
794 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 37, NO. 4, AUGUST 2007

Logistic Model Tree Extraction From
Artificial Neural Networks

Darren Dancey, Zuhair A. Bandar, and David McLean

Abstract—Artificial neural networks (ANNs) are a powerful and
widely used pattern recognition technique. However, they remain
“black boxes” giving no explanation for the decisions they make.
This paper presents a new algorithm for extracting a logistic model
tree (LMT) from a neural network, which gives a symbolic rep-
resentation of the knowledge hidden within the ANN. Landwehr’s
LMTs are based on standard decision trees, but the terminal nodes
are replaced with logistic regression functions. This paper reports
the results of an empirical evaluation that compares the new deci-
sion tree extraction algorithm with Quinlan’s C4.5 and ExTree.
The evaluation used 12 standard benchmark datasets from the
University of California, Irvine machine-learning repository. The
results of this evaluation demonstrate that the new algorithm
produces decision trees that have higher accuracy and higher
fidelity than decision trees created by both C4.5 and ExTree.

Index Terms—Artificial intelligence, feedforward neural net-
works, multilayer perceptrons (MPLs), neural networks.

I. INTRODUCTION

A RTIFICIAL neural networks (ANNs) are universal ap-
proximators and, therefore, can approximate any Borel

measurable function to an arbitrary accuracy [1]. For classi-
fication, this means that neural networks can easily solve any
practical classification problem [2] and have been successfully
applied to a diverse range of problem domains. For example,
recent applications have included problems from financial [3],
engineering [4], and medical [5] domains.

However, despite their relative success, the further adoption
of neural networks in some areas has been impeded due to
their inability to explain, in a comprehensible form, how they
have made a decision. This lack of transparency in the neural
network’s reasoning has been termed the Black Box problem.
Andrews et al. [6] observed that ANNs must obtain the capabil-
ity to explain their decisions in a human-comprehensible form
before they can gain widespread user acceptance and to enhance
their overall utility as learning and generalization tools.

Neural networks store their “knowledge” in a series of real-
valued weight matrices representing a combination of nonlin-
ear transforms from an input space to an output space. Rule
extraction attempts to translate this numerically stored knowl-
edge into a symbolic form that can be readily comprehended.
The ability to extract symbolic knowledge has many potential
advantages: the knowledge obtained from the neural network
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can lead to new insights into patterns and dependencies within
the data; from symbolic knowledge, it is easier to see which
features of the data are the most important; and the explanation
of a decision is essential for many applications, such as safety-
critical systems.

Andrews et al. [6] and Tickle et al. [7], [8] summarize several
proposed approaches to rule extraction. Many of the earlier
approaches required specialized neural network architectures or
training schemes. This limited their applicability; in particular,
they cannot be applied to in situ neural networks. The other
approach is to view the extraction process as a learning task.
This approach does not examine the weight matrices directly
but tries to approximate the neural network by learning its
input–output mappings.

An example of this second approach has been to extract
decision trees from the neural network [9]–[11]. Decision trees
[12], [13] are a graphical representation of a decision process.
The combination of symbolic information and graphical pre-
sentation make decision trees one of the most comprehensible
representations of pattern recognition knowledge. However,
decision trees are a more limited form of classifier than neural
networks [14]. This paper presents a new rule extraction method
that extracts a logistic model tree (LMT) from a trained neural
network. LMTs [15] are a recent addition to decision trees
that replace the terminal nodes of a decision tree with logistic
regression functions. This has the advantage of producing deci-
sion trees that are more comprehensible, have higher accuracy,
and have higher fidelity with the neural network than previous
decision tree extraction algorithms.

This paper is organized as follows. The next section recaps
the pattern classification problem and some relevant techniques
used to solve it. Section III overviews rule extraction and
important previous rule extraction methods. Section IV de-
scribes ExLMT, which is our new rule extraction method. In
Section V, ExLMT is empirically evaluated on a number of
standard benchmark datasets from the University of California,
Irvine (UCI) machine-learning repository. Sections VI and VII
provide the discussion and the conclusion, respectively.

II. PATTERN CLASSIFICATION

The basic framework for classification [2] is that objects
need to be classified as coming from a number of classes
C1, . . . , CK . A process called feature extraction takes a number
of measurements p from the object. This produces a vector of
features X commonly called an instance. X , therefore, belongs
to an instance space X = X1 ×X2 × · · · × Xp, where Xi is
either the set of real numbers for continuous valued features
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or a finite set for nominal valued features. The task is then to
build a classifier ĉ that, given an instance, X = x, will classify
it as belonging to one of the K classes, i.e.,

ĉ : X → {1, 2, . . . ,K}. (1)

To estimate ĉ, a training set T must be available that consists
of a series of instances augmented with a known classification.
These example instances with known classification can then be
used to estimate the parameters in ĉ.

Neural networks are one method of implementing such a
classifier. ExLMT also makes use of decision trees and logistic
regression to implement classifiers, and these three methods
will be briefly described next.

1) Neural Networks: The field of neural networks consists
of a large collection of models and techniques origi-
nally inspired by biological nervous systems, such as
the human brain [16], [17]. The basic building block
of neural networks is the artificial neuron [18]. These
artificial neurons accept a number of weighted inputs then
process these inputs to produce an output. It is the value
of these weights that determine the function mapping of
the neural network. Using the backpropagation algorithm
[19], multiple layers of perceptrons organized into a
network are able to learn nonlinear mappings such as the
pattern recognition task of (1).

2) Decision Trees: Decision trees [12], [13] are one of
the most widely used classifier models. They are di-
rected acyclic graphs consisting of nodes and connections
(edges) that illustrate decision rules. Each nonterminal
node has a splitting test associated with it, which splits
the data into mutually exclusive subsets. The terminal
nodes called leaves represent a classification. This has the
effect of partitioning the instance space X into a series of
disjoint regions R separated by axis-parallel hyperplanes

X =
⋃
r∈R

X r,X r ∩ X r′
= ∅, where X r �= X r′

. (2)

3) Logistic Regression: Logistic regression [20] is a statis-
tical method used to predict posterior-class probabilities
P (C = k|X = x) for the K classes. Logistic regression
for n variables fits a logistic function of the form

y =
eβ0 +

∑n
1 βixi

1 + eβ0+
∑n

1
βixi

(3)

to the class probabilities, where βi are the parameters to
be most commonly estimated using maximum-likelihood
estimation.

III. RULE EXTRACTION

Rule extraction from neural networks aims to reduce the
complexity of a neural network into a more easily understood
symbolic form. These rules can then be analyzed for trustwor-
thiness for safety-critical systems or used to provide insights
into the relationships found by the neural network.

Andrews et al. [6] classifies rule extraction algorithms along
the following five dimensions:

1) expressive power;
2) translucency;
3) specialized training regimes;
4) quality of the extracted rules;
5) algorithmic complexity.

The expressive power refers to the type of rules extracted from
the neural network. Previous rule extraction techniques have
extracted rules expressed in various form including Boolean
logic [21], fuzzy logic [22], IF . . . THEN . . . rules [23],
n-of-m rules [24], and decision trees [9], [10].

The Translucency means the level of granularity with which
the neural network is examined. Craven and Shavlik [9] divided
these into decompositional techniques, which examined the
individual weights, and pedagogical techniques, which treated
the neural network as a black box and learns the concept
represented by the neural network by using it as an oracle.

Many of the rule extraction algorithms require the standard
neural network training algorithms, such as backpropagation, to
be modified. Although such techniques have been successful,
they tend not to be portable across different neural network
types. Andrews et al. [6] proposes four metrics for measuring
the quality of the rules extracted from the neural network:
accuracy, fidelity, consistency, and comprehensibility. Accuracy
measures the ability of the rule set to correctly classify previ-
ously unseen instances from the problem domain, i.e.,

P (ĉ(X) = C) . (4)

Fidelity is how well the extracted classifier (ĉ) corresponds
to the original neural network (nn). It can be stated as the
probability

P (ĉ(X) = nn(X)) . (5)

Consistency, in this context, is whether the extracted rule set
is the same under different training sessions of the neural
network. Comprehensibility is a measure of the number of rules
produced by the extraction algorithm. The final dimension is
algorithmic complexity, which attempts to provide a measure
of the efficiency of the technique, considering such aspects as
whether the algorithm scales exponentially with the number of
hidden nodes or inputs.

A. Existing Extraction Methods

The subset rule extraction method [23] is typical of the
decompositional approach, and similar methods have been pro-
posed by Saito and Nakano [25] and Fu [21]. The subset method
extracts a series of rules from each node in the network. A
rule is created for each combination (or subset) of inputs that
could cause a node to activate. For example, given the node
in Fig. 1, the following rules could be extracted: a ∧ b ∧ c =⇒
y, a ∧ b ∧ ¬d =⇒ y, a ∧ c ∧ ¬d =⇒ y, b ∧ c ∧ ¬d =⇒ y, b ∧
c ∧ ¬d =⇒ y. This particular implementation requires the
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Fig. 1. Neural node with four inputs and a threshold value of three.

outputs of the nodes to be binary and, therefore, cannot be
applied to preexisting multilayer perceptrons (MLPs) that nor-
mally have nodes with real valued outputs. Moreover, the
number of rules increases exponentially with the number of
nodes, making the algorithm intractable for large networks.
This approach was extended by the n-of-m method, again by
Towell and Shavlik [23]. A n-of-m rule contains a set m of
tests, of which n must be satisfied for the rule to be evaluated as
true. For example, the n-of-m rule 2-of-{r1, r2, r3} is equiv-
alent to (r1 ∧ r2) ∨ (r1 ∧ r3) ∨ (r2 ∧ r3). This style of rule
is particularly appropriate for representing the activation of a
neural node. For example, the rules of Fig. 1 can be represented
as 3-of-{a, b, c,¬d}. However, for a multiple-layered network
to be represented in a concise number of n-of-m rules and over-
come the exponential growth problem of the subset algorithm,
the antecedents of the rules should be equivalent, i.e., it does
not matter which n is true. Standard backpropagation has no
predisposition to favor such an arrangement. Therefore, either
the neural network needs to be initialized using a preexisting
rule set and/or trained using a special training algorithm.

Algorithms [26], [27] have been proposed which extract
fuzzy rule sets [28] from neural networks. These approaches
usually require a domain expert to label the resulting fuzzy
sets and/or require specialized neural network architectures
and training algorithms. These approaches have generally been
applied to rule refinement, where a preexisting set of fuzzy
rules have their membership functions refined by the neural
network. Jang and Sun [29] have noted a functional equivalence
between radial basis function networks and fuzzy inference
systems under some conditions. However, it has been shown
that the equivalence conditions are more restrictive than was
initially thought, resulting in special training algorithms again
being required [30].

Trepan [31] follows the pedagogical approach to rule ex-
traction. Trepan creates an n-of-m decision tree [32], which,
in addition to the C4.5-style splitting rule, can make use of
an n-of-m splitting rule at any of the nodes. The use of n-
of-m splits can fit certain concepts more naturally than C4.5-
style splits at the cost of a certain amount of comprehensibility.
Another interesting feature of Trepan is its use of best first tree
expansion in contrast to the more usual depth-first expansion.
The next node to expand is the node that maximizes the
function

n∗ = arg max
n

(reach(n) (1 − fidelity(n))) (6)

where reach(n) is the number of instances that have reached
node n and fidelity(n) is the percentage of instances at node n
that the decision tree and the neural network are classified as
the same class. This has the effect of concentrating growth of
the tree in the region that increases fidelity the most. However,
after the tree is fully grown and pruned, the difference between
the two methods is negligible. But, the real advantage of this
approach is the ability to more precisely control the accuracy
growth tradeoff. To decide which attribute to base the splitting
test on, Trepan uses information gain. To extract the “knowl-
edge” from the neural network, Trepan uses a sampling-and-
querying approach. The neural network is used as an oracle,
which can be queried for the class assignment of a sampled
instance. To create a query instance, Trepan models the original
dataset using an empirical distribution for nominal attributes
and kernel density estimation [33] for the continuous attributes.
The empirical distribution means that the nominal values are
sampled with a probability based on their frequency in the
original dataset. For the continuous attributes, a probability-
density function (PDF), using a kernel density estimate with
a Gaussian kernel, is sampled.

ExTree [10] creates a tree using the more comprehensible
C4.5-style splitting rules. Unlike Trepan, ExTree uses a simple
depth-first tree expansion scheme, resulting in large trees that
overfit the data. A similar method to that employed in Quinlan’s
C4.5 algorithm is then used to prune the tree.

ExTree uses a slightly modified version of information-
gain ratio, which is a modification to information gain that
compensates for multiway splits. ExTree, like Trepan, samples
from empirical distributions for nominal attributes and a kernel
density estimate of the PDF for the continuous attributes.

A further advantage of the pedagogical approaches is that
they can be applied to any “black-box” classifier, such as
ensembles of neural networks [34].

IV. EXLMT

This section describes ExLMT, a new method of extracting
an LMT from a neural network. Current decision tree extraction
methods such as Trepan and ExTree have produced reason-
able results on many datasets, but there remains a significant
gap between the accuracy of the neural network and the ex-
tracted decision tree. This clearly indicates that more infor-
mation remains to be extracted. Moreover, on many datasets,
the extracted decision trees and the neural network disagree
on the classification on a significant number of instances
(low fidelity).

ExLMT extracts a form of LMT from the neural network.
The LMT method is a recent contribution to the machine-
learning field [15]. Decision trees produced by LMT are similar
to standard decision trees but have the terminal nodes replaced
by a polytomous logistic regression model. The replacement
of the terminal nodes by logistic models has two significant
effects: The decision tree now predicts class probabilities in-
stead of giving a simple class assignment and the nodes are
linear combinations of a subset of the attributes resulting in
decision hyperplanes that are not axis-parallel. Fig. 2 shows
how a two LMT tree may fit a 2-D instances space. Fig. 3 gives
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Fig. 2. Decision hyperplanes of an LMT tree. Instances inside the gray box
are of class 1. Instances outside the box are of class 2. The solid axis-parallel
lines show the C4.5-style splitting rules, and the dotted lines show the nonaxis
parallel splits achievable by using the logistic regression nodes.

an overview of the ExLMT algorithm. Each of the component
steps will now be expanded.

Step 1) Acquire or train the neural network: before the
ExLMT can be used to build a decision tree, a
trained neural network is required. The ExTree
method, being a pedagogical type of rule extraction,
is independent of the neural network architecture
and training algorithm.

Step 2) Relabel the dateset: recall that the original training
set T consisted of the instance X and a known clas-
sification C. A new relabeled dataset R is created
replacing the known classification with the mapping
of the neural network ĉ, such that

R = {X, ĉ(X)} . (7)

Step 3) Generate new data: ExLMT uses Craven’s
sampling-and-querying approach [31] to elicit
knowledge from the neural network. ExLMT models
the original dataset then samples this model to create
new instances. These new instances are then used
to query the neural network, obtaining class labels.
This has the effect of expanding the original dataset.
To model the nominal attributes, an empirical dis-
tribution is used. This means that nominal values
in the new instances are sampled according to their
frequency in the original dataset. For continuous
attributes, a PDF is estimated using kernel density
estimation with a Gaussian kernel

f(x) =
1
m

m∑
i

(
1√
2πσ

e−( x−ui
2σ )2

)
(8)

where m is the number of original instances, ui

is the attribute value for the ith examples, and σ
is the width for the Gaussian kernel. As illustrated
in Fig. 4, the kernel density estimation can be
thought of as creating a PDF by summing a series
of Gaussian functions centered on the current data

Fig. 3. Outline of the ExLMT algorithm.

Fig. 4. Kernel density estimation using five Gaussian kernels.
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Fig. 5. LogitBoost: an adaptive Newton algorithm.

points with a standard deviation, or bandwidth, de-
termined by the size of the dataset. Based on some
preliminary experiments, ExLMT uses a bandwidth
of 1/

√
m. The new instances’ attribute values are

then sampled from this PDF. The new instances T ∗

are then labeled by the neural network to produce a
set of instances to be added to the relabeled dataset
R, such that

T ′ = R∪ T ∗. (9)

The next three steps create the LMT tree follow-
ing the procedure given by Landwehr [15]. Nodes
continue to be split while they contain at least ten
instances or all the instances belong to the same
class.

Step 4) Create initial logistic regression model: an initial
logistic regression model is built using all the data in
T ′. The logistic regression model is then fitted using
the LogitBoost method [35]. LogitBoost uses a en-
semble of functions Fk to predict classes 1, . . . ,K
using M “weak learners.” Fig. 5 details the Logit-
Boost algorithm as originally given by Friedman.

Fk(x) =
K∑

m=1

fmk(x) (10)

Each of the “weak learners” fmk can be any algo-
rithm that fulfils (1). When fmk are linear functions
in x, then Fmk is equivalent to the logistic model.
The LogitBoost algorithm can then be seen as an
iterative Newton method of fitting the logistic re-
gression function.

Step 5) Create candidate splits: when deciding which at-
tribute to split on, ExLMT considers two types of
splitting rules. For discrete features, ExLMT creates
a branch for each possible value of the feature. For
real valued features, a binary split is made with two

outcomes Xi ≤ α and Xi > α. To determine the
threshold value α, the set of instances are sorted
on the value of feature Xi. An ordered set of m
instances can be divided into two ordered subsets
m− 1 ways. ExLMT considers each of these m− 1
ways to divide the data for each of the real-valued
features.

Step 6) Select best split: the previous step resulted in
set of z candidate splitting tests, {T1, T2, . . . , Tz};
ExLMT uses an information-gain ratio [12], an in-
formation entropy-based method to choose among
this candidate tests. The aim is to select the test,
which gives the most information about the class of
the instances. The information gained by an event
occurring is inversely proportional to the probability
of the event occurring. The information of an event
E occurring can be defined as log2(1/p(E)) =
− log2(p(E)) bits. Thus, the average amount of
information needed to classify a pattern in a set S
can be calculated as

info(S) = −
K∑

i=1

p(Ci) log2 (p(Ci)) bits (11)

with P (Ci) being the probability of an instance in
set S being a member of class Ci. The information
gained by splitting the data according to test T
can be found by calculating the average amount
of information needed to classify an instance be-
fore splitting the data and subtracting the amount
of information needed to classify an instance for
each of the subsets created by the split. Therefore,
for a test T which results in N subsets, the sum
of the average information of the N subsets, S =⋃N

i=1 Si, is

infoT (S) =
n∑

i=1

|Si|
|S| × info(Si) bits. (12)

The total information gained by test T can be calcu-
lated as

gain(T ) = info(S) − infoT (S). (13)

Information gain has a natural bias toward selecting
the test, which splits the data into many groups. To
overcome this bias, the information gain is divided
by the information gained by arbitrarily splitting the
set into the same number of subsets as the test. The
information gained by arbitrarily splitting a set S
into N subsets is given by

split info(T ) =
N∑

i=1

|Si|
|S| × log2

(
|Si|
|S|

)
. (14)
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TABLE I
DATASET CHARACTERISTICS

The gain ratio of test T can, thus, be calculated as

gain ratio(T ) =
gain(T )

split info(T )
. (15)

ExLMT then uses the best split T ∗, which is the split
that maximizes the information-gain ratio

T ∗ = arg max
i

(gainratio(Ti)) . (16)

Step 7) Refine logistic model: for each node resulting from
the split created at the previous stage, the logistic
regression function is refined based only on the
subset of T that reached that node. This refinement
means that, as the tree grows, the logistic regression
models capture information local to the region of X
that the tree structure above has partitioned. Because
of the iterative and additive nature of the LogitBoost
algorithm, the refinement is simply running more
iterations of a copy of the LogitBoost model of
the node above but using only the subset of T that
reached this node.

V. EMPIRICAL EVALUATION

ExLMT was evaluated using the criteria outlined in
Section III on 12 standard benchmarking datasets from the
well-known UCI machine-learning repository [36]. The pri-
mary characteristics of the datasets are given in Table I.

The datasets represent a wide range of classification prob-
lem domains. Because all the datasets, with the exception of
balance-scale, are based on measured or observed data, they are
likely to contain noise. Four of the datasets have only continu-
ous features, and four datasets are purely nominal. The remain-
ing eight datasets have a mixture of continuous and nominal
features. Five of the datasets have more than two classes. The
remaining seven datasets have a dichotomous class variable.
Missing values in the datasets were replaced with the mean
value of that feature. Other than this replacement, no other mod-
ifications to the datasets were made. A stratified tenfold cross-
validation [37] was carried out comparing ExLMT, ExTree, and
C4.5. To further improve the reliability of the results, the cross-

validation was repeated ten times. A paired t-test was used to
test whether the difference between methods on each dataset
was significant. Values where P ≤ 0.05 were considered to be
significant. To test whether the difference between the methods
across the 12 datasets as a whole was significant, the Wilcoxon
rank sign test was used. This test is similar to the well-known
paired t-test but does not make the assumption that the data are
normally distributed. The null hypothesis for this test is that the
two samples were drawn from identical populations, or from
symmetric populations with the same mean. It is calculated by
finding the differences between each matched pair, then ranking
these differences by magnitude. The ranks are then labeled as
negative if the difference was negative. The test statistic is then
found by taking the smaller of the W+ or W−, where

W+ =
∑

(Positive Ranks)

W− =
∑

(Negative Ranks).

The W statistic is then evaluated against standard statistical
tables to determine if it is significant.

A. Neural Network Parameters

To evaluate the rule extraction algorithms, neural networks
with good predictive accuracy on the benchmark datasets were
required. The neural networks were standard MLPs using back-
propagation [19]. To avoid overfitting by the neural network, a
momentum term was used [19]. The training algorithm min-
imized the summed squared error with a weight decay term
added, again to reduce the chance of overfitting. Given that
the output of neural networks is y = f(x;w). The training
examples are a set {xp, tp}. The error, E being minimized by
backpropagation, is then

E =
∑

p

(tp − f(xp;w)p)2 + Φ. (17)

Φ is the decay term and is defined as the sum of the weights w

Φ =
1
2

∑
i

w2
i (18)

where the sum runs over all the weights and biases.
Table II details the parameters used for the backpropagation

algorithm for each dataset. The best parameters were chosen
from a small selection of preliminary experiments, but further
optimization of the parameters is likely to be possible. Epochs
was the maximum number of iterations of the backpropagation
algorithm. Validation size was the percentage of T set aside to
be used as a validation set. LR and MR are the learning and
momentum rates, respectively. Decay refers to whether a decay
term was used in the error function.

B. Results

Table III shows the average percentage accuracy of ExLMT
compared to the original neural network, C4.5 and ExTree.
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TABLE II
NEURAL NETWORK PARAMETERS

TABLE III
CLASSIFICATION ACCURACY: MLP, C4.5, AND EXTREE AND EXLMT

TABLE IV
COMPARISON OF CLASSIFICATION ACCURACY: NUMBER OF TIMES

ALGORITHM IN COLUMN OUTPERFORMED ALGORITHM IN ROW

Table IV shows how the different methods compare with
each other. Both tree-extraction techniques, ExTree and
ExLMT, which extracted trees with higher accuracy than the
C4.5-induced decision tree. ExLMT managed to extract de-
cision trees that outperformed both C4.5 and ExTree trees
on all 12 datasets. On one dataset (Iris), ExLMT extracted
a decision tree with the same classification accuracy as the
neural network. On seven of the datasets, ExLMT was within
a percentage point of the accuracy of the neural network.
Wilcoxon ranks sign tests showed that improvement in ac-
curacy by ExLMT over C4.5 on the 12 datasets overall was
significant (p = 0.0005). A further Wilcoxon test showed that
the improvement of ExLMT over ExTree was also significant
(p = 0.0005).

Table V shows the average fidelity of ExLMT with the neural
network. The fidelity of C4.5 with the neural network was
also calculated to give a baseline fidelity measure. Fidelity was

TABLE V
PERCENTAGE FIDELITY: C4.5, EXTREE, AND LMT. ∗t-TEST SHOWED

IMPROVEMENT AGAINST C4.5 WAS SIGNIFICANT

TABLE VI
TREE SIZE

calculated as the percentage of the m instances that a classifier,
and the original neural network classified the same giving

fidelity(ĉ1, ĉ2) = 1/m
m∑
i

isEqual (ĉ1(xi), ĉ2(xi)) (19)

where

isEqual(a, b) =
{

1, a = b
0, a �= b.

The fidelity of the ExLMT-extracted trees was compared to
C4.5-induced trees and trees extracted using ExTree. Wilcoxon
rank sign tests showed that the overall difference between
ExLMT and both C4.5 and ExTree to be significant (p =
0.001, p = 0.002). t-tests showed that the difference on all but
two datasets to be significant.

Table VI shows the average size of the tree produced by the
three decision-tree algorithms.

VI. DISCUSSION

The results of the empirical evaluation showed that ExLMT-
extracted trees have higher accuracy and fidelity than the Ex-
Tree. This clearly demonstrates the advantage of the logistic
models at the leaf nodes.

Interestingly, the fidelity on the Zoo and Iris datasets was
lower with ExLMT than with the C4.5-produced decision tree.
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Fig. 6. C4.5-induced decision tree for the diabetes dataset.

However, the ExLMT-extracted tree, for these datasets, was
significantly smaller than either the C4.5- or ExTree-produced
trees. A possible explanation of this is that the simple logistic
regression was a more appropriate model than a tree structure
for these simple datasets.

A drawback of the original ExTree algorithm was that it
produced trees with a large number of nodes, which reduces the
comprehensibility of the model. ExLMT’s logistic model leaves
are a much more compact representation but are less compre-
hensible than the simple class assignment at the leaf node as
used by C4.5 and ExTree. Although ExLMT produces trees
with significantly less nodes than ExTree or even C4.5, whether
these trees are more comprehensible overall is subjective.

If we consider two decision trees for the diabetes dataset,
one induced using C4.5 (Fig. 6) and the other extracted from
the ANN using ExLMT (Fig. 7). The C4.5 tree has 25 nodes,
of which 13 are leaf nodes. In contrast, the ExLMT tree had
only seven nodes, of which four were leaf nodes with logistic
models. As shown previously in Table III, the ExLMT trees
outperformed the C4.5 trees on this dataset. Both trees begin
with a split on the plasma-glucose concentration level. This
indicates that plasma is the most significant attribute. However,
C4.5 and ExLMT differ in where the split point is made.
C4.5 split at 127, which resulted in two subsets with 437 and
255 instances. ExLMT split at 139, which resulted in two
subsets with 515 and 177 instances. The second level of the
trees differ significantly. C4.5 chose to label the larger less-
than-127 subset as negative for diabetes. Then, preceded to fur-
ther partition the remaining instances with a 23-node subtree.
Conversely, ExLMT did not split the higher than-139 group of
instances instead assigning a single logistic model, Class0 =
15.49 − 0.13pregnant − 0.08plasma + 0.04pressure +
−0.02skin + −0.13mass + −2.49pedigree. This model had
slightly higher accuracy and higher fidelity than the subtree
and, in the opinion of the authors, is as comprehsible if not
more so.

Fig. 7. ExLMT-extracted tree for the diabetes dataset.

VII. CONCLUSION

This paper has demonstrated a new method ExLMT, which
is for extracting a decision tree from a trained neural network.
An empirical evaluation was carried out comparing this new
method to ExTree, a method that extracts traditional C4.5-style
decision trees, and the C4.5 method that induced trees directly
from the dataset. The evaluation was based on 12 well-known
datasets from the UCI machine-learning repository. The evalu-
ation showed that the extracted LMTs had significantly higher
classification accuracy than either the corresponding C4.5 or
ExTree trees. Additionally, on a majority of the datasets, the
ExLMT-extracted trees had significantly higher fidelity with
the neural networks than trees extracted using ExTree. ExLMT
produced much smaller trees than either C4.5 or ExTree but,
because of the additional logistic model at the leave nodes, it is
unclear if these are easier to comprehend.
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