
Previously, we characterized the kinetics of ýOµ during heavy

exercise (above the lactate threshold LT) as a function of the

percentage of type I (slow twitch) muscle fibres present in

the contracting muscles (Barstow et al. 1996). Figure 1

presents data from our previous study which illustrates the

ýOµ response for the subject with the greatest proportion of

type I fibres (67%) and the subject with the least (18%). To

our surprise, the initial, predominant rise in ýOµ, normalized

to the increase in power output (i.e. ÄýOµ ÏÄW, or gain G1 in

Fig. 1), was significantly related to fibre type: the greater

the proportion of type I fibres, the greater was the initial

rise in ýOµ. Further, the gain G1 was directly related to the

relative fitness of the subjects, as indicated by peak ýOµ (in

ml kg¢ min¢). Interestingly, after 8 min of exercise, there

was no significant influence of fibre type on ýOµ (Fig. 1).

It was unclear from our previous results if the greater initial

ÄýOµ ÏÄW (G1 of Fig. 1) seen with a greater proportion of

type I fibres or peak ýOµ was associated only with heavy

exercise (> LT), or if it would also be seen for moderate

intensities of exercise (< LT). From glycogen depletion

patterns, type I fibres appear to be recruited first during

exercise, with type II fibres being recruited as exercise

intensity or duration increases (Gollnick et al. 1974; Vollestad
& Blom, 1985). Based on this, we predicted that the influence

of fibre type distribution on exercise energetics would be

most pronounced at higher exercise intensities (i.e. > LT),
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We recently reported that a higher percentage of type I fibres in vastus lateralis and a greater peak oxygen

uptake (ýOµ) were associated with a greater initial rise in ýOµ (ÄýOµÏÄW, where W is work rate) following the

onset of heavy constant power output exercise (above the lactate threshold, LT). It was unclear if these

results were true only for heavy exercise, or if the association between fibre type andÏor fitness and ÄýOµÏÄW

would also be seen for moderate (< LT) exercise. The purpose of the present study was to compare the

relationships between fibre type or peak ýOµ and ÄýOµÏÄW determined for moderate (< LT) and heavy (> LT)

exercise intensities during incremental exercise. Nine healthy subjects performed an incremental ramp test on

a cycle ergometer. The ýOµÏW slope was calculated for the domain of power outputs up to the LT (SÔ), from the

LT towards peak ýOµ (Sµ), and over the entire linear portion of the ÄýOµÏÄW response (ST), and compared to

fibre type distribution determined from biopsy of the vastus lateralis, and to peak ýOµ (as ml kg¢ min¢).

Significant correlations between ÄýOµÏÄW and the proportion of type I fibres were found for each exercise

domain (r is 0.69, 0.71 and 0.84 for SÔ, Sµ and ST, respectively, P < 0.05). SÔ ranged between about

9 ml min¢ W¢ for a low proportion of type I fibres and 11 ml min¢ W¢ for a high proportion of type I

fibres. Similar correlations were also found between Sµ (r = 0.70) and ST (r = 0.76) and peak ýOµ. These results

are consistent with our previous findings during >LT constant power output exercise, and suggest that the

proportion of type I fibres, and possibly fitness as indicated by peak ýOµ, is associated with greater ÄýOµÏÄW

during the initial adjustment to < LT as well as >LT exercise. These results do not appear to be explained by

classical descriptions of the kinetics of adjustment of ýOµ following the onset of ramp or constant power output

exercise. They might reflect enhanced motor unit recruitment in subjects with a greater percentage of type I

fibres, andÏor who are more aerobically fit. However, the underlying mechanism for these findings must await

further study. Experimental Physiology (2000), 85.1, pp.109—116.
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where type II fibres are more likely to be recruited.

Specifically, we hypothesized that: (a) for power outputs

above the LT, where both type I and type II fibres would be

recruited, the slope of ÄýOµ ÏÄW would significantly

correlate with the proportion of type I fibres in the

contracting muscles and with peak ýOµ (as previously shown

for heavy constant power output exercise; Barstow et al.
1996), but that (b) over the moderate power output range

(below the LT) where the primary fibre type recruited

would be type I, any influence of differences in fibre type

distribution or peak ýOµ on the slope of ÄýOµ ÏÄW would be

minimal. To test these hypotheses, we have now

characterized the relationship between ýOµ and power output

during incremental (ramp) cycle ergometer exercise in the

same nine subjects who had previously performed the

constant heavy exercise bouts (Barstow et al. 1996). Slopes
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Figure 1

A, ýOµ kinetics in the transition from light to heavy exercise in

two subjects who differed in level of fitness and in the proportion

of type I muscle fibres in their vastus lateralis, as reported

previously (Barstow et al. 1996). B, schematic diagram
summarizing differences in relative contribution of initial rise in

ýOµ following onset of exercise (as a gain G1, ml Oµ min¢W¢)

and relative contribution of slow component (A2') for the two

subjects in A. Modified from Barstow et al. (1996).

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Table 1. Subject characterisitics and parameters from ramp exercise test

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

LT, lactate threshold, estimated from gas exchange responses. See text for definitions of SÔ, Sµ and ST.

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––



(ÄýOµ ÏÄW) were determined for the regions of exercise

intensity corresponding to <LT, >LT and the whole

response, and compared to the underlying fibre type

distribution previously determined by muscle biopsy, as well

as to peak ýOµ.

METHODS

Subjects

Nine healthy volunteers (8 males), free of known cardiovascular,

pulmonary or metabolic disease, gave written consent to participate

in this study after all procedures and the possible risks and benefits

of participation were explained. The experimental protocol and

consent form were approved by the Human Subjects Committee of

Harbor-UCLA Medical Center. This research was conducted in

accordance with the Declaration of Helsinki. Subject characteristics

are shown in Table 1.

Exercise protocol

Each subject performed an incremental (ramp) exercise test to

volitional fatigue on an electromagnetically braked cycle ergometer

(Quinton Corival model 844). The ramp protocol consisted of 2 min

seated rest on the ergometer, 4 min of unloaded pedalling, the

ramp increase in power output to fatigue, then unloaded cycling

recovery for 6 min (Fig. 2A). The slope of the power output increase
was chosen so as to lead to fatigue in 8—12 min, and ranged from

25 to 35 Wmin¢. Pedal frequency was kept constant at 60 r.p.m.

throughout the exercise by visual feedback from a display mounted

on the handlebars of the ergometer. Pulmonary ventilation (ýE), gas

exchange (ýOµ and ýCOµ) and heart rate were measured breath by

breath throughout the exercise protocol as previously described

(Barstow et al. 1993). Subjects were instructed to avoid the

consumption of food, alcohol and caffeine for 4 h, and strenuous

exercise for 24 h, preceding the test.

Muscle fibre typing

Following the completion of the exercise tests, on a separate day, a

resting muscle biopsy was obtained from the left m. vastus lateralis

of each subject using the needle biopsy technique of Bergstrom

(1962). Muscle samples were mounted in embedding medium and

frozen in isopentane previously cooled to its freezing point in liquid

nitrogen. The embedded samples were stored at −80°C until further

analysis. Serial cross-sections (8—10 ìm thick) were cut in a cryostat

maintained at −20°C. The sections for myofibrillar ATPase

histochemistry were preincubated at pH values of 4.6 and 9.4.

According to their lability to the acid and alkaline preincubations,
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Figure 2

Data for one representative subject during ramp test. A, ýOµ and power output vs. time for the exercise

protocol (MRT, mean response time). B, V-slope plot of ýCOµ vs. ýOµ for estimation of lactate threshold (LT)

from gas exchange responses. C, plot of ýOµ vs. power output for determination of slope up to LT (SÔ), and
between LT and either peak ýOµ or levelling off of ýOµ (Sµ). Regression line for entire slope (ST) not shown for
clarity.
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the fibres were classified as either type I, IIa or IIb (Brooke &

Kaiser, 1970). For each subject, 500—900 fibres were analysed. The

number of each fibre type was expressed as a percentage of the

total number counted.

Data analysis

Exercise test data were averaged over 10 s periods and plotted. The

lactate threshold was estimated from gas exchange responses (LTest)

by the V-slope method (Beaver et al. 1986) (i.e. the breakpoint of
onset of non-linear increase in ýCOµ with respect to ýOµ), and

confirmed as the ýOµ above which there was hyperventilation with

respect to ýOµ but not to ýCOµ (Wasserman & Whipp, 1975). The

slope of ÄýOµ ÏÄW was determined using linear regression analysis

over three segments: SÔ, from 1 min into the ramp test up to the

LT; Sµ, from the LT to either peak ýOµ or where ýOµ began to level

off; and ST, over the range of SÔ + Sµ.

Finally, to test for any interaction between the kinetics of the

initial ýOµ adjustment during the incremental exercise and ÄýOµ ÏÄW,

peak ýOµ or fibre type, the mean response time (MRT) was

determined. This was calculated as the time from the onset of the

ramp forcing function to the point of intersection between the

baseline ýOµ and a backwards linear extrapolation of the ýOµ vs. time
slope (Fig. 2A) (Glantz, 1990). This was performed in two ways,

using either the region of ýOµ response below the LT, SÔ (MRT1), or

the total slope ST (MRTT) (Whipp et al. 1981). The baseline was

defined as the average value for ýOµ during the last 2 min of

unloaded cycling prior to onset of the ramp.

Statistical analyses

Linear correlation was used to assess the relationships between

each of the three slopes of ÄýOµ ÏÄW and either the proportion of

type I fibres or the peak ýOµ; significance was determined from the

correlation coefficient. In addition, multiple linear correlation

analysis was used to determine if there were significant independent

contributions of fibre type and peak ýOµ to predicting each of the

ÄýOµ ÏÄW slopes. Finally, one-way ANOVA with repeated measures

was used to compare the ÄýOµ ÏÄW slopes SÔ, Sµ and ST. For all tests,
significance was declared when P < 0.05. Dispersions about the

mean are expressed ± s.d. unless otherwise specified.

RESULTS

Figure 2 illustrates the exercise protocol and gas exchange

responses for one subject (Subject 3 in Table 1). ýOµ and

power output are shown as functions of time in panel A,
panel B shows the estimation of the LT by the V-slope

method, while panel C shows ýOµ as a function of

instantaneous power output over the regions of linear

regression analysis (only the regression lines for SÔ and Sµ
are shown for clarity). The values for peak ýOµ, estimated

LT, proportion of type I fibres, and slopes SÔ, Sµ and ST for
each individual are given in Table 1. Peak ýOµ averaged

3.40 ± 0.52 l min¢ (48.2 ± 7.1 ml kg¢ min¢), while the

estimated LT was 1.72 ± 0.35 l min¢, or approximately

50% ýOµ,max. The proportion of type I fibres averaged

47 ± 16%, with a wide range among subjects (18—67%).

Of the remaining fibres, most were type IIa (50 ± 17%);
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Figure 3

ÄýOµ ÏÄW during incremental exercise for the region below

the estimated LT (SÔ), above the estimated LT (Sµ), and across
the whole range (ST), as functions of proportion of type I
muscle fibres (left panels) and ýOµ,max (right panels).

Correlation coefficient (R in figure) > 0.5 is significant

(P < 0.05).

Figure 4

ÄýOµ ÏÄW during incremental exercise for data above (Sµ) and
below (SÔ) the estimated LT, compared to the gain (G1) for the

primary rise in ýOµ during heavy constant power output

exercise (> LT). Values for G1 have been reported previously

(Barstow et al. 1996). Both relationships are significant
(P < 0.005).



there were few discernable type IIb fibres (3 ± 3%). SÔ
averaged 10.2 ± 0.7 ml min¢ W¢, Sµ was 10.9 ± 0.9 ml

min¢W¢, and ST averaged 10.4 ± 0.8 ml min¢ W¢. Sµ
was significantly greater than SÔ (P < 0.01).

Figure 3 shows the relationships between SÔ, Sµ and ST, as
functions of proportion of type I fibres (left panels) and

peak ýOµ (right panels). All three slopes were significantly

correlated with proportion of type I muscle fibres, while Sµ
and ST were also significantly correlated with peak ýOµ (all

P < 0.05). However, multiple linear regression analysis

failed to show a significant improvement in prediction of

any of the ÄýOµ ÏÄW slopes when the peak ýOµ values were

added to the proportion of type I fibre information (all

P > 0.05).

MRT1 averaged 43.1 ± 19.4 s, while MRTT was 43.9 ±

16.5 s. Neither MRT1 nor MRTT was significantly related to

peak ýOµ, proportion of type I fibres, or the respective

ÄýOµ ÏÄW (SÔ or ST) (r ranged from 0.16 to 0.47, all P > 0.05).

DISCUSSION

Consistent with our first hypothesis, the slope of the ýOµÏW
relationship during incremental cycle ergometer exercise for

the power output domain above LT (Sµ) significantly

correlated with both the proportion of type I fibres and the

peak ýOµ. However, in contrast to our second hypothesis, the

slope for the region of power outputs below the LT (SÔ) also
was significantly correlated to the proportion of type I

fibres. Further, the slope over the entire linear portion (ST)
was significantly related to the proportion of type I fibres

and to peak ýOµ. The finding that Sµ was proportional to
both the underlying proportion of type I fibres and peak ýOµ

is consistent with our previous findings for the gain of the

primary rise in ýOµ (G1 in Fig. 1) during heavy constant

power output exercise in the same subjects (Barstow et al.
1996). The current results for SÔ extend these observations

and suggest that muscle fibre type andÏor fitness also affects

the gain of the ýOµ response to moderate exercise.

Fundamental to the interpretation of these data is the

extent to which the ÄýOµ approximates the true increase in

ATP turnover rate associated with the increase in power

output (ÄW). One implicit assumption in the analysis of the

ÄýOµ ÏÄW data obtained from ramp exercise is that the slope

represents the equivalent steady-state (< LT) or initial

(> LT) ýOµ response. This appears to be a reasonable

assumption for the < LT exercise domain, as both Whipp et
al. (1981) and Henson et al. (1989) found good agreement

between the ÄýOµ ÏÄW determined from ramp tests (SÔ) and
that measured for constant power output exercise. For

exercise above the LT, the relationship is less clear. In this

intensity domain, the ýOµ response does not represent the

total rate of ATP resynthesis, as there is generally

considered to be concomitant anaerobiosis which contributes

to the overall energetics (note that, quantitatively, this is

likely to be small; Medbo, 1996). However, somewhat

paradoxically, during sustained heavy exercise where there

is apparently increased anaerobiosis, pulmonary ýOµ is also

greater than predicted from moderate exercise (Whipp &

Mahler, 1980; Roston et al. 1987). The observation that Sµ is
greater than SÔ during ramp exercise, as seen here and in

previous studies (Hansen et al. 1988; Zoladz et al. 1995),
probably reflects the contribution of additional ýOµ from

mechanism(s) similar to those responsible for the slow

component seen during > LT constant power output exercise

(for review, see Poole et al. 1994).

One interpretation of the significant relationship in the

present study between ÄýOµ ÏÄW and the percentage of type I

fibres is that these differences are due to inherent energetic

differences between type I and type II fibres. However,

when the efficiency of contraction has been examined in

isolated muscles differing in fibre type composition,

conflicting results have been obtained. The metabolic cost

of producing tension during brief tetanic (isometric)

contractions is 3—5 times greater in the fast-twitch extensor

digitorum longus (EDL) muscle of the mouse than in the

slow-twitch soleus (Crow & Kushmerick, 1982; Barclay et al.
1993), although this difference becomes only 1.5 times when

the contraction is sustained for more than 12 s (Crow &

Kushmerick, 1982). However, during isotonic contractions

where the muscle is allowed to shorten (more relevant to the

human cycling condition studied here), maximum mechanical

efficiency for slow twitch muscle has been reported to be

greater than (Barclay, 1994), similar to (Gibbs & Gibson,

1972; Wendt & Gibbs, 1973; Barclay et al. 1993), or less
than (Heglund & Cavagna, 1987) that for fast twitch muscle.

Further, fast twitch muscle appears to be able to sustain a

high mechanical efficiency over a greater range of

contraction velocities than slow twitch muscle (Heglund &

Cavagna, 1987; Barclay et al. 1993, but also see Barclay,

1994). Thus, there appears to be no consensus to date in the

isolated muscle literature regarding the manner in which

differences in muscle fibre type might translate into

differences in mechanical efficiency of contraction.

Studies of the relationship between muscle fibre type and

the oxygen cost of performing exercise in humans have

produced similarly equivocal findings. Mechanical or delta

efficiency for cycle exercise (defined as ÄWÏÄýOµ, the

reciprocal to that used here) has been reported to be similar

between sprinters and distance runners (Stuart et al. 1981)
and between subjects with low and high percentages of fast

twitch fibres (Suzuki, 1979; Medbo, 1990). Also, the

mechanical efficiency of performing purely positive leg

extension exercise on a sledge ergometer is similar among

subjects who differ in the percentage of fast twitch fibres

(Aura & Komi, 1987). On the other hand, Coyle and

coworkers (1992) found that trained cyclists with

predominantly type I fibres had a greater gross efficiency

(WÏýOµ) while performing exhaustive heavy (> LT) exercise

for 1 h (Horowitz et al. 1994) or 5 min of two-legged knee

extension exercise, and a greater delta efficiency for
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presumably moderate intensity (< LT) cycle ergometer

exercise (Coyle et al. 1992). Subjects with mostly type I

fibres are also reported to be more efficient when performing

positive leg extension work following active prestretch

(Aura & Komi, 1987), and while running on a treadmill at a

fixed speed or performing jumping activities (Bosco et al.
1987). Here, too, there currently does not appear to be a

simple explanation for the reported differences in the

association between mechanical efficiency and predominant

muscle fibre type for exercising humans.

It should be noted that ÄýOµ ÏÄW described here, and its

reciprocal determined by others, termed delta or mechanical

efficiency, does not directly reflect the efficiency of muscle

contraction, but rather the increase in aerobic metabolism as

muscle power output is increased. The value thus obtained

may not represent the metabolic cost of contraction (either

as (Äheat production + Äwork = Äenthalpy) or Äoxygen

consumption), as there is energy use associated both with

myosin crossbridge cycling (which is directly related to force

production) and with non-crossbridge activities (termed

activation heat). The activation heat is primarily thought to

arise from the movement of calcium out of and back into the

sarcoplasmic reticulum, the latter being ATP dependent.

One uncertainty at the moment is whether the activation

heat stays relatively constant across contraction schemes, or

varies with muscle length, frequency of contraction and

fatigue (Barclay, 1996). Thus, it is unclear to what extent the

ÄýOµ ÏÄW determined here includes changes in activation

heat, in addition to the expected increase in crossbridge

heat, as power output increases.

In the present study, Sµ and ST were also significantly

correlated with peak ýOµ. However, to our knowledge there is

no evidence that fitness or training leads to an increased

ÄýOµ ÏÄW. Differences in level (Boning et al. 1984), type
(Stuart et al. 1981) or duration (Nickleberry & Brooks, 1996)

of training do not appear to have an effect on either gross or

delta efficiency. Further, ýOµ is unchanged for a given

moderate power output after training (Hagberg et al. 1980),
although during heavy exercise ýOµ may be reduced (Karlsson

et al. 1972), presumably due to a reduction in the slow

component (Casaburi et al. 1987). However, there is one brief
report (Jammes et al. 1997) which suggests enhanced motor

unit recruitment in trained cyclists compared to untrained

subjects, based on a greater increase in the root mean square

(RMS) of the EMG of the vastus lateralis during incremental

exercise. If reproducible, these findings might imply a

greater rate of increase in ýOµ associated with the greater

increase in EMG RMS in trained subjects. However, these

preliminary results must await further confirmation.

At the present time we cannot distinguish potential effects

of fibre type from those of fitness on ÄýOµ ÏÄW. Previously

we found that the proportion of type I fibres and peak ýOµ

were correlated in this group of subjects (r = 0.74) (Barstow

et al. 1996). Multiple correlational analysis in the present

study did not reveal any significant additional contribution

of fitness to improve the prediction of ÄýOµ ÏÄW based on

fibre type distribution alone. Differentiating the potential

influence of fibre type from that of fitness on ÄýOµ ÏÄW,

must, therefore, await further study. While the correlation

coefficients between the ÄýOµ ÏÄW slope and either fibre type

or fitness were significant, the values for rÂ suggest that only
50—70% of the variance in the ÄýOµ ÏÄW slope can be

attributed to either of these two factors, implying that

other, as yet unidentified mechanisms also contribute to the

intersubject differences in ÄýOµ ÏÄW. Variability in these

relationships may also arise from small uncertainties in the

determination of the primary variables. While 500—900

muscle fibres were counted for each subject for the

determination of fibre type distribution, sampling variability

for the results from one biopsy site may reach 9% for the

vastus lateralis (Elder et al. 1982). Also, the data used to

determine SÔ on average contained fewer data points than

for Sµ or ST, which could decrease the precision of

determination of the ÄýOµ ÏÄW slope in this region. While

these factors might contribute to the variance seen in Fig. 3,

statistically this variability would tend to increase the

chances of a type II error.

The question arose as to what extent the ÄýOµ ÏÄW slope

determined here for ramp exercise reflected the gain G1 (in

the same units of ÄýOµ ÏÄW) for heavy constant power

output exercise from our previous study (Barstow et al.
1996). To evaluate this, we plotted Sµ and SÔ as functions of
G1 for each subject. As shown in Fig. 4, there was a very

good correlation between both slope terms and G1 across the

subjects. This suggests that the effect of fibre type or fitness

on the ÄýOµ ÏÄW of both moderate and heavy exercise are

similar across exercise modes. These results are consistent

with those of Whipp et al. (1981) and Henson et al. (1989),
who found good agreement between the gain for ramp

exercise and that for moderate constant power output

exercise, but not with those of Murphy et al. (1989), who
found the gain for constant power output exercise to be

slightly higher.

Intersubject variability for the slope of ÄýOµ ÏÄW, determined

over the full power output range encountered in the ramp

exercise test, has ranged in other studies from about 4 to

13% coefficient of variation (CV) (Whipp et al. 1981; Poole
& Henson, 1988; Swanson & Hughson, 1988; Hansen et al.
1988; Murphy et al. 1989; Koike et al. 1990). It is interesting
to note that in the present study, the CV for ST was 7.7%,

similar to that found in these other studies. This analysis

suggests that the subtle intersubject variability in ST noted
in previous studies may have had physiological origins

(e.g. differences in fitness or fibre type distribution), rather

than being the result of random or measurement noise.

The influences of several factors on ÄýOµ ÏÄW during

incremental exercise have been investigated. Factors such as

age, gender, or caloric intake (Hansen et al. 1987; Poole &
Henson, 1988; Itoh et al. 1990) do not significantly affect

the slope in healthy subjects. However, several factors which

ultimately impair Oµ delivery to the mitochondria of the

exercising muscles are associated with reduced ÄýOµ ÏÄW.
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These factors include acute perturbations in healthy

subjects, such as reductions in arterial Oµ content with either

hypoxia (Murphy et al. 1989; Ibanez et al. 1993) or carboxy-
haemoglobinaemia (Koike et al. 1990), and chronic conditions
such as cardiac or cardiovascular disease (Hansen et al.
1987; Itoh, 1992; Itoh & Kato, 1996). Interestingly, the

reduction in slope is most observable above the LT (Murphy

et al. 1989; Koike et al. 1990; Ibanez et al. 1993). Under
these conditions, a reduced ÄýOµ ÏÄW has been interpreted

to represent a dynamic impairment in Oµ delivery with

resulting reduced ýOµ compared to the corresponding Oµ

requirement. Consistent with this, exercise training in

cardiac patients is associated with an increase in the

ÄýOµ ÏÄW back towards values found in healthy subjects

(Itoh & Kato, 1996). It is thus possible that aerobic training

in healthy subjects might also cause a further increase in the

ÄýOµ ÏÄW slope, leading to the relationship found here

between fitness and the ÄýOµ ÏÄW slope.

Since G1 in our previous study (Barstow et al. 1996) and the
slopes SÔ, Sµ and ST in the present work were determined

under non-steady-state conditions, the question arises if

our results could be partially explained by intersubject

differences in the kinetic adjustments of ýOµ during these

two exercise conditions. To this point, the time constants for

adjustments in muscle phosphocreatine andÏor ýOµ (Crow &

Kushmerick, 1982; Kushmerick et al. 1992) are faster for

isolated muscles with predominantly type I fibres, compared

to those with primarily type II fibres. Also, training is

associated with faster ýOµ kinetics (Hagberg et al. 1978,
1980). However, ýOµ kinetics, expressed either as the MRT

for ramp exercise in the present study or the time constant

for the primary exponential term for ýOµ rise during

constant power output exercise (ô1) in our previous study

(Barstow et al. 1996), were not significantly related to the

percentage of type I fibres. However, it should be noted that

the coefficient of variation for MRT determined from one

ramp test for a given subject averaged 31% in the present

study. This is very similar to the coefficients of variation

calculated from repeated determinations of MRT from

replicate ramp tests (19—29%) reported by Hughson & Inman

(1986). Thus, while the observed relationships between fibre

type, fitness and ÄýOµ ÏÄW found in both the present and

our previous study do not appear to be explained by

intersubject variability in the speed of adjustment (kinetics)

of ýOµ, a definitive test of this must await more rigorous

evaluation.

In conclusion, these results confirm our previous findings

that the initial ýOµ response to exercise (ÄýOµ ÏÄW for either

incremental or constant power output exercise) is correlated

with muscle fibre type and possibly level of fitness. A

greater proportion of type I fibres andÏor a higher peak ýOµ

are both associated with a greater ÄýOµ ÏÄW in exercise

intensity domains both below and above LT. These results

do not appear to be explained by differences in the kinetics

of adjustment of ýOµ among subjects. It is possible that they

might reflect a greater rate of motor unit recruitment in

subjects with a greater proportion of type I fibres andÏor

who are more aerobically conditioned. However, elucidation

of the underlying mechanisms which relate changes in ýOµ to

changes in power output during moderate (and heavy)

intensity exercise must await further study.
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