation, as follows: 

 H1: it is possible to improve learning from an automated online 

conversational tutorial by presenting tutor material adapted to a student’s 

learning style.  
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Can any evidence be found to support the learning styles theory in suggesting 

that adapting teaching material to match preferred learning styles improves 

learning? A common measure of learning is learning gain (Kelly and Tangney, 

2006; Graesser et al., 2003; Lee et al., 2004). Learning gain could be measured in 

a number of ways, for example an improvement in test scores or the number of 

tutorial questions a learner answers correctly. To test this hypothesis it will be 

necessary to compare learning gain for a group of learners who experience a 

tutorial adapted to suit their learning styles with a control group. 

 

 H2: it is possible to improve the efficiency of an automated online 

conversational tutorial by presenting tutor material adapted to a student’s 

learning style. 

Is there any evidence that adapting teaching material to match preferred 

learning styles improves the efficiency of learning? Efficiency may be measured 

in a number of ways, for example by comparing the duration of a conversational 

tutoring session or the amount of discussion taking place. 

3.2 Evaluation Criteria 

In addition to evaluating the effect of the Oscar ACITS adaptation to learning 

styles by testing the hypotheses stated in section 3.1, Oscar ACITS‟ ability to tutor 

effectively will be investigated. Evaluation of the Oscar ACITS will therefore take 

place on three levels: 

1. Adaptation: Can Oscar ACITS successfully adapt its tutoring to 

individuals‟ learning styles? Does the Oscar ACITS adaptation to learning 

styles improve the learning gain or efficiency of the tutoring? 

2. User evaluation: How successful do learners believe Oscar ACITS is and 

would they use Oscar ACITS in practice? 

3. Learning gain: Does Oscar ACITS successfully tutor learners, i.e. do they 

learn anything? 

3.2.1 Adaptation to Learning Styles 

This criterion evaluates the second main research question (stated in Chapter 1, 

Section 1), „Does adapting to a student‟s learning style during a two-way tutoring 

discourse with a conversational agent tutor improve learning?‟. In order to evaluate 
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whether the Oscar ACITS adaptation to learning styles has a positive effect on the 

tutoring, it is necessary to split participants into different experimental groups. A 

match/mismatch approach was adopted (Tsianos 2008), whereby participants are 

randomly assigned to follow a tutorial either matched or mismatched to their learning 

styles. The match/mismatch approach was considered to be a better test of the 

adaptation than an approach where one control group experiences a basic tutorial, as 

it was concluded that any group experiencing additional learning material would be 

likely to show improved learning.  

Each participant will be asked to complete the ILS questionnaire, and depending 

on their learning styles will be unknowingly assigned to one of three experimental 

groups, as follows: 

 Learners whose learning styles are at the centre of all three FS scales (i.e. 

there is no strong preference, their ILS scores being 1 or 3) will be assigned 

to the Neutral-Adapt group. These learners will follow the neutral adaptation 

learning path which contains a mixture of styles. 

 Learners with at least one preferred learning style will be randomly assigned 

to either the Adapt or Mismatch group according to a 2:1 ratio. These learners 

will follow an adaptive learning path assigned by the algorithm. Learners in 

the Mismatch group will be deliberately presented with learning material 

unsuited to their learning styles. 

The average learning gain and efficiency of the tutorials will be compared for 

each experimental group, to evaluate whether adapting to learning styles positively 

affects the success of the tutoring. 

3.2.2 Qualitative User Evaluation 

In addition to evaluating the Oscar ACITS adaptation approach, qualitative user 

feedback will be gathered at the end of the Oscar ACITS tutorial. The user evaluation 

feedback questionnaire designed for the Oscar PCITS study (and described in 

Chapter 8, Section 2.2.3) will be reused to collect participant feedback. 

3.2.3 Learning Gain 

In order to additionally investigate whether participants have increased their 

knowledge at the end of the tutorial, learning gain will be measured using a pre-test 

and post-test approach (Kelly and Tangney, 2006; Graesser et al., 2003; Lee et al., 
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2004). The same Multiple Choice Question (MCQ) test will be completed before and 

after the tutoring conversation. The MCQ test scores will be compared to establish 

whether there is any improvement as follows: 

Eq. 1. Learning gain = post-test score - pre-test score 

4 Experimental Methodology 

This section describes the experimental methodology followed to test where 

Oscar ACITS can deliver an effective conversational tutorial, and whether adapting 

to learning styles has a positive effect on the tutoring. As described in Section 2, the 

Oscar ACITS prototype was implemented to deliver an adaptive conversational 

tutorial for SQL revision. Oscar ACITS was integrated into a final year 

undergraduate module within the Department of Computing and Mathematics at 

Manchester Metropolitan University. An uncontrolled, real-world experiment was 

undertaken in a natural learning environment. 

4.1 Description of Participants 

There were 72 participants who were final year undergraduate students studying 

for a computer science degree. The participants had previously been taught SQL, 

although most would not have used SQL for at least six months. No participant had 

any previous experience using Oscar ACITS. 

4.2 Methodology 

The Oscar ACITS SQL Revision tutorial was integrated into a final year 

undergraduate module. During timetabled laboratory classes, participants were asked 

to refresh their SQL knowledge by completing the revision tutorial. In order to 

promote the completion of the tutorial, participants who completed it were awarded 2% 

of the module mark in recognition of engagement. Participants started the SQL 

revision tutorial during the laboratories, and those who did not complete the tutorial 

in a single session were able to continue the tutorial via the Internet at a convenient 

time. 

Each participant was unknowingly assigned to one of three experimental groups 

(Neutral-Adapt, Adapt and Mismatch) as follows: 
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 Participants with no strong preference for all three FS dimensions (i.e. their 

ILS scores were 1 or 3) were assigned to the Neutral-Adapt group. These 

participants followed the neutral adaptation learning path, which contains a 

mixture of styles. 

 Participants with at least one preferred learning style were randomly assigned 

to either the Adapt or Mismatch group according to a 2:1 ratio. These 

participants followed an adaptive learning path assigned by the algorithm and 

were given tutor material favouring particular learning styles (e.g. containing 

explanations of theory rather than practical examples). Participants in the 

Mismatch group were deliberately presented with learning material unsuited 

to their learning styles by reversing their learning style scores for all FS 

dimensions. For example, a participant with learning style scores of Active 9 

and Reflective 2 was presented with learning material adapted to the scores 

Active 2 and Reflective 9. 

Each participant followed an individual learning path depending on their 

experimental group, learning styles, dialogue and existing knowledge. The 

participant interaction with Oscar ACITS during the experiment will be described in 

Section 4.3. During the SQL Revision tutoring session, ten questions were posed, 

requiring eighteen answers (as some questions incorporated multiple steps or 

questions). Each participant‟s tutoring dialogue, adaptations, timings, knowledge and 

other behaviour factors were recorded in log files as described in Section 2.3. 

Following the study, the data gathered was analysed and the experimental group 

averages were compared to assess the success of the adaptation mechanism, as will 

be detailed in Section 4.4. In addition, the tutoring success was evaluated in terms of 

participant learning gain and participant experiences reported in the feedback 

questionnaires. 

4.3 Participant Interaction 

Figure 10.4 illustrates the stages involved in the participant interaction with 

Oscar ACITS during the study. As shown in Figure 10.4, after registering 

participants completed the formal ILS questionnaire before beginning the tutorial. 

Next, students completed a pre-tutorial multiple choice question (MCQ) test, known 

as the pre-test, to assess existing knowledge before starting the conversational 

tutorial. The conversational SQL revision tutorial took on average approximately 43 
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minutes, with each participant following an individual learning path depending on 

their knowledge, learning styles and experimental group. After completing the 

tutorial conversation, students repeated the same MCQ test, known as the post-test, 

and were then presented with some tutor feedback and a comparison of their test 

results (indicating their learning gain). Finally, students were asked to complete a 

user evaluation questionnaire. 

Anonymous Registration

Formal ILS Questionnaire

Pre-tutorial MCQ Test 

(‘pre-test’)

Conversational Tutoring 

Session

Post-tutorial MCQ Test 

(‘post-test’)

Test Results Comparison 

and Oscar’s Feedback

User Evaluation 

Questionnaire

START

END

 

Figure 10.4. Stages in the Experimental Oscar ACITS Tutorial Interaction 

4.4 Experimental Analysis 

The data gathered from the participant interactions was analysed to explore 

whether the Oscar ACITS adaptation to learning styles improved the tutoring. Seven 

experiments were designed to test the two hypotheses (Section 3.1) and the results of 

each experimental group were compared to see if adapting to learning styles affected 

the tutoring. The analysis performed for each of the seven experiments will now be 

described. 

 

Experiment 1 – Correct Tutorial Answers 

This experiment tests hypothesis H1 by considering the performance of 

participants during the tutorial. For the ten tutorial questions posed, eighteen answers 
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were required as some questions incorporated multiple steps or questions. The 

number of correct answers given to tutoring questions was counted, and a score out 

of 18 assigned for each participant. Next, the average percentage score was 

calculated for each experimental group. The experimental group averages were then 

compared to determine whether there was any difference in performance related to 

the adaptation style. 

 

Experiment 2 – MCQ Test Score Improvement 

This experiment tests hypothesis H1 by considering the actual improvement in 

test scores from the pre-test to the post-test (defined in Eq. 1 (Section 3) as learning 

gain). Average test score improvements were calculated for each experimental group 

and then compared. 

 

Experiment 3 – MCQ Test Score Improvement/Opportunity 

Experiment 3 extends experiment 2, also testing hypothesis H1, by considering 

the average improvement in test scores as a percentage of the possible improvement. 

This measure is more accurate than experiment 2 as it also considers the opportunity 

for improvement, i.e. excludes those participants who achieved 12/12 in the pre-test. 

Improvements were calculated using the formula: 

Eq. 2.  
 learning gain 

 (questionCount - preTestScore) 
 

Average improvements for each experimental group were then compared. 

 

Experiment 4 – MCQ Test Questions Worse 

Experiment 4 tests hypothesis H1 by considering participants‟ performance in 

individual MCQ test questions rather than their overall scores. It is possible that in 

some cases the Oscar ACITS adaptive tutoring had a negative impact on learning. 

This experiment investigates whether there is any difference between experimental 

groups in the number of times, following the tutoring, participants performed worse 

in test questions. Questions where participants selected the correct answer in the pre-

test but the incorrect answer in the post-test were counted. The averages were then 

calculated for each experimental group using the formula: 

Eq. 3.  
 (worseCount/12) 

 groupSize 
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The results for each experimental group were then compared. 

 

Experiment 5 – MCQ Test Questions Better 

This experiment also tests hypothesis H1 by considering individual test questions, 

by counting the number of cases a participant‟s performance improved in questions, 

i.e. questions were answered incorrectly in the pre-test but correctly in the post-test. 

The averages were calculated for each experimental group using the formula:  

Eq. 4.  
 (betterCount/12) 

 groupSize 
 

The results for each experimental group were then compared. 

 

Experiment 6 – Session Duration 

Experiment 6 tests hypothesis H2 by considering the duration of the tutoring 

sessions. The average duration of the conversational tutoring sessions (in seconds) 

was calculated for each experimental group and then compared. 

 

Experiment 7 – Number of Interactions 

This experiment tests hypothesis H2 by considering the number of interactions 

(i.e. participant dialogue acts) during the tutorial. The average number of interactions 

during the tutorial was calculated for each experimental group and then compared. 

5 Results and Discussion 

This section will present the results of the study to validate the Oscar ACITS 

methodology and architecture presented in Chapter 9.  

5.1 Overall Results 

63 of the 72 participants fully completed the tutoring session; incomplete tutorial 

sessions were disregarded. Of the 63 complete tutorial sessions, one was disregarded 

as the participant had not engaged with the tutorial, answering „no‟ to all questions 

and selecting the same answer for all multiple choice test questions. Table 10.7 

shows the distribution of the 62 participants across experimental groups and the 

average (mean) test scores.  
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Table 10.7. Experimental Groups 

Experimental  

Group 

Number of  

Participants 

Average Pre-test  

Score (/12) 

Average Post-test  

Score (/12) 

Neutral-Adapt 10 8.7 10.7 

Adapt 32 8.6 10.8 

Mismatch 20 8.1 10.8 

Total 62 8.5 10.8 

 

In Table 10.7, the ten Neutral-Adapt participants had learning style results that 

showed no strong preference for a particular learning style (i.e. their styles were 

balanced in the centre of the scale), and followed a neutral adaptation learning path 

containing a mixture of styles. The Adapt group contained 32 participants who 

followed a learning path containing teaching material in a style adapted to their 

individual learning styles. The Mismatch group of 20 participants followed an 

adaptive learning path of teaching material that was mismatched to their learning 

styles. The Mismatch group had a slightly lower average pre-test score (out of 12), 

but the average post-test scores were approximately the same for all participants 

across the sample. 

On the whole, the Oscar ACITS tutorial made a positive improvement in 

participant test scores, with an average learning gain (calculated using Eq. 1) of 19% 

over the sample. 

Table 10.8 shows the distribution of learning styles across the Adapt and 

Mismatch groups. Two learning styles (Intuitive and Global) are not represented in 

the Mismatch group, which is sometimes unavoidable with random assignment to 

experimental groups and where not all learning style dimensions are evenly balanced.  

Table 10.8. Learning Style Distribution 

Learning  Adapt Group Mismatch Group 

Style n % of Total n % of Total 

Sensory 17 49 18 51 

Intuitive 4 100 0 0 

Active 11 69 5 31 

Reflective 7 70 3 30 

Sequential 9 56 7 44 

Global 5 100 0 0 

5.2 Experimental Results 

Table 10.9 reports the results of the seven experiments. All results were tested for 

difference between the experimental groups using the Kruskal-Wallis test (Kruskal 
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and Wallis,1952) with a confidence interval of 95%. The Kruskal-Wallis test is non-

parametric so it does not require normality and works with data represented as 

percentages (unlike the more common ANOVA). Each experiment will now be 

discussed individually. 

Table 10.9. Experimental Results 

Experiment Neutral-Adapt Adapt Mismatch Total  

1. Average correct tutorial answers 71% 73% 61% 69% 

2. Average actual MCQ test score improvement 17% 18% 22% 19% 

3. Average MCQ test score improvement/opportunity 61% 65% 62% 63% 

4. Average MCQ test questions worse 6% 3% 3% 3% 

5. Average MCQ test questions better 23% 21% 25% 23% 

6. Average duration of session (seconds) 2860 2632 2345 2576 

7. Average number of interactions 46 43 44 44 

 

 

Experiment 1 – Correct Tutorial Answers 

Participants in the Neutral-Adapt and Adapt groups have similar averages of 

correct answers given during the tutoring, of 73% and 71% respectively. However, 

the Mismatch group has a much lower average of only 61% correct answers, which is 

12% less than the Adapt group average. The Kruskal-Wallis test results gave a 

Kruskal-Wallis statistic of 10.31 and a p-value of 0.006, indicating a significant 

difference in the Mismatch group.  

The results suggest that participants who are presented with learning material 

matched to their learning styles perform significantly better (on average 12%) than 

participants presented with learning material that is not matched to their learning 

styles. The results therefore support the hypothesis H1 as the effectiveness of the 

tutoring has been improved by adapting to a participant‟s learning style and that 

adapting to learning styles has made a difference. 

 

Experiment 2 – MCQ Test Score Improvement 

It is good to note that the Oscar tutorial had a positive impact on test scores, with 

average improvements ranging from 17-22%. Participants in the Mismatch group 

made a 22% actual improvement in test scores, whereas those in the Adapt and 

Neutral-Adapt groups improved by 18% and 17% respectively. These results were 

not as expected, however as the possible improvement has not been taken into 

account ( i.e. participants who achieved 11/12 in the pre-test have less chance of 
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improvement as those achieving 5/12) they do not compare like with like. On further 

investigation it was found that the Mismatch group had a slightly lower average pre-

test score than the other two groups (see Table 10.7), which may explain the higher 

improvement in scores. Experiment 3 addressed this issue in additionally considering 

the opportunity for improvement. 

The Kruskal-Wallis statistic of 0.35 and p-value of 0.838 show there is no 

significant difference between groups for this experiment. Therefore the results of 

Experiment 2 provide no evidence supporting hypothesis H1. 

 

Experiment 3 – MCQ Test Score Improvement/Opportunity 

Participants in the Adapt group improved on average 3% more than those in the 

Mismatch group when considering the opportunity for improvement. This result 

supports the hypothesis H1that adapting to learning styles improves the effectiveness 

of tutoring. However, the Kruskal-Wallis statistic of 0.33 and p-value of 0.849 show 

that the difference is not significant. 

Participants in the Neutral-Adapt group improved the least, at 61%, with a 

sample average of 63% improvement in test scores when considering the opportunity 

for improvement. Again, the results show that the Oscar tutorial has had a positive 

effect on participant test scores.  

 

Experiment 4 – MCQ Test Questions Worse 

In considering individual test questions where participants performed worse the 

second time, it can be seen that there is no difference in the average occurrences for 

the Adapt and Mismatch groups, which are the same as the sample average at 3%, 

but the Neutral-Adapt group average was 6%. It is possible that this difference is 

down to chance, as there will always be an element of this in a multiple choice 

question test. The Kruskal-Wallis statistic of 1.99 and p-value of 0.37 show that there 

is no significant difference in the average number of participants performing worse 

across the experimental groups. Thus the results of Experiment 4 do not support 

hypothesis H1. 

  

Experiment 5 – MCQ Test Questions Better 

When considering actual test questions where participants‟ performance 

improved, there are small differences in the groups, with the Mismatch average 

improvement being 4% better than the Adapt group average, and 2% better than the 
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Neutral-Adapt group and whole sample averages. As in experiment 2, this is 

explained by the difference in opportunity for improvement across the groups, i.e. the 

Mismatch group gave more incorrect answers in the pre-test on average than the 

other groups. The Kruskal-Wallis statistic of 0.64 and p-value of 0.728 indicate there 

is no significant difference in individual test question improvements across the 

sample. Therefore, the results of Experiment 5 do not support the hypothesis H1. 

 

Experiment 6 – Session Duration 

On comparing the average duration of tutoring sessions across groups, 

participants in the Mismatch group completed the tutorial in less time than those in 

the Adapt and Neutral-Adapt groups (287 and 515 seconds; 4.7 and 8.6 minutes 

respectively) and the whole sample (231 seconds; 3.8 minutes). Differences in 

duration are expected, as the adaptive system presents an individual learning path for 

each participant based on their learning styles, their level of knowledge and their 

discourse during the tutorial. However this experiment aimed to see if there were 

notable differences in duration in a particular group, and the results show that there 

are no significant differences in duration. The Kruskal-Wallis statistic of 1.94 and p-

value of 0.379 suggest no evidence supporting hypothesis H2. A further analysis 

grouping participants by learning styles may reveal more significant differences, but 

even then each participant‟s learning path will be different.  

 

Experiment 7 – Number of Interactions 

There were very few differences in the average number of interactions (i.e. 

participant discourse acts) during the tutorial across the experimental groups, which 

ranged from 43 to 46. These results show that despite each individual‟s learning path 

being personalised, the tutorial was completed using approximately the same number 

of interactions in the conversation regardless of the adaptation method adopted. The 

Kruskal-Wallis statistic of 3.11 and p-value of 0.211 show there is no evidence to 

support hypothesis H2. 

5.3 Participant Evaluation 

50 participants completed the feedback questionnaire and the results show that in 

general Oscar ACITS was well received, understandable and helpful. Table 10.10 

shows the total results for questions 1 to 9, which were distributed similarly for all 

experimental groups except where stated in the following discussion.  
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Table 10.10. Participant Evaluation Questionnaire Results 

Please rate your experience of the following using 

the scale provided: 

SCALE 

 High 6 5 4 3 2 1 Low 

1. Instructions 62% 22% 12% 4% 0% 0% 

2. Screen layout and design 50% 18% 16% 10% 4% 2% 

3. Tutoring 52% 24% 16% 6% 2% 0% 

4. How well did Oscar understand you? 36% 20% 18% 20% 6% 0% 

5. Did you find the tutoring helpful? 74% 10% 10% 4% 0% 2% 

6. Was the conversation natural? 62% 12% 12% 6% 4% 4% 

7. Was the conversation frustrating? 42% 10% 10% 8% 8% 22% 

8. Do you feel Oscar helped you to revise? 68% 14% 8% 8% 0% 2% 

9. Would you use a resource like Oscar:       

a. Instead of attending a face-to-face tutorial? Yes 46% No 54%   

b. Instead of learning from a book? Yes 78% No 22%   

c. As well as classroom tutoring? Yes 86% No 14%   

d. Would you use the resource at all? Yes 92% No 8%   

The results in Table 10.10 show that 92% of participants (100% of the Adapt 

group) rated the tutoring highly (Question 3), with 52% awarding the tutoring the 

highest rating of 6. The 8% of participants who gave the tutoring a low rating came 

from the Mismatch and Neutral-Adapt groups. In Question 5, 94% of participants 

found the tutoring helpful (100% of the Adapt group), with 74% giving the highest 

rating of 6.  In Question 6, 86% of participants rated the tutoring conversation as 

natural, however in Question 7, 62% of participants found the conversation 

frustrating. Question 7‟s result may reflect the unspecific nature of the question, as 

participants may have been frustrated by their inability to answer questions or 

remember the topic. In Question 8, 90% of participants felt that Oscar ACITS had 

helped them to revise. Of the five participants (10%) who did not feel that Oscar 

ACITS helped them to revise, the participant giving the lowest score came from the 

Neutral-Adapt adaptation group, with the rest split equally between the Adapt and 

Mismatch groups. 

The results from Question 9, which investigates whether participants would 

choose to use a resource like the Oscar ACITS, are interesting, with nearly half 

(46%) of participants stating that they would use Oscar ACITS instead of attending a 

face-to-face tutorial. Notably fewer of the Mismatch group (36%) answered „yes‟ 

compared to 48% of the Adapt and 56% of the Mismatch groups. 78% of 

respondents stated that they would use Oscar ACITS instead of reading a book, and 

86% of participants (93% of the Adapt group) would use Oscar ACITS to support 
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classroom tutoring. Overall, 92% of participants stated that they would use a 

resource like Oscar ACITS if it were available. Answers did not vary much between 

experimental groups, suggesting that different styles of learning material did not 

significantly affect the user experience. From these results it can be concluded that 

most people found the Oscar ACITS tutoring helpful, and would use Oscar ACITS to 

support their studies.  

The three remaining questions on the feedback questionnaire were open 

questions, asking respondents to state what else could be included to assist in 

learning, three positive and three negative points about using Oscar. Where possible, 

the answers were grouped into categories, as reported in Table 10.11. Note that in 

Table 10.11 n is the number of participants who answered the question, and not the 

number of answers given.  

Table 10.11. Open Question Results 

 n % 

1. What else could Oscar have done to help you learn? 49 98 

More resources (examples, movies, pictures) 12 24 

More questions 8 16 

Nothing – it‟s great 8 16 

More detailed explanations 6 12 

2. Please state 3 positive points about using the Oscar computer tutor 47 94 

Good explanation/ revision 25 53 

Easy to use 21 45 

Helpful 17 36 

Human-like 16 34 

Convenient 12 26 

Different/ fun 10 21 

3. Please state 3 negative points about using the Oscar computer tutor 48 96 

GUI 12 25 

Oscar doesn‟t always understand  10 21 

Not enough help/ feedback 8 17 

Doesn‟t allow small SQL syntax errors 6 13 

 

When openly asked for comments, 53% of the group commented that Oscar gave 

good explanations and helped their revision. 45% of respondents stated that Oscar 

ACITS was easy to use and 36% found Oscar‟s tutoring helpful, with one participant 

saying “the stopping and trying to help before giving you the answer helped me to 

realise it myself”. 26% of the group liked the convenience of the Oscar ACITS, with 

21% finding it different and fun and 34% stated that the tutor was human-like. When 

asked for negative comments, 21% of respondents noted that Oscar did not always 
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understand their input and 17% thought that there was not enough help or feedback. 

13% of the group disliked the fact that Oscar ACITS did not allow small SQL syntax 

errors! Some quotes from the answers to open questions are shown below: 

 “easy to understand, natural, efficient” 

 “having a personal tutor all the time, goes at your pace” 

 “easy and fun way to learn, available 24/7 and wherever you are” 

 “tips when answered incorrectly” 

 “doesn‟t show the answer straight away even if you say don‟t know” 

 “should carry on if you get things wrong and not help as much” 

 “gave instant responses” 

 “not enough information given” 

 “it helped me build up basic statements sequentially” 

 “innovative and better than a lecture by far” 

 “highlights weak areas” 

 “more than one attempt allowed” 

 “didn‟t give me enough chances to answer correctly” 

 “it did not allow for slight syntax mistakes” 

 “lacks difficulty” 

5.4 Experimental Results Summary 

The results have shown that the Oscar ACITS adaptation to learning styles was 

successful in improving participant learning. H1 has been shown to be true, as the 

results of experiments 1 and 3 show that adapting to participant learning styles 

during an automated conversational tutorial improves learning gain by 12% and 3% 

respectively. The results of experiments 6 and 7, relating to H2, are inconclusive as 

there is no indication that adapting to participant learning styles during the tutorial 

affects the efficiency (i.e. duration or number of interactions) of learning. It is 

recognised that in an adaptive ACITS presenting each individual with a personalised 

learning path, a true comparison of duration or number of interactions is not possible.  

The additional evaluation criteria have shown that the Oscar ACITS successfully 

tutors learners, with an average learning gain of 19% across the sample. However it 

is recognised that any type of revision exercise is likely to lead to positive learning 

gain. The results of the participant evaluation showed that the Oscar ACITS was well 



Chapter 10: Adaptation to Learning Styles Experiments 

182 

received, with 94% of learners finding the tutoring helpful and 90% agreeing that 

Oscar helped them to revise. 92% of the sample said that they would use the Oscar 

ACITS resource, with 78% saying they would use Oscar instead of learning from a 

book. A surprising 46% of the sample said they would use Oscar in place of 

attending face-to-face tutorials. There were no significant differences in feedback 

between the experimental groups. 

In summary, the adaptation to learning styles was successful as experiment 1 

showed a statistically significant difference between the learning gain in the Adapt 

and Mismatch groups. 

A comparison with other CITS is not possible, as no other CITS can adapt their 

tutoring style to match an individual‟s learning styles.  

Chapter 4 described several ITS that adapt to learning styles, however evaluation 

of the effect of adaptation differs. For example, Sangineto et al. (2007) and Carver et 

al. (1999) adapt according to the Felder-Silverman model, but use qualitative 

feedback from a questionnaire to compare differences in non-adaptive and adaptive 

user experiences. In EDUCE (Kelly and Tangney, 2006), adaptation is to the 

Multiple Intelligence model (Gardner, 1983), and although learning gain was 

investigated, the results showed a higher learning gain for learners with mismatched 

learning material. The Adaptive Web System (Tsianos et al., 2008) adapts to 

cognitive style and emotion, and was found to improve learning performance.  

6 Conclusion 

This chapter has presented the implementation of the Oscar ACITS methodology 

and architecture proposed in chapter 9. The implementation drew on previous work 

in developing the Oscar PCITS prototype (described in Chapter 7) to speed up 

development. The analysis of the example learning styles model, the Felder-

Silverman model, was described in Chapter 9. The generic algorithm proposed in 

Chapter 9 was implemented for three of the FS dimensions, completing phase 1 of 

the development. The implementation of the second phase involved the reuse and 

modification of a tutoring conversation for SQL revision designed for the Oscar 

PCITS prototype (Chapter 7). Following phase 2 of the methodology, the tutorial 

conversation was reorganised, expanded and scored to create a number of versions of 

the tutoring conversation that adapt to different learning styles. The generic teaching 
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material categories proposed in Chapter 9 were used to aid development. Phase 3 of 

the methodology, constructing the Oscar ACITS architecture, involved the reuse and 

adaptation of a number of components developed for the Oscar PCITS prototype.  

The resulting prototype Oscar ACITS was then used to experimentally validate 

the methodology and architecture. A real life study involving real students in a 

natural learning environment was presented. During the experiment, 72 students 

were unknowingly assigned to experimental groups according to the adaptation to be 

applied – the Neutral-Adapt and Adapt groups experienced a tutorial suited to their 

learning styles, and the Mismatch group a tutorial that did not suit their learning 

styles. Each group‟s tutorials were compared in seven experiments designed to test 

two hypotheses, whether adapting to learning styles improved the effectiveness and 

efficiency of the learning experience. In general, the Oscar tutorial was well received 

by students, who improved their test scores by an average of 19%. 

The results have shown that there is a marked difference in the achievements of 

students in the Adapt group to those in the Mismatch group. In experiment 1 the 

Adapt group performed significantly better (on average 12%) than the Mismatch 

group during the tutorial, and in experiment 3 the Adapt group improved test scores 

on average 3% better than the Mismatch group. These results indicate that adapting 

to an individual‟s learning styles during tutoring improves learning. The other 

experiments produced inconclusive results which did not support the hypothesis that 

adapting to learning styles improved the efficiency of the learning. This hypothesis 

was difficult to test as, by definition, Oscar‟s adaptive nature means that student 

learning paths are individual and therefore cannot be compared. 

It is concluded that the adaptation algorithm developed for the Oscar ACITS has 

made a positive difference in student learning experiences. Students whose tutorial 

was adapted to match their learning styles performed on average 12% better and 

improved test scores by an average of 3% more than students who were presented 

with a tutorial not suited to their learning styles. The 12% better performance by the 

Adapt group in experiment 1 was shown to be a statistically significant difference. 

On the whole, the Oscar ACITS tutorial produced positive results, with test scores 

across the sample an average 19% better following the tutorial.  

Therefore, it may be concluded that the real-world experiments described 

successfully validate the generic Oscar ACITS Methodology and Architecture 

proposed in Chapter 9. 
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7 Chapter Highlights 

 Prototype Oscar ACITS developed following the generic methodology and 

architecture from Chapter 9. 

 Oscar ACITS delivers an online SQL revision tutorial and implicitly adapts to 

learning styles (FS model) during tutoring. 

 A study was undertaken to validate the Oscar ACITS methodology and 

architecture proposed in Chapter 9. 

 The study involved 72 participants, resulting in 63 completed tutorials and 50 

completed evaluation questionnaires. 

 7 experiments investigated whether the adaptation to learning styles improved 

the effectiveness and efficiency of the tutoring.  

 The results show that participants presented with learning material matched to 

their learning styles performed significantly better (on average 12%) than 

those whose learning material was not matched to their learning styles. 

 The results show a mean improvement in learning gain of 19% following the 

Oscar ACITS tutorial . 

 94% of participants found the tutoring helpful and 92% stated that they would 

use Oscar ACITS if it were available. 
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Chapter 11 Applying the Generic Oscar CITS to Different 
Models and Domains 

1 Introduction 

Oscar CITS is an intelligent tutoring system which aims to mimic a human tutor. 

Oscar CITS directs a mixed initiative tutorial conversation and dynamically predicts 

and adapts to an individual’s learning styles. This thesis has presented novel generic 

methodologies and architectures for creating an Oscar Predictive CITS (PCITS) and 

an Oscar Adaptive CITS (ACITS). The methodologies and architecture were 

validated by implementing prototype Oscar PCITS (Chapter 7) and Oscar ACITS 

(Chapter 10) systems to deliver a conversational SQL revision tutorial, adopting the 

Felder-Silverman (1988) learning styles model.  

This chapter summarises the steps required to apply the generic methodologies 

and architectures to other learning styles models and subject domains. A project 

management course is the example subject domain selected as it is a different to the 

computing tutorial implemented in Chapter 7 and 8. Project management is a 

business management discipline involving the planning, organisation and 

management of resources required to successfully achieve project goals and 

objectives within specified constraints (Larson and Gray, 2010). As described in 

Chapter 2, the Honey and Mumford (1992, 2006) learning styles model is often used 

in business domains, such as project management, and so is the example model 

selected. 

2 Creating an Oscar Predictive CITS  

The novel three phase methodology for creating an Oscar Predictive CITS is 

described in Chapter 6 using the Index of Learning Styles model as an example. 

Table 6.1 shows the steps of the methodology, and is repeated here in Table 11.1 for 

reference. In Chapter 7, an implementation of Oscar PCITS which follows this 

methodology is described, using the ILS model and the subject domain of the 

database language SQL. 
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Table 11.1. 3-Phase Methodology for Creating Oscar Predictive CITS. 

Phase 1: Create the Learning Styles Predictor Module 

1.1. Select a Learning Styles Model 

a. Reduce the learning styles model if necessary 

b. Extract the behaviour characteristics 

1.2. Map learning style behaviour to the conversational tutoring style 

1.3. Analyse the learning styles model for language traits 

1.4. Adapt the generic logic rules to predict learning styles 

Phase 2: Design a Tutorial Conversation 

2.1. Capture the tutorial scenario and questions (including movies, voice, images, examples, etc.) from 

human tutors in a specific domain 

2.2. Determine the conversational structure/style  

2.3. Map tutorial questions onto the generic question styles and templates  

2.4. Script Conversational Agent natural language dialogue for each tutorial question using the 3-level 

model  

2.5. Link tutorial dialogue to logic rules through Conversational Agent variables 

Phase 3: Construct the PCITS Architecture 

 

The domain of project management was selected to demonstrate the generic 

methodology as it is a business-related subject and thus different to the engineering-

related computing subject adopted in Chapters 7 and 8. The Honey and Mumford 

(1992, 2006) learning styles model (described in Chapter 2) was selected as it is 

commonly used in business and management education domains such as project 

management. Honey and Mumford define four learning styles (Activists, Reflectors, 

Theorists and Pragmatists) which describe the learning cycle by the four stages of 

experiencing, reviewing, concluding and planning. Learning styles are assessed using 

the Learning Styles Questionnaire (LSQ), which are then compared to a list of group 

norms to categorise the preference as very strong, strong, moderate, low or very low. 

The generic methodology to create an Oscar PCITS for a different learning styles 

model and a different subject domain will now be described. 

2.1 Phase 1: Create the Learning Styles Predictor Module 

Phase 1 involves the detailed analysis of a learning styles model, and its 

application to a tutorial conversation. There are many different models of learning 

styles, and the choice of an appropriate model for the learning environment is critical 

(see Chapter 2).  

 In Step 1.1, once the learning styles model has been selected, it should be 

reduced if possible and then the typical behaviour characteristics of different 

learners should be extracted. For example, Theorists are methodical and like 

structured situations with a clear purpose.  
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 In Step 1.2, the behaviour characteristics are mapped to the conversational 

tutoring style, and a list produced of behaviour traits to be captured. For example, 

Theorists prefer concepts and Pragmatists prefer practical techniques, so 

behaviour cues such as the score for theoretical and practical questions would be 

captured. 

 In Step 1.3, the learning styles model should be analysed and language traits 

extracted. For example, the words ‘practical’ and ‘example’ would be mapped to 

the Pragmatist style. 

 In Step 1.4, the generic logic rules would be adapted to select those relevant to 

the model and add or change rules to cover other requirements. For example, for 

the two generic logic rules given in Table 6.2 (page 71), example 1 relating to 

images does not apply to the LSQ and so would be removed, but example 2 has 

been adapted for the LSQ (as shown in Table 11.2). 

Table 11.2. Example Logic Rule to Adjust Learning Style Values Based on Tutoring 

Conversation. 

Example rule to test how comfortable the student is with words and with detail: 

IF  answer is given in the explanation text 

AND  student does not know the answer  

THEN  increase ACTIVIST; 

2.2 Phase 2: Design a Tutorial Conversation 

Phase 2 involves capturing the tutorial from expert human tutors and developing 

a tutorial conversation for the Oscar PCITS. 

 In Step 2.1, the tutorial scenario (including syllabus, tests and resources) is 

captured from human tutors and recorded in a tutorial conversation blueprint 

document. For example, a tutorial on project management may include a multiple 

choice test, and a number of examples, visuals and exercises related to the stages 

of a project. 

 In Step 2.2, the 3-level model of a conversation (Figure 6.1) is applied to the 

conversation script, and a list of Frequently Asked Questions (FAQs) and 

answers captured from human tutors. For example, ‘What is the waterfall 

model?’. 

 In Step 2.3, tutorial questions are mapped to the generic question styles and 

templates. For example, the generic question template with choice of approach 

(Figure 6.3) could be applied to a question about the stages of a project. 
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 In Steps 2.4 and 2.5, the tutorial conversation recorded in the tutoring 

conversation blueprint document is converted into conversational agent scripts 

and linked to the logic rules, as described in Chapter 6, section 3.2. 

2.3 Phase 3: Construct the PCITS Architecture 

In phase 3 of the methodology, the generic Oscar PCITS architecture (repeated 

for reference in Figure 11.1) is constructed as described in Chapter 6, section 4. As 

the Oscar PCITS architecture is modular, all components can be reused. To adapt the 

system it is only necessary to replace the Learning Styles Predictor (developed in 

Phase 1) and the Tutorial Knowledge Base and CA scripts (developed in Phase 2). 

Controller
Graphical User 

Interface

Conversational 

Agent

Learning Styles 

Predictor

Scripts

User

Student Model

Tutorial 

Knowledge Base

 

Figure 11.1. Generic Oscar PCITS Architecture 

This phase completes the development of an Oscar Predictive CITS for a 

different learning styles model and subject domain. 

3 Creating an Oscar Adaptive CITS  

The novel three phase methodology for creating an Oscar Adaptive CITS is 

described in Chapter 9 using the Index of Learning Styles model as an example. 

Table 9.1 shows the steps of the methodology, and is repeated here in Table 11.3 for 

reference. In Chapter 10, an implementation of Oscar ACITS using the ILS model 

and the subject domain of the database language SQL is described. 



Chapter 11: Applying the Generic Oscar CITS to Different Models and Domains 

189 

Table 11.3. 3-Phase Methodology for Creating Oscar Adaptive CITS. 

Phase 1: Create the Learning Styles Adapter Module 

1.1. Select a Learning Styles Model and extract the behaviour characteristics 

1.2. Map learning style behaviour to associated conversational tutoring style 

1.3. Map learning styles to teaching material categories 

1.4. Implement the generic adaptation algorithm for chosen learning styles model 

Phase 2: Design a Tutorial Conversation 

2.1. Capture the tutorial scenario and questions (including movies, voice, images, examples, etc.) from 

human tutors in a specific domain 

2.2. Determine the conversational structure/style  

2.3. Map tutorial questions onto the generic teaching material categories  

2.4. Score tutorial questions for adaptation to each learning style 

2.5. Script Conversational Agent natural language dialogue for each tutorial question using the 3-level 

model  

Phase 3: Construct the ACITS Architecture 

 

The generic methodology to create an Oscar ACITS will now be outlined again, 

using the Honey & Mumford (1992, 2006) LSQ and the project management domain 

as examples. 

3.1 Phase 1: Create the Learning Styles Adapter Module 

Phase 1 involves the selection and analysis of a learning styles model to create 

the Learning Styles Adapter module. Steps 1.1 and 1.2 are similar but not identical to 

those steps in the methodology described in section 2. 

 In Step 1.1, the typical behaviour characteristics described in the learning styles 

model should be extracted. For example, Pragmatists like to try out and practice 

techniques.  

 In Step 1.2, the extracted behaviour characteristics are mapped to the preferred 

conversational tutoring style. For example, Theorists prefer concepts so a 

matched teaching style would be ‘Present principles rather than examples’. 

 In Step 1.3, learning styles should be mapped to the generic teaching material 

categories given in Table 9.3, and the categories expanded if necessary. For 

example, Pragmatists like to try out and practice techniques so would be linked to 

the teaching material category 5, Practical exercises. 

 In Step 1.4, the generic adaptation algorithm must be implemented for the 

selected learning styles model. For example, the LSQ produces scores between 0 

and 20 for each of the four dimensions. In the LSQ model, neutral learners with a 

very low preference for the dimension are classified using norms as the bottom 

10% of scores, and so the scoring has different meanings for each dimension. For 

example, a score of 11 for the Reflector dimension is classed as ‘low preference’ 
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but for the Activist dimensions is classed as ‘strong preference’. However, these 

differences are easily incorporated into the implementation of the adaptation 

algorithm, as the only requirements are scores for learning styles and scores for 

tutorial questions. It is a simple matter to recode the scoring of learning styles, if 

thought necessary, by grouping scores into the five classes (e.g. ‘low preference’) 

identified in the model. 

3.2 Phase 2: Design a Tutorial Conversation 

Phase 2 involves capturing the tutorial from expert human tutors and developing 

several versions of the tutorial conversation for the Oscar ACITS to incorporate 

different teaching styles. 

 In Step 2.1, the tutorial scenario (including syllabus, tests and resources) is 

captured from human tutors and recorded in a tutorial conversation blueprint 

document, as described in section 2.2. 

 In Step 2.2, the 3-level model is applied to the conversation script, a list of FAQs 

and answers captured from human tutors and the generic question styles and 

templates applied, as described in section 2.2 (Steps 2.2 and 2.3).  

 In Step 2.3, tutorial questions are mapped to the generic teaching material 

categories, resulting in a list of available adaptations for each learning style for 

each question. For example, a question asking learners to produce a project plan 

for making and serving a cup of tea would be mapped to the teaching material 

category 5, Practical exercises.  

 In Step 2.4, each question is given a score for each learning style representing the 

strength of its adaptation, i.e. the number of opportunities for adaptation. For 

example, a question mapped to category 5, practical exercises would result in a 

score of 1 for the Pragmatist learning style. 

 In Step 2.5, the tutorial conversation recorded in the tutoring conversation 

blueprint document is converted into conversational agent scripts which are 

organised by learning style adaptation, as described in Chapter 9, section 4.2. 

3.3 Phase 3: Construct the ACITS Architecture 

In phase 3 of the methodology, the generic Oscar ACITS architecture (repeated 

for reference in Figure 11.2) is constructed as described in Chapter 9, section 5. As 

with the Oscar PCITS, the Oscar ACITS architecture is modular meaning all 
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components can be reused. To adapt the system it is only necessary to replace the 

Learning Styles Adapter (developed in Phase 1) and the Tutorial Knowledge Base 

and CA scripts (developed in Phase 2). 
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Figure 11.2. Generic Oscar ACITS Architecture 

This phase completes the development of an Oscar Adaptive CITS for a different 

learning styles model and subject domain. 

4 Conclusion 

The original methodologies and architectures for developing an Oscar Predictive 

CITS and an Oscar Adaptive CITS are generic, and can easily be applied to different 

learning styles models and subject domains. This chapter has demonstrated this 

process using the Honey and Mumford LSQ and the different subject domain of 

project management as examples. Included in the methodologies are various generic 

tools, such as generic logic rules, question styles and templates, teaching material 

categories, which can be applied to other models and domains. Whilst the 

methodology is easy to apply, a large part of the development time of a CITS is 

devoted to designing tutorials and creating conversational agent scripts for the 

tutorial conversation. This is an unavoidably complex, recursive and lengthy process.  

The Oscar ACITS adaptation algorithm is generic, and can be applied to any 

learning styles model where it is possible to score the strength of the individual’s 

preference. The architectures are modular, encouraging the reuse of components to 

speed up the development of new systems. The analysis of new learning styles 

models need only be done once, as the learning styles predictor and adapter modules 

can then be reused with new subject domains.  
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The original, generic methodologies for developing an Oscar Predictive and 

Adaptive CITS were empirically validated, as described in Chapters 7, 8 and 10. The 

results of the experiments show that Oscar CITS can successfully predict and adapt 

to an individual’s learning styles whilst directing a tutoring conversation, and that 

adapting to learning styles improves learning gain. 

5 Chapter Highlights 

 Oscar Predictive CITS methodology and architecture are generic and can be 

applied to new learning styles models and subject domains. 

 In developing an Oscar PCITS, the generic logic rules, question styles and 

templates can be adapted to new models and domains. 

 The generic Oscar PCITS architecture can be applied to new models and domains 

by replacing two components and CA scripts, but reusing other components. 

 Oscar Adaptive CITS methodology and architecture are generic and can be 

applied to new learning styles models and subject domains. 

 In developing an Oscar ACITS, the generic teaching material categories can 

speed up development of learning material. 

 The generic Oscar ACITS adaptation algorithm can be applied to any learning 

styles model where it is possible to score the strength a learner’s preference. 
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Chapter 12 Conclusion  

1 Introduction 

This chapter concludes the thesis by summarising the work and contributions in 

relation to the research goal and objectives. The significance and implications of the 

research are summarised. Finally, recommendations for the direction of future 

research are given. 

2 Summary of the Work 

This research has brought together three main areas of research, namely Learning 

Styles, Conversational Agents (CAs) and Intelligent Tutoring Systems (ITS). In 

Chapter 2, the current state of learning styles research was reviewed by introducing 

the different theories on the nature of learning styles, illustrated with reviews of 

several learning styles models. The key debate is whether learning styles are static or 

change over time, and Coffield et al. (2004a) concluded that the choice of learning 

styles model is fundamental. This review highlighted the need for ITS to be 

independent of the learning styles model selected and informed the design of the 

generic Oscar CITS. Chapter 3 reviewed two successful text-based conversational 

agents and described the many challenges of developing CAs which work in real 

time for extended dialogues and which can adequately mimic humans. The challenge 

of introducing social behaviour to CAs motivated the modelling of a learning 

environment, and the development of a CA tutor which can mimic a human tutor by 

dynamically detecting and adapting to learning styles during a tutoring conversation. 

Chapter 4 examined the current state of Intelligent Tutoring Systems research and the 

methods used to personalise tutoring by modelling and adapting to learning styles. 

The benefits of conducting tutoring through CA interfaces were described, and the 

finding that no Conversational ITS (CITS) could detect and adapt to learning styles 

motivated the development of Oscar CITS to fill this gap. 

Chapter 5 presented the investigations undertaken in considering the first 

research question, ‘Is it possible to predict a student’s learning style from a two-way 

tutoring discourse with a conversational agent tutor?’. Drawing on the review of 

automatic modelling methods in Chapter 4, knowledge was extracted from an 

example learning styles model and applied to a natural language tutoring dialogue. 
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Original strategies were developed for predicting student learning styles from 

dialogue, including reducing the evaluation instrument (questionnaire), analysing 

behaviour traits, mapping discriminatory behaviour cues and the use of language. 

The knowledge captured from this analysis of behaviour and language was then 

converted into generic logic rules which predict learning styles by incrementing 

learning styles during the tutoring dialogue. 

In Chapter 6 the novel Oscar CITS was proposed, which incorporates intelligent 

technologies to deliver a tutoring conversation, and dynamically predicts and adapts 

to student learning styles. A novel, generic 3-phase methodology was proposed for 

developing an Oscar Predictive CITS (PCITS) for any learning styles model and any 

subject domain. A generic architecture was proposed for Oscar PCITS which is 

modular to enable ease of maintenance and reuse of components. The methodology 

and architecture were validated (as described in Chapter 7) by implementing a 

prototype Oscar PCITS to intelligently deliver an SQL tutorial and dynamically 

predict learning styles during the conversation using the Felder-Silverman learning 

styles model (Felder and Silverman, 1988). Chapter 8 describes several experiments 

conducted in a real learning environment using real students. The experiments 

evaluated the success of the Oscar PCITS prototype in predicting learning styles. The 

experimental results show that Oscar PCITS successfully predicted all eight learning 

styles in the example model, with an accuracy ranging from 61-100%. The results 

supported six hypotheses, revealing factors in a conversational tutorial which are 

indicative of learning style. The results also show that Oscar PCITS was successful 

in tutoring, with test results improved by an average of 13%, and 89% of participants 

said they would use Oscar PCITS if it were available. Thus the generic Oscar PCITS 

Methodology and Architecture were successfully validated empirically in a real 

learning environment.  

Next, the second research question (‘Does adapting to a student’s learning style 

during a two-way tutoring discourse with a conversational agent tutor improve 

learning?’) was considered. Chapter 9 proposed an original 3-phase methodology and 

architecture for developing an Oscar Adaptive CITS (ACITS) independently of a 

particular learning styles model or subject domain. The novel adaptation algorithm 

proposed determines the best adaptation for each individual tutorial question based 

on both the student’s learning style strength and the availability of adaptation for the 

tutorial question. In this approach, teaching style is varied, the development of 
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learning material may be staged and it is not necessary to provide learning material 

adapted for all learning styles for every question. The methodology and architecture 

were validated by implementing and empirically testing a prototype Oscar ACITS as 

described in Chapter 10. The prototype Oscar ACITS delivered an SQL tutorial and 

dynamically adapted its teaching style to match participant learning styles during the 

conversation (using the Felder-Silverman learning styles model). The experiments 

were also conducted using real students in a real learning environment. The 

experimental results show that participants experiencing a tutorial matched to their 

learning styles performed significantly better (12%) and achieved better test score 

improvements (3%) than those with a mismatched tutorial. The results also show that 

Oscar ACITS was successful in tutoring as participants improved their test scores by 

an average of 19%, and 92% of participants stated they would use the Oscar ACITS 

resource. Therefore the Oscar ACITS was successful in adapting its tutoring to 

student learning styles, and such adaptation improved learning. 

Chapter 11 summarises the generic Oscar PCITS and ACITS methodologies and 

architectures and shows how they may be applied to a completely different learning 

styles model (the Honey and Mumford (1992) model) and subject domain (a business 

studies tutorial on project management). 

3 Summary of Contributions 

The most significant contribution of this work is the proof of the concept that it is 

possible to predict student learning styles from a two-way natural language tutoring 

dialogue with a CITS. Other original contributions of the research include: 

 A generic methodology for creating an Oscar Predictive CITS which dynamically 

predicts learning styles from a natural language tutoring dialogue. The 

methodology included several generic tools to aid the development of a 

predictive CITS: 

o Logic rules which match behaviour captured during a natural language 

tutoring dialogue to learning styles. 

o Question styles and templates which can aid in the development of 

conversational tutoring scenarios to predict learning styles. 

o 3-level model of a tutorial conversation. 
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 A general modular architecture for a CITS which dynamically predicts learning 

styles from a natural language tutoring dialogue.  

 A generic methodology for creating an Oscar Adaptive CITS which can 

dynamically adapt its natural language tutoring style to match individuals’ 

learning styles.  

 A dynamic adaptation algorithm which combines both the strength of learning 

style and the strength of adaptation available for individual tutorial questions to 

produce the best fitting adaptation per question. It is independent of the learning 

styles model and the subject domain. 

 A general architecture for a CITS which dynamically personalises its tutoring 

style to suit individuals’ learning styles during a natural language tutoring 

dialogue.  

 Two prototype CITS and experimental results which successfully validate the 

architectures and methodologies for a predictive and adaptive CITS which 

dynamically personalises tutoring to individuals’ learning styles. 

 

These contributions are expected to be of value to researchers and practitioners in 

the fields of learning styles and conversational intelligent tutoring systems (CITS).   

4 Directions for Future Work 

The research presented in this thesis does not represent the definitive solution for 

predicting and adapting to learning styles during a tutorial conversation with a CITS. 

Rather it proves that it is possible to predict and adapt successfully to learning styles 

during a tutoring dialogue, and provides a starting point for further research, such as 

the suggestions below.  

 

 This research has investigated several strategies for the automatic prediction of 

student learning styles during a tutoring dialogue. The prediction of student 

learning styles could be extended to additionally model the strength of a student’s 

learning style preference, as in Garcia et al. (2007) who use Bayesian networks to 

model the strength of student learning styles from ITS behaviour. 
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One of the barriers to the pervasive use of ITS is their lengthy development time 

(Murray, 1999). This is especially true of CITS, where the development of intelligent, 

natural language tutorial conversation scripts represents most of the development 

time. Two areas of further research could help to address this problem: 

 The creation of a courseware authoring tool for developing conversational 

tutorials could automate the scripting of conversations for CAs, reducing the 

need for CA scripting expertise. Lesson authoring tools have been created for 

AutoTutor CITS (Susarla et al., 2003), however AutoTutor does not incorporate 

different styles of lessons for different learning styles. An authoring tool could 

also help to standardise the logic of conversational tutorial questions, by adopting 

and extending the generic question templates proposed in Chapter 6. However it 

is a complex task to develop an authoring tool which aids but does not restrict the 

flexibility of conversational tutoring. 

 Designing learning resources for portability could allow different CITS to reuse 

learning resources, thus sharing the development time and cost (Boyle, 2003). 

Standards exist for sharing learning resources (e.g. the Sharable Content Object 

Reference Model framework (SCORM, 2004)) whereby standard descriptive 

Learning Object Metadata (IEEE, 2005) is included to support the retrieval of 

learning objects from libraries. However, for CITS learning objects must take the 

specific form of a conversation script, so there is potential for the development of 

a new standard template which can be applied when developing learning 

resources for CITS. 

 

An interesting extension to this work would be to extend the conversational user 

interface to other forms, such as a spoken interface: 

 The addition of voice capability to Oscar CITS could further mimic human 

tutoring, offer increased flexibility and widen access to learning, e.g. for younger 

children. Also, students value access to learning materials via mobile telephones 

for use when travelling and when there is no access to computers (Bradley et al., 

2009). The introduction of speech recognition to AutoTutor CITS (D’Mello et 

al., 2010a) did not improve learning gain, but more content was covered (as 

speaking is faster than typing). Current speech recognition technology is not yet 

at a level where groups of learners can converse with a CITS in a natural learning 

environment as with a human tutor. However, working versions of speech 
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recognition software have been produced when trained to recognise an individual 

voice, e.g. Dragon NaturallySpeaking (Nuance Communications Inc., 2011). 

Using individually trained software, speech recognition could be accomplished 

for use on personal computers or mobile phones which locally convert speech to 

text. However, for wider access and use in natural learning environments, which 

are often noisy, speech recognition errors are common and D’Mello et al. (2010a) 

reported that these errors negatively affected student feedback about the tutoring. 

5 Overall Conclusions 

In conclusion, this thesis reviewed the current state of research in learning styles 

theories, text-based conversational agents and intelligent tutoring systems. The 

findings indicated that although conversational tutoring was better able to model the 

social process of learning, no conversational intelligent tutoring systems (CITS) 

could automatically detect and adapt the tutoring to an individual’s learning styles. 

The Oscar CITS was proposed, which delivers a personalised natural language 

tutorial conversation incorporating intelligent solution analysis and problem solving 

support. Oscar CITS has the flexibility to use different pedagogical styles matched to 

a rich student model which is continuously updated during tutoring by dynamically 

detecting individual’s learning styles. The Oscar CITS flexible adaptation algorithm 

combines the strength of student preference with the availability of adaptive learning 

material to determine the best fitting adaptation for each tutorial question.  

A methodology and architecture for creating an Oscar Predictive CITS and 

Adaptive CITS were presented, which are independent of the learning styles model 

and subject domain. This enables a free choice of the learning styles model best 

suited to the subject domain, which Coffield et al. (2004a) found to be of 

fundamental importance. 

To date, there have been few CITS developed. It is hoped that the results of this 

research (e.g. the generic 3-phase methodology for developing Oscar CITS) can be 

used by researchers and practitioners to create adaptive intelligent tutoring systems 

which can mimic human tutors by delivering personalised conversational tutorials. 
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Appendix 1   The Index of Learning Styles 
  

Copyright © 1991, 1994 by North Carolina State University (Authored by Richard M. Felder and 

Barbara A. Soloman). For information about appropriate and inappropriate uses of the Index of 

Learning Styles and a study of its reliability and validity, see <http://www.ncsu.edu/felder-

public/ILSpage.html>. 
 

DIRECTIONS  
Enter your answers to every question on the ILS scoring sheet. Please choose only one 

answer for each question. If both “a” and “b” seem to apply to you, choose the one that 

applies more frequently.  

 

1. I understand something better after I  

a) try it out.  

b) think it through.  

2. I would rather be considered  

a) realistic.  

b) innovative.  

3. When I think about what I did yesterday, I am most likely to get  

a) a picture.  

b) words.  

4. I tend to  

a) understand details of a subject but may be fuzzy about its overall structure.  

b) understand the overall structure but may be fuzzy about details.  

5. When I am learning something new, it helps me to  

a) talk about it.  

b) think about it.  

6. If I were a teacher, I would rather teach a course  

a) that deals with facts and real life situations.  

b) that deals with ideas and theories.  

7. I prefer to get new information in  

a) pictures, diagrams, graphs, or maps.  

b) written directions or verbal information.  

8. Once I understand  

a) all the parts, I understand the whole thing.  

b) the whole thing, I see how the parts fit.  

9. In a study group working on difficult material, I am more likely to  

a) jump in and contribute ideas.  

b) sit back and listen.  

10. I find it easier  

a) to learn facts.  

b) to learn concepts.  

11. In a book with lots of pictures and charts, I am likely to  

a) look over the pictures and charts carefully.  

b) focus on the written text.  

12. When I solve math problems  

a) I usually work my way to the solutions one step at a time.  

b) I often just see the solutions but then have to struggle to figure out the steps to get to 

them.  
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13. In classes I have taken  

a) I have usually gotten to know many of the students.  

b) I have rarely gotten to know many of the students.  

14. In reading nonfiction, I prefer  

a) something that teaches me new facts or tells me how to do something.  

b) something that gives me new ideas to think about.  

15. I like teachers  

a) who put a lot of diagrams on the board.  

b) who spend a lot of time explaining.  

16. When I‟m analyzing a story or a novel  

a) I think of the incidents and try to put them together to figure out the themes.  

b) I just know what the themes are when I finish reading and then I have to go back and 

find the incidents that demonstrate them.  

17. When I start a homework problem, I am more likely to  

a) start working on the solution immediately.  

b) try to fully understand the problem first.  

18. I prefer the idea of  

a) certainty.  

b) theory.  

19. I remember best  

a) what I see.  

b) what I hear.  

20. It is more important to me that an instructor  

a) lay out the material in clear sequential steps.  

b) give me an overall picture and relate the material to other subjects.  

21. I prefer to study  

a) in a study group.  

b) alone.  

22. I am more likely to be considered  

a) careful about the details of my work.  

b) creative about how to do my work.  

23. When I get directions to a new place, I prefer  

a) a map.  

b) written instructions.  

24. I learn  

a) at a fairly regular pace. If I study hard, I‟ll “get it.”  

b) in fits and starts. I‟ll be totally confused and then suddenly it all “clicks.”  

25. I would rather first  

a) try things out.  

b) think about how I‟m going to do it.  

26. When I am reading for enjoyment, I like writers to  

a) clearly say what they mean.  

b) say things in creative, interesting ways.  

27. When I see a diagram or sketch in class, I am most likely to remember  

a) the picture.  

b) what the instructor said about it.  
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28. When considering a body of information, I am more likely to  

a) focus on details and miss the big picture.  

b) try to understand the big picture before getting into the details.  

29. I more easily remember  

a) something I have done.  

b) something I have thought a lot about.  

30. When I have to perform a task, I prefer to  

a) master one way of doing it.  

b) come up with new ways of doing it.  

31. When someone is showing me data, I prefer  

a) charts or graphs.  

b) text summarizing the results.  

32. When writing a paper, I am more likely to  

a) work on (think about or write) the beginning of the paper and progress forward.  

b) work on (think about or write) different parts of the paper and then order them.  

33. When I have to work on a group project, I first want to  

a) have “group brainstorming” where everyone contributes ideas.  

b) brainstorm individually and then come together as a group to compare ideas.  

34. I consider it higher praise to call someone  

a) sensible.  

b) imaginative.  

35. When I meet people at a party, I am more likely to remember  

a) what they looked like.  

b) what they said about themselves.  

36. When I am learning a new subject, I prefer to  

a) stay focused on that subject, learning as much about it as I can.  

b) try to make connections between that subject and related subjects.  

37. I am more likely to be considered  

a) outgoing.  

b) reserved.  

38. I prefer courses that emphasize  

a) concrete material (facts, data).  

b) abstract material (concepts, theories).  

39. For entertainment, I would rather  

a) watch television.  

b) read a book.  

40. Some teachers start their lectures with an outline of what they will cover. Such outlines 

are  

a) somewhat helpful to me.  

b) very helpful to me.  

41. The idea of doing homework in groups, with one grade for the entire group,  

a) appeals to me.  

b) does not appeal to me.  

42. When I am doing long calculations,  

a) I tend to repeat all my steps and check my work carefully.  

b) I find checking my work tiresome and have to force myself to do it.  
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43. I tend to picture places I have been  

a) easily and fairly accurately.  

b) with difficulty and without much detail.  

44. When solving problems in a group, I would be more likely to  

a) think of the steps in the solution process.  

b) think of possible consequences or applications of the solution in a wide range of 

areas.  
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Appendix 2   Logic Rules for the Felder-Silverman Learning 
Styles Model 

 

This Appendix lists the logic rules which govern the increments to learning styles 

values, applied to the Felder-Silverman (1988) (FS) learning styles model. A full 

description of the FS model is given in Chapter 2. The 29 logic rules listed here were 

applied during the experiments described in Chapter 8. 

 

IF (answer IS (wrong OR don’t-know) AND give-theory-explanation)  
THEN 
{ 
   IF (next-answer=right)  
   THEN  
      (INCREMENT INTUITOR) AND (INCREMENT REFLECTIVE) AND (INCREMENT VERBAL); 
} 

IF (answer IS (wrong OR don’t-know) AND show-movie)  
THEN 
{ 
   IF (next-answer=right)  
   THEN  
      (INCREMENT VISUAL) AND (INCREMENT ACTIVE); 
} 

IF (answer IS (wrong OR don’t-know) AND show-image) 
THEN 
{ 
   IF (next-answer=right)  
   THEN  
      INCREMENT VISUAL; 
} 

IF (answer IS (wrong OR don’t-know) AND show-example) 
THEN 
{ 
   IF (next-answer=right)  
   THEN  
      INCREMENT ACTIVE; 
}  

IF (partial-answer-given) 
THEN  
   (INCREMENT INTUITOR) AND (INCREMENT SEQUENTIAL);  

IF (mostly-correct AND small-mistakes)  
THEN  
   INCREMENT INTUITOR; 

IF (complex-answer-required AND (mistakes-made > 1))  
THEN  
   INCREMENT INTUITOR; 

IF (complex-answer-required AND first-answer IS correct)  
THEN  
   (INCREMENT SENSOR) AND (INCREMENT GLOBAL); 
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IF (question-template-applied IS choice-of-approach) 
THEN 
{ 
   IF (student-chooses-onego OR student-attempts-query) 
   THEN  
      (INCREMENT GLOBAL) AND (INCREMENT ACTIVE); 
} 

IF (question-template-applied IS choice-of-approach) 
THEN 
{ 
   IF (student-chooses-steps OR student-chooses-don’t-know) 
   THEN  
      (INCREMENT SEQUENTIAL) AND (INCREMENT REFLECTIVE); 
} 

IF (question-template-applied IS choice-of-approach) 
THEN 
{ 
   IF ((student-chooses-onego OR student-attempts-query) AND (wrong-answers > 1 OR  
         don’t-know-answers > 1)) 
   THEN  
      (INCREMENT VERBAL) AND (INCREMENT SEQUENTIAL); 
} 

IF (question-style-applied IS trick-question) 
THEN 
{ 
   IF (answer-correct-first-time) 
   THEN  
      (INCREMENT SENSOR) AND (INCREMENT VERBAL); 
   ELSE  
      (INCREMENT INTUITOR) AND (INCREMENT VISUAL); 
} 

IF (tutorial-question IS right)  
THEN  
{ 
   IF (related-tutoring-style IS practical) 
   THEN  
      (INCREMENT ACTIVE) AND (INCREMENT SENSOR); 
   ELSE 
   { 
      IF (related-tutoring-style IS theoretical) 
      THEN  
         (INCREMENT REFLECTIVE) AND (INCREMENT INTUITOR); 
   } 
} 
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IF ((pre-test-question IS wrong) AND (post-test-question IS right))  
THEN  
{ 
   IF (related-tutoring-style IS practical) 
   THEN  
      (INCREMENT ACTIVE) AND (INCREMENT SENSOR); 
   ELSE 
   { 
      IF (related-tutoring-style IS theoretical) 
      THEN  
         (INCREMENT REFLECTIVE) AND (INCREMENT INTUITOR); 
   } 
} 

IF (total-student-wordcount >= average-student-wordcount)  
THEN  
   INCREMENT VERBAL; 
ELSE  
   INCREMENT VISUAL; 

IF (total-student-wordcount-per-interaction >= average-student-wordcount-per-
interaction)  
THEN  
   INCREMENT VERBAL; 
ELSE  
   INCREMENT VISUAL; 

IF (number-of-interactions >= average-number-of-interactions)  
THEN  
   INCREMENT VERBAL; 
ELSE  
   INCREMENT VISUAL;  

IF (number-of-FAQs-asked >= average-number-of-FAQs-asked)  
THEN  
   INCREMENT VERBAL; 
ELSE  
   INCREMENT VISUAL;  

IF (tutorial-duration >= average-tutorial-duration)  
THEN  
   INCREMENT SENSOR; 
ELSE  
   INCREMENT INTUITOR; 

IF (duration-per-interaction >= average-duration-per-interaction)  
THEN  
   INCREMENT SENSOR; 
ELSE  
   INCREMENT INTUITOR; 

IF (reading-time >= average-reading-time)  
THEN  
   INCREMENT SENSOR AND (INCREASE VISUAL); 
ELSE  
   (INCREMENT INTUITOR) AND (INCREMENT VERBAL); 
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IF (student-word IN [sensor-words-list])  
THEN  
   INCREMENT SENSOR; 

IF (student-word IN [intuitive-words-list])  
THEN  
   INCREMENT INTUITOR; 

IF (student-word IN [visual-words-list])  
THEN  
   INCREMENT VISUAL; 

IF (student-word IN [verbal-words-list])  
THEN  
   INCREMENT VERBAL; 

IF (student-word IN [active-words-list])  
THEN  
   INCREMENT ACTIVE; 

IF (student-word IN [reflective-words-list])  
THEN  
   INCREMENT REFLECTIVE; 

IF (student-word IN [sequential-words-list])  
THEN  
   INCREMENT SEQUENTIAL; 

IF (student-word IN [global-words-list])  
THEN  
   INCREMENT GLOBAL; 
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Appendix 3   Tutorial Conversation Blueprint Excerpt 
 

This appendix shows an excerpt from the Tutorial Conversation Blueprint 

document produced during the development of a conversational SQL tutorial when 

implementing Oscar PCITS, as described in Chapter 7. The excerpt is from a 

working document, rather than the finalised version of the conversation script, and it 

can be seen that some decisions on the tutorial conversation have been left open until 

the CA is scripted. The excerpt demonstrates the complexity of capturing and 

documenting a tutoring conversation, even for a simple tutorial question such as that 

shown. 

 

 

Oscar Tutor: Do you remember that SQL functions can be classified into two broad 

categories: data definition language (DDL) commands and data manipulation 

language (DML) commands? DDL commands facilitate the creation of tables, 

indexes, and views as well as commands to define access rights to those database 

objects. Can you type in one DDL command? 

Learner answers could be yes / no / don‟t know or the actual command itself.  

Route 1 

Learner Answer: Yes 

Oscar Tutor: Tell me then: 

Learner Answer:   {CREATE, ALTER, DROP,VIEW, etc……} – see appendix A 

for full list of DDL commands.  

Oscar Tutor:  That‟s right, well done. Let‟s move on to the next question. and 

proceed to Question 2. 

NB – Go on to Q2 

Route 2 

Learner Answer:   {CREATE, ALTER, DROP,VIEW, etc……} – see appendix A 

for full list of DDL commands.  

Route 3 

Learner Answer: No/ don‟t know/ what do you mean/ what‟s a DDL 

NB- Learner may have forgotten what DDL etc is and therefore may have to jump to 

the FAQ layer to do a FAQ on key terms.- OR better present as a theory/concept see 

below 
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NB- Question arises if the student does not know what the DDL is after being told 

the definition. Strategy is then to present as a Theory/ Concept and then ask the 

question again.  

Oscar Tutor: DDL, otherwise known as Data Definition Language statements, are 

used to define the database structure or schema. They are a set of statements which 

allow us to create new database OBJECTS. So supposing I wanted to add a table to 

the database, what command would I use ? 

Route 3a  Learner could now say CREATE or CREATE TABLE which is correct 

and the tutor could proceed to question 2 after proving feedback in the form of “well 

done” 

If they get right answer after DDL definition, increase INTUITIVE 

Route 3b: Learner gets it wrong – show them an example –create table movie1. 

Oscar Tutor: Watch this short movie clip and when it is finished type in the 

command you think was used to add a table to the database. 

NB – if student gets it right – say “well done” and proceed to Question 2. – Go on to 

Q2 

If they get right answer after movie, increase VISUAL 

If the student gets it wrong:  

Display the image Characteristics_of_sql.jpg  on a new screen 

Oscar Tutor: This picture displays the three types of SQL Commands: Data 

Definition, Data Manipulation and Data Control, along with examples of the types of 

SQL statements that could be used.  Do you now remember that the DDL is used to 

create objects such as new tables in the database? 

Route   4a  

Learner Answer: Yes 

Oscar Tutor: Good, Lets now proceed with the next question, should be easier as I 

have given you a hint ! 

NB:– Go on to Q2  

Route   4b 

Learner Answer: No / Can‟t remember / not sure 

Oscar Tutor:  You really need to remember the basics before starting the PL/SQL 

course. It might be worth going to revise some of your previous notes.  Or if you 
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would like to access the full guide to the SQL language visit 

http://download.oracle.com/docs/cd/B28359_01/server.111/b28286/toc.htm 

Oscar Tutor: Would you like to continue to see what else you can remember ? 

Learner Answer: Yes 

NB – Go on to Q2 

Learner Answer: No 

Oscar Tutor: OK we can save your progress – why not go away and revise the SQL 

basics and come back and see how you do. Click “end session” if you want to log out 

and come back later. 

End Session 

 

 

http://download.oracle.com/docs/cd/B28359_01/server.111/b28286/toc.htm
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Appendix 4   SQL MCQ Test 
 

This appendix shows the Multiple Choice Question (MCQ) test designed to test 

learners‟ knowledge of the SQL covered by the Oscar CITS tutorial. The MCQ test is 

completed both before (known as the pre-test) and after (known as the post-test) the 

Oscar CITS tutorial, and is used to assess learning gain. 

 

1. CREATE is a ____  

DCL command. 

Transaction control command. 

DDL command. 

DML command. 

2. To list the contents of a table, you use the DISPLAY command.  

True 

False 

3. Which query will output the PRODUCT table contents when the value of the 

character field P_CODE is alphabetically less than 1558-QW1?     

SELECT P_CODE, P_DESCRIPT, P_QOH, P_MIN, P_PRICE    FROM 

PRODUCT WHERE P_CODE = (1558-QW1); 

SELECT P_CODE, P_DESCRIPT, P_QOH, P_MIN, P_PRICE FROM 

PRODUCT WHERE P_CODE < „1558-QW1‟;  

SELECT P_CODE, P_DESCRIPT, P_QOH, P_MIN, P_PRICE FROM 

PRODUCT WHERE P_CODE = [1558-QW1];  

SELECT P_CODE, P_DESCRIPT, P_QOH, P_MIN, P_PRICE FROM 

PRODUCT WHERE P_CODE = {1558-QW1};  

4. Which SQL query will list all the rows in which the inventory stock dates occur on 

or after January 20, 2006?     

SELECT P_DESCRIPT, P_QOH, P_MIN, P_PRICE, P_INDATE FROM 

PRODUCT WHERE P_INDATE >= „20/01/2006‟;  

SELECT P_DESCRIPT, P_QOH, P_MIN, P_PRICE, P_INDATE FROM 

PRODUCT WHERE P_INDATE >= #01/20/2006#;  

SELECT P_DESCRIPT, P_QOH, P_MIN, P_PRICE, P_INDATE FROM 

PRODUCT WHERE P_INDATE >= ‟20-JAN-2006‟;  

SELECT P_DESCRIPT, P_QOH, P_MIN, P_PRICE, P_INDATE FROM 

PRODUCT WHERE P_INDATE >={01-20-2006};  
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5. The basic SQL aggregate function that gives the arithmetic mean for the specified 

column is ____  

MEAN. 

AVG. 

MAX. 

SUM. 

6. What is the SQL syntax requirement to list the table contents for either V_CODE 

= 21344 or V_CODE = 24288?  

SELECT P_DESCRIPT, P_INDATE, P_PRICE, V_CODE FROM 

PRODUCT WHERE V_CODE = 21344 OR V_CODE <= 24288;  

SELECT P_DESCRIPT, P_INDATE, P_PRICE, V_CODE FROM 

PRODUCT WHERE V_CODE = 21344 AND V_CODE = 24288;  

SELECT P_DESCRIPT, P_INDATE, P_PRICE, V_CODE FROM 

PRODUCT WHERE V_CODE = 21344 AND V_CODE > 24288;  

SELECT P_DESCRIPT, P_INDATE, P_PRICE, V_CODE FROM 

PRODUCT WHERE V_CODE = 21344 OR V_CODE = 24288;  

7. The basic SQL aggregate function that gives the number of rows containing not 

null values for the given column is ____  

COUNT. 

MIN. 

MAX. 

SUM. 

8. Which command is used to list all different values of V_CODE from the 

PRODUCT table with no duplication?  

SELECT ONLY V_CODE FROM PRODUCT;  

SELECT UNIQUE V_CODE FROM PRODUCT;  

SELECT DIFFERENT V_CODE FROM PRODUCT;  

SELECT DISTINCT V_CODE FROM PRODUCT;  

9. What is the SQL query to display the P_DESCRIPT and P_PRICE fields from the 

PRODUCT table and the V_NAME, V_CONTACT, V_AREACODE and 

V_PHONE fields from the VENDOR table where the PRODUCT and VENDOR 

tables are joined by V_CODE and the output is in price order?  

SELECT P_DESCRIPT, P_PRICE, V_NAME, V_CONTACT, 

V_AREACODE, V_PHONE FROM PRODUCT, VENDOR WHERE 

PRODUCT.V_CODE <> VENDOR.V_CODE SORT BY P_PRICE;  
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SELECT P_DESCRIPT, P_PRICE, V_NAME, V_CONTACT, 

V_AREACODE, V_PHONE FROM PRODUCT, VENDOR WHERE 

PRODUCT.V_CODE => VENDOR.V_CODE ORDER BY P_PRICE;  

SELECT P_DESCRIPT, P_PRICE, V_NAME, V_CONTACT, 

V_AREACODE, V_PHONE FROM PRODUCT, VENDOR WHERE 

PRODUCT.V_CODE == VENDOR.V_CODE SORT BY P_PRICE;  

SELECT P_DESCRIPT, P_PRICE, V_NAME, V_CONTACT, 

V_AREACODE, V_PHONE FROM PRODUCT, VENDOR WHERE 

PRODUCT.V_CODE = VENDOR.V_CODE ORDER BY P_PRICE;  

10. The special operator used to define a range limit in the WHERE clause is ____  

BETWEEN. 

NULL. 

LIKE. 

IN. 

11. Which of the following queries would return a list of all COURSE_ID adjoined 

to COURSE_TITLE?  

SELECT COURSE_ID ++ COURSE_TITLE FROM COURSE;  

SELECT JOIN(COURSE_ID, COURSE_TITLE) FROM COURSE;  

SELECT CONCAT(COURSE_ID, COURSE_TITLE) FROM COURSE;  

SELECT (COURSE_ID && COURSE_TITLE) FROM COURSE;  

12. Which of the following keywords is always required when using an aggregate 

function?  

GROUP WITH 

GROUP USING 

COLLATE 

GROUP BY 
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Appendix 5   Examples of Applying Generic Question 
Templates 

 

 

This appendix includes two diagrams showing the application of the generic 

question templates (described in Chapter 6) to the SQL tutorial questions captured 

for the implementation of Oscar PCITS described in Chapter 7. 

 

 

 

Example 1 – Applying the ‘with Hints’ question template. 

 

Can you type in a 

DDL command

Show concept. 

How add table?
Type it in then Well done Q2

COMMAND

YES

COMMAND

NO/DON’T KNOW/WHAT

Show movie. How 

add table?

Show image. How 

add table?

Suggest revise - 

show links. Want 

to quit?

End 

session

OK, we’ll continueNO

DON’T KNOW/WHAT

DON’T KNOW/WHAT

DON’T KNOW/WHAT

YES

COMMAND

COMMAND

 
 

The diagram above shows the „Generic Question Template with Hints‟ (Figure 

6.2) applied to tutorial question 1 (see Table 7.2), which is a question about SQL 

Data Definition Language (DDL) commands. 
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Example 2 – Applying the ‘Choice of Approach’ question template. 

 

 

UML diagram – write 

query in one go or 

step-by-step?

What column names? Q6
OK, show boxes, have 

a go

STRAIGHTAWAY

Other column?

STEP-BY-STEP

Feedback on wrong 

boxes – try again

1 COLUMN

Good, which tables?

OTHER COLUMN

That’s right well done

Feedback on wrong 

boxes – try again

RIGHT

ERRORS

RIGHT

ERRORS

WRONG
RIGHT

BOTH COLUMNS

Play movie once, ask 

again

1.DK/WRONG

Tell them columns

2.STILL WRONG/DK

Other?

Display query – ask 

about join

Other?

Display query – 2
nd

 join 

condition?

Well done, display 

query

Play movie once, ask 

again

Play movie once, ask 

again

Play movie once, ask 

again
RIGHT

RIGHT

ONE

BOTH RIGHT

ONE

RIGHT

BOTH RIGHT1.DK/WRONG

2
nd

 wrong answer

– tell them and 

move on – left 

out for clarity

1.DK/WRONG

1.DK/WRONG

Display query

2.STILL WRONG

  KEY: 

  DK = Don’t Know

 
 

The diagram above shows the application of the „Generic Question Template  

with Choice of Approach‟ (Figure 6.3) to tutorial question 5 (see Table 7.2). Tutorial 

question 5 asks the learner to write an SQL query to solve a problem which requires 

two database tables to be joined. 
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Appendix 6   MCQ Test Mapped to Tutorial Questions and 
Styles 

 

This appendix shows the mapping of the Multiple Choice Question (MCQ) test 

questions to tutorial questions and their theoretical or practical style. This 

information is used in Experiment 4, described in Chapter 8. The MCQ test (see 

Appendix 4) is completed both before (known as the pre-test) and after (known as 

the post-test) the Oscar CITS tutorial. 

 

MCQ Test Question Tutorial Question Question Style 

Q1  Question 1 – DDL  Theoretical 

Q2  Question 2 – DML  Theoretical 

Q3  Question 3 – SELECT *  Practical 

Q4  Question 9 – Query with range  Practical 

Q5  Question 6 – Functions Theoretical 

Q6  Question 5 – Query with join  Practical 

Q7 Question 6 – Functions Theoretical 

Q8  Question 10 – DISTINCT  Theoretical 

Q9  Question 5 – Query with join  Practical 

Q10  Question 9 – Query with range  Practical 

Q11 Question 7 – Query with functions  Practical 

Q12 Question 8 – GROUP BY  Theoretical 
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Abstract 

This paper proposes a generic methodology and architecture for developing a novel conversational 

intelligent tutoring system (CITS) called Oscar that leads a tutoring conversation and dynamically predicts and 

adapts to a student‟s learning style. Oscar aims to mimic a human tutor by implicitly modelling the learning 

style during tutoring, and personalising the tutorial to boost confidence and improve the effectiveness of the 

learning experience. Learners can intuitively explore and discuss topics in natural language, helping to establish 

a deeper understanding of the topic. The Oscar CITS methodology and architecture are independent of the 

learning styles model and tutoring subject domain. Oscar CITS was implemented using the Index of Learning 

Styles (ILS) model (Felder & Silverman 1988) to deliver an SQL tutorial. Empirical studies involving real 

students have validated the prediction of learning styles in a real-world teaching/learning environment. The 

results showed that all learning styles in the ILS model were successfully predicted from a natural language 

tutoring conversation, with an accuracy of 61-100%. Participants also found Oscar‟s tutoring helpful and 

achieved an average learning gain of 13%. 

Keywords: 

Architectures for educational technology system 

Human-computer interface  

Intelligent tutoring systems 

Interactive learning environments 

Teaching/learning strategies 

1. Introduction 

The widespread use of computers and access to the Internet has created many opportunities for online 

education, such as improving distance-learning and classroom support. Intelligent Tutoring Systems (ITS) 

extend traditional content-delivery computerised learning systems by adding intelligence to improve the 

effectiveness of a learner‟s experience (Brusilovsky & Peylo 2003). This normally involves personalising 

tutoring using factors such as learner knowledge, emotion or learning style to alter the sequence and style of 

learning material. Most ITS are hyperlink menu based (Cha, Kim, Park, Yoon, Jung & Lee 2006; Klasnja-

Milicevic, Vesin, Ivanovic & Budimac 2011; Popescu 2010; Wang, Wang & Huang 2008) and adapt the 

tutoring by reordering menu items (Garcia, Amandi, Schiaffino & Campo 2007), allowing learners to manage 

their own study at a time and place to suit them. This experience has more in common with computerised 

textbooks than classroom tutorials, where human tutors direct the learning. An extension of ITS is 

Conversational Intelligent Tutoring Systems (CITS), which integrate natural language interfaces rather than 

menus, allowing learners to explore topics through discussion and to construct knowledge as they would in the 

classroom. However, it is a complex and time consuming task to develop a CITS which can converse naturally. 

Consequently only a few CITS exist at present (D‟Mello, Lehman, Sullins, Daigle, Combs, Vogt et al 2010; 

Arnott, Hastings & Allbritton 2008; Sarrafzadeh, Alexander, Dadgostar, Fan & Bigdeli 2008).  

A CITS that can imitate a human tutor by leading an adaptive tutorial conversation uses a familiar format 

which can help improve learner confidence and motivation, leading to a better learning experience. Human 

tutors adapt their tutoring style and content based on cues they pick up from learners, such as their level of 

understanding and learning style. Learning styles model the way groups of people prefer to learn (Felder & 

Silverman 1988; Hsieh, Jang & Hwang 2011), for example by active experimentation or by observation. Some 

ITS adapt tutoring to an individual‟s learning style, either determined using a formal questionnaire 

(Papanikolaou, Grigoriadou, Kornilakis & Magoulas 2003) or by analysing learner behaviour (Kelly & Tangney 

2006). However, there are no tutor-led CITS that can predict and adapt to learning style during the tutoring 

session like a human tutor.  

This paper describes the architecture and methodology for creating a novel CITS called Oscar that 

dynamically predicts and adapts to an individual‟s preferred learning style during a tutorial conversation. The 

aim of the research was to imitate a human tutor by using knowledge of learning styles and learner behaviour to 

predict learning style rather than an interface specifically designed to capture learning styles, as in (Cha et al 

2006). Whilst this considerably increases the complexity of predicting learning styles, conversational interfaces 

are intuitive to use and the discussion of problems can prompt a deeper understanding of topics. This paper also 
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describes a series of experiments that aim to determine if it is possible to predict learning style from a learner‟s 

behaviour during a tutorial conversation, and thus validate the proposed methodology and architecture. 

In this paper, section 2 introduces some background and related work of intelligent tutoring systems, 

conversational agents and the Index of Learning Styles (Felder & Silverman 1988). Section 3 introduces the 

Oscar CITS, and Sections 4 and 5 describe a generic methodology and architecture for creating an Oscar CITS. 

Section 6 describes the implementation of Oscar CITS and the real-world experiments conducted to investigate 

the prediction of learning styles from a natural language tutoring dialogue. Section 7 presents the experimental 

results and discussion and Section 8 outlines the conclusions and future work. 

2. Related work 

2.1. Intelligent tutoring systems 

Computerised learning systems were traditionally information-delivery systems developed by converting 

tutor or distance-learning material into a computerised format (Brooks, Greer, Melis & Ullrich 2006). The 

popularity of the Internet has enhanced the opportunities for e-learning, however most online systems are still 

teacher-centred and take little account of individual learner needs (Spallek 2003). Within the field of 

computerised learning systems, adaptive educational systems attempt to meet the needs of different students by 

offering individualised learning (Brusilovsky & Peylo 2003). Intelligent Tutoring Systems (ITS) are adaptive 

systems which use intelligent technologies to personalise learning according to individual student 

characteristics, such as knowledge of the subject, mood and emotion (D‟Mello et al. 2010) and learning style 

(Yannibelli, Godoy & Amandi 2006).  

There are three main approaches to intelligent tutoring (Brusilovsky & Peylo 2003):  

 Curriculum sequencing  introduces adaptation by presenting students with learning material in a sequence 

and style best suited to their needs (Klasnja-Milicevic et al 2011). 

 Intelligent solution analysis adds intelligence to ITS by giving students detailed feedback on incomplete or 

erroneous solutions, helping them learn from their mistakes (Mitrovic 2003).  

 Problem solving support techniques offer learners intelligent assistance to reach a solution (Melis, Andres, 

Budenbender, Frishauf, Goguadse, Libbrecht et al 2001).  

Curriculum sequencing is the most widely used technique (Brusilovsky and Peylo 2003). Traditionally ITS 

adapt to existing student knowledge but more recently learner affect factors have been incorporated, such as 

emotion (Ammar, Neji, Alimi & Gouarderes 2010), personality (Leontidis & Halatsis 2009) and learning style 

(Popescu 2010). Few ITS incorporate all three techniques as they are complex and time-consuming to develop, 

but the Oscar CITS presented in this paper will incorporate all three intelligent technologies by personalising 

learning material and discussing problems and solutions with students.  

ITS are normally menu or hyperlink based, with choices re-ordered or ranked to recommend a particular 

sequence to learners (Klasnja-Milicevic et al 2011; Garcia et al 2007). Whilst this design simplifies the capture 

of learner behaviour and choices, learners are really being assisted in self-learning rather than tutored, which is 

little different from recommending chapters of a book. CITS address this issue by employing natural language 

interfaces whose intuitive, dialogue-based tutoring is more comparable to classroom tutorials (Chi, Siler, Jeong, 

Yamauchi & Hausmann 2001; D‟Mello et al 2010; Sarrafzadeh et al 2008). However, despite their more 

instinctive, teacher-led learning experience (which supports the construction of knowledge adopted by human 

tutors), it is difficult to automate natural conversations and so CITS are uncommon (D‟Mello et al 2010; Woo 

Woo, Evens, Freedman, Glass, Seop Shim, Zhang et al 2006; Sarrafzadeh et al 2008). 

ITS that adapt to learning styles capture them using a formal questionnaire (Papanikolaou et al 2003) or by 

analysing learner behaviour (Cha et al 2006; Garcia et al 2007). Whilst questionnaires are the simplest measure 

of learning styles, learners find them onerous and may not lend enough time or attention to complete them 

accurately (Yannibelli, Godoy & Amandi 2006). Implicitly modelling learning styles by analysing learner 

behaviour history (Garcia et al 2007) removes the requirement for a questionnaire, but delays adaptation until 

several modules have been completed. Also, this method does not incorporate changes in learning style which 

may occur over time or for different topics. EDUCE (Kelly & Tangney 2006) and WELSA (Popescu 2010) both 

estimate learning style dynamically for curriculum sequencing, but do not include a conversational interface or 

other intelligent tutoring technologies. The Oscar CITS will dynamically predict learning style throughout the 

tutoring conversation and adapt its intelligent tutoring style to suit the learning style predicted. 

2.2. Conversational agents 

Conversational agents (CAs) are computer programs which allow people to communicate with computer 

systems using natural language (O‟Shea, Bandar & Crockett 2011). CA interfaces are intuitive to use, and have 

been used effectively in many applications, such as web-based guidance (Latham, Crockett & Bandar 2010), 
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database interfaces (Pudner, Crockett & Bandar 2007) and tutoring (D‟Mello et al 2010). CAs can add natural 

dialogue to ITS, but are used infrequently as they are complex and time-consuming to develop, requiring 

expertise in the scripting of dialogues (O‟Shea, Bandar & Crockett 2011). ITS which aim to mimic a human 

tutor (such as Oscar CITS) need CA interfaces to support the construction of knowledge through discussion (Chi 

et al 2001).  

Textual CAs usually adopt a pattern matching (Michie 2001) or semantic based (Li, Bandar, McLean & 

O‟Shea 2004; Khoury, Karray & Kamel 2008) approach. Semantic-based CAs seek to understand the meaning 

of the natural language whereas pattern-matching CAs use an algorithm to match key words and phrases from 

the input to a set of pattern-based rules (Pudner, Crockett & Bandar 2007). As pattern matching CAs match key 

words within an utterance, they do not require grammatically correct or complete input. However, there are 

usually numerous patterns in a given context (Sammut 2001), leading to many hundreds of rules in the CA‟s 

knowledge base, which demonstrates the complexity and time required to script rules for a pattern-matching 

CA. A pattern matching CA was adopted for Oscar CITS as it must cope with grammatically incomplete or 

incorrect utterances that are commonly found in text-based chat by students. 

2.3. Index of learning styles 

The Index of Learning Styles (ILS) model (Felder & Silverman 1988) describes the teaching and learning 

styles in engineering education. The ILS model represents an individual‟s learning style as points along four 

dimensions that indicate both the strength and the nature of their learning style preference. Each learning style 

dimension relates to a step in the process of receiving and processing of information, as illustrated in Fig. 1. The 

ILS is assessed using a 44-question forced-choice questionnaire (11 questions per learning style dimension), that 

assigns a style and score for each dimension.  

PERCEPTION DIMENSION

Preferred type of information

SENSORY                                 INTUITIVE

external                                       internal

INPUT DIMENSION

Preferred way to receive external information

VISUAL                                   VERBAL

diagrams                              explanations

PROCESSING DIMENSION

How information is converted into knowledge

ACTIVE                                 REFLECTIVE

discussion                              introspective 

                                               consideration

UNDERSTANDING DIMENSION

Progression towards understanding

SEQUENTIAL                               GLOBAL

continual steps                           large jumps

ILS 

LEARNING STYLE

 

Fig. 1. ILS dimensions. 

In addition to the formal assessment questionnaire, the ILS model describes typical learner behaviours that 

can be used to informally group types of learners. The ILS model was adopted when implementing the Oscar 

CITS as engineering students make up the initial experimental groups. However, the Oscar CITS is generic and 

its flexible modular structure does not restrict the choice of learning styles model to the ILS. 

3. Oscar CITS 

The Oscar CITS is a novel conversational intelligent tutoring system which dynamically predicts a student‟s 

learning style during a tutoring conversation, and adapts its tutoring style appropriately. Oscar‟s pedagogical 

aim is to provide the learner with the most appropriate learning material for their learning style to promote a 

more effective learning experience and a deeper understanding of the topic. Rather than being designed with the 

purpose of picking up learning styles (such as Cha et al 2006) the Oscar CITS aims to imitate a human tutor by 

leading a two-way discussion and using cues from the student‟s dialogue and behaviour to predict and adapt to 

their learning style. Oscar CITS incorporates intelligent technologies to sequence the curriculum according to 

learner knowledge and learning style, intelligently analyse solutions and give hints to assist learners in 

constructing knowledge. Oscar‟s natural language interface and classroom tutorial style are modelled on 

classroom tutorials (Crown copyright 2004), enabling learners to draw on their experience of face-to-face 

tutoring to feel more comfortable and confident in using the CITS. Oscar CITS is an online personal tutor which 

can answer questions, provide hints and assistance using natural dialogue, and which favours learning material 

to suit each individual‟s learning style. The Oscar CITS offers 24-hour personalised learning support at a fixed 

cost. 

General descriptions of Oscar CITS, including its implementation, example learner dialogue and the results 

of initial studies in predicting learning styles, have been reported in Latham, Crockett, McLean, Edmonds & 

O‟Shea (2010) and Latham, Crockett, McLean & Edmonds (2010). The Oscar CITS adaptation strategies were 
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described in Latham, Crockett, McLean & Edmonds (2011), which reported empirical results showing that 

students whose learning material matched their learning styles performed 12% better than those with unmatched 

material.  

The rest of this paper will describe an original methodology and architecture for creating an Oscar CITS and 

the experiments conducted to investigate its success in predicting learning styles in a real teaching/learning 

environment. 

4. Predicting learning styles through natural language dialogue 

CITS are complex and time-consuming to develop, requiring expertise in knowledge engineering (the 

capture and formatting of expert knowledge (O‟Shea, Bandar & Crockett 2011), such as tutoring, learning styles 

and domain knowledge) and CA scripting. Formalising the development of a CITS which can be applied to 

different learning styles models and tutoring domains will help to speed up the development. This section 

presents a methodology for creating an Oscar CITS which can predict learning styles from a natural language 

dialogue. 

4.1. Methodology for creating Oscar CITS 

The methodology for creating an Oscar CITS consists of three phases as shown in Table 1. The first phase of 

the methodology relates to the creation of the learning styles module and the second phase to the tutorial subject 

domain. The third phase incorporates the learning styles predictor and tutorial conversation into a CITS 

architecture. Each phase will now be described. 

Table 1.  
3-Phase methodology for creating Oscar CITS. 

Phase 1: Create the Learning Styles Predictor Module 

1.1. Select a Learning Styles Model 

a. Reduce the learning styles model if necessary 

b. Extract the behaviour characteristics 

1.2. Map learning style behaviour to the conversational tutoring style 

1.3. Analyse the learning styles model for language traits 

1.4. Adapt the generic logic rules to predict learning styles 

Phase 2: Design a Tutorial Conversation 

2.1. Capture the tutorial scenario and questions (including movies, voice, images, examples, etc.) from 

human tutors in a specific domain 

2.2. Determine the conversational structure/style  

2.3. Map tutorial questions onto the generic question styles and templates  

2.4. Script CA natural language dialogue for each tutorial question using the 3-level model  

2.5. Link tutorial dialogue to logic rules through CA variables 

Phase 3: Construct the CITS Architecture 

4.2. Methodology phase 1: create the learning styles predictor module 

4.2.1. Step 1.1: select a learning styles model 

The first step in creating the learning styles predictor module requires a learning styles model (Felder & 

Silverman 1988, Honey & Mumford 1992) to be selected. To illustrate and validate Phase 1 of the methodology, 

the ILS model (Felder & Silverman 1988) was selected as the initial experimental group will be university 

engineering students. The ILS questionnaire contains 44 questions, which is too many to incorporate into a 

single tutoring session without being onerous for students. To reduce the ILS model, a study was undertaken to 

investigate which were the best predictor questions (Latham, Crockett, McLean & Edmonds 2009). The study of 

103 completed ILS questionnaires found that 17 questions predicted the overall learning style result in at least 

75% of cases, with the top three questions predicting the result in 84% of cases. The resulting subset of the best 

ILS predictor questions formed the basis of further analysis in developing the Oscar CITS strategy for the 

prediction of learning styles. 

The ILS model describes typical behaviour characteristics for each learning style. For clarity and ease of 

analysis, the behaviour characteristics were extracted from the ILS model and summarised in a table of common 

learner behaviour (Table 2).  
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Table 2.  

Typical learner behaviour characteristics extracted from the ILS model. 

Sensor 

Prefer facts, data, experimentation  

Prefer solving problems using standard methods  

Dislike surprises  

Patient with detail  

Do not like complications  

Good at memorising facts  

Careful but slow  

Comfortable with symbols (eg. words)  

 

Visual  

Remember what they see  

Like pictures, diagrams, flow charts, time lines, films 

Prefer visual demonstration  

  

 

Active  

Do something with information – discuss/explain/test 

Active experimentation  

Do not learn much in passive situations (lectures)  

Work well in groups  

Experimentalists  

Process information by setting up an experiment to test an 

idea, or try out on a colleague 

 

Sequential  

Follow linear reasoning processes 

Can work with material they have only partially or 

superficially understood 

Strong in convergent thinking and analysis 

Learn best when information is presented in a steady 

progression of complexity and difficulty 

Intuitor 

Prefer principles and theories 

Prefer innovation 

Dislike repetition 

Bored by detail 

Welcome complications 

Good at grasping new concepts 

Quick but careless 

Uncomfortable with symbols 

 

Verbal 

Remember what they hear, or what they hear then say 

Like discussion  

Prefer verbal explanation 

Learn by explaining to others 

 

Reflective 

Examine and manipulate information introspectively 

Reflective observation 

Do not learn much if no chance to think (lectures) 

Work better alone 

Theoreticians 

Process information by postulating explanations/interpretations, drawing 

analogies, formulating models 

 

Global 

Make intuitive leaps 

Difficulty working with material not understood 

 

Divergent thinking and synthesis 

Sometimes better to jump directly to more complex and difficult material 

4.2.2. Step 1.2: map learning style behaviour to the conversational tutoring style 

To map learning style behaviour to the conversational tutoring style, each behaviour characteristic extracted 

in step 1.1b (in Table 2) is assessed using the following criteria: 

1. Is it possible to map the behaviour trait onto a two-way online conversational tutorial? 

2. How could the behaviour trait be used to implicitly predict learning styles? 

All behaviour traits that can be mapped onto a tutorial conversation and used to predict learning styles 

should be included in a summary table along with a description of how they could be used to predict learning 

styles (Table 3). 
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Table 3.  
Aspects of learner behaviour for predicting learning styles from a natural language tutorial dialogue. 

Behaviour by Learning Style 

Sensor  

Prefer facts, data, experimentation 

Dislike surprises  

Careful but slow  

Comfortable with symbols (e.g. words) 

Intuitor  

Prefer principles and theories  

Dislike repetition  

Bored by detail  

Quick but careless  

Uncomfortable with symbols  

Visual  

Remember what they see  

Like pictures, diagrams, flow charts, time lines, films 

Prefer visual demonstration 
 

Verbal  

Remember what they hear, or what they hear then say 

Like discussion  

Prefer verbal explanation 

Learn by explaining to others 

Active  

Do something with information – discuss/explain/test 
 

Experimentalists 

Process information by setting up an experiment to test 
an idea, or try out on a colleague 

Reflective  

Examine and manipulate information introspectively 

Theoreticians 

Sequential  

Follow linear reasoning processes 

Learn best when information is presented in a steady 

progression of complexity and difficulty 

Global  

Sometimes better to jump directly to more complex and 

difficult material 

Implication for Learning Style Prediction 

 

Perform better in questions with facts, examples and results 

Prefer introductions, overviews and working in a sequential predictable order 

Consider timing interactions and number of errors 

Consider amount of discussion with the tutor 

 

Perform better in theory questions  

Present information usually only once 

Perform better where information is summarised  

Consider timing interactions and number of errors 

Consider amount of discussion with the tutor 

 

Perform better in questions with diagrams, pictures, movies 

Perform better in questions with pictures, diagrams, flow charts, time lines, films 

Perform better in questions with visual walkthroughs rather than textual 
explanation 

 

Perform better in questions with movies and sound clips 

Consider amount of discussion with the tutor 

Perform better in questions with movies, sound clips and tutor explanations 

Consider amount of discussion with the tutor 

 

Consider amount of discussion with the tutor; perform better in questions with 
practical exercises 

Perform better in practical questions 

Consider amount of discussion with the tutor; perform better in questions with 
practical exercises 

 

Consider amount of discussion with the tutor 

Perform better in theoretical questions 

 

Perform better when information presented in a steady progression of complexity 
and difficulty 

Perform better when information presented in a steady progression of complexity 

and difficulty 

 

Perform better where information is summarised and when they can attempt 

problems in one go 

 

Next, it is necessary to decide which aspects of behaviour need to be captured during a tutoring 

conversation. Each behaviour trait in Table 3 was studied in turn and the list was reorganised according to 

behaviour, with similar behaviours grouped together. For example, as both Verbal and Active learners like 

discussion, they were grouped together under the „like discussion‟ behaviour category. Next, this list of 

behaviours was reduced further by considering the behaviour that would need to be captured from a natural 

language conversation. For example, the „like discussion‟ category now became the „discussion‟ category and 

included also the Sensor (like discussion), Intuitor (do not like discussion) and Reflective (do not like 

discussion) learning styles. The result of this analysis is a list of behaviour cues to be captured during the 

conversational tutorial that can be used to predict learning style. Table 4 lists the behaviour to be captured 

during a tutorial conversation in order to predict ILS learning styles, and relates each behaviour variable to the 

learning styles it may be used to predict. 

Table 4.  
Learner behaviour cues to be captured during tutoring. 

Behaviour variable to be captured 

Number of discourse interactions  

Number of questions asked  

Learning style 

Sensor, Intuitor, Verbal, Active, Reflective 

Sensor, Intuitor, Verbal, Active, Reflective 
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Tutorial duration  

Reading time  

Number of errors due to not reading the question  

Right answer after seeing an image  

Right answer after seeing a movie/walkthrough  

Right answer after an explanation of theory  

Right answer after seeing an example  

Choose to be guided through the steps of solving a problem 

Choose to solve a problem straight away  

Score for practical questions   

Score for theoretical questions   

Sensor, Intuitor, 

Sensor, Intuitor,Visual, Verbal 

Sensor, Intuitor 

Visual 

Visual, Verbal, Active 

Intuitor 

Sensor 

Sensor, Sequential 

Intuitor, Global 

Active, Sensor 

Reflective, Intuitor 

4.2.3. Step 1.3: analyse the learning styles model for language traits 

Mairesse, Walker, Mehl & Moore (2007) showed that it was possible to automatically recognise an 

individual‟s personality type using language cues (such as the type of vocabulary used) from conversation and 

text (essays). As learning style is linked to personality (Coffield, Moseley, Hall & Ecclestone 2004), it may be 

possible that the type of vocabulary used can indicate an individual‟s learning style. Özpolat and Akar (2009) 

mapped a short list of key words to ILS learning styles, and analysed student Internet search terms to 

successfully predict learning styles for three of the four ILS dimensions. Step 1.3 of the methodology involves 

analysing the learning styles model to extract any language traits that could be indicative of learning style. The 

key words list in Ozpolat & Akar (2009) was extended by analysing the descriptions of behaviour traits in the 

ILS model. Indicative words and phrases used to describe behaviour traits were extracted and mapped to 

learning styles. This key words list was then expanded using a thesaurus to produce an initial set of key words 

and phrases that were indicative of learning style. For example, the key word show (e.g. “Can you show me an 

example”) indicates a Visual learning style, whereas the keyword tell (e.g. “Can you tell me what to do”) 

indicates a Verbal learning style. The process of discovering associations between key words and particular 

learning styles requires experimentation and analysis of tutoring dialogues, so the content of the list should be 

tested and expanded by analysing actual tutoring discourse once the Oscar CITS has been developed for a 

particular domain. 

 

4.2.4. Step 1.4: adapt the generic logic rules to predict learning styles 

The final step in phase 1 is to convert the knowledge of the learning styles model (the captured behaviour 

factors and key words gathered from steps 1.2 and 1.3) into a set of logic rules. The aim of such rules is to 

continually increment student learning style values as the tutoring conversation takes place. A generic set of 33 

logic rules was created using the learner behaviour captured from the ILS (Table 4). As the generic logic rules 

relate to learner behaviour, the set should be adapted and expanded for different learning styles models that may 

define other behaviours. Table 5 shows two examples of logic rules developed using the behaviour cues in Table 

4 and mapped to the ILS. The first example, rule 1, is generated from the behaviour cue „Right answer after 

seeing an image‟ and is linked to the Visual learning style. If a student does not know the answer, is shown an 

image and then gets the answer right, this visual presentation has helped their understanding so the Visual 

learning style value is incremented. Rule 2 is generated from the „Number of errors due to not reading the 

question‟ behaviour, linked to the Intuitor and Visual learning styles. If the answer to a question is given in the 

explanation text and a student gets the answer wrong, this behaviour indicates they are careless and not 

comfortable with reading text, so the Intuitor and Visual learning style values are incremented. 

Table 5.  

Example logic rules to adjust student learning style values based on tutoring conversation. 

1. Example rule to test whether presenting information visually helps the student‟s information perception: 

IF  student shown image/diagram  

AND  student gives correct answer 

THEN  increase VISUAL; 

 

2. Example rule to test how comfortable the student is with words and with detail: 

IF  answer is given in the explanation text 
AND  student does not know the answer  

THEN  increase INTUITOR 

AND  increase VISUAL; 

The set of logic rules resulting from this step are to be applied during a tutoring conversation to dynamically 

predict learning styles.  
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This section has described the steps in phase 1 of the generic Oscar CITS methodology to create a Learning 

Styles Predictor module using the ILS model as an example.  

4.3. Methodology phase 2: design a tutorial conversation 

Phase 2 of the methodology involves capturing the tutorial from human tutors and iteratively developing a 

tutorial conversation with input from the human tutors. This part of the methodology will be illustrated using an 

example tutoring domain of the database Sequential Query Language (SQL). 

4.3.1. Step 2.1: capture the tutorial scenario and questions (including movies, voice, images, examples, etc.) 

from human tutors in a specific domain 

The first step in designing a tutorial conversation is to capture a tutorial scenario from human tutors. The 

domain of SQL was selected as the target audience for the pilot study is undergraduate computing students, for 

whom a Databases course including SQL is compulsory. First, interviews were conducted with undergraduate 

level database course tutors to identify important SQL concepts for the tutorial syllabus. Ten tutorial questions 

and a multiple choice question (MCQ) test were devised to cover the learning outcomes of the tutorial. To 

capture the tutorial scenario, a document was produced in consultation with lecturers that contained a 

conversation script for each question, including possible learner answers and tutor‟s responses to these. For each 

learner response, a further tutor response was written, and so on, until each question in the tutorial had a number 

of different paths depending on individual learner knowledge and responses. The design of the tutorial 

conversation was a time consuming and iterative process. However, by planning and detailing the dialogue at 

this point, the development of the conversational agent was more efficient. Resources such as examples, movies, 

images etc. were embedded into the tutorial conversation as appropriate. 

 

4.3.2. Step 2.2: determine the conversational structure/style  

A CITS that attempts to mimic a human tutor must be able to manage a tutoring conversation on a number of 

levels, each with a different goal. Step 2.2 of the methodology determines the structure of the CA tutorial 

conversation. Drawing on experience of classroom tutorials (Crown copyright 2004), three parts of a tutorial 

conversation with separate goals were distinguished and a three-level model of a tutorial conversation was 

designed (Fig. 2). At the highest level (the „social level‟), Oscar CITS needs the ability to maintain a natural 

language tutorial conversation, and like a human tutor must pick up cues if the learner is not engaging in the 

tutorial (e.g. use of bad language) and choose to end the session. At the main „tutoring level‟, Oscar CITS 

directs the tutorial, explains topics and asks questions, guiding the learner towards an understanding of the topic. 

This may involve Oscar CITS giving feedback on erroneous or incomplete solutions (intelligent solution 

analysis), explaining the topic using different methods if required, such as practical examples (curriculum 

sequencing) and giving hints to help the learner construct a solution (problem solving support). During a 

tutorial, learners may discuss a related topic to help their understanding, requiring a deeper „discussion level‟ 

with the ability to discuss and explain a predefined set of Frequently Asked Questions related to the domain. 

  

Tutorial 

Question

FAQs and Discussion

Swear Filter / End Session Social Level

Tutoring Level

Discussion Level

LEARNER

RESPONSE END 

SESSION

Oscar CITS

 

Fig. 2. 3-Level model of a tutorial conversation. 

As part of this step, a list of FAQs and answers should be captured from the human tutors, scripted in natural 

language and added to the tutorial conversation document. 
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4.3.3. Step 2.3: map tutorial questions onto the generic question styles and templates  

The third step in phase 2 of the methodology links the captured tutorial questions to the behaviour 

characteristics identified in phase 1 step 1.2. This is done by mapping tutorial questions to the set of generic 

question styles and templates. During the development of the Learning Styles Predictor module (Phase 1 steps 

1.1 and 1.2), questions and behaviour from the ILS model were mapped to a conversational tutoring style. 

Applying this knowledge, a set of four generic question styles (e.g. practical and theoretical style questions) and 

two generic question templates were developed. The set of question styles and templates should be expanded 

when different learning styles models and domains are implemented.  

Fig. 3 shows an example generic question template that could be applied to both practical and theoretical 

question styles. The template is for a question where different kinds of hints are given to learners and 

information is captured about the type of help that is most effective. In Fig. 3, the question is asked in box 1 and 

if the learner responds with the correct answer at any point, they are given feedback and taken to the next 

question (response 2). If the learner does not know the answer or their answer is wrong, Oscar explains the 

concept and repeats the question (response 3). If the learner still does not know the answer or their answer is 

wrong, Oscar shows different resources and repeats the question (responses 4, 5 and 6). Finally, if the learner 

still does not know the correct answer, Oscar tells them the answer, suggesting that they revise the topic 

(showing additional resource links), then asks if they wish to continue with the tutorial (response 7). If the 

learner wishes to continue, they are taken to the next question; if not the tutorial is ended. 

1. QUESTION: Can 

you tell me….

3. Explain 

concept. Repeat 

question

Type it in then 2. Well done Next Q

ANSWER

YES

ANSWER

NO/DON’T KNOW/WHAT

5. Show movie. 

Repeat question

6. Show image. 

Repeat question

7. Give answer, suggest 

revise, show links. Want to 

quit?

END 

session

OK, we’ll continueNO

DON’T KNOW/WHAT

DON’T KNOW/WHAT

DON’T KNOW/WHAT

YES

ANSWER

ANSWER

4. Show example. 

Repeat question
ANSWER

DON’T KNOW/WHAT

ANSWER

START

 

Fig. 3. Example generic question template with hints. 
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In this step, tutorial questions are mapped onto the generic styles and templates, with extra resources 

included as required, and the dialogue updated in the tutorial conversation document. 

 

4.3.4 Step 2.4: script CA natural language dialogue for each tutorial question using the 3-level model  

Step 2.4 of the methodology involves creating CA scripts to conduct the tutoring dialogue defined in steps 

2.1, 2.2 and 2.3 (and recorded in the tutorial conversation document). This involves first adopting a CA that can 

capture and receive information using variables, then scripting the conversation using an appropriate scripting 

language. Convagent Ltd (2005) InfoChat CA was selected as it is a pattern matching CA that allows 

information to be captured using variables. CA scripts, organised into contexts, were developed for the tutorial 

based on the tutorial conversation document and applying the 3-level tutorial conversation model. Overall, there 

were 38 contexts containing around 400 rules written using the InfoChat PatternScript language (Michie & 

Sammut 2001). An example FAQ rule from one of the tutorial scripts is shown in Table 5. In the rule, a is the 

activation level used for conflict resolution (Michie 2001); p is the pattern strength followed by the pattern that 

is matched against the user utterance. r is the CA response. Also seen in the example is the wildcard (*) and 

macros (<explain-0>) containing a number of standard patterns that are each matched separately. When the rule 

fires, the variable FAQ is set to „true‟ by the *<set> command. 

Table 6.  

Example CA script: FAQ rule. 

<Rule-01> 

a:0.01 
p:50  *<explain-0> *select* 

p:50  *select* <explain-0>* 

p:50  *<remind-0> *select* 
p:50  *select* <remind-0>* 

p:50  *<confused-0> *select* 

p:50  *select* <confused-0>* 
r:  The SQL SELECT command is used to retrieve data from  

 one or more database tables. *<set FAQ true> 

 

4.3.5. Step 2.5: link tutorial dialogue to logic rules through CA variables 

The final step in phase 2 of the methodology links the behaviour captured by the tutorial conversation to the 

set of logic rules (produced in phase 1) that predict learning styles. Moving through the tutorial conversation 

document, for each learner behaviour found, annotate the document with the learning style defined in the 

associated logic rule. The logic rules from Phase 1 (step 1.4) specify which learning styles are to be incremented 

when particular events occur (such as incrementing the Sensory learning style value after an example is shown). 

Next, the CA scripts must be updated to capture the behaviour by setting variable values when particular rules 

fire. Now that the tutorial conversation has been fully scripted for a CA it must be tested and verified by expert 

human tutors. 

This section has described the steps of the generic methodology to design a tutoring conversation illustrated 

by the development of a tutorial for SQL using the InfoChat CA. 

4.4. Methodology phase 3: construct the CITS architecture 

Once the learning styles predictor module and the tutorial conversation have been designed, it is necessary to 

incorporate them into a CITS architecture. The CITS will require a CA that allows information to be passed in 

and out, a Graphical User Interface (GUI) and a Student Model. The next section will propose a standard Oscar 

CITS architecture that is generic and incorporates the required components. 

5. Oscar CITS architecture 

The proposed Oscar CITS architecture is shown in Fig. 4. The Oscar CITS is independent of the learning 

styles model adopted and the subject domain being taught. As such, the proposed Oscar CITS architecture is 

modular, allowing individual components to be reused or replaced as necessary. The proposed generic 

architecture allows alternative tutorial knowledge bases and CA scripts developed following phase 2 of the 

methodology to be simply „plugged in‟ to adapt the tutoring to new subjects. Similarly, different learning styles 

models may be applied by replacing the Learning Styles Predictor component (created following the 

methodology phase 1). 
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Controller
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Interface

Conversational 

Agent

Learning Styles 

Predictor

Scripts

User

Student Model

Tutorial 

Knowledge Base

 

Fig. 4. Oscar CITS system architecture 

Each component in the proposed architecture will now be briefly described. 

 The Controller is the central manager of the system, responsible for instantiating objects and system 

variables, communicating with all components and managing the learner interaction.  

 The Learning Styles Predictor component receives information from the CA, GUI and student model to 

predict a student‟s learning style, using information about learning styles held in a knowledge base. 

This module is developed following phase 1 of the Oscar CITS methodology. 

 The Student Model component receives and sends information from and to the controller about the 

student, such as their level of knowledge, topics visited, test scores and learning style.  

 The Graphical User Interface (GUI) component is responsible for display, managing events (such as 

clicking of buttons) and sending communication to and from the user. The display consists of a 

webpage that provides instructions, displays questionnaires, tests, images, documents, interactive 

movies and the chat area used to communicate with the user. 

 The Tutorial Knowledge Base is responsible for managing course information, such as topics and their 

breakdowns, related tests and teaching material. The tutorial knowledge base receives information and 

instructions from the GUI, learning styles predictor and CA components via the controller, and sends 

information to the GUI and CA via the controller. 

 The Conversational Agent component is responsible for accepting natural language text and 

information about topic and learning style from the GUI, tutorial knowledge base and learning styles 

components via the controller, and generating a natural language response. The CA accesses a database 

of tutorial conversation scripts (related to but not linked to the tutorial knowledge base) in order to 

match the input to rules that generate a response. The CA records the dialogue in log files that can be 

accessed by the controller. 

A modular, generic architecture and an original, generic methodology have been proposed for creating an 

Oscar CITS. The Oscar CITS architecture has been designed with component reuse in mind, and can be adapted 

for different learning styles models by following phase 1 of the Oscar CITS Methodology to develop another 

learning styles predictor module. Similarly, different subject domains can be applied by following phase 2 of the 

Oscar CITS Methodology to develop the tutorial conversation. The next section will describe the experiments 

carried out to validate the proposed Oscar CITS methodology and architecture. 

6. Experiments 

The Oscar CITS was implemented and tested by real university students in a real teaching/learning environment 

in order to:  

 validate the Oscar CITS prediction of learning styles from a natural language tutoring dialogue; 

 analyse the effectiveness of Oscar CITS as a learning tool; 

 study the impact of the Oscar CITS natural language tutoring on students. 

 

Oscar CITS was implemented to deliver an SQL revision tutorial by applying the methodology and 

architecture proposed in sections 4 and 5. First, the ILS model was adopted and analysed following Phase 1 of 

the Methodology described in section 4 to develop the Learning Styles Predictor module. In the next phase of 
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the Methodology (phase 2) a ten question SQL revision tutorial was captured from university lecturers and the 

generic tutorial question templates and styles were applied. A 12 question MCQ test was devised to assess the 

tutorial learning outcomes. The InfoChat pattern-matching CA (Convagent Ltd 2005) was adopted, and the 

tutorial conversation was scripted using its PatternScript language (Michie & Sammut 2001). The logic rules 

developed for the Learning Styles Predictor module were then mapped to the CA scripts to ensure that relevant 

behaviour was captured using variables. In Phase 3 of the methodology, the proposed Oscar CITS architecture 

was implemented using the .net framework and mySQL, and the Oscar CITS was installed onto a web server. 

The Oscar CITS is at present available via the Internet to Manchester Metropolitan University (MMU) students. 

Oscar CITS conducts its tutoring conversations in real time and is currently being used to support a number of 

undergraduate and postgraduate computing modules within MMU. The Oscar CITS GUI is shown in Fig. 5. 

 

 

Fig. 5. Oscar CITS 

The experiments described in this paper have been selected from a larger study to demonstrate how different 

types of behaviour may be used to predict learning styles. 

6.1. Experimental design 

As the aim of the experiments is threefold, the Oscar CITS will be evaluated on three levels: 

1. Can Oscar CITS predict learning styles dynamically from a two-way tutoring discourse? How 

successful is the prediction of learning styles? The Oscar CITS prediction of learning styles will be 

measured against the results of the ILS questionnaire. The main hypothesis „it is possible to predict 

learning style from a two-way tutoring conversation‟ was broken down into five hypotheses (H) as 

follows: 

 H1: the success of a learner after experiencing a particular style of tutoring is indicative of 

learning style.  

 H2: a lack of attention to detail in answering questions is indicative of learning style.  

 H3: choosing to be guided through a process (or not) is indicative of learning style.  

 H4: the success of a learner in a particular style of tutoring question (theoretical or practical) is 

indicative of learning style.  

 H5: a learner‟s reading time is indicative of learning style. 

2. Does Oscar CITS successfully tutor learners, i.e. do they learn anything? Learning gain will be 

evaluated by comparing the MCQ pre-test score (completed before the tutoring conversation begins) to 

the MCQ post-test score (completed after the tutoring conversation ends) to see whether test scores 

have improved, as follows: 

Learning_gain = post-test_score – pre-test_score 

3. How comfortable and confident do learners feel in using the tutoring system, and would they use Oscar 

CITS in practice? Satisfaction from the learners‟ perspective will be determined via a questionnaire 

using a set of subjective metrics. The design of the evaluation questionnaire was based on a user 

satisfaction questionnaire for rating dialogues with text-based CAs (O‟Shea, Crockett & Bandar 2011). 

The questionnaire requires participants to rate aspects of the Oscar CITS tutorial using a six-point 

Likert scale (which forces participants to express a positive or negative opinion). Additionally, open 

questions were included to capture positive and negative comments. 
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Participants 

This paper presents results collated from two studies and evaluated on all three levels. The studies had 

different participants who had no previous experience using Oscar CITS.  

 Study 1 – An initial pilot study was undertaken to explore whether the implementation of Oscar CITS was 

successful in tutoring and whether sufficient information was captured to predict learning styles. Ten 

participants were chosen whose first language was English and who had previous experience of an 

undergraduate ORACLE SQL course (but with various levels of expertise).  

 Study 2 – There were 104 participants who had previous experience of an undergraduate SQL course and 

various levels of SQL expertise. Participants were second and final year undergraduate students on a 

computer science degree at MMU. The Oscar CITS SQL revision tutorial was integrated into the first 

teaching week and during the timetabled classes, participants were asked to complete the revision tutorial. 

In order to promote full completions of the tutorial, participants who completed the Oscar CITS revision 

tutorial were awarded marks in recognition of their engagement. 

6.2. Experimental methodology 

Study 1 was a controlled study that took place in an office setting where participants could be unobtrusively 

observed during their Oscar CITS tutorial. Participants completed the tutorial individually in a single session. 

Study 2 was undertaken in several computer laboratories. Participants started the Oscar CITS revision tutorial in 

the laboratories, and those who did not complete the tutorial in a single session were able to continue the 

revision via the Internet at another time.  

Each participant registered with the Oscar CITS anonymously, which involved being assigned a user ID and 

creating a password, that were recorded in the student model. Next, participants completed the formal ILS 

questionnaire, also recorded in the student model. Before starting the conversational tutorial, participants 

completed a pre-tutorial 12 question MCQ test, known as the pre-test, to assess their existing SQL knowledge. 

The pre-test results were stored in the student model. Next, Oscar CITS directed a two-way conversational SQL 

revision tutorial that took on average approximately 43 minutes, with each participant following an individual 

learning path depending on their existing knowledge and the dialogue. During the tutorial, the participant 

dialogue was recorded in log files along with captured aspects of participant behaviour. There were ten main 

SQL tutorial questions. At the end of the tutorial, participants completed the same MCQ test (known as the post-

test) to assess their learning gain, with the results being stored in the student model. Next, Oscar CITS presented 

participants with a comparison of their test results (indicating their learning gain) and some feedback on their 

tutorial performance. Finally, participants were asked to complete a user evaluation questionnaire. For the 

purpose of the experiments, the participant behaviour data recorded during tutorial interactions was analysed to 

generate a learning styles prediction after all tutorials were complete (rather than during the tutorial conversation 

like the full working system). The next section will describe the analysis of participant behaviour for the five 

reported experiments. 

6.2.1. Analysis of participant behaviour 

Experiment 1: logic rules 

This experiment relates to a participant‟s individual learning path during the tutorial. During the tutorial, 

logic rules increment associated learning style scores when particular behaviour occurs. For each ILS dimension 

the two related learning style scores were compared to give a prediction of learning style for that dimension. For 

example, for the processing dimension if the score for Active is higher than the score for Reflective, the 

participant is predicted to be Active. Where scores were equal, the learning style dimension remained 

unclassified and was excluded from the analysis. To calculate the prediction accuracy, the predicted learning 

style for each dimension was compared to the ILS questionnaire results. The number of correct predictions for 

each learning style was counted to produce an accuracy value that is the percentage of correct predictions for 

each learning style. This experiment tests the hypotheses H1, H2 and H3 and generated prediction accuracies for 

all learning style dimensions. 

 

Experiment 2: tutorial question style  

This experiment considered the style of tutorial questions where participants gave the correct answer by 

counting the number of correct theoretical and the number of correct practical questions. The number of correct 

answers of each style was compared, taking into consideration the possible number of correct answers for 

theoretical and practical questions, using the formula below: 

 

Correct practical questions compared to Correct theoretical questions 

Total practical questions  Total theoretical questions 
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Participants who performed equally well in both styles of question were unclassified and excluded from the 

analysis. Where participants performed better in practical questions, the Oscar CITS predicted their learning 

style to be Active and Sensory. Participants who performed better in theoretical questions were predicted to be 

Reflective and Intuitive. The Oscar CITS prediction was compared to the ILS questionnaire results and the 

number of correct predictions counted for each learning style, to produce a prediction accuracy percentage. This 

experiment tests the hypothesis H4 and generated prediction accuracies for the perception (Sensory/Intuitive) 

and processing (Active/Reflective) ILS dimensions. 

 

Experiment 3: approach to queries 

In Experiment 3, the learner‟s approach to writing queries was considered. Two questions in the tutorial 

applied a generic question template (methodology step 2.3) with a choice of approach to writing SQL queries to 

solve a problem. For each question, participants who attempted the query straight away were predicted to be 

Global learners whilst participants who asked for guidance were predicted to be Sequential learners. Each 

participant had two predictions, one for each question. The predicted learning style was compared to the ILS 

questionnaire results, and the number of correct predictions counted for each learning style to produce a 

prediction accuracy percentage. This experiment tests the hypothesis H3 and generated prediction accuracies for 

the perception (Sensory/Intuitive) and understanding (Sequential/Global) ILS dimensions. 

 

Experiment 4: attention to detail 

One tutorial question applied a generic „trick question‟ style (methodology step 2.3), that includes the 

answer in the explanatory text to test the participant‟s attention to detail and reading skills. Participants who did 

not answer the question correctly were predicted to be Visual and Intuitive learners, whereas those who 

answered correctly were predicted to be Verbal and Sensory learners. The predicted learning style was 

compared to the ILS questionnaire results, and the correct predictions counted for each learning style to produce 

a prediction accuracy percentage. This experiment tests the hypothesis H2 and generated prediction accuracies 

for the perception (Sensory/Intuitive) and the input (Visual/Verbal) ILS dimensions. 

 

Experiment 5: reading time 

Experiment 5 considers a participant‟s aptitude with words by investigating their reading speed. As each 

learner follows an individual learning path, calculating reading time from the total number of words read over 

the duration of the tutorial would not produce a fair comparison. The only text common to all participant 

interactions is the introductory text for the first tutorial question, so reading time was defined as the time taken 

to read this text. Each participant‟s reading time was then compared to the average (both mean and median) 

reading time across the sample. Where a participant had an above average reading time, Oscar CITS predicted 

they were Sensory and Visual learners, and where they had a below average reading time, they were predicted to 

be Intuitive and Verbal learners. The predicted learning style was compared to the ILS questionnaire results, and 

the correct predictions counted for each learning style to produce a prediction accuracy percentage. This 

experiment tests the hypothesis H5 and generated prediction accuracies for the perception (Sensory/Intuitive) 

and the input (Visual/Verbal) ILS dimensions. 

7. Results and discussion 

There were 114 participants over both studies, with 75 participants completing the full revision tutorial. The 

distribution of learning styles across the 75 participants was approximately equal for all but the Visual/Verbal 

dimension, which contained many more Visual than Verbal learners. This finding is consistent with the ILS 

model, which states that “most people of college age and older are visual” (Felder & Silverman 1988). This has 

implications for the analysis of results for predicting the Visual/Verbal learning styles, as the dataset is so biased 

towards the Visual learning style. The distribution of the 75 participants is shown in the first row of Table 7 

(prior probability). The experimental results will now be discussed. 

7.1. Experimental results 

Table 7 shows the prediction accuracy results, representing the ability of Oscar CITS to predict a 

participant‟s learning style for that experimental measure. Experiments 3, 4 and 5 did not require the completion 

of the entire tutorial and so the number of participants analysed is higher. The prior probability is the accuracy 

of predicting a learning style based on the distribution of learning styles across the sample. This is included as a 

fairer comparison than simply using 50% because the spread of learning styles across the sample is not exactly 

equal. This is particularly true for the Visual/Verbal dimension where 87% of participants are Visual. Each 

experiment‟s results will now be discussed. 
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Table 7.  
Experimental results: accuracy of prediction of learning styles. 

 

Prior probability 

Experiment 1 – logic rules 

Experiment 2 – tutorial question style 

Experiment 3a – approach to queries (Q5) 

Experiment 3b – approach to queries (Q9) 

Experiment 4 – attention to detail 

Experiment 5 – reading time 

n 

75 

75 

75 

89 

76 

94 

95 

Sensory 

60% 

4% 

36% 

65% 

70% 

59% 

51% 

Intuitive 

40% 

80% 

50% 

38% 

56% 

28% 

78% 

Visual 

87% 

68% 

- 

- 

- 

94% 

47% 

Verbal 

13% 

10% 

- 

- 

- 

17% 

71% 

Active 

57% 

100% 

53% 

- 

- 

- 

- 

Reflective 

43% 

0% 

73% 

- 

- 

- 

- 

Sequential 

60% 

82% 

- 

74% 

70% 

- 

- 

Global 

40% 

33% 

- 

48% 

61% 

- 

- 

Experiment 1: logic rules 

Using this measure, Oscar CITS was able to predict three learning styles with higher accuracy than the prior 

probability – Intuitive (80%), Active (100%) and Sequential (82%). For the Visual learning style, even though 

Oscar CITS accurately predicts Visual participants in 68% of cases, the unequal spread of participants for this 

dimension means that this is not significant when compared to the prior probability of 87%. This measure was 

not able to predict the Reflective learning style, probably because Reflective learners spend time after the 

learning experience reflecting on what they know and put it together as knowledge. The results support 

hypotheses H1, H2 and H3 and show that logic rules are the most successful factor in predicting the Intuitive, 

Active and Sequential learning styles. 

 

Experiment 2: tutorial question style  

70 participants showed a preference for practical or theoretical tutorial questions; those participants whose 

success was the same for both question styles remained unclassified. Oscar CITS was able to predict the 

Intuitive (50%) and Reflective (73%) learning styles better than the prior probability. The results support 

hypothesis H4 and show that tutorial question style was the most successful factor in predicting the Reflective 

learning style, with the accuracy of 73% being far better than the prior probability of 43%. 

 

Experiment 3: approach to queries 

This experiment predicted learning styles depending on a participant‟s approach to writing queries. Table 7 

reports results for two relevant tutorial questions as Experiments 3a and 3b. 89 participants completed question 

5 (Experiment 3a) and 76 participants completed question 9 (Experiment 3b). Apart from the Sequential 

learning style, results for the second question were higher – probably because having experienced the style of 

question before, participants has a better idea of their preferred approach. All learning styles (except the 

Intuitive in experiment 3a) were predicted with higher accuracy than the prior probability. Experiment 3b was 

the most successful factor in predicting the Sensory (70%) and Global (61%) learning styles, and the results 

support hypothesis H3.  

 

Experiment 4: attention to detail 

94 participants had completed the „trick question‟. For the Sensory/Intuitive learning style dimension, the 

prediction accuracies of 59% and 28% are worse than the prior probability for the sample of 62% and 38% 

respectively. However, predictions for the Visual/Verbal learning style dimension were better than the prior 

probability at 94% and 17% respectively, with this measure producing the most accurate prediction overall for 

the Visual learning style. Therefore the results support hypothesis H6, a lack of attention to detail in answering 

questions is indicative of learning style. 

 

Experiment 5: reading time 

Reading time was calculated for 95 participants who had completed Question 1. The results were mixed, 

with poor predictions of Intuitive and Visual participants (those with a below average reading time) but good 

predictions of Sensory and Verbal participants (those with above average reading times). The prediction 

accuracies for the Intuitive (78%) and Verbal (71%) learning styles are much higher than the prior probabilities 

of 40% and 13% respectively. The results show that this measure is the best predictor of Verbal learning style, 

thus supporting the hypothesis H5. However, it must be borne in mind that the uneven spread of participants for 

the Visual/Verbal dimension prevents firm conclusions from being drawn.  

7.2. Learning gain 

Table 8 shows the participant learning gain results, with a total average test score improvement of 13%. 

Average learning gain was higher for study 1 (20%), which probably reflects the higher motivation of 

participants in completing the tutorial as this was a controlled setting. Study 2 involved real students completing 

the tutorial in a real educational environment, and so a lower learning gain was expected due to factors such as 
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distractions. The results suggest that Oscar CITS did help learning as participants increased their learning of 

SQL and improved their test results.  

Table 8.  
Learning gain results. 

Study 

 

Study 1 

Study 2 

Total 

n 

 

10 

63 

73 

Learning gain  

Mean (/12) 

2.4 

1.44 

1.58 

 

Standard deviation  

2.01 

2.07 

2.07 

 

Mean % 

20% 

12% 

13% 

7.3. Participant evaluation 

In general, the participant feedback showed that Oscar CITS was well received, understandable and helpful. 

46 participants completed the evaluation questionnaire. 87% of participants rated the tutoring highly, with 51% 

awarding the tutoring the highest rating. 94% of participants found the tutoring helpful, with 72% giving the 

highest rating. An astounding 35% of participants stated that they would use Oscar CITS tutorial instead of 

attending a face-to-face tutorial. Slightly more than half of the sample (52%) would use Oscar CITS instead of 

reading a book, and 85% of participants would use Oscar CITS to support classroom tutoring. Overall, 89% of 

participants would use a resource like Oscar CITS if it were available. When openly asked for comments about 

Oscar CITS, half of the participants remarked that Oscar was easy to use and 43% noted that Oscar CITS was 

helpful. One participant commented “is like having your own friendly tutor”, and another “it gives instant 

feedback unlike a traditional test”. From these results it can be concluded that most people found the Oscar 

CITS tutoring easy to use, helpful, and would use Oscar CITS to support their studies. 

7.4. Results summary 

The experiments were conducted using real university students in a real teaching/learning environment. The 

results support the hypotheses and show that by adopting the Oscar CITS methodology and architecture, it is 

possible to successfully predict learning styles from a two-way natural language tutoring conversation. Oscar 

CITS helped participants to increase their knowledge and participants valued the Oscar CITS learning 

experience and would use Oscar CITS to support learning. Table 9 summarises the best prediction accuracies 

resulting from the five experiments described. In a full Oscar CITS learning style values are adjusted 

dynamically throughout the tutorial conversation based on learner behaviour, apart from the Reflective learning 

style, where the preferred question style is tested periodically at the end of each tutorial. 

Table 9.  
Oscar CITS best prediction accuracy. 

 

Oscar CITS 

n 

75-95 

Sensory 

70% 

Intuitive 

80% 

Visual 

94% 

Verbal 

71% 

Active 

100% 

Reflective 

73% 

Sequential 

82% 

Global 

61% 

The methodology and architecture for Oscar CITS are independent of the learning styles model and subject 

domain chosen. Although the results show the successful prediction of ILS learning styles, before conclusions 

may be drawn about non-computing subject domains it is necessary to implement Oscar CITS and empirically 

test its prediction of learning styles with different models. 

A comparison of results with other CITS is not possible as no other CITS can predict learning styles. On a 

superficial level, the results compare favourably with menu-based ITS that predict ILS learning styles (Ozpolat 

& Akar 2009; Cha et al 2006; Garcia et al 2007). However it is inappropriate to compare prediction accuracies 

with these ITS because, despite adopting the ILS, they classify learning styles differently, introducing a third 

„Neutral‟ class for each dimension which describes learners with low strength learning styles (i.e. those at the 

centre of the dimension). Also, the method of calculating prediction accuracy for these ITS uses different 

scoring, by awarding a 0.5 score if the learning style prediction is mismatched with a Neutral classification, 

rather than a zero score for all mismatches used by Oscar CITS. 

8. Conclusions  

This paper has presented the Oscar Conversational Intelligent Tutoring System, a novel CITS which 

implicitly predicts and adapts to learning styles whilst directing a tutorial conversation. Oscar CITS imitates a 

human tutor by incorporating the intelligent tutoring techniques of curriculum sequencing, intelligent solution 

analysis and problem solving support. A tutorial is directed by Oscar CITS, which detects behaviour cues from 

learners to present learning material suited to their knowledge and learning style. Learners can participate in a 

personalised tutorial via the Internet, learning at their own pace at a time and place to suit them. Oscar‟s 

conversational style is intuitive to use, helping to improve motivation and build confidence, with one user 

remarking “it encouraged me to think rather than simply giving me the answer”. 
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An original methodology and architecture for creating the Oscar CITS were described, which are 

independent of the learning styles model and subject domain being taught. The 3-phase methodology describes 

the development of the Learning Styles Predictor, Tutorial Knowledge Base and CA components and includes a 

number of generic tools to aid development (behaviour variables, key words, logic rules, 3-level conversation 

model, question styles and templates). The generic architecture is modular, allowing different learning style 

models and subject domains to be applied whilst supporting the reuse of components.  

Oscar CITS was implemented to deliver an SQL revision tutorial and evaluated empirically by real students 

in a real educational setting. The experimental results show that it is possible to predict learning styles from a 

two-way natural language tutoring conversation. Oscar CITS successfully predicted all learning styles in the 

Index of Learning Styles model, with accuracies ranging from 61-100%. Oscar CITS was well received by 

participants, who found it helpful, easy to use and successful in improving their knowledge.  

Further work has been done in analysing different sorts of behaviour for predicting learning styles from 

natural language, including a preference for practical or theoretical questions, the number of words used, the 

amount of discussion, duration and vocabulary. An algorithm is now being developed to improve the accuracy 

predicting learning styles using a fuzzy set representation that combines different aspects of learner behaviour 

captured from a natural language tutorial. An Oscar CITS adaptation algorithm has been designed that selects 

the best fitting adaptation for each tutorial question by combining student learning styles with available teaching 

styles (Latham, Crockett, McLean & Edmonds, 2011). In future, a speech module could be incorporated into the 

Oscar CITS architecture to facilitate spoken tutorial conversations. 
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Abstract. This paper presents an adaptive online intelligent tutoring system 
called Oscar which leads a tutoring conversation and dynamically predicts and 
adapts to a student’s learning style. Oscar aims to mimic a human tutor by using 
knowledge of learning styles to adapt its tutoring style and improve the effec-
tiveness of the learning experience. Learners can intuitively explore and discuss 
topics in natural language, helping to establish a deeper understanding of the 
topic and boost confidence. An initial study into the adaptation to learning 
styles is reported which produced encouraging results and positive test score 
improvements.  

Keywords: Intelligent Tutoring System, Conversational Agent, Learning Style.  

1   Introduction 

The widespread use of the Internet has presented opportunities for the delivery of 
learning, both in terms of distance-learning and in supporting traditional classroom 
activities. Intelligent Tutoring Systems (ITS) extend traditional content-delivery com-
puterised learning systems by adding intelligence which aims to improve the effec-
tiveness of a learner’s experience. This usually involves personalising the tutoring by 
adapting the learning material presented according to existing knowledge [1] or stu-
dent affect such as emotion [2]. ITS which build in some social awareness, such as 
personalising tutoring to the individual, offer a more familiar and comfortable learn-
ing experience. Most ITS are menu-based and offer student-directed study and sup-
port at a time and pace to suit individuals, but offer an experience more akin to a 
computerised textbook than a classroom tutorial. Conversational Intelligent Tutoring 
Systems (CITS) incorporate more human-like natural language interfaces which allow 
learners to explore and discuss a topic, supporting the constructivist style of learning 
used by human tutors. However, creating a CITS which can converse naturally with a 
learner is a complex and time-consuming task, which is why only a few CITS exist 
[3][4]. Human tutors adapt their tutoring style and content based on cues they pick up 
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from students, such as their level of existing knowledge and their learning styles. 
Learning styles describe the way groups of people prefer to learn, for example by trial 
and error or by observation [5]. A CITS which can mimic a human tutor by leading an 
adaptive tutorial conversation offers students a familiar format which can help im-
prove confidence and motivation, leading to a better learning experience. There are no 
tutor-led CITS which can predict and adapt to learning styles during a tutoring con-
versation. 

This paper describes a novel CITS which dynamically predicts and adapts to a stu-
dent’s learning style during a tutor-led conversation. The research focussed on mim-
icking a face-to-face tutorial and building in knowledge of learning styles rather than 
designing an interface specifically to pick up learning style behaviour, as in [6]. The 
adaptation algorithm employed recognises the importance of providing a coherent 
learning experience, and so considers both the student’s learning style preferences and 
the opportunity for adaptation in tutoring questions. 

In this paper, section 2 introduces the background concepts of Intelligent Tutoring 
Systems, the Index of Learning Styles and Conversational Agents. Section 3 de-
scribes the Oscar CITS and the methods used to incorporate adaptivity. Section 4 
outlines the experimental methodology and two sample learner dialogues. Section 5 
reports the results and discussion, and Section 6 describes the conclusions and future 
work. 

2   Background 

2.1   Intelligent Tutoring Systems 

Intelligent tutoring systems (ITS) are computerised learning systems which adopt 
intelligent systems techniques to personalise the learning experience. ITS endeavour 
to improve the effectiveness of tutorials and boost learners’ motivation and confi-
dence by adapting to each individual’s characteristics, such as existing knowledge. 
ITS are normally designed to be student-directed, with a system of menu choices or 
hyperlinks which are reordered or ranked to recommend a particular sequence to 
learners [7]. Whilst this design simplifies the analysis of student behaviour, it does not 
truly teach the students but rather assists in self-learning, and is little different to rec-
ommending chapters of a book. Although rarely employed, conversational interfaces 
allow a more natural, teacher-led learning experience which supports the construction 
of knowledge used by human tutors [8]. Examples of CITS are AutoTutor [3] and 
CIRCSIM-tutor [9] which both help students construct knowledge using conversa-
tional agent tutors, however neither consider learning styles during tutoring. 

The three main approaches to intelligent tutoring [1] are curriculum sequencing 
(presenting material in a suitable sequence [7]), intelligent solution analysis (giving 
feedback on incomplete or erroneous solutions [10]) and problem solving support 
(offering intelligent assistance in finding solutions [11]). Most ITS employ curriculum 
sequencing based on student knowledge and also more recently user affect factors 
such as emotion [12], personality [13] and learning style [4]. Few ITS incorporate all  
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three techniques as they are complex and time-consuming to develop, but the Oscar 
CITS presented in this paper will incorporate all three intelligent technologies by 
personalising learning material and discussing problems and solutions with students. 

2.2   The Index of Learning Styles 

The Index of Learning Styles (ILS) model [5] describes the learning styles in engi-
neering education and their associated teaching styles. In the ILS model a student’s 
learning styles are represented as points along four dimensions to indicate the strength 
as well as the nature of their learning style preference. Each learning style dimension 
describes a step in the process of receiving and processing of information, as shown in 
Fig. 1. The ILS model measures learning style with a 44-question self-assessment 
questionnaire. There are 16 (24) combinations of learning styles, for example intui-
tive/visual/active/global. 

 

Fig. 1. ILS Dimensions 

For each learning style, the ILS model details typical learner behaviours and teach-
ing styles which address learner preferences. This information is beneficial for lectur-
ers who informally group types of learners to adapt their teaching rather than using 
the formal assessment questionnaire. Knowledge of learner behaviours and teaching 
styles is also indispensable when developing a CITS which can adapt its teaching 
style to individual learner preferences.  

The ILS model was incorporated into the Oscar CITS as engineering students will 
make up the initial experimental groups. However the flexible modular structure of 
the Oscar CITS does not restrict the choice of learning style model to the ILS. 

2.3   Conversational Agents 

Conversational agents (CAs) allow people to interact with computer systems intui-
tively using natural language dialogues. CA interfaces have been used effectively in 
many applications, such as web-based guidance [15], database interfaces [16] and  
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tutoring [3]. CAs are complex and time-consuming to develop, requiring expertise in 
the scripting of conversations, and are therefore rarely found in ITS. Systems such as 
Oscar CITS which aim to mimic a human tutor need CA interfaces to support the 
construction of knowledge through discussion [8].  
 

Textual CAs usually adopt a pattern matching [17] or semantic based [18],[19]  
approach. Semantic-based CAs seek to understand the meaning of the input by study-
ing the constructs and meanings of natural language [19] or by comparing the seman-
tic similarity of phrases [18]. Pattern-matching CAs rely on a knowledge base con-
taining a set of pattern-based rules [16]. During a conversation user utterances are 
matched to rules in the knowledge base, with the best matching rule (selected by an 
algorithm) firing to produce a natural language response. In the case of Oscar CITS, a 
pattern matching approach was adopted as it can cope with grammatically incomplete 
or incorrect phrases, as are commonly found in text-based chat by students. 

3   Oscar: An Adaptive Conversational Intelligent Tutoring System 

Oscar is an online CITS which dynamically predicts and adapts to each individual 
student’s learning style during a tutoring conversation. By adapting the tutoring style 
to suit individual learners, Oscar aims to provide the most appropriate learning mate-
rial for their learning style, leading to a more effective learning experience and a 
deeper understanding of the topic. In addition to delivering tutor material suited to an 
individual’s learning style (known as curriculum sequencing), Oscar provides intelli-
gent solution analysis and conversational problem solving support. Like human tu-
tors, Oscar CITS promotes a deeper understanding of the topic by using a construc-
tivist style of tutoring, giving intelligent hints and discussing questions with learners 
rather than presenting the answer straight away. Oscar CITS imitates classroom 
tutorials with human tutors by using a natural language interface and tutor-led tuto-
rial style which aims to help learners feel comfortable and confident during online 
tutorials.  

The architecture and methodology for developing the original Oscar CITS is de-
scribed in [20]. Results of two initial experiments which investigated the prediction of 
learning styles show that Oscar CITS was successful in dynamically predicting sev-
eral learning styles [20],[14]. For the initial studies, Oscar delivers an online tutorial 
in the domain of the database Structured Query Language (SQL). Oscar draws on 
knowledge bases of learning styles (the ILS model), tutor material and conversation 
scripts to deliver a conversational tutorial to a student. To support the tutoring conver-
sation, diagrams, images and interactive movies may be displayed. Aspects of the 
student’s behaviour and understanding inform the dynamic prediction of learning 
style, allowing the tutoring style to be personalised to best suit the student. 

Throughout tutoring the Oscar CITS records and logs information about the behav-
iour of the student, for example the timing of interactions and the type of tutor  
resource accessed. The tutoring conversation is also recorded, along with information 
about the student knowledge of the topic being discussed.  
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The first implementation of Oscar CITS successfully incorporated human-like  
intelligence into a conversational tutorial which improved student test results and 
dynamically predicted their learning styles. The next section will outline the extension 
of Oscar CITS to include the ability to adapt a tutorial to a student’s learning styles. 

3.1   Methods for Including Adaptivity 

The Index of Learning Styles model [5] was analysed and a table of learner behaviour 
for each learning style drawn up. The characteristics were evaluated to establish 
whether they could be incorporated into a CITS. The subset of learner behaviour 
considered to be most important for an adaptive CITS was then assigned the appropri-
ate teaching styles described in the ILS model. The breakdown of behaviour and 
teaching styles was examined further to develop several domain-independent catego-
ries of tutor material required for developing an adaptive CITS. Each tutor material 
category was mapped to the appropriate learning style, for example, Category 4: Prac-
tical Examples maps to the Sensor, Active and Sequential learning styles. The stan-
dard categories were designed from the point of view of the tutor and intend to make 
the development of tutoring material for an adaptive CITS as simple and consistent as 
possible. The standard organisation of tutor material also facilitates modular devel-
opment, as additional materials can be expanded and added without the need for a 
total redesign of the tutoring session.  

The next stage was to consider how the Oscar CITS would adapt tutoring accord-
ing to a student’s learning style. The ILS model indicates that students who have no 
strong learning style preference in a dimension (i.e. they are placed at the centre of the 
ILS scale with a score of 1 or 3) should be given learning material including a mixture 
of styles. An additional Neutral learning style category was introduced to group those 
students and a Neutral adaptation style included. 

There are a number of possible ways to adapt to learning styles, the simplest of 
which would be to adapt to the student’s strongest learning style. However, a tutorial 
is made up of a number of tutorial questions, and this approach would require incor-
porating every category of tutor material into every tutorial question. This may not be 
possible in real life, as it is important to construct a coherent tutorial and learning 
experience. Consequently the adaptation strategy needed to consider not only the 
strength of the student’s learning style but also the strength of adaptation available for 
each individual tutorial question. This method was adopted and a complex, domain-
independent adaptation algorithm was developed which combined the strengths of the 
student’s learning style with the tutorial adaptations to select the best fitting adapta-
tion for each question in the student’s learning path.  

For the initial study an SQL revision tutorial was developed for the Oscar CITS. 
The adaptive SQL learning material extended the tutorial delivered in previous ex-
periments [20],[14]. This was achieved by adding different resources covering the 
standard categories of tutoring material. This involved creating several versions of the 
learning material, each suited to a different learning style. Next, each tutorial question 
was assigned a score for every learning style which represented the number (or 
strength) of opportunities for adaptation to that learning style. Where no adaptation 
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existed for a learning style (i.e. the question score was zero) the Neutral adaptation 
was assigned by the algorithm. The initial study will now be described. 

4   Experimental Methodology 

A controlled study was conducted to test the hypothesis that students who are  
presented with learning material matched to their learning styles perform better than 
students presented with learning material which is unsuited to their learning styles. 70 
final year undergraduate science and engineering students were asked to refresh their 
SQL knowledge by completing the Oscar CITS SQL revision tutorial. This involved 
each student registering with the Oscar CITS anonymously and completing the formal 
ILS questionnaire before beginning the tutorial. Next, students completed a pre-
tutorial multiple choice question (MCQ) test to assess existing knowledge before 
starting the conversational tutorial. The tutorial was led by the Oscar CITS tutor who 
conversed in natural language with students and guided them through the ten tutorial 
questions, showing images, movies and examples as necessary. The conversational 
SQL revision tutorial took on average approximately 43 minutes, with each learner 
following an individual learning path depending on their knowledge and learning 
styles (see section 4.1 for example dialogues). After the tutorial conversation, students 
completed the same MCQ test and were then presented with a comparison of their test 
results and some feedback from Oscar. Finally, students were asked to complete a 
user evaluation questionnaire.  

After completing the ILS questionnaire, participants were unknowingly assigned to 
one of three experimental groups. Students whose learning styles were at the centre of 
all ILS scales (i.e. there was no strong preference) were assigned to the Neutral group. 
These students followed the neutral adaptation learning path, with tutor material in-
cluding different aspects of all learning styles (e.g. describing theory as well as exam-
ples). Students who had at least one preferred learning style were randomly assigned 
to either the Adapt or Mismatch groups using a 2:1 ratio. These students followed an 
adaptive learning path assigned by the algorithm, and were given tutor material fa-
vouring particular learning styles (e.g. containing explanations of theory rather than 
practical examples). Students in the Mismatch group were deliberately presented with 
learning material unsuited to their learning styles, e.g. if a student was Sequential, 
they were presented with material suited to a Global learner. 

For each completed tutorial, log files which recorded the dialogue, timings, knowl-
edge and other behavioural factors were analysed to assess each learner’s perform-
ance during the tutoring session. During the SQL Revision tutoring session, ten  
questions were posed, requiring eighteen answers (as some questions incorporated 
multiple steps or questions). Learning gain was calculated by counting the number of 
correct answers given to tutorial questions, and an average score was calculated for 
each experimental group. The experimental group averages were then compared to 
determine whether there was any difference in learning gain related to the type of 
adaptation to learning style. In addition, the learner experiences in using Oscar CITS 
were evaluated by analysing the user feedback questionnaires. 
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4.1   Examples of Adaptive Learner Dialogues 

Examples of the Oscar CITS tutoring style adaptation can be seen in the dialogue 
snippets logged during the experiment (Tables 1 and 2). Both snippets are taken from 
the same tutorial question where students are asked to write an SQL query, and both 
students were assigned to the Adapt experimental group (i.e. the adaptation matched 
their learning style). The student dialogue in Table 1 is an example of the tutoring 
style adapted to a Sequential learner, where Oscar guides the student through the steps 
of the query. Table 2 in contrast shows a student dialogue with tutoring adapted for a 
Global learner, where the student writes a query without initial guidance and learns 
from the feedback given about errors in their solution. 

Table 1. Dialogue snippet logged during the experiment adapting to a Sequential learner 

Utterance Dialogue 
87. Oscar> Now let's see if you can remember how to write a query which chooses 

values between a range. Look at the employees table. We need a query 
which displays the first and last names of all employees hired between 1 
January 1994 and 1 January 1995. The first step in writing a query is to state 
the information you need. For our query to display the first and last names 
of all employees hired between 1 January 1994 and 1 January 1995, which 
columns do we need? 

88. Student> dont know 
89. Oscar> Look again at the columns in the EMPLOYEES table. If we want to display 

the first and last names of all employees hired between 1 January 1994 and 
1 January 1995, which columns do we need? 

90. Student> first_name, last_name, hire_date 
91. Oscar> That's right, we need FIRST_NAME and LAST_NAME, so the first part of 

our query is shown in the picture. The next step in writing a query is to state 
which table the information is retrieved from. For our query to list the first 
and last names of all employees hired between 1 January 1994 and 1 Janu-
ary 1995, type in the name of the table our information will be taken from. 

92. Student> employees 
93. Oscar> That's right, the table is EMPLOYEES. The last part of writing a query is 

the WHERE clause, which lets us restrict the rows selected to only those 
satisfying one or more conditions. We want to restrict the employees dis-
played to only those hired between 1 January 1994 and 1 January 1995. 
There are a number of ways to write this restriction in ORACLE SQL as 
dates can be represented in different formats. Type in the WHERE clause 
which limits the employees in this way. 

94. Student> where hire_date in('01-01-1994' && '01-01-1995') 
95. Oscar> One way to tackle this query is to use the BETWEEN keyword to specify a 

range. Complete the last line of the query shown - type in the WHERE 
clause to limit the employees displayed to those hired between 1 January 
1994 and 1 January 1995. 

96. Student> '01-01-1994' and '01-01-1995' 
97. Oscar> OK, excluding date conversion functions, ORACLE recognises dates in 3 

basic formats: '01-JAN-94', '01-January-94' and '01-January-1994'.  The 
picture shows two different ways in which the WHERE clause could have 
been written to give the right results. 
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Table 2. Dialogue snippet logged during the experiment adapting to a Global learner 

Utterance Dialogue 
64. Oscar> Now let's see if you can remember how to write a query which chooses 

values between a range. Look at the employees table. Please type in a query 
which displays the first and last names of all employees hired between 1 
January 1994 and 1 January 1995. 

65. Student> select First_name, last_name from Employees where Hire_date between 1-
JAN-1944 and 1-Jan-1995; 

66. Oscar> I'm afraid your WHERE clause is not quite right. Check your spelling and 
type in the last part of our query which displays the first and last names of 
all employees hired between 1 January 1994 and 1 January 1995. 

67. Student> select First_name, last_name from Employees where Hire_date between 1-
JAN-1994 and 1-Jan-1995; 

68. Oscar> No. Excluding date conversion functions, ORACLE recognises dates in 3 
basic formats: '01-JAN-94', '01-January-94' and '01-January-1994'.  The 
picture shows two different ways in which the WHERE clause could have 
been written to give the right results. 

5   Results and Discussion 

Of the 70 student participants, 54 fully completed the tutoring session. Table 3 shows 
the results of the experiment. The group of 8 Neutral students had learning style re-
sults which showed no strong preference for a particular learning style (i.e. their styles 
were balanced in the centre of the scale), and followed a neutral adaptation learning 
path. The Adapt group contained 32 students who followed a learning path containing 
learning material in a style adapted to their individual learning styles. The Mismatch 
group of 14 students followed an adaptive learning path of tutor material which was 
mismatched to their learning styles. 

Table 3. Experimental results 

Experimental Group No. Students Average Correct Answers 
Neutral 8 72% 
Adapt 32 73% 
Mismatch 14 61% 
Total 54 70% 

 
Students in the Neutral and Adapt groups have similar averages of correct answers 

given during the tutoring, of 72% and 73% respectively. However, the Mismatch 
group has a much lower average of only 61% correct answers, which is 12% less than 
the Adapt group average. The results support the hypothesis that students who are 
presented with learning material matched to their learning styles perform better than 
students presented with learning material which is not matched to their learning 
styles. 
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In general, the user evaluation results showed that the Oscar CITS was well re-
ceived, with 95% of learners finding the tutoring helpful and 89% agreeing that Oscar 
helped them to revise. 91% of the sample said that they would use the Oscar CITS 
resource, with 86% stating they would use Oscar to support classroom tutoring and 
77% saying they would use Oscar instead of learning from a book. A surprising 50% 
of the sample said they would use Oscar in place of attending face-to-face tutorials. 
There was a 21% mean test score improvement after tutoring for students who did not 
achieve full marks in the initial test.  

6   Conclusions and Further Work 

This paper has presented a novel conversational intelligent tutoring system called 
Oscar, which implicitly predicts and adapts to a student’s learning style during a tu-
toring conversation. Oscar employs a conversational agent to intelligently lead an 
online tutorial, mimicking a human tutor in offering students learning material 
adapted to their learning styles, individualised problem solving support and intelligent 
solution analysis. A CITS which personalises tutoring by dynamically predicting and 
adapting to learning styles could improve the effectiveness of a student’s learning 
experience and help to boost confidence. Effective, personalised online tutoring could 
support class-based courses and widen access through distance learning. 

The results of the initial study showed that students whose learning path adapted to 
their learning styles achieved on average 12% more correct answers than those stu-
dents presented with learning material not matched to their learning styles. With re-
gards to Oscar’s conversational tutoring, the results have shown that the subjects did 
value the online Oscar CITS and that Oscar’s tutoring seemed to help learning and 
improved test scores by 21% on average. It can therefore be concluded that using 
Oscar has helped provide students with a positive learning experience. 

In future, it is planned to incorporate the tutor material categories into a toolkit to 
speed up the development of an adaptive CITS. 
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Introduction 

Intelligent tutoring systems (ITS) are computer aided learning (CAL) systems which 

personalise their learning content for an individual based on learner characteristics such as 

existing knowledge [1]. A recent extension to ITS is to capture student learning styles using a 

questionnaire and adapt subject content accordingly [2], however students do not always take 

the time to complete questionnaires carefully, so may not be shown the most effective 

learning material. This paper describes a web-based conversational intelligent tutoring system 

(CITS) called Oscar which aims to mimic a human tutor by conducting a tutoring 

conversation whilst dynamically predicting and adapting to a student’s learning style. By 

implicitly modelling the student’s learning style during the tutoring conversation, Oscar can 

personalise the delivery of material for each individual learner which improves the 

effectiveness of the tutoring. An initial pilot study is presented using the domain of SQL 

database programming for undergraduate University students. The study produced 

encouraging results in predicting learning styles through conversational tutoring and 

improving student test scores. 

Design 

Oscar is a novel CITS which aims to imitate a human tutor by estimating and adapting to an 

individual student’s learning style during a tutoring conversation. A detailed description and 

the methodology for constructing Oscar CITS is reported in [3] and [4]. An initial study was 

conducted, applying Oscar CITS to the tutoring of undergraduate Science and Engineering 

students using the Index of Learning Styles (ILS) model [5]. There were 17 hypotheses to be 

tested, considering learner behaviour and language during the tutorial in relation to the four 

ILS dimensions. This paper presents two hypotheses (H) which consider the processing
1
 

(Active/Reflective) and understanding
2
 (Sequential/Global) ILS dimensions:  

H1: a student’s learning path through the tutorial is indicative of learning style. 

H2: choosing to be guided through a process (or not) is indicative of learning style. 

53 students were asked to complete the formal ILS questionnaire [5], followed by a test to 

assess their existing SQL knowledge. The students then engaged in a personal tutorial led by 

Oscar CITS, involving completing tasks and answering questions, being given hints and help 

as required. Finally students repeated the test to measure learning. 

  

                                                 
1
 learners process information Actively (discussion) or Reflectively (introspectively). 

2
 learners progress towards understanding Sequentially (continual steps) or Globally (large jumps). 



Results 

Table 1: Experimental Results 

Learning Style [5] Hypothesis Prediction Accuracy 

Active H1 100% 

Reflective H1 0% 

Sequential H1 76% 

 H2  73% 

Global H1 31% 

 H2  80% 

 

23 students were excluded as they did not complete the entire tutoring session. Table 1 shows 

the results of 30 students. There was a mean 22% improvement in test scores over the group. 

Discussion 

The results of the initial study are promising, with Oscar predicting Sequential/Global 

learners with 76%/80% accuracy and Active learners with 100% accuracy. However Oscar 

was unable to predict Reflective learners, which may be due to the nature of reflective 

learners who examine and manipulate information introspectively. A larger study is required 

before firm conclusions may be drawn. 

Overall, Oscar seemed to help students learn, with a mean 22% improvement in test scores. 

In using tutor-led conversation rather than a student-led CAL, Oscar CITS enables a 

constructivist style of tutoring to be employed and is a familiar format for students. Oscar 

CITS can assist in widening participation by offering students the flexibility (in terms of time 

and place) to attend a one-to-one online tutorial in support of or in place of classroom 

activities. 
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Abstract. This paper presents Oscar, a conversational intelligent tutoring 
system (CITS) which dynamically predicts and adapts to a student’s learning 
style throughout the tutoring conversation. Oscar aims to mimic a human tutor 
to improve the effectiveness of the learning experience by leading a natural 
language tutorial and modifying the tutoring style to suit an individual’s 
learning style. Intelligent solution analysis and support have been incorporated 
to help students establish a deeper understanding of the topic and boost 
confidence. Oscar CITS with its natural dialogue interface and classroom 
tutorial style is more intuitive to learners than learning systems designed 
specifically to capture learning styles. An initial study is reported which 
produced encouraging results in predicting several learning styles and positive 
test score improvements in all students across the sample.  

Keywords: Intelligent Tutoring System, Conversational Agent, Learning Style.  

1   Introduction 

Intelligent Tutoring Systems (ITS) use intelligent technologies to improve the 
effectiveness of the student learning experience [1]. ITS can help students by 
providing personalised tutoring at a time and a pace to suit the individual, and 
offering the facility to explore in depth topics which have not been fully understood. 
Such benefits may not be offered in a face-to-face class full of students with varying 
needs and levels of expertise. Most ITS present personalised content according to 
student knowledge or characteristics [2], but few attempt to truly mimic a human tutor 
by leading the tutorial and engaging the learner in discussion [3]. A conversational 
intelligent tutoring system (CITS) employs a conversational agent interface to allow 
discourse in natural language. Human tutors pick up cues from students which 
indicate their learning preferences, and adapt their tutoring style accordingly. 
Learning styles model the way in which groups of students learn most effectively, for 
example by trial and error or observation [4]. Some ITS adapt tutoring to an 
individual’s learning style, determined by using a formal questionnaire [5] or 
analysing learner behaviour [6]. However, there are no tutor-led CITS which can 
predict and adapt to learning style during the tutoring session like a human tutor. 
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The research presented in this paper aims to develop a CITS which can 
dynamically predict and adapt to a learner’s learning style during the tutoring session. 
Rather than specifically designing a learning interface to capture the learning style of 
the user as in [6], the focus of the research has been on imitating a human tutor and 
determining if it is possible to predict learning style from the student’s behaviour and 
interaction throughout the tutorial. Whilst this considerably increases the complexity 
of the task of predicting learning style, conversational interfaces are intuitive to use 
and an ability to discuss a problem can aid the deeper learning of a topic. 

In this paper, section 2 introduces some background concepts of the Index of 
Learning Styles [7], intelligent tutoring systems and conversational agents. Section 3 
describes the Oscar CITS and presents its architecture. Section 4 outlines the 
experimental methodology and a sample learner dialogue. Section 5 includes the 
results and discussion, and Section 6 describes the conclusions and future work. 

2   Background 

2.1   The Index of Learning Styles 

In their Index of Learning Styles (ILS) model [7], Felder and Silverman described the 
learning styles in engineering education and suggested different teaching styles to 
address learners’ needs. The ILS model defines four separate dimensions of preferred 
learning style, each relating to a step in the process of receiving and processing 
information as follows: 

• Perception – learners are sensory or intuitive depending on the type of information 
they prefer to perceive (e.g. external (sensory) or internal (intuitive)). 

• Input – learners are visual or verbal according to the way they prefer to receive 
external information (e.g. diagrams (visual) or explanations (verbal)). 

• Processing – learners are active or reflective according to the way information is 
converted into knowledge (e.g. discussion (active) or introspective consideration). 

• Understanding – learners are sequential or global depending on their progression 
towards understanding (e.g. continual steps (sequential) or large jumps (global)).  

The ILS uses a self-assessment questionnaire with 11 questions per learning style 
dimension, resulting in a score for each dimension. Each learning style dimension 
may be thought of as an axis with the opposite learning styles at either end (e.g. 
Visual versus Verbal), and the ILS questionnaire score places each learner on the axis 
according to the strength of their preferred learning style. There are 16 (24) learning 
styles overall (an example being sensory/visual/active/sequential). 

The ILS model was chosen for the Oscar CITS as it describes engineering students, 
who will make up the initial experimental groups. However, the Oscar CITS is not 
restricted to the ILS model and its modular structure allows Oscar to be adapted to 
incorporate other learning style models, such as Honey and Mumford [4]. 

2.1.1   ILS in Practice 
Whilst the ILS defines a formal questionnaire for students to identify their learning 
style, in practice it is not common for lecturers to use a formal tool when planning to 
teach a course. A lecturer will typically use their knowledge and experience of 
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different groups of learners to incorporate different types of material and activities. 
During tutorials, lecturers will intuitively pick up informal behavioural cues from 
students which indicate their level of understanding and their preferred learning style, 
and use these observations to adapt their teaching style accordingly.  

Felder and Silverman described typical learner behaviours and associated teaching 
styles for each learning style in their model. This information is useful when 
informally grouping types of learners and also when building the ILS model into a 
CITS. A summary of the behaviour descriptions is given below: 

• Perception. Sensing learners prefer facts and experimentation, are patient with 
detail, comfortable with symbols (e.g. words) and careful but slow. Intuitive 
learners prefer principles and theories, are bored by detail, uncomfortable with 
symbols and quick but careless. 

• Input. Visual learners remember what they see, like pictures and diagrams and 
prefer visual demonstration. Verbal learners remember what they hear, like 
discussion and prefer verbal explanation. 

• Processing. Active learners like to do something with information (discuss or test), 
they are experimentalists and process information by testing an idea. Reflective 
learners like to examine and manipulate information internally, are theoreticians 
and process information by postulating explanations and drawing analogies. 

• Understanding. Sequential learners like to follow a linear reasoning process, can 
work with partially understood material and prefer information presented in a 
steady progression of complexity. Global learners make intuitive leaps, have 
difficulty working with material they have not understood and prefer to jump 
directly to complex material. 

The Oscar CITS was designed to imitate a human tutor-led tutorial rather than being 
developed specifically to predict learning styles. Therefore Oscar requires knowledge 
of the theory of learning styles and their associated behaviours rather than the 
diagnostic questionnaire in order to imitate the practice of a human tutor.  

2.2   Intelligent Tutoring Systems 

Intelligent Tutoring Systems (ITS) are computer-based educational systems which 
employ intelligent technologies to provide individualised instruction. There are three 
main approaches to intelligent tutoring: curriculum sequencing, intelligent solution 
analysis and problem solving support [1]. Curriculum sequencing systems present 
students with learning material in a sequence and style best suited to their needs [2]. 
Intelligent solution analysis gives detailed feedback to the student on incomplete or 
erroneous solutions [8], and problem solving support techniques present intelligent 
assistance to reach a solution [9]. Curriculum sequencing alone is little better than 
selecting chapters from a book, but by including intelligent solution analysis and 
problem solving support an ITS can get close to offering support available from a 
human tutor. Although combining these three technologies adds benefits such as a 
more effective learning experience and improved student confidence and motivation, 
few ITS incorporate all three approaches as they are complex and time-consuming to 
develop. The Oscar CITS presented in this paper will include all three intelligent 
technologies by personalising learning material and conversing with the student, 
helping them to construct knowledge and learn from their mistakes. 
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Personalisation in ITS was traditionally based on student knowledge but has now 
been extended to include user affect, such as emotion [10], personality [11] and 
learning style [12]. Some ITS capture learning styles using a formal questionnaire [5], 
[13] whilst others analyse a student’s behaviour within the ITS [6], [14]. Completing 
questionnaires is onerous for students, who do not always lend enough attention to 
complete them accurately. Predicting learning style using a history of student 
behaviour means adaptation is delayed until several modules have been completed, 
and also a student’s learning style may change over time or for different topics. 
EDUCE [15] and WELSA [16] both estimate learning style dynamically for 
curriculum sequencing, but do not include a conversational interface or incorporate 
other intelligent tutoring technologies. The Oscar CITS will dynamically predict 
learning style throughout the tutoring conversation and adapt its intelligent tutoring 
style to suit the learning style. 

2.3   Conversational Agents 

Conversational agents (CAs) allow people to interact with computer systems using 
natural language dialogues. CA interfaces are intuitive to use and have been engaged 
effectively in many applications, such as web-based guidance [17], database 
interfaces [18] and intelligent tutoring systems [19]. Most ITS do not have a natural 
language interface as CAs are complex and time-consuming to develop, however to 
adequately mimic a human tutor an ITS should support the construction of knowledge 
through discussion [20]. The complexity of developing conversational tutors means 
that CAs are often included in ITS to help with the learning management system (e.g. 
how to use the system) [21] rather than conduct the tutoring. Two ITS with CA tutors 
are AutoTutor [3], which helps students construct knowledge about computer literacy 
and physics, and CIRCSIM-tutor [22], which engages students in discussion to solve 
physiology problems. Unlike the Oscar CITS, neither AutoTutor or CIRCSIM-tutor 
consider learning styles during tutoring. 

There are three main approaches to developing CAs: using natural language 
processing [23], pattern matching [24] or artificial intelligence [25] methods. The 
Oscar CITS adopts a pattern matching CA, which is most reliable in coping with 
student utterances including grammatically incorrect or incomplete language (as 
commonly found in student communications such as chat programs and SMS text 
messaging). Pattern matching CA systems use an algorithm to match key words and 
phrases within a user utterance to a set of pattern-based rules. A rule normally 
consists of an identification, a set of stimulus patterns, the rule’s current status and a 
response pattern. The algorithm decides the best fitting rule to fire, thus producing the 
CA response. There are usually numerous patterns in a given context, leading to many 
hundreds of rules in the CA’s knowledge base, which demonstrates the complexity 
and time required to script rules for a CA (and the reason CAs are rare in ITS).  

3   Oscar Conversational Intelligent Tutoring System 

The Oscar CITS is a conversational intelligent tutoring system designed to 
dynamically predict a student’s learning style during a tutoring conversation, and to 
adapt the tutoring style to suit the individual learner. Oscar’s pedagogical aim is  
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to provide the learner with the most appropriate learning material for their learning 
style leading to a more effective learning experience and a deeper understanding of 
the topic. Rather than being designed with the purpose of picking up learning styles 
(such as [6]), the Oscar CITS attempts to mimic a human tutor by leading a two-way 
discussion and using cues from the student dialogue and behaviour to predict and 
adapt to their learning style. Oscar’s natural dialogue interface and classroom tutorial 
style are intuitive to learners, enabling them to draw on experience to feel more 
comfortable and confident in using the CITS. Oscar CITS is a personal tutor which 
can answer questions, provide hints and assistance using natural dialogue, and which 
favours learning material to suit each individual’s learning style. The Oscar CITS 
offers 24-hour personalised learning support at a fixed cost. Oscar’s intelligent 
approach includes presenting learning material in the sequence and style most suited 
to the individual’s learning style (curriculum sequencing), analysing and giving 
feedback on incomplete and erroneous solutions (intelligent solution analysis) and 
giving intelligent hints and discussing questions (problem solving support). By 
combining all three intelligent technologies with a conversational interface, Oscar’s 
intelligent support aims to build the confidence of the learner and improve motivation 
and deep understanding of the subject. 

3.1   Oscar CITS Architecture 

Fig. 1 shows the modular structure of the Oscar CITS, which has been designed with 
component reuse in mind. This structure allows alternative knowledge bases and 
conversational agent scripts to be simply ‘plugged in’ to the system to adapt the 
tutoring to new subjects.  

 

Fig. 1. Oscar CITS structure 

The central controller manages communication between all components and the 
user interaction. The graphical user interface (GUI) displays a webpage which 
provides instructions, displays questionnaires, tests, images, documents, interactive 
movies and the chat area used to send communication to and from the user. The CA 
receives natural language text and information about the topic and learning style and 
generates a natural language response using a database of scripts. The student model 
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holds information about the student, such as their identifier and password, level of 
knowledge, topics visited, test scores and learning style. The knowledge base 
component manages course information, such as syllabus, related tests and 
categorised teaching material, which is accessed from a tutor material database. 
Teaching material is categorised according to teaching style, which is related to 
learning style. Finally, the learning styles component receives information from the 
CA, GUI, knowledge base and student model, and accesses the learning styles 
database to predict a student’s learning style. Further details of the development of the 
Oscar CITS can be found in [26]. 

4   Experimental Methodology 

An initial study was conducted to investigate the Oscar CITS prediction of learning 
style. For the study, the Oscar CITS was scripted to deliver a revision tutorial for an 
undergraduate Sequential Query Language (SQL) course. There were 17 hypotheses 
to be tested, covering the learner’s behaviour and use of language during the tutorial.  

The results covering three hypotheses for the perception (Sensor/Intuitor) and input 
(Visual/Verbal) ILS dimensions are reported in [26]. These experiments considered 
the student learning path (accuracy of 70% for Sensor/Intuitor, 50% for 
Visual/Verbal), the number of interactions (accuracy of 70% for Visual/Verbal) and 
reading time (accuracy of 70% for Visual/Verbal). 

This paper will focus on two hypotheses (H) which relate to the processing 
(Active/Reflective) and understanding (Sequential/Global) ILS learning dimensions:  

H1: a student’s learning path through the tutorial is indicative of learning style. 
H2: choosing to be guided through a process (or not) is indicative of learning style. 

Twenty people were chosen whose first language was English and who had previous 
experience of an undergraduate SQL course and various levels of SQL expertise. 
Each person registered anonymously for the Oscar CITS and was then asked to 
complete the formal ILS questionnaire followed by a multiple choice test to assess 
existing SQL knowledge. Next, each person engaged in a personalised tutoring 
conversation led by Oscar. During the tutoring, each learner answered questions and 
completed various tasks in SQL. Depending on their level of knowledge, students 
were exposed to various resources and given hints and help as required. At the end of 
the tutorial, each person was asked to complete the same multiple choice test to 
measure their learning over the session. Various log files recorded the dialogue, 
timings, knowledge and other factors throughout the tutorial. 

The tutorial log files were analysed and compared to the results of the ILS 
questionnaire to establish whether the information was indicative of learning style. 
For H1, aspects of the student’s behaviour had been mapped to the ILS model (see 
Table 1) and learning style scores were incremented depending on the student’s 
interaction during the tutorial. The final scores for each end of the ILS dimension 
were compared to give the overall learning style tendency for that dimension, e.g. for 
the processing dimension if the score for Active was higher than the score for 
Reflective, the learner was considered to be Active. For H2, the learner’s approach to 
writing queries was considered. Two questions involved writing complex SQL 
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Table 1. Aspects of ILS behaviour built into the Oscar CITS 

Active Reflective 
Do something with information: discuss/ 
explain/ test.  

Examine and manipulate information 
introspectively. 

Experimentalists. Theoreticians. 

Process information by setting up an 
experiment to test an idea, or try out on a 
colleague. 

Process information by postulating 
explanations/ interpretations, drawing 
analogies, formulating models. 

Sequential Global 
Follow linear reasoning processes. Make intuitive leaps. 

Can work with material they have only 
partially or superficially understood. 

Difficulty working with material not 
understood. 

Learn best when information is presented in 
a steady progression of complexity and 
difficulty. 

Sometimes better to jump directly to more 
complex and difficult material. 

queries to solve a problem, and learners who attempted the query straight away were 
classed as Global learners whilst students who asked for guidance were classed as 
Sequential learners. Section 5 presents and discusses the results of the experiments. 

4.1   Example Learner Dialogue 

Table 2 shows part of a student’s tutoring dialogue logged during this experiment. In 
utterance 33, Oscar continues a question about datatypes. The student gives the wrong 
datatype in utterance 34, and next Oscar indicates that the answer is wrong and gives 
the student a second chance to answer in case of spelling errors, repeating the 
question. In utterance 36 the student tries again, still with the wrong answer. Oscar 
gives feedback that the answer is wrong (utterance 37), and helps by showing an 
image of the most common datatypes to see if the student is able to pick out the 
required answer. In this action, Oscar is helping the student learn by reminding them 
of the common datatypes and asking them to think about the correct datatype rather 
 

Table 2. Example tutoring dialogue snippet logged during the experiment 

Utterance Dialogue 
33. Oscar> Now, in our books table suppose we want to store the price of the book 

where the maximum price of a book is 99.99. What would be the datatype? 
34. Student> VARCHAR2  
35. Oscar> I'm sorry, that's wrong. Check your spelling and try again - type in the 

datatype for book price (with a maximum of 99.99). 
36. Student> VARCHAR2 MAX 99.99 
37. Oscar> That's still wrong.  Take a look at the table of common datatypes - can you 

now type in the datatype for book-price where the maximum price is 99.99? 
38. Student> NUMBER(2,2) 
39. Oscar> That's correct - we need a datatype of NUMBER(2,2) in order to show the 

decimal point in book-price, with a maximum of 99.99. 
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than simply telling them the answer. In utterance 38 the student enters the correct 
datatype, extended to include the decimal places, and Oscar then confirms that they 
have the right answer and repeats the solution to reinforce the knowledge.  

5   Results and Discussion 

Table 3 shows the results of the experiments. The ILS questionnaire results showed 
that the split of learning styles for each dimension across the sample was nearly equal, 
with 9 Active and 11 Reflective learners and 10 Sequential and 10 Global learners. 

Table 3. Experimental results 

Hypothesis Learning Style Prediction Accuracy 
H1 – learning path Active 100% 
 Reflective 0% 
 Sequential 80% 
 Global 40% 
   
H2 – approach to queries Sequential 80% 
 Global 75% 

 
 

For H1, the prediction of learning style by Oscar CITS depended on the learner’s 
path through the tutorial. When compared to the ILS questionnaire results, Oscar 
accurately predicted an Active learning style in 100% of cases, however it was not 
possible to predict a Reflective learning style. The characteristics of reflective 
learners described in the ILS model suggest that they spend time after learning to 
reflect on what they know and put it together as knowledge. As this activity happens 
after learning, it may not be possible to predict a reflective learning style during a 
tutorial. However, these results are not intended to be taken in isolation, and the 
development of an algorithm to combine different analyses may improve accuracy. 
Sequential learners were predicted with an accuracy of 80%, however Oscar was not 
able to predict Global learners using this method, with an accuracy of only 40%. 

H2 relates to the Sequential/Global learning style dimension, as it considers a 
student’s approach to writing complex queries. The results of this measure were better 
than H1, with Oscar’s prediction of Global learners the same at 80% accuracy, but of 
Sequential learners much improved at 75% accuracy. Overall, user feedback after 
completing the tutorial indicated that Oscar was well received, understandable and 
helpful. Of the 18 students who did not achieve full marks in the pre-test, all of them 
improved their test scores, with an average improvement of 25%. 

6   Conclusions and Further Work 

This paper has presented Oscar, a novel CITS which implicitly predicts and adapts to 
a student’s learning style during a tutoring conversation. Oscar CITS imitates a 
human tutor by leading a tutorial in natural language, intelligently analysing solutions 
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and offering problem solving support rather than simply presenting the answers. In 
providing the learner with the most appropriate learning material for their learning 
style, Oscar CITS aims to improve the effectiveness of the learning experience and 
provoke a deeper understanding of the topic, and thus improve confidence. An 
effective, personalised online tutor such as Oscar CITS could support class-based 
courses and help to widen access through distance learning. 

The results of the initial study are promising, with an accuracy of predicting 
learning style on the Sequential/Global dimension of 75-80%. The Oscar CITS 
performance on the Active/Reflective dimension was interesting, with a 100% 
accuracy in predicting Active learners, but no ability to predict Reflective learners at 
all. When considering the ILS description of reflective learners this is perhaps not 
surprising – reflective learners prefer to examine and manipulate information 
introspectively, behaviour that would be most difficult to capture during a tutorial 
over a short period of time. It may therefore be concluded from this experiment that it 
is not possible to predict reflective learners in the Oscar CITS, however a further 
study with a larger sample size is required before drawing any firm conclusions. 
Further experiments with a larger group are currently being undertaken, and an 
algorithm is being developed to combine several of the 17 aspects of behaviour to 
improve the accuracy of learning style prediction. Overall, the results have shown that 
the Oscar CITS tutoring seemed to help learning as all students who did not initially 
achieve full marks improved their test scores by an average of 25%.  

Acknowledgement. The authors thank Convagent Ltd for the use of the InfoChat 
conversational agent and PatternScript scripting language. 
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Abstract—Intelligent tutoring systems are computer learning 
systems which personalise their learning content for an 
individual, based on learner characteristics such as existing 
knowledge. A recent extension to ITS is to capture student 
learning styles using a questionnaire and adapt subject content 
accordingly, however students do not always take the time to 
complete questionnaires carefully. This paper describes Oscar, 
a conversational intelligent tutoring system (CITS) which 
utilises a conversational agent to conduct the tutoring. The 
CITS aims to mimic a human tutor by dynamically estimating 
and adapting to a student’s learning style during a tutoring 
conversation. Oscar also offers intelligent solution analysis and 
problem support for learners. By implicitly modelling the 
student’s learning style during tutoring, Oscar can personalise 
tutoring to each individual learner to improve the effectiveness 
of the tutoring. The paper presents the novel methodology and 
architecture for constructing a CITS. An initial pilot study has 
been conducted in the domain of tutoring of undergraduate 
Science and Engineering students using the Index of Learning 
Styles ILS) model. The experiments to investigate the 
estimation of learning style have produced encouraging results 
in the estimation of learning style through a tutoring 
conversation. 

I. INTRODUCTION 
NTELLIGENT Tutoring Systems (ITS) are computerised 
learning systems which attempt to imitate human tutors to 
provide more personalised learning than previous content 

delivery systems [1]. If human tutors could be mimicked 
adequately, the effectiveness of online learning would be 
improved and access to learning widened. The availability of 
an effective computer tutor would have a positive impact on 
distance learning as well as offering support for traditional 
class-based courses. Students attending an online tutoring 
session are able to learn at their own pace and at a time 
suited to other commitments. Students could also benefit 
from personalised learning, with the ability to revisit and 
delve further into topics they have not fully understood, 
which cannot be offered in a class of many students. For 
education establishments, online tutorials are a cost-effective 
way of offering flexible courses, with the cost fixed and 
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borne at the time of development regardless of the number 
of students.   

ITS are generally designed with a menu-style user 
interface [2], but a conversational interface would be a more 
natural mimic of human tutoring, offering constructivist 
styles of learning as used by human tutors [3]. Only a small 
number of ITS allow discussion with the tutor [4] due to the 
time and complexity of development. Like human tutors, 
ITS adapt the tutorial content for each individual student.  
Adaptation is normally based on a student’s level of 
knowledge, but a recent enhancement is to present content 
suitable to a student’s learning style [5], [6]. Learning styles 
describe the way in which groups of people learn most 
effectively, and are normally assessed by questionnaire [7]. 
Human tutors often informally pick up cues from students 
which indicate their understanding of a topic, and adapt the 
tutoring to aid learning, for example by drawing a diagram 
or giving a practical example. By assessing the student’s 
reaction to particular styles of tutoring, human tutors then 
favour the more successful styles in future tutorials. ITS 
adaptation to learning style normally requires the student to 
complete a formal questionnaire [5], however students do 
not always take the time to answer questionnaires accurately, 
leading to incorrect results and less effective learning. Some 
ITS model learning style based on historical learning 
behaviour, however adaptation to learning style cannot then 
be offered initially. If an ITS could learn and adapt to a 
student’s learning style during a tutoring conversation, such 
personalised, conversational tutoring would improve the 
student’s learning experience. The novel conversational ITS 
described in this paper aims to mimic a human tutor by 
learning and adapting to a student’s learning style during the 
tutoring conversation. 

Conversational agents (CAs) are computer programs 
which interact with users by natural language [8].  There are 
three main approaches to developing CAs – using natural 
language processing (NLP) [9], pattern matching [10] or 
artificial intelligence (AI) techniques [11], which will be 
outlined in section II. The Oscar CITS presented in this 
paper adopts the pattern matching approach, which may be 
more reliable as patterns can cope with grammatically 
incorrect user utterances [11], as often used by students.  
Conversational agents require scripting for particular 
domains, a time-consuming and complex task, however to 
replicate human tutoring, a conversational interface is 
important. 

This paper describes Oscar, a novel CITS which estimates 
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student learning styles by picking up cues from students 
during tutoring conversations. By learning and adapting to a 
student’s learning style during a tutoring conversation, Oscar 
can intelligently personalise tutoring at an early stage and 
without additional burden on the learner. Oscar is a web-
based CITS with a CA interface which leads the tutoring 
session, asking questions, showing visuals and movies and 
offering intelligent feedback to students. A novel 
architecture has been designed which will facilitate the 
development of a CITS in any domain. For the purpose of 
this paper Oscar has initially been developed to offer online 
SQL revision tutorials. The results of the initial pilot study 
are presented which analysed student interaction with Oscar 
during an SQL revision tutorial to assess the accuracy of 
learning style predictions.  

This paper is organised as follows: Section II will describe 
conversational agents, Section III introduces learning styles, 
Section IV will outline ITS, Section V introduces the Oscar 
CITS, Section VI describes the experimental methodology 
of the pilot study and Sections VII and VIII include the 
results, discussions and conclusions.  

II. CONVERSATIONAL AGENTS 
Conversational agents allow people to interact with 

computer systems using natural language dialogues. There 
are three main approaches to developing CAs.  The natural 
language processing approach [9] seeks to understand the 
user input by studying the constructs and meaning of natural 
language, applying rules to process important parts of 
sentences. Pattern matching systems [10] use an algorithm to 
match key words and phrases within an utterance, and so do 
not require grammatically correct or complete input. The AI 
method [11] compares the semantic similarity of phrases to 
decide on the meaning of the input. 

CAs usually rely on a knowledge base containing a set of 
rules. User utterances are matched to pattern-based rules in 
the knowledge base and an algorithm decides which is the 
best fitting rule to fire, producing the CA response. A rule 
normally consists of an identification, a set of stimulus 
patterns, the rule’s current status and a response pattern [11]. 
The Oscar CITS uses a pattern matching CA, which is most 
reliable in coping with student utterances including 
grammatically incorrect or incomplete language. 

III. LEARNING STYLES 
Learning styles describe the way in which groups of 

people learn most effectively, for example by trial and error, 
or by observation [12]. There are numerous models of 
learning styles, which are generally assessed using self-
assessment questionnaires. Most models of learning style 
describe dimensions along which a value is placed to 
represent the tendency for learning style. For example, on a 
visual/verbal dimension, learners who are more comfortable 
with discussion and verbal explanation tend towards the 
verbal end, whereas learners who prefer to study diagrams 
and pictures would tend towards the visual end.  

Learning styles are thought to be a subset of personality 
[12] and there is much discussion in the literature about 
whether and how learning styles can be of use to teachers 
and learners [13], [14]. Pask concludes “It seems evident 
that distinctive learning strategies exist. ... There are also 
certain distinct styles, or dispositions to adopt classes of 
strategy” [14]. 

An early learning styles model was Kolb’s Experiential 
Learning Model (ELM) [7], which is a four-stage learning 
cycle which can be entered at any point. ELM was 
developed further to produce the Learning Style Inventory 
(LSI), a 12 item questionnaire requiring the ranking of 
sentence endings [7]. Honey and Mumford’s Learning Style 
Questionnaire (LSQ) was developed for management 
trainees and defines four learning styles which are similar to 
the stages of learning in ELM [15]. The LSQ model has 
been used in some ITS [1].  

The Index of Learning Styles (ILS) [16], [17] was 
developed to describe the learning styles in engineering 
education and suggest different pedagogical styles to address 
learners’ needs. The ILS model defines four dimensions of 
preferred learning style: perception (Sensor/Intuitor), input 
(Visual/Verbal), processing (Active/Reflective) and 
understanding (Sequential/Global). The ILS uses a self-
assessment questionnaire with 11 questions per learning 
style dimension, which results in a score for each of the four 
dimensions. Each learning style dimension represents an 
axis with the opposite learning styles at each end (e.g. Visual 
versus Verbal), and the ILS questionnaire score places each 
learner on the axis according to the strength of their 
preferred learning style. The ILS has been adopted by a 
number of ITS [18], [5], [19], [20]. The ILS model was 
chosen for the Oscar CITS as it was designed for 
engineering students, who will make up the initial 
experimental groups. However, Oscar’s modular structure 
means it is not restricted to ILS and can be adapted to use 
other learning style models. 

IV. INTELLIGENT TUTORING SYSTEMS 
Computer-assisted learning systems were traditionally 

information-delivery systems developed by converting tutor 
or distance-learning material into a computerised format. 
The popularity of the Internet has enhanced the opportunities 
for e-learning, however most online systems are still teacher-
centred and take little account of learner needs [21]. [22] 
identified two main groups of adaptive and intelligent web-
based educational systems - Adaptive Hypermedia Systems 
(AHS) and Intelligent Tutoring Systems (ITS). AHS are akin 
to interactive books which adapt the navigation and content 
of hyperlinks to the knowledge of the user [1], [6]. ITS 
personalise teaching according to individual student 
characteristics, such as knowledge of the subject.  A student 
model is built, including personal details and learning 
history, and teaching is adapted to the student. Such systems 
are now being extended to adapt to other student 
information, such as mood and emotion [23], [24] and 



 
 

 

learning style [19]. 
Three approaches to intelligent tutoring are curriculum 

sequencing, intelligent solution analysis, and problem 
solving support [22]. Curriculum sequencing involves 
presenting each student with learning material in a sequence 
and style best suited to their needs [25]. Intelligent solution 
analysis aims to provide detailed feedback to the student on 
incomplete or erroneous solutions [2], and problem solving 
support techniques offer intelligent help in arriving at a 
solution [26]. Curriculum sequencing alone is little better 
than personalising a book, but by incorporating intelligent 
solution analysis and problem solving support an ITS can get 
close to mimicking a human tutorial. Few ITS incorporate 
all three intelligent approaches as they are complex and 
time-consuming to develop. However, combining all three 
technologies adds benefits by offering a more effective 
learning experience and intelligent support which can help to 
build confidence and motivation. The Oscar CITS presented 
in this paper will include all three intelligent technologies by 
personalising the learning material and helping the student to 
construct knowledge and learn from their mistakes.  

A. Conversational ITS 
Conversational interfaces have rarely been incorporated 

into teaching and learning systems, however the benefits of 
constructivist styles of learning (as used by human tutors) 
are widely accepted [27]. To mimic a human tutor, ITS 
should support the construction of knowledge: “it seems 
necessary for future generations of ITSs to incorporate 
natural language capabilities.” [31]. The complexity of 
developing conversational tutors means where CAs are 
included in ITS, it is often to interact or help with the 
learning management system (e.g. how to use the system) 

rather than conduct the tutoring [28], [29]. Two 
conversational ITS which do adopt CA tutors are AutoTutor 
[4] and CIRCSIM-tutor [30]. AutoTutor allows students to 
construct knowledge about computer literacy and physics 
through conversations. CIRCSIM-tutor incorporates a CA to 
allow students to solve physiology problems by discussion. 
Neither of these CITS take learning styles into consideration 
during tutoring.  

B. Adaptation to Learning Style 
Most ITS personalise learning by adapting to a student’s 

existing knowledge of the subject. The extension of ITS to 
adapt to other student characteristics, such as learning style, 
is a new area of research. A small number of ITS which 
adapt to learning style use formal questionnaires completed 
by students during registration [5], [21]. However, students 
may not complete the questionnaire accurately as it is time 
consuming, therefore producing an unreliable student model 
[19]. There have been some attempts to detect learning style 
by analysing a student’s behaviour history within the ITS 
[19], [20], [32], [33]. Whilst removing the need to complete 
a questionnaire, such ITS are not able to adapt to learning 
style until a number of learning modules are complete.  
Estimating learning style dynamically and continually 
updating the student model allows an ITS to adapt to 
changes in learning style over time. The EDUCE [34] and 
WELSA [35] adaptive educational systems both 
dynamically estimate learning style for curriculum 
sequencing, however they do not include a conversational 
interface or incorporate other intelligent tutoring 
technologies. The Oscar CITS reported in this paper will 
dynamically estimate learning style during a tutoring 
conversation, and then adapt the tutoring to suit that learning 

 
Fig. 1.  Oscar CITS learner interface. 

Interactive movies pop 
up in new window 

Chat area: learner answers 
questions or asks for help 

Image area: relevant images 
are displayed as needed 



 
 

 

style whilst offering intelligent solution analysis and 
problem solving support. 

V. OSCAR CITS 
The Oscar CITS is a conversational intelligent tutoring 

system which can dynamically estimate and adapt to a 
student’s learning style during a tutoring conversation. In 
addition to curriculum sequencing, Oscar aims to mimic a 
human tutor in offering intelligent solution analysis and 
conversational problem solving support in the domain of the 
database Structured Query Language (SQL). The ILS model 
was adopted, which describes different learning 
characteristics and identifies associated pedagogical styles 
for engineering students. Oscar draws on a knowledge base 
of tutor material and conversation scripts to deliver a 
conversational tutorial to a student. To support the tutoring 
conversation, diagrams, images and interactive movies may 
be displayed. Aspects of the student’s behaviour and 
understanding inform the dynamic estimation of learning 
style, allowing the tutoring style to be personalised to best 
suit the student. 

Fig. 1 shows the Oscar CITS graphical user interface 
(GUI) during a tutoring session, where a diagram is visible 
and a tutoring conversation is taking place.  The student is 
being asked to write a query with four main parts, and has 
chosen to be guided through each step by Oscar. The image 
shows a Unified Modelling Language (UML) diagram of the 
relevant database tables and the first part of the query 
written so far. In the chat area, Oscar has responded to 
confirm that the learner’s previous answer was correct and 
has stated the next step in writing the query.  Oscar then 
reminds the learner of the main query question and asks for 
information required for the next stage.  

A. Oscar Architecture 
Fig. 2 shows the overall structure of the Oscar CITS. A 

central controller communicates with all components to 
manage the user interaction. The knowledge base manages 

course information, such as topics and their breakdowns, 
related tests and teaching material, which is accessed from a 
Tutor Material database. All tutor information is categorised 
according to teaching style (related to learning style). The 
learning styles component receives information from the 
CA, GUI, knowledge base and student model and accesses 
the Learning Styles database, to estimate a learning style. 
The student model holds information about the student, such 
as name, level of knowledge, topics visited, test scores and 
learning style. The GUI (Fig. 1) displays a webpage showing 
questionnaires, tests, images, documents and interactive 
movies and sends communication to and from the user. The 
conversational agent receives natural language text and 
information about topic and learning style from the GUI, 
knowledge base and learning styles components, and 
generates a natural language response. The CA accesses a 
database of scripts in order to match the input and generate a 
response.  

B. Methodology 
Learning styles are central to the Oscar CITS, so 

development started by considering the ILS model.  The ILS 
questionnaire contains 44 questions – too many to 
incorporate into a tutoring session, so a pilot study was done 
of 103 completed ILS questionnaires to investigate which 
were the best predictor questions [36]. The study found that 
17 questions predicted the overall result in at least 75% of 
cases, with the top three questions predicting the result in 
84% of cases. The subset of the best ILS predictor questions 
for each learning style dimension was then considered 
during the development of the Oscar CITS. 

The domain of SQL was selected as the target audience 
for the pilot study would be undergraduate computing 
students, for whom a Databases course including SQL is 
compulsory. The ILS model, which was designed to describe 
engineering students’ learning styles, is appropriate to this 
target group. Several interviews with undergraduate level 
database course tutors were undertaken.  In consultation with 
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Fig. 2.  Oscar CITS structure. 



 
 

 

database course lecturers, several SQL concepts were 
identified from an undergraduate Databases course syllabus.  

Tutoring revision scenarios were designed, based around 
the syllabus and the database lecturers’ experience of 
revision tutorials. Each revision question was mapped to the 
ILS model by incorporating questions from the questionnaire 
and using the model’s descriptions of indicative behaviour, 
such as a preference for theoretical questions. Table I shows 
two examples of logic rules used by the system to increment 
learning style values during tutoring. Learning styles are 
held in eight values within the student model, representing 
each pole of the four dimensions. The logic rules are 
incremental, increasing learning style values where 
particular behaviour is evident. At the start of the first 
tutoring session, no initial learning style values exist for a 
student. During the tutoring conversation, learning style 
values are incremented depending on the student’s tutoring 
conversation. At the end of the tutoring session, the value 
pairs of each learning style dimension are compared to 
reveal the student’s overall learning style tendency for that 
dimension (i.e. the greater value). Learning style values 
depend on an individual’s unique tutoring session, and if no 
evidence is gathered to suggest a particular learning style 
dimension, that learning style will remain unclassified. For 
example, student x attended a tutoring session on SQL 
during which their behaviour was analysed to uncover 
evidence suggesting a particular learning style. At the end of 
the tutoring discussion, the student’s learning style was 
estimated to be Intuitor and Verbal, but no evidence was 
found to categorise the student for the remaining two 
learning style dimensions (Active/Reflective and 
Sequential/Global). Student x next completes a follow-up 

tutorial session which favours content to match an 
Intuitor/Verbal learning style. Incremental evidence from 
both tutoring conversations estimated the student’s learning 
style to be Intuitor/Verbal/Active but there was no evidence 
to indicate a value for the Sequential/Global dimension. 

Tutoring conversations were written based on the SQL 
revision scenarios, including numerous possible student 
responses. Additional material such as images, diagrams and 

movies was incorporated into the tutoring conversations and 
mapped to learning styles. The resulting tutorial 
walkthroughs indicated which learning style should be 
incremented at which point, based on the student’s learning 
path.  

Several styles of question were included, for example 
practical problems to create queries and theoretical questions 
to test knowledge. Standard question formats were 
represented diagrammatically to speed up development by 
reuse of the logic and CITS scripts. A list of frequently 
asked questions (FAQs) about SQL was compiled and an 
existing multiple choice test was adapted to cover the 
revision syllabus. 

Next began the time consuming and complex task of 
scripting the CA component. Convagent’s InfoChat CA [37], 
a CA employing natural language pattern matching, was 
chosen. CA scripts, organised into contexts, were developed 
to manage the tutorial conversation and respond to student 
inputs. Overall, there were 38 contexts containing around 
400 rules which demonstrates the complexity of developing 
a CITS. A frequently asked questions (FAQ) layer of scripts 
was developed to deal with student responses which did not 
directly relate to the current question. Additionally a lower 
layer of scripts was designed to pick up abusive language 
(sessions are ended at this point). An example FAQ rule 
from one of the InfoChat scripts is shown in Table II. In the 
rule, a is the activation level used for conflict resolution 
[38]; p is the pattern strength followed by the pattern and r is 
the response. Also seen in the example is the wildcard (*) 
and macros (<explain-0>) containing a number of standard 
patterns which are each matched separately. Further 
information about the PatternScript language and InfoChat 
algorithm is available by contacting 
http://www.convagent.com. 

The student model was designed, which holds the student 
name and password, level of knowledge, test scores and 
learning style values. The Oscar CITS components were 
then developed, producing a framework system which draws 
on various resources (the conversational agent scripts, tutor 
material, student model and learning styles) to present an 
adaptive tutoring session. The CITS student registration 
includes the completion of the ILS questionnaire and the 
completion of a multiple choice question (MCQ) pre-test to 
assess existing student knowledge. The same MCQ test is 
presented at the end of the tutoring session in order to assess 

TABLE II 
EXAMPLE OF INFOCHAT PATTERNSCRIPT SCRIPTING  

SHOWING AN FAQ RULE 
<Rule-01> 
a:0.01 
p:50  *<explain-0> *select* 
p:50  *select* <explain-0>* 
p:50  *<remind-0> *select* 
p:50  *select* <remind-0>* 
p:50  *<confused-0> *select* 
p:50  *select* <confused-0>* 
r:   The SQL SELECT command is used to retrieve data from  
   one or more database tables. 

 

TABLE I 
EXAMPLE OF LOGIC RULES USED TO ADJUST STUDENT LEARNING 

STYLE VALUES BASED ON TUTORING CONVERSATION 

1. Example rule to test whether presenting information visually 
helps the student’s information perception: 

IF  student does not know the answer  
THEN  show student image/diagram; 
IF  student shown image/diagram  
AND  student gives correct answer 
THEN  increase VISUAL; 

2. Example rule to test how comfortable the student is with 
words and with detail: 

IF  answer is given in the explanation text 
AND  student does not know the answer  
THEN  increase INTUITOR 
AND  increase VISUAL; 

 
 



 
 

 

learning.   
During tutoring, the CITS records and logs information 

about the behaviour of the student, such as timing of 
interactions, the number of words used, the number of times 
FAQs are asked and the type of tutor resource accessed. The 
tutoring conversation is also recorded, along with 
information about the student knowledge of the topic being 
discussed. 

VI. EXPERIMENTAL METHODOLOGY 
An initial pilot study was conducted to assess the Oscar 

CITS in two ways – firstly Oscar’s estimation of learning 
style and secondly the acceptance of the Oscar tutor by 
users. Three experiments were conducted, focusing on the 
perception (Sensor/Intuitor) and input (Visual/Verbal) ILS 
learning style dimensions. Experiment 1 explored the 
student’s path through the learning material, Experiment 2 
examined the number of discourse interactions during 

tutoring and Experiment 3 investigated reading time.  
Ten people were chosen whose first language was English 

and who had previous experience of an undergraduate 
ORACLE SQL course (but with various levels of expertise). 
Each person registered for the Oscar CITS, completing the 
ILS questionnaire and pre-test, and then went through the 
SQL revision tutorial. Finally each person completed the 
post-test. At the end of the tutoring session, each person was 
informally interviewed and asked to complete a feedback 
questionnaire.   

The log files recorded by the Oscar CITS for each person 
were analysed and compared to the results of the formal ILS 
questionnaire to assess whether the information being 
collected could be used to indicate learning style, and 
whether Oscar had accurately estimated learning style.  

For Experiment 1, depending on the student’s answers to 
tutoring questions, learning styles were incremented 
according to the mappings made to the ILS model which 
were documented in the tutoring conversation walkthrough. 
The final learning style scores were then converted into an 
overall learning style for each dimension, e.g. for the 
VIS/VRB (Visual/Verbal) dimension if the score for Visual 
was higher than that for Verbal, the student was considered 
to be Visual.  The learning style result was compared to the 

ILS questionnaire results for each student.  
For Experiment 2, the number of discourse interactions 

during the tutoring session was counted and compared to the 
mean and median values across the sample group. The 
hypothesis was that the more discursive a student is (i.e. the 
more interactions), the more they tend towards the verbal 
learning style.  

For Experiment 3, the mean time taken to read 10 Oscar 
words was calculated for each student and compared to the 
mean and median values across the sample group. The 
hypothesis was that the longer a student takes to read 
instructions (i.e. the less comfortable the student is with 
words), the more they tend towards the visual learning style.  

The next section presents and discusses the results of 
these experiments. 

VII. RESULTS AND DISCUSSION 
Table III summarises the results of the three experiments. 

It should be noted that, as expected, the split of learning 
styles assessed by the ILS questionnaire was not equal 
across the sample. For the SNS/INT (Sensor/Intuitor) 
dimension, 20% of the sample was Sensory and 80% 
Intuitive learners.  For the VIS/VRB dimension, 80% of the 
group was Visual and 20% was Verbal learners. Each 
experiment will now be discussed separately, and then the 
learner feedback on Oscar CITS will be summarised. 

A. Experiment 1 - Learning Path  
In experiment 1, the estimation of learning style depended 

on the learner’s path through the tutoring material. For the 
perception dimension (Sensor/Intuitor), Oscar’s result 
agreed with the ILS questionnaire result in 70% of cases. For 
the input dimension (Visual/Verbal), Oscar’s results agreed 
with the ILS questionnaire in only 50% of cases. Clearly, 
further work and consideration needs to be given to the 
effect of visual material (images) versus discussion and 
explanation on the learner’s understanding.  As the tutorial is 
tutor-led rather than student-led, this dimension may be 
more difficult to estimate by conversation than in, for 
example, a hyperlink system [35]. However, the results of 
each experiment are not intended to be taken in isolation, 
and the development of an algorithm to combine different 
types of analysis may offer better accuracy. 

B. Experiment 2 – Number of Interactions 
Experiment 2 relates to the input dimension 

(Visual/Verbal) with the hypothesis that the students who 
enter into most discussion with Oscar are Verbal learners.  
The students were categorised as Visual or Verbal learners 
by comparing the number of discourse interactions to the 
mean and the median for the sample, and this was compared 
to the ILS questionnaire result.  In 70% of cases for both the 
mean and median comparisons, there was agreement in the 
learning style assessment. 

C. Experiment 3 – Reading Time 
The hypothesis for Experiment 3 was that Visual learners 

TABLE III 
EXPERIMENTAL RESULTS 

 
Learning Style Comparison Accuracy of 

Estimation 
Experiment 1 – learning path  
 SNS/INTa - 70% 
 VIS/VRBb - 50% 
Experiment 2 – number of interactions  
 VIS/VRB Mean 70% 
 VIS/VRB Median 70% 
Experiment 3 – reading time  
 VIS/VRB Mean 60% 
 VIS/VRB Median 70% 

aSNS/INT is the Sensor/Intuitor dimension 
bVIS/VRB is the Visual/Verbal dimension 

 



 
 

 

take longer to read than Verbal learners. Students were 
categorised as Visual or Verbal learners by comparing their 
mean reading time for 10 Oscar words over the whole 
tutoring session with the group mean and median. Compared 
to the group mean, Oscar agreed with the ILS in 60% of 
cases, rising to 70% of cases when compared to the sample 
median. The mean differed considerably from the median, 
by 2 seconds, as the duration of the tutoring session also 
differed substantially, by 37 minutes, 7 seconds. As each 
individual’s learning path is different, different numbers of 
Oscar words will be presented, however the indication is that 
the median is the most appropriate measure for comparison 
in this case.  

D. Using Oscar CITS 
In general, the user feedback from the initial pilot study 

showed that Oscar was well received, understandable and 
helpful. All students showed an improvement in their test 
scores after the revision tutorial, with the average 
improvement across the sample of 21%. 90% of the group 
would use Oscar to support classroom tutoring, with a 
surprising 20% stating they would use Oscar instead of face-
to-face tutoring. Only 40% of learners agreed that they 
would use the Oscar CITS instead of reading a book. When 
openly asked for comments, half of the group commented 
that the conversational interface was natural and easy to 
understand, with one learner remarking “it encouraged me to 
think rather than simply giving me the answer”.  

VIII. CONCLUSION 
This paper has presented the novel architecture and 

methodology for developing Oscar, a CITS which implicitly 
estimates and adapts to a student’s learning style. Oscar 
employs a CA to intelligently lead an online tutorial, 
mimicking a human tutor in offering students individualised 
problem solving support and intelligent solution analysis. A 
CITS which personalises tutoring by dynamically estimating 
and adapting to learning style could improve the 
effectiveness of a student’s learning experience and help to 
boost confidence. Effective, personalised online tutoring 
could offer support for class-based courses and widen access 
with distance learning. 

The results of the initial pilot study are promising, with an 
accuracy of estimating learning style of 70% in three cases 
but 50% in the worst case. It is not appropriate to draw firm 
conclusions with a small initial sample size, and an unequal 
spread of learning style. Further experiments with a larger 
group are currently being undertaken. In addition, an 
algorithm using a fuzzy set representation of learning styles 
is currently being developed to combine different aspects of 
behaviour to improve the accuracy of learning style 
estimation. With regards to Oscar’s conversational tutoring, 
the results have shown that the subjects did value the online 
Oscar CITS in supporting classroom lessons, and that 
Oscar’s tutoring seemed to help learning and improved test 
scores in every case. It can therefore be concluded that using 

Oscar has helped give students a positive learning 
experience. 
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