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We show that the static and dynamic properties of the Frenkel-Kontorova~FK! model drastically change
when an incommensurate harmonic is added to the periodic potential. Our model consists of a harmonic chain
with spacing l on a quasiperiodic substrate potential of the formV(x)5 sK/(2p)2 @12cos(2px)#
1 (12s)K/(2pt)2 @12cos(2ptx)#, where the three relevant lengthsl, 1, andt21 are chosen to be mutually
incommensurate. Within this model we identify two classes of behavior. One presents a sliding mode up to an
analyticity breaking, as in the FK model, and another is pinned for any strength of the additional harmonic.
Besides, we show that in all cases ifsÞ0 or 1, localization of phonons exists beyond a critical value of the
potential strength.@S0163-1829~99!12629-8#

I. INTRODUCTION

The prototype model to describe systems where competi-
tion between two incommensurate lengths determines the
ground-state energy is the Frenkel-Kontorova~FK! ~Refs. 1
and 2! model which describes a harmonic chain with spacing
l subjected to a periodic incommensurate substrate potential.
A remarkable feature of the model is the so-called analyticity
breaking transition pointed out by Aubry2–4 where a struc-
tural transition with concomitant disappearance of a zero-
frequency sliding mode occurs at a critical valueKc of the
strength of the external potential. This model has been used
to study a variety of quasi-one-dimensional physical phe-
nomena such as charge-density waves~CDW!,5,6 adsorbate
layers on surfaces,7 misfit dislocations,1,8 modulated
structures,9 and composite structures.10,11 A new reason of
interest is given by the recent finding that incommensurabil-
ity between lattice parameter and substrate potential may
lead to a regime of vanishing friction12–14 for which experi-
mental evidence has been found.15

In this paper, we study both the ground state and the
phonons of a generalized FK model with a quasiperiodic
~QP! substrate potential. QP potentials represent an interme-
diate situation between periodic order and disorder. The lack
of periodicity allows states which are extended, localized, or
neither of the two. A study of the nature of excitations in QP
structures can therefore contribute to the still open problem
of determining the necessary and sufficient conditions for
localization in incommensurate structures.4,16,17

The FK model is the limiting case of our QP potential and
will be used as a reference system in the presentation of our
results. Quasiperiodic potentials bring in one qualitatively
new feature beyond the obvious one of breaking the transla-
tional invariance of the substrate, namely the height of the

potential maxima becomes space dependent. We will show
that in this situation, depending on the involved lengths, the
analyticity breaking transition can either occur or be absent
and that a second transition takes place at larger values of the
potential strength. We also observe a transition to localized
states in the phonon spectrum and make conjectures concern-
ing the reasons for its occurrence in QP potentials and why
localization is suppressed in the FK model.

The paper is organized as follows: in Sec. II we introduce
our model, in Sec. II A we briefly review some basic prop-
erties of the FK model which are of relevance for the follow-
ing, in Sec. II B we examine the conditions for the existence
of a sliding mode for QP potentials by introducing what we
call the ‘‘density criterion.’’ This criterion helps in under-
standing the known properties of the FK model as well. In
this subsection we also identify, within our model, two
classes of systems displaying rather different behavior of the
ground-state and phonon spectra. One presents a sliding
mode up to an analyticity breaking, as in the FK model, in
the other the mode is pinned for any strength of the addi-
tional harmonic. In Sec. III we begin the discussion of the
numerical results by describing the numerical implementa-
tion of the model. Results for the ground-state and phonon
spectrum are presented in Sec. III A, while phonon localiza-
tion is dealt with in Sec. III B. Finally, in Sec. IV we sum-
marize our findings and give conclusions and perspectives of
this work.

II. MODEL

We consider a system described by a total potential en-
ergy which involves three lengths, 1,l, andt21, which we
take to be mutually incommensurate:
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The potentialVQP(x) represents a QP potential fort an
irrational number ifsÞ0 or 1. The parameterK is the po-
tential strength ands determines the relative ratio of the two
harmonics. All energies are scaled by the elastic spring con-
stant.

A. Sliding mode in the FK model

The original FK model represents the limiting case for
s50 or 1. The FK ground-state configurationxi

G for K50 is
given by equidistant positionsxi5 i l 1a, wherea is an ar-
bitrary phase. ForKÞ0 the ground state can be described3

by a hull function f (x) as xi
G5 f ( i l 1a)5 i l 1a1g( i l

1a), whereg is often called the modulation function. The
modulation functiong(x) in first order inK ~Ref. 13! reads

g~x!5
2K

4p

sin~2px!

12cos~2p l !
1O~K2! . ~3!

For the FK model it is well known3 that, forN˜`, if l is
incommensurate with respect to the period of the potential,
the equations of motion for the displacement from equilib-
rium e i5xi2xi

G;eivt:

@22v21V9~xi
G!#e i2e i 212e i 1150 ~4!

have a solutionv250 for K,Kc with eigenvector e i
5 f 8( i l 1a), wheref 8 is the derivative of the hull function.
This mode is called sliding mode because it corresponds to a
nonrigid displacement of the chain with respect to the sub-
strate. One can describe it as a modulated acoustical mode.
In fact, we can rewritee i511g8( i l 1a), i.e., a constant
plus a modulation. This, in turn, means that forK,Kc there
is a continuum of ground states and that the chain can con-
tinuously slide with no energy cost from one to the other.
Above Kc the hull function becomes discontinuous, the
manifold of ground states becomes discrete, the sliding mode
gets a nonzero frequency, and the chain becomes pinned.
The lowest phonon frequency is often called the phonon gap.

B. Conditions for the existence of a sliding
mode in QP potentials

In the QP case three lengths play a role,l, 1, andt21. In
the Fourier spectrum they givel 21, 1, andt. We have to
distinguish different cases according to the rank of the mod-
ule generated by these Fourier vectors. If the equation

n1ml1plt50, n,m,p integers, ~5!

has no trivial solution the rank is three, otherwise it is less.
We have found that in the QP case (sÞ0 or 1! a sliding
mode occurs only if the rank is three, and then it exists up to

a critical value ofK. If the rank is less the sliding mode
disappears for any value ofK if sÞ0 or 1. Both cases can
occur for different choices of the three relevant, mutually
incommensurate, lengths. Below we will define the prototype
cases I and II as examples of the two situations.

The condition~5! can be better understood in analogy to
the FK model, where the incommensurability of the
lattice parameterl to the potential period means that the
equidistant lattice positions are uniformly distributed over all
potential values, since the quantitiesXi[ i l mod(1) for i 5
2`, . . . ,̀ form a dense set in the interval@0,1#, the unit
cell of the periodic potential. In this case the sliding mode
exists up to a critical potential strength. If the chain is com-
mensurate, the distribution is not dense, implying that not all
potential values are probed. In this case the chain is pinned
for any KÞ0 and the sliding mode is absent.

A QP potential of the form~1! can also be expressed as a
periodic potential albeit in a two-dimensional~2D! space,
namely

Ṽ~x,y!5
Ks

~2p!2
@12cos~2px!#

1
K~12s!

~2pt!2
@12cos~2py!# ~6!

out of which, the original potentialVQP(x) is found as inter-
section with the line of slopet, V(x)5Ṽ(x,tx). The condi-
tion for the existence of a sliding mode requires, as in the FK
model, the undistorted configuration to be dense in the 2D
unit cell of the periodic potentialṼ(x,y) namely

~Xi ,Yi ![~ i l ,i t l !mod Z2 for i 51•••N , ~7!

for N˜` is a dense set in the unit cell ofZ2 .

We consider the following two exemplary cases:
~I! l 5t5tg , with tg5(A521)/2;0.618 the golden

mean satisfyingtg
21tg2150.

~II ! l 5t5ts , with ts;0.755 the spiral mean18 satisfying
ts

31ts
22150.

Case I does not satisfy the above criterion of being
densely distributed in the 2D unit cell. In fact:

~Xi ,Yi ![~ i l ,i l t! mod Z2

5~ i tg ,i tg
2! mod Z2

5@ i tg ,i ~12tg!# mod Z25~ i tg ,2 i tg! modZ2

with all points folded back to a lineY512X. For vanishing
K this line can be shifted freely in the 2D unit cell but as
soon asKÞ0 it gets pinned at one particular lineY5Y0
2X with Y051/2 in this case. Physically this implies a pin-
ning of the chain in the most favorable energetic position
corresponding to a nondegenerate ground state. Conversely,
for case II the points are uniformly distributed in the 2D unit
cell and the chain can move continuously from ground state
to ground state with no energy cost as in the original FK
model.

We show now how the density condition can be corrobo-
rated by a calculation of the lowest phonon frequency up to
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second order inK. By summing overi @Eq. ~4!# and applying
periodic boundary conditions we find

(
i 51

N

@V9„i l 1a1g~ i l 1a!…2v2#e i50 ~8!

which yieldsv250 if we takee i511O(K) in first order in
K. Going over to second order inK we can generalize the
expression~3! to that resulting from VQP as

g~x!5
2Ks

4p

sin~2px!

12cos~2p l !

2
K~12s!

4pt

sin~2ptx!

12cos~2pt l !
1O~K2! ~9!

and its two-dimensional periodic extension:

g̃~x,y!5
2Ks

4p

sin~2px!

12cos~2p l !
2

K~12s!

4pt

sin~2py!

12cos~2pt l !
~10!

1O~K2! . ~11!

By expandingV9 as

V9„i l 1a1g~ i l 1a!…5V9~ i l 1a!

1V-~ i l 1a!g~ i l 1a!1O~K3!

~12!

and by usinge i511g8( i l 1a)1O(K2) with the first-order
expression ofg given by Eq.~9! into Eq. ~8! we get

Nv25(
i 51

N

@V9~ i l 1a!g~ i l 1a! ~13!

1V-~ i l 1a!g~ i l 1a!] . ~14!

Notice that the above expression is valid with the first-order
expansion ofg(x) becausev2 is zero in first-order approxi-
mation. The above sum can be transformed into an integral
in the 2D unit cell of the periodic potential if the points are
uniformly distributed in it as in case II or onto a line integral
if the points fall onto a line as in case I. It is then straight-
forward to show that it yieldsv250 in the first case, while
in the case I integration over the lineY51/22X leads to

v25E
0

1

@Ṽ9~X, 1
2 2X!g̃8~X, 1

2 2X! ~15!

1Ṽ-~X, 1
2 2X!g̃~X, 1

2 2X!]dX ~16!

yielding

v25
312tg

4

s~12s!

12cos~2ptg!
K21O~K3! ~17!

which is zero only fors50,1 as we wanted to prove. For-
mula 17 reproduces very well the numerical results of Fig. 1
for small K.

III. NUMERICAL RESULTS

Our numerical study begins by finding the ground-state
structure for given values of the parameters. In order to
simulate an infinite number of particles and get rid of surface
effects, we use periodic boundary conditionsVQP(x)
5VQP(x1Nl). This means that we have to choose commen-
surate approximations forl andt so that the model is placed
on a torus of lengthl 3N5P315R3t21 with R and P
integers. It is well known that the golden meantg can be
approximated by ratios of the Fibonacci numbers (F1
51,F251,Fn5Fn211Fn22 for n.2), namely

tg5 lim
n˜`

Fn

Fn11
. ~18!

Similarly the spiral mean can be approximated by18

ts5 lim
n˜`

Gn

Gn11
~19!

with Gn115Gn211Gn22 and G225G051,G2150.
Therefore we choose for case I

N5Fn11 , l 5
Fn

Fn11
, t5

Fn21

Fn
~20!

and for case II

N5Gn11 , l 5
Gn

Gn11
, t5

Gn21

Gn
. ~21!

Note that periodic boundary conditions require us to use two
different approximations forl andt although we should like
to have them both equal to the golden or spiral mean.

A. Ground state and phonons of QP systems

In the FK model the Aubry transition is characterized by
the discontinuity of the hull function and concomitant open-
ing of a phonon gap at the critical value of the potential
strengthKc . Another quantity of interest is the participation
ratio ~PR! which can describe the extended or localized char-
acter of the phonon modes. It is defined as

PR5
1

N

S (
i

N

e i
2D 2

(
i

N

e i
4

~22!

and it is equal to 1 for extended modes and equal to zero for
completely localized ones. In Fig. 1 we compare the depen-
dence of these quantities on the potential strengthK for the
FK model with those for the QP cases I and II withs
50.25. This figure summarizes our results and will form the
base for the following discussion which will require refer-
ence to all other figures before the presentation of the results
contained in it can be completed.

As expected on the basis of the density criterion, the pho-
non gap in case I is nonzero for anyK.0, as opposed to the
FK model and to the QP case II where it is zero up toKc
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;1 andKc;0.7 ~for s50.25), respectively.19 The numeri-
cal results forv2 in case I are very well reproduced for low
K by formula ~17!.

In Figs. 2 and 3 we show the 2D periodic unit cell of
Ṽ(x,y) with all positionsxi

G folded into it as (xi
G ,txi

G) mod
Z2 for increasing values ofK. These figures give an image of
the structural behavior of the ground state as a function ofK.
It can be clearly seen that for case I all points fall onto a line
which first deforms and eventually becomes discontinuous,
while in case II the points are very uniformly distributed up
to the critical valueKc;0.7, where the phonon gap opens
up.

Coming back to Fig. 1, another interesting feature, com-
mon to both QP cases is the nonmonotonic dependence of
the lowest phonon frequency onK. There is in both cases a
minimum after whichv2 grows almost linearly withK. The
occurrence of the minimum signals in both cases I and II the
fact that no particles are anymore situated on maxima of the
potential. We will come back to this point while discussing
Figs. 4 and 5. Here we just want to point out that the low
values ofv2 for a large range ofK may be of importance for
the friction force and the depinning transition. We plan to
study this aspect in the future.

In Fig. 1 we show also the largest discontinuity of the hull
function normalized to the maximum difference between the
displacements of the atoms. For the FK model the hull func-
tion becomes discontinuous at the Aubry transition. For the
QP case I, where we can still define a 1D periodic hull func-
tion ~the structure is of rank two!, the discontinuity appears
at Kc8'2.8. We call this valueKc8 because, as we will show
in the following, we believe that this transition is not the
analogue of that taking place atKc in FK and case II.

For case II one has to go over to a 2D hull periodic func-
tion. The size of the largest discontinuity is more difficult to
define in this case and therefore we only give the value at
which this 2D function becomes discontinuous; within our

FIG. 1. Phonon gap~dash-dotted line!, normalized largest dis-
continuity in the hull function~solid line!, and participation ratio
~PR! ~dashed line! versus K for the following: Top panel: FK
model, N5233,l 5144/233'tg , and s51. Results for the case
s50 coincide with these. The solid vertical line indicatesKc .
Middle panel: quasiperiodic case I~see Sec. II B!, N5233,l
5144/233 ,t589/144, ands50.25. The dashed vertical line indi-
catesKc8 . Bottom panel: quasiperiodic case II~see Sec. II B!, N
5351,l 5265/351,t5200/265, ands50.25. The solid vertical
line indicatesKc , the dashed vertical line indicatesKc8 .

FIG. 2. Equilibrium positions folded into the 2D unit cell of

ṼQP for case I withN5233,l 5144/233,t589/144'tg , and s

50.25. We show also the contour lines ofṼQP /K. The different
values ofK are indicated in each panel.

FIG. 3. Same as Fig. 2 for quasiperiodic case II withN
5816,l 5616/816,t5465/616'ts , and s50.25. A larger ap-
proximant has been chosen to make the uniform distribution of
points more evident. The different values ofK are indicated in each
panel.
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numerical approach we place this transition at the same value
Kc50.7 where the phonon gap opens up. The discontinuities
in this function are related, as in the FK model, to the ap-
pearance of forbidden regions around maxima of the poten-
tial.

For case I, however, the pinning of the chain for anyK
Þ0 means that some regions of the potential are always
forbidden ifsÞ0 or 1. This is why we believe that the value
Kc8 at which the hull function becomes discontinuous indi-
cates another type of transition, which is illustrated in Fig. 4.
We show two situations, one below and one aboveKc8 . It is
clear that already forK,Kc8 , i.e., before the occurrence of
discontinuities, not all potential values are occupied but only
those with energy bounded by the dotted lines. This is just
another manifestation of the pinning of the chain in case I.
The equilibrium positions forK˜0 folded into the 2D
periodic unit cell fall onto the lineY51/22X implying that
only the values of the potentialṼ(X,1/22X) are probed.
These values are bounded between 2sK/(2p)2 and
2(12s)K/(2pt)2 which are given in Fig. 4 as dotted lines.
The value 2(12s)K/(2pt)2 corresponds to the lowest
local maximum ofVQP(x) and the appearance of disconti-
nuities in the hull functions is related to the fact that for
K.Kc8 this energy level becomes forbidden, which means
that all maxima are abandoned. In Fig. 4 forK53.0.Kc8
indeed no particles occupy maxima of the potential.

For case II the situation is more complex and the appear-
ance of forbidden regions occurs in two steps, as shown in
Fig. 5: At Kc the highest maxima are abandoned and only at
a much higher valueKc8*2.7 all maxima are abandoned.
This provides evidence that, atKc8 , a second type of transi-
tion, similar to that occurring in case I, takes place. Two
other aspects corroborate this statement:~i! at Kc8 the phonon
gap starts increasing steadily for both cases I and II~see
middle and bottom panels of Fig. 1! and~ii ! the equilibrium
positions folded in the 2D unit cell ofVQP in Fig. 3 for K
.Kc form lines which break up in segments atKc8 in a
similar way as the line in Fig. 2 for case I.

On this basis, we suggest that two transitions take place
for increasing potential strength, the first atKc , due to the

first appearance of forbidden regions and leading to the
opening of a phonon gap, the second atKc8 when all local
maxima become forbidden andv2(K) starts increasing mo-
notonously. These two transitions coincide in the FK model
where all maxima are at the same height. In the QP case II
we observe both. For the QP case I, the first transition is
absent becausev2 is nonzero for anyKÞ0 and the highest
maxima are never occupied so that only the second transition
takes place.

B. Phonon localization

Last, we come to the problem of localization. In Fig. 1 we
have reported also the PR as defined in formula~22!. In the
QP cases I and II it drops steeply to zero but it is interesting
that a strong tendency to localization occurs also in the FK
model just aroundKc .21 In case I, localization occurs around
the first inflection point of the phonon gap, in case II it oc-
curs atKc . In Figs. 6 and 7 we show typical eigenvectors of
the lowest phonon frequency around the transition to local-
ization for case I and II, respectively. For comparison, in Fig.
8, we show also those of the FK model around the Aubry
transition. In all cases, the eigenvector forK below localiza-
tion for cases I and II, and below the Aubry transition for
FK, can be qualitatively described by a modulation around
the constant value 1/AN which would describe a uniform
displacement. For the FK model this description roughly ap-
plies also at, and above, the Aubry transition, but at the
Aubry transition the deviations are the largest and the dis-
placement is partly localized on a number of sites in the
structure. The resemblance with the results for case I just
below the localization transition is remarkable. However,
while in the FK model the tendency to localization is frus-
trated above the Aubry transition, in case I the eigenvector of
the lowest frequency mode becomes progressively more lo-
calized with exponential shape aboveK'1.5, where the PR

FIG. 4. Positions of particles in the potential for case I and the
same values as in Fig. 1. For clarity only a portion of the chain is
shown. Top panel:K51.0. Notice that only potential energies be-
tween the values 2sK/(2p)2 and 2(12s)K/(2pt)2 which are
given as dotted lines are occupied~see text!. Bottom panel:K
53.0.Kc8 . Notice that no maxima are occupied.

FIG. 5. Positions of particles in the potential for case II and the
same values as in Fig. 1. For clarity only a portion of the chain is
shown. Top panel:K50.65<Kc . Middle panel:K51.0 (Kc,K
,Kc8). Note that higher maxima are not occupied anymore. Bottom
panel:K53.0.Kc8 . Note that no maxima are occupied.
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tends to zero. Localization is very sudden and pronounced
also for case II but with a more irregular pattern than for
case I.

We cannot as yet provide a precise relationship relating
the values ofK at which localization occurs with that at
which the other structural transitions take place beyond the
values we get from our numerical results. However we can
put forward some speculations as to why localization occurs
in QP potentials and it is destroyed in the FK model. We
believe that an important role is played by the fact that the
particles of the chain experience very different values of the
potential. In periodic systems, the Bloch theorem forbids lo-
calized states, and localization in crystals is therefore always
due to impurities or surfaces. For smallK the QP potential is
a small perturbation and therefore the modes are extended

for small K. Before the appearance of forbidden regions
around the maxima of the potential, for increasing values of
K, more and more particles approach the bottom of the po-
tential wells so that the particles still occupying the maxima
will acquire the character of an impurity. Indeed we find that
the eigenvector is always localized on particles located at
potential maxima~softest places because the second deriva-
tive of the potential is negative and has the highest absolute
value!. If the corresponding frequency is zero, as in FK and
in case II, it is easy to displace this particle without moving
all the others. It is therefore logical that at this point a tran-
sition to a new ground-state configuration, where the ‘‘impu-
rity’’ particles no longer occupy the maxima of the potential,
takes place. In other words, we can see localization as a
precursor of the structural transition.

In turn, the new ground-state configuration can cancel the
localization as it happens in the FK model. Due to the Aubry
transition, there are no atoms at energy very different from
all the others which can play the role of an impurity. In case
II the picture is slightly more complicated because atKc the
highest maximum is abandoned, but the localization is taken
over by an atom at the top of a lower maximum, which will
fall down at its turn for increasingK, so that, as shown in
Fig. 7, the mode remains localized albeit at another site. This
process also gives rise to a complex behavior ofv2(K) up to
the second transition where all maxima become forbidden.
This transition does not necessarily cancel the localization,
because due to the more complex potential the energy differ-
ences are conserved. In case I, the localized mode corre-
sponds to a phonon with nonzero frequency so that the
amount of energy required to displace particles away from
the maxima is too high to cause a structural transition. As
shown in Fig. 1, localization causes first an inflection and
then a decrease ofv2, and when the phonon gap is low
enough the second transition atK'2.8 takes place. Also in
this case, as in case II, this transition does not necessarily
cancel the localization.

FIG. 6. Normalized eigenvector of the lowest phonon mode for
the QP case I with parameters as in Fig. 1 for three values ofK
around the appearance of localization. From top to bottom,K
51.0,1.5,1.6. The horizontal dashed lines as in Fig. 8.

FIG. 7. Normalized eigenvector of the lowest phonon mode for
the QP case II with parameters as in Fig. 1 for three values ofK
around the appearance of localization, from top to bottom,K
50.65,0.8,1.0. The horizontal dashed lines as in Fig. 8.

FIG. 8. Normalized eigenvector of the lowest phonon mode for
the FK model with parameters as in Fig. 1 for three values ofK
around the Aubry transition. From top to bottom,K50.8,1.0,1.2.
The horizontal dashed lines indicate the value 1/A(N) which would
correspond to a uniform mode.
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IV. SUMMARY AND CONCLUSIONS

In summary we have shown that the extension of the FK
model to quasiperiodic potentials gives a much richer sce-
nario as compared to the FK model. Within our model we
have identified two classes of systems according to the rank
of their Fourier module~cases I and II! which either display
a zero frequency sliding mode or are pinned for any nonzero
strength of the additional harmonic which makes the poten-
tial quasiperiodic. We have provided a criterion for the exis-
tence of a sliding mode which applies to all cases studied,
including the limiting case represented by the FK model.
Based on our numerical results, we propose that two possible
structural transitions can take place as a function of the po-
tential strength when the height of the potential maxima is
space dependent as it is in our QP potential: The first transi-
tion signals the appearance of forbidden regions around the
highest maxima and coincides with the disappearance of the

sliding mode, and the second transition occurs whenall
maxima are abandoned andv2(K) starts growing monoto-
nously. These two transitions coincide in the FK model
where all potential maxima are at the same height. Case I
presents only the second transition, case II both of them.
Besides, we have studied the localization of phonons and
given a rationale of why it occurs in the QP case and is
suppressed in the FK model. According to our interpretation
of the numerical results, localization can be seen as a precur-
sor of the Aubry-type structural transitions. Beside the intrin-
sic interest, we hope to have shown that the study of quasi-
periodic systems can also help in understanding the
properties of simpler models like the FK.
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