
942 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. 4, JULY 2006

On Global–Local Artificial Neural Networks
for Function Approximation

David Wedge, David Ingram, David McLean, Clive Mingham, and Zuhair Bandar

Abstract—We present a hybrid radial basis function (RBF)
sigmoid neural network with a three-step training algorithm
that utilizes both global search and gradient descent training.
The algorithm used is intended to identify global features of
an input–output relationship before adding local detail to the
approximating function. It aims to achieve efficient function
approximation through the separate identification of aspects of a
relationship that are expressed universally from those that vary
only within particular regions of the input space. We test the
effectiveness of our method using five regression tasks; four use
synthetic datasets while the last problem uses real-world data
on the wave overtopping of seawalls. It is shown that the hybrid
architecture is often superior to architectures containing neurons
of a single type in several ways: lower mean square errors are
often achievable using fewer hidden neurons and with less need
for regularization. Our global–local artificial neural network
(GL-ANN) is also seen to compare favorably with both perceptron
radial basis net and regression tree derived RBFs. A number of
issues concerning the training of GL-ANNs are discussed: the use
of regularization, the inclusion of a gradient descent optimization
step, the choice of RBF spreads, model selection, and the develop-
ment of appropriate stopping criteria.

Index Terms—Global, hybrid, local, overtopping, regularization.

I. INTRODUCTION

THIS paper describes and assesses methods for the creation
and training of artificial neural networks (ANNs) that con-

tain two different types of artificial neurons: those based on pro-
jection functions and those based on kernel-type functions. For
the purposes of the research described in this paper, we have
chosen two commonly used functions as representative of these
types of function: the bipolar sigmoid function described by (1)
and (2) and the Gaussian radial basis function (RBF) of (3) and
(4). However, we believe that our results are applicable to a va-
riety of related functions

(1)

(2)

Manuscript received June 30, 2005; revised December 8, 2005. The wave
overtopping data used in this paper was provided by the CLASH project sup-
ported by the European Commission under EESD within the Fifth Framework
Programme under Contract EVK3-CT-2001-00058.

D. Wedge is with Silent Talker, Manchester Metropolitan University, Man-
chester, Lancashire M1 5GD, U.K. (e-mail: d.wedge@mmu.ac.uk).

D. Ingram is with School of Engineering and Electronics, University of Ed-
inburgh, Edinburgh EH9 3JL, U.K. (e-mail: David.Ingram@ed.ac.uk).

D. McLean, C. Mingham, and Z. Bandar are with the Department of Com-
puting and Mathematics, Manchester Metropolitan University, Manchester,
Lancashire M1 5GD, U.K. (e-mail: d.mclean@mmu.ac.uk; c.mingham@
mmu.ac.uk; z.bandar@mmu.ac.uk).

Digital Object Identifier 10.1109/TNN.2006.875972

(3)

(4)

In (3), indicates the Euclidean norm. In both cases the
output is dependent upon an input vector , a weight vector
of the same order as the input vector , and a bias weight .
However, for RBF neurons [(3), (4)] the vector is usually
interpreted as a “center” and the scalar as “steepness,” since
the response of the neuron drops off with distance from at a
rate determined by .

The practical aim in creating these hybrid networks is to give
an accurate approximation of an unknown real-valued function
using noisy data by separating out the global and local parts of
the approximation. Support for the separation of global and local
parts of a function comes from three main areas: mathematical
analysis, cognitive psychology, and developments within ma-
chine intelligence.

Donoho and Johnstone [1] have shown that kernel-based and
projection-based functions have complementary properties. In
particular, they show that “ancillary smoothness” in the target
function may be used to reduce the effective dimensionality of
the data. They define an angularly smooth function as one that
varies slowly with angle, while a function with radial smooth-
ness shows small local variations in value. Projection-based
functions are seen to respond well to angular smoothness while
kernel-based functions respond well to radial smoothness.
For complex, high-dimensional functions, we expect to find
aspects of both types of smoothness. In order to achieve op-
timum results with the smallest possible network, it therefore
seems advisable to use neurons with both projection-based and
kernel-based functions.

As well as having a sound mathematical basis hybrid net-
works seem to have more biological validity than pure multi-
layer perceptron (MLP) networks [2], [3]. There is consider-
able evidence that the human brain processes information in a
modular way [4], [5]. For example, global and local aspects of
visual stimuli are processed by different parts of the brain, sug-
gesting the specialization of neurons for these different purposes
[6], [7]. Further, brain development often occurs in stages, with
each stage dependent upon the completion of previous stages
[8]. The architectural structure of our hybrid networks is simi-
larly reflected in a stepwise training algorithm [4].

As computing power increases computer scientists are
dealing with larger, higher dimensioned datasets and, pre-
sumably, more complex underlying functions. Hrycej [4] and
Moussa [9] believe that there is a need to use more complex
models such as modular ANNs in order to satisfactorily model
these functions. Each module within a network may then be

1045-9227/$20.00 © 2006 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by E-space: Manchester Metropolitan University's Research Repository

https://core.ac.uk/display/161884508?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

WEDGE et al.: ON GLOBAL–LOCAL ARTIFICIAL NEURAL NETWORKS 943

assigned a different task, or subtask, according to the particular
architecture of that module or the training method applied to it.

Poggio and Girosi have suggested the use of networks con-
taining both Gaussian and other functions in a single layer.
These networks are extensions of traditional RBF networks
called “HyperBFs” [10]. They contain a single hidden layer
containing Gaussian functions of variable width and additional
nonradial functions. Girosi et al. [11] have demonstrated math-
ematically the close relationship of HyperBFs to regularization
theory. The hybrid networks described in this paper may be
seen as an implementation of HyperBFs, with a particular
emphasis on the separation of global and local variations in the
regression function.

Moody and, more recently, Ferrari et al., have highlighted the
difficulty in identifying both the coarse structure and the fine de-
tail of an input–output relationship [12], [13]. Their multiresolu-
tion techniques use RBF neurons of differing widths to solve this
scaling problem. Our approach builds on this work, allowing
extra flexibility in the choice of RBF widths and the addition of
sigmoid functions to map features of the function that are more
suited to this geometric form.

The research described in this paper originates from investi-
gations into alternative neural network architectures for the pre-
diction of overtopping of seawalls during storm events [14]. The
data used in training have a high-dimensional input space and
are mostly found in small clusters, each of which corresponds to
a particular seawall geometry. Details are given in Section III-B.
We have reported previously that RBF networks give lower er-
rors than MLP networks on these data [15]. This is unsurprising,
given the well-known ability of RBF networks to interpolate
within clusters of data [2], [16], [17]. However, we are dissat-
isfied with the use of pure RBF networks with this dataset for
three practical reasons.

• Due to the high dimensionality of the data, the RBF net-
works created are very large, containing approximately
200 RBF neurons. It is hoped that knowledge-extrac-
tion techniques will be applied to the networks in the
future. However, in order to obtain meaningful knowl-
edge, one must start with smaller networks. Friedman
and Stuetze [18] have suggested that projection-based
models overcome the “curse of dimensionality” better
than kernel-based models, primarily because they take
into account all data points during training.

• RBF networks are generally effective at local estimation
but less effective at global approximation [17]. One of the
aims of the research is to create a system that can predict
overtopping for novel seawall geometries, so the ability to
interpolate into sparsely populated areas of input space is
a priority.

• It has been widely reported that RBF networks have a ten-
dency to overfit data unless strong regularization is intro-
duced [19], [20]. However, the use of regularization adds
an additional parameter into model estimation, making the
training process less automatic.

This paper presents a novel way to create and train networks
that contain both sigmoid and RBF neurons in a single layer and
examines several issues related to the implementation of such
networks. In our method, the selection and training of sigmoidal

and RBF neurons are treated separately and sequentially. The
aim is to create a global approximation using sigmoid neurons
and to then add local detail to the approximation function with
RBF neurons. Although designed for a particular dataset, we
believe that our training algorithm could have applicability to
a range of datasets. We investigate the extent of its usefulness
through the use of synthetic benchmark datasets as well as the
real-world overtopping dataset.

Recent research has been carried out into the use of genetic al-
gorithms for the selection of MLP-RBF architectures [21], [22].
This has focused on the process of architecture selection and
uses Levenberg–Marquardt training to optimize weights. In con-
trast, we take a fairly crude approach to architecture selection,
training all reasonable architectures, but have developed a novel
training algorithm that takes advantage of the characteristics of
a hybrid architecture.

Our work is related to that of Cohen and Intrator [23]. They
have created hybrid networks which they call perceptron radial
basis nets (PRBFNs). Their approach is to cluster the data and
then to choose a neuron, either sigmoidal or radial-based, that
approximates the local function within each cluster. Our ap-
proach also has some similarities to the regression tree derived
RBFs (RT-RBF) of Orr [24]. Like them, we take a multireso-
lution approach, starting with coarse structure and moving to
finer detail. However, Orr et al. do not use sigmoid neurons or
their associated training algorithms. Finally, our method may
be compared to the modular ANNs exemplified by the work of
Jordan and Jacobs [25]. Their “hierarchical mixture of experts”
approach explicitly partitions data and creates separate networks
for each partition. The outputs of the networks are then com-
bined using a “soft” gating function.

The three approaches described above all have a common
feature: they all involve the partitioning of data as a first step.
Rather than splitting up the data, our approach is to split up the
underlying function into global and local features. We use all of
the training data in all phases of training. The choice of neuron
transfer function and synaptic weights is therefore made on the
basis of variations in the overall input–output mapping rather
than on features of a particular input cluster.

The structure of the rest of this paper is as follows. Sec-
tion II describes the global–local artificial neural network (GL-
ANN) training algorithm in detail. Sections III-A and -B de-
scribe, respectively, the salient features of the benchmark and
overtopping datasets used as demonstration applications. Sec-
tion III-C gives specific details of the training method used for
each dataset. Section IV reports the results from all datasets and
discusses issues concerning the use of GL-ANNs including the
use of regularization and gradient descent optimization. Sec-
tion V gives some concluding remarks and describes areas of
future research.

II. GLOBAL–LOCAL ARTIFICIAL NEURAL NETWORKS

A. Overview

MLP and RBF networks have complementary properties.
While both are theoretically capable of approximating a function
to arbitrary accuracy using a single hidden layer [26], [27], their
operation is quite different [28]. MLP networks have a fixed

944 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. 4, JULY 2006

architecture and are usually trained using a variant of gradient
descent. They invariably incorporate neurons with sigmoid
activation functions. Their response therefore varies across the
whole input space and weight training is affected by all training
points. RBF networks, on the other hand, are most commonly
created using a constructive algorithm. Gradient descent training
is usually replaced by deterministic, global methods such as
forward selection of centers with orthogonal least squares
(FS-OLS). This method is described in detail in Section II-B.

Whereas MLPs are effective at identifying global features
of the underlying function, RBF networks have the capacity to
identify local variation in the function [4], [29], [30]. MLPs are
more distributive in their representation of the input–output re-
lationship. For this reason they may be seen as more “emergent”
and opaque [4], [31]. On the other hand, RBF centers are delib-
erately selected, often from the training set, as representatives of
the training set, or a subset thereof. RBF networks are slightly
more transparent and are easier to interpret symbolically [4].
The training of RBF networks is generally faster, since it in-
volves the solving of linear rather than nonlinear equations [19],
[32]. However, RBF networks often contain many more neurons
than the corresponding MLP networks, partly offsetting the ad-
vantage in computational efficiency [30].

A hybrid ANN containing both sigmoidal and radial neu-
rons may have the advantages of both RBF and MLP ANNs,
i.e., computational efficiency, good generalization ability, and a
compact network architecture. We approximate on a global level
first using an MLP and then add RBF neurons using FS-OLS,
in order to add local detail to the approximating function. For
this reason, we call our network a global–local artificial neural
network. Identifying coarse structure before fine detail makes
sense from a computational point of view [12]. This sequen-
tial process may also mirror the operation of biological brains:
there is considerable evidence from cognitive psychology that
humans identify global features of visual stimuli before local
features [33] and that the global features affect the interpreta-
tion of the local features [34]. The training process is completed
with an optimization step that adjusts the weights of all neurons,
including RBF centers and widths.

Our approach has a number of practical advantages.
• There is no need to cluster the data prior to training. This

gives more flexibility to the FS-OLS process and avoids
three possible problems. First, clustering may reflect the
distribution of the available data rather than the under-
lying functionality. Secondly, clustering generally reflects
the distribution of the input data but does not take into
account the distribution of the output data [29]. This is a
problem for highly nonlinear data such as the wave over-
topping data, for which small changes in the inputs some-
times cause large changes in the output. Finally, unsuper-
vised clustering can lead to very large, and therefore over-
fitted, networks [35].

• All phases of training take into account all of the training
data, keeping the variance low [36]. This is not the case for
PRBFN [23] or RT-RBF [24], which choose each neuron
to be representative of a particular cluster of data points.

• Training is carried out in a stepwise fashion, as illustrated
in Fig. 1. In most cases, each step improves upon the pre-

Fig. 1. Diagrammatic representation of the GL-ANN training process. (a) Sig-
moid neurons only, (b) hybrid with fixed RBFs, and (c) hybrid with adjustable
RBFs.

Fig. 2. GL-ANN three-step training algorithm.

vious approximation. It is therefore possible to assess the
effectiveness of each step individually, giving some insight
into the training process [4].

• It is often possible to achieve lower test errors using
GL-ANNs than with either MLP or RBF networks (Sec-
tion IV-A).

• The GL-ANNs required to give a given test error are gen-
erally smaller than the corresponding RBF networks (Sec-
tion IV-B).

• Our results suggest that, unlike pure RBF networks and
PRBFNs, GL-ANNs do not require regularization. From
our investigations, it appears that the MLP created in the
first phase of training has a moderating effect on the se-
lection and training of RBF neurons added subsequently
(Section IV-E).

B. Training Method

The training of GL-ANNs is performed in three stages, as il-
lustrated in Fig. 2. At each stage attempts have been made to
select a training method that is efficient in terms of computa-
tional power, given the architecture of the network. In order to

WEDGE et al.: ON GLOBAL–LOCAL ARTIFICIAL NEURAL NETWORKS 945

automate the process as much as possible, algorithms whose
outcome is highly dependent upon user-determined training pa-
rameters (such as momentum coefficient or regularization pa-
rameter) have been avoided.

Before training is performed the data are scaled, so that each
input attribute has a similar influence on training. All input
and output attributes undergo a linear transformation to give
them a range of [0.8,0.8]. The same training data are then
used throughout the training process. Training starts with an
untrained MLP, with weights initialized to random values in
the range [1.0,1.0]. The input and weight initialization ranges
have been chosen such that the hidden layer neurons have
outputs with standard deviation of approximately one. LeCun
et al. have shown that gradient descent training is most effective
under these circumstances [37].

Fixed numbers of sigmoidal neurons are used in a single
hidden layer. The output neuron has a linear activation function
and fixed bias. In order to achieve efficient gradient descent, the
Levenberg–Marquardt (LM) method [38], [39] is used to train
the MLP networks. In order to use this procedure, local partial
derivatives are first calculated for the input weights (including
bias weight) using (5). Local inputs and weights are given by

and , respectively, and is the pertinent neuron’s output

(5)

The local partial derivatives may be used to obtain esti-
mates of the Hessian matrix using the standard LM procedure.
Training is stopped reaching a minimum error gradient or after
a maximum number of epochs.

In the second stage, RBF neurons are added to the existing
MLP network. The RBF centers are chosen from the training
data using the FS procedure. The RBF neurons employ sym-
metrical radial functions with fixed widths at this stage. After
each addition, the output weights from both sigmoidal and RBF
neurons are adjusted using OLS minimization. The algorithm
used has been adapted from Chen et al.’s method [32], [40] to
make it applicable to hybrid networks. If the training data con-
tain items, each is regarded as a potential RBF center and the
full design matrix is an m-by-m matrix containing the outputs
of each RBF neuron given each input. The design matrix for a
network containing RBF centers is an m-by-p matrix con-
taining columns selected from . If the target outputs are given
by , the optimal output weights may then be determined from
(6), giving the minimum least square error

(6)

Chen factorizes the design matrix into an orthogonal matrix
and an upper triangular matrix, so saving computational re-

quirements. is made up of columns, each representing the
outputs of a particular RBF neuron. These may be represented
by column vectors , where . is adjusted ac-
cording to (7) each time a neuron is added in order to keep the

columns orthogonal. This leads to a series of orthogonal ma-
trices , in which the subscripts indicate the number
of RBF neurons present in the network

(7)

The reduction in sum squared error (SSE) is then given by (8).
By running through all possible values of , one can identify
the neuron that gives the greatest reduction in SSE. Each time
a neuron is added, its index must be removed from the list of
available values to ensure that the same neuron is not added
twice, which would result in a singular design matrix

(8)

Obtaining the error reduction using (8) is considerably
quicker than obtaining the design matrix for each , solving
(6), and then simulating all potential networks to obtain the
possible SSEs. The reason for the efficiency of the orthogonal
least squares method is that it recognizes that only the compo-
nent of the new column in a direction orthogonal to the span of
the existing design matrix can contribute to a reduction in
SSE. It is therefore unnecessary to consider the whole of the
design matrix . Full derivations of (7) and (8) are provided in
[40] and [32].

In our method, only the components of the candidate centers
orthogonal to the outputs of both the sigmoid and the RBF neu-
rons are considered when calculating the error reduction. This
requires the following modifications.

• The addition of extra columns to the design matrix to rep-
resent the outputs of the sigmoid neurons. is therefore
nonsquare, containing, for training items and sigmoid
neurons, m rows and columns.

• Before any RBF neurons are added, the design matrix must
be orthogonalized by carrying out the orthogonalization of
(7) for each existing sigmoid neuron, so ensuring that only
the components orthogonal to the existing neurons’ outputs
are considered.

Adding the RBF neurons to a preexisting MLP network re-
sults in the selection of different centers to those that would
be chosen if adding to an empty network. This is because the
outputs of the sigmoid neurons already span some of the input
space. This affects the values within the matrix . As a conse-
quence, the center that is chosen will be the one that results in
hidden layer outputs with the largest component orthogonal to
the outputs of the existing neurons. A nonformal way of viewing
this phenomenon is that the RBF neurons “fill the gaps” left by
the sigmoid functions.

During the second training step, only the connections be-
tween hidden and output neurons are set using the modified
OLS procedure. In the final training stage all weights, including
hidden layer weights and each RBF steepness, are optimized
using LM training. The local partial derivatives for RBF weights
(centers) and steepness are given, respectively, by (9) and (10).

, , and are used as in (5), while is the Euclidean norm
of (3).

946 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. 4, JULY 2006

For RBF input weights (centers)

(9)

For RBF bias weight (steepness)

(10)

A restriction has to be introduced to prevent zero or negative
steepnesses. Where a weight update would produce a nonposi-
tive steepness, that particular update is not applied.

Applying the LM method to the partial derivatives obtained
from (5), (9), and (10) optimizes the whole network. This has a
number of effects.

• The steepnesses of RBF neurons are allowed to vary, so
that RBF neurons do not all have the same spread.

• Errors are backpropagated, so the connections between the
input and hidden layer neurons may be adjusted to accom-
modate the presence of the RBF neurons.

• RBF centers are allowed to move. The centers are no longer
constrained to coincide with a training pattern, so the po-
sition of a radial function may be fine-tuned such that it
represents the data cluster around it more effectively.

Using this algorithm, a series of networks with different ar-
chitectures are created. Their performance is then assessed using
unseen test data. In each case, the data are randomly sampled
several times to determine the training—test split and averages
are taken over all runs. Ten runs are used for the benchmark tests
and 30 for the wave overtopping data.

III. APPLICATIONS

A. Benchmark Datasets

Four benchmark tests are employed. They are all function ap-
proximation tasks using synthetic data. The tests are taken from
Cohen and Intrator [23], where comparisons are made with a
number of other approaches. For this reason the treatment varies
between the different tests but is consistent with the approach
of Cohen and Intrator. While this creates some inconsistency,
it allows the consideration of a variety of datasets and permits
comparison with a number of alternative methods.

The first function is

(11)

with randomly selected from [0,1] and corrupted by
Gaussian noise with standard deviation 0.1 and a mean of zero.
The training and test sets both contain 50 samples [32]. Given
the noisy data, the minimum mean square error (MSE) achiev-
able with the test data is 0.01.

The second function is the two-dimensional sine wave

(12)

with and . The training data are
made up of 200 randomly selected items, again corrupted with

Gaussian noise of standard deviation 0.1 and mean zero. How-
ever, clean data are used for testing purposes, arranged in a 20
by 20 grid to cover the entire input space. The test set therefore
contains 400 data items.

The third function is a simulated alternating current used by
Friedman in the evaluation of multivariate adaptive regression
splines [41]. It is given by

(13)

where is the impedance, the resistance, the angular fre-
quency, the inductance, and the capacitance of the circuit.
The input ranges are , , ,
and . Two hundred random samples,
with Gaussian noise of standard deviation 175 and zero mean
applied to , are used for training. Five thousand random clean
samples are used for testing.

The fourth function is the Hermite polynomial

(14)

with randomly selected from [4,4]. One hundred random
samples corrupted by Gaussian noise of standard deviation 0.1
and zero mean are used for training purposes. One hundred clean
samples are used for testing. This function was first used by
Mackay [42].

B. Wave Overtopping

Much research has been conducted into predicting overtop-
ping at seawalls during storm events. One approach is to use
scale models in laboratories [43], but this is expensive and time-
consuming. An alternative is to numerically model a particular
seawall configuration and sea state, e.g., [44]. However, accu-
rate simulation requires a detailed knowledge of both the geom-
etry of the seawall and sea conditions. Results may therefore be
applied only to individual scenarios.

As part of the European CLASH project [14], [45], a large
overtopping database has been compiled. We have used this
database as a resource for testing our GL-ANNs. The data have
been collected from both model and prototype sites and cover
a wide range of defensive structures and incident wave condi-
tions. They comprise a large number of independent variables
and are, consequently, sparse. Furthermore, the data tend to
cluster into groups reflecting different physical structures that
may be used as seawalls. In between these clusters are large
regions, so-called “white spots,” which are virtually devoid of
data. Many of these white spots represent structural configura-
tions that are impossible, impractical, or ineffectual as a sea de-
fense. The problem should therefore be viewed as a series of
subtasks, each having the aim of predicting overtopping vol-
umes for a particular subset of all possible seawall configura-
tions. Due to the locally varying nature of the data, it might
be expected that this problem would be solved more accurately
by RBF than MLP networks [17], [46]. On the other hand, the
curse of dimensionality associated with high-dimensional in-
puts might be better solved with an MLP network [18].

Ten input parameters are selected for training primarily on
the basis of information content as described in an earlier paper

WEDGE et al.: ON GLOBAL–LOCAL ARTIFICIAL NEURAL NETWORKS 947

Fig. 3. CLASH input and output parameters.

[15] (see Fig. 3). Of these parameters, seven describe the struc-
ture of the seawall in question. The remaining parameters are
the angle of wave attack, the water depth at the toe of the wall,
and the mean wave period. The single output parameter is the
logarithm of the mean overtopping rate per meter of wall per
second . The inverses or logarithms of some inputs are uti-
lized in order to give near-normal distributions, and all inputs
and the output are normalized to a range of [0.8,0.8] using a
linear transformation. The original dataset contains parameters
indicating the reliability of each data point. These are used to
select the more reliable elements, resulting in 3053 items used
in neural network training. [15]

From previous research [43] it is known that the parameters
(dimensionless freeboard) and have the most influence on

and that the three quantities are related approximately by (15)

(15)

In this equation, and are empirically determined param-
eters that depend on the structure of the seawall. and vary
slowly with changes in the structure. Further, is on the order
of 3000 times the size of . Treating and as constants there-
fore gives the approximately linear relationship in (16)

(16)

A hybrid network could be well suited to these data, since
the MLP network may represent the approximate relationship in
(16) well, leaving the RBF neurons to identify local variations
in the function [47], [48].

C. Method

For each dataset a number of MLP networks were created
containing a single hidden layer and different numbers of sig-
moid neurons. Weights were initialized to small random values
and training performed using the LM algorithm. Training was
stopped when a minimum gradient was achieved or a maximum
number of training epochs had been performed.

RBF training was performed using the FS-OLS algorithm.
This resulted in a series of networks for each dataset, each con-
taining a different number of RBF neurons. Each architecture,
corresponding to a unique number of RBF neurons, has been
assessed separately.

GL-ANNs used the MLP networks described above as a
starting point. RBF neurons were added using a modified
FS-OLS algorithm (see Section II-B). Again each architecture,

TABLE I
MEAN SQUARE ERRORS WITH TEST DATA FOR EACH DATASET

determined by both the number of sigmoid and RBF neurons,
was considered separately.

For all three types of network, a series of networks were
created. The number of sigmoid neurons ranged between one
and ten initially. Further sigmoid neurons were added only if
the minimum test error occurred with ten sigmoid neurons. The
same procedure was followed when adding RBF neurons. The
maximum number of RBF neurons was a quarter of the number
of training patterns. This condition was rarely invoked as the
minimum error was usually reached before this number of
neurons had been added. A range of RBF steepnesses (starting
steepnesses in the case of the GL-ANNs) were used for RBF
and GL-ANN networks. All results given in the next section
refer to the ANN architecture and RBF steepness that gave the
lowest test MSE when averaged over all test datasets.

IV. RESULTS AND DISCUSSION

A. Mean Square Errors

Mean MSE results for the unseen test data, averaged over all
runs for MLP, FS-OLS, GL-ANN, RT-RBF, and PRBFN net-
works, are given in Table I. RT-RBF results are taken from [23],
[24], and [49]. PRBFN results are from [23]. In the case of the
third dataset we follow Friedman [41] in dividing the MSE by
the variance of the test data. The CLASH results are the MSEs
of the normalized outputs.

In the case of the more complex datasets (Friedman, Mackay,
and CLASH), the GL-ANN gives lower MSEs than both pure
networks. In fact, for the CLASH dataset, the GL-ANN gives
errors comparable to those from numerical simulation, even
though the latter is specific to a particular structure and sea
state [44], [50].

With the one-dimensional (1-D) sine data, GL-ANN and pure
RBF networks achieve comparable results. After the first two
steps of training GL-ANNs again give very similar results to
pure RBF networks (Section IV-D). However, gradient descent
leads to overtraining of the hybrid networks with this dataset.
Overall the introduction of sigmoid neurons appears to be un-
helpful for the sinewave datasets. Given the similar shape of the
Gaussian function used in our RBF neurons to a sinewave, it
is perhaps unsurprising that pure RBF networks can approxi-
mate sinewaves well. We would expect other classes of function
to be well approximated by pure MLP networks. However, the
latter scenario does not present a problem for GL-ANNs. Due
to their stepwise training algorithm they start out as MLP net-
works. If the addition of RBF neurons did not reduce the test
error it would be stopped immediately.

948 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. 4, JULY 2006

TABLE II
NUMBER OF HIDDEN LAYER NEURONS FOR SINE FUNCTION DATASETS

TABLE III
NUMBER OF HIDDEN LAYER NEURONS FOR FRIEDMAN, MACKAY, AND

CLASH DATASETS

Fig. 4. Test MSE as a function of number of hidden neurons for the CLASH
dataset.

For all but the 1-D sine data the errors achieved by both
RT-RBF and PRBFN are higher than those produced by
GL-ANN. Further, the results quoted for the 1-D sine dataset
are below the minimum error achievable, given the inbuilt noise
in the data [23]. We believe that this result cannot therefore be
taken at face value.

B. Hidden Layer Sizes

Tables II and III give the number of neurons used in the most
successful networks. In each case S, R, and T refer to the number
of sigmoid, RBF, and total neurons in the hidden layer, respec-
tively. For the first two datasets (Table II), the GL-ANN cannot
improve on the RBF networks. However, it imitates the RBF
networks by using the smallest possible number of sigmoid neu-
rons, i.e., one.

For the more complex functions (Table III), the GL-ANNs per-
form better than the RBF networks and create significantly dif-
ferent networks. The GL-ANN uses just three hidden neurons to
reproduce Mackay’s function and six for Friedman’s. With the
CLASH dataset the errors of both networks decrease as neurons
are added, before reaching a minimum. However, the GL-ANN
networks require considerably fewer neurons to achieve a given

TABLE IV
OPTIMUM RBF SPREADS FOR PURE RBF AND HYBRID NETWORKS

TABLE V
MEAN SQUARE ERRORS WITH AND WITHOUT GRADIENT DESCENT

OPTIMIZATION

test error (Fig. 4). These results show that the GL-ANN is parsi-
monious in its use of hidden neurons. This result is useful in itself
since it means that GL-ANNs may be trained quickly. Occam’s
razor suggests that a more compact model is likely to be closer
to a correct solution [51]. Further, if ANNs are to be used for
knowledge extraction, it is important that they be small in order
to give useful symbolic information [52].

C. RBF Spreads

The spread of a radial basis function is defined as the dis-
tance from the function’s center that will give a response of
0.5. It is inversely proportional to the neuron’s steepness and
gives an indication of the function’s “size.” Table IV gives the
spreads of the RBF neurons used in the most successful RBF and
GL-ANN networks. In the latter case, these are the average fin-
ishing spreads, after alteration by the third training step. These
results suggest two trends.

• The spreads generally increase as the dimensionality of the
input data increases. This is to be expected, since a greater
spread is required in order to cover a higher dimensional
space.

• The GL-ANNs usually have comparable or narrower
spreads than the RBF networks. This confirms the idea
that the presence of the sigmoidal neurons frees the RBF
neurons to concentrate on local variation in the input–
output function. A similar effect has been observed when
an output bias is introduced into RBF networks [53].

D. Gradient Descent Optimization

It has been demonstrated previously that gradient descent
optimization has a beneficial effect on RBF networks [54]. In this
section, we attempt to identify the extent to which the success
of GL-ANNs is due to the optimization step in the training
algorithm and to what extent it is due to the hybrid architecture.
To do this, we have applied gradient descent optimization to
pure RBF networks and compared the results for GL-ANNs (see
Table V). The final LM optimization step is found to reduce the
MSEs of both the GL-ANNs and the pure RBF networks for most
datasets, suggesting that this is an important factor in the success
of GL-ANNs. Further evidence of the importance of gradient
descent optimization is given by a comparison of the network
sizes with and without this step. As Table VI shows, considerably

WEDGE et al.: ON GLOBAL–LOCAL ARTIFICIAL NEURAL NETWORKS 949

TABLE VI
OPTIMAL HIDDEN LAYER SIZES WITH AND WITHOUT GRADIENT DESCENT

OPTIMIZATION

TABLE VII
TEST MSES WITH REGULARIZATION

TABLE VIII
NUMBER OF HIDDEN NEURONS WITH REGULARIZATION

fewer neurons are required to achieve an optimum network, i.e.,
one with the lowest MSE, if the optimization step is performed.

When gradient descent optimization is applied to the pure
RBF networks, the advantage of GL-ANNs still remains for the
larger, high-dimensional datasets (Friedman and CLASH). This
result shows that the hybrid structure of GL-ANNs plays some
part in its effectiveness. However, the results for the one- and
two-dimensional datasets suggest that a hybrid architecture may
not be appropriate for simpler, low-dimensional datasets. Fur-
ther investigation of the limitations of hybrid architectures is
clearly required.

E. Regularization

Previous authors have noted that regularization is usually re-
quired when setting RBF output weights [20]. We have intro-
duced regularization into the FS-OLS step for both hybrid and
RBF networks, using a wide range of regularization parame-
ters (powers of ten between 1.0 and 10). The minimum test
MSEs obtained are given in Table VII. All values refer to unop-
timized networks, in order to isolate the effect of regularization.
A comparison with the first and third rows of Table V shows that
regularization has little effect on the errors of well-sized net-
works. Only those networks that have more than the optimum
number of RBF neurons, and are therefore overfitting the data,
benefit greatly from regularization.

The relative unimportance of regularization is also seen when
considering the sizes of the networks created (Table VIII). The
number of neurons within the best performing networks is gen-
erally not reduced with the introduction of regularization. In-
deed, in many cases the optimum networks have identical ar-
chitectures to those produced without regularization, with only
slight modifications to the output weights. This situation may
be contrasted with the effect of gradient descent optimization,
which in many cases results in large reductions in network size.

Regularization does result in a lower MSE than gradient
descent optimization for the CLASH dataset. However, the

number of neurons required to obtain this MSE is very large. The
GL-ANN attains its minimum MSE using 80 neurons. In order
to improve upon this error, the regularized networks require 263
neurons in the case of the pure RBF network and 278 neurons in
the case of the hybrid network. We feel that the smaller GL-ANN
must be preferred on the grounds of network size: the smaller
network is trained more quickly and, from a Bayesian point of
view, is more likely to reflect the underlying function.

The small effect of regularization is seen to some extent for
both the pure RBF networks and the hybrid networks and there-
fore challenges the assumption that regularization is essential
in OLS training of RBF networks [20]. However, we believe
that the sigmoid neurons in the initial MLP may have a spe-
cific regularizing effect on the weights of RBF neurons added
subsequently and that further regularization is therefore unnec-
essary. Further support is given to this idea by a comparison of
GL-ANNs and pure RBF networks. The average output weight
of a neuron in the most successful RBF networks is 18.8, com-
pared to 1.29 for the best GL-ANNs.

The regularizing effect of the sigmoid neurons may be ex-
plained in a qualitative manner as follows. OLS selection iden-
tifies the weights that minimize the least square error. However,
the core MLP network has already achieved this end, to some
extent. When relatively localized RBF neurons are added to the
network, their optimum weights are likely to be small in order
to minimize the risk of upsetting the generalizing ability of the
existing ANN. The number of RBF neurons is likely to be small,
for the same reason. Overfit is therefore avoided by using fewer
neurons with lower weights. A similar effect has been observed
by Orr when wide RBFs are added before narrow RBFs in a
pure RBF network [53]. However, we believe that neurons with
a bipolar response may have a particularly strong regularizing
effect. Further investigation of this issue is required, possibly
including a formal mathematical treatment.

F. Stopping Criteria and Model Selection

Related to the topic of regularization is the need for a stopping
criterion. The first and third training stages involve LM training
and are terminated upon reaching a minimum gradient or after a
fixed number of epochs of training have been performed. How-
ever, it is not clear at what point the second stage should be
stopped, i.e., at what point one should stop adding RBF neu-
rons. The approach used in this study is to consider the second
step in isolation by considering the test error obtained at this
point. RBF neurons are added ten at a time, until no decrease is
seen in this test error. The third training step is then performed
on all of the interim networks created, up to the one with the
minimum test error.

In order to make training more efficient, we would like to
find a method of identifying the optimum network size during
the second stage of training. This would save time during the
third training phase, as well as the second phase, since it would
be necessary to perform LM optimization only on the networks
with optimum architecture. The use of a validation set after the
FS-OLS phase is not useful for two reasons.

• Validation identifies very large optimum networks after
FS-OLS, containing about 200 hidden neurons for the
CLASH dataset. However, after LM optimization much

950 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. 4, JULY 2006

more compact networks, containing about 80 neurons for
the CLASH dataset, are found to give substantially lower
MSEs.

• The use of a validation set before the termination of
training introduces information that may bias training.
Ideally we wish to identify an optimum model after the
FS-OLS step without resorting to the validation set.

Bayesian methods are widely used for model selection [55].
They have a number of advantages over the use of cross-
validation: they have a sound mathematical basis, they may
incorporate regularization in a natural way, they may be used
in the selection of input variables, and they do not require the
use of information from a test set [56]. If applied before the
final step they refer to unoptimized networks. However, when
used as model selection criteria, Bayesian inference techniques
assess the evidence of a range of networks being the most
“plausible” [57]. Assuming that the final step makes small
changes to the overall weights, Bayesian inference could give
some indication which architectures are likely to provide good
models, before performing this step.

Even if applied after all three phases of training are completed,
Bayesian model selection, using a technique such as Bayesian
randomsearching (BARS) [56], would introduce heuristic search
methods for model selection that could be more efficient and
more automated than a brute force approach. An alternative
heuristic would be the use of genetic algorithms (GAs) [21]. Both
of these methods could allow the search for number of sigmoid
neurons, number of RBF neurons, and selection of input param-
eters to be assessed concurrently. While they may be fruitful
areas of further study, they go beyond the scope of this paper.

V. CONCLUSION AND FUTURE RESEARCH

We have presented a novel training method for hybrid
MLP-RBF networks. Our method identifies coarse features of
an input–output function using sigmoid neurons and then adds
detail through localized radial basis functions. This allows the
training algorithm to focus on one task at a time, with the most
effective technique used for each particular objective. Thus,
gradient descent may be used to identify global features of
the relationship before forward selection of centers adds local
variation to the approximating function.

It has been demonstrated that GL-ANNs can give lower
MSEs than pure RBF networks and MLPs on a range of func-
tion approximation tasks. GL-ANNs have also been shown
to compare favorably with the more sophisticated approaches
of PRBFN and RT-RBF. A key feature of GL-ANNs is their
efficiency in representing an unknown function: the number of
neurons required to approximate a function to a given accuracy
is often much lower than with other methods.

For some of the datasets investigated, hybrid networks are
unable to improve on pure RBF networks. In these cases, the
GL-ANNs seem to imitate pure RBF networks. The best results
are found to be comparable to those for pure RBF networks and
occur with a single sigmoid neuron, which effectively acts as an
additional bias.

We have tried to avoid the use of user-set parameters when-
ever possible. One of these parameters is the regularization
parameter. It has been demonstrated that neither pure RBF
networks nor GL-ANNs benefit greatly from regularization,

provided networks of appropriate size are used. The belief in
the need for regularization may have arisen from a focus on
fully interpolated networks containing all training points as
radial centers. More compact networks are likely to be less
liable to overfit and therefore have less need of regularization.
We have shown informally that the bipolar neurons used in our
GL-ANNs are likely to have a particularly strong regularizing
effect and that GL-ANNs therefore have even less need of
additional regularization than do pure RBF networks.

While regularization appears to have little effect on im-
proving the generalizing abilities of GL-ANNs, or well-sized
RBF networks, gradient descent optimization appears to be very
valuable. An important reason for the success of GL-ANNs is
that they combine the closed, stepwise algorithm of forward
selection with the more open, parallel algorithm of gradient
descent. This results in more compact networks as well as
greater prediction accuracy.

A difficulty with the training of any hybrid network is
model selection. We have taken a fairly crude approach, but
more heuristic methods such as BARS or GAs might prove
more efficient. The GL-ANN training algorithm has a specific
difficulty in identifying an end-point in the FS-OLS phase of
training, which can lead to long training times due to unneces-
sary training at this stage. Some suggestions have been made
including the use of Bayesian inference techniques. This is a
possible area of future research.

The boundaries on the effective use of GL-ANNs need to be
explored further. Our results suggest that GL-ANNs are better
suited to more complex and high-dimensioned problems and
it would be interesting to see how GL-ANNs perform on real-
world classification problems.

Observations concerning the regularizing effect of the hybrid
method and the ability to identify novel functions and to imitate
pure networks are somewhat tentative at this time. A rigorous
mathematical treatment of these features should be attempted
in the future.

Further investigation into the similarities between hybrid ar-
tificial neural networks and biological brains might be fruitful.
Such research could operate in both directions: biological sys-
tems may provide an inspiration for the development of hybrid
ANNs; on the other hand, the consideration of hybrid ANNs
might help us to understand how and why biological processing
often takes place in a modular, stepwise fashion.

ACKNOWLEDGMENT

The authors would like to thank the CLASH project [14] for
providing the wave overtopping data used in this paper.

REFERENCES

[1] D. Donoho and I. Johnstone, “Projection-based approximation and a
duality with kernel methods,” Ann. Statist., vol. 17, pp. 58–106, 1989.

[2] T. Poggio and F. Girosi, A theory of networks for approximation and
learning Massachusetts Inst. Tech., Artificial Intelligence Lab., Cam-
bridge, MA, Jul. 1989, AI Memo 1140.

[3] G. Auda and M. Kamel, “Modular neural networks: a survey,” Int. J.
Neural Syst., vol. 9, pp. 129–151, 1999.

[4] T. Hrycej, Modular Learning in Neural Networks: A Modularized Ap-
proach to Classification. New York: Wiley, 1992.

[5] P. Poirazi, C. Neocleous, C. Pattichis, and C. Schizas, “Classification
capacity of a modular neural network implementing neurally inspired
architecture and training rules,” IEEE Trans. Neural Netw., vol. 15, no.
3, pp. 597–612, May 2004.

WEDGE et al.: ON GLOBAL–LOCAL ARTIFICIAL NEURAL NETWORKS 951

[6] S. Johannes, B. Wieringa, M. Matzke, and T. Munte, “Hierarchical vi-
sual stimuli: electrophysical evidence for separating left hemispheric
global and local processing mechanisms in humans,” Neurosci. Lett.,
vol. 210, pp. 111–114, 1996.

[7] R. Hubner, “Hemispheric differences in global/local processing re-
vealed by same-different judgements,” Visual Cogn., vol. 5, no. 4, pp.
457–478, 1998.

[8] J. Piaget, Meine Theorie der geistigen Intelligenz. Frankfurt, Ger-
many: Fischer Taschenbuch Verlag, 1983.

[9] M. Moussa, “Combining expert neural networks using reinforcement
feedback for learning primitive grasping behavior,” IEEE Trans. Neural
Netw., vol. 15, no. 3, pp. 629–638, May 2004.

[10] T. Poggio and F. Girosi, “Networks for approximation and learning,”
Proc. IEEE, vol. 78, no. 9, pp. 1481–1497, Sep. 1990.

[11] F. Girosi, M. Jones, and T. Poggio, “Regularization theory and neural
networks architectures,” Neural Comput., vol. 7, pp. 219–269, 1995.

[12] J. Moody, “Fast learning in multi resolution hierarchic,” in Advances
in Neural Information Processing Systems I, D. Touretzky, Ed. San
Mateo, CA: Morgan Kaufmann, 1989, pp. 29–39.

[13] S. Ferrari, M. Maggioni, and N. Borghese, “Multiscale approximation
with hierarchical radial basis functions networks,” IEEE Trans. Neural
Netw., vol. 15, no. 1, pp. 178–188, Jan. 2004.

[14] J. de Rouck, Crest level assessment of coastal structures by full
scale monitoring, neural network prediction and hazard analysis
on permissible wave overtopping [Online]. Available: http://www.
clash-eu.org

[15] D. Wedge, D. Ingram, D. McLean, C. Mingham, and Z. Bandar,
“Neural network architectures and wave overtopping,” Proc. Inst.
Civil Engineering 2005: Maritime Engineering, vol. 158, no. MA3,
pp. 123–133, 2005.

[16] D. Broomhead and D. Lowe, “Multivariable functional interpolation
and adaptive networks,” Complex Syst., vol. 2, pp. 321–355, 1988.

[17] S. Lawrence, A. Tsoi, and A. Back, “Function approximation with
neural networks and local methods: bias, variance and smoothness,”
in Proc. Australian Conf. Neural Networks (ACNN96), P. Bartlett, A.
Burkitt, and R. Williamson, Eds., 1996, pp. 16–21.

[18] J. Friedman and W. Stuetzle, “Projection pursuit regression,” J. Amer.
Statist. Assoc., vol. 76, pp. 817–823, 1981.

[19] C. Campbell, “Constructive learning techniques for designing neural
network systems,” in Optimization Techniques, ser. Neural Network
Systemes Techniques and Applications, C. Leondes, Ed. San Diego,
CA: Academic, 1998, vol. 2.

[20] M. Orr, “Regularisation in the selection of radial basis function cen-
tres,” Neural Comput., vol. 7, pp. 606–623, 1995.

[21] N. Jiang, Z. Zhao, and L. Ren, “Design of structural modular neural net-
works with genetic algorithm,” Adv. Software Eng., vol. 34, pp. 17–24,
2003.

[22] Y. Liu and X. Yao, “Evolutionary design of artificial neural networks
with different nodes, evolutionary computation,” in Proc. 3rd IEEE Int.
Conf. Evolutionary Computation, 1996, pp. 670–675.

[23] S. Cohen and N. Intrator, “A hybrid projection-based and radial basis
function architecture: Initial values and global optimisation,” Pattern
Anal. Applicat., vol. 5, pp. 113–120, 2002.

[24] M. Orr, K. Takezawa, A. Murray, S. Ninomiya, M. Oide, and T.
Leonard, “Combining regression trees and radial basis function net-
works,” Int. J. Neural Syst., vol. 10, no. 6, pp. 453–465, 2000.

[25] M. Jordan and R. Jacobs, “Hierarchical mixtures of experts and the em
algorithm,” Neural Comput., vol. 6, pp. 181–214, 1994.

[26] G. Cybenko, “Approximation by superpositions of a sigmoidal func-
tion,” Math. Contr. Signals Syst., vol. 2, pp. 303–314, 1989.

[27] J. Park and I. Sandberg, “Approximation and radial-bais-function net-
works,” Neural Comput., vol. 5, pp. 304–316, 1993.

[28] S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed.
Upper Saddle River, NJ: Prentice-Hall, 1999.

[29] C. Bishop, Neural Networks for Pattern Recognition. Oxford, U.K.:
Clarendon, 1995.

[30] J. Moody and C. Darken, “Fast learning in networks of locally-tuned
processing units,” Neural Comput., vol. 1, pp. 281–294, 1989.

[31] G. Hinton, J. McClelland, and D. Rumelhart, “Distributed represen-
tations,” in Parallel Distributed Processing, ser. Explorations in the
Microstructure of Cognition. Cambridge, MA: MIT Press, 1986,
vol. 1.

[32] M. Orr, Introduction to radial basis function networks Inst. Adaptive
Neural Computation, Univ. Edinburgh, Apr. 1996 [Online]. Available:
http://www.anc.ed.ac.uk/ mjo/papers/intro.ps.gz, Tech. Rep.

[33] D. Navon, “Forest before trees: The precedence of global features in
visual perception,” Cogn. Psychol., vol. 9, pp. 353–383, 1977.

[34] S. Christman, “Individual differences in stroop and local-global pro-
cessing: A possible role of interhemispheric interaction,” Brain Cogn.,
vol. 45, pp. 97–118, 2001.

[35] S. Arisariyawong and S. Charoenseang, “Dynamic self-organised
learning for optimizing the complexity growth of radial basis function
neural networks,” in Proc. IEEE Int. Conf. Industrial Technology, Dec.
11–14, 2002, pp. 655–660.

[36] S. Geman, E. Bienenstock, and R. Doursat, “Neural networks and the
bias/variance dilemma,” Neural Comput., vol. 4, pp. 1–58, 1992.

[37] Y. LeCun, L. Bottou, G. Orr, and K.-R. Muller, “Efiicient backprop,”
in Neural Networks: Tricks of the Trade, ser. Lecture Notes in Com-
puter Science, G. Orr and K. Muller, Eds. Berlin, Germany: Springer-
Verlag, 1998, vol. 1524.

[38] M. Hagan and M. Menhaj, “Training feedforward networks with the
Marquardt algorithm,” IEEE Trans. Neural Netw., vol. 5, no. 6, pp.
989–993, Nov. 1994.

[39] T. Masters, Advanced Algorithms for Neural Networks: C++ Source
Book. Frankfurt, Germany: Wiley, 1995.

[40] S. Chen, C. Cowan, and P. Grant, “Orthogonal least squares learning
for radial basis function networks,” IEEE Trans. Neural Netw., vol. 2,
no. 2, pp. 302–309, Mar. 1991.

[41] J. Friedman, “Multivariate adaptive regression splines,” Ann. Statist.,
vol. 19, pp. 1–141, 1991.

[42] D. Mackay, “Bayesian interpolation,” Neural Comput., vol. 4, pp.
415–447, 1992.

[43] P. Besley, Overtopping of seawalls: Design and assessment manual HR
Wallingford, Environment Agency, Tech. Rep. W178, 1999.

[44] J. Shiach, C. Mingham, D. Ingram, and T. Bruce, “The applicability of
the shallow water equations for modelling violent wave overtopping,”
Coastal Eng., vol. 51, pp. 1–15, 2004.

[45] J. de Rouck, Second detailed interim rep. CLASH, Ghent Univ., Tech.
Rep. CLA127/296, Feb. 2004.

[46] M. Hassoun, Fundamentals of Artificial Neural Networks. Cam-
bridge, MA: MIT Press, 1995.

[47] H. Mhaskar, “Neural networks for localized approximation of real
functions,” in IEEE Workshop Neural Networks Signal Processing,
Sep. 6–9, 1993.

[48] C. Chui, X. Li, and H. Mhaskar, “Neural networks for localized ap-
proximation,” Math. Comput., vol. 63, pp. 607–623, 1994.

[49] M. Orr, J. Hallam, A. Murray, and T. Leonard, “Assessing RBF net-
works using delve,” Int. J. Neural Syst., vol. 10, no. 5, pp. 397–415,
2000.

[50] K. Hu, C. Mingham, and D. Causon, “Numerical simulation of wave
overtopping of coastal structures using the non-linear shallow water
equations,” Coastal Eng., vol. 41, pp. 433–465, 2000.

[51] D. Mackay, “Probable networks and plausible predictions—A review
of practical Bayesian methods for supervised neural networks,” Net-
work: Comput. Neural Syst., vol. 6, pp. 469–505, 1995.

[52] E. Kolman and M. Margaliot, “Are artificial neural networks white
boxes?,” IEEE Trans. Neural Netw., vol. 16, no. 4, pp. 844–851, Jul.
2005.

[53] M. Orr, Matlab functions for radial basis function networks Inst. for
Adaptive and Neural Computation (Univ. of Edinburgh), Jun. 1999
[Online]. Available: http://www.anc.ed.ac.uk/ mjo/software/rbf2.zip,
Rep. Tech.

[54] F. Schwenker, H. Kestler, and G. Palm, “Three learning phases for
radial-basis-function networks,” Neural Netw., vol. 14, pp. 439–458,
2001.

[55] G. Schwarz, “Estimating the dimension of a model,” Ann. Statist., vol.
6, pp. 461–464, Mar. 1978.

[56] H. Lee, “Model selection for neural network classification,” J. Class.,
vol. 18, pp. 227–243, 2001.

[57] D. Mackay, “A practical Bayesian framework for backprop networks,”
Neural Comput., vol. 4, pp. 448–472, 1992.

David Wedge received the B.A. degree in chemistry
from Oxford University, Oxford, U.K., in 1989,
the MSc. degree in software engineering from
Huddersfield University, Huddersfield, U.K., in
2001, and the Ph.D. degree in artificial intelligence
from Manchester Metropolitan University (MMU),
Manchester, U.K., in 2006.

He is currently with Silent Talker, a research and
development company owned by MMU, developing
the use of artificial neural networks for psychological
profiling.

952 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. 4, JULY 2006

David Ingram received the B.Sc. degree in
mathematics, statistics, and computing from the
University of Greenwich, Greenwich, U.K., and
the Ph.D. degree in computational fluid dynamics
from Manchester Metropolitan University (MMU),
Manchester, U.K.

He is a Reader in the Institute of Energy Systems,
School of Engineering and Electronics, The Univer-
sity of Edinburgh, Edinburgh, U.K. Until recently,
he was a Reader in Scientific Computation at MMU.
His prime research interests lie in the simulation and

computer modeling of wave interactions with coastal structures.

David McLean received the B.Sc. degree in com-
puter science from the University of Leeds, Leeds,
U.K., and the Ph.D. degree in neural networks from
Manchester Metropolitan University (MMU), Man-
chester, U.K.

He is a Senior Lecturer in the Department of Com-
puting and Mathematics at MMU. He has previous
experience as a researcher and developer at DERA
and Thomson Marconi Sonar. His prime academic
interests lie in artificial intelligence, especially neural
networks and conversational agents.

Clive Mingham received the B.Sc. degree in mathe-
matics from University of Warwick, Coventry, U.K.,
and the M.A. degree in mathematics from University
of California at Los Angeles, Los Angeles.

He is Reader in Hydroinformatics in the Depart-
ment of Computing and Mathematics at Manchester
Metropolitan University (MMU), Manchester, U.K.
He has previous experience as a researcher and devel-
oper at British Telecom. His prime academic interests
lie in computational hydraulics with emphasis on
high-resolution methods on Cartesian cut cell meshes.

Zuhair Bandar received the B.Sc. (Eng.) degree
in electrical engineering from Mosul University, in
1972, the M.Sc. degree in electronics from the Uni-
versity of Kent at Canterbury, Kent, U.K., in 1974,
and the Ph.D. degree in artificial intelligence and
neural networks from Brunel University, Uxbridge,
Middlesex, U.K., in 1981.

He is a Reader in Intelligent Systems in the Depart-
ment of Computing and Mathematics, Manchester
Metropolitan University (MMU), Manchester, U.K.
He is a founder member and the Managing director

of Convagent Ltd., a company which undertakes fundamental research and
development of Conversational Agents. His research interest also include the
application of artificial intelligence techniques to psychological profiling from
nonverbal behavior. Aspects of this work have been patented.

