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We show that the static and dynamic properties of the Frenkel-Kontafeia model drastically change
when an incommensurate harmonic is added to the periodic potential. Our model consists of a harmonic chain
with spacing | on a quasiperiodic substrate potential of the folifx)= oK/(27)?[1—cos(2mx)]
+ (1—o)K/(2m7)?[1—cos(2r7X)], where the three relevant lengthsl, and 7! are chosen to be mutually
incommensurate. Within this model we identify two classes of behavior. One presents a sliding mode up to an
analyticity breaking, as in the FK model, and another is pinned for any strength of the additional harmonic.
Besides, we show that in all casesoif« 0 or 1, localization of phonons exists beyond a critical value of the
potential strength.S0163-18209)12629-9

[. INTRODUCTION potential maxima becomes space dependent. We will show
that in this situation, depending on the involved lengths, the
The prototype model to describe systems where competanalyticity breaking transition can either occur or be absent
tion between two incommensurate lengths determines thand that a second transition takes place at larger values of the
ground-state energy is the Frenkel-Kontord#&) (Refs. 1  potential strength. We also observe a transition to localized
and 2 model which describes a harmonic chain with spacingstates in the phonon spectrum and make conjectures concern-
| subjected to a periodic incommensurate substrate potentiahg the reasons for its occurrence in QP potentials and why
A remarkable feature of the model is the so-called analyticitylocalization is suppressed in the FK model.
breaking transition pointed out by Auldry where a struc- The paper is organized as follows: in Sec. Il we introduce
tural transition with concomitant disappearance of a zeroour model, in Sec. Il A we briefly review some basic prop-
frequency sliding mode occurs at a critical valig of the  erties of the FK model which are of relevance for the follow-
strength of the external potential. This model has been usefg, in Sec. Il B we examine the conditions for the existence
to study a variety of quasi-one-dimensional physical pheof 3 sliding mode for QP potentials by introducing what we
nomena such as charge-density wat@®W),>° adsorbate  call the “density criterion.” This criterion helps in under-
layers on surface§, misfit dislocations;® modulated  standing the known properties of the FK model as well. In
structures, and composite structuré®™ A new reason of this subsection we also identify, within our model, two
interest is given by the recent finding that incommensurabiltjasses of systems displaying rather different behavior of the
ity between lattice parameter and substrate potential mayround-state and phonon spectra. One presents a sliding
lead to a regime of vanishing frictiofr *“for which experi-  mode up to an analyticity breaking, as in the FK model, in
mental evidence has been foutid. the other the mode is pinned for any strength of the addi-
In this paper, we study both the ground state and thejonal harmonic. In Sec. Ill we begin the discussion of the
phonons of a generalized FK model with a quasiperiodichumerical results by describing the numerical implementa-
(QP) substrate potential. QP potentials represent an intermejon of the model. Results for the ground-state and phonon
diate situation between periodic order and disorder. The lackpectrum are presented in Sec. Ill A, while phonon localiza-
of periodicity allows states which are extended, localized, ofjon is dealt with in Sec. Ill B. Finally, in Sec. IV we sum-
neither of the two. A study of the nature of excitations in QPmarize our findings and give conclusions and perspectives of
structures can therefore contribute to the still open problenhis work.
of determining the necessary and sufficient conditions for
localization in incommensurate structufe$:!’
The FK model is the limiting case of our QP potential and Il MODEL
will be used as a reference system in the presentation of our
results. Quasiperiodic potentials bring in one qualitatively We consider a system described by a total potential en-
new feature beyond the obvious one of breaking the translaergy which involves three lengths, fl,and 7!, which we
tional invariance of the substrate, namely the height of théake to be mutually incommensurate:
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VeP(x)= (277)2[1—005(27-rx)]
K(1l-o)
[1—cog2m7X)]. (2

(277)?

The potentialV®P(x) represents a QP potential feran
irrational number ife#0 or 1. The paramete is the po-
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a critical value ofK. If the rank is less the sliding mode
disappears for any value &f if 0#0 or 1. Both cases can
occur for different choices of the three relevant, mutually
incommensurate, lengths. Below we will define the prototype
cases | and Il as examples of the two situations.

The condition(5) can be better understood in analogy to
the FK model, where the incommensurability of the
lattice parametet to the potential period means that the
equidistant lattice positions are uniformly distributed over all
potential values, since the quantiti¥s=il mod(1) fori=
—o, ... form a dense set in the interved,1], the unit
cell of the periodic potential. In this case the sliding mode

tential strength ane- determines the relative ratio of the two XISt up to a critical potential strength. If the chain is com-
harmonics. All energies are scaled by the elastic spring corinensurate, the distribution is not dense, implying that not all

stant.

A. Sliding mode in the FK model

The original FK model represents the limiting case for
=0 or 1. The FK ground-state configuratiefi for K=0 is
given by equidistant positions =il + «, wherea is an ar-
bitrary phase. FOK+0 the ground state can be described
by a hull function f(x) as x®=f(il + a)=il + a+g(il
+a), whereg is often called the modulation function. The
modulation functiorg(x) in first order inK (Ref. 13 reads

—K sin(2wx)

9= 4 T-cosd2al) 3

O(K?).

For the FK model it is well knowhthat, forN— o, if | is

potential values are probed. In this case the chain is pinned
for any K#0 and the sliding mode is absent.

A QP potential of the forn{1) can also be expressed as a
periodic potential albeit in a two-dimensioné2D) space,
namely

Y} _ Ko 1—cog?2
(x,y)—(zﬂ)z[ cog2mx)]

M9 1 cog2my)] ®)
————[1—coq27

(277)2 Y

out of which, the original potential®P(x) is found as inter-

section with the line of slope, V(x)=V(x,7x). The condi-
tion for the existence of a sliding mode requires, as in the FK

incommensurate with respect to the period of the potentialM@del, the undistorted configuration to be dense in the 2D
the equations of motion for the displacement from equilib-unit cell of the periodic potentia¥(x,y) namely

rium € =x,—x°~e'“t:

[2— 0+ V" (x7) )€~ €1~ €1=0

(4)

have a solutionw?=0 for K<K, with eigenvector;
=f'(il + @), wheref’ is the derivative of the hull function.
This mode is called sliding mode because it corresponds to

(Xi,YpD=(il,irl)modZ? fori=1---N, (7)

for N— o is a dense set in the unit cell &f .

We consider the following two exemplary cases:
a () |=r=14, with 7,=(5—1)/2~0.618 the golden

nonrigid displacement of the chain with respect to the submean satisfyingrs+ 74— 1=0.
strate. One can describe it as a modulated acoustical mode. (1) | = 7= 7., with 74~0.755 the spiral meafisatisfying

In fact, we can rewritee;=1+g’(il + @), i.e., a constant
plus a modulation. This, in turn, means that fo K there

3 2 —
7o+ 1s—1=0.
Case | does not satisfy the above criterion of being

is a continuum of ground states and that the chain can comtensely distributed in the 2D unit cell. In fact:

tinuously slide with no energy cost from one to the other.
Above K. the hull function becomes discontinuous, the

manifold of ground states becomes discrete, the sliding mode
gets a nonzero frequency, and the chain becomes pinned.
The lowest phonon frequency is often called the phonon gap.

B. Conditions for the existence of a sliding
mode in QP potentials

In the QP case three lengths play a rdlel, andr 2. In
the Fourier spectrum they giie !, 1, andr. We have to
distinguish different cases according to the rank of the mod
ule generated by these Fourier vectors. If the equation

©)

has no trivial solution the rank is three, otherwise it is less
We have found that in the QP case#0 or 1) a sliding

n+ml+pl7=0, n,m,p integers,

(X, Y1) =(il il 7) mod 7?
=(i1q,i75) mod7?
=[i7q,i(1—74)] modZ2=(iry,—i1y) modZ?

with all points folded back to a lin¥=1—X. For vanishing
K this line can be shifted freely in the 2D unit cell but as
soon asK#0 it gets pinned at one particular liné=Y,
— X with Yo=1/2 in this case. Physically this implies a pin-
ning of the chain in the most favorable energetic position
corresponding to a nondegenerate ground state. Conversely,
for case Il the points are uniformly distributed in the 2D unit
cell and the chain can move continuously from ground state
to ground state with no energy cost as in the original FK
model.

We show now how the density condition can be corrobo-

mode occurs only if the rank is three, and then it exists up toated by a calculation of the lowest phonon frequency up to
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second order k. By summing over [Eq. (4)] and applying lIl. NUMERICAL RESULTS

periodic boundary conditions we find Our numerical study begins by finding the ground-state

N structure for given values of the parameters. In order to
> [Vl +a+g(il +a)— w?]g=0 (8)  simulate an infinite number of particles and get rid of surface
=1 effects, we use periodic boundary conditions?P(x)
=VQP(x+ NI). This means that we have to choose commen-
surate approximations férand = so that the model is placed
on a torus of lengtH XxN=Px1=Rx 7 ! with R and P
integers. It is well known that the golden meay can be
approximated by ratios of the Fibonacci numbers; (

which yieldsw?=0 if we takee;=1+ O(K) in first order in
K. Going over to second order i§ we can generalize the
expressior(3) to that resulting from \R” as

—Ko sin(2mX)
= =1,F,=1,F,=F,_1+F,_, for n>2), namel
g(x) 47 1-cod2ml) 2 n n-1 n-2 ) y
F
K(1-0) sin2m7x) ) 7g= lim ——. (18)
 4wr l-cog2wl) +OKY © i Frea
and its two-dimensional periodic extension: Similarly the spiral mean can be approximatedy
Sxy)= —Ko sin2mx)  K(1-o0) sin2my) 7s= lim S n (19
9Oy =7 1—cog2ml) A7t  1—co92wl) n—ee 2N+l
(10)

with Gn+1:Gn71+ Gn,2 and G,2=G0=1,G,1=0.
Therefore we choose for case |

+0(K?). (11
P Fn Frno1
By expandingV” as N=F,.,, |= . T= (20)
I:n+1 Fn
V'(il + a+g(il + a))=V"(il + @)
and for case Il
+V"(il + a)g(il + a)+ O(K?®)
G Gh1
(12 N=G,.,, |= _Gnil’ = —gn : (21)
and by usinge;=1+g’ (il + a) + O(K?) with the first-order
expression ofy given by Eq.(9) into Eq. (8) we get Note that periodic boundary conditions require us to use two
different approximations for and 7 although we should like
N to have them both equal to the golden or spiral mean.
Now?= [V"(il + a)g(il + a) (13)
=t A. Ground state and phonons of QP systems
+V"(il + a)g(il + )] . (14 In the FK model the Aubry transition is characterized by

the discontinuity of the hull function and concomitant open-
Notice that the above expression is valid with the first-ordeling of a phonon gap at the critical value of the potential
expansion ofj(x) becausev? is zero in first-order approxi- strengthK .. Another quantity of interest is the participation
mation. The above sum can be transformed into an integrahtio (PR) which can describe the extended or localized char-
in the 2D unit cell of the periodic potential if the points are acter of the phonon modes. It is defined as
uniformly distributed in it as in case Il or onto a line integral
if the points fall onto a line as in case |. It is then straight- N 2
forward to show that it yieldss?=0 in the first case, while (2 €|2)
; ; ; ; i
in the case | integration over the liné=1/2—X leads to PR= S 22)
! 4
w2=f0 [V(X, 3 =X)g' (X, 3 =X) (15 2 e
and it is equal to 1 for extended modes and equal to zero for
+V7(X, 3 =X)9(X, 3 —=X)]dX (16) ~ completely localized ones. In Fig. 1 we compare the depen-
dence of these quantities on the potential stretgfior the
yielding FK model with those for the QP cases | and Il with
=0.25. This figure summarizes our results and will form the
_3+27y  o(l-0) 5 3 base for the following discussion which will require refer-
T4 1-codzmry K=+0(K") (17 ence to all other figures before the presentation of the results
contained in it can be completed.
which is zero only forc=0,1 as we wanted to prove. For-  As expected on the basis of the density criterion, the pho-
mula 17 reproduces very well the numerical results of Fig. Inon gap in case | is nonzero for aky>0, as opposed to the
for small K. FK model and to the QP case Il where it is zero upKip

w2
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FIG. 1. Phonon gajgdash-dotted ling normalized largest dis-
continuity in the hull function(solid line), and participation ratio
(PR (dashed ling versusK for the following: Top panel: FK
model, N=233,1 =144/233~ 7,4, and o=1. Results for the case
o=0 coincide with these. The solid vertical line indicatss.
Middle panel: quasiperiodic case (see Sec. IIB N=233|
=144/233 7=89/144, andr=0.25. The dashed vertical line indi-
catesK; . Bottom panel: quasiperiodic case (Bee Sec. I B N
=351, =265/351,7=200/265, ando=0.25. The solid vertical
line indicatesK,, the dashed vertical line indicatés, .

~1 andK ~0.7 (for 0=0.25), respectively’? The numeri-
cal results forw? in case | are very well reproduced for low
K by formula(17).

In Figs. 2 and 3 we show the 2D periodic unit cell of
V(x,y) with all positionsx® folded into it as &°, 7x®) mod
72 for increasing values df. These figures give an image of
the structural behavior of the ground state as a functidf. of

It can be clearly seen that for case I all points fall onto a line
which first deforms and eventually becomes discontinuous,

while in case Il the points are very uniformly distributed up
to the critical valueK.~0.7, where the phonon gap opens

up

mon to both QP cases is the nonmonotonic dependence
the lowest phonon frequency a¢f There is in both cases a
minimum after whichw? grows almost linearly witiK. The

occurrence of the minimum signals in both cases | and Il the
fact that no particles are anymore situated on maxima of the

potential. We will come back to this point while discussing

PINNING AND PHONON LOCALIZATION IN FRENKEL- . ..

Coming back to Fig. 1, another interesting feature, com-
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1.0

00l v S — .
00 02 04,06 08 00 02 04,06 08 1.0
X X
FIG. 2. Equilibrium positions folded into the 2D unit cell of
VQP for case | withN=233,1=144/233,r=89/144~1,, and o
=0.25. We show also the contour Iines%‘gp/K. The different
values ofK are indicated in each panel.

In Fig. 1 we show also the largest discontinuity of the hull
function normalized to the maximum difference between the
displacements of the atoms. For the FK model the hull func-
tion becomes discontinuous at the Aubry transition. For the
QP case |, where we can still define a 1D periodic hull func-
tion (the structure is of rank twothe discontinuity appears
atK/~2.8. We call this valu&/ because, as we will show
in the following, we believe that this transition is not the
analogue of that taking place K. in FK and case II.

For case Il one has to go over to a 2D hull periodic func-
tion. The size of the largest discontinuity is more difficult to
define in this case and therefore we only give the value at
which this 2D function becomes discontinuous; within our

1.0

0.

of

L7

00 02

0.4 X 0.6

0.0
00 02 04,06 08

FIG. 3. Same as Fig. 2 for quasiperiodic case Il with

Figs. 4 and 5. Here we just want to point out that the low=g16,1=616/816,r=465/616~7,, and ¢=0.25. A larger ap-

values ofw? for a large range oK may be of importance for

proximant has been chosen to make the uniform distribution of

the friction force and the depinning transition. We plan topoints more evident. The different valuestofre indicated in each

study this aspect in the future.

panel.
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0.0

tween the values @K/(27)? and 2(1- o)K/(2w7)? which are
given as dotted lines are occupi¢gee text Bottom panel:K 000
=3.0>K/ . Notice that no maxima are occupied.

100

FIG. 5. Positions of particles in the potential for case Il and the
numerical approach we place this transition at the same valygMe values as in Fig. 1. For clarity only a portion of the chain is
K.=0.7 where the phonon gap opens up. The discontinuitie%ho‘f"”' Top panelK=0.65<K.. Middle panel:K=1.0 (K.<K
in this function are related, as in the FK model, to the ap-< K¢). Note that,hlgher maxima are n.ot occupied aqymore. Bottom
pearance of forbidden regions around maxima of the poterPanel:K=3.0>Kc. Note that no maxima are occupied.
tial.

For case |, however, the pinning of the chain for aqy first appearance of forbidden regions and leading to the
#0 means that some regions of the potential are alwayspening of a phonon gap, the secondKdtwhen all local
forbidden ifo#0 or 1. This is why we believe that the value maxima become forbidden anef(K) starts increasing mo-

K. at which the hull function becomes discontinuous indi-notonously. These two transitions coincide in the FK model
cates another type of transition, which is illustrated in Fig. 4 where all maxima are at the same height. In the QP case II
We show two Situa’[ionS, one below and one ab&\’{e Itis we observe both. For the QP case |, the first transition is
clear that already foK <K, i.e., before the occurrence of absent because? is nonzero for anK+#0 and the highest
discontinuities, not all potential values are occupied but onlyMaxima are never occupied so that only the second transition
those with energy bounded by the dotted lines. This is justakes place.

another manifestation of the pinning of the chain in case |I.

The equilibrium positions forK—0 folded into the 2D
periodic unit cell fall onto the line¥ =1/2— X implying that
only the values of the potentidl(X,1/2—X) are probed.
These values are bounded betweewK2(27)? and
2(1—- o)K/(277)? which are given in Fig. 4 as dotted lines.
The value 2(* o)K/(277)? corresponds to the lowest
local maximum ofV?P(x) and the appearance of disconti-
nuities in the hull functions is related to the fact that for
K>K/ this energy level becomes forbidden, which mean

B. Phonon localization

Last, we come to the problem of localization. In Fig. 1 we
have reported also the PR as defined in form@@. In the
QP cases | and Il it drops steeply to zero but it is interesting
that a strong tendency to localization occurs also in the FK
model just around . .?* In case |, localization occurs around
the first inflection point of the phonon gap, in case Il it oc-
curs atK. In Figs. 6 and 7 we show typical eigenvectors of
; . , She lowest phonon frequency around the transition to local-
that all maxima are abandoned. In Fig. 4 f=3.0>K.  jzation for case | and II, respectively. For comparison, in Fig.
indeed no particles occupy maxima of the potential. 8, we show also those of the FK model around the Aubry

For case Il the situation is more complex and the appearyansition. In all cases, the eigenvector fobelow localiza-
ance of forbidden regions occurs in two steps, as shown i for cases | and II, and below the Aubry transition for
Fig. 5: AtK the hlghes:t maxima are abandoned and only afk  can be qualitatively described by a modulation around
a much higher valu& =2.7 all maxima are abandoned. he constant value YN which would describe a uniform
This provides evidence that, K{, a second type of transi- displacement. For the FK model this description roughly ap-
tion, similar to that occurring in case |, takes place. Twoplies also at, and above, the Aubry transition, but at the
other aspects corroborate this stateméhiat K the phonon  Aubry transition the deviations are the largest and the dis-
gap starts increasing steadily for both cases | antsée  placement is partly localized on a number of sites in the

middle and bottom panels of Fig) and (ii) the equilibrium
positions folded in the 2D unit cell 0¥°F in Fig. 3 for K
>K, form lines which break up in segments if in a
similar way as the line in Fig. 2 for case I.

structure. The resemblance with the results for case | just
below the localization transition is remarkable. However,
while in the FK model the tendency to localization is frus-
trated above the Aubry transition, in case | the eigenvector of

On this basis, we suggest that two transitions take placthe lowest frequency mode becomes progressively more lo-

for increasing potential strength, the firstkgf, due to the

calized with exponential shape aboke=1.5, where the PR
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FIG. 6. Normalized eigenvector of the lowest phonon mode for  FIG. 8. Normalized eigenvector of the lowest phonon mode for
the QP case | with parameters as in Fig. 1 for three value$ of the FK model with parameters as in Fig. 1 for three value¥ of
around the appearance of localization. From top to bottém, around the Aubry transition. From top to bottok=0.8,1.0,1.2.
=1.0,1.5,1.6. The horizontal dashed lines as in Fig. 8. The horizontal dashed lines indicate the valug(lN) which would

correspond to a uniform mode.

tends to zero. Localization is very sudden and pronounced
also for case Il but with a more irregular pattern than forfor small K. Before the appearance of forbidden regions
case . around the maxima of the potential, for increasing values of

We cannot as yet provide a precise relationship relatind<, more and more particles approach the bottom of the po-
the values ofK at which localization occurs with that at tential wells so that the particles still occupying the maxima
which the other structural transitions take place beyond thevill acquire the character of an impurity. Indeed we find that
values we get from our numerical results. However we canhe eigenvector is always localized on particles located at
put forward some speculations as to why localization occurgotential maximasoftest places because the second deriva-
in QP potentials and it is destroyed in the FK model. Wetive of the potential is negative and has the highest absolute
believe that an important role is played by the fact that thevalue. If the corresponding frequency is zero, as in FK and
particles of the chain experience very different values of then case I, it is easy to displace this particle without moving
potential. In periodic systems, the Bloch theorem forbids lo-all the others. It is therefore logical that at this point a tran-
calized states, and localization in crystals is therefore alwaysition to a new ground-state configuration, where the “impu-
due to impurities or surfaces. For smilthe QP potential is rity” particles no longer occupy the maxima of the potential,
a small perturbation and therefore the modes are extendeekes place. In other words, we can see localization as a
precursor of the structural transition.

In turn, the new ground-state configuration can cancel the

o localization as it happens in the FK model. Due to the Aubry
~ transition, there are no atoms at energy very different from
“ all the others which can play the role of an impurity. In case

I | Il the picture is slightly more complicated becauséatthe

0.0 , , , , , , highest maximum is abandoned, but the localization is taken

03 K=0.8 over by an atom at the top of a lower maximum, which will

ozl ] fall down at its turn for increasing, so that, as shown in
& L j Fig. 7, the mode remains localized albeit at another site. This

011 1 process also gives rise to a complex behaviap&(fK) up to

00 : : : M : the second transition where all maxima become forbidden.

04| K=1.0 This transition does not necessarily cancel the localization,

03l ] because due to the more complex potential the energy differ-
& ool ] ences are conserved. In case |, the localized mode corre-

ot | ] sponds to a phonon with nonzero frequency so that the

' oy 'HL amount of energy required to displace particles away from
00 1 1 L L . . . e
0 50 100 150 . 200 250 300 350 the maxima is too high to cause a structural transition. As

' shown in Fig. 1, localization causes first an inflection and

FIG. 7. Normalized eigenvector of the lowest phonon mode forthen a decrease ab®, and when the phonon gap is low
the QP case Il with parameters as in Fig. 1 for three value of €nough the second transition kit=2.8 takes place. Also in
around the appearance of localization, from top to bottétn, this case, as in case Il, this transition does not necessarily
=0.65,0.8,1.0. The horizontal dashed lines as in Fig. 8. cancel the localization.
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IV. SUMMARY AND CONCLUSIONS sliding mode, and the second transition occurs wiaéin

In summary we have shown that the extension of the paxima are abandoned "’.“?*"?(K) s_tar.ts growing monoto-
nhously. These two transitions coincide in the FK model

model to quasiperiodic potentials gives a much richer SC€%%here all potential maxima are at the same height. Case |

Ez\r)g i?jér?tﬁ‘irggartv\?g é&;gg:; gng?eerlﬁs\/\gé@gr;zr :r;ogltael ;’;ﬁ resents only the second transition, case Il both of them.
. ) Y ; aing tc esides, we have studied the localization of phonons and

of their Fourier moduldcases | and )Iwhich either display . ; . . .
given a rationale of why it occurs in the QP case and is

a zero frequency sliding mode or are pinned for any nonzer X : . i
strength of the additional harmonic which makes the poten_suppressed in the FK model. According to our interpretation

tial quasiperiodic. We have provided a criterion for the exis—Of the numerical results, localization can be seen as a precur-
q periodic. P : .~ sor of the Aubry-type structural transitions. Beside the intrin-
tence of a sliding mode which applies to all cases studie

including the limiting case represented by the FK model.SIC interest, we hope to have shown that the study of quasi-

Based on our numerical results, we propose that two possibr%ermdIC systems can also help in understanding the

structural transitions can take place as a function of the popropernes of simpler models like the FK.
tential strength when the height of the potential maxima is
space dependent as it is in our QP potential: The first transi-
tion signals the appearance of forbidden regions around the One of us(T.S.E) wishes to thank Femke Peeters for
highest maxima and coincides with the disappearance of theontinuing support and inspiration.
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