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Abstract 

W e  derive several measures of 30 shape directly 
f rom the velocity field generated by a rigid curved sur- 
face patch under perspective projection. W e  use in- 
variance under  rotation of the image plane to  decom- 
pose the velocity field in differential invariants. From 
a combination of these invariants we construct a n  ap- 
proximation to  the absolute value of the shape index, 
to  the curvedness and to  the principal direction. W e  
show the effect of these approximations to  be small for 
a field of view of 6 deg. 

Keywords: 3D shape, structure f rom motion 

Introduction 

Central in our approach to the extraction of struc- 
ture from motion is the use of geometry. We study the 
invariance of the velocity field under the group of ro- 
tations of the plane (the Lie group SO(2)). The differ- 
ential geometric properties of smooth surfaces can be 
classified according to  order. The zeroth order prop- 
erty is the distance of the object. First order proper- 
ties can be described by the slant and the tilt. Note 
that distance, slant and tilt of an object will in gen- 
eral change when it moves relative to  an observer. The 
second order properties can be described by e.g. the 
principal curvatures and the principal direction. The 
principal curvatures are the lowest order properties 
which do not change when the object moves relative 
to the observer i.e. they iLre intrinsic to the object. 

Because the velocity field is derived from a projec- 
tion metric information cannot be obtained from it. 
This means that one cannot obtain the 3D translation 
velocity of the observer relative to the object. Neither 
can one obtain the distance to the object nor its cur- 
vatures. Of course one ca.n construct combinations of 
these properties that do not depend on metric infor- 
mation e.g. the ratio of the principal curvatures. Since 
the principal curvatures are the lowest order proper- 
ties that arc intrinsic, the ratio of the principal cur- 

vatures (or any function thereof) is the only intrinsic 
property of the object that can be derived from the 
velocity field (up to  second order). 

Description of shape measures 

In computer vision shape is often described by the 
principal curvatures K,,, and ~, i , ,  and the principal 
direction (YO. The principal curvatures are the extrema 
of the normal curvature IC,,. The normal curvature is 
obtained as the curvature of the curve one gets when 
one cuts the surface with a plane through the normal 
of the surface. Koenderink and van Doorn introduced 
the following descriptors [6]: 

s = 2/?r arctan(Kmax K m a z  + - Kmin Kmin ), (1) 

with the shape index  5’ carrying all scale independent 
information about shape, and the curvedness C car- 
rying all scale dependent information. Algebraically, 
one can view the shape index and the curvedness as 
scaled polar coordinates in the nmaX, K , ~ ~  half-plane 
(see fig. 1) .  We take nmaX 2 K,,, because interchang- 
ing and K~~~ has the same effect as interchang- 
ing x and y and thus only changes the orientation of 
the surface, not its shape. 

We parametrize a smooth surface patch using the 
range function Z(X,Y) with (X,Y, 2)  E R3. We de- 
velop the patch up to second order in a Taylor series: 

Z ( X , Y )  = Zo+ZxX+ZyY+ (3) 
1/2 z x x  x2 + z x y  X Y  + 112 z y y  Y2, 

where 20 is the distance to the patch, ( Z X , Z ~ ) ~  
VZ is the range gradient and ZXX, Zxy and ZYY 
denote the second order derivatives. The range gra- 
dient is related to the attitude of the surface by 
VZ = tana(cos7, sinT)T with U E [O,?r/2] denoting 
the slant and 7 E [0,2?r) denoting the tilt. The slant 
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Figure 1 Objects in IC,,,=., IC,,,~,, space. By a change of 
coordinates, objects can be characterized by an angular 
coordinate, the shape index S, and a radial coordinate, 
the curvedness C. The shapes drawn to illustrate various 
values of S are to  be viewed from below. 

equals the angle between the normal of the surface and 
the line of sight (we take the direction of the normal 
always towards the viewer). The tilt equals the angle 
between the normal of the surface when projected on 
the image plane and the X-axis. 

The relation between normal curvature and the sec- 
ond order derivatives of the range function depends 
also on the first order derivatives. Taking a direction 
e,  in the tangent plane (which has angle a with the 
X-axis) and expressing the first order derivatives in 
terms of slant and tilt, we have (7, p 2211: 

1 + tan2 U cos2(cy - T) - X(a) = &(a) - - 

zxx cos2 a + 2 z x y  cos a sin a + z y y  sin2 cy, 

cos U 

where we introduced X as a new curvature measure. In 
contrast to  IE,, which only depends on curvature, X also 
depends on the attitude of the tangent plane. Later we 
show that it is impossible to  obtain K~ directly from 
the velocity field, but that X can be obtained directly. 
One can show that for: 

tan(2ao) = 2Zxv/(Zxx - Z Y Y ) ,  (4) 

X ( m a x , m i n )  1/2 ( Z X X  + Z Y Y ) ~  ( 5 )  

one obtains the maximal and minimal A, given by: 

when the slant is not too large, t a n g  will be close to 
0 and cos U will be close to 1 and thus A,,, , Amin will 
not deviate much from K.,~,, &,,,in. 

Invariants of the velocity field 

The decomposition of the zeroth and first order ve- 
locity field leads to  four invariants [3]: translation of 
order zero and divergence (V . v), rotation ( V x v) 
and deformation (V o v) of order one. In fig. 2 we 
show examples of the vector field generated by these 
invariants. Discussing these will give us a chance to 
introduce the weight of an invariant [2]. The weight 
captures the symmetry of the invariant under rotation: 
27r divided by the weight is the smallest angle over 
which one has to rotate the invariant so that it equals 
itself (except for weight zero). The translation has 
weight 1, meaning that a rotation over 27r maps the 
vector field onto itself. The divergence and rotation 
have weight 0, meaning that every rotation maps the 
vector field onto itself. Thus they are scalars. The de- 
formation has weight 2, meaning that a rotation over 
T maps the vector field onto itself. 

Translation 
////// 
////// 
////// 
/ / / I / /  
////// 
////// 

Divergence Rotation Deformation 
\ \  \ I / /  /,/A\ 

- * .  , /I , / A \  - 4  ,..- 
,, / \ \, & / /  \ \  \ / / /  
/ , I  \ \ \  \,-A-/ \ \ \  I / /  

\ \  \ I / /  

/ / ,  ..- , # / I  1.\,/1 

Gradient of Gradient of Double 
Divergence Rotation Deformation 
1' - \..,. / I / # . \ \  /I:( 

_ _ . . - -  f l . . l l  ,&. 
0 C . . . \  \ \ . * I /  , , , . I (  

I /,, ' 
C * . . _ _  l l . . l f  , \ . . . .  
A / - .  ,, \ \ I I / / 

Figure 2 Flow fields generated by differential invariants. 
Top: zeroth order invariant in direction (1, 1). Middle: 
first order invariants, all in direction (1, 0). Bottom: sec- 
ond order invariants, all in direction (1, 0). To see the 
symmetry of the double deformation we have drawn two 
lines of equal length with an angle 2 ~ / 3  between them in 
the plot of its flow field. 

1/2 d Z g x  + 42gY + ZCy - ~ Z X X Z Y Y .  The image plane is two dimensional and has the 
nice property that rotations commute i.e. the result 
of two rotations is independent of the order in which 
they are performed. Because of this all invariants are 

When the tangent plane is fronto-parallel, we have 
U = 0 and A,,,, A,,,, are equal to  nmaz,  ~ , , i ~ .  Also, 
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complex numbers [2], with the exception of the invari- 
ants of weight 0, which form a pair of real numbers. 
Because the group of rotations in the plane (SO(2)) 
is also easily denoted by a complex number of unit 
length we will construct the invariants using a com- 
plex number notation. We denote the velocity field 
by v(z, Z )  with z = 2 + ,iy and the complex conjugate 
E = x - iy. v is now a mapping from the complex 
plane t o  the complex plane. We write the second or- 
der development of the velocity field as: 

v(2, z )  = 1 /2  U,, z 2  + v,z 2% + 1/2 vzz 2, 
with v,, the velocity field differentiated twice with 
respect to z and with similar notation for the other 
derivatives. Now v,,, v , , ~  and 211,- are observables of 
our velocity field relative to some coordinate system. 
To make these observables independent of the coordi- 
nate system we rotate it over an arbitrary angle. It 
turns out that v,,, vLL and vpz are already invariant! 
This means that we cheated by starting with a very 
favourable representation from the outset. Rotating 
v(z, Z )  over n0 we find: 

v ( z ,  2 )  = 112 exp(-in$) v,, z2 + exp(in8) vZz z z  + 
1 /2  exp(3in8) vzf  2. 

Thus we have three invariants of second order: v,, of 
weight - 1 ,  uZz of weight 1 and vzz of weight 3. The sign 
of the weight has to do with symmetry under reflection 
in the x axis and need not concern us. One can change 
the sign by complex con.jugation. The invariants are 
not unique: linear combinations of invariants with the 
same absolute weight are also invariant. 

Rewriting the invariants in real coordinates we get: 

+ v,", ( .U;, +"YyY ) P, (7) 4v,z = 

with e.g. V , " ~  denoting the second order derivative 
in the y direction of the x component of the velocity 
field. Here we introduced the second order invariants, 
denoted by a,  P and 7. Alternatively, we can ex- 
press the invariants in nabla notation. We obtain the 
gradient of divergence V(V . v) = 2 (g , ,  + v,z) and 
the gradient of rotation V(V x v) = 22 (e,, - v,j) 
which were introduced in [3]. The double deformation 
V 0 V 0 v = 4 vsz is the remaining invariant. In fig. 2 
bottom row we have plotted examples of the vector 
fields of these invariants. 

Second order invariants and shape 

We consider a moving observer viewing a station- 
ary object. We locate the origin of our coordinate 
system at the vertex of perspective projection and the 
positive Z-axis along the line of sight. Subjecting the 
observer to a translation V = ( V x ,  V y ,  Vz )T  and ro- 
tation s1 = ( R X , R Y , R Z ) T  we find for the velocity 
field on a planar camera at unit focal distance from 
the point of projection [8]:  

with x = X / Z ,  y = Y / Z .  Using eq. 3 we approximate 
1 / Z  in camera coordinates: 

1 /Z(X ,  51) = (1/ZO) ( 1  - z x  2 - ZY y)- 
1 / 2  z x x  x2 - z x y  zy - 1 /2  z y y  y2 + 0 3 ( x ,  y). 

Substituting this in eq. 9 and then using eqs 6 to 8, 
we get for the second order differential invariants: 

where we have used the notation Vll E ( V x ,  V Y ) T  for 
translation parallel to the camera and V i  for transla- 
tion orthogonal to the camera and identical notation 
for a. The matrix J denotes a rotation over x / 2 .  

To see its geometrical meaning we will calculate the 
length of y and the angle between 7 and VII: 

where we used eqs. 4 and 5. Geometrically, 7 can be 
viewed as a rotation over -2ct.0 followed by a scaling 
with Amax - A,,,. 

Neglecting the non-curvature dependent terms in 
p ,  which is equivalent to  parallel projection [l]: 

Geometrically, P can be viewed as a scaling with 
Amax + Amin .  Neglecting the non-curvature dependent 
terms in a: 
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Geometrically, a can be viewed as a rotation over 2a0 
followed by a scaling with Amaz - Amin. 

Assuming that A,,,, Ami,, are close to IC ,~ , ,  tsmzn, 

we obtain the shape index using eq. 1: 

Se = sign@ . V I I )  2 / ~  arctan(-). IPI (15) 
IYI 

The sign of the shape index can be obtained from the 
relation between P and Vll. Because P is parallel to 
Vll, we give Se a positive sign when P and VI/ point 
in the same direction and we give Se a negative sign 
when the angle between P and VII is T .  So, all we need 
is an estimate of the direction of VII.  Unfortunately, 
this cannot be obtained from second order optic flow 
when we neglect the non-curvature dependent terms 
[l]. Here we assume that we obtained the direction of 
VII by other means e.g. from knowledge of movement 
direction in active vision or from a third view [4]. 

Because p and VI[ are parallel, we obtain an esti- 
mate of the principal direction a0 by: 

2ae = L ( Y ,  sign(P. VI/) 0).  
Thus, we can also find the principal direction directly 
from the velocity field. Note that when we do not 
know the direction of VI, then we do not know which 
orientation is the direction of maximal curvature and 
which of minimal curvature. An estimate for the ve- 
locity scaled curvedness, re, can be obtained from: 

re E C e  lvll~ = 1/2 d m .  
Simulations 

In this section we will show the effects of the ap- 
proximations to be small for a small field of view. We 
assume fixation and zero torsion (011 = -JVll/Zo, 
RI = 0) We take quadratic surface patches with a 
distance of 2.5 m, slant zero, a curvedness of 5 m-l, 
direction of maximal curvature in the x direction and 
a velocity of 1 m/s in the x direction. We take a square 
field of view of 6 by 6 deg. When we take a non-zero 
slant, we will always take zero tilt. We use this set of 
parameters in all simulations, unless otherwise noted. 
We took a grid of 5 by 5 in the image plane and cal- 
culated the velocity in each grid point. We fitted the 
velocity field with a polynomial up to second order 
using a linear least squares algorithm. From the fit- 
ted parameters we calculated the invariants and from 
there the estimates of the shape measures. 

Because /3 enters in all our shape measures, it is 
important to show the effect of its non-curvature de- 
pendent terms. TJsing fixation and eq. l l ,  we find: 

There are two terms which we neglected. A zeroth or- 
der term 2/20, which we assumed to  be small relative 
to Z X X  + Z y y ,  and a first order term 2(Vl/ZO) VZ, 
which we assumed to be small relative to ( Z X X  + 
Z Y Y )  VI[. Note that the zeroth order term changes 
the length of P, not its direction. The first order term 
has a more complicated influence on P, depending on 
the tilt. When VZ and VII are parallel the first order 
term changes the length, not the direction of P. When 
VZ and VII are orthogonal the first order term not so 
much influences the length as the direction of P. 

0.06 I 1 

-0.02 
-1  -0.5 0 0.5 1 

S 
Figure 3 The bias as a function of shape index at the 
fixation point. The curves are for different values of the 
curvedness: 5, 10, 15 and 30 m-'. 

First, we show the effect of neglecting the zeroth 
order term in eq. 16 on the shape index Se. In fig. 3 
we plot the bias in shape index (difference between 
estimated shape index and shape index in the fixation 
point) for several values of the curvedness. Note that 
we would obtain the same curves for different values 
of 20: keeping the curvedness constant a t  5 m-l and 
20 equal to  15, 7.5, 5 and 2.5 m results in the same 
curves. The bias is zero at the extremes of the shape 
index scale and increases towards the middle. One 
can show that the effect that the bias is zero for the 
spherical shapes, is caused by the vanishing of y at the 
extremes of the shape index scale. The bias is smaller 
for higher values of the curvedness. 

Second, we show the effect of neglecting the first 
order term in eq. 16 and of neglecting the difference 
between A m a x ,  Amin and IC,,,, IC,;, on the shape 
index Se .  In fig. 4 we plot the bias in shape index 
for different values of the slant and of the sign of VL. 
It should be noted that the bias is also caused by the 
zeroth order term. The curve for zero slant is the same 
as the upper curve in the previous figure. We see that 
when VI > 0 i.e. when the observer is moving towards 
the surface, the bias is smaller than when VI < 0. - 

P = ( Z x x  + ZYY + 2/20) Vi1 - 2(Vi/Zo) VZ. (16) This is the case because the first order term has a 
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0.2 1 1 

-0.1 . 
-1 -0.5 0 0.5 1 
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Figure 4 The bias in shape index as a function of shape 
index at the fixation point. The different curves are for 
different combinations of the slant and VL.  The two solid 
curves labeled 30 and 15 are for slant 30 and 15 deg with 
VL = 1, the remaining solid curve is for slant zero (VL does 
not matter). The dashed curves are for slant 30 and 15 deg 
with V l  = -1. The other parameters are: curvedness 5 
m-l,  tilt zero, distance 2.5 m and VI, = ( 1 , O )  m/s. 

becomes very small the angle cannot be determined 
accurately. Therefore, we did not calculate a, when 
the smaller of p and y was less than 10% in length 
than the larger of the two. This happens around S = 
f 1 , O  which is why the curves are discontinuous at  
these values. For S = fl this is not a problem as a0 
is not defined. In discussing the effects of neglecting 
the zeroth and first order term we already noted that 
only the first order term can change the direction of 
p. We have chosen VZ and VI, orthogonal (the worst 
case) and still the difference does not exceed 8 deg. 

9 

8 

7 
L" 

6 

5 

different sign when V l  > 0. In the figure we have 
plotted the best and worst case situations: when VZ 
and VI, are not parallel we find intermediate values of 
the bias. The discontinuity in the bias around shape 
index -0.9 is caused by a change of the sign of y. 

I 

. . . . . . . . ;Y.>o.  

- - - -  
0 

/ 

i 
I 

-10 ' I 
-1 -0.5 0 0.5 1 

S 

Figure 5 The bias in principal direction relative to the 
x axis in deg as a function of shape index at the fixa- 
tion point. The middle curve is for slant zero, the dashed 
discontinuous curve for slant 30 deg and V = (0 ,  -1,l) 
m/s and the solid discontinuous curve for slant 30 deg and 
V = (0,1,1) m/s. The other parameters are: curvedness 5 
m-', tilt zero and distance 2.5 m. 

In fig. 5 we plot the bias in the principal direction 
(difference between a, and a0 in the fixation point) 
for different values of the slant and velocity in the y 
direction. We showed that a,  can be calculated from 
the angle between p and y. When either of these 

Lt 

-1 -0.5 0 0.5 1 
S 

Figure 6 The velocity scaled curvature re as a function 
of the shape index at  the fixation point. The correct value 
is 5 s-'. The different curves are for different values of the 
slant: 0, 15 and 30 deg. The other parameters are: curved- 
ness 5 m-', tilt zero, distance 2.5 m and V = (l,O,O) m/s. 

In fig. 6 we plot the velocity scaled curvedness re 
for different values of the slant. The figure shows re 
to be quite sensitive for slant. For higher values of the 
slant re leads to a considerable overestimation of the 
true value. Further re increases with S for slant zero. 
One can show this to be caused by the zeroth order 
term in 0. 

Discussion 

We obtained an approximation to the absolute 
value of the shape index, to the curvedness and to 
the principal direction directly from the velocity field 
generated by a curved patch moving rigidly relative to 
a planar camera. Our approach is close to Koentlerink 
and van Doorn's [3]. We improved on their paper 
by introducing the remaining second order invariant: 
the double deformation. We showed this invariant to 
be proportional t o  the difference of the maximal and 
minimal curvature. Our approach is different from 
[ 5 ] .  First, Koenderink and van Doorn employed par- 
allel projection whereas we use perspective projection. 
Second, their approach results in the projected indica- 
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trix of Dupin, scaled by the slant and the 3D velocity, 
whereas some of our shape measures (shape index and 
principal direction) are relatively independent of both. 

velocity scaled curvedness 

a 0 ’  

1 :  1 

T I  
A & * : = =  I- .  

- 1  -0.5 0 0.5 1 
principal direction 

-0.2 ’ * 
I 

-1  -0.5 0 0.5 1 

maximum disparity (pixelds) 

-1 -0.5 0 0.5 I 
S 

Figure 7 Top: velocity scaled curvedness re as a func- 
tion of the shape index at the fixation point. The cor- 
rect value is 0.16 s-’. The thick line denotes the noiseless 
I?., the thin line the mean of 30 simulations with addi- 
tive noise. The errorbars denote standard deviation. Mid- 
dle: same for principal directions and shape index. Lower: 
the maximal disparity on the camera. The other parame- 
ters are: curvedness 10 m-’, slant zero, distance 2 m and 
V = (0.016,0,0) m/s. 

We employ the velocity field as input to our calcu- 
lations i.e. we assume a small disparity between two 
views of a smooth rigid curved surface patch. The 
discrete algorithms of structure from motion do not 
assume small disparity and smoothness [9]. For sev- 
eral reasons it is hard to compare our results directly 
to the results of this study. First, the discrete algo- 
rithms start with the calculation of the velocity and 
rotation of the camera and given these calculate the 
3D position of the points. They do not calculate an 
explicit structure of the environment, although one 
could do this in an extra step by fitting a surface 
to the 3D points. This contrasts with our approach 
where we directly calculate the structure of the en- 
vironment. Second, the discrete algorithms employ a 
two step approach: first, they use a linear algorithm 

to estimate the velocity and rotation of the camera. 
Because this estimate is statistically biased they use 
it as starting point for an iteration, which minimizes 
the discrepancy between fitted and observed image 
points. In contrast, our approach is linear. Third, the 
discrete algorithms are exact whereas ours is approx- 
imate. Notwithstanding these differences there is an 
interesting point in [9, Fig. 16)], where they did simu- 
lations for small disparity. They found the statistical 
bias in the estimate of the 3D velocity to  be large: 
for 25 point correspondences and a maximal dispar- 
ity of 4 pixels on a camera of 512 by 512 pixels they 
found the bias to be 50%. We ran some simulations 
using a 10 deg field of view with gaussian white noise 
of standard deviation 0.01 deg/s added to the veloc- 
ity field. This noise strength is comparable to that of 
[9]. The results (see fig. 7) show that our algorithm 
is quite robust. Only for the principal direction does 
the error become large which is caused by either p or 
7 becoming small. 

This work was supported by the Foundation for 
Biophysics and by MUCOM (ESPRIT BRA 6615). 
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