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We show how a scale-invariant measure of three-dimensional shape can be derived from the velocity field
generated by a rigid curved surface patch under perspective projection. We use invariance under rotation of
the image plane [the Lie group SO(2)] to decompose the second-order velocity field in differential invariants.
From a combination of these invariants we construct an approximation of the absolute value of Koenderink’s

shape index [Image Vis. Comput. 10, 557 (1992)].

We show that the effect of these approximations on the

shape index is small, especially under parallel projection. Furthermore, we provide an explanation for the
psychophysical finding that elliptical shapes are more readily detected than parabolic or hyperbolic shapes.
From the invariants we can also derive approximations of the principal directions, the curvedness, the slant,

and the tilt.

1. INTRODUCTION

Almost two decades have passed since original paper by
Koenderink and van Doorn! on the relation between the
geometry of a surface and the induced optic flow was
published. In that paper they relate the geometrical
properties of rigid objects to invariants of the velocity field
generated by a moving object. They were quite success-
ful for the first-order object properties (e.g., slant), but
for the second-order properties (e.g., curvature) they could
calculate only the sign of the Gaussian curvature. The
research initiated by Koenderink and van Doorn took a
more algebraic turn in, e.g., Refs. 2 and 3. In a recent
paper Koenderink and van Doorn* focused on the second-
order structure. They were able to describe the struc-
ture fully but only in terms of a somewhat unusual quan-
tity, viz., the projected indicatrix of Dupin. In this paper
we go back to a geometric approach based on differen-
tial invariants, as in Ref. 1, and extend it to second-order
properties.

Central to our approach to the extraction of struc-
ture from motion is the use of geometry. Geometrical
properties are those properties that are invariant when
the coordinate system is changed. More specifically, we
study the invariance of the velocity field under the group
of rotations of the plane [the Lie group SO(2)]. Because
the velocity field is a vector field, its invariants are not
necessarily scalars but are usually vectorlike quantities.
Paradoxically, this means that the invariants of the ve-
locity field can change when the coordinate system is
rotated. A definition of the invariance of vector fields is
beyond the scope of this paper, but in Section 3 we indi-
cate how the invariants of a vector field are calculated.
For a definition of the invariance of nonscalar fields, the
reader is referred to Ref. 5 and the references therein.
From the point of view of machine vision, rotational in-
variance allows one to do the calculations independently
of the orientation of the camera. Moreover, one can view
rotational invariance as a convenient computational tool:
through expression of the relations among unknowns and
observables in invariants, the equations become simpler.
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Group theory is often used for this purpose in mathemat-
ics and in image processing. From the point of view of
human vision, the use of the group of rotations of the
plane (corresponding to torsional eye movements or tor-
sional movements of the object) is not so easily defended.
It would be more natural to study the invariants of the
velocity field under the full rotation group in three di-
mensions, SO(3). Since this is computationally much
more complex and since SO(2) is a subgroup of SO(3), one
can view the current approach as a first step. Group
theory was introduced into psychology by Hoffman,® but
it has attracted few adherents.” Recently it has been
applied successfully in neurophysiology.® In the rest
of this paper we use invariance to mean rotational in-
variance. The only exception is Section 2, in which we
introduce the shape index,® which is a scale-invariant
descriptor of shape.

Smooth rigid objects have many differential geometric
properties, which can be classified according to order.
The zeroth-order property is the distance of the object
from the observer. First-order properties can be de-
scribed by the slant and the tilt. Note that the distance,
the slant, and the tilt of an object will in general change
when the object moves relative to the observer. The
second-order properties can be described by, e.g., the two
principal curvatures and the direction of maximal normal
curvature. Our main focus will be on these properties.
Note that the principal curvatures are the lowest-order
properties, which do not change when the object moves
relative to the observer; i.e., they are intrinsic to the
object. The third-order properties can be described by
the gradients of the two principal curvatures. We will
not deal with these, although the method presented here
could conceivably be used to deduce the third-order prop-
erties from invariants of the velocity field, too.

An important point to keep in mind is that metric
information cannot be obtained from the velocity field,
because the velocity field is derived from a projection.
This means that one cannot obtain the complete three-
dimensional (8D) translation velocity of the observer rela-
tive to the object. Neither can one obtain the distance
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to the object nor its curvatures. Of course, one can con-
struct combinations of these properties that do not depend
on metric information, e.g., the ratio of the principal cur-
vatures or the ratio of the 3D velocity and the distance.
Since the principal curvatures are the lowest-order prop-
erties that are intrinsic, the ratio of the principal cur-
vatures (or any function thereof) is the only intrinsic
property of the object that can be derived from the ve-
locity field (up to second order).

Our calculations are based on a number of assumptions
to make the problem manageable. We assume the ex-
istence of a dense smooth vector field on a planar cam-
era, which is generated by perspective projection of a
smooth rigid surface patch. The assumption of the ex-
istence of a dense vector field is probably not necessary,
as algorithms have been proposed to extract first-order
differential invariants directly from the spatio-temporal
luminance pattern.!®!! These algorithms could be ex-
tended to include the second order, as well. The assump-
tion of a planar camera (equipped with the natural metric)
is accurate for machine vision but probably not for hu-
man vision when wide-field stimuli are employed. The
assumption of a rigid smooth surface patch is realistic for
rigid surfaces away from their contour. Finally, perspec-
tive projection is the correct way of proceeding. Some of
the approximations that we use below are not necessary
under parallel (orthographic) projection. The use of per-
spective projection will allow us to give an expression for
the error that we make in these approximations.

Finally, we point out the usefulness of the current ap-
proach to the problem of binocular vision. One can view
the disparity field as the equivalent of the velocity field
and use the same relations that are introduced below.
The differences between stereo and passive motion are
the possible use of nonvisual information in stereo (e.g.,
vergence angle of the eyes) and the fact that the eyes
are usually horizontally aligned, making our principle of
rotational invariance less relevant for stereo vision.
Nevertheless, we are able to offer an explanation for
some results of shape-from-stereo experiments.

This paper is structured as follows. In Section 2 we
review some of the descriptors that have been proposed
to characterize shape. We introduce the shape index® as
the descriptor that comes closest to an intuitive idea of
shape. In Section 3 we introduce the notion of an in-
variant under the group of rotations in the plane, and we
decompose the second-order velocity field into invariants.
In Section 4 we calculate the second-order invariants of
the velocity field generated by a moving curved surface.
We show that we can construct an approximation of the
shape index from a combination of these invariants. In
Section 5 we show that the approximations made in the
construction of the shape index lead to small deviations
for a field of view of 6 deg. In the Section 7 we show that
the predictions from our theory are consistent with some
recent, psychophysical results. Finally, we compare our
model with two other recent models: the spin variation
theory!? and the Dupin indicatrix theory.*

2. DESCRIPTION OF SHAPE MEASURES

In this section we introduce the shape measures to be used
in what follows: the shape index and the curvedness.’
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Then we introduce some notation to describe a surface
patch up to second order.

Many descriptors of shape for the purpose of vision and
image processing have been used, but the descriptors that
have been used most often are the principal curvatures
Kmax and kmin and the Gaussian and mean curvatures K
and H13 The principal curvatures are the maximum and
minimum of the normal curvature k,. The normal cur-
vature is obtained as the curvature of the curve that one
gets when one cuts the surface with a plane through the
normal of the surface. The relation between the normal
curvature in direction e, and the principal curvatures is
given by Euler’s formulal4:

Kn(@) = Kmax €08 (@ — ag) + Kmin sin®(a — ao), 1)

with ag € [0, ) denoting the direction of maximal cur-
vature. The direction of minimal curvature is always
orthogonal to the direction of maximal curvature.

An important thing to note about these descriptors for
curvature is that they are scale dependent; e.g., making
a sphere twice as large will change the values of all
these descriptors. This is not consistent with our intui-
tion that spheres of different radii have the same shape.
Koenderink and van Doorn proposed the following more
intuitive descriptors®:

S =2/7 arctan( Kmax + Kmin K"‘“‘) ) (2)
Kmax — Kmin
2 o\ 12
C=(Kmax ;'Kmm ) , (3)

with the shape index S carrying all scale-independent
information about shape and the curvedness C carrying
all scale-dependent information. Algebraically one can
view the shape index and the curvedness as scaled polar
coordinates in the Kmax, Kmin half-plane (see Fig. 1). We
take Kmax = Kmin because interchanging kmax and Kmin
has the same effect as interchanging x and y [see Eq. (1)
with @y = 0] and thus changes only the orientation of the
surface, not its shape.

We parameterize a smooth surface patch, using the
range function Z(X, Y) with (X, Y, Z) € R®. We write
the surface patch up to second order in a Taylor series
as follows:

ZX,Y)=2y+ ZxX + ZyY + l/ZZXX)f2 + Zxy XY
+1/2ZyyY?2, @

where Z, is the distance to the patch, the pair (Zx, Zy)T =
VZ is the range gradient, and the remaining three pa-
rameters Zxx, Zxy, and Zyy denote the second-order
derivatives of the range function. The range gradient
is related to the attitude of the surface patch by VZ =
tan o(cos 7, sin )T, with o € [0, 7/2] denoting the slant
and 7 € [0, 27) denoting the tilt. The slant equals the
angle between the normal of the surface and the line of
sight (we take the direction of the normal always toward
the viewer). For a frontoparallel plane we have o = 0;
for a plane viewed edge on we have oo = 7/2. The tilt
equals the angle between the projection of the normal onto
the image plane and the X axis.
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Fig. 1. Objects int Kmax, kmin Space. By a change of coordinate
system in this space, objects can also be characterized by an an-
gular coordinate only; the shape index S; and a radial coordinate,
the curvedness C. The shapes drawn to illustrate various values
of S are to be viewed from below.

The relation between normal curvature and the second-
order derivatives of the range function depends also on the
first-order derivatives. Taking a fiducial direction e, in
the tangent plane (which has angle o with the X axis),
one can show that (Ref. 14, p. 221)
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the fiducial direction. Later in the paper we show that it
is impossible to obtain k, directly from the velocity field
but that A can be obtained directly. Note that Eq. (5) has
the same structure as Euler’s formula [Eq. (1)]. One can
easily show that for

tan(2ao) = 2Zxy/(Zxx — Zyy) 6)

one obtains maximal and minimal A. aq gives the direc-
tion of maximal A. Maximal and minimal A are given by

A(max,min) = 1/ 2(Zxx + Zyy)
*+1/2 (Zxxz + 4ZXy2 + Zyy2 - 2ZxeYy)1/2 . (D

When the tangent plane is frontoparallel, we have o = 0.
In that case Amax and Ay in Eq. (7) become equal to Kmax
and kmin. Also, when the slant is not too large, cos ¢ and
cos u will be close to 1, and thus Apse and Ap;, will not
deviate much from Ky, and ki, (see Section 5).

3. INVARIANT DECOMPOSITION OF THE
SECOND-ORDER VELOCITY FIELD

In this section we decompose the second-order velocity
field into differential invariants. The complete decom-
position of the zeroth- and first-order velocity field has
already been reported! and leads to four differential in-
variants: translation of order zero and divergence, rota-
tion, and deformation of order one. For reference we give
the expressions of the first-order differential invariants

1 Zxx cos? @ + 2Zxy cos a sin a + Zyy sin? a

Kn(a) =

(1 + Zx2 + Zy?)V2 (1 + Zx?)cos? a + 2ZxZy cos a sin a + (1 + Zy2)sin? a '

Expressing the first-order derivatives in terms of slant
and tilt, we find that

1 + tan? o cos?(a — 1)
cos o
= Zyx cos® a + 2Zxy cos « sin a + Zyy sin® a.

Kn(a@)

This expression can be simplified by introduction of the
angles ¢ and u, defined by*

cos { = cos o1 + tan® o cos®(@ — 7)]“2,

cos u = 1/[1 + tan? o cos?(a — 7)]*2.

These angles describe the geometry of the normal of the
surface patch relative to the plane (denoted I') determined
by the fiducial direction &, and the line of sight &, (Fig. 2).
The angle between the normal and the plane T is ¢.
Projecting the normal onto I', we obtain x as the angle
between this projection and é,. Using these angles, we
find that

A= K,/(cos ¢ cos® u) = Zxx cos? a + 2Zxy cos a sin a
+ Zyy sin® a, 5)

where we have introduced A as a new curvature measure.
In contrast to «,, which depends only on curvature, A
depends also on the attitude of the tangent plane and on

in terms of derivatives of the velocity field. We denote
the divergence by V - v, the rotation by V X v, and the
deformation by V o v. We have!

V.v=uv]+1], 8)

VXv=—vi+u], 9
_ v;—va')

Vov_(v§+v§ (10)

with, e.g., v,* denoting the first-order derivative in the
y direction of the x component of the velocity field. It

Fig. 2. Geometry of the normal n to the surface patch 5, relative
to the fiducial plane I'. T is the plane through the fiducial
direction &, and the direction of looking é,. ¢ denotes the angle
between m and I'. u denotes the angle between the projection
(m) of n on I and é,.
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Fig. 3. Flow fields generated by pure differential invariants.
Top row: the zeroth-order invariant, translation in direction
(1, 1). Middle row: the first-order invariants, divergence, ro-
tation, and the deformation in direction (1, 0). Bottom row, the
second-order invariants, all in direction (1, 0). In the flow field
of the double deformation we have drawn two lines of equal
length, with an angle 27/3 between them.

will be an easy exercise to show with the methods intro-
duced below that these are actually invariant. In Fig. 3
we have plotted some examples of the vector field gen-
erated by these invariants. Discussing these will give
us a chance to introduce the concept of the weight of an
invariant.’ The weight captures the symmetry proper-
ties of the invariant under rotation: 2= divided by the
weight is the smallest angle over which one has to ro-
tate the invariant so that it becomes equal to itself again
(except for weight zero). The translation has weight 1,
meaning that a rotation over 27 maps the vector field
onto itself. The divergence and rotation have weight
zero, meaning that every rotation maps the vector field
onto itself. Thus they are scalars. The deformation has
weight 2, meaning that a rotation over 7 maps the vector
field onto itself (see Fig. 3).

The importance of invariance under a rotation stems
from the fact that we do not have a preferred direction in
the image plane. This is a natural approach because the
shape measures listed in Section 2 were also constructed
s0 as to be independent of the choice of coordinate system.
A nice bonus of calculating invariants is that invariants
have weights, which correspond directly to geometrical
properties of the observables. Only linear combinations
of invariants of the same weight are invariants. It is
important to realize that invariance does not mean that
an observable does not change its value when the coor-
dinate system is rotated. One can already observe such
a change from the zeroth-order invariant: rotating the
coordinate system over 8 rotates the translation over —6.
The observables that do not change value when the co-
ordinate system is rotated are called scalar invariants in
this context. Examples are the divergence and the rota-
tion (they have weight zero). The construction of invari-
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ants proceeds as follows: we take a set of observables
measured relative to some coordinate system. We then
rotate the coordinate system over an infinitesimal angle.
The observables relative to the new coordinate system will
be a linear transformation of the observables relative to
the old coordinate system. Denote this transformation 7',
We now call our set of observables invariant when T is a
(complex) diagonal matrix. Our notion of invariance is
perhaps best illustrated by an example of a quantity that
is not invariant (and thus variant). Examples of variants
are the spatial derivatives in a Cartesian coordinate sys-
tem. Because we will come back to the following concept
later in the paper, we take the spin variation in the direc-
tion of the x axis SV(0) = v¥x as an example of a variant.
Rotating vlx over an arbitrary angle 6, we find that

SV (6) = cos® 6(2v%, + v}, — v},)
+ sin® 0(—2v, + v}, — v},
+ cos 6(—2v%, + v},) + sin 0(2v3, + vg,).

X

1mn

Clearly, when we rotate the coordinate system over an ar-
bitrary angle, v,,” transforms in a complicated way. The
transformed v,,.” depends not only on the original v,,” but
also on all other second-order spatial derivatives. Thus
the transformation T is not a complex diagonal matrix.
The situation is different for the invariants: a trans-
formed invariant depends only on the original invariant,
not on the others.

The image plane is two dimensional and has the nice
property that rotations commute; i.e., the result of two ro-
tations is independent of the order in which they are per-
formed. Because of this, one can show that all invariants
are necessarily complex numbers,’ with the exception of
the invariants of weight zero, which form a pair of real
numbers. Because the group of rotations in the plane
[SO(2)] is also easily denoted by a complex number of unit
length, we construct the invariants by using a complex
number notation. We denote the velocity field v(z, Z),
with z = x + iy and the complex conjugate Z = x — iy.
Now v is a mapping from the complex plane to the com-
plex plane. We write the second-order development of
the velocity field as

u(z, Z) = 1/20,,2% + 0722 + 1/2v522,

with v,, the velocity field differentiated twice with respect
to z and with similar notation for the other derivatives.
Now v,;, U.z, and vz are observables of our velocity field,
which we measure relative to some coordinate system.
To make these observables independent of our choice of
coordinate system, we rotate the system with an arbitrary
angle and see what happens. As we see below, it turns
out that v,,, V.3, and v; are already invariant. This actu-
ally means that we have been cheating by starting with
a favorable representation from the outset. We denote
an arbitrary rotation U(9) = exp(in6) with U(9) € S0O(2),
# € S, and an arbitrary integer n as the weight. Rotat-
ing v(z, Z) over 6, we find that
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U0)v[U1(8)z, U~(0)Z] = exp(ind){1/2 v,.[exp(~ind)z]?
+ vzlexp(~in@)z)exp(ind)z]
+ 1/2v5{exp(ind)z]%}.

This results in

v(z, Z) = Y2 exp(—ind)v,,z® + exp(ind)v,z2z

+ Y2 exp(3ind)vz22.

Thus we have three differential invariants of second or-
der: v, is an invariant of weight —1, v,z is an invariant
of weight 1, and vz is an invariant of weight 3. The sign
of the weight has to do with symmetry under reflection in
the x axis and need not concern us here. One can change
the sign of an invariant by complex conjugation. The dif-
ferential invariants are not unique: linear combinations
of invariants with the same weight are also invariant.

By rewriting the differential invariants in real coordi-
nates, we can get a better picture of them. As above, we
use superscripts to denote the components of the velocity
field v; e.g., v* denotes the x component. We use sub-
scripts to denote spatial derivatives; e.g., v}, denotes the
x component twice differentiated in the y direction. The
reader can easily verify the following relations:

_ _ v:x + vgy B .
2( Uzz + vz?) - (v:y + vgy) - V(V V): (12)
N N0 7“2 N
2i(V,; — vzz) = (_v;y oy ) V(V X v), (13)

X X J
Uy Uyy 2ny

2v§y+vzx_v§y)=vovov. (14)

4vﬁ=(

Here we have introduced the three second-order differ-
ential invariants of the velocity field. The gradient of
the divergence V(V - v) and the gradient of the rotation
V(V X v) have already been introduced in Ref. 1. The
double deformation V o V o v is the remaining differential
invariant.

In Fig. 3 (bottom row, left-hand panel) we have plot-
ted the vector field of a pure gradient of the divergence.
In Section 4 we show this invariant to depend on both
the second- and the lower-order terms of the geometry
of the surface. Although the dependence on the curva-
ture is the most important, we can use the first-order
term to gain an intuitive idea of the vector field gener-
ated by this invariant [see Eq. (16) below]: imagine a
frontoparallel plane rotating around an axis in the plane.
Then part of the plane comes toward the observer (lead-
ing to positive divergence) and part goes away from the
observer (leading to negative divergence). For the flow
pattern of Fig. 3 (bottom row, left-hand panel) the rota-
tion would be around a vertical axis. Note that the vector
field thus generated leads not only to a pure gradient of
divergence but also to a nonzero gradient of rotation (see
below). Thus the divergence changes with position, and
we have a gradient. The gradient of the divergence has
weight 1; thus it is a normal vector: only rotation over
27 transforms it into itself.

The vector field of a pure gradient of the rotation is
plotted in Fig. 3 (bottom row, middle panel). Just as for
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the gradient of the divergence, this invariant depends
on both the second- and lower-order terms of the geome-
try of the surface, with the second-order term being the
important one. Again, we can get an idea of the vector
field generated by this invariant by considering a rotat-
ing plane: in the part moving toward the observer the
velocity field will not only be oriented away from the axis
of rotation but will also be slightly curved inward. On
the other side of the axis of rotation the velocity field
will be slightly curved outward. Thus the direction of
rotation is different at opposite sides of the point of fixa-
tion, leading to a gradient in the rotation. This is harder
to imagine than for the gradient of divergence, because
the noncurvature-dependent terms are three times as
small for the gradient of rotation [see Eq. (17) below].
The gradient of the rotation has weight 1; thus it is a
normal vector.

In Fig. 3 (bottom row, right-hand panel) we have plot-
ted the vector field of a pure double deformation. In
Section 4 we show that this invariant depends only on
the shape of the object: it is zero when the object is
not curved. The double deformation has weight 3, and
a rotation over 27/8 transforms it into itself. As this is
difficult to see directly, we have drawn two additional
lines under an angle of 2#/3 in the plot of the double
deformation.

The tools that we have introduced above are very pow-
erful: it is easy to see that the invariants of third or-
der have weights -2, 0, 2, and 4. One should be able to
identify the invariants of weights —2 and 2 with the de-
formation of the gradients of rotation and divergence, re-
spectively. The invariant of weight 4 could be identified
with the triple deformation. Finally, the pair of scalar
invariants of weight zero could be identified with the di-
vergence of the gradient of the divergence or rotation.

4. CONSTRUCTION OF THE SHAPE INDEX

In this section we calculate the velocity field generated
by a moving rigid surface patch under perspective projec-
tion, and we calculate the invariants of the velocity field.
From these invariants we obtain an approximation to the
shape index and to some other properties related to shape.

Velocity Field and the Second-Order Invariants

The expression of the velocity field on a planar camera
has been derived in many studies, e.g. Refs. 2 and 8.
We consider a moving observer viewing a stationary
object. We locate the origin of our coordinate system
at the vertex of perspective projection and the positive
Z axis along the line of sight. Representing the patch
by Z(X, Y) and subjecting the observer to a translation
V = (VX, VY, VZ)T and rotation Q = (0%, QY, Q2)T, we
find for the velocity field on a planar camera at unit focal
distance from the point of projection that

vx
()
_(VE]Zx - VX/Z + OFXxy — QY (1 + x?) + sz)
- (Vz/Zy ~VY/Z + QX1 + y%) - Q¥xy — Q2%
(15)
with x = X/Z, y = Y/Z Cartesian coordinates on the
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camera. Here, to keep the results general, we have intro-
duced the 3D translation V and the 3D rotation { as inde-
pendent. In Section 5 below we assume fixation. Now,
using the definition of the surface patch in Eq. (4), we
approximate 1/Z in camera coordinates’s:

YZ (x, y) = (1/Zo)(1 = Zxx — Zyy) — 1/2Zxx%®
- Zxyxy — 1/2Zyyy® + O%(x, 5).

Substituting this relation into Eq. (15) and then using
Egs. (12)—(14), we get for the second-order differential
invariants

Z V/
v(v-v)=[z’:: >

z :|V|| + 3JQy ~38V./Z,VZ, (16)
YY

Zxx Zxy
V(V X v)= —[ZXY Zyy ]JV" - Q—=V,/ZyJVZ,
amn
VoVoy— Zxx — Zyy  —2Zxy v 18
evev= 2Zxy Zxx —Zyy |V (18)

where we have used the notation Vj = (VX, V¥)T for
translation parallel to the camera and V. for translation
orthogonal to the camera and identical notation for Q.

The matrix
0 -1
=11 o

denotes a rotation over 7/2. The first two expressions
have already been derived,! albeit in a spherical coordi-
nate system. Note that the gradients of divergence and
rotation depend both on curvature of the patch and on
lower-order terms and that the double deformation de-
pends only on curvature.

Shape Index

The double deformation is related in an interesting way
to the curvature of the surface patch. To see this we
calculate the length of the double deformation and the
angle between double deformation and V):

IV oV ov|= (2% + 4Z%y + Z%y — 2ZxxZyy)2IVIl,
19)

—2Zxy

—_— 20
Zxx — Zyy 20)

tan £(V),VoVov)=
These relations are easily understood from Egs. (6) and
(7). We have

[VoVo v|= [Amax — Aminllvlll , (21
L(V},VoVov)=—2a. (22)

Geometrically the operation of the double deformation on
V, can be viewed as a rotation over —2a, followed by a
scaling with size Aymax — Amin. For slants that are not too
large, cos ¢ and cos u are close to 1, and it follows from
Eq. (5) that Apay and Amin are close to Kmax and kmin (see
Section 5 below). Looking back at the definition of the
shape index [Eq. (2)], we can see that we also need the
sum of the two principal curvatures. This can be found
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from a linear combination of the gradients of divergence
and rotation. We define!

B=V(V V) + JVV XV)="Vg + V.

This is actually the differential invariant v,z used above.
We get

Zxx + Zyy 0
- [ 0 Zyxx + Zyy ]‘7" + 2JQ“
- 2V.,/Z\VZ. (23)

Neglecting the last two terms for the moment (these terms
are zero under parallel projection; see below), we have

IBI = I/\max + /\minllvlll .

Geometrically the operation of 8 on V| can be viewed as
a scaling with size Amay + Amin. Assuming that Apnax and
Amin are close t0 Kmax and xmin, we can extract the absolute
value of the shape index by

IS.| = 2/7 arctan( V;”é%v—l) . (24)
The sign of the shape index can be obtained from the
relation between B and V. Because B is always parallel
to V), we give S, a positive sign when B and Vj point in
the same direction, and we give S. a negative sign when
the angle between B and V) is 7. So all we need is
an estimate of the direction of Vj. Unfortunately, this
cannot be obtained from second-order optic flow when we
neglect the noncurvature-dependent terms, as can be seen
geometrically by introduction of the sister of B (called a),
which we define by

a =MV :v)—JVV XV,

with M a reflection in the x axis (a is the differential
invariant v,, used above). We neglect the noncurvature-
dependent terms, just as we did for B, but it should be
noted that they are twice as large for a as for 8. It is
easy to show that the operation of @ on Vj can be viewed
as a rotation over 2a, followed by a scaling with size
Amax — Amin. Thus one could also construct an estimate
of the shape index from &« and B at the expense of some
extra approximations. More interestingly, we find the
axial direction of V| as the bisector of @ and V oV o v.
Unfortunately, we do not know which direction to take on
the bisector, leaving the sign of Vj undetermined. For
now, we assume that we obtained the direction of V} by
some other means, but we will come back to this issue
below. We obtain a signed estimate of the shape index
from

S. = sign(B - V))2/ = arctan< W_ol—gl_o—v_l) . (25)
It turns out to be possible to derive an approximation to
the shape index directly from the velocity field, without
the need to calculate any other parameter, not even the
absolute value of the 3D translation velocity. It is impor-
tant to realize that S, is defined only for curved surfaces
and does not signal the presence of any significant cur-
vature. Thus the shape index is not relevant for tasks
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in which curved surfaces have to be discriminated from
planar ones.

Direction of Maximal Curvature and the Curvedness

In the derivation above we have also found another shape
characteristic: the direction of maximal curvature ag
[see Eq. (6)]l. Because B and V| are parallel, we obtain
an estimate of ay by

20, = L(V oVov, Sign(B : ‘Ill)ﬂ) .

Thus we can also find an approximation to the direction of
maximal curvature directly from the velocity field. Note
that when we do not know the direction of V), we can
only obtain the orientations of the principal curvatures,
but we do not know which orientation is the direction
of maximal curvature and which of minimal curvature.
Below we show that this ambiguity is connected with the
sign ambiguity of the shape index.

Furthermore, it is easy to derive the following estimate
for the velocity scaled curvedness, denoted by I,:

r,= Celvlll = 1/2(|V oV °V|2 + IBIZ)Uz-

As we have already stated in Section 1, it is impossible
to obtain metric information from the velocity field.
Here we obtain an approximation to the curvedness scaled
with the absolute value of the 3D velocity parallel to the
camera.

Slant and Tilt

In order to find relations for the attitude, we need
the first-order differential invariants. We have from
Eqgs. (15) and (8)-(10)

Vv =1/Zy(VZ - Vj + 2V), (26)

VXv=1/Z(VZ - JV)) + 20, . @7
Zy —Zy

Vov= 1/Z0|: Zy  Zy }Vu . (28)

Just as for the double deformation, it is interesting to look
at the length of the deformation and its angle with Vj:

IV ovl=1/Z(Zx® + Zy®)?|Vy| = 1/2Z, tan oV,
L(Vov,V)=24(VZ,e,)=r. (29)

The first of these equations gives the velocity scaled slant.
We obtain an estimate of the tilt from

Te = £(V o v, sign(8 - V))B).

Note that when we do not know the direction of V; we
can obtain only the axis to which 7 is restricted: both 7
and 7 + 7 lead to the same estimate of the tilt. Below
we show that this ambiguity is connected with the sign
ambiguity of the shape index.

Velocity Field under Parallel Projection

In our derivation of a linear estimate for the shape index
we had to make the assumption that the noncurvature-
dependent terms in B are small, that Agnay and Ay, are
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close t0 kmax and kmin, and that we can obtain the di-
rection of V). We also indicated an ambiguity in the
shape index, in the orientation of the principal curva-
tures, and in the tilt when the direction of Vj is unknown.
We will show that the assumption that the noncurvature-
dependent terms in B8 are zero is identical to the use of
parallel (orthographic) projection in the derivation of the
velocity field. From the velocity field under parallel pro-
jection it is easy to understand the ambiguities.

The expression of the velocity field of a rigid moving
second-order surface patch under parallel projection is de-
rived in Ref. 4. Because it is important to our argument,
we give a summary of this derivation. Representing the
patch by Z(X, Y) and subjecting the observer to a transla-
tion V = (VX, V¥ VZ)T and rotation Q = (QX, Y, Q2)7,
we find for the velocity field on a planar camera under
parallel projection

v \ _ (=VX-QYZ + 0%y
(vy) _(—VY-*'QXZ—QZx)

Note that the roles of V and Q are reversed when we
compare this velocity field with the velocity field that
we obtained under perspective projection: under parallel
projection ) generates information about the structure of
the object, and under perspective projection V generates
this information. Introducing polar coordinates r, a in
the image plane, we can write this succinctly as

v(r,a)=-V, - Q,Je,r + JOZ.

Now, substituting the Taylor development of Z [Eq. (4)]
and the expressions for the attitude and principal curva-
tures [Eq. (6)] and rewriting them in polar coordinates,
we find that

v(r, @) = =Vy + JQZy + [-Q,Je, + (VZ, e,)JQ]r

1 + tan? o cos?(a — 7)
cos o

+ k() JOr2/2.

It is now easy to calculate the second-order invariants, as
in Egs. (16)—(18). The second-order invariants have only
the curvature-dependent terms but are otherwise similar
to those in Egs. (16)—(18). Further, one can easily show
that the zeroth order disappears when the observer fixates
and that the first- and second-order velocity fields v(r, a)
do not change when we make the following substitutions:

Q)—-Q,
Kn(a) = —ka(a),

T— a7+ T,

The change of the tilt by 7 is equivalent to a change of
the sign of VZ. Because of Euler’s formula [Eq. (1)], the
substitution x,(a) — —«k,(a) is equivalent to

Kmax =™ — Kmin »

—_

Kmin ~ Kmax »

ag— /2 + ag.

Thus the velocity field of a surface patch under paral-
lel projection is ambiguous in exactly the same way as
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we found above when we neglected the noncurvature-
dependent terms in B8 and a. This should come as no
great surprise, as we have shown that the second-order in-
variants under parallel projection contain only curvature-
dependent terms. The ambiguities are easily imagined
one by one: the concave/convex ambiguity is easily un-
derstood for rotating spheres with a frontoparallel tangent
plane, the interchange of the directions of maximal and
minimal curvature is easily understood for a rotating sym-
metric saddle with a frontoparallel tangent plane, and the
tilt ambiguity is easily understood with a rotating plane.

As we showed above, the ambiguities can be lifted once
we know the direction of Vj. A detailed discussion of
how this direction can be obtained is beyond the scope of
this paper. There are two possibilities regarding how the
information about the direction of Vj could be obtained.
The first is the use of extraretinal signals, such as knowl-
edge that one’s left eye is at the left of one’s right eye in
stereo vision or knowledge of movement direction in ac-
tive vision. The second possibility is to use a third view,
as described in Ref. 16.

5. SIMULATIONS

In deriving the various estimates related to shape, we
made some approximations. In this section we show the
effects of these approximations to be generally small for a
field of view of 6 deg. We do not give analytic expressions
for the effect of the approximations, because they tend
to get unwieldy, but we rely on computer simulations
instead.

In this section we assume fixation and zero torsion; i.e.,
we take

Q) =-JV\/Z, (30)
Q,=0. (81)

We take quadratic surface patches. It should be noted
that these patches generally do not have a constant shape
index: except for the parabolic (cylinderlike) patches,
shape index varies with position. This is not a big prob-
lem, though, as long as the field of view is small. To
make a comparison with experimental results, we took
most of the parameters from Ref. 17: a distance of 2.5 m,
slant zero, a curvedness of 5 m~?, a direction of maximal
curvature in the x direction, and a velocity of 1 m/s in the
x direction. We took a square field of view of 6 deg X
6 deg, whereas in the experiment the field of view was
circular. When we take a nonzero slant, we always take
zero tilt (and thus rotate the tangent plane around a hori-
zontal axis). We use this set of parameters in all simula-
tions reported below, unless otherwise noted. We took a
square grid of 5 X 5 in the image plane and calculated the
velocity in each grid point. The results did not depend on
the number of grid points, except when the curvature was
high. Therefore we took an 11 X 11 grid for the curve
for curvedness 30 m~! in Fig. 4. We fitted the velocity
field with a polynomial up to second order, using a lin-
ear least-squares algorithm. From the fitted parameters
we calculated the differential invariants and from there
the estimates of the shape index S, the velocity scaled
curvature I',, and the angle between direction of maxi-
mal curvature and the x axis, @.. In the experiment of
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van Damme and van de Grind,!” the subject was shown
many views of the object and was actively moving. Thus
we can assume that the subject knows the direction of
movement, and we take the correct direction of V) in our
simulations.

The vector B enters into all our shape measures.
Therefore it is important to show the effect of the
noncurvature-dependent terms in B. Substituting
Eq. (30) into Eq. (23), we find that

B = Zxx + Zyy + 2/Zo)V) — 2(V./Zo)VZ. (32)

There are two terms in this equation that we previously
neglected: a zeroth-order term 2/Z,, which we assumed
to be small relative to Zxx + Zyy, and a first-order term
2(V./Zy)VZ, which we assumed to be small relative to
(Zxx + Zyv)V). Note that the zeroth-order term changes
only the length of B, never its direction. The first-order
term has a more complicated influence on B, depending on
the tilt (which gives the direction of VZ) and V. When
VZ and V) are parallel, the first-order term changes only
the length, not the direction, of 8. When VZ and V) are
orthogonal, the first-order term influences not so much
the length as the direction of B.

Shape Index

First, we show the effect of neglecting the zeroth-order
term in Eq. (32) on the estimate of the shape index S,. In
Fig. 4 we have plotted the bias in shape index (difference
between the estimated shape index and the shape index
in the fixation point) for several values of the curvedness.
Note that we would have obtained the same curves for
different values of Zy: keeping the curvedness constant
at 5m™! and Z, equal to 15, 7.5, 5, and 2.5 m results
in the same curves. The bias is zero at the extremes of
the shape-index scale and increases toward the middle.
One can show that the effect that the bias is zero for the
spherical shapes is caused by the vanishing of the double
deformation at the extremes of the shape-index scale.
The bias is smaller for higher values of the curvedness.
Incidentally, one can also see the problems that one would
have for a series development of the bias: the lowest

0.06

0.05

0.04

bias=Se-S

-1 -0.5 0 0.5 1
S

Fig. 4. Bias in shape index (difference between the estimated
shape index and the shape index at the fixation peint) as a
function of shape index at the fixation point. The different
curveslare for different values of the curvedness: 5, 10, 15, and
30 m™".
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Fig. 5. Bias in shape index as a function of shape index at
the fixation point. The different curves are for different com-
binations of the slant and V,. The two solid curves labeled 30
and 15 are for slant 30 and 15 deg with V; = 1; the remaining
solid curve is for slant zero (V does not matter). The dashed
curves are for slant 30 and 15 deg with V; = —1. The other
parameters are curvedness 5 m™1, tilt zero, distance 2.5 m, and
Vi =(1,0) m/s.

curve (for the highest value of curvedness) dips below zero
for S around —0.9, indicating that one would have to go to
fourth order in this series development (the effect is even
stronger for higher values of curvedness). The effect that
the bias is slightly larger for cylindrical and hyperbolic
shapes than for elliptic shapes is reported experimentally
in Refs. 17 and 18. Increasing the curvature decreases
the bias, a weak effect that was also reported. Finally,
note that the bias is slightly larger for concave than for
convex surfaces.’

Second, we show the effect of neglecting the first-order
term in Eq. (32) on the estimate of the shape index S,.
In Fig. 5 we have plotted the bias in shape index for
different values of the slant and of the sign of V,. It
should be noted that the bias is caused not only by the
first-order term but also by the zeroth-order term and by
the difference between A and «x. In fact, as we show in
the next paragraph, the latter effect is larger than the
effect of the first-order term. The curve for zero slant
is the same as the upper curve in Fig. 4. We see that
when V, > 0, i.e.,, when the observer is moving toward
the surface, the bias is smaller than when V, < 0. This
is the case because the first-order terms have different
signs when V,; > 0. In the figure we have plotted the
best- and worst-case situations: when VZ and V; are
not parallel we find intermediate values of the bias. The
sharp discontinuity in the bias around shape index —0.9
is discussed in the next paragraph.

A third approximation that we made in deriving S,
was to neglect the slant; i.e., we assumed Ay and Apin
to be close t0 Kmax and xmin. In Fig. 6 we have plotted
the bias in shape index for different values of the slant.
It should be noted that the bias is caused not only by
the difference between A and « but also by the zeroth-
order term. We observe the effect of slant to be very
small for the cylindrical shapes. This can be understood
from the fact that one of the two principal curvatures is
zero. Thus one of the A’s is zero, and the ratio in the
argument of arctan in the definition of the shape index
[Eq. (2)] equals 1. We observe that the slant increases
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the bias relative to the bias of the zeroth order for the
hyperbolic shapes and decreases the bias relative to the
bias of the zeroth order for the spherical shapes. The
sharp discontinuity in the bias around shape index —0.9is
caused by a change of the sign of the double deformation.
Also, the bias cannot be very negative there, because the
shape index cannot become smaller than —1. Still, the
bias does not exceed 0.1 around shape index —0.9. Even
a slant of 30 deg does not have much influence on the
shape index, a result reported in Ref. 19.

To illustrate the stability of our estimate of the shape
index against noise, we added 10% multiplicative Gauss-
ian white noise to the velocity field (independent for the
x and y directions). We ran 250 simulations for each
value of the shape index and calculated the mean and
standard deviation of S,. In Fig. 7 we have plotted the
difference between the mean of S, and the shape index
in the fixation point. Because we used the term bias for
the deterministic difference, we denote this difference as
the statistical bias. In Fig. 7 we have also plotted the
bias in shape index from the noiseless simulation. Ex-
cept for S = *1, the statistical bias does not deviate from

0.15

30

=Se-S

bias

-0.05}- ......... ......... .........

-0.1 : . .

-1 -0.5 0 0.5 1
S

Fig. 6. Bias in shape index as a function of shape index at the

fixation point. The different curves are for different values of

the slant: 0, 15, and 30 deg. The other parameters are curved-

ness 5 m~1, tilt zero, distance 2.5 m, and V = (1, 0, 0) m/s.

0.08

0.06}

-0.06 - - i :
-1 -0.5 0 0.5 1
S
Fig. 7. Bias in shape index as a function of shape index at the
fixation point. The thick curve gives the biag without noise;
the thin curve gives the mean bias of 250 simulations with
10% multiplicative Gaussian white noise. The error bars denote
the standard deviation. The other parameters are curvedness

5 m~1, slant zero, distance 2.5 m, and V = (1, 0, 0) m/s.
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2
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3 : : :
-1 -0.5 0 0.5 1

Fig. 8. Bias in direction of maximal curvature relative to the
x axis in degrees as a function of shape index at the fixation
point. The middle curve is for slant zero, the dashed discontinu-
ous curve for slant 30 deg and V = (0, —1, 1) m/s, and the solid
discontinuous curve for slant 30 degand V= (0, 1, 1) m/s. The
other parameters are curvedness 5 m~1, tilt zero, and distance
2.5 m.

45 : : ‘
-1 -0.5 0 0.5 1
S

Fig. 9. Velocity scaled curvature I', as a function of the shape
index at the fixation point. The correct value is 5 s™!. The
different curves are for different values of the slant: 0, 15, and
30 deg. The other parameters are curvedness 5 m~1, tilt zero,
distance 2.5 m, and V = (1, 0, 0) m/s.

the bias, showing our estimate to be statistically unbi-
ased. The deviation at S = *1 is caused by the arctan
function in the shape index, which is very nonlinear close
to S = 1. The standard deviation seems to be larger
for parabolic surfaces than for elliptic or hyperbolic ones.
We performed some more simulations with noise (mul-
tiplicative and additive) that showed our estimate of the
shape index to be highly resistant to noise. Variations of
slant, the direction of V), and the curvedness had negli-
gible influence beyond the deterministic bias. Only when
we added a large movement orthogonal to the camera
(V. # 0) in combination with multiplicative noise did the
estimates become very noisy, because the velocities are
high in the periphery, and so is the noise.

Direction of Maximal Curvature and the Curvedness

In Fig. 8 we have plotted the bias in the direction of
maximal curvature (difference between @, and «; in the
fixation point) for different values of the slant and velocity
in the y direction (and for V, > 0). We have shown above
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that «. can be calculated from the angle between B and
the double deformation. When either of these becomes
very small, the angle cannot be determined accurately.
Therefore we did not calculate a, when the smaller of
B and the double deformation was less than 10% of the
larger of the two in length. This happens around S =
*1, 0 which is why the curves shown are discontinuous at
these values. For § = *1 this is not a problem, as a is
not defined. That the direction of maximal curvature is
hard to determine for hyperbolic shapes is an interesting
prediction from our theory. The horizontal curve is for
slant zero, the dashed discontinuous curve is for slant
30 deg and VY < 0, and the solid discontinuous curve is
for slant 30 deg and V¥ > 0. In discussing the effects of
neglecting the zeroth- and first-order terms in B8, we have
already noted that only the first-order term can change
the direction of 8 when VZ and V|, are not parallel. We
have chosen VZ and V) orthogonal (the worst case), and
still the difference does not exceed 8 deg.

In Fig. 9 we have plotted the estimate of velocity scaled
curvedness I', for different values of the slant. The value
that we used for the simulation was 5 s™!. The figure
shows T, to be quite sensitive for slant. For higher val-
ues of the slant, I, leads to a considerable overestima-
tion of the true value. Further, I, increases with S for
slant zero. One can easily show this to be caused by the
zeroth-order term in B.

6. DISCUSSION

We have found that we can obtain an approximation of the
shape index, a scale-independent descriptor of 3D shape,
directly from the velocity field generated by a curved
patch moving rigidly relative to a planar camera. We
have tried to strike a middle ground between human per-
ception and machine vision. With our results we are able
to explain some of the outcomes of psychophysical experi-
ments (see below). We think that our model is relevant
for machine vision for those cases in which one does not
know the movement of the camera through 3D space, e.g.,
for imaging techniques with hand-held cameras.

Comparison with Psychophysical Findings

Shape index and curvedness have been used in a num-
ber of psychophysical experiments in which both optic
flow!"20 and stereo vision'®!® were used. In these ex-
periments it was established that human observers can
use shape index and curvedness quite independently
of each other. In a detection experiment'”!® in which
subjects were asked to classify a surface patch of un-
known shape index in one of eight shape-index cate-
gories, it was found that subjects could more readily
classify the elliptic shapes. Performance was lower
for the cylindrical and hyperbolic shapes. Performance
increased only slightly with increasing curvedness. Fur-
thermore, it was remarked!” that the velocity of the
subject did not seem to have a significant influence. In
another experiment!'® subjects were shown two patches,
and their task was to detect which one was the reference
patch. By use of this paradigm and stereo vision, it was
established that the discrimination of shape index is in-
dependent of the slant of the surface patch for slants up
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to 30 deg. All these results are in qualitative agreement
with the results of the simulations in Section 5.

Comparison with the Approach of

Koenderink and van Doorn

As we stated in Section 1, our approach is close to that
of Koenderink and van Doorn.* We improved on their
1975 paper by introducing the remaining invariant of
the second-order velocity field: the double deformation.
We showed this invariant to be proportional to the dif-
ference between the maximal and minimal curvatures.
From this we were able to construct an approximation of
the shape index directly from the velocity field. In their
original approach they could calculate only the sign of the
Gaussian curvature, which would be the equivalent of cal-
culating whether the absolute value of the shape index is
smaller or larger than 0.5.

Our approach is somewhat different from the approach
of Ref. 4. First, Koenderink and van Doorn employed
parallel projection, whereas we used both perspective and
parallel projection, which allowed us to estimate the dif-
ference. For parallel projection we found the same ex-
pressions for the second-order differential invariants as
we did for perspective projection, except for the gradi-
ents of divergence and rotation, which retained only the
curvature-dependent term. A second difference is that
the approach of Koenderink and van Doorn results in the
projected indicatrix of Dupin, scaled by the slant and
the 3D velocity, whereas some of our shape measures
(the shape index and the orientation of the principal
curvatures) are relatively independent of both slant and
3D velocity.

Comparison with Spin Variation Theory

A recent theory on the perception of curvature from optic
flow is based on the concept of spin variation,'??! i.e., the
bending of lines in the image. The spin variation is not a
geometrical object like the differential invariants, but it is
defined independently of a coordinate system. Therefore
it can be expressed in differential invariants as follows.
The spin variation in the direction of the x axis is given by

SV(0) = v?, .

By rotating this over an arbitrary angle 8 we obtain the
spin variation function [see Eq. (11)]. Because we know
that the spin variation depends only on second-order spa-
tial derivatives of the range function, we construct dif-
ferential invariants that have this property, too. The
double deformation already has this property: it depends
only on second-order spatial derivatives of the range func-
tion. We define

§=V(V-v)+3JV(VXvV)

as a second differential invariant dependent only on
second-order derivatives of the range function. Using
Eq. (11), we can easily show that

SV(0) = — 4V oV Jcos30 Y8 cosG_
#)=-VoVov sin 3 4 4 sin 0
(33)

This shows again nicely the invariance of V o V o v (weight
3) and & (weight 1).
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Spin variation theory has been compared with the find-
ings of psychophysical experiments in which human sub-
jects had to discriminate cylinders and planes. A cen-
tral prediction of spin variation theory was the asymme-
try in detection thresholds, depending on the axis of the
cylinder relative to the direction of movement of the ob-
server. Movement parallel to the cylinder axis leads to
lower detection thresholds than movement orthogonal to
the cylinder axis. This effect has indeed been observed
both in studies employing optic flow??2 and in studies
employing stereo vision.?

From the expression of the spin variation in differential
invariants [Eq. (33)], it easy to see that this asymmetry
for cylinders must be due to 8, because the double de-
formation is symmetric [take Zxy = 0 in Eq. (18)]. The
vector field & is indeed asymmetric, as can be seen by
substitution of Egs. (16) and (17) in the definition of 8.
We obtain

5= l:ZXX + 3Zyy

—2Zxy
~2Zxy I

3Zxx + Zyy

By taking Zxy = 0 and V; = (1, 0) we find that & is
three times larger for a horizontal cylinder (Zxx = 0) than
for a vertical cylinder (Zyy = 0). The curvedness I, is
constructed from the symmetric vector fields B and V o
V ov. Thus our curvedness measure cannot be relevant
for this particular aspect of human perception. Precisely
because of its symmetry, however, it might be interesting
for machine vision.

In summary, the spin variation theory is not so differ-
ent from the current approach in its mathematics. The
difference is more in the emphasis. Whereas spin varia-
tion theory stresses more the computational aspects and
the detection of curved, versus planar surfaces, our em-
phasis is more on geometry and on the detection of shape
as given by the shape index. Beyond that, our formula-
tion solves a few of the problems that occur in the spin
variation theory: in our formulation the shape index
is independent of 38D velocity and relatively independent
of slant, whereas the spin variation function depends
on both.

Comparison with Discrete Algorithms

We have employed the velocity field as an input to our
calculations; i.e., we assumed a small disparity between
two views of a rigid curved surface patch. The discrete
algorithms of structure from motion do not make the as-
sumptions of small motion and of a smooth surface patch.
Two recent studies in this field are reported in Refs. 24
and 25. For several reasons it is hard to compare our
results directly with the results of these studies. First,
the discrete algorithms start with the calculation of the
velocity and rotation of the camera and, given these, cal-
culate the 3D position of the points. They do not calcu-
late an explicit structure of the environment, although one
could do this in an extra step by fitting a model to the 3D
points. This contrasts with our approach, in which we
calculate the structure of the environment directly. Sec-
ond, the discrete algorithms employ a two-step approach:
in the first step a linear algorithm is used to estimate
the velocity and rotation of the camera. Because this
estimate is statistically biased, this estimate is used as
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starting point for an iteration, which minimizes the dis-
crepancy between fitted image points and observed image
points. In contrast, our approach is linear in the param-
eters. Third, the discrete algorithms are exact, whereas
our results are approximate. Notwithstanding these dif-
ferences, there is an interesting point in the study by
Weng et al. (Fig. 16 of Ref. 25), where some simulations
were done for small image motion. Using parameters
comparable with theirs, we found the statistical bias in
the estimates to be small, generally of the order of a few
percent. This contrasts with their estimate of the bias in
the velocity, which can be of the order of 100%, for small
image motion.

Consequences of the Theory

From our approach we are able to derive new hypotheses
that can be tested in psychophysical experiments. Most
of them are related to the approximations that we used to
calculate our estimates of shape index, orientation of the
principal curvatures, velocity scaled curvedness, and tilt.
These approximations are reasonable for many real-life
situations but can cause a breakdown of shape perception
in experimental situations. In particular, the effects of
the zeroth- and first-order terms in B lead to testable
predictions:

1. Ambiguities. We showed that our way of calculat-
ing shape amounts to the use of parallel projection. This
introduces ambiguities in V), the shape index, the direc-
tion of maximal curvature, and the tilt. In contrast, the
curvedness and slant can be extracted without ambiguity.
In particular, this means that the difference between a
planar and a curved surface can be extracted unambigu-
ously from a two-frame motion sequence. This is rele-
vant, since most psychophysical studies searching for an
effect of sequence length have used the curvedness in their
tasks (see, e.g., Ref. 26 and the references therein). Fora
two-frame motion sequence we would predict ambiguities
in V), the shape index, the direction of maximal curvature,
and the tilt but not in the curvedness and slant. These
ambiguities could be lifted by the use of longer sequences.

2. Shape index. In the calculation of the absolute
value of the shape index we neglected the noncurvature-
dependent terms in 8. The first-order term is especially
interesting because it would predict a slant-dependent
influence of movement orthogonal to the camera (V.) on
the shape index. More specifically, we would predict no
influence of V', for zero slant and an increasing influence
with increasing slant, depending on the sign of V,. For
V. > 0 and for VZ and V| parallel, we would predict a
decreasing bias with increasing slant because the zeroth-
and first-order terms have different signs. For V, <0
we would predict the opposite effect (see Fig. 5).

3. Orientation of the principal curvatures. The orien-
tation of the principal curvatures could be recovered from
the angle between B8 and the double deformation. When
either of these is small, the angle is hard to determine.
The double deformation is small for spheres, which is not
a big problem, as the orientation of the principal curva-
tures is not defined for spheres (all directions have the
same curvature). The prediction that the orientation of
the principal curvatures is also hard to determine for hy-
perbolic surfaces where B is small and where the two cur-
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vatures are of opposite sign is a surprising consequence
of our theory.

Since the zeroth-order term does not change the direc-
tion of B but changed only its length, we would predict the
estimate of the orientation of the principal curvatures to
be independent of 3D velocity, curvedness, and distance,
just as for the shape index we predict a slant-dependent
influence of movement orthogonal to the camera (V,). In
this case we expect this effect to be strongest when VZ and
V| are orthogonal (see Fig. 8).

4. Velocity scaled curvedness. We already discussed
that the velocity scaled curvedness is a symmetrical quan-
tity and thus cannot be used to explain the asymmetry
found in the detection of curvature of cylinders. Still, it
could be used by human observers for the detection of
symmetrical surfaces. An interesting prediction of the
theory is that the velocity scaled curvedness would be
overestimated for slanted objects and that this overesti-
mation would depend on shape index (see Fig. 9).

5. Tilt. The tilt of the tangent plane could be recov-
ered from the angle between 8 and V o v. We would
predict the pattern of dependencies to be the same as for
the orientation of the principal curvatures.
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