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Abstract1

In Britain, residential properties are predominantly heated using gas2
central heating systems. Ensuring a reliable supply of gas is therefore vital3
in protecting vulnerable sections of society from the adverse effects of cold4
weather. Ahead of the winter, the grid operator makes a prediction of gas5
demand to better anticipate possible conditions. Seasonal weather forecasts6
are not currently used to inform this demand prediction. Here we assess7
whether seasonal weather forecasts can skilfully predict the weather-driven8
component of both winter mean gas demand and the number of extreme gas9
demand days over the winter period. We find that both the mean and the10
number of extreme days are predicted with some skill from early November11
using seasonal forecasts of the large-scale atmospheric circulation (r >12
0.5). Although temperature is most strongly correlated with gas demand,13
the more skilful prediction of the atmospheric circulation means it is a14
better predictor of demand. If seasonal weather forecasts are incorporated15
into pre-winter gas demand planning, they could help improve the security16
of gas supplies and reduce the impacts associated with extreme demand17
events.18

1 Introduction19

Gas demand in Britain is dominated by demand for residential and commercial heat-20
ing1. Consequently gas demand is highly anti-correlated with temperature (Pearson21
correlation, r = −0.90)2, with demand increasing as temperatures fall. Ensuring a22
reliable supply of gas is therefore critical to protect more vulnerable sectors of so-23
ciety from cold-related illnesses. The energy supply system is under most pressure24
during winter, when cold snaps drive peak demand2,3, competition for gas supplies25
and high energy prices, as for example occurred in early March 20184. To ensure26
security of supply the energy system operator assesses the energy situation ahead27
of the winter. They predict total winter demand, possible extreme gas demand28
conditions, necessary storage requirements and likely available supplies1. Current29
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predictions of winter demand do not consider any seasonal weather forecast infor-30
mation. Instead, average winter conditions are assumed and then risks associated31
with historical weather related peak demand events1 are assessed. Seasonal forecast32
information, if skilful, offers the potential to improve the estimates of winter gas33
demand and improve security of supply.34

Seasonal forecasting of winter climate in North-western Europe and the Atlantic35
has improved over the last decade5,6. The North Atlantic Oscillation (NAO) is the36
dominant mode of winter variability in this region and its phase dictates the general37
characteristics of the winter period, including average temperature, wind speed and38
storminess over much of the European continent7. Skilful forecasts of the winter NAO39
are now possible5,8,9 and this has been shown to be useful for predicting impacts on40
society, such as sea ice cover10, transport delays11 and river flows12.41

The use of seasonal forecast information by the energy industry is in its infancy42
with only a few studies demonstrating their potential benefits13,14,15,16,17, and to43
date none have addressed gas demand forecasting. Clark et al14 have shown that44
skilful forecasts of winter mean wind power density and electricity demand in the45
UK are possible using forecasts of wind speed and the NAO respectively. This46
result combined with the fact that gas demand is more strongly anti-correlated with47
temperature than electricity demand2,18 suggests that seasonal weather forecasts may48
also allow skilful gas demand forecasts. In addition, the energy industry’s desire49
for tailored seasonal forecast information is high, as demonstrated by the positive50
feedback following a recent Met Office winter trial, where seasonal weather forecast51
briefings were provided.52

The aim of this paper is to assess the skill in forecasting the weather-driven53
component of both winter mean gas demand and the number of high gas demand54
days over winter, using seasonal forecasts of climate. Winter is defined as the months55
of December, January and February and the skill of the 3-monthly average forecast56
from early November is assessed, giving a lead time of one to three months.57

2 Data and methodology58

2.1 Gas demand data59

A dataset of the daily total gas demand of Great Britain (GB) covering the period60
April 1996 to March 2018, in giga (109) Watt hours (GWh), was provided by National61
Grid. The gas demand value represents the total demand from residential and large62
industrial premises (non daily-metered and daily-metered demand respectively) and63
includes shrinkage (gas leaks and theft). It does not include gas consumers directly64
connected to the national transmission network, such as gas-fired power stations and65
large industrial units19. The variation in daily demand over the 22 year period is66
shown in black in the upper panel of figure 1, where a clear annual cycle is evident,67
with higher demand during the colder winter months and lower demand during the68
warmer summer months.69

The variation in winter mean demand is shown in figure 2 (dotted black line) and70
highlights a general reduction over the 22 year period. The demand variability is only71
weakly anti-correlated with winter mean temperature variability (r = −0.39), much72
lower than might be anticipated given the known drivers of gas demand. Thornton et73
al2 demonstrated that low-frequency variability in both electricity and gas demand74
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over a similar period was not driven by temperature, but was rather thought to relate75
to socio-economic changes over the period. Possible reasons for the reduction in gas76
demand over the period include more efficient gas boilers, better home insulation77
with more double glazing, increasing gas prices and a continued shift away from78
heavy industry20.79

To accurately assess the weather-driven component of gas demand and its pre-80
dictability, much of the demand variability that is not driven by the weather needs81
firstly to be removed. Thornton et al2 developed a methodology to remove de-82
mand variability on timescales greater than 5 years (referred to as low-frequency83
variability), whilst retaining demand variability on a daily, seasonal and inter-annual84
timescale. This approach is used here and the first step involves identifying the slowly85
evolving background demand. This is achieved by fitting a smoothly evolving second86
order Fourier expansion to the daily demand data and is shown in red in figure 1.87
A gradual reduction in both the annual mean gas demand and magnitude of the88
annual gas demand cycle is seen over the data period. This background demand is89
then removed from the daily demand timeseries and replaced with a climatological-90
mean annual demand cycle. The resultant demand timeseries, where low-frequency91
variability has been removed, is used in the subsequent analysis and is shown in black92
in the lower panel of figure 1. The highest daily demand over the data period can be93
seen to shift from the winter of 2003 to 2018 (compare upper and lower panels). Full94
details of the methodology to remove low-frequency demand variability are given in95
Thornton et al2.96

Following the removal of low-frequency demand variability, the strength of the97
correlation between winter mean temperature and demand increases from −0.39 to98
−0.87, better reflecting the known relationship2 (see figure 2). The low-frequency99
variability in observed winter temperature over the 22 year period is small. Conse-100
quently, when the 5-year running mean temperature trend is removed, its correlation101
with demand barely changes (r = −0.85).102

The predictability of two characteristics of the winter gas demand are investigated,103
the winter mean gas demand and the number of high demand days per winter.104

2.2 Seasonal forecast data105

The Met Office’s global environment model (HadGEM3-GC221) consists of global106
models of the atmosphere, the land surface22, the ocean23 and sea-ice24. Both the107
operational seasonal forecast system, GloSea525, and the decadal prediction system,108
DePreSys39, are built around this same model. The atmosphere component has a109
resolution of 0.83◦ longitude and 0.55◦ latitude (about 60km at mid-latitudes), with110
85 vertical levels and an upper boundary at 85km. The ocean model’s resolution is111
0.25◦ in both latitude and longitude, with 75 vertical levels.112

In GloSea5 a set of retrospective forecasts, called a ‘hindcast’ set, is available for113
winters 1993–2016. Ten ensemble hindcast members are available from each calendar114
week. The three nearest weeks of hindcasts centred around the desired start time are115
collected together. For example, for a winter forecast of Dec–Jan–Feb with a one-116
month lead time, we use the hindcast start dates of 25th October, 1st November and117
9th November, giving a total of 30 ensemble members per winter. The DePreSys3118
hindcast set is available for winters 1981–2018 and includes 40 ensemble members119
initialised on the 1st November. In both systems, ensemble member differences are120
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Figure 1: Upper: Daily GB gas demand timeseries (black) and harmonic fit (red), April 1996–March
2018. Lower: Daily GB gas demand timeseries where low-frequency variability has been removed.
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Figure 2: The winter mean of GB gas demand (‘D’, black dotted), demand timeseries where low-
frequency variability has been removed (‘Dd’, solid black) and UK mean temperature (‘T’, red).
Pearson correlation coefficients (r) are also given highlighting the much closer relationship between
demand and temperature once low-frequency demand variability has been removed. The winter
year is labelled according to the January and February of the winter.

created using a stochastic physics scheme25.121
Although small differences in initialisation exist between the GloSea5 and De-122

PreSys3 hindcast sets, the two ensembles are considered to be directly comparable5,9,123
giving a combined ensemble set of 70 members for winters 1997 to 2016. This large124
size is beneficial as the prediction skill of a system typically improves with ensem-125
ble size, because the noise between ensemble members is reduced, leaving a clearer126
ensemble mean forecast signal5,26,27,28.127

2.3 Climate Predictors128

Various climate indices are considered as possible predictors of winter gas demand129
based on atmospheric temperature or the large scale pressure field. These climate130
indicators are calculated for both observations and forecasts. As a proxy for obser-131
vations, the gridded 6-hourly instantaneous data sets of the ‘Interim’ version of the132
ECMWF Reanalysis (ERAI29) are used. The data has a resolution of 0.75◦ longitude133
by 0.75◦ latitude and is available over the gas demand data period. Three variables134
are used, 2m temperature, mean sea level pressure (MSLP) and the geopotential135
height of the 500hPa pressure level (Z500). The 6–hourly data is firstly averaged to136
a daily mean value and then the following indices are calculated:137

• Winter mean UK temperature : temperature is averaged over the region of138
10◦W–5◦E and from 50–60◦N to give a UK mean temperature.139
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• Winter mean NAO: The MSLP is averaged over the regions of Iceland (63–140
70◦N, 25–16◦W) and the Azores (36–40◦N, 28–20◦W)9. For each region the141
winter pressure anomaly from the long term climatology is established and then142
the difference in these anomalies (Azores − Iceland) is determined. The same143
diagnostic of the geopotential height field on the 500hPa pressure level is used144
to give a mid–troposphere NAO index (NAOZ500).145

• Winter mean UK North-South pressure difference (∆P): Thornton et al3 found146
that the winter variation in GB daily electricity demand was strongly influenced147
by the regional pressure field to the north and south of the UK. An index was148
defined as the difference in pressure between a northern box (27◦W–21◦E, 57–149
70◦N) and a southern box (same longitudes, 38–51◦N), for regions see figure 4 in150
Thornton et al3. This is effectively a measure of the average westerly winds over151
the UK. This more UK centred pressure difference index is used here and a mid-152
tropospheric version is again calculated using the difference in the geopotential153
height field of the 500hPa pressure level (∆Z).154

• Number of high demand weather type days per winter (NWT ): Thornton et al3155
found that four large-scale high pressure weather patterns drive low tempera-156
tures and high electricity demand in the UK (see their figure 5). The weather157
types were identified by applying K-means clustering to the daily MSLP fields158
of the wider region. Here we explore whether predictions of the number of such159
days per winter is a good predictor of winter gas demand. A day is defined as160
a high demand weather type day if it is sufficiently similar to one of the previ-161
ously identified cluster centroids. Days are included if, the sum of the absolute162
pressure difference across the region is smaller, and the pattern correlation is163
higher, than the most dissimilar day within that cluster to the cluster centroid.164

The same climate indices are also calculated using the forecast data. An index165
is calculated for each ensemble member individually and then these are averaged166
to give an ensemble mean index. Due to the significant signal to noise issue when167
predicting the climate in the mid-latitudes5,26,28, the ensemble mean climate index168
is used as the climate predictor, rather than the individual ensemble member values.169
From here onwards, ‘climate index’ refers to the combined ensemble mean of the170
climate index.171

2.4 Methods for assessing forecast skill172

For a climate index to be a skilful predictor of gas demand, it must have both a173
strong observed relationship with gas demand and be well predicted by the climate174
forecast system itself. Both are assessed using correlation coefficients: the Pearson175
correlation (rP ) when the variables are continuous (e.g. winter mean gas demand,176
temperature) and the Spearman rank correlation (rS) if either of the variables is177
discrete (e.g. the number of high demand days per winter).178

Skill in predicting gas demand is established by assessing the relationship strength179
between the forecast climate index and the observed gas demand variable, following180
the approach of Bett et al16. The ability of the climate index to predict above181
median, above upper tercile or the correct tercile of winter demand is assessed using182
the Heidke skill score (HSS).183
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To assess probabilistic forecast skill, a linear regression model is made between ob-184
served winter mean demand and the forecast climate index. The skill of probabilistic185
forecasts for the demand categories above can then be assessed, using the Brier and186
Rank Probability Skill Scores (BSS and RPSS respectively), employing leave-one-187
out cross validation. A preliminary assessment of the reliability of the probabilistic188
forecasts is also given. For a comprehensive description of the different statistical189
measures see Wilks30.190

3 Results191

3.1 Using temperature as a predictor of winter mean gas demand192

Figure 3 summarises the prediction skill of winter mean gas demand using tempera-193
ture as the predictor. As discussed previously, observed winter mean temperature is194
strongly anti-correlated with GB winter mean gas demand (rP = −0.87, see figure 3a,195
this is a repeat of figure 2, and is included to allow comparison with the predictions).196
The skill in forecasting winter mean temperature across North-western Europe and197
the Atlantic is shown in figure 4. Temperatures are skilfully forecast over many198
areas of the North Atlantic and over Scandinavia. In contrast there is little skill199
over continental Europe. Much of the skill over the ocean is however related to the200
low-frequency warming trend, such that when the 5 year running-mean winter-mean201
temperature trend is removed the prediction skill is negligible over most of the North202
Atlantic (not shown). There is significant skill in predicting the average temperature203
over the UK region, but the correlation magnitude is still relatively small (rP = 0.38,204
see Table 1 and figure 3b). A similar skill level is found when a 5 year running-mean205
temperature trend is removed.206

A forecast of UK average winter mean temperature is not found to be a good207
predictor of winter mean gas demand. Although the Pearson correlation coefficient208
between the hindcast temperature and observed demand has the correct sign (neg-209
ative), its low magnitude (|rP | = 0.24) means it is not statistically significant at210
the 5% level. A large spread in the relationship can be seen in figure 3c, leading211
to little variation in the probabilistic prediction of winter mean demand from year212
to year (figure 3d). Although the deterministic HSSs are positive for above median213
and above upper tercile demand, the equivalent probabilistic skill scores are worse214
or similar to those of a climatological forecast (e.g. RPSSter = 0.03, see Table 2). In215
summary, although temperature variability drives a significant proportion of demand216
variability, forecast temperature is not a good predictor of winter mean gas demand217
due to the limited skill in predicting UK temperatures.218
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Figure 3: Using temperature to predict winter mean gas demand. a) Timeseries of the winter
mean GB gas demand and winter mean temperature. b) Timeseries of winter mean temperature
and winter mean hindcast temperature. c) Regression relationship between hindcast temperature
and observed demand (blue), the prediction interval (central 95% - light grey, central 75% - dark
grey), and the observed terciles of gas demand are shown (red dashed lines). d) Timeseries of
winter mean gas demand (black) and central regression prediction (blue) and prediction interval
(grey). The Pearson correlation coefficients (rP ) are given for a) - c). Note, the temperature axes
are inverted in a) and b) to allow easier comparison with gas demand.
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Figure 4: Map of the winter mean temperature forecast skill: the Pearson correlation coefficient
between hindcast and observed temperature. Statistically significant skill at the 5% level is shown
by stippling using a 1-sided Fisher Z test.

Climate Index Obs relationship Climate Index Gas demand
(C) rP (Dobs, Cobs) skill, rP (Cobs, Chc) skill, |rP | (Dobs, Chc)

Temperature -0.87 0.38 0.24
NAO -0.62 0.63 0.40

NAOZ500 -0.66 0.63 0.55
∆P 0.70 0.60 0.49
∆Z 0.71 0.58 0.57

NWT 0.66 0.56 0.57

Table 1: Column 1: Pearson correlation coefficient (rP ) between winter mean gas demand (Dobs)
and observed winter mean climate index (Cobs). Column 2: The hindcast skill in predicting the
climate index (correlation of observed and hindcast climate index). Column 3: The hindcast skill
in predicting winter mean gas demand (magnitude of correlation between Dobs and Chc). All data
considers winters 1997–2016. Bold values indicate the correlation is significant at the 5% level using
a 1-sided Fisher Z test.

Climate Index HSSmed BSSmed HSSupper BSSupper HSSter RPSSter

Temperature 0 .40 0.09 0.12 -0.13 0.25 0.03
NAO 0.40 0.18 0.56 0.12 0.32 0.18

NAOZ500 0.40 0.26 0.78 0.41 0.40 0.33
∆P 0.60 0.19 0.56 0.18 0.32 0.26
∆Z 0.40 0.28 0.56 0.30 0.47 0.32

NWT 0.60 0.33 0.78 0.30 0.62 0.34

Table 2: A summary of verification skill scores for predicting winter mean gas demand when using
the different climate predictors. The Heidke skill Score (HSS), the Brier Skill Score (BSS) and
the Ranked Probability Skill Score (RPSS), for above median demand (med), above upper tercile
demand (upper) and considering all terciles (ter). Scores greater than zero indicate the forecast
is better than random chance (in the case of the HSS) and better than a climatological forecast
for the BSS and RPSS, following Wilks30. Bold (Italics) signifies the score is significant at the
5% (10%) level. Significance is assessed using a 1000 member bootstrap, where the skill score is
calculated between the observed demand timeseries and a randomly sampled (without replacement)
hindcast timeseries. A value is significant if it is greater or equal to the 95th (90th) percentile of
the bootstrap distribution.
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3.2 Using the atmospheric circulation as a predictor of winter mean gas219
demand220

All circulation-based indices (NAO, NAOZ500, ∆P, ∆Z and NWT ) have a strong221
observed relationship with winter mean gas demand (rP of ∼ 0.6–0.7, see Table 1,222
column 1). However none of the circulation indices have as strong a relationship with223
demand as winter mean UK temperature.224

The skill in predicting the winter MSLP across North-western Europe and the225
wider North Atlantic is shown in the left panel of figure 5. Skill is found at both226
high (60◦–70◦N) and low (30◦–40◦N) latitudes. In contrast, over the mid-latitudes227
(40◦–60◦N) including over the UK there is not significant prediction skill. A similar228
picture is seen for the Z500 field (figure 5, right). Nevertheless, skilful predictions229
of the winter mean circulation indices are possible (rP ∼ 0.6, see Table 1, column230
2), as the indices measure the difference in pressure between the skilfully predicted231
low and high latitude regions. This skill is important because it is the gradient in232
pressure which drives surface weather conditions. The total number of high demand233
weather type days per winter is also skilfully predicted at the 5% level (rP = 0.56).234
This weather type skill effectively demonstrates skill in predicting the frequency of235
days where high pressure influences the UK in winter and is consistent with previous236
studies8.237

Winter mean gas demand is skilfully predicted when using any of the circulation238
indices as the predictor, with correlations between hindcast index and observed de-239
mand ranging from approximately 0.4 to 0.6 (see Table 1, column 3). Predictions of240
winter mean demand greater than the median or upper tercile are skilful, showing241
improvements over using a random or climatological forecast (scores often exceeding242
0.25, see Table 2). For below lower tercile demand all predictors give positive HSSs243
(∼ 0.3–0.6), however only NAOZ500, ∆P and ∆Z give skilful probabilistic forecasts244
(BSSs of 0.05–0.12). This suggests a possible asymmetry, with better forecast skill245
for higher demand winters than lower demand winters, which could be beneficial246
given their larger impact.247

Figure 6 demonstrates the skill in predicting winter mean gas demand using ∆Z as248
the climate predictor. The strong observed relationship between ∆Z and demand is249
shown in figure 6a, and the prediction skill of ∆Z is shown in figure 6b. A significant250
linear relationship exists between observed demand and hindcast ∆Z (r = 0.57,251
see figure 6c), leading to a variation in the forecast of gas demand from year to252
year (figure 6d). The probability of above median demand, above upper tercile253
demand, and the correct tercile category is skilfully forecast and better than using254
a climatological forecast (BSSmed = 0.28, BSSupper = 0.30, RPSSter = 0.32). Use of255
the linear regression model between hindcast climate index and observed demand,256
means forecasts are automatically bias adjusted and probabilities are reliable, for257
example see figure 7. Due to the small number of winters available, the reliability258
is only assessed across 4 probability bins. An operational forecast could therefore259
present the risk of an event using 4 categories, e.g. the probability (P) of above260
tercile demand is ‘low’ (P < 0.25), ‘below median’ (0.25 ≤ P < 0.5), ‘above median’261
(0.50 ≤ P < 0.75) or ‘high’ (P ≥ 0.75), rather than giving actual probabilities.262

To explore how many ensemble members are needed to ensure a skilful forecast263
of gas demand, figure 8 shows how the prediction skill varies with ensemble size.264
Increasing the ensemble size from 1 to 30 leads to a rapid increase in prediction skill265
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MSLP skill

−0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8

Z500 skill
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Figure 5: Map of the winter mean forecast skill for MSLP (left) and 500hPa geopotential height
(right): the Pearson correlation coefficient between the hindcast and observed fields from 1994-2016.
Statistically significant skill at the 5% level is shown by stippling using a 1-sided Fisher Z test.

(the correlation increases from ∼0.1 to 0.5). Increasing the ensemble size even more266
leads to further improvements in the prediction skill, but at a much slower rate.267
Nevertheless, higher skill would likely be possible with more members.268

In summary, skilful prediction of winter mean gas demand is possible using a269
forecast of the winter mean atmospheric circulation. The improvement over using a270
temperature forecast occurs because of the better prediction skill of the circulation271
indices. The circulation indices are calculated over a much larger area compared to272
the temperature index, which may explain their better skill.273
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Figure 6: Using the winter mean Z500 North-South height difference (∆Z) to predict winter mean
gas demand. a) Timeseries of the winter mean GB gas demand and ∆Z. b) Timeseries of observed
and hindcast ∆Z. c) Regression relationship between hindcast ∆Z and observed demand (blue)
and the prediction interval (grey). d) Timeseries of winter mean gas demand (black) and central
regression prediction (blue) and prediction interval (grey). See figure 3 for details.
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Figure 7: Reliability diagrams for probabilistic forecasts of winter mean gas demand using ∆Z as
the climate predictor, for above median (left) and above upper tercile (right) demand. A perfectly
reliable forecast would lie along the 1:1 line (black). The sample climatological probability is also
given (red dotted). The lower bar charts show the distribution of forecast probabilities made during
the hindcast period, ideally these would be flat, with each probability bin well sampled.
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Figure 8: The impact of ensemble size on hindcast skill, when predicting winter mean gas demand
using winter mean ∆Z. The skill is measured using the Pearson correlation coefficient. 1000 samples
of the correlation have been generated by randomly sampling the ∆Z ensemble members each winter,
to give alternative hindcast ensemble mean timeseries. The mean correlation of the bootstrap
samples is shown. For a sample size of 20, statistical significance at the 5% level using a 1-sided
Fisher Z test, is achieved with a correlation of at least 0.379.
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3.3 Predicting the number of high gas demand days over the winter274
period275

A day is classed as a high demand day if its demand is equal to or greater than the276
95th percentile of daily winter demand calculated over all winters. Between 1997 and277
2016 the observed number of high gas demand days per winter (‘NG’) varies between278
0 and 15 (see black line, Figure 9a). As these events stress the energy supply system279
an obvious question is whether their likelihood is predictable ahead of the winter.280
There is a strong correlation between winter mean gas demand and NG (rS = 0.70).281
Consequently, if mean demand is skilfully predicted, NG may also be predictable to282
some extent.283

Although observed winter mean temperature has a reasonable relationship with284
NG (rS = −0.55), temperature is not a useful predictor of NG (rS = −0.11 between285
NG and hindcast winter mean temperature, see Table 3, column 2). All circulation286
indices do however give skilful predictions of NG, with Spearman rank correlation287
magnitudes of approximately 0.4 to 0.6 (same Table).288

A demonstration of the prediction skill of NG, using winter mean ∆Z as the pre-289
dictor, is shown in figure 9. Given NG is discrete and limited to positive numbers,290
linear regression is not suitable for modelling its relationship with ∆Z. Due to the291
small sample size there is also considerable uncertainty in the form of the relation-292
ship between observed ∆Z and the NG. Consequently we do not try to model the293
relationship, rather we assess the prediction skill using a deterministic approach.294
Figure 9b shows the relationship between hindcast ∆Z and observed NG. As the295
predicted atmospheric flow over the UK becomes less westerly (i.e. ∆Z becomes less296
negative), NG increases. The contingency table for above median counts show that297
the hit rate is far higher than the false alarm rate (see Table 4), leading to a HSS298
of 0.6 (statistically significant at the 5% level using a 1000 member bootstrap as per299
Table 2). For above upper tercile counts, the HSS is positive (HSS = 0.34) but it is300
not statistically significant at either the 5% or 10% levels. Very similar results are301
found for the other atmospheric circulation predictors, whilst a temperature based302
prediction is no better than when using a random forecast (HSS ≤ 0).303

In summary, given a forecast of the atmospheric circulation, we can give a skilful304
forecast of above median counts of the number of high gas demand days per winter.305
A longer timeseries is needed to assess the predictability of winters with a higher306
number of high demand days.307

Climate Index Obs relationship NG skill
(C) rS (NGobs, Cobs) |rS | (NGobs, Chc)

Temperature -0.55 0.11
NAO -0.49 0.42

NAOZ500 -0.47 0.63
∆P 0.54 0.54
∆Z 0.53 0.64

NWT 0.55 0.57

Table 3: Column 1: Spearman rank correlation coefficient (rS) between observed NG (NGobs) and
observed winter mean climate index (Cobs). Column 2: Hindcast skill in predicting NG (correlation
magnitude between NGobs and Chc). All data considers winters 1997–2016. Bold values indicate
the correlation is significant at the 5% level using a 1-sided Fisher Z test.
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Figure 9: Using atmospheric circulation to predict the number of high gas demand days per winter
(NG). a) Observed timeseries of NG and winter mean ∆Z. b) The relationship between hindcast
∆Z and observed NG. The median count and hindcast ∆Z are indicated with a dotted red line.
The Spearman rank correlation coefficients are also given (rS).

Above median Observed
count Yes No

P
re

d
ic

te
d

Yes
8 2

Hits False alarms

No
2 8

Misses Correct rejections

Hit rate: 80%
False alarm rate: 20%

Table 4: Contingency table for above median count of the number of high demand days per winter,
using ∆Z as the predictor.
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4 Conclusions308

The predictability of the weather-driven component of Britain’s winter gas demand is309
assessed from early November using a range of climate predictors. Two components of310
gas demand are considered: winter mean gas demand and the number of high demand311
days over the winter period. The forecast skill is analysed from 1997 to 2016 using312
a large ensemble of retrospective climate forecasts from the Met Office’s seasonal313
and decadal prediction systems. The climate predictors analysed are winter means314
of temperature, the NAO and a UK centred North-South pressure difference (at the315
surface and in the mid-troposphere). An additional predictor, based on the frequency316
of high demand weather types over the winter period, is also analysed. Forecast skill317
is assessed using a range of deterministic and probabilistic skill measures with a focus318
on the risk of higher demand winters. The main conclusions are:319

• All circulation-based indices give skilful forecasts of winter mean gas demand.320
This is because such indices are both strongly correlated with gas demand and321
are skilfully predicted ahead of the winter period.322

• A method for giving operational gas demand forecasts is demonstrated, based323
on a regression relationship between the climate predictor and observed gas324
demand. Skilful and reliable probabilistic forecasts of the risk of above median,325
above upper tercile and the correct tercile of winter mean demand are possible.326

• A large ensemble of hindcast members is needed to give a skilful prediction327
of winter mean gas demand, reflecting the known signal to noise problem of328
seasonal forecasting in the Atlantic sector.329

• Although winter mean temperature is the climate index most highly correlated330
with winter mean gas demand, due to the lower seasonal prediction skill of331
temperature, it does not give skilful predictions of winter mean demand.332

• A skilful forecast of above median counts of the number of high gas demand333
days per winter is possible using a forecast of the winter mean atmospheric334
circulation.335

The skilful prediction of winter gas demand demonstrated here, offers the potential336
for improved planning and resilience of Britain’s energy system. For example, a more337
accurate forecast of winter demand could reduce the risk of gas supply shortages and338
related energy price spikes. It would be of interest to assess the skill of winter demand339
forecasts with a longer lead time, for example from early September or October, and340
when averaged over a shorter period, such as individual months, as both would341
clearly be useful. The use of atmospheric circulation to predict energy demand could342
also give skilful forecasts in other regions, provided demand is driven by the weather343
and skilful circulation forecasts are available. Seasonal weather forecasts offer the344
first outlook for the coming winter, but should be used in conjunction with other345
nearer term forecasts, such as monthly outlooks through to day ahead forecasts, to346
maximise the preparedness of the energy industry for extreme demand events.347
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