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Abstract 

In this paper social dilemmas are modelled as two-player games. In particular we model 

the Prisoner’s Dilemma, Chicken and Stag Hunt. When modelling these games we 

assume that players adapt their behaviour according to their experience and look for 

outcomes that have proved to be satisfactory in the past. These ideas are investigated by 

conducting several experiments with an agent-based simulation model in which agents 

use a simple form of case-based reasoning. It is shown that cooperation can emerge from 

the interaction of selfish case-based reasoners. In determining how often cooperation 

occurs, not only what Agents end up doing in any given situation is important, but also 

the process of learning what to do can crucially influence the final outcome. Agents’ 

aspiration thresholds play an important role in that learning process. It is also found that 

case-based reasoners find it easier to cooperate in Chicken than in the Prisoner’s 

Dilemma and Stag Hunt. 

 

Keywords: Social dilemmas, Case-based reasoning, Prisoner’s dilemma, Agent-based 

simulation, Game theory. 



 

1. Introduction 

Strange as it may appear, there are many social interactions out there in the real world 

where the outcome that results from all individuals behaving rationally is undesirable for 

everybody. When this actually occurs we call the behavioural result a social dilemma. In 

a social dilemma, decisions that seem to make perfect sense from each individual’s point 

of view can aggregate into outcomes that are unfavourable for all. Social dilemmas are 

at the heart of pollution and resource depletion problems but they are by no means 

exclusive to these situations: in any context where collective action can lead to a 

common benefit we may find that individuals are tempted to undermine the collective 

good for their own ends.  

Game theory provides us with a useful framework to study social dilemmas. Game 

theory is a branch of mathematics devoted to the logic of decision making in social 

interactions (Colman, 1995, p. 3). It is not intended to account for how people actually 

behave, but for how instrumentally rational1 players should behave in order to attain 

their clearly defined goals. In a game, each player must make a choice between two or 

more ways of acting (usually called strategies), and the outcome of the game depends on 

the choices of every player. Players have a clearly defined set of preferences among 

different outcomes; these preferences are represented by payoffs. In game theory, 

nothing is said about the origin of preferences, which could include any motivation 

whatsoever. Rationality is understood as a means to achieve one’s goals, which are 

created at a stage where rationality plays no role. Using David Hume’s words in Treatise 

on Human Nature, ‘passions’ motivate a person to act, and ‘reason’ is their servant or 

‘slave’. In some cases payoffs are measured on interval scales (hence giving information 

about relative preferences), but often ordinal scales are enough to perform the analysis 

of the game.  

                                                 

1 Terms in bold are defined in Appendix A. 



The most elementary formalisation of a social dilemma is the two-player Prisoner’s 

Dilemma (PD). In the PD, each player can either cooperate or defect. Given any 

opponent’s actions, both players are better off defecting; however, they both prefer 

bilateral cooperation to bilateral defection. The strategic nature of the PD is present in 

many situations in real life. For example, it appears when two states get into an arms 

race, when firms set prices in an oligopoly, and when we decide how much to use of a 

subtractable resource or whether to contribute to the provision of a public good.  

When the PD is played once by instrumentally rational agents, the expected outcome is 

bilateral defection: rational players do not cooperate since there is no belief that a player 

could hold about the other player’s strategy such that it would be optimal to cooperate 

(the cooperative strategy is strictly dominated by the strategy of defecting). 

Considering that both players would be better off if they both cooperated, this is a 

striking example of how rationality can be self-defeating.  

The situation is very different when the PD is played repeatedly. In that case, the rational 

behaviour remains undefined if no assumptions about the other player’s behaviour are 

made. For this reason, game theory incorporates not only rationality but also common 

knowledge of rationality (CKR), hence enabling players to make inferences about their 

opponent’s behaviour. Assuming CKR is sufficient to prove that the outcome of the PD 

when played repeatedly any finite number of times is bilateral defection at every stage. 

Put differently, any two strategies which are an optimal response to each other 

necessarily lead to a series of bilateral defections in the finitely repeated game. 

However, when the number of rounds is not limited in advance, not even CKR is enough 

to narrow significantly the set of expected outcomes. Specifically, the “Folk Theorem” 

states that any individually-rational outcome can be a Nash equilibrium in the 

infinitely-repeated PD if the discount rate of future payoffs is sufficiently close to one.  

The results when the game is played repeatedly raise concerns about:  

a) The validity and appropriateness of assuming CKR. CKR is unsupported by 

empirical evidence, it leads to conclusions that clash with widely shared 

intuitions and empirical results, and some authors have argued that it might be 



internally incoherent (see, for example, Colman (2003) and Hargreaves Heap and 

Varoufakis (1995)).  

b) The limitations of game theory in describing the dynamics that may lead to one 

among many possible equilibria. 

These concerns have motivated several lines of research within the framework of game 

theory which relax the assumption of CKR and study backward looking alternatives to 

the deductive, forward-looking rationality of game theory. In this paper we adopt such 

approach. In particular, we explore the consequences of assuming that players, who have 

no a priori beliefs about their opponent’s behaviour, adapt their own behaviour 

according to experience and look for outcomes that have proved to be satisfactory in the 

past. These ideas have been investigated conducting several experiments with an agent-

based simulation model developed by Izquierdo et al. (2004) in which agents use a 

simple form of case-based reasoning. Case-based reasoners repeat those decisions that 

proved to be satisfactory in a similar past situation.  

Izquierdo et al. (2004) used their model to simulate the PD and one of its n-player 

versions. They found that the outcome of any game played by a wide range of case-

based reasoners for long enough would have to yield every player at least their 

Maximin; they also developed the concept of iterated elimination of dominated 

outcomes, which we explain in section 5. In this paper, we extend the results in 

Izquierdo et al. (2004) by studying the behaviour of case-based reasoners in two other 

social dilemma games in addition to the PD: Stag Hunt and Chicken. 



 

2. The games 

The three 2-player games that we study in this paper can be represented using the payoff 

matrix shown in Table 1; they differ in the players’ preferences over different outcomes.  

 

Table 1. Payoff matrix for the PD, Chicken, and Stag Hunt. Payoffs on the bottom 

left of each cell are for Player 1 and payoffs on the top right are for player 2. 

Player 2 
 

Cooperate Defect 

Cooperate 
Reward 

Reward 

Temptation 

Sucker 
Player 1 

Defect 
Sucker 

Temptation 

Punishment 

Punishment 

 

In the three games, players prefer any outcome in which the opponent cooperates to any 

outcome in which the opponent defects. In particular, both players prefer mutual 

cooperation to mutual defection (i.e. mutual defection is Pareto deficient). However, 

the temptation to cheat (if Temptation is greater than Reward) or the fear to be cheated 

(if Sucker is lower than Punishment) can put cooperation at risk. In Chicken the problem 

is greed but not fear (Temptation > Reward > Sucker > Punishment); in Stag Hunt, the 

problem is fear but not greed (Reward > Temptation > Punishment > Sucker); and 

finally, both problems coincide in the paradigmatic PD (Temptation > Reward > 

Punishment > Sucker). Because of the decision making algorithm of our Agents 

(explained in section 4), the actual values of the Payoffs are not relevant as long as they 

satisfy the mentioned ordinal relationships.  

The Nash equilibria in the one-shot games are:  



 PD: bilateral defection. 

 Chicken: both unilateral outcomes (and a mixed-strategy equilibrium). 

 Stag Hunt: both bilateral outcomes (and a mixed-strategy equilibrium). 

When the PD is finitely-repeated under CKR, the only possible outcome is bilateral 

defection at every stage. When Chicken and Stag Hunt are finitely-repeated, any 

sequence of stage-game Nash equilibria is a Nash equilibrium2 of the corresponding 

finitely-repeated game and many more Nash equilibria can appear if further assumptions 

about the payoffs cardinality are made. The last statement shows the limitations of game 

theory to define a small set of possible equilibria in Chicken and Stag Hunt, even under 

the assumption of CKR. Moreover, game theory cannot say anything about the dynamics 

that might lead players to one of many possible equilibria. 

3. Case-based reasoning 

Case-based reasoning is a type of analogical reasoning. Reasoning by analogy consists 

in inferring a similarity between two or more things from a known similarity between 

them in other respects. In the context of problem solving, analogy can be defined as the 

process of reasoning from a solved problem which seems similar to the problem to be 

solved (Doran, 1997). When analogical reasoning is undertaken within a single domain 

it is usually called Case-Based Reasoning (CBR). CBR basically consists of “solving a 

problem by remembering a previous similar situation and by reusing information and 

knowledge of that situation” (Aamodt and Plaza, 1994). The rationale behind CBR is 

that if a solution turned out to be satisfactory when applied to a certain problem then it 

might work in a similar situation too.  

CBR arose out of cognitive science research in the late 1970s (Schank and Abelson, 

1977), and since then several psychological studies have provided support for its 

                                                 

2 The same statement can be made substituting sub-game perfect Nash equilibrium of the finitely repeated 
game for Nash equilibrium of the finitely repeated game. 



importance as problem-solving process in human reasoning, especially for novel or 

difficult tasks (see Ross (1989) for a summary).  

Within the domain of economics, a case-based decision theory has been proposed by 

Gilboa and Schmeidler (1995, 2001). Gilboa and Schmeidler (1995) do not see case-

based decision theory (CBDT) as a substitute for expected utility theory (EUT), but as a 

complement. They argue that CBDT may be more plausible than EUT when dealing 

with novel decision problems, or in situations where probabilities cannot easily be 

assigned to different states of the world (uncertainty, as opposed to risk), or if such states 

of the world cannot be easily constructed (ignorance).  

4. The model 

This section describes the design of Agents which use a simple form of CBR to decide 

whether to cooperate or defect. In CBR, Agents record all their experiences in the form 

of cases. Each case is a contextualised piece of knowledge representing an experience 

(Watson, 1997). A case for an Agent, i.e. the experience they lived in time-step t, 

comprises:  

a) The time-step t when the case occurred. 

b) The perceived state of the world at the beginning of time-step t, characterised by 

the factors that the Agent considers relevant to estimate the Payoff. These are:  

Descriptor 1: the opponent’s decision. 

Descriptor 2: the Agent’s own decision.  

Agents are able to remember ml time-steps back (e.g. if ml = 2, the perceived 

state of the world for the Agent will be determined by the opponent’s decisions 

and the Agent’s own decisions, both in time-step t-1 and in time-step t-2).  

c) The decision the Agent made in that situation, i.e. whether they cooperated or 

defected in time-step t, having observed the state of the world in that same time-

step. 



d) The Payoff that the Agent obtained after having decided in time-step t.  

Thus the case representing the experience lived by Agent A in time-step t has the 

following structure: 

odt-ml … odt-2   odt-1 
t 

dt-ml … dt-2   dt-1 
dt pt 

where  

odi  is the opponent’s decision in time-step i, 

di  is the decision made by Agent A in time-step i, and 

pt  is the Payoff obtained by Agent A in time-step t. 

 

The number of cases that Agents can keep in memory is unlimited. Agents make their 

decision whether to cooperate or not by retrieving two cases: the most recent case which 

occurred in a similar situation for each of the two decisions (i.e. each of the two possible 

values of dt). A case is perceived by the Agent to have occurred in a similar situation if 

and only if its state of the world is a perfect match with the current state of the world 

observed by the Agent holding the case. The only function of the perceived state of the 

world is to determine whether two situations look similar to the Agent or not. 

In a particular situation (i.e. for a given perceived state of the world) an Agent must face 

one of the following three possibilities: 

1) The Agent cannot recall any previous similar situations. In CBR terms, the Agent 

does not hold any cases whose state of the world matches the current perceived 

state of the world. In this case the Agent will make an unbiased random decision. 

2) The Agent does not remember any previous similar situations when they made a 

certain decision, but they do recall at least one similar situation when they made 

the other decision. In CBR terms, all the Agent’s cases whose state of the world 



matches the current perceived state of the world have the same value for dt. In 

this situation, Agents will explore the non-applied decision if the payoff they 

obtained in the last previous similar situation was below their Aspiration 

Threshold AT; otherwise they will keep the same decision they previously 

applied in similar situations. 

3) The Agent remembers at least one previous similar situation when they made 

each of the two possible decisions. In this situation, the Agent will focus on the 

most recent case for each of the two decisions and choose the decision that 

provided them with the higher payoff. In this way, Agents adapt their behaviour 

according to the most recent feedback they got in a similar situation. 

In the experiments reported in this paper, all the Agents share the same Aspiration 

Threshold AT and the same Memory Length ml. These are the two crucial parameters in 

this CBR decision-making algorithm, determining when an outcome is satisfactory (so 

the search for solutions can stop) and when two situations are similar, respectively.  

5. Iterated elimination of strictly dominated outcomes 

In this section we explain a solution concept that is more relevant for case-based 

reasoners than the Nash equilibrium: strictly undominated outcomes (SUO). SUO are 

outcomes in which no player can be guaranteed a higher payoff by changing their 

decision (i.e. every player is getting at least their Maximin). It can be proved that 

simulations of the three games explained in section 2 when played by Agents using the 

decision making algorithm outlined in section 4 with non-trivial AT (i.e. AT greater than 

the minimum payoff an Agent can get) end up locked in to cycles made up of SUO.  

 

Using the concept of SUO, Izquierdo et al. (2004) introduced the process of iterated 

elimination of strictly dominated outcomes. The idea is that a player cannot rationally 

accept outcomes in which the player is not getting at least their Maximin (a rational 

player is not exploitable). When players who do not accept outcomes where they get a 

payoff lower than Maximin meet, they might learn by playing the game the fact that their 



opponent is not exploitable either. If this occurs, it will be mutual belief that strictly 

dominated outcomes will not be sustainable because at least one of the players will not 

accept them. That inference (and the consequent disregard of strictly dominated 

outcomes by every player) can make an outcome which was not previously dominated in 

effect be dominated. In other words, the concept of strict dominance can be applied to 

outcomes iteratively just as it is applied iteratively to strategies.  

As an example, consider the PD (Figure 1a). The only two SUO in the PD are bilateral 

cooperation and bilateral defection, since the other outcomes yield a payoff lower than 

Maximin to the cooperator (Figure 1b). If, through repeated interaction, players were 

able to infer that the game will not have any other outcome (because one of the players 

will not accept it), then they could eliminate the unilateral outcomes from their analysis 

and apply the concept of outcome dominance for the second time to the (two) remaining 

possible outcomes. For this to happen, it would have to be mutual belief that the other 

player is not exploitable either. When only bilateral decisions are confronted, the only 

strictly undominated outcome is bilateral cooperation (Figure 1c). When confronted 

with bilateral cooperation as the only alternative, bilateral defection is not strictly 

undominated anymore, since the two players are guaranteed a higher Payoff by changing 

their decision. In other words, bilateral cooperation is the only outcome that survives 

two steps of outcome dominance in the PD.  



 

Figure 1. Elimination of dominated outcomes in the PD. 

 

Figure b shows the remaining outcomes after having applied one step of outcome 

dominance. Figure c shows the remaining outcomes after having applied two steps 

of outcome dominance. Red circled crosses represent outcomes which are 

unacceptable for player Red (row), blue squared crosses represent outcomes which 

are unacceptable for player Blue (column), and black plain crosses represent 

outcomes eliminated in previous steps. 

It can be shown that in any game, after applying any number of steps of strict outcome 

dominance, those outcomes remaining are not Pareto-dominated by any of those which 

have been eliminated. In particular, all the outcomes that survive two steps of outcome 

dominance in the PD, Chicken and Stag Hunt are Pareto optimal.  

It is interesting to notice that when Agents decide using cases (or outcomes) as the basis 

of inference, the resulting outcomes seem to be ‘more rational’ (i.e. Pareto optimal) than 

when ‘rational’ (i.e. dominant) strategies are employed: that, as we explain below, 

reflects the essence of social dilemmas. Although defining rational strategies in 

interdependent decision-making problems is by no means trivial, it seems sensible to 

assume that a) rational players choose strictly dominant strategies, and b) rational 

players do not choose strictly dominated strategies. Similarly, even though defining 

rational outcomes cannot be done without controversy, it also seems sensible to agree 

that rational outcomes must be Pareto optimal. Assuming only those necessary 

conditions for the rationality of strategies and outcomes, we can state that, in the one-

P S D

T R C

PSD

TRC

PS D

TR C

a b c



shot PD, even though there is a clear causal link between strategies and outcomes, 

rational strategies lead to outcomes which are not rational, whereas rational outcomes 

are generated by strategies which are not rational. 

6. Results  

The software used to conduct the experiments reported in this section was written in 

Objective-C using the Swarm libraries (http://wiki.swarm.org/) and is available online at 

http://www.macaulay.ac.uk/fearlus/casd/ under GNU General Public Licence. The 

program is known to work on a PC using Swarm 2.1.1 and on a Sun Sparc using Swarm 

2001-12-18.  

As might be expected, the model is very sensitive to the decisions that are made at 

random. Since the model has stochastic components, the results for a given set of 

parameters cannot be given in terms of assured outcomes but as a range of possible 

outcomes, each with a certain probability of happening. The probability of each outcome 

can either be estimated by running the model several times with different random seeds 

or, under certain circumstances, can be exactly computed.  

Agents in the model make decisions at random only when they perceive a novel state of 

the world. Since the number of different states of the world that an Agent can perceive is 

finite, so is the number of random decisions the Agent can make. Therefore simulations 

must end up in a cycle. To study how often Agents cooperate in the three games we 

define the ‘cooperation rate’ as the number of times bilateral cooperation is observed in 

a cycle divided by the length of the cycle.  

6.1. Prisoner’s Dilemma 

It is important to realise that when our Agents play the PD, Chicken or Stag Hunt, they 

both share the same perception of the state of the world (defined by the last ml moves of 

the two Agents) in the sense that any two situations that look the same for one Agent 

will also look the same for the other Agent and any two situations that look different for 

one Agent will also look different for the other Agent. Therefore, at any given time in 

the simulation our Agents will have visited any given state of the world the same 



number of times. This shared perception of the state of the world means that, for a 

certain state of the world, the only relevant factor is the random decision that they make 

when they first experience that situation. 

Table 2. Decisions made by each of the two Agents playing the PD when visiting a 

certain state of the world for the i-th time. In the first column, payoffs are denoted 

by their initial letter. In columns 2 to 5, the first letter in each pair corresponds to 

the decisions of one Agent, the second letter to those of the other. C is cooperation 

and D is defection. The results shown in this table are independent of the value of 

the Memory Length.  

Aspiration 
Thresholds 

(AT) 

1st visit 
(random) 2nd visit 3rd visit 4th visit and 

onwards 

C-C D-D C-C C-C 

C-D D-C D-D D-D 

D-C C-D D-D D-D 
T < AT 

D-D C-C C-C C-C 

C-C D-D C-C C-C 

C-D D-D D-C D-D 

D-C D-D C-D D-D 
R < AT ≤ T 

D-D C-C C-C C-C 

C-C C-C C-C C-C 

C-D D-D D-C D-D 

D-C D-D C-D D-D 
P < AT ≤ R 

D-D C-C C-C C-C 

C-C C-C C-C C-C 

C-D D-D D-D D-D 

D-C D-D D-D D-D 
S < AT ≤ P 

D-D D-D D-D D-D 



C-C C-C C-C C-C 

C-D C-D C-D C-D 

D-C D-C D-C D-C 
AT ≤ S 

D-D D-D D-D D-D 

The decision dynamics for a certain state of the world are summarised in  

Table 2. Consider first the first four rows of the table (T < AT). These represent the case 

where the Aspiration Threshold (for both Agents) exceeds T. The first time any 

particular state of the world occurs, both Agents will choose C (Cooperate) or D 

(Defect) at random (column headed “1st visit”). When the same perceived state occurs a 

second time, the responses will be as shown in the “2nd visit” column, and so on. The 

table shows that by the third visit to that state, either both Agents are cooperating or both 

Agents are defecting, and both will then continue to make the same response. The other 

four sets of rows in the table show what happens when the AT is in each of four lower 

ranges of values.  

When the simulation locks in to a cycle (and it necessarily does), the states that make up 

the cycle are repeatedly visited, leading to outcomes shown in the “4th visit and 

onwards” column in  

Table 2. Looking at that column, we can identify two values for the Aspiration 

Threshold AT that make a particularly important difference: Sucker and Punishment.  

 When AT > Sucker, simulations lock in to cycles which are necessarily made up 

of bilateral decisions (the only two SUO), since if an Agent receives the Sucker 

Payoff in any situation, they will never cooperate again in that situation. In this 

sense our Agents are particularly unforgiving. Agents with Aspiration 

Thresholds greater than Sucker cannot be systemically exploited.  

 When AT > Punishment, there is a qualitative jump in terms of average 

cooperation rates. This is because if AT > Punishment, when both Agents defect 

the first time they experience a certain state of the world, they will end up 

cooperating in that state, but they will end up defecting if AT ≤ Punishment. 



 

Taking into account the two previous points and looking at the “4th visit and onwards” 

column in  

Table 2, one could then think that average cooperation rates should be 25% if AT ≤ 

Punishment and 50% if AT > Punishment regardless of the Memory Length, but one 

would be wrong. Figure 2 shows the importance of Aspiration Thresholds and how they 

can modify the effect of the Memory Length. 

Figure 2. Average cooperation rates when modelling two agents with Memory 

Length ml and Aspiration Threshold AT, playing the PD. The average cooperation 

rate shows the probability of finding both Agents cooperating once they have 

finished the learning period (i.e. when the run locks in to a cycle). The values 

represented for ml = 1 have been computed exactly. The rest of the values have 

been estimated by running the model 10,000 times with different random seeds. All 

standard errors are less than 0.5%.  

 

 



Figure 2 shows that in CBR, not only what is learnt, but the actual process of learning 

can have a major importance, and Aspiration Thresholds play a crucial role in that 

process. Consider, for example, the difference between the cases where P < AT ≤ R and 

where R < AT ≤ T. In both cases, Agents will learn to cooperate in any given state of the 

world if they happen to make the same decision the first time they visit that state, and 

they will end up defecting in that situation otherwise. Therefore, for those two values of 

AT, we could expect average cooperation rates to be the same or at least similar. 

However, because the actual process of learning is different, differences in average 

cooperation rates are substantial and get larger as the Memory Length increases (see 

Figure 2). 

6.2. Chicken 

The decision dynamics for a certain state of the world in Chicken are summarised in   

Table 3.  

Table 3. Decisions made by each of the two Agents playing Chicken when visiting a 

certain state of the world for the i-th time. In the first column, payoffs are denoted 

by their initial letter. In columns 2 to 5, the first letter in each pair corresponds to 

the decisions of one Agent, the second letter to those of the other. C is cooperation 

and D is defection. The results shown in this table are independent of the value of 

the Memory Length.  

Aspiration 
Thresholds 

(AT) 

1st visit 
(random) 2nd visit 3rd visit 4th visit and 

onwards 

C-C D-D C-C C-C 

C-D D-C D-D C-C 

D-C C-D D-D C-C 
T < AT 

D-D C-C C-C C-C 

C-C D-D C-C C-C 

C-D D-D C-C C-C 

R < AT ≤ T 

D-C D-D C-C C-C 



 D-D C-C C-C C-C 

C-C C-C C-C C-C 

C-D D-D C-C C-C 

D-C D-D C-C C-C 
S < AT ≤ R 

D-D C-C C-C C-C 

C-C C-C C-C C-C 

C-D C-D C-D C-D 

D-C D-C D-C D-C 
P < AT ≤ S 

D-D C-C C-C C-C 

CC CC CC CC 

CD CD CD CD 

DC DC DC DC 
AT ≤ P 

DD DD DD DD 

 

Similarly to the case where Agents played the PD, Agents playing Chicken end up 

in cycles made up of SUO (  

Table 3). However, contrary to the PD case, where Agents could end up in any of the 

SUO (bilateral cooperation and bilateral defection) if AT > S, in Chicken if AT > S, 

Agents seem to fix on only one of the three SUO: bilateral cooperation. Figure 3 shows 

the results obtained running the model, and confirms Agent’s fixation on bilateral 

cooperation. The reason for such fixation on one SUO is discussed in section 7. 



 

Figure 3. Average cooperation rates when modelling two agents with Memory 

Length ml and Aspiration Threshold AT, playing Chicken. The cooperation rate is 

one for AT > S regardless the value of ml. The values represented for ml = 1 have 

been computed exactly. The rest of the values have been estimated by running the 

model 10,000 times with different random seeds. All standard errors are less than 

0.5%. 

 



 

6.3. Stag Hunt 

The decision dynamics for a certain state of the world in Stag Hunt are structurally 

equivalent to those in the PD except for the case where T < AT ≤ R in Stag Hunt, which 

is presented in   

Table 4.  

Figure 4 shows the results obtained running the model.  

Table 4. Decisions made by each of the two Agents playing Stag hunt when visiting 

a certain state of the world for the i-th time.  

Aspiration 
Thresholds 

(AT) 

1st visit 
(random) 2nd visit 3rd visit 4th visit and 

onwards 

C-C C-C C-C C-C 

C-D D-C D-D D-D 

D-C C-D D-D D-D 
T < AT ≤ R 

D-D C-C C-C C-C 

 

Figure 4. Average cooperation rates when modelling two agents with Memory 

Length ml and Aspiration Threshold AT, playing Stag Hunt. The values 

represented for ml = 1 have been computed exactly. The rest of the values have 

been estimated by running the model 10,000 times with different random seeds. All 

standard errors are less than 0.5%.  



 

 

As in the PD, it is also clear from these results that in CBR, not only what is learnt is 

important, but also how it is learnt, and that Aspiration Thresholds play a crucial role in 

that process. 

7. Discussion 

The experiments conducted show that cooperation can emerge from the interaction of 

selfish and unforgiving case-based reasoners. We have modelled a system in which 

Agents observe other Agents’ decisions and use those observations to make further 

decisions. This is clearly an essential feature of any social system. Our results have 

shown that even in a simple system with two players the results do not only depend on 

what is eventually learnt in any given situation, but also, and very strongly, on how it is 

learnt. The results also show that Aspiration Thresholds play a major role on that 

learning process.  

Knowing exactly the probability distribution of the final decisions that Agents would 

make in any situation (i.e. state of the world) -see Tables 2, 3, and 4- was not enough to 

anticipate the final outcome of the simulation. Agents’ decisions lead them to situations 

which require new decisions, which in turn lead the Agents to new situations. Decisions 



and situations interweave in complex ways that are governed by the process by which 

Agents arrive at their final decisions for each situation. It is not enough to know what 

Agents will end up doing in any situation; the process of learning what to do can have 

major and unexpected consequences in the final outcome. In this paper we have shown 

how Aspiration Thresholds can alter the learning process by which final decisions are 

made and therefore influence the final distribution of cooperation rates in a dramatic 

way.  

More specifically, we have found an unexpected result in Chicken. Izquierdo et al. 

(2004) proved that the case-based reasoners modelled in this paper with AT > Maximin 

would end up locked in to cycles consisting of SUO, and that has certainly been the 

case. However, whereas in the PD and Stag Hunt every SUO was visited with some 

probability, in Chicken Agents lock in to cycles consisting only of bilateral 

cooperations, even though unilateral outcomes are also SUO. What is it that makes 

Agents playing Chicken prefer bilateral cooperation to the other two SUO? The answer, 

which is explained in detail below, is that bilateral cooperation in Chicken is the 

outcome that occurs when Agents avoid the minimum payoff they can get. 

Let us call minimumPayoff the minimum payoff an Agent can get in a game. As we 

explained before, our Agents (with AT > minimumPayoff) are particularly unforgiving in 

the sense that if they happen to receive minimumPayoff, then they will never repeat the 

decision that led them to that undesirable outcome in a similar situation (in a 2x2 game 

such behaviour is equivalent to adopting a Maximin strategy). In fact, in the three 

games with AT > minimumPayoff, if one Agent happens to receive minimumPayoff 

having observed a certain state of the world, then both Agents will end up adopting the 

Maximin strategy after that state of the world. In other words, if any Agent happens to 

receive minimumPayoff in a given state of the world, the outcome after that state of the 

world will eventually be the Maximin equilibrium (bilateral defection in the PD and 

Stag Hunt, and bilateral cooperation in Chicken). 

The question now is: Under what circumstances do none of the Agents ever receive 

minimumPayoff? For any given state of the world, one of the Agents will receive 

minimumPayoff (and therefore they will end up in the Maximin equilibrium) unless they 



lock in to an outcome before doing so. If Agents are to accept an outcome O before one 

of the Agents has received minimumPayoff, the outcome O must satisfy one of the 

following two conditions:  

a) Both Agents’ payoffs in O must be greater than their Aspiration Threshold. 

b) Both Agents can identify another outcome (excluding those in which one of the 

Agents received minimumPayoff, since they have not been visited yet by 

assumption) in which they took the decision they are not taking at outcome O, 

and they got a lower payoff. 

It can be checked that the only outcome that satisfies either of these conditions when  

AT > Maximin is bilateral cooperation in the three games.  

We have shown then that when AT > Maximin, if any Agent happens to receive 

minimumPayoff in a given state of the world, then the outcome after that state of the 

world will eventually be the Maximin equilibrium; whereas if no Agent receives 

minimumPayoff in a given state of the world, then the outcome after that state of the 

world will eventually be bilateral cooperation. Since the Maximin equilibrium in 

Chicken is bilateral cooperation, the only possible outcome in Chicken when  

AT > Maximin is bilateral cooperation. On the other hand, in the PD and Stag Hunt, the 

Maximin equilibrium is bilateral defection, so both SUO may occur in those games. 

8. Conclusions 

We have explored the outcome of social dilemmas when played by case-based 

reasoners. CBR is a method of inference that is believed to be commonly used by real 

people when they face novel or difficult problems in which they cannot easily compute a 

satisfactory solution (Ross, 1989). Social dilemmas are clearly ill-defined and difficult 

problems since the payoff for any player depends on the other players’ actions and these 

actions are not necessarily known by the deciding agent, nor can they be rationally 

inferred a priori. However, when playing the game repeatedly, agents can adapt their 

behaviour by observing their opponent’s actions, and find a satisficing solution within 

the constraints that their opponent’s actions impose. By implicitly anticipating the 



outcome of their actions, our selfish case-based reasoners arrive at a cycle in which all 

of them can justify every decision they make by appealing to a previous past experience. 

In this paper we have proved that the decision they make is very often to cooperate, even 

though they only pursue their own benefit. In determining how often cooperation occurs, 

not only what Agents end up doing in a given situation is important, but also the process 

of learning what to do can crucially influence the final outcome, and aspiration 

thresholds play an important role in that process.  

The experiments conducted have also revealed that case-based reasoners find it easier to 

cooperate in the game of Chicken than in the PD or Stag Hunt. The reason is that case-

based reasoners avoid outcomes where they are getting a payoff below Maximin, and in 

doing so, they often end up in the Maximin equilibrium; the Maximin equilibrium in 

Chicken is bilateral cooperation, whereas it is bilateral defection in the PD and Stag 

Hunt.    
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Appendix A 

Common knowledge of rationality (CKR): CKR means that every agent assumes: (a) 

that all agents are instrumentally rational, and (b) that all agents are aware of other 

agents’ rationality-related assumptions (this produces an infinite recursion of shared 

assumptions). 

 

Individually-rational outcome: An outcome giving each player at least the largest 

payoff that they can guarantee receiving regardless the opponents’ moves. 

 

Instrumentally rational: An instrumentally rational agent acts as if they have consistent 

preferences and unlimited computational capacity. 

 

Maximin: The largest possible payoff a player can guarantee themselves. This is 

Punishment in the Prisoner’s Dilemma and Stag Hunt, and Sucker in Chicken.  

 

Maximin equilibrium: The outcome that results when every player selects their 

Maximin strategy (see below). 

 

Maximin strategy: Player A’s Maximin strategy is the one that guarantees A the best 

outcome if the other player plays the strategy that is worst for A. The Maximin strategy 

is to defect in the Prisoner’s Dilemma and Stag Hunt, and to cooperate in Chicken.  

 



Mixed-Strategy: A strategy consisting of selecting each of the two possible actions 

(cooperate or defect) with a certain probability different from zero or one. 

 

Mutual belief: A proposition A is mutual belief among a set of agents if each agent 

believes that A. Mutual belief by itself implies nothing about what, if any, believes 

anyone attributes to anyone else. 

 

Nash equilibrium: A set of strategies such that no player, knowing the strategy of the 

other(s), could improve their expected payoff by changing their own. 

 

Outcome: A particular combination of strategies, one for each player, and their 

associated payoffs. In the one-shot games studied in this paper, an outcome corresponds 

to a cell in the payoff matrix. 

 

Pareto deficient: An outcome is Pareto deficient if there is an alternative in which at 

least one player is better off and no player is worse off. 

 

Pareto optimal: An outcome is Pareto optimal if there is no other outcome in which at 

least one player is better off and no player is worse off. 

 

Strictly dominant strategies: For an agent A, strategy S*A is strictly dominant if for 

each feasible combination of the other players’ strategies, A’s payoff from playing S*A 

is strictly more than A’s payoff from playing any other strategy. 

 



Strictly dominated strategy: For an agent A, strategy SA is strictly dominated by 

strategy S*A if for each feasible combination of the other players’ strategies, A’s payoff 

from playing SA is strictly less than A’s payoff from playing S*A (Gibbons, 1992, p. 5). 
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