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Abstract

Studies using transcranial magnetic stimulation have demonstrated that action observation can modulate the activity of the corticospinal

system.This has beenattributed to the activity of an ‘action observation network’, wherebypremotor cortex activity influences corticospinal

excitability. Neuroimaging studies have demonstrated that the context in which participants observe actions (i.e. whether they simply

attend to an action, or observe it with the intention to imitate) modulates action observation network activity. The study presented here

examined whether the context in which actions were observed revealed similar modulatory effects on corticospinal excitability. Eight

human participants observed a baseline stimulus (a fixation cross), observed actions in order to attend to them, or observed the same

actions with the intention to imitate them. Whereas motor evoked potentials elicited from the first dorsal interosseus muscle of the hand

were facilitated by attending to actions, observing the same actions in an imitative capacity led to no facilitation effect. Furthermore, no

motor facilitation effects occurred in a controlmuscle. Electromyographic data collectedwhenparticipants physically imitated the observed

actions revealed that the activity of the first dorsal interosseus muscle increased significantly during action execution compared with rest.

These data suggest that an inhibitory mechanism acts on the corticospinal system to prevent the immediate overt imitation of observed

actions. These data provide novel insight into the properties of the human action observation network, demonstrating for the first time that

observing actions with the intention to imitate them can modulate the effects of action observation on corticospinal excitability.

Introduction

Studies using transcranial magnetic stimulation (TMS) demonstrate

that observing another person’s actions can modulate the excitability

of the corticospinal system (for a review see Fadiga et al., 2005). For

instance, Fadiga et al. (1995) revealed an increase in corticospinal

excitability when participants observed experimenters perform actions

(e.g. grasping objects) in comparison to non-action observation control

conditions (e.g. observing objects with no accompanying actions). It

has been proposed that this motor facilitation effect reflects increased

premotor activity, which influences corticospinal excitability via

cortico-cortical connections with the primary motor cortex, or

descending connections with the spinal cord (see Fadiga et al.,

2005). This effect is widely attributed to activity of the human action

observation network, a network of premotor and parietal areas similar

to the ‘mirror neuron’ system found in primates (for a review see

Rizzolatti et al., 2001).

Evidence from neuroimaging suggests that the action observation

network plays a role in imitation (for a recent meta-analysis see

Caspers et al., 2010). Iacoboni et al. (1999) asked participants to

perform finger-raising movements in response to imitative, symbolic

or geometric stimuli. Greater premotor and parietal blood-oxygen-

level-dependent (BOLD) activity occurred when participants re-

sponded to imitative cues compared with the other conditions,

suggesting that the action observation network represents a cortical

mechanism used in human imitation. Similarly, Buccino et al. (2004)

required musically naive participants to use the head of a guitar to

perform either imitative or non-imitative actions. In both conditions,

the observation of action was associated with activation in premotor

and parietal areas. The change in the BOLD response, however, was

greater when participants observed the same stimuli with the intention

to imitate the action. These data demonstrate that the intention of the

observer (e.g. if they observe an action to imitate it) can modulate the

activity of the action observation network.

Observing actions in an imitative or non-imitative context modu-

lates the BOLD signal (Buccino et al., 2004). It is therefore difficult to
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interpret what this change actually represents (see Logothetis &

Wandell, 2004). This is because the BOLD signal is a correlate of

overall neural activity; therefore, an increase in the BOLD signal could

be the result of increased activity of excitatory neurons, increased

activity of inhibitory neurons, or a combination of both. Using TMS, it

is possible to assess whether differences in the activity of the action

observation network when observing to imitate represent a greater

level of excitatory or inhibitory activity. Therefore, in the study

presented here, we utilized the novel experimental approach of

measuring corticospinal excitability while participants observed

actions in an imitative or purely observational capacity.

Materials and methods

Participants

Eight right-handed participants (seven males, aged 22–34 years) with

normal or corrected-to-normal vision were recruited for the study. The

experiment was approved by the University of Birmingham School of

Sport and Exercise Sciences ethics board and experimental procedures

were conducted in accordance with the Declaration of Helsinki.

Written informed consent was obtained from all participants prior to

their participation.

Apparatus and stimuli

Stimuli were presented on an 18-inch cathode ray tube monitor via a

desktop computer using dmdx software (Forster & Forster, 2003).

Participants sat approximately 80 cm from the monitor with the centre

of the screen at eye level. The head was maintained in a fixed position

using a custom-designed frame and chin rest. Each participant sat with

their hands positioned prone on a table directly in front of them, and

during a subset of trials they performed actions at the table (e.g.

grasping a cylindrical object on its surface).

Single-pulse TMS was delivered using a Magstim Rapid2 stimulator

(The Magstim Company, Whitland, UK) with a standard double

70 mm figure-of-eight coil. The motor hotspot was defined as the

position over the left primary motor cortex from which the largest

MEPs2 from the first dorsal interosseus (FDI) muscle were elicited. The

coil was secured and clamped in position over the motor hotspot using

a mechanical arm (Magic Arm, Lino Manfrotto & Co., Cassola, Italy),

with the handle pointing backwards at a 45� angle. The resting motor

threshold was defined as the lowest stimulation intensity to elicit

MEPs with a peak-to-peak amplitude greater than 50 lV in 50%

(6 ⁄ 12) of trials while participants observed a black fixation cross on a

white background. During the main experiment, the stimulation

intensity was set to 110% of the resting motor threshold (Gangitano

et al., 2004; Montagna et al., 2005; Catmur et al., 2007).

Electromyograms were recorded from the right FDI and abductor

digiti minimi (ADM) muscles using a Delsys Bagnoli handheld

system with DE-2.1 silver bar electrodes (Delsys Inc., Boston, USA).

The signal was bandpass filtered from 20 to 450 Hz. The resulting

electromyogram was digitized with a sampling rate of 2 kHz using a

CED 1401 plus A-D convertor with Spike 2 (version 5) software (both

by Cambridge Electronic Design, Cambridge, UK) and stored for

offline analysis.

During the experiment, participants observed videos depicting

movements of the right hand (i.e. grasping actions or abduc-

tion ⁄ adduction movements of the index finger, both illustrated in

Fig. 1A); these videos were based on stimuli from previous studies

that have successfully modulated corticospinal excitability using TMS

(see Fadiga et al., 1995; Gangitano et al., 20013 ; Aziz-Zadeh et al.,

2002; Catmur et al., 2007). The videos were s 4in duration, and

presented movements in which the FDI muscle was clearly active

[identifiably both visually and by increased electromyographic (EMG)

activity] at a point 3.3 s into the clip, corresponding with the onset of

the TMS pulse.

Procedure

Once the motor hotspot and motor threshold were determined, a block

of 12 baseline MEPs were collected while participants observed a

black fixation cross presented against a white background. Following

this, participants were presented with two further types of trials

(referred to from here on as ‘observe to imitate’ or ‘observe to attend’

trials) in a pseudorandom order. Both trial types comprised three

phases, as illustrated in Fig. 1B. Observe to imitate trials began with

the presentation of the instruction to ‘observe to imitate’. Following

this, a video depicting one of the hand movements was presented to

the participant. In the final phase of observe to imitate trials, an on-

screen instruction (‘perform action now’) prompted the participants to

imitate the action that they had just observed. Observe to attend trials

began with a statement instructing participants to attend to a

forthcoming video clip. One of the videos depicting a hand movement

was then presented to the participant. In the final phase of observe to

attend trials, participants were presented with a statement regarding

the content of the video that they had just observed (e.g. ‘‘In the last

video, the hand grasped an object’’), and were required to make a true

or false response by pressing a corresponding button on a computer

mouse held in their left hand. It should be noted that the same video

stimuli were presented in both observe to imitate and observe to attend

trials; only the observer’s intention was manipulated as an independent

variable.

Participants completed a total of 72 trials, including 12 baseline

trials, 24 observe to imitate trials and 24 observe to attend trials (for

each action observation condition, 12 trials presented grasping actions,

whereas the remaining 12 presented finger movements). During action

observation trials, a single pulse of TMS was delivered over the left

motor cortex at a point 3.3 s into the video (a time at which the FDI

muscle was clearly involved in the observed action) in 48 of these

trials (24 trials per condition). TMS was not applied in the remaining

12 trials in order to reduce the participants’ anticipation of stimulus

delivery.

Data analysis

For TMS trials, the EMG activity 200 ms prior to TMS onset was

examined. Any trials that revealed background EMG activity (peak-to-

peak electromyogram three SDs above the median average) were

removed from the analysis. Peak-to-peak MEP amplitudes were

calculated for each trial and then averaged for the imitation and

attention conditions. Preliminary analyses of MEP data revealed non-

normal (right skewed) distributions (Kolmogorov–Smirnov test,

P < 0.001) that could not be improved using standard transformations

(base 10, natural logarithm). Therefore, mean average MEP ampli-

tudes for each condition were ranked within participant (to account for

the inherent between-participant variability found in MEP data), and

submitted to a 2 · 3 repeated-measures anova with factors of muscle

(FDI, ADM) and condition (baseline, observe to imitate, observe to

attend).

To quantify muscular activity when participants executed imitative

actions, the root mean square EMG amplitude was calculated from

movement onset. For each participant, the average activity during
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action execution for each muscle was normalized relative to its activity

at rest. Preliminary analyses of EMG data also revealed a non-normal

distribution (Kolmogorov–Smirnov test, P < 0.001) that could not be

improved using standard transformations. Separate Wilcoxon signed

rank tests were therefore used to compare EMG activity from the FDI

and ADM muscles during action execution and rest. In order to assess

differences in the activation of each muscle during action imitation, a

further Wilcoxon signed rank test was used to compare activity

between the FDI and ADM muscles during action execution. All

statistical tests were completed using spss 16.0 for Windows (IBM,

New York, NY, USA).

Results

The context in which actions were observed (i.e. whether the

participant observed an action in an observe to imitate trial or observe

to attend trial) led to a significant modulation of MEP amplitudes

recorded from the FDI muscle, but not the ADM muscle (see Fig. 2A;

mean ranked MEP data are presented in Table 1). A repeated-

measures anova revealed a significant main effect of muscle

(F1,7 = 7.6, P = 0.028) and an interaction between muscle and

condition (F2,14 = 6.3, P = 0.05). The main effect of condition was

not statistically significant (F2,14 = 1.3, P = 0.31). The significant

interaction between muscle and condition was analysed using pairwise

comparisons. For the FDI muscle, MEPs collected during the attention

condition were larger than MEPs collected during the baseline

condition (P = 0.025) and the imitation condition (P = 0.05). MEPs

collected during the imitation condition did not differ from MEPs

collected during the baseline condition (P = 0.28).

The EMG recordings revealed that significant increases in muscular

activity occurred as participants executed imitative movements (see

Fig. 2B). Wilcoxon signed rank tests revealed that EMG activity was

significantly higher during action execution than during rest in the FDI

muscle (Z7 = 2.52, P = 0.01) and the ADM muscle (Z7 = 2.52,

A

B

Observe to imitate True or false

In the last video

the hand grasped an

object

Perform action now

FalseTrue
T
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T
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e

Fig. 1. Trials presented during the experiment. (A) Still frames illustrating the actions depicted in the two video stimuli used during the experiment. Upper images

depict the hand reaching to and grasping an object. Lower images present repetitive abduction ⁄ adduction movements of the index finger. Far right frame of both
images depicts the point at which TMS was applied. (B) Schematic representation of an ‘observe to imitate’ trial (left) and a corresponding ‘observe to attend’ trial
(right) for the same action. The still-frame depicting the object being grasped presents the image shown on screen at the time at which TMS was delivered (3.3 s into
the video).
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P = 0.01). A further Wilcoxon signed rank test revealed that the

increase in activity during action execution was greater in the FDI

muscle than in the ADM muscle (Z7 = 2.52, P = 0.01).

Discussion

In the experiment presented here, MEPs collected during the

observation of a fixation cross were compared with MEPs collected

when participants observed actions in order to either answer a

question, or to imitate the movement that they observed. MEPs

collected from a prime mover involved in the observed actions were

significantly larger in the observe to attend condition when compared

with the baseline and observe to imitate conditions. Interestingly,

MEPs collected during the observe to imitate condition were not

facilitated in comparison to the baseline condition, even though these

trials presented exactly the same actions used in the observe to attend

condition. These data demonstrate that the intentional context in which

actions are observed can modulate the effect that action observation

has on the corticospinal system, and are consistent with previous

studies demonstrating that the intention of the observer can modulate

action observation effects (Buccino et al., 2004; Newman-Norlund

et al., 2007; Becchio et al., 2008; van Schie et al., 2008). The EMG

activity of both the FDI and ADM muscles increased during action

execution compared with their respective baselines. Further analysis

also revealed that, during action execution, the excitability of the FDI

muscle was significantly greater than the activity of the ADM muscle.

These data illustrate the extent to which each muscle was used during

the execution of actions; whereas the FDI muscle acted as a prime

mover and played a large role in movement execution, it is likely that

the ADM muscle acted as a stabilizer and played only a minor role in

movement execution. We suggest that this interpretation of the EMG

data may explain why MEPs recorded from the FDI muscle were

modulated during action observation, whereas those recorded from the

ADM muscle were not. Such an interpretation is consistent with

previous studies that have demonstrated muscle-specific modulations

of corticospinal excitability during action observation (Fadiga et al.,

1995; Gangitano et al., 2001; Montagna et al., 2005).

A key point for discussion is the finding that corticospinal

excitability was only facilitated in the observe to attend condition,

and not the observe to imitate condition. This is of particular interest

as participants observed exactly the same actions in each condition;

only their intention was manipulated as an experimental variable. The

facilitation effect revealed in the observe to attend condition suggests

that these results cannot be attributed to a lack of mirror system

activation in the observe to imitate condition; this is supported by

strong evidence from a recent meta-analysis (Caspers et al., 2010) that

demonstrated that premotor and parietal areas traditionally associated

with the human mirror system are activated by both the observation of

action and imitation. There is also evidence that mirror system activity

is in fact greater when participants observe actions in an imitative

compared with a purely attentive capacity (Buccino et al., 2004).

Instead, we suggest that some process acts to prevent the facilitation

effect that normally occurs with action observation when participants

observe actions with the intention to imitate them.

To explain this effect, it is important to consider that TMS studies of

action observation promote the inhibition of self-made movements, as

participants are instructed and reminded to remain still during the

collection of MEPs, and trials in which increased background EMG

activity is detected are typically removed from the analysis. It has been

suggested that these experimental conditions lead participants to

engage an inhibitory process in order to counteract the excitatory

influence of action observation (Villiger et al., 2011). They highlight

that such an inhibitory process has been implicated as a key neural

response during action observation (Brass & Heyes, 2005; Keysers &

Gazzola, 2010), and is supported by studies of motor control and

action observation (Howard & Tipper, 1997; Castiello et al., 2002; 5

Sohn & Hallett, 2004; Welsh & Elliott, 2004; Bien et al., 2009). This

inhibitory process is thought to underlie selective imitation during

action observation by preventing unwanted motor responses from

reaching the threshold at which they are overtly executed (Brass &
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Fig. 2. MEP and EMG activity. (A) Data presenting the mean ranked MEP
scores for each condition illustrating the significant main effect of muscle
(MEPs collected from the FDI had greater amplitudes than those collected from

the ADM), and the significant interaction effect (MEPs collected during the
observe to imitate condition had significantly greater amplitudes than MEPs
collected during the baseline condition). Error bars present 95% within-
participant confidence intervals (see Loftus & Masson, 1994; Masson & Loftus,
2003). (B) Mean group EMG data collected during action execution and at rest
for each muscle. Whereas the activity of both the FDI and ADM muscles
increased during action execution in comparison to rest, the FDI muscle was

significantly more active during action execution than the ADM muscle. Error
bars present SEM. *P < 0.05, **P < 0.01.

Table 1. Mean ranked MEP amplitudes for each condition

FDI muscle ADM muscle

Baseline Attention Imitation Baseline Attention Imitation

Mean MEP

amplitude8
3.4 5.5 4.1 3.0 2.5 2.5

SEM 0.6 0.3 0.5 0.6 0.4 0.6
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Heyes, 2005; van Leeuwen et al., 2009). Evidence of a similar

inhibitory process has been demonstrated in previous TMS studies

examining the sensorimotor response to observing painful stimuli

(Avenanti et al., 2005). Such an inhibitory mechanism is also

consistent with single-cell recordings from macaques and humans

(Kraskov et al., 2009; Mukamel et al., 2010) demonstrating the

existence of neurons that are inhibited during action observation and

excited during action execution. These data demonstrate that inhib-

itory processes act on the corticospinal system to prevent the execution

of movements during action observation.

In a previous TMS study, Villiger et al. (2011) provided evidence

that a marker of this inhibitory process can modulate MEP activity.

We also suggest that the effect revealed in the present study is due to

differences in the activity of this inhibitory process. The inhibitory

process was present during action observation in order to prevent

participants from performing overt movements. When actions were

observed during attention trials, only a relatively low level of

inhibition was required to prevent the participant from moving. In

contrast, when actions were observed during imitation trials, the

participant’s intention to imitate the observed action meant that a

relatively high level of inhibition was required to prevent them from

moving. This inhibitory influence led to a reduction of the level of

corticospinal excitability revealed during action observation.

The origin of the inhibitory effect revealed here is unclear. Evidence

from previous studies suggests that a variety of subcortical and cortical

mechanisms may contribute to this effect. Frontal lesions in humans

and primates lead to a disruption of performance in go ⁄ no-go tasks

(Piribram et al., 1952; Drewe, 1975), and single-cell recordings in

primates have implicated prefrontal cells in the active suppression of

motor responses (Wantabe, 1986). It has been suggested that the

prefrontal cortex may act to inhibit movements in coordination with

the basal ganglia, as it has been reported that stimulation of areas

surrounding the globus pallidus can immediately halt the performance

of movements in the macaque (Horak & Anderon, 1984). Sensori-

motor areas may also contribute to the inhibitory effect. The authors of

a recent functional magnetic resonance imaging study have shown that

BOLD activity in the primary motor cortex is, in some cases,

decreased during action observation, and went on to suggest that the

supplementary motor area may contribute to the inhibition of

movement during action observation (see Gazzola & Keysers,

2009). There is also evidence that mirror neurons in the premotor

cortex that influence corticospinal excitability could contribute to

suppressive effects during action observation. As discussed above,

Kraskov et al. (2009) found ‘suppression’ mirror neurons in the

macaque premotor cortex that had an inhibitory influence on the

corticospinal system during action observation. Furthermore, it is

often overlooked that early studies detailing the properties of mirror

neurons also demonstrated that their firing rates could decrease during

action observation (see p. 135, Fig. 46 of Rizzolatti et al., 1996). As the

mirror neuron system in primates appears to have a role in the

inhibition of movement during action observation, it is likely that the

action observation network in humans may play a similar role. On a

related note, data from primate studies have also demonstrated

suppression of metabolic activity in the spinal cord during action

observation; the authors suggested that premotor cortical areas may

underlie this effect as previous evidence demonstrates that they inhibit

the spinal cord (Stamos et al., 2010). Wherever the inhibition arises,

the data presented in this study are consistent with the notion that

suppressive mechanisms act on the corticospinal system to prevent the

execution of movements during action observation.

In summary, whereas corticospinal excitability was found to

increase when participants simply observed actions, no corresponding

increase in corticospinal excitability was found when participants

observed the same actions with the intention to imitate them. Although

previous evidence has linked the human action observation network

with imitation, the data here demonstrate for the first time that

observing actions with the intention to imitate them can modulate the

corticospinal excitability of the observer. These data are consistent

with the notion that suppressive mechanisms act to inhibit the

excitability of the human motor system during action observation, in

order to prevent the immediate overt imitation of observed actions.

These data provide novel insight into the properties of the human

action observation network, demonstrating for the first time that

observing actions with the intention to imitate them can modulate the

effect that action observation has on corticospinal excitability.
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