
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/103931

Please be advised that this information was generated on 2018-07-08 and may be subject to

change.

http://hdl.handle.net/2066/103931

Task-Oriented Programming
For Incident Response Applications

TOP
to the
Rescue

Bas Lijnse

TOP to the Rescue
Task-Oriented Programming for Incident Response Applications

Bas Lijnse

This research has been supported by the Netherlands Defence Academy through
their project “Dynamic Workflows for Planning of Military Operations and
Crisis Management”, with the exception of chapter 5. This chapter was suppor-
ted by the Dutch Technology Foundation STW, which is part of the Netherlands
Organisation for Scientific Research (NWO) and partly funded by the Ministry
of Economic Affairs, Agriculture and Innovation (project number 07729).

The work in this thesis has been carried out under the auspices of the
research school IPA (Institute for Programming research and Algorithmics)

ISBN 978-90-820259-0-3
IPA Dissertation Series 2013-4

Copyright c© 2013 B. Lijnse

This work is licensed under the Creative Commons Attribution-NoDerivs 3.0
Unported License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nd/3.0/ or send a letter to Creative
Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041,
USA.

A free digital copy of this dissertation can be obtained from
http://www.baslijnse.nl/projects/top-to-the-rescue/

http://creativecommons.org/licenses/by-nd/3.0/
http://www.baslijnse.nl/projects/top-to-the-rescue/

TOP to the Rescue
Task-Oriented Programming for Incident Response Applications

Proefschrift

ter verkrijging van de graad van doctor
aan de Radboud Universiteit Nijmegen

op gezag van de rector magnificus prof. mr. S.C.J.J. Kortmann,
volgens besluit van het college van decanen

in het openbaar te verdedigen op woensdag 27 maart 2013
om 10:30 uur precies

door

Bas Lijnse

geboren op 13 januari 1984
te Valkenisse

Promotor:

Prof. dr. ir. M.J. Plasmeijer

Copromotor:

Dr. J.M. Jansen (Nederlandse Defensie Academie)

Manuscriptcommissie:

Prof. dr. J.H. Geuvers
Prof. dr. S.D. Swierstra (Universiteit Utrecht)
Prof. dr. M.P. Haselkorn (University of Washington, Seattle)

Write stuff that matters

Contents

1 Introduction 1

1.1 Programming . 1

1.2 Programming with Tasks . 2

1.3 Programming with iTasks . 3

1.4 Programming for Incident Response Tasks 5

1.5 Scope and Organization of this Thesis 7

1.6 Future Directions . 12

1.7 TOP to the Rescue . 12

I Task-Oriented Programming with iTasks 15

2 iTasks for End-users 17

2.1 Introduction . 17

2.2 Declarative Workflow Specification 18

2.3 The Revised iTask System . 20

2.4 Dynamic Generic Web-Interfaces 28

2.5 Related Work . 36

2.6 Conclusions . 37

3 Getting a Grip on Tasks that Coordinate Tasks 39

3.1 Introduction . 39

3.2 The iTask Core System . 41

3.3 The Expressive Power and Limitations of the Combinators . . . 45

3.4 Redesigning the Core System 51

3.5 Conclusions . 53

4 Task-Oriented Programming in a Pure Functional Language 55

4.1 Introduction . 55

4.2 The TOP Paradigm . 57

vii

4.3 A Formal Foundation of TOP 62

4.4 Practical TOP . 78

4.5 Related Work . 83

4.6 Conclusions and Future Work 84

II Types and Information Models 87

5 Between Types and Tables 89

5.1 Introduction . 89

5.2 Motivating Example . 92

5.3 Types and Tables . 92

5.4 Generic CRUD Operations . 99

5.5 Implementation in Clean . 104

5.6 Related Work . 107

5.7 Conclusions & Future Work . 108

6 CCL: A Lightweight ORM Embedding in Clean 109

6.1 Introduction . 109

6.2 A CCL Example . 111

6.3 Defining Conceptual Models with CCL 111

6.4 Defining Clean Types with CCL 115

6.5 Discussion . 116

6.6 Related Work . 118

6.7 Conclusions . 118

III The Netherlands Coast Guard Case 119

7 Towards Dynamic Workflow Support for Crisis Management 121

7.1 Introduction . 121

7.2 The iTask System . 122

7.3 iTasks for Crisis Management? 126

7.4 Conclusions . 129

8 Capturing the Netherlands Coast Guard’s SAR Workflow
with iTasks 131

8.1 Introduction . 131

8.2 Literature Review . 133

8.3 Research Questions . 134

8.4 Methodology . 135

8.5 Results . 136

8.6 Discussion . 143

8.7 Conclusions & Future Work . 145

9 Incidone: A Task-Oriented Incident Coordination Tool 147

9.1 Introduction . 147

9.2 A Watch Officer’s View of Incidone 148

9.3 A Programmer’s View of Incidone 151

9.4 Status Quo and Future Work 154

9.5 Conclusion . 155

Bibliography 157

Summary 167

Samenvatting 169

Acknowledgements 171

Curriculum Vitae 173

1 Introduction

This dissertation is about Task-Oriented Programming (TOP) and, to some
extent, its potential to support incident response applications. Task-Oriented
Programming is a new programming paradigm that emphasizes “tasks” as cent-
ral concept for constructing programs. Although tasks are a common notion
in daily life, in order to use them as building block in programs we need to be
more precise. If we have a formal notion of tasks, are able to define atomic
tasks, and have means to define tasks in terms of other tasks, we can think
about programs in terms of tasks.
TOP emerged during an exploration of the use of functional programming tech-
niques to define workflow management systems, with a focus on applications in
dynamic high-autonomy environments such as crisis management. A specific
area of interest has been the coordination of coast guard search and rescue in-
cidents. This thesis consists of a selection of articles in the fields of functional
programming, information modeling, and crisis management information sys-
tems that contributed to our understanding of what programming with tasks
is all about.

1.1 Programming

To understand the motivations behind a programming paradigm based on
tasks, we first have to have a clear view of what “programming” is. To many
people, including experienced programmers, “programming” has become syn-
onymous to writing code in a mainstream programming language like Java,
C, Python, or Javascript that can be executed by a computer. This view is
rather narrow as it only captures a common form of programming, instead of
its essence. There are many other ways to program a computer besides writing
code in a mainstream language. Apart from the obvious alternative of writing
code in a less common language, or a domain specific language, one can use
other means such as drawing diagrams. The first digital computers were even
programmed by rearranging wires and flipping switches. What all these differ-
ent forms of programming have in common, is that they enable one to specify a
computer’s future behavior to make it support a specific task. This capability

1

Chapter 1

is what sets computers apart from other machines. Computers are not made
for a single task, but can be used to support any task that can be captured by
a program. This makes it possible that a machine used to prepare documents
with, can at the same time be a video player, a communication device and even
a musical instrument.
Although programming can have many forms that essentially accomplish the
same thing, this does not imply that form does not matter. The amount of
effort it takes to program a computer for a task, and therefore the feasibility
of using a computer to support it, depends on it. If we, for example, had to
specify a video conference application at the bare-metal level of detail that
was necessary in early machines, it would be a herculean effort to write such a
program. Modern video conference applications, to reuse the example, are not
only possible because we have laptops with built-in cameras, high-resolutions
screens and enough memory and processing power. They also rely on the
networking protocols and user interface API’s provided by an operating system,
the video encoding, decoding and compression algorithms provided by reusable
libraries, and on programming languages that enable the integration of all these
components. Contemporary application programming is less about expressing
algorithms that express computations, but more about gluing together existing
libraries, components and subsystems. With the abundance of libraries, API’s,
languages and components that are available, it is easy to get distracted by
the cool features and capabilities offered by them and get absorbed by the
technical details involved in gluing them together. Even to the extent that
we lose track of the task the program is supposed to support. Design choices
are then not based on a rational tradeoff between programming effort and
an expected improvement in task performance, but on whatever is easy to
accomplish with the language and components used.

1.2 Programming with Tasks

To make rational design decisions when programming, it is important to un-
derstand the task you aim to support. However, if a task is complex and has no
clearly defined boundaries or outcome, this is much easier said than done. A
common strategy for dealing with complexity is to divide and conquer. Divide
a complex task into smaller and simpler subtasks. In programming this is also
a proven strategy, but programs are not necessarily divided along the same
lines. Depending on the choice of programming paradigm and language, we
divide our programs in different ways. We can, for example, organize programs
into hierarchical classes of objects, modules with related functions, or groups
of logical sentences.
The Task-Oriented Programming paradigm is based on structuring programs
around the task they support. If a task can be divided into smaller subtasks,

2

Introduction

a program to support the task can be defined by specifying a composition of
subprograms that support those subtasks. In order to write programs in this
way we need a number of ingredients:

• A formal notion of the task concept. Our informal use of the word task is
too ambiguous to serve as a building block in programs. We need a more
precise definition of how a component, or subprogram, that supports
a task behaves and how it can be interacted with. The definition we
have come to use, which is specified in full detail in Chapter 4, can be
paraphrased as: “A task is a specified piece of work aiming to produce
a result of known type. When executed, tasks may produce (temporary)
results that can be observed in a controlled way.”

• A set of task primitives. To be able to structure programs as decompos-
itions of tasks, we need to provide primitive components that support
those tasks that cannot be further decomposed. These basic task com-
ponents serve as the smallest building blocks from which a task-oriented
program is constructed. Such primitives can for example be, entering a
piece of data, querying a database, or accessing a sensor.

• A set of composition and abstraction methods. In order to define complex
tasks as compositions of subtasks, we need means to compose tasks and to
abstract from recurring patterns. Tasks can for example be divided into
a set of subtasks that are performed simultaneously, or into a sequence
of subtasks that have to be performed one after another.

• A method for sharing data between tasks. If a task is decomposed into
subtasks, data that is produced by one task is often consumed by others.
To program in a task-oriented way, means of sharing data between tasks
must be facilitated.

These four ingredients have to be provided by a framework or a programming
language in order to write task-oriented programs. The specific way we have
studied Task-Oriented Programming so far, has been in the context of a pure
functional programming language. TOP has been facilitated by a framework
that provides an embedded domain specific language for specifying task com-
positions.

1.3 Programming with iTasks

The ideas behind Task-Oriented Programming where not the result of a mo-
mentary flash of insight. They emerged during development of, and experiment-
ing with, the iTask System (or iTasks for short), a concrete prototype system
that uses tasks as its core concept. The iTask System started as a library in the

3

Chapter 1

Clean programming language for specifying workflow in a functional program-
ming language[61]. Clean [69] is a statically typed pure functional programming
language similar to Haskell [59]. In a pure functional language, programs are
made up of side-effect free functions, meaning that the result of a function
depends only on its arguments. Furthermore, functions can be higher-order,
meaning that they can take functions as arguments or return a function as
result. These properties make it possible to precisely define subprograms that
support independent tasks as abstract state-transition functions with a specific
interface. Task-level primitives can be defined by black-box implementations
of this interface, and composition can be accomplished through higher-order
functions, called combinators, that take such state-transition functions as ar-
guments. The original iTask System was based on the notion of tasks that
finish with a typed result. Tasks existed either in a fluent “in progress” state
in which they could be worked on, or a “finished” final state in which they had
an immutable value. When a task finished, its result was used to compute the
next step in the workflow. This provided a mix of control-flow with data-flow
that could be used to express dynamic data-driven workflows. The use of typed
task results was not only a safety measure to prevent programming errors, it
was also used to generate dynamic web pages using type generic functions.
Influenced by the literature on workflow management systems, the iTask Sys-
tem evolved from a library to a programmable worfklow management system.
This system exploited the advances in the programmability of web-browsers
to enable a client-server architecture with rich clients in the browser (see
Chapter 2). In this revised architecture, common workflow management cap-
abilities, such as a worklist, were provided by the iTask web client. The server
applications that coordinated workflows were generated from task expressions.
After applying the iTask System in real-world cases [42, 77], we found that the
workflow managment system approach did not cover relevant aspects of sup-
porting tasks. Although workflows were programmable and tasks as seen from
an organisation’s perspective could be expressed, the management of workflows
by an end-user could not. The ways in which a user can select tasks to work
on, can monitor ongoing tasks, or can manage delegated work, had become
a fixed feature set of the workflow management system. Although this is not
different from the state of the art in workflow management systems today, it
turned out to be limiting in completely defining a program in terms of the
task it supports. Additionally, the cases inspired a change in definition of the
task concept used in the iTask System. The emphasis on “finished” tasks was
loosened to focus instead on “current values” of tasks. This made it easier
to take things like draft results into account, such that preemptive action can
be taken, or decisions can be made based on incomplete results. Driven by
these insights the iTask System evolved into a general-purpose TOP frame-
work, which can be used to create multi-user web-based applications. In this

4

Introduction

framework the common workflow management components such as worklists,
which were previously hardcoded, are now expressed as tasks themselves.
Development work on both the iTask System itself, and on applications made
with it, has been a significant chunk of the effort behind this dissertation. Al-
though it is not strictly necessary to have a full implementation of a TOP
framework to illustrate the paradigm, its development was only possible by
having a tangible system that expressed our understanding at all times. By
having an implementation we could test its limitations through examples and
experiment iteratively with new ideas. In some cases it even sparked improve-
ments in the Clean programming language. In order to implement the task
primitives as generic as possible, we needed to use some of Clean’s language
constructs, such as type generic functions and dynamic types, to an extent that
had not been done before.

1.4 Programming for Incident Response Tasks

Understanding the task a program is meant to support is important for any
program. The difficulty of understanding it, or the consequences of getting it
wrong are not the same for every program though. Therefore, task-oriented
programming is more suited for some applications than others. If the task is
clear, and can be completely automated, the TOP paradigm does not add much
value compared to a normal functional program. For example, a compiler or
an image conversion program automate clear tasks. The inputs and outputs
are well defined and while it is certainly not easy to describe the algorithms
that transform input to output, compiling a program, or rotating a photo can
be seen as a single automated task. Task-Oriented Programming is best suited
for those tasks that cannot be fully automated, but can be supported by a mix
of interactive and automated tasks that have to be coordinated to achieve the
combined goal.
The most extreme examples of such tasks are those in which the conditions
under which the task has to be accomplished are unpredictable, where people
have to work together, and there is time pressure to get it done. Tasks like
responding to life-or-death critical incidents in a rescue operation, or the man-
agement of crises in general, belong to this category. In order to support these
tasks with computer systems it is important to understand how the subtasks
of all those involved contribute to the whole, in order to design programs that
assist humans without getting in the way. A challenge in the design of systems
to support such tasks is that they have to handle inherently unpredictable
scenarios. However, just having unpredictable scenarios does not imply that
it is impossible to support humans in dealing with them. It just means that
a certain amount of flexibility has to be built-in to reorganize supported tasks
to adapt to each unique scenario. The key to doing this is to make sure that

5

Chapter 1

high-level control-flow aspects of the system are designed to be a supported
human task instead of a hardcoded automated task. In other words, coordin-
ating tasks is also a task that has to be supported. In this way, users stay in
control at all times.
To make sure that the TOP paradigm captures a wide range of real-world tasks
we have continuously reflected on its expressiveness for such cases throughout
the development of the iTask System and the TOP paradigm. By looking
at cases where the task as a whole is a complex combination of tasks with a
central role for humans, but assisted by automation, we have learned lessons
that influenced the TOP paradigm a great deal. Most of these seem obvious
when pointed out, but can nevertheless have negative consequences if they are
forgotten when developing programs. For example:

• From a user’s perspective, there is no distinction between which parts
of a system are infrastructure and which parts are application specific.
Hence, if you use a workflow management system, a groupware system,
or a database system to support a given task, generic functionality like
browsing a tasklist, or managing users and assigning permissions in that
system, add overhead for the user that cannot be ignored.

• Managing, planning, and tracking tasks is also a task. If you design a
workflow in which work is delegated, the total amount of work increases,
because now someone has to do the work, and someone has to track
whether it gets done.

• Tasks may not always have a clear “final result”. The context may de-
termine when something is finished. Most automated tasks have a clear
beginning and end. A computation takes some processing time and then
yields it result. Downloading a file completes at some point. Human
tasks or combinations of human and automated tasks do not always have
such a clear end result. Writing a book or a paper is done when you
consider it done, or when you run out of time. But you can always keep
working on it if you like.

• Even when results are not final, other tasks can use them to take pro-
active action. Sometimes when you are waiting for a result, you know
you are definitely too late to act on it if you start acting only once the
result is available. Therefore, you need to be able to observe temporary
results to act pro-actively, such that once the final result comes in, you
can deal with it.

Although it is not possible to exactly pinpoint how lessons such as these have
influenced the TOP paradigm and the design of the iTask System, there is
no doubt that they have. Studying incident response tasks, and crisis man-
agement in general has provided a frame of reference for the more technical

6

Introduction

challenges. Because of this context, TOP and specifically the way it is embod-
ied in iTasks, has evolved towards a paradigm for writings programs that can
capture collaborative computer-supported high-autonomy tasks.

1.5 Scope and Organization of this Thesis

With the exception of this introduction, all chapters in this book are independ-
ent articles that have been published in peer-reviewed conference proceedings.
Each chapter is self-contained, so there is some unavoidable overlap in intro-
ductions and preliminaries sections. The upside of this approach is that it is
easier to select only those chapters that have your interest. The chapters are
not presented in the chronological order in which they were published, but are
grouped into three parts that correspond to three interrelated research themes,
or tracks, that have been investigated simultaneously. These parts are: “Task-
Oriented Programming with iTasks”,“Information Models and Data Types”
and “The Netherlands Coast Guard Case”. The remainder of this section
explains the role each of these themes has played in our understanding of pro-
gramming with tasks. For each of the chapters a motivation is given why they
were selected to be presented and what the contribution of the author of this
dissertation has been.

Part I: Task-Oriented Programming with iTasks

This first part contains my contributions to the development of the iTask Sys-
tem and the TOP paradigm, which has been my main research focus. The
three articles in this theme illustrate the status quo early in the project, more
or less half-way and at the end of the project. When viewed together as a
series they show the progressed insight into Task-Oriented Programming and
the simultaneous evolution of the iTask System with it.

Chapter 2:
iTasks for End-users

This chapter describes the transition of the original iTask system to the work-
flow management system approach. It introduced the client-server architecture
with a significant role for the client system beyond displaying generated web
pages. It also outlines improved generic techniques for providing a sufficient
user experience based solely on task compositions and data types.
The chapter is based on the paper “iTasks 2: iTasks for End-users”[44]. It
marked my first major contribution to the design and implementation of iTasks.
I independently conducted almost all research, and all writing of this paper.
Steffen Michels assisted in exploring incremental user interface updates.

7

Chapter 1

Chapter 3:
Getting a Grip on Tasks that Coordinate Tasks

This chapter outlines the status of the iTask System just before its transition to
a general-purpose TOP framework. It discusses new possibilities for reducing
the number of core concepts for combining tasks, but also outlines the limita-
tions of the then current task approach. It discusses the need to generalize the
approach to cover a wider range of interactive applications beyond workflow
management. The chapter is based on the invited paper “Getting a Grip on
Tasks that Coordinate Tasks” [67]. It reports on the combined research of all
authors. This included significant development of the iTask System performed
by me. I also contributed to the writing of the paper.

Chapter 4:
Task-Oriented Programming in a Pure Functional Language

This chapter is the latest paper about the iTask System included in this dis-
sertation. It is the first paper that positions TOP as a programming paradigm
with iTasks as its supporting framework. In this chapter the core concepts
of Task-Oriented Programming are explained and their semantics are formally
defined by a rewrite system expressed in Clean. The chapter is based on the
paper “Task-Oriented Programming in a Pure Functional Language” [68]. Just
as Chapter 3, this paper reflects the complete team effort on the development
of the iTask System. In the research that led up to this paper, I have explored
the new task definition in which tasks no longer have a single final result but
may yield intermediate values inspired by examples from the case studies I con-
ducted. To explore its consequences I implemented a redesigned iTask System
based on the new semantics.
During this process I also advocated the use of a separate name for the style
of programming enabled by the iTask System. I first coined the term Task-
Oriented Programming for referring to the programming paradigm, whereas
iTasks refers to the framework that makes it possible.

More publications in this theme

The chapters in this part were selected because they best illustrate the pro-
gression of insight into Task-Oriented Programming with iTasks. In addition to
these, I also contributed to other publications about the development of iTasks
that are not included in this dissertation. These publications are:

iTasks for a change:
Type-safe run-time change in dynamically evolving workflows
In this paper[64] we explored an extension to iTasks for run time-change of par-
tially completed tasks. We showed how arbitrary self-contained tasks could be

8

Introduction

replaced by other tasks while providing safety guarantees on the execution of
the modified compositions. I extended the iTask System with the capabilities
demonstrated in the paper and co-authored the paper.

Defining multi-user web applications with iTasks
I assisted in a course on programming web applications with iTasks at the
Central European Functional Programming Summer School 2011. This paper
[65] provides an introduction to the iTask System targeted at intermediate level
functional programmers with examples and exercises. It was used as lecture
notes during this course. In addition to assisting during the summer school I
also co-authored the lecture notes.

Part II: Types and Information Models

The second research theme to which I contributed, covers the relation between
local data used in concrete tasks, and global data that is shared throughout
an application. Although the chapters in this part are not directly related
to TOP, they facilitate programming information systems in a task-oriented
way. In information systems, tasks are often similar and can be abstracted into
generic task patterns, but there is large variety in the data used in tasks. In
iTasks the data used by tasks is typed, therefore a large collection of related
data types is specified when defining an information system. The two chapters
in this part deal on the one hand with making use of this type information to
automate conversions to and from relational databases, and on the other hand
with reducing the need to specify types by abstracting to underlying conceptual
information models.

Chapter 5:
Between Types and Tables

This chapter reports on research I initially did for my master’s thesis with the
same title. It explains how type-driven generic programming can be used to
automatically map data between relational databases and values in a typed
programming language when both representations are derived from the same
conceptual information model.
The chapter is based on the paper “Between types and tables - Using generic
programming for automated mapping between data types and relational data-
bases” [45]. A shortened popularized version of this paper has been published
as Tussen Types en Tabellen... [41] in Optimize, a Dutch magazine for data-
base professionals. For my master’s thesis I received the “Aia Master Thesis
Award” for best computer science master’s thesis of my graduation year at
the Radboud University. I independently conducted all research and writing
of both papers.

9

Chapter 1

Chapter 6:
CCL: A Lightweight ORM Embedding in Clean

This chapter outlines an experimental language for expressing conceptual in-
formation models textually, such that it can be used as a Clean language exten-
sion. From these conceptual model specifications Clean types can be derived
which makes specification of collections of conceptually related types more con-
cise. The chapter is based on the paper “CCL: A Lightweight ORM Embedding
in Clean”[46]. I independently conducted all research and writing of this paper.

Part III: The Netherlands Coast Guard Case

The third and final theme in my research has been a continuous reflection on
the TOP paradigm and the iTask System by investigating it in the context of
relevant real-world applications. The most influential of these has been a case
study of the operations of the Netherlands Coast Guard. In this part, a series
of three articles illustrate the influence of this case.

Chapter 7:
Towards Dynamic Workflow Support for Crisis Management

This chapter discusses the suitability of the iTasks approach to workflow sup-
port for crisis management applications. The discussion is based on the second
generation iTask System as described in Chapter 2 before I conducted any case
studies in this domain. The chapter is based on the short paper “Towards
Dynamic Workflow Support for Crisis Management” [30]. I conducted the
research as well as the writing for this paper together with Jan Martin Jansen.

Chapter 8:
Capturing the Netherlands Coast Guards SAR Workflow with iTasks

This chapter reports on our investigation to what extent the Search and Rescue
operations of the Netherlands Coast Guard can be expressed with the iTask
System’s formalism. This case study turned out to be very helpful in the further
development of the iTask System and the TOP paradigm.
The chapter is based on the paper “Capturing the Netherlands Coast Guards
SAR Workflow with iTasks” [42]. It was awarded the “Mike Melishkin Award”
for best student paper at the ISCRAM 2011 conference. I independently per-
formed the majority of the research and writing, with some help from Jan
Martin Jansen and Ruud Nanne who provided valuable knowledge about mari-
time terminology and practice.

10

Introduction

Chapter 9:
Incidone: A Task-Oriented Incident Coordination Tool

This final chapter reports on the project that was started to make the lessons
learned from the Coast Guard case in Chapter 8 more visible. It presents a
draft design of a tool that is being developed with the latest iTask System
described in Chapter 4 to support incident response operations such as Search
and Rescue. The chapter is based on the “work in progress” paper “Incidone:
A Task-Oriented Incident Coordination Tool” [43]. I independently designed
and implemented the Incidone tool and authored the paper.

More publications in this theme

The three chapters in this section were selected because they show the use of
TOP in a challenging application domain. However, the crisis management/in-
cident coordination context is not the only domain in which we explored the
use of TOP with iTasks. The following papers to which I also contributed
but are not included in this dissertation illustrate the use of iTasks for other
applications:

An iTask case study: a conference management system
This paper [63] explains the original iTask System by means of an example
application: a conference management system. It served as leading example
for a lecture about iTasks at the Advanced Functional Programming Summer
School 2008. Together with Thomas van Noort I implemented the featured
conference management system.

Web based dynamic workflow systems for C2 of military operations
This paper [31] provides a similar domain-wide discussion as Chapter 7, but
focused on military operations instead of crisis management. I conducted the
research as well as the writing of this paper together with Jan Martin Jansen
and Tim Grant.

Managing COPD Exacerbations with Telemedicine
This paper [77] reports on the development of a prototype telecare system
for Chronic Obstructive Pulmonary Disease (COPD) patients. Patient data is
collected through smartphones equipped with additional sensors and reported
back to a central backend system. A Bayesian model interprets this data and
predicts the risk of exacerbation. I implemented the complete telecare system
with the exception of the Bayesian model. I used iTasks for the backend that
coordinates the data collection and distribution.

11

Chapter 1

1.6 Future Directions

The work presented in this dissertation shows the progress made in understand-
ing the possibilities and limitations of programming using the task concept.
Task-Oriented Programming now has a solid foundation that is grounded in an
understanding of high-autonomy response tasks.
However, there are also new fundamental questions to be answered. Although
TOP is formally defined now, it is not yet clear how this can be used for
analyzing, reasoning about, and proving properties of task-oriented programs
for example. Another interesting question is to what extend we can distribute
task-oriented programs over different organizations, locations and machines.
From an organizational viewpoint, it might be interesting to know how to
visualize or verbalize the knowledge that is captured by task-oriented programs,
or what the effects of using different decompositions with the same result are.
Perhaps the most interesting question is how useful Task-Oriented Program-
ming is in real-world applications. The current tool support for TOP in the
form of the iTask System is a research framework, not a mature product. First
the tools need to mature in terms of robustness, performance and scalability
to an acceptable level. Only then real-world programs can be developed and
deployed such that this question be answered. With the development of the
Incidone tool outlined in Chapter 9, we take a small step in this direction.

1.7 TOP to the Rescue

The work presented in this dissertation contributes knowledge to the fields of
functional programming, information modeling, and crisis management inform-
ation systems. Its purpose is to provide insights, not to make a value judgment.
However, programming is as much an art as it is a science, and what constitutes
“good” programming has been the subject of heated debates. As a programmer
instead of a scientist I have of course my personal preferences and opinions on
the subject. And while I am aware that the following is outside the scope of
scientific argument, I think it is valuable to end this chapter with some points
that I have found especially interesting while bringing TOP to the Rescue.

Effortless Interactive Tasks

An interesting property of focusing on tasks is that it forces programmers to
think differently about the role of humans in interactive systems. The idea of
tasks that have to be done, can be as easily applied to things humans have
to do as well as computers. The difference when we are making a computer
program is how we choose to enable execution of tasks. If we have a task that
we want to be fully automated, we have to specify an algorithm that defines an

12

Introduction

input-output relation. If we intend a task to be done by a human, we have to
specify an interaction as a combination of viewing, manipulating, and entering
data that enables her to do the task and to make its result available. TOP
therefore acknowledges humans as resources that can work on tasks, instead of
implicit originators of streams of mouse clicks and keystrokes.

Variable Levels of Specification Detail

Because the task concept applies to a wide range of abstraction levels and
can be applied to both automated and manual tasks, it creates freedom for a
programmer to choose the appropriate level of detail for every task. If a task
is straightforward, it can be expressed in great detail with much automation.
Conversely if a task requires human creativity, or there are many ways to
accomplish it, it is just as easy to specify an open-ended task that defines
only the interface in terms of the type of data that is produced. Both of
these extremes can exist together in a task-oriented program. This makes it
possible to iteratively develop applications by starting with programs with little
automation that just store and distribute results produced by people. Then
gradually, once the workflow is better understood, more detail can be added.

Instant Executable Interactive Programs

Just as you can vary the detail of task decomposition, the high-level task prim-
itives enabled by generic algorithms make it possible to choose the amount of
control you want to have over data storage or user interaction. This means
that with minimal effort you can have an executable program for any task.
You always get a working system immediately. If you then decide you want
a prettier or more ergonomic user interface, you can put more effort into fine-
tuning it, but if it is not important you do not have to. The same holds for
data storage or exchange. A generic workable solution is always available, but
if you want more control, you can consider whether it is a worth the effort for
every subtask in your program.

Doubly Functional Programs

The term “functional” has multiple meanings in software development. In
functional programming it refers to the pure mathematical notion of side-effect
free computations. In functional specification, as a requirements engineering
method, it refers to the specification of what a system is supposed to do, free
from technical details. In both cases we are interested in what, rather than how.
Task-oriented programs leverage the power of first-class functions to define
interactive systems that are written at the level of abstraction of functional
specifications.

13

Part I

Task-Oriented Programming
with iTasks

15

2 iTasks for End-users

Workflow management systems (WFMSs) are systems that generate, coordinate
and monitor tasks performed by human workers in collaboration with automated
(information) systems. The iTask system (iTasks) is a WFMS that uses a com-
binator language embedded in the pure and lazy functional language Clean for
the specification of highly dynamic workflows. iTask workflow specifications are
declarative in the sense that they only specify (business) processes and the types
of data involved. They abstract from user interface and storage issues, which are
handled generically by the workflow engine.
Earlier work has focused on the development of the iTask combinator language.
The workflow language was implemented as an engine that evaluated task com-
binator expressions and generated interactive web pages. Although suitable for its
original purpose, this architecture has proven to be less so for generating practically
usable workflow support systems.
In this paper we present a new implementation of the iTask system that implements
the combinator library using a service based architecture that exposes the workflow
and a user friendly Ajax client. Because user interface issues are outside the scope
of workflow specifications, and cannot be specified explicitly, it is crucial that the
generic operationalization of the declarative interaction primitives is of adequate
quality. We explain the novel generic libraries we have developed for this purpose.

2.1 Introduction

Workflow management systems (WFMSs) are systems that generate, coordin-
ate and monitor tasks performed by human workers in collaboration with auto-
mated (information) systems. Many contemporary WFMSs suffer from lack of
flexibility. This is partially caused by the static nature of the languages used for
modeling the business processes they coordinate. To address this limitation the
iTask system has been developed. This system uses a function combinator lib-
rary embedded in the pure and lazy functional programming language Clean to
model business processes, and allows specification of highly dynamic workflows.
The iTask system uses declarative specifications of tasks. Task specifications
define what has to be done, by whom and when. However, they do not specify

17

Chapter 2

how tasks are presented to users, how results are entered, or how progress is
visualized. These operational details are taken care of fully automatically.
Earlier work [37, 61, 63, 66] has focused primarily on the benefits of the iTask
system for programmers. Its goal has been to develop and extend the iTask
combinator library to be able to express powerful, yet concise, specifications
of arbitrary business processes. For this purpose a prototype implementation
of the iTask engine with a minimum level of usability that could be used to
simulate workflow scenarios by expert users has been sufficient.
In this paper we present a new implementation of the iTask system that uses a
service based architecture to enable a practically applicable interface for end-
users. Since user interaction is considered a declarative aspect of the iTask
language and outside the scope of a workflow specification, it is critical for the
usefulness of the iTask system that the generic framework performs adequately
in this area. We show how we operationalize workflow specifications in such
a way that, for end-users, selecting and working on tasks is no more difficult
than the use of an average e-mail client.
The contributions of this paper are the following:

• We present a new implementation of the iTask system. We discuss its
new service based architecture and key features, and how it compares to
previous implementations.

• We explain the declarative nature of the iTask system. We discuss what
is specified by iTask expressions, and what is not. We show how workflow
specifications are operationalized by the iTask engine.

• We present a novel generic web interface library in Clean. This library
provides type-driven Html visualizations of data as well as editable Ajax
forms for manipulating data.

The remainder of this paper is organized as follows: First we cover the concept
of declarative workflow specification in the iTask system in Section 2.2. Then an
architectural overview of the iTask system is given in Section 2.3. The generic
web-interface library is explained in Section 2.4. We discuss related work in
Section 2.5 after which final concluding remarks are given in Section 2.6.

2.2 Declarative Workflow Specification

The iTask combinator language is designed for declarative specification of work-
flows. This means that the specifications describe what has to be done, not how.
However, one cannot speak of a language being declarative without specifying
at which level of granularity. The level of abstraction of a domain determ-
ines whether a specification can be classified as declarative at that level. Since

18

iTasks for End-users

this level is not always immediately clear, especially in workflow languages, we
elaborate on it some more in this section.

2.2.1 When Is a Workflow Specification Declarative?

The iTask system is based on the idea that in workflow support systems, the
only differences that really matter between two systems are: 1) The (busi-
ness) process they support, and 2) The data that is exchanged between actors.
Everything else that is needed to build these systems can be generic. The
iTask system provides both a specification language to describe the processes
and data, as well as a framework that provides the generic foundation that
operationalizes them.
In this context, we classify a specification as declarative when everything in it
specifies either data or process. Contrary to what is sometimes called declarat-
ive workflow, a process can be specified very rigidly but still be considered de-
clarative with respect to this definition. A specification that also specifies issues
such as presentation, or storage is considered not declarative in this context.
A quick glance at the signature of one of the iTask primitives for interacting
with users in Figure 2.1 illustrates this best. For instance, the enterInformation
primitive yields a task that asks a user to provide some information. This
primitive describes the action that is needed to achieve some goal, but leaves
entirely open how information is entered.

2.2.2 The iTask Workflow Language

Above we have already loosely mentioned the iTask specification language, yet
we have not explained how it is defined and implemented. The iTask language
is a domain specific language embedded in the pure and lazy functional pro-
gramming language Clean. It is essentially an API of functions and (monadic)
function combinators that is used to construct complex functions that when
evaluated compute the tasks that have to be done. However, from the point
of view of a workflow programmer, the combinator API is just a collection of
primitives and operators that are used to define workflows in a syntax that just
happens to have a striking resemblance to Clean.
The central concept of iTask workflow specifications is that everything is a task
that produces a typed result once it is done. Tasks are represented by the
abstract Clean type :: Task a, where a is the type of the result of the task. Al-
though everything is a task, we can still make a distinction between basic tasks
and combined tasks. Basic tasks are the smallest units of work like entering
some data in a form, or reading a piece of data from a database. From these
basic tasks, larger more complex tasks are constructed using task combinators.
For example the monadic bind combinator (>>=), where the result of the first
task is passed to a function that computes the second. By combining tasks

19

Chapter 2

sequentially, in parallel or conditionally, tasks of unlimited complexity can be
constructed. A short excerpt with common tasks and combinators from the
iTask API is shown in Figure 2.1 1. The full API consists of many more basic
tasks and combinators, like for instance, for interacting with users, generic stor-
age and retrieval, access to meta-data of other workflows and users. Examples
of iTask workflow specifications have been given in [61, 63].

2.2.3 Implementation Consequences

As can be seen in the API in Figure 2.1, workflow specifications in the iTask
system define nothing more than data and process. However, a complete ex-
ecutable workflow system is generated from just that and nothing else. A
major consequence of this design is that this generic foundation that is used
to generate a working system from these high level specifications must be of
such quality, that there is no need to further hack or tweak the system after
generation. When this is not the case the risk exists that clever programmers
will find ways to abuse the workflow language to force for example a specific
interface layout. This clutters the workflow definitions and makes them no
longer declarative.
Of course there are domains where generic solutions are far inferior to special-
ized instances. Entering a location for example, is easier by putting a marker
on a map than by entering coordinates in a form. For these situations the iTask
system provides the possibility to define custom domain libraries that contain
data types and task primitives along with specializations of the generics. This
enables the use of custom code when necessary without cluttering the workflow
specifications.

2.3 The Revised iTask System

As mentioned in Section 2.1 the original iTask system was used primarily to
explore the design of a workflow language based on function combinators. How-
ever, experiments with building applications beyond the level of toy examples
showed that much hacking and tweaking was necessary to build somewhat us-
able applications. Examples of such tweaking are: the use of multiple variants
of essentially the same task: chooseTaskWithButtons and chooseTaskWithRadios, or
the use of presentation oriented data types such as HtmlTextArea instead of just
String. To be able to generate iTask applications at the level of usability that
may be expected from contemporary web-based information and workflow sys-
tems, without cluttering the workflow specifications with presentation issues,
a major redesign of the iTask engine was necessary.

1Context restrictions on overloaded types have been omitted for clarity

20

iTasks for End-users

— Basic tasks —

1 // Ask a user to enter information.
2 enterInformation :: question → Task a
3 // Ask a user to enter information while subject information is shown
4 enterInformationAbout :: question s → Task a
5 // Show a message to a user
6 showMessage :: message → Task Void
7 // Show a message and subject information to a user
8 showMessageAbout :: message s → Task Void
9 // Create a value in the data store

10 dbCreateItem :: Task a
11 // Read a value from the data store
12 dbReadItem :: !(DBRef a) → Task (Maybe a)

— Task combinators —

13 // Lift a value to the task domain
14 return :: a → Task a
15 // Bind two tasks sequentially
16 (>>=) infixl 1 :: (Task a) (a → Task b) → Task b
17 // Assign a task to another user
18 (@:) infixr 5 :: UserId (Task a) → Task a
19 // Execute two tasks in parallel
20 (-&&-) infixr 4 :: (Task a) (Task b) → Task (a,b)
21 // Execute two tasks in parallel, finish as soon as one yields a result
22 (-||-) infixr 3 :: (Task a) (Task a) → Task a
23 // Execute all tasks in parallel
24 allTasks :: ([Task a] → Task [a])
25 // Execute all tasks in parallel, finish as soon as one yields a result
26 anyTask :: ([Task a] → Task a)

Figure 2.1: A short excerpt from the iTask API

21

Chapter 2

Figure 2.2: Architecture old (left) and new (right) iTask system

2.3.1 Original Architecture

Originally the architecture of the iTask system as presented in [62, 61] was
that of a simple web application that dynamically generated Html pages. The
content of these pages was generated by a program compiled from an iTask
workflow specification and a generic base system. This architecture is depicted
graphically in the left diagram of Figure 2.2. Page content generation was
performed by application of a workflow definition to an initial state which
yielded an output state that accumulated Html code. The abstract type Task a
of task primitives and combinators was defined as Task a :==*TSt→ (a,*TSt)

which is Clean’s notation for a function that takes a unique state of type TSt
and returns a value of type a and new state. Additionally to generating the
Html code for the tasks to display on the page, TSt also accumulated ad-hoc
meta-data about tasks, which was used to generate the navigation components
for switching between tasks. When users triggered some event in the generated
page, like clicking a button or changing the content of a textbox, the event
was sent to the server by reloading the entire page, and used to generate the
updated page. This was necessary because each event could potentially cause
the workflow to be reduced or the user interface to be different.

2.3.2 Fundamental Problems

The original architecture, though suitable for showing the expressive power of
the combinators, suffered from some scalability problems. When used in a more
realistic setting, this architecture has a number of fundamental problems.

1. The first issue is one of separation of concerns. The original implement-
ation of the task combinators as functions that both compute the ad-
vancement in a workflow and the representation of that workflow as a
user interface only works for small examples. As soon as you want to
define more intricate workflow combinators or put higher demands on the

22

iTasks for End-users

user interface, the implementations of the workflow combinators quickly
becomes too complex to manage.

2. Another problem, which is related to the previous issue, is that in the
original architecture the only way to interact with iTask workflows was
through the web interface. There was no easy means of integrating with
other systems. The obvious solution would be to add some flavor of
remote procedure calling to the system, but this would then also have to
be handled within the combinators, making them even more complex.

3. The final issue, which may appear trivial, is the necessity to reload an
entire page after each event. This approach is not only costly in terms of
network overhead, it also inherently limits the possibilities for building a
decent user interface. Essential local state, such as cursor focus, is lost
during a page reload which makes filling out a simple form using just the
keyboard nearly impossible.

2.3.3 Improved Architecture

To solve the problems described in the previous section, a drastic redesign of the
iTask system was needed. The only way to address them was to re-implement
the iTask combinator language on top of a different architecture.
The architecture of the new iTask implementation is a web-service based client-
server architecture and is shown in head to head comparion with the old archi-
tecture in Figure 2.2 and illustrated in more detail in Figure 2.3. The major
difference between the old and new architecture is that the new server system
does not generate web pages. Instead, it evaluates workflow specifications with
stored state of workflow instances to generate datastructures called Task Trees.
These represent the current state of workflows at the task level. These trees
contain structural information: how tasks are composed of subtasks, meta-
data: for example, which user is assigned to which task, and task content: a
definition of work that has to be done. For interactive tasks, the content is a
high-level user interface definition that can be automatically generated, which
will be explained in Section 2.4. Task trees can be queried and manipulated
by a client program through a set of JSON (JavaScript Object Notation: A
lightweight data-interchange format) web services.
The overview shown in Figure 2.3 illustrates how the various components in the
server correspond with components in the client. The workflow specifications
are queried directly through the workflow directory service. The authentication
service queries the user store. All other services use the task trees as interme-
diate representation. In the next section, the computation of task trees and
the individual services are explained in more detail.
The iTask system provides a default web based Ajax client system, described in
Section 2.3.5, that lets users browse their task list, start new workflow instances

23

Chapter 2

Figure 2.3: A detailed architecture overview

and work on multiple tasks concurrently. However, because the service based
architecture nicely separates the computation of workflow state from present-
ation, and communication is based on open web standards, it is also easy to
integrate with external systems. For example, we have also built a special pur-
pose client written in Python that monitors a filesystem for new documents and
starts a new workflow for processing that simply uses the same services as the
standard client.

2.3.4 The Server System

The server system manages a database with the state of all active workflow in-
stances (processes) and user and session information. It offers interaction with
the workflow instances through JSON webservices. Requests to these services
are HTTP requests that use HTTP POST variables to pass arguments. Re-
sponses are JSON encoded data structures. The server system is generated by
compiling a Clean program that evaluates the startEngine function defined by
the iTask base system. This function takes a list of workflow specifications as its
argument. The iTask system provides two implementations of the startEngine
function. One implements a simple HTTP server, which is useful for develop-
ment and testing. The other implements the server system as a CGI application
for use with third party web server software.

Task Tree Computation

The core task of the server system is to compute and update representations of
the current states of executing workflow processes. The central internal repres-

24

iTasks for End-users

entation of the state of a workflow instance that is computed by a combinator
expression is a data structure called Task Tree. It is a tree structure where
the leaves are the atomic tasks that have to be performed, and the nodes are
compositions of other tasks. It is the primary interface between the workflow
specifications and the rest of the framework and is queried to generate task
lists and user interface definitions. Task trees are defined by the following
Clean data type:

1 :: TaskTree
2 = // A stand-alone unit of work with meta-data
3 TTMainTask TaskInfo TaskProperties [TaskTree]
4 // A task composed of a sequence of tasks
5 | TTSequenceTask TaskInfo [TaskTree]
6 // A task composed of a set tasks to be executed in parallel
7 | TTParallelTask TaskInfo [TaskTree]
8 // A task that interacts with a user
9 | TTInteractiveTask TaskInfo (Either TUIDef [TUIUpdate])

10 // A task that monitors an external event source
11 | TTMonitorTask TaskInfo [HtmlTag]
12 // A completed task
13 | TTFinishedTask TaskInfo
14
15 // Shared node information: task identifiers, labels, debug info etc.
16 :: TaskInfo
17 // Task meta-data for main tasks, assignedd user, priority etc.
18 :: TaskProperties

Every function of type Task a generates a (sub) task tree. Combined tasks
use their argument tasks to compute the required sub task trees. Because
an explanation of task tree generation is impossible without examining the
combinators in detail, we will restrict ourselves to a demonstration of their
use by means of an example. Let’s consider the following simple workflow
specification:

1 bugReport :: Task Void
2 bugReport=reportBug>>=fixBug
3 where
4 reportBug :: Task BugReport
5 reportBug=enterInformation "Please describe the bug you have found"
6
7 fixBug :: BugReport→ Task Void
8 fixBug bug= "bas" @: (showMessageAbout "Please fix the following bug" bug)

Figure 2.4 graphically illustrates two task trees that reflect the state of this
workflow at two moments during execution. The tree on the left is produced
during the execution of the first reportBug task. The bind (>>=) combinator only
has a left branch, which is the TTInteractiveTask that contains a user interface

25

Chapter 2

Figure 2.4: Task tree during reportBug (left) and fixBug (right)

definition for the bug report form. The tree on the right is produced during
the execution of fixBug. At this point the leftmost branch is reduced to a
TTFinishedTask and the @: has been expanded to a subtree consisting of a bind
of some getUserByName task, that is finished, and a TTMainTask containing the
TTInteractiveTask with the interface definition for showing the bug report.

The Authentication Service

The iTask server maintains a user and role database such that (parts of) work-
flows can be restricted to users with special roles, and roles may be used to
find the right type of worker to do a certain task. The server handles authen-
tication of clients and keeps a database of authenticated time-limited sessions.
This service consist of two methods, /handlers/authenticatewhich accepts a user-
name and password and yields a session key to access the other services, and
/handlers/deauthenticate that can be passed a session key to explicitly terminate
a session.

The Workflow Directory Service

In order to initiate new workflow instances, the iTask server offers a directory
service to browse the available workflow definitions. The server maintains a
hierarchic directory of available workflows that are filtered by the roles of a user.
The /handlers/new/list method yields the list of possible workflows and subdir-
ectories for any given node in the hierarchy. The /handlers/new/start method
starts a new instance of a workflow definition and returns a task identification
number for the top level task of that workflow instance.

The Tasklist Service

Users can find out if there is work for them through the tasklist service. The
/handlers/work/listmethod yields a list of all main tasks assigned to the current

26

iTasks for End-users

user along with the meta-data of those tasks. This list is an aggregation of all
active tasks in all workflow instances the current user is involved in. Because
tasks are often subtasks of other tasks, parent/child relation information is also
available in the list entries to enable grouping in a client.

The Task Service

To actually get some work done, users will have to be able to work on tasks
through some user interface. Because the tasks are highly dynamic, no fixed
user interface can be used. Therefore, the iTask system uses a generic library
to generate high-level user interface definitions that are interpreted by the
client. The /handlers/work/tab method returns a tree structure that represents
the current state of a workflow instance. This tree data is used by a client either
to render an interface, or to adapt an already rendered interface. When a user
updates an interactive control, this method is called with the event passed as
argument. This yields a new tree that represents the updated state of the
workflow after this event and possibly events from other users. This process is
explained in more detail in Section 2.4.

The Property Service

To update the meta-data of a workflow instance, for example to reassign tasks
to different users or change their priority, the service /handlers/work/propertymay
be used. This service can set any of the meta-data properties of a workflow
instance.

2.3.5 The Client System

Although the iTask system focuses on workflow specification and execution on
the server, the average end-user will only interact with this server through a
client. While the JSON service API is not limited to one specific client, the
iTask system provides a default Javascript client built with the ExtJS framework.
ExtJS is a Javascript library that facilitates construction of “desktop like” Ajax
applications with multiple windows, different kinds of panels, and other GUI
components in a web browser. The iTask client runs in any modern webbrowser
and provides everything a user needs to view and work on tasks. Figure 2.5
shows a screenshot of the iTask client with multiple tasks opened. The client
user interface is divided into three primary areas in a layout that is common
in e-mail client applications. This similarity is chosen deliberately to ease the
learning of the application. The area on the left of the screen shows a folder
hierarchy that accesses the workflow directory service. New workflow instances
can be started by clicking the available flows in the folders. The top right area
shows a user’s task list, and the final main area is the lower right task area. In

27

Chapter 2

Figure 2.5: The iTask client interface

this part of the interface area users can work on multiple tasks concurrently in
a series of tabs. New tabs are opened by clicking items in the task list.
The most interesting feature of the client application is its ability to dynam-
ically render and update arbitrary user interfaces defined by the server. It
constructs the user interfaces required to work on tasks by interpreting a defin-
ition it receives from the server. It then monitors all interactive elements in the
interface and synchronizes changes to them with the server in the background.
The server processes the user input and responds by sending instructions to
adapt the user interface when necessary. A big advantage of this design is that
the server is kept synchronized with the client. This way the server can provide
immediate feedback or dynamically extend an interface without the need for
page refreshes. It also means that tasks can be reassigned at any moment
without losing any work.

2.4 Dynamic Generic Web-Interfaces

One of the primary reasons for redesigning the iTask using a different architec-
ture was to improve the user experience for end-users. In this section we show
how the new iTask system makes use of the new architecture to operationalize

28

iTasks for End-users

Figure 2.6: An automatically generated form

the declaritive user interaction primitives of the specification language.
For basic tasks like enterInformation ordisplayMessageAbout to be operationalized,
the iTask system needs to be able to generate forms for entering data and
visualizations of data to display. Because user interface issues are an aspect
that is abstracted from in the iTask specification language, it is essential that
its implementation is able to generate satisfactory user interfaces. For any type
that someone defines in a workflow specification, the system needs to be able
to generate forms and renderings that have to have the following properties:

• They need to be layed out in a visually and ergonomically pleasing way.

• They need to react responsively and consistently. The cursor should
follow a logical path when using the keyboard to navigate through a
form and there must never be unexplainable loss or change of focus.

• They must communicate clearly what is optional and what is mandatory.
The forms must ensure that mandatory input is entered.

• They must be able to adapt dynamically depending on the choice of con-
structor for algebraic data types. It is, for example, simply impossible to
generate a static form for entering a list, because the number of elements
is unbounded.

The redesign of the iTask system with a service based architecture and stand-
alone (Javascript) client as explained in Section 2.3 removes the implicit us-
ability limitations of the original iTask system. It enables a new approach to
dynamic interface generation that uses type generic functions as can be defined

29

Chapter 2

in Clean [3] on the server and an interpreter in the client that is able to meet
the demands stated above.
Figure 2.6 shows the user interface that is generated for the BugReport type used
in the enterInformation task of the bugReport example in Section 2.3.4:

1 :: BugReport=
2 { application :: String
3 , version :: Maybe String
4 , date :: Date
5 , occursAt :: BugOccurance
6 , severity :: BugSeverity
7 , description :: Note
8 }
9 :: BugSeverity = Low | Medium | High | Critical

10 :: BugOccurance=Startup | Shutdown | Other Note

The demands stated above are all applicable to this relatively simple type
already. It contains both optional and mandatory parts, it has to adapt dy-
namically when theOther constructor is chosen and it has a wide variety of input
elements that have to be arranged in a pleasing layout. An attentive reader
may even spot that different input controls are used to select a constructor in
Figure 2.6 forBugOccuranceandBugSeverity. This choice is not specified explicitly,
but is decided by a layout heuristic in the interface generation.

2.4.1 Key Concepts

The iTask system generically provides generic user interfaces through the in-
terplay between two type generic functions. The first one, gVisualize, generates
visualizations of values that are rendered by the client. The second one,gUpdate,
maps updates in the rendered visualization back to changes in the correspond-
ing values. Before explaining these functions in detail, we first introduce the
key concepts underlying their design.

Visualizations

Visualizations in the iTask system are a combination of pretty printing and
user interface generation. The idea behind this concept is that they are both
just ways of presenting values to users, whether it is purely informational or
for (interactive) editing purposes. The generic user interface library therefore
integrates both in a single generic function. Furthermore, most types of visu-
alizations can be coerced into other types of visualizations. For example: a
value visualized as text can be easily coerced to an Html visualization, or vice
versa. The library offers functions for such coercions. There are six types of
visualizations currently supported as expressed by the following type:

30

iTasks for End-users

1 :: VisualizationType
2 =VEditorDefinition
3 | VEditorUpdate
4 | VHtmlDisplay
5 | VTextDisplay
6 | VHtmlLabel
7 | VTextLabel

And four actual visualizations:

1 :: Visualization
2 =TextFragment String
3 | HtmlFragment [HtmlTag]
4 | TUIFragment TUIDef
5 | TUIUpdate TUIUpdate

The VHtmlDisplay and VTextDisplay constructors are pretty print visualizations
in either plain text or Html. The VHtmlLabel and VTextLabel constructors are
summaries of a value in at most one line of text or Html. Labels and dis-
play visualizations use the same constructor in the Visualization type. The
VEditorDefinition and VEditorUpdate visualizations are explained in the next two
subsections.

User Interface Definitions

When a value is to be visualized as an editor, it is represented as a high-level
definition of a user interface. These TUIDef definitions are delivered in serialized
form to a client as part of a TTInteractiveTask node of a task tree. A client can
use this definition as a guideline for rendering an actual user interface. The
TUIDef type is defined as follows:

1 :: TUIDef
2 =TUIButton TUIButton
3 | TUINumberField TUINumberField
4 | TUITextField TUITextField
5 | TUITextArea TUITextArea
6 | TUIComboBox TUIComboBox
7 | TUICheckBox TUICheckBox
8 ...
9 | TUIPanel TUIPanel

10 ...
11 :: TUIButton=
12 { name :: String
13 , id :: String
14 , text :: String
15 , value :: String
16 , disabled :: Bool
17 , iconCls :: String
18 }

31

Chapter 2

19 :: TUIPanel=
20 { layout :: String
21 , items :: [TUIDef]
22 , buttons :: [TUIDef]
23 ...
24 }

Components can be simple controls such as buttons described by the TUIButton
type on line 11, or containers of other components such as the TUIPanel type on
line 19 that contains two containers for components: One for its main content,
and one additional container for action buttons (e.g. ”Ok” or ”Cancel”).

User Interface Updates

To enable dynamic user interfaces that adapt without replacing an entire GUI,
we need a representation of incremental updates. This is a visualization of the
difference between two values expressed as a series of updates to an existing
user interface.

1 :: TUIUpdate
2 =TUIAdd TUIId UIDef
3 | TUIRemove TUIId
4 | TUIReplace TUIId UIDef
5 | TUISetValue TUIId String
6 | TUISetEnabled TUIId Bool
7 :: TUIId :==String

New components can be added, existing ones removed or replaced, values can
be set and components can be disabled or enabled. The TUIId is a string that
uniquely identifies the components in the interface that the operation targets.
The one exception to this rule is the TUIAdd case, where the TUIId references the
component after which the new component will have to be placed.
User interface updates are computed by a local structural comparison while
traversing an old and new datastructure simultaneously. This ensures that
only substructures that have changed are being updated.

Data Paths

In order to enable updating of values, it is necessary to identify substructures of
datastructure. A DataPath is a list of integers (::DataPath :== [Int]) that are in-
dexes within constructors (of arity > 0) when a datastructure is being traversed.
Figure 2.7 show some example DataPaths for a simple binary tree. DataPaths are
a compact, yet robust identification of substructures within a datastructure.

32

iTasks for End-users

Figure 2.7: Data paths for a value of type ::Tree= Node Tree Int Tree | Leaf Int

Data Masks

When a datastructure is edited, it is possible that during this editing, parts
of the structure are temporarily in an “invalid” state. For example when an
element is added to a list: between the structural extension of the list and the
user entering the value of the new element, the list is in a state in which one
of its elements has a value, but that is not entered by the user. To indicate
which parts of a datastructure have been accessed by a user we use the DataMask
concept. A DataMask is simply a list of all paths that have been accessed by a
user (::DataMask :== [DataPath]). This additional information is used to enhance
usability by treating components that have not been touched by a user different
from those that the user has already touched. For example, validation of only
those fields in a form that have already been filled out.

2.4.2 The Big Picture

With the key concepts explained, we can now sketch the big picture of how
user interfaces of interactive tasks are handled. This process consists of three
main steps:

1. An initial user interface definition (TUIDef) representing the current value
of a datastructure and its mask is generated by a generic function on the
server. This definition is rendered by the client and event handlers are
attached to interactive components to notify value changes.

2. When a user changes an interactive component, an encoding of this
change and the datapath of the component are sent back to the server
and interpreted by another type generic function that updates the data-
structure and mask to reflect the change.

3. The updated datastructure is compared to its previous value and if there
is a structural difference, a list of TUIUpdate is computed and sent back
to the client. The client interprets these instructions and modifies the
interface accordingly.

33

Chapter 2

In the next section we will explain some of the machinery behind those steps.
For reasons of brevity we do not go into implementation details, but explain
the key datastructures and type signatures of key functions instead.

2.4.3 Low Level Machinery

The core machinery of the library consist of two generic functions: gVisualize
andgUpdate. Instances of these functions for concrete types can be automatically
derived. Because these functions have been designed favoring pragmatism over
elegance, the library exposes them through a set of wrapper functions:

1 //Visualization wrappers (under condition that gVisualize exists for type a)
2 visualizeAsEditor :: String DataMask a → ([TUIDef] ,Bool)
3 | gVisualize{|?|} a
4 visualizeAsHtmlDisplay :: a → [HtmlTag]
5 | gVisualize{|?|} a
6 determineEditorUpdates :: String DataMask DataMask a a → ([TUIUpdate] ,Bool)
7 | gVisualize{|?|} a
8 ...
9 //Update wrappers (under condition that gUpdate exists for type a)

10 updateValueAndMask :: String String a DataMask *World→ (a,DataMask,*World)
11 | gUpdate{|?|} a
12 ...

Tasks such as enterInformation use the visualizeAsEditor wrapper to create the
content of a TTInteractiveTask node in the task tree. All interactive components
are given an identifier derived from their data path within the data structure.
This enables the client to send back updates when such a component is updated.
When a client sends an event to the server, the updateValueAndMask wrapper is
used to process the update. Its first two arguments are a string representation
of the data path, and a string representation of the update. The last parameter
is the unique world. Clean uses uniqueness typing to facilitate stateful functions
by threading an abstractWorldvalue. The main reason that updates are impure,
is that it enables impure specializations for specific types. For example when
updating a Maybe Date from Nothing to Just, the current date can be set as value.
After updating a value and mask, the determineEditorUpdateswrapper is used to
create task content containing an incremental update for the client GUI.
Although the generic functions are never called directly, and for normal use
only derived for types, we conclude this section with a brief overview of their

34

iTasks for End-users

type signatures and arguments to give an impression of what goes on under
the hood.

1 generic gVisualize a ::
2 (VisualizationValue a) (VisualizationValue a) VSt→ ([Visualization] , VSt)
3
4 :: VisualizationValue a=VValue a DataMask | VBlank
5 :: VSt=
6 { vizType :: VisualizationType
7 , idPrefix :: String
8 , label :: Maybe String
9 , currentPath :: DataPath

10 , useLabels :: Bool
11 , onlyBody :: Bool
12 , optional :: Bool
13 , valid :: Bool
14 }

The first two arguments are wrapped values of type a with their mask, or an
undefined blank. The last argument that is both input and output ofgVisualize
is the visualization state. This state contains all parameters relevant to the
visualization and is used to keep track of global properties. The optional field
in the structure is used to mark parts of editor visualizations as optional. A
specialization of gVisualize for the Maybe a type sets this field to true, and then
produces a visualization of type of a. When a visualization of an optional value
that is Nothing needed, there is no value of type a available. In that case VBlank
values are used. The valid field of VSt is used to validate mandatory fields. It is
updated at each interactive element and set to False when a non-optional field
is not masked. This validation is used to disable completion of a task until its
form has been filled out completely.

1 generic gUpdate a :: a *USt→ (a, *USt)
2 :: *USt=
3 { mode :: UpdateMode
4 , searchPath :: DataPath
5 , currentPath :: DataPath
6 , update :: String
7 , consPath :: [ConsPos]
8 , mask :: DataMask
9 , world :: *World

10 }
11 :: UpdateMode=UDSearch | UDCreate | UDMask | UDDone

The gUpdate function traverses a datastructure recursively and at each point
transforms the value and state according to one of four modes. In UDSearch

mode, the currentPath path field is compared to the searchPath field and update is

35

Chapter 2

applied when they are equal. The mode is then set to UDDone and the mask field is
updated to include the value of currentPath.. In UDDone mode, the function does
nothing and is just an identity function. When a constructor of an algebraic
data type is updated to one that has a non-zero arity, thegUpdate function needs
to be able to produce default values for the substructures of the constructor.
It uses its UDCreate mode to create these values. In this mode, the gUpdate

ignores its input value and returns a default value. The last mode is the UDMask
mode, which adds the paths of all substructures to the mask as it traverses the
datastructure. This is used to compute a complete mask of a datastructure.

2.5 Related Work

The iTask system is a workflow management system, and is therefore compar-
able with other WFMSs. However, unlike many contemporary WFMSs (e.g.
YAWL, WebSphere, Staffware, Flower, Bonita), the iTask system does not use a
graphical formalism for the specification of workflows, but uses a compact com-
binator language embedded in a general purpose functional language instead.
Although the iTask system is a WFMS, many web applications can be con-
sidered workflow support systems in some way or another. Therefore one could
also view the iTask system as a more general framework for (rapid) development
of web applications. This makes it comparable with other web development
frameworks found in functional languages like WASH/CGI [75]and HAppS [29]
in Haskell, XCaml in OCaml, or the frameworks available in dynamic script-
ing languages like Rails [70] in Ruby or Django [13] in Python. While these
frameworks aim to simplify the development of any type of web application,
the iTask system will only be suitable for applications that can be sensibly
organized around tasks.
The final body of work that may be classified as related is not so much related
to the iTask system itself but rather to its new generic web visualization lib-
rary. Other functional web GUI libraries exist like the WUI combinator library
in Curry [24], or the iData toolkit [60] in Clean that powered previous iTask
implementations. The new iTask visualization library differs from those lib-
raries in that it makes use of an active Ajax client, in this case built with the
ExtJS framework [16]. This gives the generated editors more control over the
browser than is possible with plain Html forms, hence enabling the generation
of more powerful “desktop-like” user interfaces. However, the iTask client is
a single application that interprets instructions generated on the server and is
not to be confused with client side application frameworks such as Flapjax [53].
Such frameworks could be used as a replacement for ExtJS in alternative iTask
clients.

36

iTasks for End-users

2.6 Conclusions

In this paper we have presented a new implementation of the iTask system. This
new implementation uses a service-based architecture combined with an active
client. This approach enables the generation of more user-friendly interfaces for
end-users without compromising the declarative nature of the iTask language.
Although seemingly superficial, improved usability is a crucial aspect of the
implementation of the iTask workflow language, because the iTask system gen-
erates executable systems solely from a workflow specification and nothing else.
Hence, the generation quality largely determines the usefulness of the language.
A direct consequence of, and a primary motivation for, this work is that it
enables case study and pilot research to validate the effectiveness of the func-
tion combinator approach to workflow modeling used by the iTask system in
scenarios with real end-users. Not surprisingly, such realistic case studies in the
context of supporting disaster response operations are planned for the coming
years.
More information, examples and downloads of the iTask system can be found
at: http://itasks.cs.ru.nl/.

37

3 Getting a Grip on Tasks that
Coordinate Tasks

Workflow management systems (WFMS) are software systems that coordinate the
tasks human workers and computers have to perform to achieve a certain goal. The
tasks to do and their interdependencies are described in a Workflow Description
Language (WDL). Work can be organized in many, many ways and in the literature
already more than hundred of useful workflow patterns for WDL’s have been identi-
fied. The iTask system is not a WFMS, but a combinator library for the functional
language Clean to support the construction of WFMS applications. Workflows
can be described in a compositional style, using pure functions and combinators as
self-contained building blocks. Thanks to the expressive power of the underlying
functional language, complex workflows can be defined on top of just a handful of
core task combinators. However, it is not sufficient to define the tasks that need
to be done. We also need to express the way these tasks are being supervised,
managed and visualized. In this paper we report on our current research effort to
extend the iTask system such that the coordination of work can be defined as spe-
cial tasks in the system as well. We take the opportunity to redesign editors which
share information and the combinators for defining GUI interfaces for tasks, such
as buttons, menu’s and windows. Even though the expressiveness of the resulting
system increases significantly, the number of core combinators can be reduced. We
argue that only two general Swiss-Army-Knife higher order functions are needed
to obtain the desired functionality. This simplifies the implementation significantly
and increases the maintainability of the system. We discuss the design space and
decisions that lead to these two general functions for constructing tasks.

3.1 Introduction

Workflow management systems (WFMS) are software systems that coordin-
ate, generate, and monitor tasks performed by human workers and computers.
A concrete workflow ensures that essential actions are performed in the right
order. The purpose of the iTask system [61] is to support the construction of
WFMS applications. It distinguishes itself from traditional WFMSs. First,
the iTask system is actually a monadic combinator library in the pure and lazy
functional programming language Clean. The constructed WFMS application

39

Chapter 3

is embedded in Clean where the combinators are used to define how tasks can
be composed. Tasks are defined by higher-order functions which are pure and
self contained. Second, most WFMSs take a workflow description specified in a
workflow description language (WDL) and generate a partial workflow applic-
ation that still requires substantial coding effort. An iTask specification on the
other hand denotes a full-fledged, web-based, multi-user workflow application.
It strongly supports the view that a WDL should be considered as a com-
plete specification language rather than a partial description language. Third,
despite the fact that an iTask specification denotes a complete workflow applic-
ation, the workflow engineer is not confronted with boilerplate programming
(data storage and retrieval, GUI rendering, form interaction, and so on) be-
cause this is all dealt with using generic programming techniques. Fourth, the
structure of an iTask workflow evolves dynamically, depending on user-input
and results of subtasks. Fifth, in addition to the host language features, the
iTask system adds higher-order tasks (workflow units that create and accept
other workflow units) and recursion to the modelling repertoire of workflow
engineers. Sixth, in contrast with the large catalogue of common workflow
patterns [1], iTask workflows are captured by means of a small number of core
combinator functions.
In this paper we reflect on these core combinators and the functionality they
offer. Although complex workflows can be defined in a declarative style, one
would like to have more flexibility in controlling the tasks one is working on.
For instance, when a task is delegated, someone might want to monitor its
progress. In the current system the delegator gets this information and she
also obtains the power to change the properties of the delegated task, such
as its priority, or, she can move the task to the desk of someone else. This
is often useful, but is not always what is wanted. Perhaps one would like to
inform other people involved as well. One also would like to define what kind
of information is shown to a particular person and define what a manager can
do with the tasks she is viewing. Controlling tasks can be seen as tasks as
well and one would like to have combinators to programme their behaviour.
In particular one would like to define control interfaces that show what goes
on and which can be used to manage the tasks involved. The extended iTask
system described in [55] appears to be a good starting point for defining such
interfaces. In that paper we extended the system with new combinators given
the ability to define GUIs for tasks. Furthermore we showed that it is possible
to share information between tasks. Tasks can communicate with each other
by modifying shared information.
Adding all these extensions to the iTask system can easily lead to a system with
an excessive number of core combinators. This leads to high maintenance costs
and hampers formal reasoning. Fortunately, the desired functionality can be
obtained with only a very few powerful combinators with which the simplicity

40

Getting a Grip on Tasks that Coordinate Tasks

of the system can be retained and the maintainability can be improved. It
is the thesis of this paper that we can do with only two new general purpose
elements.
The remainder of this paper is organized as follows. First, we describe the cur-
rent core iTask system (Section 3.2) and explain its usage and shortcomings by
means of small, yet illustrative examples (Section 3.3). Based on this analysis
we identify the requirements that should be satisfied by the new iTask system
and argue that they can be realized with only two new general constructs with
which all current constructs can be defined (Section 3.4). In the conclusions
we briefly discuss the current situation (Section 3.5).

3.2 The iTask Core System

In this section we give a brief overview of the iTask system. The kernel of the
iTask system consists of basic tasks and combinator functions for combining
tasks. On top of them, an API is defined. This API offers some notational
convenience and allows to define workflows in a more verbose style to enhance
the communication with domain experts, which are not likely to be functional
programmers. In this paper we abstract from this API and focus on the iTask
kernel.

3.2.1 Basic Tasks

Basic tasks are units of work of the opaque, parameterized typeTask a: the type
parameter a is the type of the result value that is committed to the workflow
when the task has finished. In principle, any unit of work in daily life can be
modeled as a basic task. It can be a call to a service on a web server, a system
call, or a form to be filled in by a worker in a browser. The latter is the most
interesting one in this context, since human interaction is a key feature of any
workflow system. In this paper we restrict ourselves to this basic task only, for
which we provide the function edit.

1 edit :: String a → Task a | iTask a

Note that in Clean the arity of functions is shown explicitly by separating
argument types by spaces instead of→. An editor is created withedit prompt va.
The prompt argument provides the worker with information about the purpose
of this task. When applied to an initial va of some type a, it creates a GUI
in which the worker can inspect and alter the given value arbitrarily many
times. An editor can create and handle such a GUI for any first-order type a.
It uses a set of type indexed generic functions (hence the context restriction
| iTask a) which are derived by the compiler automatically. The iTask system
guarantees that only values of type a can be created. This continues until the
worker decides to commit the value to the workflow, which terminates the task
edit prompt va.

41

Chapter 3

Example

What follows is a very small iTask example: a task enterInt using the edit

function to create a form for filling in an Integer number. The generic function
initialValue yields an initial value for any first order type.

1 module example
2
3 import iTask
4
5 Start world=startEngine [workflow "Integer form" enterInt] world
6
7 enterInt :: Task Int
8 enterInt= edit "Please, fill in form" initialValue

To turn this task description into an executable WFMS one has to import
the iTask library. The main function in Clean is called Start which obtains a
(unique) world as argument which is used for the pure communication with the
impure outside world. The library function startEngine takes a list of workflow
specifications and creates a web-based workflow system for it (see Figure 3.1).
Any task can be promoted to become a workflow with the function workflow.
Such a workflow is added to the list of workflows in the left workflow start-pane.
A workflow can be started by the worker arbitrary many times just by clicking
on its icon. The tasks a worker has to do appear in the task-list pane, similar
to a list of incoming emails. By clicking on an item in the list, a task-pane is
opened allowing a worker to work on her tasks in arbitrary order.

Figure 3.1: A screen-shot of the iTask browser interface

42

Getting a Grip on Tasks that Coordinate Tasks

The edit function can be used on any first-order type. In the example below
we show the form it creates for a list of Persons, where Person is some user-
defined record type. One only has to change the type of the application of edit.
Furthermore one has to ask the compiler to derive the generic functions for the
types involved. The resulting form is shown in Figure 3.2.

Figure 3.2: The form generated for editing a list of Persons

1 module example2
2
3 import iTask
4
5 :: Person = { firstName :: String
6 , surName :: String
7 , dateOfBirth :: Date
8 , gender :: Gender
9 }

10 :: Gender = Male | Female
11
12 derive class iTask Person, Gender
13
14 Start world=startEngine [workflow "Person form" enterPersons] world
15
16 enterPersons :: Task [Person]
17 enterPersons= edit "Please, fill in the form" initialValue

43

Chapter 3

3.2.2 Core Combinators

In this paper we focus on the iTask core combinators. The semantics is formally
defined in [64].

1 // assigning properties to a task:
2 (@:) infixr 5 :: p (Task a) → Task a | property p & iTask a
3
4 // sequencing of tasks with a monad:
5 (>>=) infixl 1 :: (Task a) (a → Task b) → Task b | iTask b
6 return :: a → Task a | iTask a
7
8 // defining parallel tasks: parallel-or and parallel-and:
9 (-||-) infixr 3 :: (Task a) (Task a) → Task a | iTask a

10 (-&&-) infixr 4 :: (Task a) (Task b) → Task (a, b) | iTask a
11 & iTask b

Properties can be assigned to a task by using the @: combinator. In general, the
properties that can be set are captured by the type class property. Examples
of predefined properties are: an identification of a worker or group of workers
to which the task is assigned, the priority of a task, and it’s deadline. One
can assign user-defined properties (type String) as well. The properties are
inherited by all subtasks of a task, unless other properties are assigned to them
via a @: operator. We call @:-annotated tasks main tasks.
To compose tasks sequentially, the monadic combinators return and>>= [79] are
provided. The task return va succeeds immediately and commits its value va.
In ta>>= λva → tb, the task ta is evaluated first. When this task commits its
value, say va, it is passed to tb to compute the next task to be executed.
To compose tasks in parallel, the combinators-||-and -&&- are provided. A
task constructed using-||- is finished as soon as either one of its subtasks is
finished, returning the result of that task. The combinator -&&- is finished as
soon as both subtasks are finished, and pairs their results.
The iTask system actually offers a couple of additional core combinators: namely
for managing workflow processes and for exception handling. However, their
functionality is not important for this paper.
In the next section we give some examples of iTask workflow specification using
the core combinators described above, and use these examples to explain how
the combinators can be further improved.

44

Getting a Grip on Tasks that Coordinate Tasks

3.3 The Expressive Power and Limitations of the
Combinators

With the iTask core combinators, complex workflows can be defined which
cannot be expressed in traditional WFMS. However, there is still room for
improvement. We present some examples, explain what their effect is, and
discuss what is missing.

3.3.1 Coordination of Tasks

Our first example is a higher order task: we define a task which delegates a
given task to someone else. Notice that in most classical WFMSs, such higher
order tasks cannot be defined.

1 delegate :: (Task a) → Task a | iTask a
2 delegate task
3 = selectUsers
4 >>= λworker→ worker @: task
5 >>= λresult→ edit "Check result:" result
6
7 Start world=startEngine [workflow "Delegate" (delegate enterPersons)] world

In the delegate task there are initially two people involved: a delegator deleg-
ating work, and a worker, to whom the work is delegated. There are three
sub-task steps in this delegate task, sequentialized by the bind combinator
(>>=). When the task delegate is performed by the delegator, she first has to
select a worker. The library functionselectUsersdisplays a list of administrated
users the delegator can select from. In the next step the task to delegate is
assigned (@:) to the chosen worker. When the worker has finished the task,
its result is shown to the delegator again. She can correct the returned result
with the editor, and when she is happy and finishes, the whole delegation task
is completed as well. The delegate workflow is a clear and concise specification
which can be applied to any task. In this particular example, enterPersons is
the task being delegated to the worker.
Yet there is something missing in this specification as well. It is clear what
the worker has to do (see Figure 3.2), but what do we show to the delegator
in the meantime? When the work is being delegated, the delegator might
be interested in how the work is proceeding. Perhaps she also wants to do
something with the information she sees.
In the first version of the iTask system, we just informed the delegator in the
task-pane that her delegation task is waiting for the worker to finish. In the
current version, we have used the capability to change tasks under execution
[64] to turn this passive role of the delegator into an active one. The delegator
is offered a predefined control screen as displayed in Figure 3.3.

45

Chapter 3

Figure 3.3: Default task pane of a waiting task

It gives the delegator information about the properties of the delegated task,
such as its priority, who is working on it and the last time the task has been
worked on. Moreover it gives the delegator the capability to coordinate the
delegated task: she can change its priority and she can replace the worker by
another one, including herself. When a change is made, the worker sees this
change immediately when an event is committed to the server. When the task
is transformed to some other worker, he can continue with the work of the
previous worker, since all the work done so far is retained.
In this example we observe that there are actually two tasks involved when
a main task is created. The task being assigned is explicitly defined by the
workflow engineer, but the coordinating task is predefined and fixed in the
iTask library. Since the iTask system is intended as a system for constructing
WFMS’s, it would be better if the coordinating meta-task is not fixed by the
underlying system but can be defined as a task by the workflow engineer as
well. This implies that such a task must continuously be provided with the
actual status information of the main tasks involved.
With this status information one can display a view to whom it concerns.
For instance, in the current system, the delegator is by default turned into a
manager, but perhaps this is not desirable at all. It might also possible that
several people are interested in the progress of the delegated task. Consider
the following example:

1 Start world
2 =startEngine [workflow "Delegate 2"
3 (delegate (delegate enterPersons))] world

Here we delegate the delegation-task thus introducing potentially two workers
who might be interested in the progress of the actual work.
Hence we need to provide the programmer with a combinator with which she
can define arbitrary coordination tasks which have a view on the ongoing work
and enable to change their properties as wanted.

46

Getting a Grip on Tasks that Coordinate Tasks

3.3.2 Sharing of Information

In the previous section we have identified the need to allow coordination tasks
to continuously monitor and alter task (properties). This need extends in a
natural way to arbitrary tasks and arbitrary information. Michels et al. [55]
show that some tasks do need to constantly exchange information while one
is working on it. This extends the data flow that is dictated by the current
workflow combinators in which information is only propagated to tasks once
the information-producing task has been terminated and thus committed its
value to the workflow. An appealing example is chat.

1 :: Note= Note String
2
3 :: View m v= { viewFrom :: m → v, viewTo :: v → m → m }
4
5 chat :: User User→ Task Void
6 chat user1 user2
7 = createDB (Note "", Note "")
8 >>= λref→ (user1 @: editShare ("Chat with "+++user2) a ref)
9 -&&-

10 (user2 @: editShare ("Chat with "+++user1) b ref)
11 >>= λ_ → return Void
12 where
13 a= { viewFrom= λ(note1, note2) → (Display note2,note1)
14 , viewTo = λ(_,note1) (_, note2) → (note1, note2)
15 }
16 b= { viewFrom= λ(note1, note2) → (Display note1,note2)
17 , viewTo = λ(_,note2) (note1, _) → (note1, note2)
18 }

In this example, two workers chat with each other continuously. To make
this possible, the text produced by both (of type (Note, Note)) is stored in a
database. It serves as a shared model, and both workers may change the model
at the same time. Each worker, however, has its own view on the shared model.
For this purpose one has to describe the mapping between model and view
(viewFrom) and backwards (viewTo) also known as a lens [7]. This implements
the well known model-view-controller paradigm [38]. In the chat example, the
predefined type Display is used to prevent one worker to change the information
typed in by the other. For a screen shot see Figure 3.4. Hence, an editing
conflict caused when more than one worker changes the same information at
the same time cannot arrise in this particular example due to the well chosen
view. In general such editing conflicts are possible. The system can prevent
the database for becoming inconsistent by producing an error message when
somebody is trying to change data which is not up-to-date.
To make this all possible, we need a new kind of editor, like editShare, which
reads in the current model stored in the database, and converts this information

47

Chapter 3

Figure 3.4: Workers Rinus and Bas chatting with each other

to a view to show in the client. Every time a worker makes a change, the view
is converted back to the model and stored in the database. The view others
have on this information has to be updated accordingly.
The editShare editor has the following type:

1 editShare :: String (View m v) (Ref m) → Task (Maybe m)
2 | iTask m & iTask v

It requires a String for prompting, a view of type v on a model of type m and
a reference to the database where the shared model of type m is stored. Only
if the editShare editor finished in a valid state, the final value mv is returned as
Just mv, otherwise Nothing is returned.
The ability to share information and provide a specific view on this information
is required to define tasks that coordinate other tasks. In this case the state
information of the tasks to coordinate has to be provided to the coordinating
tasks.

3.3.3 Adding GUI Elements

With the standard core editor a form can be generated for any first order
type. One can change the values in the form as often as desired. The system
ensures that the form can only be filled with values of the demanded type. The
standard “OK” button can therefore only be pressed when all required parts
of the form have been filled in properly.
Clearly one would like to have the possibility to attach an arbitrary number
of buttons to an editor instead of just one. Michels et al [55] extend the
iTask system and enrich editors with GUI elements such as buttons and menus.
Furthermore, several editors can be active at the same time each running in
their own window. An example using such an enriched editor, editA (for edit
action), is (see also Figure 3.5):

48

Getting a Grip on Tasks that Coordinate Tasks

1 editA :: String [(Action, (Maybe a) → Bool)] a
2 → Task (Action, Maybe a) | iTask a
3
4 enterPerson :: Task (Maybe Person)
5 enterPerson
6 = editA "Please, fill in form" myActions initialValue
7 >>= λ(event,mbr) → return mbr
8 where
9 myActions = [(ActionOk,ifValid) , (ActionCancel,always)]

10
11 ifValid (Just _) = True
12 ifValid _ =False
13
14 always _ = True

The idea is to attach a list of action-predicate pairs to an editor, as shown
in the type of editA. The predicate defines when the corresponding action
can be chosen. An action such as “OK” can only be chosen if a complete
form has been filled in, but one can also specify that the entered value has to
satisfy additional requirements. Other actions, such as Cancel, should always

Figure 3.5: Editor for type Person with Ok and Cancel buttons.

be possible, regardless what has been entered. It can therefore no longer be
guaranteed that such an editor will always return a proper value. Hence, editA
returns the chosen action and Maybe a value. In enterPerson two actions are
attached to the editor: ActionOK which can only be chosen if the form has been
filled in completely (guarded with ifValid), and ActionCancel which can always
be chosen (guarded with always).
It is better to structure actions using menus when there are many of them. This
can be done via task annotations using the operator <<@. Here one can define
a mapping between actions and menu items. For the actions not mentioned in
this mapping buttons are generated. Here we adapt enterPerson to use a menu.

49

Chapter 3

1 enterPerson :: Task (Maybe Person)
2 enterPerson
3 = editA "Please, fill in form" myActions initialValue
4 <<@ myMenu
5 >>= λ(event,mbr) → return mbr
6 where
7 myActions = [(ActionOk,ifValid) , (ActionCancel,always)]
8 myMenu = [Menu "Edit"
9 [MenuItem ActionCancel (Just cancelHotkey)

10]]
11 cancelHotkey= {key=C, ctrl=True, alt=False, shift=False}

In [55] Michels et al propose a special combinator for creating multiple editors
in parallel each running in their own window. As we will see in Section 3.4,
we conjecture that all the different types of editors presented so far can be
combined into one. Similarly, we can also combine the different ways of creating
parallel tasks in one combinator.

3.3.4 Swiss-Army-Knife Parallel Combinator

The need for more functionality does not necessarily imply that more combinat-
ors are required. By using higher order functions, Swiss-Army-Knife combinat-
ors can be defined, that strongly reduce the number of needed core combinators.
In the current iTask system, the parallel combinator is one such example:

1 parallel :: ([a]→Bool) ([a]→b) ([a]→b) [Task a] → Task b | iTask a & iTask b

For instance, the core combinators -||- and -&&- (Section 3.2.2) can be re-
placed by suitable parametrization of parallel. The function parallel predOK

someDone allDone taskList takes a list of tasks (taskList) to be executed in par-
allel, a predicate (predOK), and two conversion functions (someDone and allDone).
Whenever a member oftaskList is finished, its result is collected in a list results
of type [a], maintaining the order of tasks. Now predOK results is computed to
determine whether parallel should complete, in which case the result is com-
puted by someDone results. When all parallel tasks have run to completion, and
predOK is still not satisfied, then parallel also completes, but now with result
allDone results. We can define-||-and -&&- as follows:

1 (-||-) infixr 3 :: (Task a) (Task a) → Task a | iTask a
2 (-||-) ta1 ta2=parallel (not o isEmpty) first undef [ta1, ta2]
3 where
4 first [a] = a
5
6 (-&&-) infixr 4 :: (Task a) (Task b) → Task (a, b) | iTask a & iTask b
7 (-&&-) ta tb=parallel (const False) undef all [ta>>=Left, tb>>=Right]
8 where
9 all [Left a,Right b] = (a,b)

50

Getting a Grip on Tasks that Coordinate Tasks

Although a Swiss-Army-Knife combinator such asparallel can be used to define
many different kinds of parallel behaviours, there is room for improvement
here as well. With predOK one can freely define when the parallel tasks can be
stopped, but perhaps one also needs to be able to start new tasks dynamically,
because more work is required.
Also there seem to be different categories of work to be done in parallel. One
category is formed by tasks different people work on in parallel, such as in the
chat example. But one can also think of parallel tasks one person works on,
each task running in its own window being part of one and the same GUI-
application.

3.4 Redesigning the Core System

In the previous section we have identified some shortcomings of the current
iTask core system as presented in Section 3.2. One would like to have a more
general basic task editor that can be used for ordinary tasks as well as for
the coordination of tasks. Furthermore, one would like to have a more general
applicable combinator for defining parallel tasks. In this section we argue that
it is possible to identify two such general purpose new elements.

3.4.1 Basic Editor Task Revisited

The basic edit task, as defined in Section 3.2.1, lacks some functionality needed
to define coordination tasks. In Section 3.3.2 and Section 3.3.3, we gave ex-
amples of extended basic tasks with additional functionality.
As for task combinators the different variants of editor tasks can be seen as
special cases of one Swiss-Army-Knife editor task. For instance, a task not
using actions is actually a special case only using the Ok action which can only
be chosen if the editor is in a valid state. Working on local data can be seen as a
special case of working on a shared database, which is only used by a single task
and deleted afterwards. A last example is that tasks not using a custom defined
view, actually use the identity view (defined as {viewFrom= id, viewTo=const}).
Summarized a Swiss-Army-Knife editor task has to meet the following criteria:

1. Edited data can be shared by an arbitrary number of editor tasks, which
are possibly carried out by different workers. The system ensures that the
data is kept in a consistent state by detecting and reporting edit conflicts.

2. It is possible to edit only a part of the data given to the task. Also the
representation shown to the worker might be different than the original
data model. This can be achieved by using functionally defined views.

3. An arbitrary number of actions can be attached to each editor task. They
are triggered either by buttons or menus which structure is given by

51

Chapter 3

annotating the task. A predicate is used to define when an action can be
triggered. The task only returns a value if the editor stopped in a valid
state.

We are currently implementing all tasks for user interaction in the iTask library
(which also includes special tasks not discussed in this paper, for example for
making choices), using the same underlying general editor implementation.
In the actual implementation some optimizations might be considered. For
example, not storing a separate database if it is only used by a single task.

3.4.2 Core Combinators Revisited

In Section 3.3.4, we have shown how one single combinator, parallel, can be
used to create the derived combinators-||-and -&&-. We have argued in Sec-
tion 3.3.1 that delegating work is also a form of parallel task creation. The
current shortcoming of delegation is that the iTask system has predefined be-
haviour to control and coordinate these tasks. The workflow engineer should
be able to specify the means of control as (arbitrarily many) additional tasks
that coordinate these tasks. We hypothesize that these forms of parallel beha-
viour can be captured with a single, more general combinator. The combinator
needs to meet the following criteria:

1. The number of tasks in the currentparallel combinator remains constant,
and parallel can only enforce early termination, not the extension of new
tasks. The number of tasks in a parallel setting should not be fixed once
and for all, but should adapt to the needs of the current situation.

2. The tasks within the current parallel combinator simply perform their
duty and as such do not interfere with each other (except ofcourse when
using shared communication). Next to these regular tasks we introduce
control tasks. These are also tasks, but, being control tasks, they ‘edit’
the collection of parallel tasks. In this way, we can replace the predefined
behaviour of task delegation and instead leave it to the workflow engineer
whether or not to use a predefined control delegation-task or introduce a
(number of) custom control task(s).

3. Because the number of both regular and control tasks varies during the
evaluation of a parallel group, we need to share information about the
state of the parallel group. Access to this state is restricted to control
tasks only, which is easily achieved using the strong type system.

4. In the current parallel combinator, control is limited to either early com-
pletion (computed by predOK) in which case the final task result was com-
puted by someDone or full completion in which case the final result was
computed by allDone. In the more general case, we need to decide how to

52

Getting a Grip on Tasks that Coordinate Tasks

continue whenever a regular or control task runs to completion. Again,
this should not be computed by the regular tasks. Instead, we need a
function that knows which task has completed, and hence has a result
value that needs to be accumulated in the shared state. In addition, this
function can decide what should happen with the group of parallel (con-
trol and regular) tasks: tasks can be suspended and resumed, they can be
removed, replaced, and new (control and regular) tasks can be added to
the group of parallel tasks. It is clear that this functionality subsumes the
current behaviour of parallel, and adds behaviour that was inexpressible
before.

5. The final part that should be abstracted from is the arrangement, or lay-
out, of the generated GUIs of the (control and regular) tasks. In the cur-
rent iTask system a distinction is made between a parallel form for tasks
that can, in principle, each be delegated to other workers and a parallel
form for tasks which GUI should be merged into one single presentation.
In order to abstract from this, it is better to parameterize the new paral-
lel combinator with a function that describes how the component GUIs
of (control and regular) tasks should merged.

We are currently experimenting with a single parallel combinator that meets
the above criteria. With this combinator we hope to express all other task
combinators as special cases. This should aid the development of a formal
framework of the new iTask system. Note that, for efficiency reasons, an actual
implementation may need to resort to specialized implementations.

3.5 Conclusions

The original iTask system offers a lot of functionality on a high level of abstrac-
tion liberating the programmer from worrying about many implementation
details. The concept of an iTask task was a unit of work performed somewhere
which, when finished, yielded a value of a certain type which is used to dy-
namically determine which other tasks to do next. With a fixed but small and
powerful set of combinators complex work patterns can be captured.
In this paper we have argued that nevertheless more expressive power is needed.
The purpose of the iTask library is not only to provide a concise formalism for
defining tasks, but also to support the construction of WFMS’s. From an
iTask specification, an executable distributed web enabled WFMS is generated.
The library should therefore have as little as possible predefined behaviour. In
addition to the tasks that need to be done one also wants to be able to define
the view and control managers have on the work that is going on. Furthermore,
web browsers nowadays offer much more functionality than a couple of years

53

Chapter 3

ago. Instead of offering a simple form to be filled in, complete full-fledged GUI
applications can be run in a web browser.
Currently we are redefining and re-implementing the iTask library. We had
to change the tasks concept enabling a task to share information with others
while the work is going on. In addition to regular tasks, special control tasks
are added. Tasks can become a complete GUI application, offering buttons,
menus, dialogues and multiple windows.
At this stage we have not yet tested the new system with non-toy examples,
but we hypothesize that we can capture all current iTask combinators and
the above mentioned shortcomings with only two constructs: one very general
editor and one Swiss-Army-Knife combinator for creating parallel tasks. These
two should suffice to construct all other combinators.

54

4 Task-Oriented Programming in a
Pure Functional Language

Task-Oriented Programming (TOP) is a novel programming paradigm for the con-
struction of distributed systems where users work together on the internet. When
multiple users collaborate, they need to interact with each other frequently. TOP
supports the definition of tasks that react to the progress made by others. With
TOP, complex multi-user interactions can be programmed in a declarative style just
by defining the tasks that have to be accomplished, thus eliminating the need to
worry about the implementation detail that commonly frustrates the development
of applications for this domain. TOP builds on four core concepts: tasks that
represent computations or work to do which have an observable value that may
change over time, data sharing enabling tasks to observe each other while the work
is in progress, generic type driven generation of user interaction, and special com-
binators for sequential and parallel task composition. The semantics of these core
concepts is defined in this paper. As an example we present the iTask3 framework,
which embeds TOP in the functional programming language Clean.

4.1 Introduction

When humans and software systems collaborate to achieve a certain goal they
interact with each other frequently and in various ways. Constructing software
systems that support human tasks in a flexible way is hard. In order to do
their work properly human beings need to be well informed about the progress
made by others. We lack a formalism in which this aspect of work is specified
at a high level of abstraction.
In this paper we introduce Task-Oriented Programming (TOP), a novel pro-
gramming paradigm to define interactive systems using tasks as the main ab-
straction. TOP provides advanced features for task collaboration. We choose
tasks as unit of application logic for three reasons. First, they cover many phe-
nomena that have to be dealt with when constructing systems in a natural and
intuitive way. In daily life we use this notion to describe activities that have
to be done by persons to achieve a certain goal. In computer systems, running
processes are also commonly called tasks. On a programming language scale,
a function, a remote procedure, a method, or a web service, can all be seen as

55

Chapter 4

tasks that can be executed. Second, in daily life it is common practice to split
work into parallel and sequential sub-tasks and at the same time, during execu-
tion, not to be very strict about their termination behavior and production of
results. Progress of work can be guaranteed even though some, or all, sub-tasks
produce partial results. This contrasts with the usual concept of computational
tasks that are interpreted as well-defined units of work that take some argu-
ments, take some time to complete, and terminate with a result. Third, tasks
abstract from the operational details of the work that they describe, assum-
ing that the processor of the task knows how to perform it. The processor
must deal with a plethora of issues: generate and handle interactive web pages,
communicate with browsers, interact with web services in the cloud, interface
with databases, and so on. Application logic is polluted with the management
of side effects, the handling of complicated I/O like communication over the
web, and the sharing of information with all users and system components. In
this pandemonium of technical details one needs to read between the lines to
figure out what a program intends to accomplish. Using tasks as abstraction
prevents this. For these reasons, we conjecture and show that in the TOP
paradigm specifying what the task is that needs to be done, and how it can be
divided into simpler tasks is sufficient to create the desired application.
We present a foundation for Task-Oriented Programming in a pure functional
language. We formalize the notion of tasks as abstract descriptions of interact-
ive persistent units of work. Tasks produce typed, observable, results but have
an abstract implementation. When observed by other tasks, a task can either
have no (meaningful) value, have a value that is a temporary result that may
change, or have a stable final result. We show how to program using this notion
of tasks by defining a set of primitive tasks, a model for sharing data between
tasks, and a set of operators for composing tasks. Because higher-order func-
tion composition provides powerful composition already, only a small set of
operators is necessary. These are sequential composition, parallel composition,
and the conversion of task results.
Most notably, we make the following contributions:

• We introduce Task-Oriented Programming as a paradigm for program-
ming interactive multi-user systems composed of interacting tasks.

• We present tasks as abstract units of work with observable intermediate
values and continuous access to shared information.

• We present combinators for composition and transformation of tasks and
formally define their semantics.

• We demonstrate real-world TOP in Clean using the redesigned and ex-
tended iTask3 framework.

56

Task-Oriented Programming in a Pure Functional Language

The remainder of this paper is organized as follows: in Section 4.2 we informally
explain the TOP paradigm by defining its concepts and a non-trivial example in
Clean with the iTask3 framework. In Section 4.3 we formalize the foundations
of TOP component-wise: tasks and their evaluation, sharing information, user
interaction, and sequential and parallel task composition. In Section 4.4 we
reflect on the pragmatic issues that need to be dealt with in frameworks that
facilitate real-world TOP programming. After a discussion of related work in
Section 4.5, we conclude in Section 4.6 .
For readability, we use Clean∗ [20] which is a dialect of Clean that adapts a
number of Haskell language features. In this paper we deploy curried function
types (Clean function types have arity), and the unit type ().

4.2 The TOP Paradigm

Task-Oriented Programming extends pure Functional Programming with a no-
tion of tasks and operations for composing programs from tasks. Complex
interactive multi-user systems are specified as decompositions of the tasks they
aim to support.

4.2.1 TOP Concepts

Tasks: Tasks are abstract descriptions of interactive persistent units of work
that have a typed value. When a task is executed, by a TOP framework, it has
an opaque persistent state. Other tasks can observe the current value of a task
in a carefully controlled way. When an executing task is observed, there are
three possibilities:

1. The task has no value observable for others: This does not mean
that no progress is made, but just means that no value of the right type
can be produced that is ready for observation.

2. The task has an unstable value: When a task has an unstable value,
it has a value of the correct type but this result may be different after
handling an event. It is even possible that the next time the task is
observed it has no value.

3. The task has a stable value: The task has a clear final result. This
implies that if the task is observed again, it will always have the same
value.

Tasks may be interactive. Such tasks process events and update their internal
state. However, this event processing is abstracted from in Task-Oriented pro-
grams. The effects of events are only visible as changes in task results.

57

Chapter 4

Many-to-many Communication with Shared Data: When multiple tasks are
executed simultaneously, they may need to share data between them. How and
where this data is stored however, is often completely irrelevant to the task.
What matters is that the data is available and that it is shared. Thus, when
one task modifies shared data, the other tasks can observe this change. In TOP
we abstract from how and where data is stored and define Shared Data Sources
(SDS) as typed abstract interfaces which can be read, written and updated
atomically.

Generic Interaction: The smallest tasks into which an interactive system can
be divided are single interactions, either between the system and its users or
between the system and another system. Single interactions can be entering
or updating some data, making a choice or just viewing some information. In
TOP we abstract from how such interactions are realized unless it is essential
to the task. A TOP framework generates user interfaces generically for any
type of data used by tasks. This means that it is not necessary to design a user
interface and program event handling just to enter or view some information.
It is possible to specify interactions in more detail, but it is not needed to get
a working program.

Task Composition: TOP introduces the notion of tasks as first-class values,
but also leverages first-class functions from pure functional programming. This
means that only a small carefully designed set of core combinator functions is
needed from which complex patterns can be constructed.

1. Sequential composition: TOP uses dynamic sequential composition.
Because task values are observable, sequential compositions are not defined
by blindly executing one task after another. They are defined by com-
posing an initial task with a set of functions that compute possible next
steps from the observed value of the initial task.

2. Parallel composition: Parallel composition is defined as executing a
set of tasks simultaneously. Tasks in a parallel set have read-only access
to a shared data source that reflects the current values of all sibling tasks
in the set. In this way tasks can monitor each other’s progress and react
accordingly.

3. Value transformation: Task domains can be converted by pure func-
tions in order to combine tasks in a type consistent way.

4.2.2 An Example of TOP in Clean

To illustrate Task-Oriented Programming in practice, we present a non-trivial
example that uses the novel iTask3 framework. In the example, one specific

58

Task-Oriented Programming in a Pure Functional Language

user, the coordinator, has to collaborate with an arbitrary number of users to
find a meeting date and time. Figure 4.1 displays that this task consists of
three sub-tasks. This figure consists of actual screenshots of the user interfaces
generated by the iTask3 framework.

Figure 4.1: Selecting possible dates for a meeting

In sub-task one, the coordinator creates a number of date-time pairs. While
doing so, he or she can rearrange their order, insert new date-time pairs, or
remove them. Once satisfied, the coordinator confirms the work by pressing
the Continue button, and steps into sub-task two.
This sub-task two consists of a number of tasks running in parallel. The users
(Alice, Bob, and Carol in this example) are all asked to make a selection of
the proposed date-time pairs (the Enter preferences windows). Meanwhile, the
coordinator can monitor and follow the selections being made (the Results so
far window). At any time, the coordinator can either choose to restart the
entire task all over again, by pressing the Try again button. He or she can
also select a date-time pair that is suitable for (the majority of) all users by
pressing the Make decision button. In the first case, they step into the plan
meeting task afresh, and in the latter case, they step into sub-task three.
In sub-task three the system provides the coordinator with an overview of
available users per date-time pair, thus helping him or her to make a good
decision. The coordinator can also decide not to pick any of the candidate

59

Chapter 4

date-time pairs and override them with a proposed alternative. Once satisfied
with a choice, the coordinator terminates the entire task by pressing Continue,
and returns a stable date-time value.
In the remainder of this section we show how to specify this example in a
Task-Oriented way. Figure 4.2 displays the complete specification. It contains
TOP-notions explained in detail further on in this paper. The key point of this
example is to show how Task-Oriented Programming aids to create a specific-
ation that closely matches the description that is shown above. The semantics
of the used concepts are defined in Section 4.3.
The entire task of the coordinator is described by planMeeting. Its type (line 1)
expresses that given a list of users, it is a task that produces a date-time pair.
User and DateTime are predefined data types. User represents a registered user.
DateTime is just a pair of Date (day-month-year triplet) and Time (hours-minutes-
seconds triplet) which also happen to be predefined.
As discussed, the main structure of planMeeting consists of three subsequent
sub-tasks (line 3), which are glued together by means of the step combinator
>>*. The second argument of>>* enumerates the potential subsequent task steps
that can be stepped into while the first argument task is in progress. Hence, the
first sub-task, enterDateTimeOptions, is followed by askPreferences, which in turn
is followed by either tryAgain or decide. Entering user information (performed
by enterDateTimeOptions, select, and pick) is an example of a task that may or
may not have a task value. This depends on the input provided by the user.
The potential task steps which can follow can observe the task value and define
whether or not sufficient information is provided to step into the next task.
In case of the transition from the first sub-task to the second sub-task, this
requires an action from the coordinator (line 10). This is only sensible if the
previous task has a task value, which is tested by the predicate hasValue. In
that case, the current task value is retrieved (getValue) and used to step into
the next sub-task, which is to ask all users to choose preferred date-time pairs.
The observable task value is accessible in the step combinator to determine the
next task steps chosen. The task value and its access functions are straight-
forward: hasValue tests for the Val data constructor, and getValue returns that
value if present:

1 :: Value a =NoVal | Val a Stability
2 :: Stability =Unstable | Stable
3
4 hasValue :: Value a → Bool
5 hasValue (Val _ _) = True
6 hasValue _ =False
7
8 getValue :: Value a → a
9 getValue (Val a _) = a

60

Task-Oriented Programming in a Pure Functional Language

1 planMeeting :: [User] → Task DateTime
2 planMeeting users
3 =enterDateTimeOptions>>* [askPreferences users] >>* [tryAgain users, decide]
4
5 enterDateTimeOptions :: Task [DateTime]
6 enterDateTimeOptions=enterInformation "Enter options" []
7
8 askPreferences :: [User] → TaskStep [DateTime] [(User, [DateTime])]
9 askPreferences users

10 =OnAction (Action "Continue") hasValue (ask users o getValue)
11
12 ask :: [User] → [DateTime] → Task [(User, [DateTime])]
13 ask users options
14 =parallel "Collect possibilities"
15 [(Embedded, monitor)
16 :[(Detached (worker u) ,select u options) \\ u←users]]
17 @ λanswers→ [a \\ (_,Val a _)←answers]
18
19 monitor :: ParallelTask a | iTask a
20 monitor all_results
21 =viewSharedInformation "Results so far" []
22 (mapRead tl (taskListState all_results))
23 @? λ_ → NoVal
24
25 select :: User→ [DateTime] → ParallelTask (User, [DateTime])
26 select user options _
27 =enterMultipleChoice "Enter preferences" [] options
28 @ λchoice→ (user,choice)
29
30 tryAgain :: [User] → TaskStep [(User, [DateTime])] DateTime
31 tryAgain users
32 =OnAction (Action "Try again") (const True) (const (planMeeting users))
33
34 decide :: TaskStep [(User, [DateTime])] DateTime
35 decide=OnAction (Action "Make decision") hasValue (pick o getValue)
36
37 pick :: [(User, [DateTime])] → Task DateTime
38 pick user_dates
39 = (enterChoice "Choose date" [] (transpose user_dates) @ fst)
40 -||-
41 (enterInformation "Enter override" [])
42 >>* [OnAction (Action "Continue") hasValue (return o getValue)]

Figure 4.2: Complete task specification of the planMeeting example

61

Chapter 4

Tasks with Stable values are terminated and can no longer produce a different
task value. Hence task values are first-class citizens in Task-Oriented Program-
ming. Two task transformer functions provide access: @? alters the task value
of the preceding task, and @ is similar, but only if a Val is present:

1 (@?) infixl 1 :: Task a → (Value a → Value b)
2 → Task b | iTask a & iTask b
3 (@) infixl 1 :: Task a → (a → b) → Task b | iTask a & iTask b

The second sub-task of the coordinator is to ask all users in parallel to make
a selection of the created date-time pairs. In addition, the coordinator con-
stantly monitors their progress. Parallel composition of tasks is defined with
the parallel combinator. It is used explicitly in the ask task, and implicitly
(by means of the derived parallel-or combinator -||- that provides a shorter
notation for the common case of choice between two alternative tasks) in the
pick task. Parallel composition is a core concept in Task-Oriented Program-
ming. The second argument of parallel enumerates the sub-tasks that need to
be evaluated in parallel. The progress is shared between all sub-tasks. Relevant
to the example is the function taskListState, which transforms this shared state
to share the current task values. This is used by the monitor task (lines 19-23)
to create a view on the current task values of the users. The monitor task uses
@? to explicitly state that its task value never contains a concrete value. These
can be provided only by the select sub-tasks. They offer their user the means
to make a multiple-choice of the provided date-time pairs, and use @ to attach
the user to identify who made that specific selection (lines 27-28).
Finally, the last sub-task can be stepped into when the coordinator either
decides to start all over again (lines 30-32) or pick a value (lines 34-35). The
first action step is always valid (const True, line 32) and the second action
step only when the previous task actually has a value (line 35). The derived
combinator-||- evaluates its two task arguments in parallel, and has a task
value that is either stable (if one or both sub-tasks have one) or unstable (if
one or both have one) or none. Hence, the action step can only occur when the
coordinator has either selected one of the suggested date-time pairs or chosen
to override them.
This example demonstrates how a TOP approach can lead to a concise specific-
ation in which tasks are glued together and overall progress can be achieved
even though the tasks themselves might not terminate or consume too much
time.

4.3 A Formal Foundation of TOP

In this section we introduce and semantically define the core concepts of Task-
Oriented Programming. These are task values, tasks and their evaluation
(Section 4.3.1), many-to-many communication (Section 4.3.2), user-interaction

62

Task-Oriented Programming in a Pure Functional Language

(Section 4.3.3), sequential task composition (Section 4.3.4), and parallel task
composition (Section 4.3.5).
Except for Section 4.3.1, every section has the same structure: we first intro-
duce the core concept and illustrate it by means of the iTask3 system, and then
formally define the operational semantics using rewrite semantics. The rewrite
rules are specified in Clean∗. Such a way of formal specification of semantics is
somewhat unusual, but this approach has certain advantages over traditional
ones [36]. The specification is well-defined, concise, compositional, executable,
and can express even complicated language constructs as the ones introduced
in this paper. Since we are dealing with constructs embedded in a functional
language it is an advantage to describe their semantics as pure functions in
a functional language as well. We have experimented with several alternat-
ive definitions which can easily introduce errors that remain overlooked. It
is an advantage that the descriptions are checked by the compiler and that
we have been able to test their correct working by applying it to concrete ex-
amples. Furthermore, the formal semantics is very suited and also used as blue
print for the actual implementation and can serve as a reference implementa-
tion for implementations in other programming languages as well. In order to
distinguish semantic definitions from iTask3 api and code snippets, we display
semantic definitions as framed verbatim text, and iTask3 fragments as unframed
verbatim text.

4.3.1 Tasks and their Evaluation

In this section we define task results and task values (Section 4.3.1), tasks (Sec-
tion 4.3.1), their evaluation (Section 4.3.1), and a number of task transformer
functions (Section 4.3.1).

Task Results and Task Values

A task of type Task a is a description of work which progress can be inspected
by a task value of type Value a (Section 4.2.2). Tasks handle events. Events
have a time stamp, for which we use an increasing counter, making it possible
to determine the temporal order of events. The task result of handling an event
may be a new task value. Semantically, we extend the task value with the time
stamp of the event that caused the creation of that task value. Tasks that
run into an exceptional situation have as task result an exception value instead
of a task value. The domains of task results and task values capture these
situations:

1 :: TaskResult a= ValRes TimeStamp (Value a)
2 | ∃e: ExcRes e & iTask e
3 :: TimeStamp :==Int
4 :: Value a = NoVal | Val a Stability
5 :: Stability = Unstable | Stable

63

Chapter 4

The task value of a task result can be in three different states: there can be no
value at all (NoVal), there can be an Unstable value which may vary over time, or
the value is Stable and fixed. To illustrate, consider the task of writing a paper
p. At time t0 you have no paper at all (ValRes t0 NoVal). After a while, at time
t1 there may be a draft paper p1, which is updated many times at subsequent
time stamps t2 . . . tn with draft papers p2 . . . pn (ValRes ti (Val pi Unstable)). You
may even start all over again (ValRes tn+1 NoVal). At a certain point in time,
tn+k say, when you decide that the paper is finished the task has result ValRes
tn+k (Val pn+k Stable) meaning that the paper can no longer be altered.
Some tasks never produce a stable value. Examples are the interactive tasks
(enterInformation,viewSharedInformation,enterChoice,enterMultipleChoice) that were
used in Section 4.2.2: a user can create, change or delete a value as many times
as wanted. Typical examples of tasks that produce a Stable value are ordin-
ary functions, or system and web service calls. A task can raise an exception
value (ExcRes e) in case it is known that it can no longer produce a meaningful
value (for instance when a call to a web service turns out to be unavailable).
Any value can be thrown as exception and inspected by an exception handler
(Section 4.3.4), using existential quantification ∃e and the type class context
restriction & iTask e. Tasks with stable values or exception values have no visu-
alization but memorize their task result forever. The other tasks require a
visualization to support further interaction with the user.

Tasks

Semantically, we define a task to be a state transforming function that reacts
to an event, rewrites itself to a reduct, and accumulates responses to users:

1 :: Task a :==Event→ *State→ *(Reduct a, Reponses, *State)
2 :: Event =RefreshEvent
3 | EditEvent TaskNo Dynamic // Section 4.3.3
4 | ActionEvent TaskNo Action // Section 4.3.4
5 :: *State = { taskNo :: TaskNo
6 , timeStamp :: TimeStamp // Section 4.3.3
7 , mem :: [Dynamic] // Section 4.3.2
8 , world :: *World
9 }

10 :: Reduct a =Reduct (TaskResult a) (Task a)
11 :: TaskNo :==Int
12 :: Responses :== [(TaskNo, Response)] // Section 4.3.3

We distinguish three sorts of events: a RefreshEvent, e.g. when an user wants to
refresh a web page, an EditEvent, e.g. a new value that is committed intended
for an interactive task (Section 4.3.3), and an ActionEvent which is used to tell
the step combinator which task to do next (Section 4.3.4). The latter two cases
identify the task that is required to handle the event. The interactive task and

64

Task-Oriented Programming in a Pure Functional Language

step task are provided with a fresh identification value and current time stamp,
using the semantic function newTask:

1 newTask :: (TaskNo→ TimeStamp→ Task a) → Task a
2 newTask ta ev st=:{taskNo= no, timeStamp= t}
3 = ta no t ev {st & taskNo= no+1}

Fresh task identification numbers are generated by keeping track of the latest
assigned number in the State. The State extends the external environment
of type *World with internal administration and is passed around in a single-
threaded way which is enforced by the uniqueness attribute *.
The reduct contains both the latest task result and a continuation of type
Task a, which is the remaining part of the work that still has to be done. This
continuation can be further evaluated in the future when the next event arrives.
The responses collect all responses of all subtasks the task is composed of.
They are used to update every client with the proper information about the
latest state of affairs. A client can use this information to adjust the page in
the browser or in an app.
In the remainder of this paper we define semantic task functions for the core
basic tasks and task combinators, thus explaining how these elements rewrite
to the next reduct.

Task Evaluation

A TOP application consists of one top level task, the main task, which has to
be evaluated. The work continues until either an exception escapes handling,
or the work at hand has obtained a stable task value.

1 evaluateTask :: Task a → *World→ *(Maybe a, *World) | iTask a
2 evaluateTask ta world
3 # st = {taskNo= 0, timeStamp= 0, mem= [] , world=world}
4 # (ma,st) =rewrite ta st
5 = (ma,st.world)
6
7 rewrite :: Task a → *State→ *(Maybe a, *State) | iTask a
8 rewrite ta st=:{world}
9 # (ev,world) =getNextEvent world

10 # (t, world) =getCurrentTime world
11 # st = {st & timeStamp= t, world=world}
12 # (Reduct res nta, rsp, st) = ta ev st
13 = case res of
14 ValRes _ (Val a Stable) → (Just a, st)
15 ExcRes _ → (Nothing, st)
16 _ → rewrite nta
17 {st & world=informClients rsp st.world}

65

Chapter 4

In Clean(∗), passing around multiple unique environments explicitly, such as
st (:: *State) and world (:: *World), is syntactically supported by means of
the non-recursive #-let definitions. The main task is recursively rewritten by
the function rewrite. Rewriting is triggered by an event. We abstract from
the behaviour of clients and just assume that they send events and handle
responses. We assume that all events are collected in a queue. In getNextEvent

(line 9) the next event is fetched from this queue. If there are no events,
the system waits until there is one. The current time is stored in the state
(lines 10-11) to ensure that all tasks which update their value in this rewrite
round, will get the same time stamp. Hereafter (line 12), the main task ta

is evaluated given the event and current state. Any sub-task defined in the
main task is a task as well, and can be evaluated in the same way: just apply
the corresponding task function to the current event and the current state.
Rewriting stops when the main task has delivered a stable value (line 14), or an
uncaught exception is raised (line 15). Otherwise, the main task is not finished
yet, and the continuation task returned in the reduct defines the remaining
work which has to be done. First the accumulated responses are sent to the
clients (informClients, line 17) to inform them about the latest state-of-affairs.
We abstract in the semantics from the way this is done. Rewriting continues
with the continuation nta and the updated state.

Utility Functions for Converting Tasks

The semantic function stable, when applied to a time stamp t and value va,
defines a task that has reached a stable value:

1 stable :: TimeStamp→ a → Task a
2 stable t va _ st
3 = (Reduct (ValRes t (Val va Stable)) (stable t va) , [] ,st)

Notice that the continuation of the task stable t va in the reduct is exactly the
same function stable t va. It is a kind of fixed point task, which, whenever it
is evaluated in some future, always returns the same reduct (value and con-
tinuation). With this semantic function, we can define the semantic function
of the core task return:

1 return :: a → Task a
2 return va ev st=:{timeStamp= t} =stable t va ev st

Here, return has a similar role as the return function in a monadic setting: it
lifts an arbitrary value va of type a to the task domain.
Raising an exception is similar, except that the task result is always an excep-
tion value:

1 throw :: e → Task e | iTask e
2 throw e _ st= (Reduct (ExcRes e) (throw e) , [] ,st)

66

Task-Oriented Programming in a Pure Functional Language

With operator @? and a function f of type Value a → Value b a task ta of type
Task a can be converted to a task of type Task b:

1 (@?) infixl 1 :: Task a → (Value a → Value b)
2 → Task b | iTask a & iTask b
3 (@?) ta f ev st
4 = case ta ev st of
5 (Reduct (ValRes t aval) nta,rsp,nst)
6 → case f aval of
7 Val b Stable
8 → stable t b ev nst
9 bval→ (Reduct (ValRes t bval) (nta @? f) ,rsp,nst)

10 (Reduct (ExcRes e) _,_,nst)
11 → throw e ev nst
12
13 (@) infixl 1 :: Task a → (a → b) → Task b | iTask a & iTask b
14 (@) ta f= t @? λaval→ case aval of
15 NoVal =NoVal
16 Val a s= Val (f a) s

First the task ta is evaluated (line 4). Exceptions raised by ta are simply
propagated (lines 10-11). The resulting task value, if any, is converted by func-
tion f. If this results in a stable value, then the entire task becomes stable with
the current time stamp (lines 7-8). Notice that this has as consequence that the
original task ta is no longer needed. If the result is not stable, the original task
may change its value over time, and we need to apply the conversion function to
values produced in the future as well. Therefore, the current result bval of the
conversion is stored in the reduct with the continuation nta @? f which takes
care of the conversion of the new task values produced in the future (line 9).
The derived operator @ uses @? to transform task values only when a concrete
value is present.

4.3.2 Many-to-many Communication

For collaborating tasks it is important to keep each other up-to-date with the
latest developments while the work is going on. Hence we need to be able to
share information between tasks and support many-to-many communication.
How and where this data is stored, is completely irrelevant to the tasks. What
matters is that the data is available and that it is shared. To achieve this ab-
straction we use the concept of multi-purpose Shared Data Sources (SDS) [54].
SDSs are typed, abstract interfaces which can be read, written and updated
atomically.
A SDS can represent a shared file, a shared structured database, reveal the
current users of a system, or it can be a physical entity, like the current time
or temperature. In general, a SDS abstracts from any shared entity that holds
a value that varies over time.

67

Chapter 4

1 :: RWShared r w
2
3 :: ROShared r :==RWShared r ()
4 :: WOShared w :==RWShared () w
5 :: Shared a :==RWShared a a

A SDS has abstract type RWShared r w. Reading its current value returns a value
of type r, and writing is done with a new value of type w. Read-only shared
objects (ROShared r) only support reading as type r, write-only shared objects
(WOShared w) only support writing as type w, and Shared a objects demand that
the read and write values have the same type a.
As an example, we show a few shares that are offered by the iTask3 system to
create SDSs:

1 sharedFile :: Path→ a → Shared a | iTask a
2 currentTime :: ROShared Time
3 currentUsers :: ROShared [User]

With (sharedFile fname content) a task is described that associates a file identi-
fied by fname with an initial value of type a. A task gains access to the current
time and registered users with the tasks currentTime and currentUsers.
SDSs provide many-to-many communication both between tasks and other ap-
plications. We make a difference between external and internal SDSs. External
SDSs are abstractions of external objects such as files and databases and can be
accessed anywhere in the application. For the internal communication between
tasks only, one can create a shared memory SDS of type Shared a which has a
limited scope. A task ta can be parameterized with a freshly created shared
memory SDS sa of type Shared a that has some initial value va using the com-
binator withShared va (λsa → ta):

1 withShared :: a → (Shared a → Task b) → Task b | iTask a

In this way, a shared memory is created which can only be accessed by the
sub-tasks defined within ta. For an example of its use, see Section 4.4.
To write a value to a SDS, one can connect a task ta with a SDS s using a
function f with the combinator ta @> (f,s):

1 (@>) infixl 1 :: Task a
2 → (Value a → r → Maybe w, RWShared r w)
3 → Task a | iTask a

This enforces f to be repeatedly applied to the current task value of ta (if
any) and the currently read value of s, the result of which is the new value
(if any) that is written to s. The combinators withShared and @> are defined in
Section 4.3.2.
SDSs integrate smoothly with interactive tasks. For every basic interactive
task (such as enterChoice and enterMultipleChoice) a shared version (such as

68

Task-Oriented Programming in a Pure Functional Language

enterSharedChoice and enterSharedMultipleChoice) is provided that expects a SDS
instead of a common value. This is discussed in Section 4.3.3 in more detail.
In this way tasks can monitor and alter SDSs.

Semantics of Memory Shared between Tasks

To explain the semantics of SDSs, we restrict ourselves to their use for offering
shared memory between (parallel) tasks. These SDSs cannot be accessed by ex-
ternal applications. Hence the semantic definition does not need to handle con-
currency and atomicity issues: there is only one rewrite function (Section 4.3.1)
that handles rewriting of all tasks defined in an application.
Shared memory cells are stored in the State, in record field mem of type [Dynamic].
Each SDS memory cell can be used to store a value of arbitrary type, hence mem
is modeled as a heterogeneous list using Clean’s built-in dynamic types [78, 80].
Any shared value of any type can be stored in a value of type Dynamic, together
with a representation of its type (using the function serialize :: a → Dynamic

| iTask a). It can be fetched from this store any time later, using a dynamic
type pattern match that guarantees that no type errors can occur at run-time
(using the function de_serialize :: Dynamic → a | iTask a). We define a SDS
creation function, and two functions to update a SDS:

1 :: RWShared r w= { get :: *State→ *(r,*State)
2 , set :: w → *State→ *State
3 }
4
5 createShared :: a → *State→ *(Shared a,*State) | iTask a
6 createShared a st=:{mem}
7 = ({get= get,set= set},{st & mem= mem++ [serialize a]})
8 where
9 idx =length mem

10 get st=:{mem} = (de_serialize (mem!!idx) ,st)
11 set a st=:{mem} = {st & mem=updateAt idx (serialize a) mem}
12
13 updateShared :: (r → w) → RWShared r w → *State→ *(w,*State)
14 updateShared f sh_a st
15 # (rv,st) =sh_a.get st
16 # wv = f rv
17 = (wv,sh_a.set wv st)
18
19 updateMaybeShared :: (r → Maybe w) → RWShared r w → *State
20 → *(Maybe w,*State)
21 updateMaybeShared f sh_rw st
22 # (readv,st) =sh_rw.get st
23 = case f readv of
24 Nothing = (Nothing,st)
25 Just wv = (Just wv,sh_rw.set wv st)

69

Chapter 4

A SDS is represented by two access functions get and set that retrieve and store
the required information from and to the state. Creating a shared value with
createShared appends an initial serialized value to the list of memory locations
(line 7), and returns two dedicated get and set functions that access this new
memory location. The SDS update functions both obtain the current read value
of the SDS argument (line 15 and 22). However, updateShared always updates
the SDS with a new value, and updateMaybeShared does this only if the argument
function actually produces a new value. With these internal functions, we can
define withShared and @>:

1 withShared :: a → (Shared a → Task b) → Task b | iTask a
2 withShared va tfun ev st
3 # (sh_a,st) =createShared va st
4 = tfun sh_a ev st
5
6 (@>) infixl 1 :: Task a
7 → (Value a → r → Maybe w, RWShared r w)
8 → Task a | iTask a
9 (@>) ta (f,sh_rw) =update NoVal ta

10 where
11 update otval ta ev st
12 = case ta ev st of
13 (Reduct (ExcRes e) nta, _, nst)
14 → throw e ev nst
15 (Reduct (ValRes ts ntval) nta,rsp,nst)
16 → (Reduct (ValRes ts ntval) (update ntval nta)
17 , rsp
18 , if (ntval==otval)
19 nst
20 (snd (updateMaybeShared (f ntval) sh_rw nst))
21)

withShared creates a fresh SDS for its argument task function and applies it to
obtain the proper task. The combinator @>memorizes the previous task value
(initially NoVal) and the current task continuation (initially the task argument
ta) (line 9 and 16). As usual, at each event the current task continuation
is evaluated (line 12). Exceptions are propagated (lines 13-14). The only
difference is that if the new task value ntval is different from the memorized
task valueotval, then the SDS is updated using the argument function of @>and
the function updateMaybeShared (line 20). This function only updates the SDS if
a new value is computed. In this way unnecessary updates of shared data are
avoided. Because @> keeps checking the SDS using the most recent task value,
this leads to reactive behavior: every time the watched task is changing its
value, the shared memory also gets updated conditionally, as described above.

70

Task-Oriented Programming in a Pure Functional Language

4.3.3 User Interaction

In Task-Oriented Programming user-interactions are defined as tasks that allow
a user to enter and modify a visualized value of some type. Such an interactive
task is called an editor. The type of the value to be edited plays a central role.
By using type indexed generic functions [27, 2] this visualization is generated
fully automatically for any (first order) type. This way one can focus on defin-
ing tasks, without having to deal with the complexities of web protocols and
formats.
Interaction tasks follow a model-view pattern where the value of the task is the
model and the visualization is the view. Events in the view are processed by
the TOP framework to update the model. Conversely, when the model changes
the view is updated automatically by the TOP framework.
Interaction tasks are all alike, yet different. In this section we define the se-
mantics of one core editor task (Section 4.3.3). However, to improve readability
TOP frameworks can offer a range of predefined interaction tasks derived from
this core editor. A few examples from the iTask3 framework are:

1 enterInformation :: d → [EnterOpt m]
2 → Task m | descr d & iTask m
3 updateInformation :: d → [UpdateOpt m m] → m
4 → Task m | descr d & iTask m
5 viewInformation :: d → [ViewOpt m] → m
6 → Task m | descr d & iTask m
7 updateSharedInformation :: d → [UpdateOpt r w] → RWShared r w
8 → Task w | descr d
9 & iTask r & iTask w

10 viewSharedInformation :: d → [ViewOpt r] → RWShared r w
11 → Task r | descr d & iTask r

With enterInformation an editor for type m is created, no initial value needs
to be given. The update-editor variants allow editing of a given local, re-
spectively shared, value. The view-editor variants only display the value of
a given local, or shared, value. There are many more similar editor func-
tions predefined in the library, with names like enterChoice, enterSharedChoice,
updateChoice, updateSharedChoice, enterSharedMultipleChoice, and so on.
The overloaded argument d of class descr in these tasks is description of the
task. This can be a simple string, or a more elaborate description. Although
the generated view is certainly good enough for rapid prototyping, more fine-
grained control is sometimes desirable. Therefore, the EnterOpt, UpdateOpt and
ViewOpt arguments provide hooks for fine-tuning interactions.

1 :: ViewOpt a = ∃v: ViewWith (a → v) & iTask v
2 :: EnterOpt a = ∃v: EnterWith (v → a) & iTask v
3 :: UpdateOpt a b= ∃v: UpdateWith (a → v) (a v → b) & iTask v

71

Chapter 4

By defining a mapping, a different type v can be used to view, enter or up-
date information. In Section 4.4 we discuss in more detail how this and other
pragmatic issues are dealt with.

Semantics of a Task Editor

The iTask3 library provides many different editor task functions because this
clarifies in the task descriptions what kind of interaction is required, and aids in
creating the desired user interface. However, both in the implementation and
the semantics all editor task variants can be created and handled by one single
function. To understand how it works we restrict ourselves to a simplified
version in which we omit the view list details because these are just trivial
mapping functions. Before we discuss this function edit we first have a look
at the use of Events and Responses. Due to the model-view nature of editor
tasks, every user manipulation of an editor task of a value of type a can be
expressed as sending a new value new of type a from the client to the server. If
we wrap this value-type pair into a Dynamic and include the task identification
number, no say, then this amounts to the (EditEvent no (dynamic new :: a)) event.
The unique task number is used to map a task described in the code to the
corresponding interactive view generated in the client, and is used to label the
events and corresponding responses.
The responses of the server tell the client what interface should be rendered to
the user.

1 :: Response =EditorResponse EditorResponse
2 | ActionResponse ActionResponse // Section 4.3.4
3 :: EditorResponse = { description :: String
4 , editValue :: EditValue
5 , editing :: EditMode
6 }
7 :: EditValue :== (LocalVal, SharedVal)
8 :: LocalVal :==Dynamic
9 :: SharedVal :==Dynamic

10 :: EditMode =Editing | Displaying

The response to an editor task executed on a client informs the client about
the latest state of the editor (EditorResponse) and contains, in serialized form,
the current local value to edit and a shared value to show. With these Events
and Responses, we can define the semantics of the editor task combinator which
updates a local value of type l while displaying the latest value r stored in an
SDS of type RWShared r w.

72

Task-Oriented Programming in a Pure Functional Language

1 edit :: String→ l → RWShared r w → (l → r → Maybe a)
2 → Task a | iTask l & iTask r
3 edit descr lv sh_rw cv=newTask (edit1 lv)
4 where
5 edit1 lv tn t ev st
6 # (nt,nlv) = case ev of
7 EditEvent tid dyn
8 → if (tid==tn)
9 (st.timeStamp,de_serialize dyn)

10 (t,lv)
11 _ → (t,lv)
12 # (sr,st) =sh_rw.get st
13 = (Reduct (ValRes nt (toValue (cv nlv sr))) (edit1 nlv tn nt)
14 , [(tn,EditorResponse
15 { description=descr
16 , editing =Editing
17 , editValue = (serialize nlv, serialize sr)
18 }
19)]
20 , st
21)
22 where
23 toValue :: Maybe a → Value a
24 toValue (Just a) = Val a Unstable
25 toValue Nothing =NoVal

The edit function, and its continuation in the reduct (line 13), is defined in
terms of edit1 that keeps track of the latest local value edited, the unique task
number given to this interactive task, and the time the latest modification has
been made.
Editor tasks always have an unstable value (if any). They return a response
containing the latest information on the state of the editor (lines 14-19 and 23-
25). It includes the latest value of the data stored in shared memory (line 12)
which might have been changed by some other task (e.g. using the @>operator).
Only when the received event is an edit event intended for this editor (the task
numbers match), the local value is updated with the new value received from
the client (line 9). The new task value is computed using the most recent local
and shared value (line 13).

4.3.4 Sequential Tasks

Once a task is started, it stays alive until it is no longer needed. Its value,
which might change over time, can be inspected while the work is going on in
order to decide whether or not to step to a next task. The task step operator
>>* does exactly this.

73

Chapter 4

1 (>>*) infixl 1 :: Task a → [TaskStep a b] → Task b | iTask a & iTask b
2 :: TaskStep a b
3 = OnAction Action (Predicate a) (NextTask a b)
4 | OnValue (Predicate a) (NextTask a b)
5 | ∃e: OnException (e → Task b) & iTask e
6
7 :: Predicate a :==Value a → Bool
8 :: NextTask a b :==Value a → Task b
9

10 :: Action=Action String | ActionOk | ActionCancel | ...

The step operator is similar to an ordinary monadic “bind-operator” in the
sense that it defines a sequence between two tasks. The first operand, a task
of type Task a, is evaluated. Its current task value can be inspected to decide
whether the next task can be stepped into. If so, the evaluation of the first
task is abandoned and the application proceeds with the chosen task step. The
step operator can offer several tasks to continue with in the list, but only one
task step can be stepped into.
There are three categories of task steps: those that require the user to actively
select an action (OnAction), those that inspect the current task value (if any)
(OnValue), and those that handle exceptions (OnException). OnAction task steps
are labeled with an Action that is presented to the user as a button or menu
item. For frequently used action names such as Ok and Cancel, the Action data
type enumerates a number of special combinators to enable the client to use
special icons. The predicate determines which action steps are available at all.
Selection of an action by the user causes the corresponding alternative to be
continued with. OnValue task steps inspect the current task value to determine
whether or not a task step can be performed. Finally, OnException task steps
handle an exception only if their argument function matches the type of the
exception. Uncaught exceptions are propagated by>>*.
It sometimes can be the case that none of the candidate task steps can be
chosen. However, task values change over time, hence also the candidates that
can be chosen change over time.
We illustrate the use of>>* with two examples.

1 palindrome :: Task (Maybe String)
2 palindrome= enterInformation "Enter a palindrome" []
3 >>* [OnAction ActionOk ifPalindrome
4 (return o Just o getValue)
5 , OnAction ActionCancel (const True)
6 (const (return Nothing))
7]

The palindrome task prompts the user to enter a palindrome. As usual, the user
can enter a string and change it over time. With>>* two possible action task
steps are added. The user can choose action Ok, but only when the entered

74

Task-Oriented Programming in a Pure Functional Language

string is indeed a palindrome. If Ok is chosen, Just p is returned, where p is the
entered and checked palindrome. At any time, the user can choose Cancel, and
the task returns Nothing.
In the second example we implement a traditional monadic bind operator >>=
to demonstrate the general nature of>>*:

1 (>>=) infixl 1 :: Task a → (a → Task b) → Task b | iTask a & iTask b
2 (>>=) ta atb= ta>>* [OnValue isStable (atb o getValue)]

Task evaluation starts with the first argument ta. Only when this task produces
a stable value a, evaluation continues with atb a. For this reason, >>= is less
suited in the domain of tasks that may not produce a stable result.

Semantics of the Step Combinator

First we finalize the details of ActionResponses. The client is informed by >>*
about the current set of actions and whether they are enabled or disabled.
This information is collected in theActionResponse list and added to the response
accumulator.

1 :: ActionResponse :== [(Action, Enabled)]
2 :: Enabled :==Bool

The client may react by sending an action event ActionEventtasknoaction telling
which action is triggered by the user.
The complete semantic definition of >>* is given in Figure 4.3. It is rather
long because it needs to handle all TaskStep cases and prioritize them properly.
However, each of these cases is rather straightforward. The step combinator
is handled by step1 which memorizes the current task description in its first
argument (initially task ta, line 2, and in the reduct nta, line 19). The semantic
function newTask (Section 4.3.1) provides it with a unique task number for com-
munication with the client and current time stamp t (line 2). The current
task description is evaluated first (line 5), resulting in a new task value that is
inspected to decide which task step can be stepped into. Triggers (line 6) take
priority over actions (line 7). If no task step is applicable, then we proceed
with step1 again, but now parameterized with the calculated reduced task (line
8).
A trigger is a task step that can continue without interference of the user.
These are the OnException and OnValue task steps. In case of an exception, an
exception handler is searched for (line 11 and 25). If none is defined, then the
exception propagates (line 11). In case of a task value, all available OnValue task
steps are searched for (line 12 and 26).
The actions are selected only if the event is an action event for this task (line
14 and 15). In that case all available OnAction task steps are searched for

75

Chapter 4

1 (>>*) infixl 1 :: Task a → [TaskStep a b] → Task b | iTask a & iTask b
2 (>>*) ta steps=newTask (step1 ta)
3 where
4 step1 ta tn t ev st
5 # (Reduct tval nta, rsp, st) = ta ev st
6 = hd (findTriggers tval
7 ++findActions tval ev
8 ++ [step1‘ tval nta rsp]
9) ev st

10 where
11 findTriggers (ExcRes e) =catchers e++ [throw e]
12 findTriggers (ValRes _ v) =values v
13
14 findActions (ValRes _ v) (ActionEvent tid act)
15 | tid==tn =actions act v
16 findActions _ _ = []
17
18 step1‘ (ValRes _ v) nta rsp _ st
19 = (Reduct no_tval (step1 nta tn t) , nrsp++ rsp, st)
20 where
21 no_tval =ValRes t NoVal
22 as = [(a,p v) \\ OnAction a p _←steps]
23 nrsp = if (isEmpty as) [] [(tn, ActionResponse as)]
24
25 catchers e= [etb e \\ OnException etb←steps]
26 values v= [atb v \\ OnValue p atb←steps | p v]
27 actions act v= [atb v \\ OnAction a p atb←steps | act==a && p v]

Figure 4.3: The complete semantic definition of>>*.

that match the received action and that are available, as determined by their
predicate (lines 27).
Finally, when no task step can be selected a reduct is made by step1‘ that waits
for a new event (line 19). All actions are collected in the response accumulator
(line 22 and 23).

4.3.5 Parallel Tasks

Tasks can often be divided into parallel sub tasks if there is no specific prede-
termined order in which the sub tasks have to be done. It might not even be
required that all sub tasks contribute sensibly to a stable result. All variants
of parallel composition can be handled by a single parallel combinator:

76

Task-Oriented Programming in a Pure Functional Language

1 parallel :: d → [(ParallelTaskType, ParallelTask a)]
2 → Task [(TimeStamp, Value a)] | descr d & iTask a
3
4 :: ParallelTaskType=Embedded | Detached ManagementMeta
5 :: ManagementMeta = { worker :: Maybe User
6 , role :: Maybe Role
7 , ...}
8 :: ParallelTask a :==SharedTaskList a → Task a
9 :: SharedTaskList a :==ROShared (TaskList a)

10 :: TaskList a= { state :: [Value a]
11 , ... }

We distinguish two sorts of parallel sub-tasks: Detached tasks get distributed to
different users and and Embedded tasks are executed by the current user. The
client may present these tasks in different ways. Detached tasks need a window
of their own while embedded tasks may by visualized in an existing window.
With the ManagementMeta structure properties can be set such as which worker

must perform the sub-task, or which role he should have.
Whatever its sort, every parallel sub-task can inspect each others progress. Of
each parallel sub-tasks its current task value and some other system information
is collected in a shared task list. The parallel sub-tasks have read-only access
to this task list. The parallel combinator also delivers all task values in a list
of type [(TimeStamp,Value a)]. Hence, the progress of every parallel sub-task can
also be monitored constantly from the “outside”. For instance, a parallel task
can be monitored with the step combinator>>* to decide if the parallel task as
a whole can be terminated because its sub tasks have made sufficient progress
for doing the next step. It is also possible to observe the task and convert its
value to some other type using the conversion operator @? (Section 4.3.1).
For completeness, we remark that the shared task list is also used to allow
dynamic creation and deletion of parallel sub-tasks. We do not discuss this
further in this paper.
In the iTask3 library parallel is used to predefine several frequently used task
patterns. In Section 4.2.2 the -||- combinator was used to start to tasks in
parallel.

1 (-||-) infixr 3 :: Task a → Task a → Task a | iTask a
2 (-||-) a b
3 =parallel () [(Embedded,const a) ,(Embedded,const b)] @? first
4 where
5 first NoVal=NoVal
6 first (Value vs _)
7 = hd ([v \\ (_,v=:(Val _ Stable))←vs]
8 ++ [v \\ (_,v=:(Val _ _))←sortBy newer vs]
9 ++ [NoVal])

10 newer (t1,_) (t2,_) = t1> t2

77

Chapter 4

The first function inspects the progress of both parallel sub-tasks to determine
the task value of the composition. The first sub-task to produce a stable task
value turns the composition into a stable task with that value. If no sub-task
has produced a stable value, then the most recent unstable task value, if any,
is the observable result, or no task value is observable at all.

Semantics of the Parallel Combinator

In the semantic description we ignore the meta information assigned to de-
tached tasks and therefore do not distinguish embedded tasks from detached
tasks. As another non-essential simplification, we define the shared task list as
a read-write SDS instead of a read-only SDS. The shared task list is a finite
map from process ids to task reducts:

1 :: SharedTaskList a :==RWShared (TaskList a)
2 :: TaskList a :== [(Pid a, Reduct a)]
3 :: Pid a :==Int

The complete semantic definition of parallel is given in Figure 4.4. The se-
mantic function parallel‘ (lines 12-21) defines the purpose of the parallel com-
binator: to evaluate each and every sub-task (line 14) until either an exception
has been thrown (line 15), or all sub-tasks have become stable (line 19). While
this is not the case, parallel‘ proceeds to rewrite to itself (line 20-21).
Both parallel‘ and its sub-tasks require access to their progress, which is stored
in the shared task list which is created as the first step of the parallel combin-
ator (line 3 and lines 6-10). Initially, the task list consists of all initial parallel
sub-tasks that have access to the shared task list.
The semantic functions evalParTasks and evalParTask define the evaluation of the
parallel sub tasks: evalParTasks collects the current list of sub-tasks (line 26)
and applies evalParTask to each and every sub-task (line 27). Evaluation of a
sub-task (line 34) might result in an exception (line 36), in which case the
exception is propagated throughout the evaluation of all sub-tasks (line 39).
If a sub-task does not result in an exception, then its new reduct is stored in
the shared task list (line 37), thus allowing the other sub-tasks to inspect its
progress (updateFM (pid,newr) updates any existing element (pid,_) in the shared
task list with (pid,newr)). The responses of the evaluated sub-task are collected
and returned (line 38).

4.4 Practical TOP

Although the TOP paradigm adopts functional programming’s emphasis of
what over how, some pragmatic issues remain unavoidable in practical TOP
programming. In this section we discuss pragmatics issues that we encountered

78

Task-Oriented Programming in a Pure Functional Language

1 parallel :: [ParallelTask a] → Task [(TimeStamp,Value a)] | iTask a
2 parallel ptas ev st
3 # (stt,st) =createTList ptas st
4 = parallel‘ stt ev st
5
6 createTList :: [ParallelTask a] → *State→ *(SharedTaskList a,*State) | iTask a
7 createTList ptas st=:{timeStamp= t}
8 # (stt,st) =createShared [] st
9 = (stt,stt.set [(pid,Reduct (ValRes t NoVal) (pta stt))

10 \\ pta←ptas & pid← [0..]] st)
11
12 parallel‘ :: SharedTaskList a → Task [(TimeStamp,Value a)] | iTask a
13 parallel‘ stt ev st
14 = case evalParTasks stt ev st of
15 (Left (ExcRes e) ,st) =throw e ev st
16 (Right rsp,st)
17 # (values,st) =get_task_values stt st
18 # maxt =foldr max 0 (map fst values)
19 | all (isStable o snd) values=stable maxt values ev st
20 | otherwise
21 = (Reduct (ValRes maxt (Val values Unstable)) (parallel‘ stt) ,rsp,st)
22
23 evalParTasks :: SharedTaskList a → Event→ *State
24 → *(Either (TaskResult a) Responses,*State) | iTask a
25 evalParTasks stt ev st
26 # (tt,st) =stt.get st
27 =foldl (evalParTask stt ev) (Right [] ,st) tt
28
29 evalParTask :: SharedTaskList a → Event
30 → *(Either (TaskResult a) Responses,*State)
31 → (Pid a,Reduct a)
32 → *(Either (TaskResult a) Responses,*State)
33 evalParTask stt ev (Right rsp,st) (pid,Reduct _ ta)
34 # (newr,nrsp,st) = ta ev st
35 # (Reduct ntval nta) = newr
36 | isExcRes ntval = (Left ntval,st)
37 # (_,st) =updateShared (updateFM (pid,newr)) stt st
38 = (Right (nrsp++ rsp) ,st)
39 evalParTask _ _ (Left e,st) _= (Left e,st)
40
41 get_task_values :: SharedTaskList a → *State→ *([(TimeStamp, Value a)] ,*State)
42 get_task_values stt st
43 # (tt,st) =stt.get st
44 = ([(t,val) \\ (_,Reduct (ValRes t val) _)←tt] ,st)

Figure 4.4: The complete semantic definition of parallel.

79

Chapter 4

Figure 4.5: A very simple text editor

in the implementation of the TOP concept in the iTask3 toolkit, and show
examples of iTask3 programs to illustrate its use in real-world applications.

4.4.1 Pragmatic Issues

Custom Interaction: TOP programs focus on defining decompositions of tasks
without worrying how interactions of basic tasks are implemented by the TOP
framework. The underlying implementation has to take care of that. The iTask3
system follows the semantic definitions, with additional support for customiz-
ation for obtaining practical applicable applications. The interactive applica-
tions that are generated by default by the system suffice for rapid prototyping.
However, aesthetic and ergonomic properties of these interactions affect the
ease of use and attractiveness of a system. For example, the task of choosing a
file from a file system is performed more easily by navigating a tree structure
than by selecting an item from a long list of all files.
To allow for such task specific optimization, all interaction tasks in the iTask3
framework have a views parameter, in which optional mappings between the
task’s domain and another arbitrary domain can be defined. The library
provides types that represent abstract user interface controls with which cus-
tomized interactions can be composed. Here is an example (see Figure 4.5):

1 :: Statistics= { lineCount :: Int, wordCount :: Int }
2 derive class iTask Statistics
3
4 simpleEdit :: Task Note
5 simpleEdit=withShared (Note "") edit
6 where
7 edit note
8 = updateSharedInformation "Enter text:" [] note
9 -||-

10 viewSharedInformation "Statistics:" [ViewWith stat] note <<@ horizontal
11
12 stat (Note txt) = { lineCount=length lines
13 , wordCount=length words
14 }
15 where lines =split Newline txt
16 words =split " " (replaceSubString Newline " " txt)

80

Task-Oriented Programming in a Pure Functional Language

By default, if a value of the predefined type Note is used in an iTask3 editor, a
text box is presented to the user on the client to enter text. In simpleEdit we
create a shared memory for a value of this type Note with initial value Note ""
and we define two interactive tasks on this shared value. The first task allows
the user to update the initial text (line 8), while the second gives a view on
the shared text that is fine-tuned with ViewWithwhich, in this case, converts the
text into a value of type Statistics. As a result, while entering text, the user
sees the corresponding statistics.

Customized Layout: For task compositions a similar need for customization
exist. Depending on the composition, it may be more appealing or easier to use
when tasks are divided over tabs or windows than when tasks are shown side-
by-side. To customize layout, the iTask3 framework provides an annotation
operator (<<@) that can be used to annotate tasks with custom layout functions
or post-layout processing functions. Such functions combine a set of abstract
GUI definitions into a single definition. By default a heuristic layout function
is used to provide a sensible default. Post-processing functions modify a GUI
definition after a task is layed out. Such modifications are for example changing
its size, adding margins or changing to a horizontal layout as is done with the
<<@ horizontal annotation in the simple editor. It is defined as:

1 horizontal=AfterLayout (tweakUI (setDirection Horizontal))

Localization: Another pragmatic aspect one may need to deal with is local-
ization. Because task definitions contain many prompts, hints and other texts,
one needs to deal with localization of such texts without compromizing the
readability of task definitions. Furthermore, localization may also be required
on the task level. To comply with local law and regulations, different task
definitions may have to be used in different countries. The iTask3 framework
does not offer any special support for localization, but one can make use of the
standard modular structure of Clean to create different local versions.

Third Party Formats and Protocols: To integrate TOP applications with
other applications, the gap between the domain of tasks and the formats or
protocols required to interact with these systems must be bridged. With TOP
one does not escape writing the parsing, formatting and communication code
that is necessary for such integrations, but it can be separated from the applic-
ation code by moving it to task libraries.

4.4.2 Examples

A Generic Work List: A major leap in the development of TOP as a general
paradigm was the insight that, from a user’s point of view, interaction with a

81

Chapter 4

“Work List”, in which users can work on tasks assigned to them, is actually
part of the work that has to be done. Work list handling e.g. as offered by an
email application or a workflow system is commonly hard coded in the systems
used. In iTask3 this functionality is defined in the system itself as “just” any
other task. Figure 4.6 shows the generic work list task we offer as a standard

Figure 4.6: A generic WFMS Work List

example. In the left panel a tree of tasks that can be started is displayed.
The tasks to do are displayed in the upper-right pane, similar to an inbox in a
email application. The user can work on several tasks at the same time in the
lower right pane, by opening them in separate tabs. This complete work list
application is defined in less than 200 lines of TOP code.

The Incidone Incident Coordination Tool: The Coast Guard case study [30,
42] not only fueled the refinement of the task concept and the TOP paradigm,
it also lead to the development of the Incidone tool [43]. A preview of this
tool for supporting Coast Guard operations is shown in Figure 4.7. It is being
developed using the iTask3 framework to illustrate the use of TOP for crisis
management applications. In this tool immediate information sharing between
team members working together is crucial to handle incidents properly.

82

Task-Oriented Programming in a Pure Functional Language

Figure 4.7: The Incidone Tool

4.5 Related Work

The TOP paradigm emerged during continued work on the iTask system. In
its first incarnation [61], iTask1, the notion of tasks was introduced for the
specification of dedicated workflow management systems. In iTask1 and its
successor iTask2 [44], a task is an opaque unit of work that, once completed,
yields a result from which subsequent tasks can be computed. When deploying
these systems for real-world applications, viz. in telecare [77] and modeling
the dynamic task of coordinating Coast Guard Search and Rescue operations
[30, 42] we experienced that this concept of task is not adequate to express the
coordination of tasks where teams constantly need to be informed about the
progress made by others. The search for better abstraction has resulted in the
TOP approach and task concept as introduced in this paper.
Task-Oriented programming touches on two broad areas of research. First
the programming of interactive multi-user (web) applications, and second the
specification of tasks.
There are many languages, libraries and frameworks for programming multi-
user web applications. Some academic, and many more in the open-source
and proprietary commercial software markets. Examples from the academic
functional programming community include: the Haskell cgi library [51]; the
Curry approach [24]; writing xml applications [14] in SMLserver [15]; WashCGI

83

Chapter 4

[75]; the Hop [72, 47] web programming language; Links [10] and formlets
[11]. All these solutions address the technical challenges of creating multi-user
web applications. Naturally, these challenges also need to be addressed within
the TOP approach. The principal difference between TOP and these web
technologies is the emphasis on using tasks both as modeling and programming
unit to abstract from these issues, including coordination of tasks that may or
may not have a value.
Tasks are an ambiguous notion used in different fields, such as Workflow Man-
agement Systems (WFMS), human-computer interaction, and ergonomics. Al-
though the iTask1 system was influenced and partially motivated by the use of
tasks in WFMSs [1], iTask3 has evolved to the more general TOP approach of
structuring software systems. As such, it is more similar in spirit to the Web-
WorkFlow project [26], which is an object oriented approach that breaks down
the logic into separate clauses instead of functions. Cognitive Task Analysis
methods [12] seek to understand how people accomplish tasks. Their results
are useful in the design of software systems, but they are not software devel-
opment methods. In Robotics the notion of task and even the “Task-Oriented
Programming” moniker are also used. In this field it is used to indicate a level
of autonomy at which robots are programmed. To the best of our knowledge,
TOP as a paradigm for interactive multi-user systems, rooted in functional
programming is a novel approach, distinct from other uses of the notion of
tasks in the fields mentioned above.

4.6 Conclusions and Future Work

In this paper we introduced Task-Oriented Programming, a paradigm for pro-
gramming interactive multi-user applications in a pure functional language.
The distinguishing feature of TOP is the ability to concisely describe and im-
plement collaboration and complex interaction of tasks. This is achieved by
four core concepts: 1) Tasks observe intermediate values of other tasks and
react on these values before the other tasks are completely finished. 2) Tasks
running in parallel communicate via shared data sources. Shared data sources
enable useful lightweight communication between related tasks. By restricting
the use of shared data sources we avoid an overly complex semantics. 3) Tasks
interact with users based on arbitrary typed data, the interface required for this
type is derived by type driven generic programming. 4) Tasks are composed
to more complex tasks using a small set of combinators. The step combinator
>>* subsumes the classic monad bind operator >>=. The presented operational
semantics specifies the constructs unambiguously. The development of this
semantics was an important anchor point during the design of TOP.
TOP is embedded in Clean by offering a newly developed iTask3 library. We
have used TOP successfully for the development of a prototype implementation

84

Task-Oriented Programming in a Pure Functional Language

of a Search and Rescue decision support system for the Dutch Coast Guard.
The coordination of such rescue operations requires up-to-date information of
subtasks, this is precisely the goal of TOP. In collaboration with Dutch industry
we started to investigate and validate the suitability of the TOP paradigm to
handle specific complex real world distributed application areas.

85

Part II

Types and Information
Models

87

5 Between Types and Tables

In today’s digital society, information systems play an important role in many
organizations. While their construction is a well understood software engineering
process, it still requires much engineering effort. The de facto storage mechanism
in information systems is the relational database. Although the representation of
data in these databases is optimized for efficient storage, it is less suitable for
use in the software components that manipulate the data. Therefore, much of
the construction of an information system consists of programming translations
between the database and a more convenient representation in the software.
In this paper we present an approach which automates this work for data entry
applications, by providing generic versions of the elementary CRUD (Create, Read,
Update, Delete) operations. In the spirit of model based development we use Object
Role Models, which are normally used to design databases, to derive not only a
database, but also a set of data types in Clean to hold data during manipulation.
These types represent all information related to a conceptual entity as a single
value, and contain enough information about the database to enable automatic
mapping. For data entry applications this means that all database operations can
be handled by a single generic function.
To illustrate the viability of our approach, a prototype library, which performs this
mapping, and an example information system have been implemented.

5.1 Introduction

In today’s digital society, information systems play an important role in many
organizations. Many administrative business processes are supported by these
systems, while others have even been entirely automated. While the construc-
tion of such systems has become a more or less standardized software engineer-
ing process, the required amount of effort remains high. Because each organisa-
tion has different business processes, information systems need to be tailored
or custom made for each individual organisation.
One of the primary functions of information systems is to create, manipulate
and view (large) persistent shared collections of data. The de facto storage
mechanism for these data structures is the relational database, in which all

89

Chapter 5

information is represented in tables with records that reference other records.
Although this representation is optimized for redundancy free storage of data,
it is less suited for direct manipulation of that data. The reason for this is that
conceptually elementary units are often split up into multiple database records.
For example, in a small business system, a project consisting of a name and a
number of tasks is broken down into one record for the project and a number
of records for the tasks which each reference the project.
In data entry applications it is more convenient for developers to do operations
on conceptual units instead of single database records. To reuse the example,
adding a project instead of adding a project record and a number of task
records. Therefore, in the programming language we use to build the data
entry components, we need data structures that represent conceptual units
rather than database records. While it is easy to construct a type in most
modern languages to represent a conceptual unit as a single data structure,
using any type more complex than a single database record means that some
translation is required whenever data enters or leaves the database. As a result,
since each system has a unique database design, a lot of boiler plate code has
to be be written to achieve this translation. This translation code is all very
similar except for the types and tables they translate between. Even when a
DSEL is used to abstract the database interaction from low level SQL, one still
has to define the mapping for each new type. This repetitive programming
work is not only mind numbing for developers, it is also time consuming and
error-prone. Over the years several tools and libraries have been developed to
solve this issue with varying degrees of success and practical use. We discuss
these approaches in detail in Section 5.6.
In this paper we present a novel approach based on generic programming in
Clean that provides generic versions of the elementary CRUD (Create, Read,
Update, Delete) operations that abstract over types and tables. These opera-
tions map changes in data structures that reflect the conceptual unit structure
of entities, to changes in a relational database. The main prerequisite for
enabling this, is that all necessary information about the entities’ database
representations can be inferred from the types of these data structures. In
the spirit of model based development, we do this by deriving both the data
types and a relational database from the same high level data model. The lan-
guage we use for these models is Object Role Modeling (ORM). In this graphic
modelling language one can specify what information is to be stored in an in-
formation system by expressing facts about the modelled domain. Since ORM
has a formally defined syntax and semantics, it enables the derivation of a set
of database tables, as done in the standard Rmap algorithm [49], or a set of
types in our approach.
Our approach consists of four mappings between representations on different
levels of abstraction that are depicted in Figure 5.1. The first step (1) is a

90

Between Types and Tables

Figure 5.1: The four steps in our method.

mapping from ORM models on a conceptual level to a set of Clean types on the
type level. From these types we derive a matching relational model for storage
in a database (2). Our generic library is then used at the value level (3) to do
CRUD operations on values of the representations where it automatically maps
the values to the database. For many existing databases it is also possible to
reverse engineer a set of representation types from a relational model (4).
The key idea behind our approach is that it addresses the representations of
data for storage and manipulation as two sides of the same coin. Instead of
focusing on either using databases as storage for Clean values, or on Clean
values as interface to a storage representation, we consider Clean values and
databases as different representations of the same high-level concepts.
Although our approach involves many stages of the software engineering pro-
cess, we consider the following to be the main contributions of this paper:

• We introduce a structured method to derive Clean data types from ORM
models, that allow capturing all information about a conceptual entity
in a single data structure. The details of this process can be found in
Section 5.3.

• We present a generic library which provides the four CRUD operations
as functions on single data structures. These operations also work when
the representations in the database span multiple tables. Especially in
data entry applications, this library can replace much boiler plate code.
The CRUD operations are covered in Section 5.4 and the implementation
of the library is discussed in Section 5.5.

91

Chapter 5

5.2 Motivating Example

To illustrate the various steps in our approach, and to provide some feeling
about how it can be applied, we will make use of a running example through-
out the remainder of this paper. This example is a simple project management
system for a typical small business, which stores information about the follow-
ing conceptual entities:

• Projects are abstract entities which are identified by a unique project
number and have a textual description. Projects are containers for tasks
and can be worked on by employees. A project can be a sub project of
another project and can have sub projects of its own.

• Tasks are units of work that have to be done for a certain project. They
are identified by a unique task number and have a textual description.
The system also keeps track of whether a task is finished or not.

• Employees are workers that are identified by a unique name and have
a description. They can be assigned to work on projects. An employee
can work on several projects at a time and multiple employees may work
on the same project.

5.2.1 ORM Formalization

To enable our generic mapping we need to make the above specification more
precise. Using ORM [22], we can make a formal conceptual model of the
example as shown in Figure 5.2. Using ORM, one models facts about ob-
jects. Facts are expressed as semi-natural language sentences. For example:
“Employee a works on Project b”. An ORM model abstracts over concrete
facts about concrete objects by defining fact types (the boxes) and object types
(the circles). Unlike other data modeling languages like ER [9] or UML[76],
ORM does not differentiate between relations and attributes, but considers
only facts. ORM also models several basic constraints on the roles that ob-
jects have in facts. One can express uniqueness, meaning that a fact about
some combination of objects occurs at most once, and mandatory role con-
straints which enforce that a fact about a certain object must occur at least
once. In Figure 5.2, these constraint are depicted as arrows spanning unique
combinations of roles, and dots on roles that are mandatory.

5.3 Types and Tables

The key idea on which our approach is based is that, in data entry applications,
we want to manipulate single data structures that represent a conceptual unit.

92

Between Types and Tables

Figure 5.2: A simple ORM model for a project management system

What we do not want, is to manually specify the queries required to build such
data structures, or to specify how to update the database after the data struc-
ture has been altered. Unfortunately this is often necessary because, since types
in data entry applications are often defined ad-hoc for a separately designed
database, the relation between types and tables is unclear and inconsistent.
We improve this situation by using a structured process. Since a relational
database, and the Clean types used for manipulating it, are simply two different
representations of the same abstract entities, the obvious thing to do is define
a high level specification of these abstract entities and use it to derive both
representations. In the next section we show that when enough information
about the storage representation of objects can be inferred from the types of
their corresponding Clean representation, we can define an automated mapping
once and for all using generic functions. In this section we show how we can
obtain a set of types and tables for which this property holds.

5.3.1 Object Role Models

Instead of defining our own language for defining conceptual entities, we use an
existing language from the information modeling field: Object Role Modeling.
However, for reasons of simplicity, our approach only considers ORM models
that satisfy the following constraints:

• The model only contains entity types, value types and unary and binary
fact types.

93

Chapter 5

• Each entity type can be identified by a single value.

• Uniqueness constraints on single facts and mandatory role constraints are
the only constraints used.

• Each fact type has at least one uniqueness constraint.

• Uniqueness constraints spanning two roles are only used for facts con-
cerning two entity types.

Although this subset of ORM neglects some advanced ORM constructs, like
subtyping or n-ary fact types, it has roughly the same expressive power as the
widely used Entity Relationship (ER) [9] modeling language, and is sufficient
for most common information systems. Nonetheless, we still use ORM instead
of ER because it allows extension of our method to even more expressive con-
ceptual models in the future.

5.3.2 Representation Types

Although a solid conceptual model is the basis of a well-designed information
system, from a programmers perspective however, we are more interested in
the concrete representation as types in our (Clean) applications.
Conceptual entities can have different types of relations and constraints. When
we want to represent conceptual objects as single Clean data structures we need
types that can contain all facts about an entity and also retain information
about constraints and relations. This is achieved by defining a subset of Clean’s
record types with meaningful field names. This set is defined as follows:

• Entity Records
Clean records are used as the primary construct to represent conceptual
entities. These records have the same name as the entity type they repres-
ent, and have fields for every fact type concerning an entity. The names
of these fields have a mandatory structure which can have the following
three forms:

– <entity name> <value name>
This form is used for values or entities that have a one-to-one re-
lationship with this entity. The entity name is a unique name for
this entity type, typically the same as the name of the record type.
The first field of an entity record must always have this form and is
assumed to be a unique identifier for the current entity.

– <entity name> ofwhich <match name>
This form is used for embedding relations between two entities where
the relation between the two entities is defined such that the value of

94

Between Types and Tables

the match name of one of the entities is equal to the identity value of
another entity. This form is used for one-to-many relations between
entities. The entity name is the identifier of the “many” part of the
relationship. The current entity is the “one” side of the relation.

– <relation name> <select name> ofwhich <match name>
This form is used for many-to-many relationships between entity
types. The relation name is a unique name for this relation and is
used by both entity records that have a role in the relation. The
select and match names are role identifiers for both parts of the
relation.

The types that fields in an entity record are allowed to have, are limited
as well. They can be of scalar type, another entity or identification record
type, or Maybe or list of scalar or entity or identification record type.

• Identification Records
Because we do not always want to store or load an entire database, we
need a representation for references to entities that stay in the database.
We represent these references as identification records. These are records
that have the same name as the entity record they identify, with an “ID”
suffix. These records contain exactly one field which has the same name
and type as the corresponding entity record.

• Scalar Types
Value types in ORM are mapped to the basic scalar types in Clean: Int,
Bool, Char, String and Real.

• List and Maybe types
When the uniqueness and total role constraints on a fact type define that
a fact can be optional, or can have multiple instances, we use Clean’s list
([a]) and Maybe (::Maybe a=Nothing | Just a) type to wrap the type of the
object involved in the fact. It is important to note that the order of lists
is considered to have no meaning in these types. Storage of an entity
record which contains a list does therefore not guarantee that this list
has the same order when read again.

Using these types, the ORM model of our project management system (Fig-
ure 5.2) can be represented by the set of Clean types given below.

1 :: Employee= { employee_name :: String
2 , employee_description :: String
3 , projectworkers_project_ofwhich_employee :: [ProjectID]
4 }
5 :: EmployeeID= { employee_name :: String
6 }

95

Chapter 5

7 :: Project= { project_projectNr :: Int
8 , project_description :: String
9 , project_parent :: (Maybe ProjectID)

10 , task_ofwhich_project :: [Task]
11 , project_ofwhich_parent :: [ProjectID]
12 , projectworkers_employee_ofwhich_project :: [EmployeeID]
13 }
14 :: ProjectID= { project_projectNr :: Int
15 }
16 :: Task= { task_taskNr :: Int
17 , task_project :: ProjectID
18 , task_description :: String
19 , task_done :: Bool
20 }
21 :: TaskID= { task_taskNr :: Int
22 }

An interesting property of these types is that, unlike database records these
Clean records can also contain nested representations of related objects.

5.3.3 From ORM To Representation Types

To make sure that a set of representation types represent the right concepts,
we systematically derive the types from an ORM model (mapping (1) in Fig-
ure 5.1). The algorithm to perform this mapping groups fact types in a similar
fashion as the standard Rmap [49] algorithm and is summarized below. A more
elaborate description can be found in [40].

1. For each entity type in the ORM, define an entity and identification record
in Clean. They both have one field, which will have the name and type
of the primary identification of the entity in ORM.

2. Add fields to the entity records. Each entity record will get a field for all
the fact types in which it plays a role. The types and names of the fields
are determined based on the object types and constraints in the model.

• When the entity type is related to another entity type, the type of
the field is the identification record for that entity. When it is related
to a value type, the field will have a scalar value. The name of the
field may be freely chosen but has to be prefixed with a globally
unique entity identifier. The obvious choice for this is the name of
the entity type.

• When the fact type is unary, the field’s type will be Bool.

• When there is no mandatory role constraint on the role an entity is
playing, the field’s type will be a Maybe type.

96

Between Types and Tables

• When there is no uniqueness constraint on the role an entity is play-
ing the field’s type be a list type.

• Each field name is prefixed with a grouping identifier. If a fact type
can be attributed completely to the entity we are defining the type
for, we use the name of the entity as prefix. If not, we choose a
unique prefix for that fact type, that is to be used in the entity
records of both entities playing a role in the fact type.

3. Optionally replace identification record types in record fields to entity
record types. This allows the direct embedding of related entities in
the data structure of an entity. One has to be careful however to not
introduce “inclusion cycles”. When an included related entity embeds
the original entity again, a cycle exists which will cause endless recursion
during execution.

Because step 3. is optional, and the choice between inclusion or reference
depends on the intended use of the representation types, this transformation
can only be automated by an interactive process or annotation of the ORM
model.

5.3.4 From Representation Types to Tables

The next step in our approach is getting from a set of representation types to
a relational model (mapping (2) in Figure 5.1). The obvious way would be to
map from ORM directly to a relational model as is done in the standard Rmap
algorithm [49]. However, since the representation types are already very close
to the relational structure, it is easier to derive the tables from these types. A
summary of the mapping process is given below. A more detailed version can
be found in [40].

1. Define tables for all entities. In these tables all record fields are grouped
that have the same entity name as the first (identification) field of the
record. The types of the columns are the types of the record fields in
the case of scalar types. In the case of entity or identification records
the column gets the type of the first field of these record types. When a
record field’s type is a Maybe type, the corresponding column is allowed to
have NULL values.

2. Define tables for all many-to-many relations. For all many-to-many rela-
tionships find the pairs of relation names and define a two-column table
by that name. The names of the two columns are the entity names found
in the record fields in the representation types.

97

Chapter 5

Figure 5.3: The derived tables of the ORM model in Figure 5.2

3. Add foreign key constraints. Everywhere an entity or identification type
in the record field is mapped to a column in a table, a foreign key con-
straint is defined that references the primary key of the table of the cor-
responding entity type.

When this algorithm is applied to the set of representation types of Sec-
tion 5.3.2, we get the set of database tables depicted in Figure 5.3. Since
this algorithm is completely deterministic it can be easily automated.
With this mapping, we have done all the preparatory work that is required to
use our generic library. For new information systems, this is all the initial work
one has to do: Define an ORM model, derive a set of representation types and
derive a relational model from those types.

5.3.5 Reverse engineering: From Tables to Representation
Types

In situations where we already have a database, that we want to interface with,
we still want to be able to use our generic library. In many situations we are
able to reverse engineer a set of representation types from an existing relational
model to make this possible.
The process itself (mapping (4) in Figure 5.1) is a rather trivial inverse opera-
tion of the method to derive a relational model from the representation types.
However, this is only possible under certain conditions:

• The relational model must only contain tables indexed on a single column
primary key that represent entities and two column tables with a primary
key spanning both columns that represent additional facts. When this
condition holds, there exists a set of representation types from which we
could have derived the existing database.

98

Between Types and Tables

• We must know which columns are used as references, and what entities
they reference. Since the use of foreign keys is not obligatory, it is not
always possible to infer the references in a relational model. We can only
define a set of representation types if we know which conceptual entities
are related and how.

When these conditions hold, which often do for simple information systems,
we are able to use our library even in situations where no ORM model of
the existing system is available. When these conditions do not hold for the
complete database, but do hold for a part of the database, it is still possible
to define a set of types for that part. Such partial use of the generic mapping,
can still save a lot of work.

5.4 Generic CRUD Operations

Although having Clean types and database tables that have a clear relation
with a formal conceptual model is a merit on its own, the point of that exercise
was to enable generic CRUD operations.
What we want to achieve is a set of four generic functions that are available for
every possible representation type and enable us to manipulate the entities in
the databases of our information systems. Ideally the type definitions of this
set would look somewhat like the following code:

1 create :: entity db → (ref, db)
2 read :: ref db → (entity, db)
3 update :: entity db → db
4 delete :: ref db → db

Here ref, entity and db are type variables for respectively the identification
record type, the entity record type and a database cursor type. Obviously it is
not possible to create such a completely polymorphic set of functions, but we
can come very close using generics and overloading.
In this section we show how two of these operations, read and update, work by
means of an example. The other two are similar and are not covered for the
sake of brevity. A full detailed description of all four operations can be found
in [40]. In the example we will assume the conceptual model of Figure 5.2, the
types of Section 5.3.2, and the database tables of Figure 5.3.

5.4.1 Reading objects

The first operation we will show is the generic read. Suppose we have a database
with the following information about some project:

• It has projectNr 84, description “Spring brochure” and the project has no
parent project and no sub projects.

99

Chapter 5

• A task is defined for this project with taskNr 481 and description “Draft
text” which is not done yet.

• Another task is defined with taskNr 487 and description “Call printer
about price” which is also not done yet.

• Employees “john” and “bob” are working on this project.

All of this information can be read into a single Clean value of type Project in
just one line of code1:

1 (mbError, mbProject, cur) =gsql_read {ProjectID|project_projectNr= 84} cur

If all goes well, this will give us the following data structure:

1 { Project | project_projectNr= 84
2 , project_description= ‘ ‘Spring brochure’’
3 , project_parent=Nothing
4 , task_ofwhich_project
5 = [{ Task | task_taskNr= 481, task_project= 84
6 , task_description= ‘ ‘Draft text’’, task_done=False
7 }
8 , { Task | task_taskNr= 487, task_project= 84
9 , task_descrption= ‘ ‘Call printer about price’’, task_done=False

10 }]
11 , project_ofwhich_parent= []
12 , projectworkers_employee_ofwhich_project
13 = [{EmployeeID | employee_name= ‘ ‘john’’}
14 , {EmployeeID | employee_name= ‘ ‘bob’’ }]
15 }

This single line of code gives us a lot for free. If we had to write a read_product
function by hand, it would have required three different SQL queries plus a
conversion from flat lists of SQL data values to the nested Project structure.
To achieve this generically, two problems have to be solved: 1. How do we find
the information in the database? And 2. how do we construct a value, in this
case of type Project? The first problem is solved by interpreting the field names
of record types and translating them to SQL queries. The results of these
queries are then systematically concatenated to produce a stream of values
(tokens) which is a serialized representation of the value we want to construct.
This reduces the second problem to deserialization of that representation.
Instead of describing the read operation at an abstract level, it is easier to
see what happens by following it step by step when used to read the Project
described above.

1In this code the variable cur is a unique database cursor used to query the database.

100

Between Types and Tables

1. The first step we take is serialization of the ProjecID value to create an
initial token stream. Thus in this case, the read operation is started with
initial stream [84]2.

2. The next step is to apply the instantiation of the generic read operation
for the Project type. When the read operation is applied to read an en-
tity record, the first thing that is done is to expand the token stream
by reading additional data for all fields of the record. The head of the
token stream is used to match database records and the SQL queries are
constructed from the information encoded in the field names. For ex-
ample, the data for the field project_description is retrieved with the SQL
query: SELECT description FROM project WHERE projectNr
= 84. When an optional field is empty a NULL token is added to the
stream and when a field has multiple values a terminator (TRM) token is
added after the last value.

So for the example project, the token stream has the value after expan-
sion: [84, “Spring brochure“, NULL, 481, 487, TRM, TRM, “john”, “bob”,
TRM]

3. With the data for all project fields read, the read operation is applied
recursively to construct the record fields. When the read operation is
instantiated for basic types or identification records no additional data
is read. Instead, tokens are consumed to construct values. So after the
values of the first three fields (84, ‘ ‘Spring brochure’’ and Nothing) are con-
structed the token stream has the value: [481, 487, TRM, TRM, “john”,
“bob”, TRM]

4. The instantiation of the read operation for lists will repeatedly apply the
read operation for its element type until the head of the token stream is
a terminator. So in this case, the create operation for type Task will be
called twice. Because Task, like Project, is an entity record type, we read
additional data again. After expansion of the first task the stream has
value: [481, 84, “Draft text”, false, 487, TRM, TRM, “john”, “bob”, TRM]

When the list of both tasks is read and constructed the stream is reduced
to: [TRM, “john”, “bob”, TRM]

5. Thus the process continues, and when recursion is completed for all fields
we have an empty token stream and can construct the Project record.

2To illustrate the intermediate values of the token stream we use an ad-hoc untyped list
notation. This is not Clean syntax.

101

Chapter 5

5.4.2 Local changes with global meaning

Once all facts about an object are read into a Clean data structure, we can
change it in a program. Because this structure is not just some convenient
grouping of values for computation, but has a meaningful relationship with
both the underlying conceptual model and the relational model in the database,
we can interpret changes to this data structure as changes on the conceptual
level.
To illustrate this we make some changes to the example Project of the previous
section and consider their meaning on the conceptual level.

• We change the value of the project_description field to ‘ ‘Summer brochure’’.
The meaning of this change is simple. Since each project has exactly
one description, this new description will replace the old value in the
database.

• We change the value of the field task_done of the first Task in the list to
True.

The meaning of this change is simple as well. Since each task is either
done or not, this new value will replace the value in the database. So
although the task is embedded in the project value, it is still a separate
object on the conceptual level which facts can be changed.

• We remove the second Task from the list.

The meaning of this change is less obvious. Since tasks and projects
are both conceptual objects that happen to be related, does a removal
from the list mean that the conceptual task object and all its facts are
removed? Or does it mean that just the relation between the task and
project is removed? For the representation types, this choice is dependent
on the used type. For entity records, like Task, we will interpret removal
of the list as complete removal of the object. For identification records,
like TaskID, we will only remove the relation between objects. Thus in this
case task 487 will be deleted completely.

• We add a new Task defined as:

1 { task_taskNr= 0, task_project= {ProjectID | project_projectNr= 0}
2 , task_description= ‘ ‘Check online prices’’, task_done=False
3 }
4

This change means that a new task for this project has to be created.
The interesting parts however are the task_taskNr and task_project fields.
Each task is related to exactly one project. We have specified in the task
record that this is project 0. But this task is created as part of the list

102

Between Types and Tables

of tasks of project 84. When new objects are created in the context of
another object we will let the context take precedence and ignore the
specified identification. Hence, this change means that a new task is
created which is related to project 84, not 0.

The task_taskNr field is also interesting. For the identification of new
objects we interpret the specified value (0) as a suggestion, but leave it
up to the database to determine the actual value. This enables the use
of auto incrementing counters which are commonly used in databases.

• We remove ‘ ‘john’’ from the list inprojectworkers_employee_ofwhich_project.

Because the projectworkers_employee_ofwhich_project field is a list of identi-
fication records, we will interpret the removal of ‘ ‘john’’ from this list as
“john no longer works on this project” and not as complete removal of
the employee named “john” from the database.

5.4.3 Updating objects

In the previous section we have made quite a few changes to our local repres-
entation of the project, but all of these changes can be applied to the global
representation in the database at once with just the following single line of
Clean code:

1 (mbError, mbProjectId, cur) =gsql_update project cur

This single line saves us even more programming work than the generic read
function. To apply all the changes by hand would in this case require six cusom
crafted SQL queries and the necessary conversion code.
As with the read operation, we illustrate the generic update by following its
operation step by step.

1. The update operation for entity records is done in three recursive passes.
In the first pass we consider only the fields that are single basic values or
identity records. In this case the fields that start with project_. The up-
date operation or basic values and identification records does no database
interaction, but just serializes values to produce the token stream. After
this first pass the token stream has the value: [84, “Summer brochure”,
NULL].

2. After this pass we update the database record for this project. Because
new objects can be added (like the new task) we verify that the update
query did indeed modify a record in the database. If not, we create a new
record. After this update/create we know the definitive identification of
this project (84) and are ready for the next pass.

103

Chapter 5

3. In the second pass we will do a recursive update of the remaining record
fields. To make sure that the identification context object takes preced-
ence when updating nested objects we pass along special override tokens
(OVR) that specify for which fields in the nested entity records the context
must be used instead of its value. In this case the second pass is started
with token stream: [OVR task project ⇒ 84, OVR projectworkers project
⇒ 84]. The override tokens are used during serialization in the first up-
date pass of a nested entity record. When the second pass finishes the
resulting token stream has value: [481, 532, TRM, TRM, “bob”, TRM].
The value 532 is an automatically assigned identification for the newly
created task.

4. In the third and final pass, the token stream of the second pass is com-
pared with the token stream that a (non-recursive) read operation is for
this project produces to determine which list elements have been removed.
For these values, the generic delete operation is used to remove them from
them from the database.

5. After these three passes, the identification value of the current record is
added to the token stream it was started with. In this case returning a
token stream of value: [84].

6. The final step is to deserialize the token stream to produce a ProjectID

value.

5.4.4 Shared consequences

An interesting property of the previously illustrated generic operations is that
changes in one object have consequences for related objects. Because facts
are conceptually shared between objects, the operations maintain that shared
structure in the database. If we would have read the Employee record of ‘ ‘john’’

before going through the example, the list in the projectworkers_project_ofwhich_
employee would have contained the value {ProjectID|project_projectNr=84}. If we
would read it again after updating the project, this value would no longer occur
in the list.

5.5 Implementation in Clean
To validate the generic operations, we have implemented the operations de-
scribed in the previous section as a prototype library in Clean called “GenSQL”.
This library contains about 950 lines of Clean code of which roughly 500 are
used for the definition of the main generic function. The rest constitutes about
fifty helper functions. Because of its large size, it is not possible to present
the generic function in detail. The design of the library as a whole is therefore
presented instead3.

3Full sources of both the library and the demo application can be found at:

104

Between Types and Tables

5.5.1 Jack of All Trades

Because the generics mechanism in Clean has some limitations, the implement-
ation of the operations in the GenSQL library has a somewhat unusual design.
In Clean it is not possible to call other generic functions of unknown type in
the definition of a generic function. The different CRUD operations however,
do have some overlap in their functionality. The update operation, for in-
stance, uses the delete operation during a garbage collect step. Because of the
limitation we are not able to isolate this overlap in a separate generic function.
To deal with this limitation of the generics mechanism, all operations have
been combined into one “Jack of all trades” function. The type signature of
this function, gSQL, is as follows:

1 generic gSQL t ::
2 GSQLMode GSQLPass (Maybe t) [GSQLFieldInfo] [GSQLToken] *cur →
3 ((Maybe GSQLError) , (Maybe t) ,[GSQLFieldInfo] , [GSQLToken] ,*cur) |SQLCursor cur

The first two arguments of this function are the mode and pass of the operation
we want gSQL to perform. The mode is one of the four operations GSQLRead,
GSQLCreate,GSQLUpdate,GSQLDelete, the type information modeGSQLInfoorGSQLInit.
The latter serializes a reference value to the token list in order to start a read
or delete operation. The GSQLPass type is simply a synonym for Int.
The next three arguments are the data structures on which the gSQL function
operates. All three are both input and output parameters and depending on
the mode, are either produced or consumed. The first argument is an optional
value of type t. During the read and delete operations, this argument is Nothing
in the input and Just in the output because values are constructed from the
token list. During the create, update, info and init operations, the argument
is Just in the input because values are serialized to the token or info list. The
second argument is the token list to which data structures are serialized. The
third argument is the info list. In this list, type information about record fields
is accumulated. The last argument of the gSQL function is a unique database
cursor which has to be in the SQLCursor type class4. This is a handle which is
used to interact with the database. The return type of the gSQL function is a
tuple which contains an optional error an optional value of type t, the token
list, the info list and the database cursor.
Although this “Jack of all trades” function is large, it is clearly divided into
separate cases for the different types and modes to keep it readable and main-
tainable.

http://www.st.cs.ru.nl/papers/2009/gensql-prototype.tgz
4A | in a type signature is Clean notation for specifying class constraints

105

Chapter 5

5.5.2 Convenient wrappers

Because of the all-in-one design of the gSQL function, it is not very practical to
use. For the read and delete operations, it even has to be called twice. First
in the init mode to prepare the token list, and then in the read or delete mode
to do the actual work.
To hide all of this nastiness from the programmer, the GenSQL library provides
wrapper functions for each of the four operations. These wrappers have the
following type signature.

1 gsql_read :: a *cur→ (Maybe GSQLError, Maybe b, *cur)
2 | gSQL{|?|} a & gSQL{|?|} b & SQLCursor cur
3 gsql_create :: b *cur→ (Maybe GSQLError, Maybe a, *cur)
4 | gSQL{|?|} a & gSQL{|?|} b & SQLCursor cur
5 gsql_update :: b *cur→ (Maybe GSQLError, Maybe a, *cur)
6 | gSQL{|?|} a & gSQL{|?|} b & SQLCursor cur
7 gsql_delete :: a *cur→ (Maybe GSQLError, Maybe b, *cur)
8 | gSQL{|?|} a & gSQL{|?|} b & SQLCursor cur

Thanks to Clean’s overloading mechanism we can use these wrapper functions
for any entity for which we have derived gSQL for its identification (a) and entity
record (b) type.

5.5.3 Project management example system

In order to test and demonstrate our generic library, we have also implemented
the project management system from Section 5.2. This system is a CGI web
application written in Clean which runs within an external (Apache) web server
and stores its information in a (MySQL) relational database using the GenSQL
library. Figure 5.4 shows the prototype application while updating a project.

5.5.4 Performance

The generic mapping function relieves the programmer of writing much boiler-
plate code and SQL queries. It is however important to realize that there is a
cost associated with this convenience.
First of all there is some overhead cost in space and time consumption of Clean’s
generic mechanism. However when optimization techniques [4] are applied by
the compiler this can be completely removed.
Secondly there is a cost in the amount of database queries that are performed.
The current implementation of the generic operations is not optimized to min-
imize the amount of queries. Each retrieval or update of an object does a
separate query. When an object has many facts with embedded related objects
this will result in linearly many queries. Theoretically however, there is no
reason why the generic operations would require more queries than handwrit-
ten versions.

106

Between Types and Tables

Figure 5.4: Screenshot of the project edit page

5.6 Related Work

At first glance, our library appears very similar to Object Relational Mapping
[19] libraries in object oriented languages. These libraries achieve persistence of
objects in an OO language by mapping them to a relational database. Although
both approaches relieve programmers of the burden of writing boilerplate data
conversion code, there is an important difference: our approach treats a subset
of all Clean types as a meaningful model of an underlying redundancy free
database. This allows us to easily map binary fact types to the entity records
of both sides without duplicating any information in the database. In object
relational mapping where objects are made persistent, we can only avoid du-
plication by mapping binary relations between objects to only one side of the
relation. Based on this property, object relational mapping is more similar to
generic persistence libraries [73] than to the method presented in this paper.
Also related to our work are other methods and tools that use conceptual data
models to generate parts of an information system like user interfaces [34], or
even complete applications [48]. These tools reduce the effort required to build
an information system as well, but are often all-or-nothing solutions that do
a certain trick well, but have no solution when you want something a little
different. Of course you can always make changes to the generated code, but
this means you can only generate once, or have to manually merge your changes

107

Chapter 5

upon regeneration. Because our approach is designed as a generic library, and
generic programming is an integral part of the Clean language, we can combine
a generic solution for common situations together with handwritten code for
exceptional situations in one coherent and type safe solution.
The final related area of research is that of abstraction from SQL by embed-
ding a query language inside another language. This approach is used in the
HaskellDB library in Haskell [39, 6], in the LINQ library in C# [52], and more
recently, using dependent types in a database library for Agda [57]. While
these approaches make the programming of data operations easier and type
safe, they do not reduce the amount of work one has to do. When using our
library, a developer no longer needs to define queries at all, thus eliminating
the need for easier and safer ways of defining them. These libraries could how-
ever, be used complementary to ours to get a generic solution for the common
CRUD operations, and type safety for the exceptional custom queries.

5.7 Conclusions & Future Work

In this paper we have shown that given the right choice of data types and data-
base tables, it is possible to use generic programming to automate the mapping
between entities stored in a database and their representation in Clean.
To do so, we have shifted the focus from both the database and the data types,
towards the conceptual level of ORM models. By deriving not only a database,
but also a set of types from these models, we enable an automatic mapping
between them. This means that by just making an ORM model of a perceived
system, you get a database design, a set of types for convenient manipulation,
and the machinery for doing CRUD operations on values of those types for free.
This relieves a Clean programmer of dealing with how changes in a database
must be expressed in SQL, and instead enables the manipulation of a database
in a more familiar fashion: manipulation of a local data structure.
We have shown the viability of this approach by means of a prototype library
and its use in an example information system. While not ready for production
systems yet, this library is already useful for rapid prototyping. But, with op-
timization of the library, and additional generic operations for handling sets of
entities, much of the construction effort of information systems can be reduced
to just the definition of ORM models.
What remains to be done is extension of our approach to the complete ORM
language. While we selected a subset which is useful for many domains, we have
ignored some constructs that make ORM more powerful than, for example, ER.
We have yet to investigate how these can be integrated in the current approach.
Another area where further work can be done is to explore how the mechanism
for locally manipulating parts of a global shared data structure can be used
to facilitate sharing in a functional language. Could it for instance be used to
implement a heap on top of an in-memory SQL engine?

108

6 CCL: A Lightweight ORM
Embedding in Clean

Agile software development advocates a rapid iterative process where working sys-
tems are delivered at each iteration. For information systems, this drive to produce
something working soon, makes it tempting to skip conceptual domain modeling.
The long term benefits of developing an explicit conceptual model are traded for
the short term benefit of reduced overhead. A possible way to reconcile conceptual
modeling with a code-centric agile process is by embedding it in a programming
language. We investigate this approach with CCL, a compact textual notation for
embedding Object-Role Models in the functional language Clean. CCL enables
specification of Clean types as derivatives of conceptual types. Together with its
compact notation, this means that defining data types with CCL as intermediary
requires no more programming effort than defining data types directly. Moreover,
because embedded ORM is still ORM, mappings to other ORM representations
remain possible at any time.

6.1 Introduction

The foundation of a successful information system is a solid understanding of
the domain it represents. A way of capturing such understanding on a concep-
tual level is through the use of Object-Role Models (ORM [23]). They allow
modelers to express the conceptual relationships in a domain without commit-
ting to the level of detail that implementation data structures require. A com-
mon approach to ORM is to make models with dedicated tools as analysis and
design activity, and use them to bootstrap development of information systems
by generating relational schemas and template code. An implicit assumption
of this approach is that the development process has a requirements analysis or
design phase prior to a construction or programming phase. With the increas-
ing popularity of Agile development [18] this assumption does no longer always
hold. Agile development advocates an iterative process with short cycles in
which working systems are delivered at each iteration and stakeholders are act-
ively involved in the development. In such a process, with a focus on delivering
working systems in a short amount of time, it is tempting to skip conceptual
modeling, because the overhead of using dedicated modeling tools while already

109

Chapter 6

programming an information system may outweigh the short-term benefits.
Unfortunately this means that the long-term benefit of an explicit conceptual
model that can be used in communication with stakeholders is also lost.
A possible way to reconcile conceptual modeling with a code-centric Agile de-
velopment process is by embedding ORM in a programming language. At first
glance, this appears to be a compromise. For ORM modelers, it means that
conceptual models have to be specified textually instead of graphically in order
to let it be embeddable in the structured text of a programming language. For
programmers this means that they cannot define data types directly, but that
they need to specify a conceptual model of the domain first. Yet, we expect
that embedding ORM in a programming language can have several benefits:
First, conceptual relations between different data structures used in the code of
an information system are often implicit. By making them explicit, data types
can be specified more compactly as derivatives of shared conceptual types,
giving programmers an immediate short-term benefit. It also gives compilers
additional opportunities to check code and detect programming mistakes.
Second, because models are integrated in the source code of information sys-
tems there is a direct link between the model and the working information
system. This means there cannot be discrepancies between the ORM models
and the behavior of the information system caused by misinterpretation of the
models during implementation. Moreover, embedded ORM models are still
ORM models. This makes it possible to maintain bidirectional mappings to
representations used by other ORM notations and tools.
In this paper we investigate the embedded ORM approach with CCL (Concepts
in CLean), a compact notation for embedding ORM models in the pure func-
tional programming language Clean [69]. Clean is a statically typed language
where data types play an important role. Not only are they used to detect
programming errors, but they are also for type-driven generic programming, a
technique in which data types are used to parameterize algorithms. Contem-
porary Clean frameworks like iTasks [32] aim to improve agility by enabling
large parts of information systems to be generated from abstract patterns that
depend on types. This makes specification of data types a key element of agile
Clean programming.
The main contributions of this paper are:

• We provide a new compact textual notation of a core subset of ORM.

• We demonstrate how this notation is used to embed ORM in a program-
ming language.

• We extend the Clean language with the possibility to specify conceptual
types underlying multiple data types.

The remainder of this paper is organized as follows: We start with an example
of CCL in Section 6.2. We then continue with an explanation of the notation of

110

CCL: A Lightweight ORM Embedding in Clean

ORM constructs for defining conceptual models in CCL in Section 6.3 and for
defining derivative data types in Section 6.4. We reflect on the benefits as well
as the scope and limitations of our work in Section 6.5 and put it the context
of related work in Section 6.6. In Section 6.7, we end with concluding remarks
and an outlook on future work.

6.2 A CCL Example

Before going into technical details of the CCL notation, we present a simple,
yet nontrivial example. We model a personal audio catalogue of digital audio
files like for example a collection of ripped CD’s or an iTunes library. The
central concept is an album, which can be a music album or an audiobook.
Additionally songs, artists and authors of audiobooks are modeled.

Figure 6.1: ORM diagram of a personal audio collection

Figure 6.1 shows the ORM2 diagram of such an audio collection which is defined
by the CCL code in Figure 6.2. This definition consists of three parts. A series
of object type definitions consisting of entity type definitions and value type
definitions, a series of fact type definitions and a series of fact container type
definitions that define Clean data types in terms of the conceptual definitions.
In the next section we explain this definition in more detail.

6.3 Defining Conceptual Models with CCL

Conceptual models are defined as structured text in CCL source modules, text
files with .ccl as extension. Each CCL module starts with a module header
defining its module name.

concept module AudioCollection

111

Chapter 6

1 //Module header
2 concept module AudioCollection
3 // Entity types
4 $$ Album
5 $$ AudioBook [Album]
6 $$ Author
7 $$ MusicAlbum [Album]
8 $$ Artist
9 $$ Song

10 // Value types
11 $$ Name =String
12 $$ SongId = Int
13 $$ SongTitle =String
14 $$ AlbumId = Int
15 $$ AlbumTitle=String
16 $$ ArtistId = Int
17 $$ Year = Int
18 $$ Duration = Time
19 $$ TrackNo = Int
20 $$ Tag =String
21 $$ AuthorName=String
22 // Fact type definitions
23 ## album_id=
24 << !!Album >> has << AlbumId >>
25 ## album_title=
26 << !Album >> has AlbumTitle

27 ## album_year=
28 << Album >> is published in Year
29 ## song_id=
30 << !!Song >> has << SongId >>
31 ## title=
32 << !Song >> has SongTitle
33 ## duration=
34 << Song >> has Duration
35 ## songs=
36 Song is << TrackNo on MusicAlbum >>
37 ## performed_by=
38 << !Song is performed by Artist >>
39 ## tags=
40 << Song is categorized by Tag >>
41 ## artist_id=
42 << !!Artist >> has << ArtistId >>
43 ## artist_name=
44 << !Artist >> has Name
45 ## author_name=
46 << !Author >> has AuthorName
47 ## author=
48 << !AudioBook is written by Author >>
49 // Fact container types
50 #: Album =Album {..}
51 #: Artist =Artist {..}
52 #: Song = Song {..}

Figure 6.2: CCL Definition of Personal Audio Collection

By giving each module a name we make it compatible with the module system
of Clean such that we can refer to its content from within other modules.
The module header is followed by a series of declarations. These can be object
type declarations, fact type or declarations, that define the model, or fact con-
tainer type declarations that link the conceptual level to concrete first-order
data structures. In Table 6.1 an overview of the CCL declarations is listed
together with examples and their corresponding ORM diagrams.

6.3.1 Entity Types

Entity types are defined by declaring a name for a concept. Their declarations
consist of an object type marker, two dollar signs, followed by an object type
name. The object type marker is a symbol ($$) that indicates we are defining
an object type declaration. The object type name must consist of alphanumeric
characters only and must start with a capital letter.

112

CCL: A Lightweight ORM Embedding in Clean

Entity Types

$$ Song

Value Types

$$ AlbumTitle=String

Fact Types

Song is TrackNo on MusicAlbum

or

songs= Song is TrackNo on MusicAlbum

Uniqueness Constraints

Song is << TrackNo on MusicAlbum >>

<1< Song is
<2< TrackNo >1> on MusicAlbum >2>

Total Roles

!Song has SongTitle

Primary Roles

$$ SongId= Int
<< !!Song >> has << SongId >>

Subtypes

$$ Album
$$ MusicAlbum [Album]
$$ AudioBook [Album]

Table 6.1: CCL Language Constructs

113

Chapter 6

Optionally a list of super types can be specified after the object type name to
declare subtyping constraints. This list starts with an open bracket, is followed
by entity type names separated by commas and ends with a closing bracket.

6.3.2 Value Types

Value types are defined by assigning a name to a first-order Clean type. They
are declared the same way as object types, but with the addition of an equals
sign, followed by the name of a first-order Clean type. Specification of super
types is not allowed for value types.

6.3.3 Fact Types

Fact type declarations are defined by a fact type marker (##) followed by a
sentence consisting of capitalized words and all lowercase words. The captilized
words are interpreted as names of object types.
It is allowed to reference object types that are not explicitly declared by an
object type declaration. Undefined references are interpreted as implicit entity
type declarations. It is recommended to explicitly declare entity types, but by
allowing implicit use it is possible to construct a model by supplying fact types
only. The CCL compiler can detect implicit references and issue warnings.
Optionally one can assign names to fact types by adding a fact type name
followed by an equals sign between the fact type marker and the sentence.
Assigning a name to a fact type makes it possible to reference the fact type in
the declaration of fact container types.

6.3.4 Uniqueness Constraints

Uniqueness constraints are expressed by annotations in fact type declarations.
Unique sets of roles can be marked by enclosing parts of the sentence with
double angle brackets (<< >>). When multiple uniqueness constraints within
the same fact type overlap making their definition becomes ambiguous. This
can be resolved by labeling the constraints with a unique number. This number
is placed between the angle brackets. Non-adjacent uniqueness can be specified
by using the same label on multiple annotations.

6.3.5 Mandatory and Primary Roles

Mandatory role constraints are specified by prefixing object type references in
a fact type declaration with an exclamation mark (!).
To indicate that a mandatory role is not only mandatory, but that the asso-
ciated value type(s) may be used as reference for an entity type, we use an
annotation to mark a role as the primary role. Because it is essentially a

114

CCL: A Lightweight ORM Embedding in Clean

stronger version of a mandatory constraint, we use a double exclamation mark
as annotation (!!).
This annotation does not necessarily have to be used together with uniqueness
constraints, but if it is used in a binary fact type between an entity type and a
value type with two unique roles, the value type is depicted with the shorthand
notation for standard names in the derived diagram. Each entity type can have
only one primary role annotation.

6.4 Defining Clean Types with CCL

To manipulate facts in Clean programs, we need to represent them in compound
data structures. Because Clean is a strong statically typed language that uses
Burstall-style algebraic data types to type compound structures, we need to
define (Clean) types of such data structures representing facts. To achieve this,
CCL offers notation to define Clean types in terms of CCL fact types, which are
automatically expanded. This way, the specification of CCL fact types reduces
the specification effort of Clean types, because a single fact type can contribute
to the definition of multiple Clean types if it relates to multiple entity types.
Even for the simple model in Section 6.2 the CCL definition is more concise
than the expanded Clean data types derived from it.

6.4.1 Fact Container Types

To define Clean types that can contain composite structures of facts, CCL
offers so called fact container types. Their notation is similar to the notation
for record types in Clean. For example:

#: SongSummary= Song {song_id,title,songs}

Which expands to the following Clean record type:

1 :: SongSummary=
2 { song_id :: SongId
3 , title :: SongTitle
4 , songs :: [(TrackNo,AlbumId)]
5 }

A fact container type definition starts with a container type marker (#:), fol-
lowed by a type name and and equals sign. The righthand side of the equals
sign consists of a focus entity and a selection of facts that get mapped to field
names. The focus entity is the name of a conceptual entity type, that we collect
facts about. It is implicit in all the facts that the type contains. The selection
of facts is a comma separated list of named facts in which the focus entity has
a role. Each fact maps to a field in the expanded record type. The types of
the fields (in Clean denoted with the double colon) do not have to be specified

115

Chapter 6

because they can be inferred from the conceptual model. For value types this
is simply their Clean type. For entity types, the type of the fact type with a
primary role annotation is used. This inference makes the type specifications
more concise.

6.4.2 Complete Container Types

To make the definition of data types even more concise, a shorthand notation
is available for defining fact container types that contain all facts about an
entity. To define a type that expands to include all named facts a focus entity
has role in, one can use the following notation:

#: Album=Album {..}

6.4.3 Explicit Field Type Specifications

If more control over the data types of fields in fact container types is desired,
selected facts may be annotated with type information. To not just reference
related entities, but to include facts about them one could for example specify:

#: SongSummary= Song {song_id,title,songs :: (TrackNo,Album)}

The name of a fact in the selection is annotated by a double colon followed by a
comma separated list of Clean types enclosed in parenthesis for all roles except
the role of the focus entity. For binary facts the parenthesis may be omitted
because only one role remains.

6.5 Discussion

6.5.1 Conceptual Modeling

CCL is a lightweight embedding of ORM that provides notation for a core
set of ORM constructs only. The reason for this is partially intentional and
partially practical. Covering all ORM constraints fully would make the CCL
language more complex while the additional value is uncertain. Because we
are embedding ORM in a general purpose programming language, we don’t
need to be complete. Many constraints can also be expressed alternatively in
Clean and addition would only duplicate existing functionality. The supported
ORM subset adds the structural conceptual level that could not be expressed
explicitly in Clean. Exploration of the effects of additional constraints remains
a topic for future research.
Although unnecessary for the generation of Clean code, the CCL notation
uses complete sentences to define fact types. For constraints however, it uses
annotations instead of a more verbose verbal form. This approach aims to

116

CCL: A Lightweight ORM Embedding in Clean

provide a notation that is concise but still contains all information necessary
for verbalization. The notation is therefore not as close to natural language
as for example SBVR, but still starts from stating facts about a universe of
discourse.

6.5.2 Effects on Agility

The use of CCL as intermediate step in the definition of collections of data
types, may improve agility of a Clean programmer in two ways. First, it re-
duces the amount of code that has to be written, because CCL makes the
definition of types more compact. Secondly, it automatically keeps the data
types that represent entities that share fact types consistent. This makes it
easier to incrementally extend the system under development, because changes
that involve multiple conceptual entities can be made in one place.
A possible negative effect may be that too much of a domain is modeled. If
in CCL more types are defined than are used in the current iteration of an
information system, time is spent on something that does not contribute to the
working system. Luckily this can easily be detected by the compiler.

6.5.3 Implementation

To be able to test and investigate the use of CCL in information systems
developed with Clean, we have implemented a basic compiler. This is a proof-
of-concept compiler that serves as a preprocessor to the Clean compiler. The
primary purpose of our compiler is to compile CCL to Clean. Although CCL’s
syntax is designed to avoid conflict with Clean’s syntax such that CCL can be
mixed with Clean in the same module, we currently only support separate CCL
modules that can transparently be compiled to Clean using the Clean IDE’s
preprocessing support.
The secondary purpose is to generate representations of the conceptual models
for communication with domain experts. Currently we support the generation
of ORM2 diagrams, but one could also think of verbalizations, or a combin-
ation of both in hyperlinked documents. Because, CCL does not allow the
specification of diagram layout, we use the popular open-source Grapviz tool,
to visualize CCL. The CCL compiler generates a graph structure in the DOT
language which is rendered by Graphviz. All diagrams shown in Section 6.2
and Section 6.3 have been generated from CCL in this way.
Both the CCL notation, and the CCL compiler have many opportunities for im-
provement. Obvious additional targets are the generation of relational schema’s
for storage, and access functions for conversion between flat relational struc-
tures and CCL fact container types. Another area in which the CCL compiler
could be improved, is interoperability with formats from tools such as Norma,
or languages as CQL or SBVR.

117

Chapter 6

6.6 Related Work

It is obvious that CCL as presented in this paper is not intended to replace
any of the current ORM notations and tools, but rather to introduce ORM in
a new context where explicit conceptual models have added value. Therefore
it may be less obvious where to position CCL in the ORM literature. Unlike
most concrete ORM notations, like the earlier NIAM [56], FCO-IM [5] or more
recent ORM2 [23], CCL is a textual language with a formal concrete syntax,
instead of a graphical language. In its textual approach it is closer to SBVR
vocabularies [21] or CQL [25], but less natural language oriented. CCL is a pure
data definition language. Where languages as RIDL [50] and LISA-D [74], as
well as CQL incorporate the querying and manipulation of information, CCL
defines only the conceptual structure. Manipulation of data is already provided
by the host language Clean. In its aim to accommodate an agile process and
use of a text oriented approach, CCL has some overlap with CQL. However,
because CCL is an embedded language it has a different focus. CCL’s syntax
emphasizes concise notation, to align with the host language, whereas CQL
chooses a linguistic approach for better alignment with domain experts. CCL
is less expressive as CQL, because it is just a lightweight embedding, not a
standalone language. With regard to information system development in Clean,
CCL can be related to earlier work on automated mapping between relational
tables and Clean data types [45]. That approach relied on the encoding of
conceptual relations in Clean types because no explicit ORM model could be
expressed. CCL could be used to improve this mapping.

6.7 Conclusions

In this paper we have presented CCL, a lightweight embedding of ORM in the
functional programming language Clean. We have shown that it is possible
to define conceptual models from within a programming language without ad-
ditional overhead. Because derivation of data types from conceptual types
enables a more concise specification of collections of data types that model a
domain, the additional effort of specifying the conceptual types pays off imme-
diately. Moreover, because a tightly integrated conceptual model is developed
from within the programming language, ORM diagrams or verbalizations can
be extracted from an information system’s source code at any time.

118

Part III

The Netherlands Coast Guard
Case

119

7 Towards Dynamic Workflow
Support for Crisis Management

Current process support technology for crisis management is often limited to either
sharing of information or hard-coded process support through dedicated systems.
Workflow management systems have the potential to improve crisis response op-
erations by automating coordination aspects. Unfortunately most contemporary
systems can only support static workflows, hence yielding inflexible support sys-
tems. Recent work on the use of functional programming techniques for workflow
modeling has led to the development of the iTask system. It uses function combin-
ation to model dynamic data-driven processes and generates executable workflow
support systems. Because of its focus on dynamic processes it appears promising
for development of flexible crisis response systems. In this paper we present an
initial discussion of the potential of the iTask system for crisis management applic-
ations. We give an overview of the iTask system, and discuss to what extent it
meets the requirements of the crisis management domain.

7.1 Introduction

Crisis management operations involve cooperation and collaboration between
large numbers of diverse organizations (e.g police, firemen, rescue workers, med-
ics). Activities in these operations are highly dynamic and situation depend-
ent. To cooperate and collaborate, activities by diverse organizations must
be synchronized (or at least deconflicted) with one another. At first glance,
Workflow Management Systems appear to have potential to support. WFMSs
are computer applications that coordinate, generate, and monitor tasks to be
performed by human workers and computers. Every activity in a crisis man-
agement operation can be considered a task. Activities can depend on each
other and must be performed in sequence, while other activities may be carried
out in parallel. The workflow system can be used to support the distribu-
tion and monitoring of these activities. But there are some serious problems,
as already acknowledged by Fahland and Woith [17] and Sell and Braun [71].
First, contemporary workflow systems are commonly rather rigid because they
only model the static flow of control. Second, the activities to be conducted for
tackling a crisis often cannot be captured in a predefined plan. Only a rough

121

Chapter 7

sketch of the actions to be taken can be given. Plans can be further refined only
at runtime, when more information becomes available. Most workflow systems
cannot deal with this.
Recent work on the use of functional programming techniques for workflow
modeling has led to the development of the iTask system [61]. The iTask
system is a domain specific workflow language embedded in the functional
programming language Clean, enabling the creation of data-driven dynamic
workflow systems. It supports data dependent behavior of tasks, where the
new tasks to do may depend on the results of previous tasks. The iTask system
also allows for on-the-fly adaptation of tasks.

7.2 The iTask System

The iTask system (itasks.cs.ru.nl) is a domain specific workflow language em-
bedded in the functional programming language Clean. It enables the creation
of dynamic workflow systems. In the iTask system a workflow consists of a
combination of tasks to be performed by humans and/or automated processes.
From iTask specifications complete web-based workflow applications are gen-
erated. The system is based on open web-standards and can be accessed by
anyone who has access to Internet, including many mobile devices. The iTask
system is built upon a few simple concepts. The main concept is that of a typed
task. A task is a unit of work to be performed by a worker or computer (or a
combination of both) that produces a result of a certain type. A task can be a
single (black box) step, or a composition of other tasks. The result of one task
can be used as the input for subsequent tasks, and therefore these new tasks
are dynamically dependent on this result. iTask allows for the data dependent
sequential and parallel execution of tasks where information is automatically
transported between tasks. Result types are not limited to simple data such as
integers, records, etc., but can also be documents, or even new tasks.

7.2.1 Programming Workflows

The iTask standard library offers several functions for creating basic units of
work. An important example is the generic task where a user is asked to
supply information. The generation of a web-form to enter information and
the processing of its result are handled fully automatically by the system. In
this way data entry tasks are created in just a single line of code. Figure 7.1
shows the code and the generated form for an Incident data type. This code
comes from an example application that dynamically allocates ambulances from
multiple ambulance posts based on location, number of injured and availability
in case of an incident.
An obvious advantage of such compact definition of data entry tasks is that it

122

Towards Dynamic Workflow Support for Crisis Management

— Code —

1 ::Incident= { type :: IncidentType
2 , time :: Time
3 , nrInjured :: Int
4 , description :: String
5 , location :: Location
6 }
7
8 ::IncidentType=Accident | Fire
9 | Fight | Other String

10
11 ::Location = {street::String,place::String}
12
13 enterIncident :: Task Incident
14 enterIncident=enterInformation "Describe the incident"

— Generic User Interface —

Figure 7.1: A Generic Data Entry Task for Incident Data.

123

Chapter 7

enables readable and easily modifiable workflow specifications. But there are
some less obvious, but more important ones: First, the separation of declarative
task definition and generic implementation enables different implementations
for different devices. Second, because interfaces can be automatically gener-
ated, the system can automatically provide a fall back based on manual data
entry for every task. Even for tasks that were designed to receive their input
through an automated process.
Other examples of basic task functions are: listing all users of the system (if
necessary grouped by their role); tasks that return at a predefined moment in
time or after an amount of time; tasks that communicate with other applica-
tions or web services (for the exchange of information).
New tasks can be composed from other tasks by using combinator functions.
We distinguish between combinators that say something about the order in
which tasks have to be performed and combinators that say something about
an individual task: who has to perform it; where to store information about
the task, etc.
In contrast to most workflow specification languages, information is passed
explicitly from one task to another in the iTask system. In a sequential com-
position of two tasks, the first task is activated first and when it finishes, the
result is passed to a second task, which takes this result as its input. In code,
this is denoted by:

1 first_task>>=second_task_function

t>>=f (or t followed by f) integrates computation and sequential ordering in
a single pattern. In this way the second task can dynamically adapt to the
result of the first task. In other workflow formalisms it is harder to specify
a function that acts on the result of a preceding task because only control is
passed between tasks.
The parallel combinator can be used for executing tasks in parallel. It can be
parameterized with predicates such that many patterns of parallel composition
can be expressed using this single combinator. For example: or-, and- and
ad-hoc (conditional) parallelism.

7.2.2 Dealing with Dynamic Behavior: Exceptions and Change

Several authors [71, 17] already indicated that workflows need to be adaptive
to be of use for crisis management operations. iTask offers three constructs to
achieve this:
The sequence (>>=) combinator is used to make tasks dynamically dependent
on results of previous tasks.
The iTask exception mechanism can be used in case the normal course of actions
is affected, and a new procedure should be started. A task may throw an
exception in case an exceptional situation occurs. The entire workflow the task

124

Towards Dynamic Workflow Support for Crisis Management

is part of is now stopped (if there are parallel tasks in it, the users participating
in these tasks are informed). The exception is passed to an exception handler
that can start a new task using information raised in the exception. Exceptions
enable the separation of uncommon borderline cases from the regular workflow.
The change concept is complementary to that of the exception. A change is
something that is triggered from outside the specified workflow. Tasks on which
people are working can be replaced on-the-fly with other tasks. An example
of a change is the replacement of a complex process by a simple to-do list, in
case the user has determined that the process is inappropriate for the current
situation, or the replacement of a task by manual entry of a result that is
obtained outside the workflow system.

7.2.3 Working on Tasks

When a workflow specification is compiled, a server executable is generated that
coordinates tasks through a set of web services. It serves task lists, a workflow
catalogue, and high level user interface definitions of concrete tasks. Users can
access these services with a generic web based application (Figure 7.2).

Figure 7.2: A Screenshot of the iTask Client Application

Tasks that a user needs to perform are presented in the task list inbox displayed
in the upper right pane. The state of a selected task is displayed in the lower
right task pane. Tasks can be selected in any order, or simultaneously, allowing

125

Chapter 7

a user to determine a preferred order of execution. All work is immediately
synced with the server.
Users can start new workflows by selecting them in the left workflow pane. In
general any number of workflows can be started.

7.3 iTasks for Crisis Management?

Although the iTask system has not specifically been designed with crisis man-
agement applications in mind, we contend that it is a potentially valuable tool
for building crisis management systems. To find out what is demanded from
crisis management systems, such that we can identify challenges for further
development, we turned to the literature for requirements. Unfortunately, dif-
ferent authors use different requirements when proposing technology for this
domain (e.g.[28, 71]). What we needed was an independently defined set of
general requirements. Jul in [35] provides such a set in the form of five design
requirements distilled from an analysis of the crisis domain in general. In this
chapter we discuss the strengths and weaknesses of the iTask system in light
of each of these requirements:

• Design Requirement #1: Response technology should seek to support
just-in-time learning, first, of the task the tool is intended to support,
second, of the needs and goals of the present operation, and, third, of
disaster management practices in general.

• Design Requirement #2: Response technology, even when focused
on agent-driven tasks, should seek to aid response-driven tasks, such as
planning, coordination and resource management.

• Design Requirement #3: All response technology should actively nur-
ture cooperation, collaboration and partnership formation.

• Design Requirement #4: Response technology, while imposing stand-
ard structures and procedures, must, insofar as possible, allow flexibility
and deviation in their application.

• Design Requirement #5: Response technology should aim for graceful
augmentation, allowing the technology to be integrated in or removed
from the users activities with a minimum of disruption.

7.3.1 Requirement #1: Just-in-time Learning

Because people do not need to know what they will have to do in advance, the
step-by-step guidance through standard procedures by a workflow system is
essentially just-in-time learning of those procedures. The workflow specification

126

Towards Dynamic Workflow Support for Crisis Management

guides people through procedures they might have never done before. Once
users learn how to use the interface to find out what tasks they have to do,
and how they can select tasks to work on, they can rely on the system to tell
them what needs to be done. To ease the initial learning curve, the iTask user
interface has been designed to resemble an e-mail client as much as possible.
Users can simply think of the system as a special e-mail system where all
messages in their inbox happen to be requests to do something.
A weakness of the iTask system is that the goals and instructions of tasks are
communicated primarily through text as defined in the workflow models. When
a user is presented with a task having instructions he or she cannot understand,
or even worse, can misunderstand, there are no built-in ways to easily resolve
that knowledge gap. The learnability of the tasks is therefore almost com-
pletely determined by the degree to which the workflow models supply enough
information. Of course, this problem also exists for paper handbooks and con-
tingency plans. Interactive workflow systems have an opportunity to do more,
e.g. to provide access to information sources, or to provide easy communication
to ask peers help.

7.3.2 Requirement #2: Response Driven Tasks

A workflow system, by definition, supports response driven tasks, since its sole
purpose is to automate the coordination and execution of standard procedures.
It has the additional advantage over hard-coded support systems of having
inspectable models that, at run-time, can be queried to get information about
what is going on. The dynamic data-driven workflow models that are used
by the iTask system have the additional potential of enabling flexible resource
allocation and planning. Data that becomes available as a result of performed
tasks can be used for the (re)distribution of resources or for planning/scheduling
of other tasks. However, currently available resource allocation combinators
in the iTask systems standard library are purely algorithmic. It is possible to
integrate stochastic or other predictive models to distribute tasks and resources,
or to support decision making at crucial points in a workflow. Having such
tasks available in a library of the workflow language could further improve the
support of response driven tasks.

7.3.3 Requirement #3: Cooperation and Collaboration

Cooperation and collaboration are supported in iTask workflow models by (re)
assigning tasks to users and routing the task results from one user to another.
Tasks can be delegated and tracked. It is also possible to define workflows that
add new users to the system, who then immediately can get tasks assigned to
them.

127

Chapter 7

The multi-user features of the iTask system make it possible to define work-
flow models that involve multiple users. However, to assume that therefore it
“nurtures cooperation, collaboration and partnership formation” would be too
shortsighted. There are still many things that should be facilitated to promote
cooperation, regardless of the concrete tasks at hand, such as for example,
integrated communication capabilities (chat, voice, video) to enable users to
discuss the tasks they are working on, or formation of ad-hoc teams of users.
A more fundamental challenge will be a shift to multi-user tasks. Currently,
tasks are always assigned to, and managed by, a single individual. Relations,
both formal and informal, between users are not modeled in the iTask system.
In daily life, however, it is not uncommon to work together on a task without
exactly dividing it into discrete subtasks, or to have shared responsibility for
a task. When concurrently working on tasks by multiple users is possible,
one could leverage the fact that tasks can produce new tasks, to cooperatively
define and execute a workflow with a group of people.

7.3.4 Requirement #4: Flexibility

Flexibility is a feature of the iTask system that pointed us to the potential
usefulness of dynamic workflows for crisis management in the first place. Be-
cause iTask workflow specifications support the modeling of dynamic processes
at multiple levels, it is potentially capable of complete compliance with this
fourth requirement. However, although it is technically possible to define very
flexible workflow models, the usefulness of this expressive power is constrained
by the interface through which it is exposed to end-users. An important re-
search challenge will be to develop generically applicable problem solving pat-
terns that can be applied when normal procedures do not apply. More research
is also needed on what information is required by users to become aware that
there is a need for deviation from standard procedures, and what is required
to decide what course of action is to be selected to resolve the issue.

7.3.5 Requirement #5: Graceful Augmentation

Removal of a workflow system during the execution of an operation guided by it,
will always cause disruption. However, it is possible to meet this requirement as
closely as possible by reducing the amount of disruption if (a part of) the system
is temporarily removed. The current iTask system does not specifically address
this issue, because network infrastructure has been assumed to be available.
However, it has been shown that it is possible to run parts of workflows offline
[66], by transferring part of the workflow computation to the client system. A
last resort would be to use the system in a controlled environment such as a
command post while communicating tasks through other channels. In this case
it could still have advantages over written handbooks, because iTask workflow
specifications are active and dynamic.

128

Towards Dynamic Workflow Support for Crisis Management

7.4 Conclusions

In this paper we presented dynamic workflow modeling, as implemented in the
iTask system, as a candidate platform for developing applications to support
crisis management operations. Although this system has not been designed for
crisis management, we contend that, because of its unique features like: data
driven, parameterizable workflows and extensive support of dynamic behavior,
it has potential value in this domain. We have explored this potential through
a discussion of iTasks strengths and weaknesses in light of five key design re-
quirements for crisis response technology defined by Jul in [35]. The aim of this
discussion has been to identify challenges for further research, which most not-
ably are: collaboration and effective use of flexible workflows. By addressing
these challenges, we hope to develop the iTask system into a valuable tool for
building systems that flexibly support people under demanding circumstances.

129

8 Capturing the Netherlands Coast
Guard’s SAR Workflow with iTasks

The dynamic nature of crisis response operations and the rigidity of workflow mod-
elling languages are two things that do not go well together. A recent altern-
ative approach to workflow management systems that allows for more flexibility
is the iTask system. It uses an embedded functional language for the specific-
ation of workflow models that integrates control-flow with data-flow in dynamic
data-dependent workflow specifications. Although there is a variety of publications
about the iTask workflow definition language (WDL) and its implementation, its
applications have been limited to academic toy examples. To explore the iTasks
WDL for crisis response applications, we have developed an iTask specification of
the Search And Rescue (SAR) workflow of the Netherlands Coast Guard. In this
specification we capture the mix of standard procedures and creative improvisation
of which a SAR operation exists.

8.1 Introduction

Workflow management systems (WFMS) are not particularly well known for
their flexibility. Hence, the thought of using a WFMS to support the coordin-
ation of Coast Guard Search and Rescue (SAR) operations may seem to be
a doomed endeavour from its onset. Many contemporary WFMSs use a flow-
diagram graphical language interpreted by a workflow engine to orchestrate
or dictate the work to be done. The implicit assumption of such specification
languages is that all activities and the order in which they will be executed
can be specified in advance. That this assumption does not hold for SAR op-
erations at the Netherlands Coast Guard is best illustrated by the following
quote from the OPPLAN-SAR, their primary operational procedure document
(freely translated from Dutch):

“Because we know from experience that no two SAR incidents are
alike, it is impossible to define a fixed, extensive, always applicable
procedure”

Jansen et al. [30] claim that, by contrast to other WFMSs, the iTask system’s
approach to workflow specification is expressive enough to capture the dynamic

131

Chapter 8

nature of tasks required for crisis management. To date, this claim has not been
fully tested. Although the iTask system has been subject of extensive research
in the field of programming language design [61], no work exists that explores
its applicability outside the realm of academic toys.
The purpose of this study is to explore the strengths, weaknesses, and other
properties of the iTask workflow definition language (WDL) when it is used to
specify a real-world crisis response workflow. The Netherlands Coast Guard
manages small and large crises on a daily basis. Their SAR operations provide
an interesting case, because they consist of a mix of following standard pro-
cedures and ad-hoc crisis management. It is also a convenient case to study
because their procedures are well documented and all incidents are logged.

8.1.1 The iTask System

The iTask system (iTasks) is a workflow language embedded in the functional
programming language Clean (clean.cs.ru.nl). It enables the creation of dy-
namic workflow systems. In the iTask system a workflow consists of a combin-
ation of tasks to be performed by humans and/or automated processes. From
iTask specifications complete web-based workflow applications are generated.
The applications are based on open web-standards and can be accessed by
anyone who has access to Internet, including many mobile devices. iTasks is
a textual formalism (i.e., a programming language) and offers a much higher
degree of flexibility than graphical formalisms that are in use for specifying
workflow systems. The iTask system is built upon a few core concepts. The
main concept is that of a typed task. A task is a unit of work to be performed
by a worker or computer (or a combination of both) that produces a result of
a certain type. A task can be a single (black-box) step, or a composition of
other tasks. The result of one task can be used as the input for subsequent
tasks, and therefore these new tasks depend dynamically on this result. iTasks
allows sequential and parallel execution of tasks, with information automatic-
ally being transported between tasks. Intermediate results of tasks that are
executed in parallel can be used to decide whether the execution of other tasks
running in parallel should be stopped or altered. Result types are not limited
to simple data such as integers, records, etc., but can also be documents, or
even new tasks. Tasks can be explicitly allocated to persons, and dynamically
reallocated if necessary.
Two concepts especially contribute to the languages expressiveness. The first is
that tasks can be higher order. This means that the result of a task can be a new
task. For example, a task may use the output of one or several other tasks to
construct a new set of tasks and the way they must be executed: sequentially, in
parallel, or a combination of both. As a consequence, the workflow specification
cannot be completely determined beforehand, but is constructed iteratively
during execution. The second is that tasks can be parameterized by data

132

Capturing the Netherlands Coast Guard’s SAR Workflow with iTasks

types. This makes it possible to define generic tasks or task structures that
are independent of the specific result type of the task. This allows them to be
used in multiple contexts.
The iTask implementation is a research prototype, because its WDL is still
evolving. Development of the WDL focuses on the exploration of workflow
specification concepts for applications in dynamic domains, such as crisis man-
agement, command & control, and medical support systems. The prototype
status means that the core WDL concepts are available, and workflow spe-
cifications can be compiled to complete executable workflow support systems.
However, there is no large standard library as could be expected from a pro-
duction WFMS. Features without scientific interest are added by demand.

8.1.2 The Netherlands Coast Guard

The Netherlands Coast Guard is an independent civil organization with its
own responsibilities and competences. The Coast Guard functions as a cent-
ral reporting, information, and coordination centre in its role as the National
Maritime and Aeronautical Rescue Centre (Joint RCC). Its main area of oper-
ations is the North Sea. This is one of the busier shipping routes in the world,
populated with a crowded combination of commercial and private vessels. Re-
sources must be deployed at short notice when an accident or incident at sea
occurs. These resources consist of vessels, airplanes, helicopters, and rescue
team stations. Each has different sponsors, different lines of communication,
and different procedures, making the communication and coordination of crisis
response complex.
One of the main responsibilities of the Coast Guard is execution of the SAR
service. This service is responsible for searching for aircraft, ships, and oil
drilling platforms in distress within the North Sea and in Dutch coastal waters
and for rescuing their crews and passengers.
The Coast Guard currently uses a variety of communication systems (radio,
telephone, telex, etc.) and systems for information sharing, for information
retrieval (databases, documentation), and for information logging. Logged
information is used both for information sharing during operations and for
evaluation afterwards. The Coast Guard’s current systems offer only modest
workflow support in the form of simple action plans, digital procedure docu-
mentation, and predefined forms.

8.2 Literature Review

Several authors discuss the use of WFMSs to handle crisis response operations.
They all recognize that workflow systems have the potential to offer better
support than the use of printed document procedures only. They agree that

133

Chapter 8

adaptability is a key issue to be solved if these systems are to be really useful
for Crisis Response Operations.
Sell and Braun [71] defined a number of generic requirements that a WFMS
should fulfil in order to be useful for crisis response operations. According to
them, the WFMS should:

1. support the management of resources;

2. always depict the current state of deployment;

3. allow the adaptation of the workflow before and during execution;

4. support the delegation of measures;

5. support the execution of workflows.

Based on these requirements, Sell and Braun propose a workflow data model
that fulfils these requirements, but do not give an implementation of it. Jansen,
Lijnse, and Plasmeijer [30] claim that iTasks provides concepts that are power-
ful enough to fulfill these requirements. In this paper we focus on requirements
2 and 3.
Fahland and Woith [17] also focus on the use of WFMSs for crisis management.
They observe that routine processes, even if specifically designed for a situation,
should never be enacted blindly. Rather, actions and processes should adapt
their behaviour based on observations and available information. They propose
specifying an adaptive process as a set of scenarios using Petri nets. Their
operational model provides an adaptation operator that synthesizes and adapts
system behaviour at run-time, based on these scenarios.
Peukert, Lincourt, and Zimmermann [58] developed the Collaborative Task
Manager as a tool to model and execute workflows. This system enables mod-
elling the exchange and reuse of user-defined task structures. It uses an email-
based system for the distribution and delegation of tasks. It supports ad-hoc
deviations from pre-defined plans. Due to the tools tracking functionality, pre-
vious ad-hoc processes can be analyzed on the back-end system to give guidance
to the current process and to discover best practices.

8.3 Research Questions

Since the iTask system has not yet been applied in real-world applications, our
research goal is to address a question that extends beyond the specific Coast
Guard case. We wish to know if the iTask specification language can be used
to specify workflow support systems for real-world crisis response operations,
and if not, what is lacking.

134

Capturing the Netherlands Coast Guard’s SAR Workflow with iTasks

We contribute to the broader question by developing a specification for a case
that is both real-world and dynamic. Coordinating SAR operations provides
us with a reference case, enabling us to answer the following research questions:

• RQ1: What are the properties of the specification?
How is it structured and why? Which features of the iTask WDL are
used?

• RQ2: Is the iTask WDL expressive enough for this case?
Are there aspects that could not be specified using the WDLs primitives?
If so, is there a fundamental reason why not? Or can the WDL be
extended to include these aspects? Are there aspects that could only be
specified using the WDLs dynamic features?

The primary purpose of answering these questions is to better understand the
strengths and weaknesses of the iTask WDL as a method for capturing crisis
response workflows. The effectiveness of execution of these workflows and the
quality of the support systems generated from them is beyond the scope of this
paper. As a bonus, the specification also gives us an insight into which aspects
of the Coast Guards SAR work would benefit from further automation, and -
perhaps just as importantly - which aspects should be left to skilled operators.

8.4 Methodology

To answer our research questions, we have conducted a qualitative explorative
case study using document review complemented with observation and in-situ
interviews. This specification is primarily based on information found in the
following reviewed documents:

• The OPPLAN-SAR V7, which is the primary operational plan contain-
ing high-level procedures, contracts between involved authorities, other
agreements, and background information.

• Internal operational procedure documents. These contain more detailed
guidelines than described in the OPPLAN-SAR and can be considered as
its operational implementation.

• Configuration databases from VISION, the Coast Guards current logging
and incident management system. These databases provide insight into
what information is collected during incidents.

• The Netherlands Coast Guard public website (www.kustwacht.nl).

We searched these documents for fragments containing procedure descriptions
and compiled them into a single file. These fragments were then formalized
using the WDL of iTasks release 10.8.

135

Chapter 8

The documents are not followed blindly, but are used as guidelines. Well-
trained officers have their individual interpretations of the procedures. Hence,
we made four on-site visits to the command centre. The first visit was a
guided tour of the organization, and included an in-depth demonstration of
the communication and information systems currently in use. The other three
visits were devoted to following an operational team during the course of a shift
to observe the actual workflow of incident coordination and to interviewing the
duty and watch officers in-situ during quiet moments. These interviews focused
primarily on storytelling to give context to the documents.
Based on the increased understanding of the domain from these visits, another
pass over the documents was made, and the fragments were integrated into a
single specification.

8.5 Results

8.5.1 Properties of the Specification

Because of the size of the specification (±2700 LOC), and because it contains
proprietary information, it is impossible to cover it in full detail here. Instead,
we present an overview of the specification, explaining the key parts and their
relations, illustrated with examples taken from the specification. Details of the
iTasks WDL can be found in [33].

Overview

At first glance, the process of managing a SAR operation appears to be simple.
When a distress call is received, actions are taken immediately to collect more
information and to assess the situation. This may vary from a simple request
for medical advice to a full-scale disaster; in each case, the set of connected
events is known as an incident. When the situation requires, rescue vessels and
aircraft are dispatched to search for the originator of the distress call and to
rescue any crew or passengers. The incident is over when the vessel or people
have been located and rescued or when no reasonable hope of rescue exists. In
real incidents, managing a SAR operation is a complex, highly parallel process
consisting of many interdependent actions, communications, and decisions, all
based on incomplete and uncertain information.
The iTasks SAR workflow specification consists of two main parts. The first
part defines the tasks for responding to inbound communications. When a
Coast Guard officer answers the telephone or receives a radio call, he/she does
not know the topic of the conversation in advance. Any call can be related
to an ongoing incident, or it can initiate a new one. Therefore, responding to
inbound communication is specified separately from subsequent actions. The

136

Capturing the Netherlands Coast Guard’s SAR Workflow with iTasks

second part specifies the coordination of response actions once a new incident
has been initiated.
Incident coordination again splits into two parts: information management
and action coordination. The first part specifies the type of information that is
collected, stored, and viewed to assess the situation and make decisions. The
second part deals with the definition, planning, execution, and monitoring of
the actions taken.

Part 1: Inbound Communication

With respect to SAR, the Netherlands Coast Guard is primarily a reactive
organization. Although precautionary actions are taken, such as the strategic
positioning of rescue vessels during storms, the normal mode of operation is that
nothing is done until a distress call or other request for assistance is received.
Calls for help or other reports of potential incidents can come at any time
and through a variety of communication systems. Most incidents are initially
reported via the emergency VHF channel 16 or through a regular telephone call,
but incidents can also be triggered when a message from a variety of (semi-
automated) alarm systems is received. Using the internationally standardized
GMDSS (Global Maritime Distress and Safety System) equipment, ships may
broadcast emergency messages through a number of different channels. GMDSS
distress messages can be received on Digital Selective Calling (DSC) radio or via
INMARSAT satellite telephony. Additionally, incidents can also be reported
by email or reported through a data-feed from the dispatch centre of the police
and rescue services.
Depending on the communication system through which the inbound commu-
nication is initiated, different information is available. A message from an
EPIRB (an automated radio beacon) contains specific identification and po-
sition information, while no a-priori information is known for a voice call on
VHF Channel 16. To take this difference into account, we have specified a
specific response task for each type of communication system. Which a- priori
information is available is reflected in their signatures:

1 respondVHFChan16 :: Task (Maybe Incident)
2 respondPhoneCall :: (Maybe PhoneNumber) → Task (Maybe Incident)
3 respondINMARSATCall :: (Maybe INMARSATNumber) → Task (Maybe Incident)
4 respondDSCMessage :: DSCMessage → Task (Maybe Incident)
5 respondCS406MHz :: CS406MHzMessage → Task (Maybe Incident)
6 respondINMARSATC :: INMARSATCMessage → Task (Maybe Incident)
7 respondEmail :: EmailMessage → Task (Maybe Incident)

These tasks address the handling of one message or conversation. They define
the task of determining whether it is related to an ongoing incident, whether
a new incident should be created, or if it can be safely ignored (e.g., it is a
non-operational phone call). The Maybe annotations in the signature indicate

137

Chapter 8

that the creation of an incident is optional. Arrows denote computation. These
inbound response tasks are tailored to the main communication systems, but
information could also be received from unspecified sources via the public tele-
phone network. For example, suppose that the friend of a watch officer gets
into difficulties while sailing and calls the watch officer on his/her personal cell
phone. For such cases, there is also a task defining the ad-hoc creation of a
new incident:

1 createNewIncident :: Task Incident

Part 2: Incident Coordination

nce an incident has been reported via one of the inbound communication chan-
nels it is the responsibility of the duty officer to coordinate a response opera-
tion. This involves taking a mixture of actions that are prescribed by standard
procedures and ad-hoc actions guided by the duty officers continuous reassess-
ment of the situation. In the iTask specification we have modelled the task of
coordinating an incident as follows:

1 coordinateIncident :: Incident→ Task Incident
2 coordinateIncident incident
3 = (manageInformation incident-||-coordinateActions incident)
4 >>=postIncidentActions

This states that the task of coordinating an incident consists of two steps in
sequence (expressed by the >>= operator). In the first step, two tasks are ex-
ecuted in parallel: manageInformation and coordinateActions (combined using
the -||- operator). Then, when the operation has been completed, a task
postIncidentActions is executed. The manageInformation task states that the
duty officer makes sense of the situation by gathering together and assessing
the available information. At the same time, actions are taken by the duty and
watch officers either to collect more information, to distribute information to
others, or to instruct and command the rescue units. The aggregation of all
these actions is captured by the coordinateActions task. Everything that has
to be done after an incident, such as writing reports or evaluating the incident,
is captured by the postIncidentActions task.

Part 2a: Information Management Although information management is a
key task during SAR operations, its primary specification, the data model, is
outside the scope of a WDL. From a workflow perspective, the browsing, view-
ing, and editing of information about an incident can be viewed as a single
task. In the specification, we have defined this task only minimally for test-
ing purposes using iTasks built-in object database tasks. However, because
the data underlying the manageInformation task is accessed and modified by

138

Capturing the Netherlands Coast Guard’s SAR Workflow with iTasks

the coordinateActions part of the specification, an interface to the available
information is needed. This interface is specified as a collection of data types
that define incident-related data. For example, there is a type Incident that
represents the collection of all known information about an incident, and there
is a type Contact that contains information about a party involved in the in-
cident, such as a ship or an aircraft.
The definition of these types is given below:

1 :: Incident=
2 { incidentNo :: IncidentNo
3 , title :: U String
4 , summary :: U Note
5 , type :: U IncidentType
6 , phase :: U EmergencyPhase
7 , weather :: U WeatherInfo
8 , contacts :: [Contact]
9 , log :: [LogEntry]

10 , closed :: Bool
11 }

1 :: Contact=
2 { contactNo :: ContactNo
3 , type :: U ContactType
4 , name :: U String
5 , position :: U GeoPosition
6 , contactOn :: U ContactMedium
7 , isCoastGuard :: U Bool
8 , inDistress :: U Bool
9 , canHelp :: U Bool

10 , reportedIncident :: U Bool
11 , notes :: U Note
12 }

Because information is likely to be incomplete or uncertain, some data is
wrapped in a parameterized type U:

1 :: U a=Unknown | Known (a,Timestamp,Source) [(a,Timestamp,Source)]

This defines that values can be either unknown or known. For known values, the
source from which the information came and the time that it became known
are tracked. A list, expressed in code by [] brackets, of previous values is
maintained to log changes over time.

Part 2a: Action Coordination The crux of the specification is the definition of
the coordinateActions task. Based on interviews with officers and the reviewed
documents, we established that the specification of the coordination workflow
needs to comply with a set of constraining principles:

• The duty officer coordinates the operation, not the WFMS.

• Actions prescribed by standard procedures do not apply to every incident.

• The order in which actions are taken is not fixed, but subject to the duty
officer’s judgment.

• Ad-hoc actions defined during an operation are necessary to supplement
standard actions.

From these principles, we conclude that a rigid specification of predefined tasks
executed in a fixed order, as is common in workflow specifications, is not an

139

Chapter 8

option. We need a formalization that retains more flexibility. We achieved this
by exploiting the fact that the iTasks WDL is embedded in a pure functional
language. We capture tasks that are executed in this context by a special data
typeHSTask (Hierarchical State Task) and use type abstraction and higher order
functions to define an abstract recipe to compute concrete tasks from values of
this type.
The HSTask data type is defined as follows:

1 :: HSTask s=
2 { meta :: HSMeta
3 , activity :: HSActivity s
4 , refinement :: HSRefinement s
5 }

HSTasks specify a task in three parts. The meta part specifies meta-data that
summarizes the activity to make it possible to choose which activities to start,
the activity part defines how the task is to be completed, and the refinement
part defines how to refine a task into smaller sub-tasks. The HSTask type is
parameterized with the parameter s that defines the type of information that
is available to complete the task. For the tasks in the SAR specification s is
Incident. This means that all information about a specific incident is available
during the activity.

1 :: HSMeta=
2 { name :: String
3 , title :: String
4 , description :: Note
5 }

The meta-data is straightforward except for the distinction between name and
title. The name of the HSTask is a unique identifier that makes it possible to
keep track of tasks that should be executed only once during an incident. The
title defines a displayable label.

1 :: HSActivity s=
2 { interaction :: s → Task s
3 , procedures :: [DocumentName]
4 , relevance :: Maybe (s → Bool)
5 }

The HSActivity part of an HSTask defines how the task can be completed. For
most tasks this is simply a choice between marking the task completed or
cancelled. Other tasks embed their own small workflow, such as outbound-
CallAction (explained below). The procedures field allows the specification
of a set of procedure documents that contain instructions about the task in
natural language. This documentation is made available for quick reference
simultaneously with the interaction. The relevance field allows specification

140

Capturing the Netherlands Coast Guard’s SAR Workflow with iTasks

of a predicate that tests whether the task is still relevant, given the current
information. This is useful when the purpose of the task is to find out some
information, but that information has already become available through other
means. Based on this predicate, a warning message can be displayed when the
task is no longer relevant.

1 :: HSRefinement s=
2 { suggested :: Maybe (s → [HSTask s])
3 , alternative :: Maybe (s → [HSTask s])
4 , custom :: s → Task (HSTask s, HSTaskWhen)
5 }

The HSTasks are called hierarchical because each task can be refined into a
number of sub-tasks. Broadly defined tasks, like “ollect as much information
about the vessel as possible, from any source”, need to be further refined during
the incident. TheHSRefinementpart of an HSTask enables the specification of such
refinement. The suggested and alternative fields contain (optional) functions
that compute a set of predefined suggested and alternative HSTasks to choose
from. Suppose for example that an INMARSAT number of the distressed
vessel is known, then a suggested refinement could be “Search vessel info in
INMARSAT database” while an alternative refinement could be “earch vessel
info with Google”. To enable improvisation, the custom field specifies the
workflow for creating custom refinements. The result of this task is a pair
consisting of the refinement and an indication of when the task is to be executed.
The HSTaskWhen type has the following values:

1 :: HSTaskWhen=
2 HSAlreadyDone DateTime | HSNow | HSAfterTime Time | HSAtTime DateTime

Because we observed that urgent actions are often taken first and administrated
later, the HSAlreadyDone task may be used to add actions that have already been
completed.
In the specification, HSTask values are never constructed directly, but always via
wrapper functions. This makes the definition of concrete actions as concise as
possible. For example, consider the following definition for informing a medic
at military airfield “De Kooy”1:

1 informMedicMVKK :: HSTask Incident
2 informMedicMVKK=outboundCallAction "informMedicMVKK" "Medical service"
3 "Inform medic on duty at MVKK" (Just (QueryPhonebook "MVKK"))

TheoutboundCallAction task defines the workflow for all outgoing telephone calls.
Although many telephone calls are made during an incident, it is possible to
define a generic workflow that applies to all calls. This ensures that all calls are

1Translated only in the paper. In the specification, we use the Dutch descriptions from
the procedure documents.

141

Chapter 8

logged, and that all parties involved in the incident are tracked. To illustrate
how this is specified in the iTask WDL we include its definition below:

1 outboundCallAction :: String String String (Maybe ContactHint) → HSTask Incident
2 outboundCallAction name title description mbHint
3 = { meta= meta name title description, activity=customActivity interaction
4 , refinement=basicRefinements }
5 where
6 interaction incident
7 =defineCaller mbHint incident>>=makeCall incident
8 makeCall incident caller
9 =connectCall caller>>=select (gotAnswer incident caller)

10 (gotNoAnswer incident caller)
11
12 gotAnswer incident caller
13 = addLogMessage ("Called with " + visualize caller) incident
14 >>=linkContactToIncident caller
15 >>|requestConfirmation "Add information"
16 "Do you want to add new information to the incident?"
17 >>=conditional editIncidentInformation incident
18
19 gotNoAnswer incident caller
20 = addLogMessage ("Tried to call " + visualize caller) incident
21 >>|requestConfirmation "Try again" "Do you want to try again?"
22 >>=conditional (rescheduleCall caller) incident

The above example shows that detailed concrete tasks can be specified with
a custom HSActivity definition. At the same time, we can define flexible, less-
detailed tasks. This is illustrated by the deployOFFSARHeli task definition below:

1 deployOFFSARHeli :: HSTask Incident
2 deployOFFSARHeli=multiProceduralAction
3 "deployOFFSARHeli" "Deploy OFFSAR Heli" "Deployment of OFFSAR helicopter"
4 ["deploy-units.txt","deploy-offsar.txt"] suggested noAlternative
5 where
6 suggested incident=filter (completed incident)
7 [informDCOFFSAR, informHangarOFFSAR, alertCrewOFFSAR
8 , requestBackupMedic, informMedicMVKK, informOperationsMVKK
9 , requestNOTAM, sendNOTAMRequest, requestCHCNetherlands

10 , informRACAlkmaar, informCSUSecurity, informKMAR, revokeNOTAM
11]

For this task, it is up to the duty officer to decide which of the suggested
refinement actions are actually taken. In this case, no alternative actions are
defined, but the suggested tasks and available procedure documentation provide
support, while retaining flexibility.

142

Capturing the Netherlands Coast Guard’s SAR Workflow with iTasks

8.5.2 Limitations of the Specification

Not all aspects of the Coast Guards SAR operations are included in the iTask
specification. The following limitations can be identified from the SAR applic-
ation:

• Resource allocation, i.e., the assignment of tasks to workers, is not spe-
cified. The workflow is specified without explicit task assignments be-
cause the duty and watch officer work as a team. Although they have
different roles, each officer can pick up a task for an incident. Hence,
work is divided on an ad-hoc basis. Assignment of tasks to teams instead
of individuals is not supported in the iTask WDL.

• Planning and scheduling information for future tasks is only implicitly
specified. In particular, the iTask WDL only allows the specification of
deadlines for tasks, not specific start times.

• The information management task is defined minimally. To make the
viewing and editing of all incident-related information manageable, the
iTask system should be integrated with a full-fledged information system.

• The specification only contains tasks mentioned in the documents we
reviewed. From our interviews and observations, we suspect that there is
more structure than is currently documented.

8.6 Discussion

8.6.1 Properties of the Specification

With the results of the case study to hand, the first thing we should do is to
reflect on what exactly has been specified. This is expressed in the first research
question: What are the properties of the specification?

How is it structured and why?

The first thing that is interesting about the structure of the specification is that
it is not a simple linear workflow with a clear beginning and end. Rather, it is
a combination of two shorter workflows for dealing with new information and
for coordinating the incident. The coordination workflow has no pre-defined
end, because operations can be aborted at any time. It defines an ongoing
(re)assessment of available information and actions that follow from that.
In this respect it is similar to the OODA [8] view of Command and Control
operations. However, we do not specify the task as an explicit loop; in effect,
Observe, Orient, Decide, and Act all happen concurrently.

143

Chapter 8

The second interesting aspect is that action coordination is driven completely
by human initiative. Actions are suggested but never started automatically.
Specifying the workflow as a dependent set of suggestion functions is required
to capture the need to adjust the workflow to the specific situation during
the incident. Due to the loose organization of tasks, it is impossible to pass
information from one task to another, as it is never certain whether a specific
task will be executed. Therefore, these tasks have to retrieve the data they
need from and store the data they produce into a centrally shared container.
A final point is that, although the workflow to coordinate an incident is or-
ganized purely by task suggestions, the workflow of tasks at a more detailed
level can be specified as a straightforward sequential/parallel composition of
tasks. This allows for a mix of detailed and loosely defined tasks which never
overspecify the task, while minimizing underspecification.

Which features of the iTasks WDL are used?

We observe that all iTask core combinators are used to define the inbound com-
munication workflows, the incident response actions, and the generic behaviour
of HSTasks. From the basic task primitives, tasks are used mostly for user in-
teraction and data storage. Higher order tasks are used to specify ad-hoc tasks
during an incident. The ability of iTask to treat tasks as data and wrap them
together with meta-data in single values is used in selecting the suggested and
alternative tasks.

8.6.2 Expressiveness of the iTask WDL

The Coast Guard workflow specification reveals intrinsic properties of the iTask
WDL. Those aspects that could not be specified show its boundaries, while the
use of specific features justifies their inclusion in the language. These topics are
covered by the second research question: Is the iTask WDL expressive enough
for this case?

Are there aspects that could not be specified using the WDL’s primitives?

There are a few aspects of the SAR workflow that could not be specified with the
WDL. Resource allocation is not modelled because the WDL only supports the
assignment of tasks to individual users, not to multiple users at once. Because
the specific assignment of tasks to individuals does not reflect the work on
tasks as a team, resource allocation has been omitted from the specification
altogether. Planning of future tasks has been included in the specification only
implicitly in the form of a line of text added to a task description stating at
what time a task should be done. The iTask WDL is only capable of specifying
deadlines on tasks, not start times. Hence, the support system generated from

144

Capturing the Netherlands Coast Guard’s SAR Workflow with iTasks

the specification does not have the possibility of drawing the users attention to
the task at the scheduled start time.
Another aspect that cannot be defined using the WDL is the structure of the
database underlying the manageInformation tasks. Technically, this is outside the
scope of workflow definition. However, because shared information plays a big
role in this case, it would be desirable to have database integration that goes
beyond explicit query and update steps in the workflow.

If so, is there a fundamental reason why not? Or can the WDL be improved
to include these?

No fundamental issue would preclude extending the iTask WDL to remove
the first pair of limitations, i.e., task assignment to teams and scheduled start
times. The only reason why these aspects have not been defined is the im-
maturity of the language. As the language evolves, we expect that each new
case study will require some API extension. By contrast, database integration
is a fundamental issue. This would make the language a hybrid workflow and
information modelling language. However, methods exist for mapping trans-
parently between Clean and databases [45] which could underlie such a hybrid
language.

Are there aspects that could only be specified using the WDL’s dynamic
features?

It is easy to focus on the limitations of the language because they are clearly
revealed by the case study. But, it is just as interesting to reflect on aspects
that could be expressed. What this case study shows is that not all tasks can be
known in advance, and that the order in which tasks are executed is not fixed.
This can only be expressed by a language that determines tasks during execu-
tion. A formalism that is only capable of choice between fixed tasks quickly
becomes unmanageable under these conditions as n tasks can be executed in
n! orderings. Another property of the work of the Coast Guard is that ad-hoc
activities that are not defined in a procedure, but based on experience, common
sense, and creative problem solving, are a normal part of the work. It follows
that coming up with new tasks is part of the normal workflow. Higher-order
task definition are therefore a necessary language feature.

8.7 Conclusions & Future Work

In this paper, we have explored the use of iTasks to capture crisis response
workflow by means of a case study based on the Netherlands Coast Guards
Search And Rescue operations. From this case, we found that, to attain the

145

Chapter 8

required flexibility, the workflow needs to be specified as a collection of sug-
gested and alternative actions based on current information, rather than as a
statically pre-determined flow. The workflow is highly parallel, with most tasks
depending on or contributing to a shared operational picture. Furthermore, we
found that improvisation and performing ad-hoc actions are an essential part
of the regular SAR workflow.
We concluded that the iTask WDL is expressive enough to capture the loose
and parallel structure of tasks and, by using higher-order tasks, the definition
of ad-hoc actions. We have captured this structure in a generic hierarchical
model, which is reusable for other coordination tasks with improvisation as-
pects. Nonetheless, the emphasis on a shared operational picture around which
the coordination of SAR revolves reveals an opportunity for future work on ex-
tending the iTask WDL. The current version of the WDL is designed to specify
tasks and the data they use, not to specify information systems. We believe
it would be possible to integrate the workflow definition language with a data-
base modelling language using methods from [45]. This would enable a com-
plete executable SAR support system to be specified using a single specification
language.

146

9 Incidone: A Task-Oriented
Incident Coordination Tool

Coordinating rescue operations for incidents at sea can be a complex task. In this
paper we present an ongoing project that aims to develop an incident coordination
tool to support it. This tool, Incidone, is based on the specification outlined by
Lijnse et al in “Capturing the Netherlands Coast Guard SAR Workflow with iTasks”
and is therefore modeled after, but not necessarily limited to, the workflow of the
Netherlands Coast Guard. The unique feature of Incidone is that it is the first tool
of its kind developed using the Task-Oriented Programming paradigm. Therefore,
we present the tool both from the perspective of its intended end-users as well as
from the perspective of a software developer. The primary goal of the Incidone
project is to provide an example of this method to developers of similar crisis
management applications.

9.1 Introduction

The sea can be an unpleasant place to be. When surprised by bad weather, or
equipment failure, the sea can quickly turn into a hostile environment. Luck-
ily, coast guards around the world provide assistance to those in need. They
need to resolve incidents safely and in a timely manner, constraint by weather
conditions and limited resources.
Designing and implementing software tools to support this task is a complex
challenge. In their design, the conflicting requirements of flexibility to deal
with unique incidents need to be weighted against the automation of simple,
but time consuming, tasks. To explore the use of an experimental method
of specifying workflow support systems, Lijnse et al defined a specification of
the search and rescue tasks of the Netherlands Coast Guard [42]. This work
provided insight in the capabilities and limitation of the specification language
and tooling, but had little practical value because the specification was defined
in an experimental language with a limited implementation. To make it possible
to put the results of this case study in practice, and thereby making its potential
added value testable, an improved specification needs to be developed together
with an improved version of the specification language and its tooling. This
motivated the development of the Incidone tool.

147

Chapter 9

Figure 9.1: Keeping watch: Tracking incidents, contacts, and responding to
calls

Although the development of an effective incident coordination tool is a re-
spectable goal in itself, it is not our primary motivation. The primary goal of
the Incidone project is to explore the use of an experimental software devel-
opment paradigm called Task-Oriented Programming (TOP) for this type of
applications. It serves as a test case for the iTask System [32], the framework
that facilitates this type of development, and provides an example for software
developers of similar tools.
The remainder of this paper is structured as follows: In the next section we
give an overview of the tool from the perspective of its intended end-users. We
then focus on the software aspect by illustrating parts of its source code. We
end the paper with notes on the status of the project followed by some overall
conclusions.

9.2 A Watch Officer’s View of Incidone

The intended users of the Incidone tool are Coast Guard watch officers in a
centralized command center. As their job title implies, the primary task of
these people is to keep watch. That is, to proactively monitor and respond
to incidents when they occur. We operationalize this task by providing three

148

Incidone: A Task-Oriented Incident Coordination Tool

initial overviews with the necessary information, arranged in a set of tabs as
illustrated in Figure 9.1. These overviews are:

Calls & Messages: A watch officer must respond to distress calls, requests
for medical assistance or other requests for help of any kind. Calls can come in
by radio, or (satellite) telephone. Additionally messages may come in, such as
DSC radio messages, Telex, or even e-mails. Messages may come from people or
from automated alert systems like emergency transponders. The tool provides
support for logging a call or message, to associate it with an incident, and to
process it, tailored to the different types of communication media.

Incidents: During incidents information about the situation and what is being
done to resolve it is collected. This overview provides a watch officer with
information about incidents that are currently going on and with an entry
point for zooming in on a specific incident.

Contacts: Because the Incidone tool is targeted at use in a centralized com-
mand center, all knowledge watch officers have of the area they are watching
comes from contacts outside, or from automated systems like AIS (Automatic
Identification System). To assist in maintaining a proper situational picture
of the outside world, the tool provides support for collecting and sharing the
whereabouts, status and background information of contacts. Contacts can
either be persistent contacts like patrol vessels, or incidental ones such as a
ship that broadcasted a distress call.

9.2.1 Responding to Calls and Messages

When a call comes in, the first two questions a watch officer has to answer
are “who is calling?” and “what is this call about?” To make it easier to
answer these questions the tool provides an interface (see Figure 9.2.) that
offers a list of known contacts to choose from, in case the caller has called
before, and a form to collect a name and contact information for first-time
callers. Simultaneously it provides a list of current incidents to immediately
link the call to, and provides a form to create a new incident record. Because it
is impossible to anticipate what information a call may yield within its limited
timeframe, the tool also supports freeform note taking for later processing.
Incoming messages are not bound to the same limited timeframe as calls, but
the same questions apply: “who is the message from?” and “what is it about?”
Depending on the type of message, different information may be present in the
message to answer these questions. Therefore the tool provides a customized
interface for each type of message for either linking it to an ongoing incident
or creating a new incident record, as well as to identify its sender.

149

Chapter 9

Figure 9.2: Responding to calls

9.2.2 Contribution to Ongoing Incidents

From the overview of incidents, which provides some general awareness, watch
officers can “open” incidents to zoom in on a specific incident. This opens
a new tab in which all information relevant to an incident is collected. The
information for an incident is divided in six overviews. A summary of the
situation, an overview of plans to resolve the incident and their progress, an
overview of all contacts involved in this incident, a map on which all information
with a geospatial aspect are plotted, an overview of the weather at the scene
of the incident, and finally, a chronological log.
The most important overview for resolving incidents in a timely manner is the
“Plans” overview. In Incidone, plans are hierarchical to-do lists that can be
used to coordinate actions taken to resolve incidents. These to-do lists are not
static lists, but are defined and refined as the incident unfolds by a coordinating
watch officer. To support watch officers in this task, plans contain refinement
functions that compute suggested sub-plans from the current available inform-
ation about an incident combined with models of standard procedures. These
suggestions can then be added to the plan in a single click. When new inform-
ation is available, the suggestions are automatically recomputed. Suggestions
are fully programmable. This means that any method for determining sugges-

150

Incidone: A Task-Oriented Incident Coordination Tool

ted actions can be plugged into the framework. Whether it is a simple business
rule, or an integration with a third party system. Additionally, predefined sub-
plans can contain optimized to-do items that embed a user-interface specifically
designed for them. This makes it possible to optimize the workflow for common
tasks as preparation for future incidents.

9.2.3 Tracking Contacts

Being confined to the limited viewpoint of a command center means that no
direct information about the outside world is available and effort must be made
to get a clear situational picture. The Incidone tool enables collection of in-
formation about “contacts” for two reasons. The first is to enable sharing
information between watch officers such that the limited time windows of radio
or phone contact are not wasted on redundant inquiry. The second reason why
information about contacts is tracked, is to have an accurate representation of
an incident available from which the plans can compute suggested actions.
The tool makes no distinction between contacts that belong to the own or-
ganization, such as rescue vessels or patrol airplanes, and contacts that are in
need of help. Needing help, or being available for deployment are tracked as
attributes which can be assigned to any contact. This makes it possible to deal
with any situation, even situations in which a unit deployed for a rescue gets
in trouble itself and gets help from some vessel that happens to be around.

9.3 A Programmer’s View of Incidone

The previous section describes the Incidone tool from the perspective of its
intended end-users. But this group of users is not the tool’s primary target
audience. The source code of the tool is actually more interesting than its
executable form because it is the first realistic crisis management application
developed using the Task-Oriented Programming paradigm. It is intended as
example and inspiration for programmers aspiring to develop similar tools.
Incidone is written in the functional programming language Clean [69] using the
iTasks framework [32] that facilitates programming in a Task-Oriented style.
This means that programs are defined by functions that create tasks, compose
tasks from other tasks, or modify tasks. Tasks are persistent units of work
that, when executed, produce a result. Tasks can be simple basic tasks such
as viewing a piece of text, filling out a form, querying a database or calling a
third-party web-service. But tasks can also be complex dynamic compositions
of tasks and functions where results of completed tasks are used to compute
new compositions at runtime. In fact, a complete program is “just” a task.
Task results are statically typed, which ensures that compositions are only
possible when results used as parameters of other tasks “match”.

151

Chapter 9

TOP programs emphasize the task that a piece of software is intended to sup-
port, and abstract from implementation details. Hence, TOP programs are
concise yet accurate models of how to accomplish tasks an organization has
prepared for. They provide an executable, interactive alternative to natural
language plans and procedure documents.

9.3.1 A Short Impression of iTasks Code

In this short paper it is impossible to present much of the code that defines
the Incidone tool. However, it is equally impossible to get an impression of a
programming language without seeing code written in it. Therefore we will try
to give a short impression by walking through two small fragments taken from
Incidone’s source.
The first fragment is a common task that anyone who has programmed a multi-
user system will likely have written in his or her language of choice. The
doAuthenticated function: This function ensures that only authenticated users
can access the application. It is defined as follows:

1 doAuthenticated :: (Task a) → Task a | iTask a
2 doAuthenticated task
3 =enterCredentials>>=verifyCredentials>>=executeTask task
4 where
5 enterCredentials :: Task Credentials
6 enterCredentials
7 =enterInformation ("Log in","Please enter your credentials") []
8
9 verifyCredentials :: Credentials→ Task (Maybe User)

10 verifyCredentials {Credentials|username,password}
11 =authenticateUser username password
12
13 executeTask :: (Task a) (Maybe User) → Task a | iTask a
14 executeTask task (Just user) =workAs user task
15 executeTask task Nothing =throw "Log in failed"

The doAuthenticated function is a function that takes any task of unspecified
result type a and yields a task of the same type. Although a is a further
unspecified type variable, the result type of doAuthenticated is guaranteed
to be the same as that of its argument. The task being constructed in this
function consists of three straightforward steps composed sequentially with the
>>= operator. First a form for entering credentials needs to be filled out. This
is specified by the local task definition enterCredentials in thewhere clause. This
task produces a record structure with a name and password that are verified
in verifyCredentials by the predefined task authenticateUser. The result of this
task is pattern matched in the third step, the executeTask function. If the
credentials are valid, and a Just user value is given, the final step consists of

152

Incidone: A Task-Oriented Incident Coordination Tool

executing the task that was passed as parameter with the identity of the user.
If authentication has failed, and Nothing is given, an exception is thrown.
This short example illustrates the Task-Oriented style of programming used to
create the Incidone tool. It shows how programs are written through compos-
ition of tasks and abstraction to parameterized generic task functions.

9.3.2 Flexibility through Active Plans

The code we have shown thus far, although concise and focused, is still rather
static in nature. It defines a task following a predefined structure. To support
the type of Coast Guard operations for which the tool is designed we need
to encode operational knowledge in the application. We could try to model
standard operating procedures and contingency plans using the operators on
tasks seen in the doAuthenticated function, but this would give us a rigid tool
with little room to deal with incidents not foreseen by our plans. Instead well
leverage the property of our framework that tasks are first-class citizens that
we can use as building blocks.
Instead of directly defining monolithic task specifications to coordinate incid-
ents, we define small self-contained tasks that are wrapped into data structures
of type ActivePlan. These structures (formerly known as HSTask [42]) con-
struct a loosely coupled framework in which tasks can be suggested based on
available information but in which the final plan is composed by the watch of-
ficers. This way, straightforward tasks can be automated without forcing watch
officers into a rigid workflow.
Active Plans are represented by the following data type:

1 :: ActivePlan context=
2 { title :: String
3 , description :: Maybe Note
4 , planId :: Maybe PlanId
5 , completeWith :: Maybe (CompleteTask context)
6 , refineWith :: RefinementTasks context
7 }
8 :: CompleteTask context
9 :== (Shared context) → Task Bool

10 :: RefinementTask context
11 :== [PlanId] [PlanId] context→ Task [ActivePlan context]
12 :: RefinementTasks context=
13 { suggested :: Maybe (RefinementTask context)
14 , alternative :: Maybe (RefinementTask context)
15 , custom :: Maybe (context→ Task (ActivePlan context))
16 }

Plans are parameterized with the type variable context, which is a shared con-
text. In the Incidone tool this is instantiated with the Incident type for data

153

Chapter 9

Figure 9.3: Working on incidents

structures containing all information relevant to an incident. The first three
fields in the ActivePlan structure are basic meta-data. What makes this struc-
ture interesting are the completeWith and refineWith fields. The completeWith field
wraps the task used to complete this plan. It is an optional (Maybe) field. If
it is not defined, a default task is used to simply mark the plan as completed
or canceled. The refineWith field contains a sub-structure with three tasks to
refine this plan. The first two are used to determine suggested, or alternative
predefined sub-plans. The third allows custom sub-plans to be defined. Each of
these tasks is parameterized with the shared context as well as lists containing
which plans are selected and/or completed.
Because the iTasks framework can only execute Task values, plans are put in
motion by the executePlan function. This function interprets plans and creates
the progress tracking, and suggestion tasks as shown in Figure 9.3.

9.4 Status Quo and Future Work

At the time of writing, a basic working version of the tool is available (from
which the screenshots in Figures 9.1 to 9.3 have been taken). The code il-
lustrated in this paper has been taken verbatim from the source code, but

154

Incidone: A Task-Oriented Incident Coordination Tool

may still change as the tool evolves. The overall structure and framework are
completed, but there still are many “rough edges”. It cannot yet handle real-
istically large amounts of data, because searching and filtering tasks are not
yet available and data persistence is not efficiently implemented. Additionally
the user interface needs polishing to make better use of screen real estate and
prevent unnecessary clicking or scrolling.
To effectively serve as an example, we also need to compile a realistic collection
of demonstration content. This includes a database of predefined contacts,
predefined plans, and a database with fictional contacts and incidents.

9.5 Conclusion

In this paper we have introduced a project in which an incident coordination
tool for coast guard operations is developed. The distinguishing feature of this
tool is that it is developed using the Task-Oriented Programming paradigm.
We have presented the current capabilities of the tool, and provided an im-
pression of its code. When completed, we intend to publish it with full source
code as example of the paradigm for developers of similar crisis management
applications.

155

Bibliography

[1] W. van der Aalst, A. ter Hofstede, B. Kiepuszewski, and A. Barros. Work-
flow patterns. Technical Report FIT-TR-2002-02, Queensland University
of Technology, 2002. Cited on pages 40 and 84.

[2] A. Alimarine. Generic Functional Programming - Conceptual Design, Im-
plementation and Applications. PhD thesis, Radboud University Nijme-
gen, 2005. ISBN 3-540-67658-9. Cited on page 71.

[3] A. Alimarine and R. Plasmeijer. A generic programming extension for
Clean. In T. Arts and M. Mohnen, editors, Selected Papers of the
13th International Workshop on the Implementation of Functional Lan-
guages, IFL ’01, Stockholm, Sweden, volume 2312 of LNCS, pages 168–
186. Springer-Verlag, 2002. Cited on page 30.

[4] A. Alimarine and S. Smetsers. Optimizing Generic Functions. In D. Kozen,
editor, The 7th International Conference, Mathematics of Program Con-
struction, volume 3125 of LNCS, pages 16–31. Springer Verlag, Jul 2004.
Cited on page 106.

[5] G. Bakema, J. Zwart, and H. van der Lek. Fully Communication Oriented
Information Modelling. FCO-IM Consultancy, 2002. Cited on page 118.

[6] B. Bingert and A. Höckersten. Student paper: Haskelldb improved. In
Proceedings of 2004 ACM SIGPLAN workshop on Haskell, pages 108–115.
ACM Press, 2004. Cited on page 108.

[7] A. Bohannon, B. C. Pierce, and J. A. Vaughan. Relational lenses: a
language for updatable views. In PODS ’06: Proceedings of the twenty-fifth
ACM SIGMOD-SIGACT-SIGART symposium on Principles of database
systems, pages 338–347, New York, NY, USA, 2006. ACM. Cited on
page 47.

[8] J. R. Boyd. The essence of winning and losing, 1996. Unpublished lecture
notes. Cited on page 143.

157

[9] P. P.-S. Chen. The entity-relationship model—toward a unified view of
data. ACM Trans. Database Syst., 1(1):9–36, 1976. Cited on pages 92
and 94.

[10] E. Cooper, S. Lindley, P. Wadler, and J. Yallop. Links: web program-
ming without tiers. In Proceedings of the 5th International Symposium on
Formal Methods for Components and Objects, FMCO ’06, volume 4709,
CWI, Amsterdam, The Netherlands, 7-10, Nov. 2006. Springer-Verlag.
Cited on page 84.

[11] E. Cooper, S. Lindley, P. Wadler, and J. Yallop. An idiom’s
guide to formlets. Technical report, The University of Edin-
burgh, UK, 2007. http://groups.inf.ed.ac.uk/links/papers-
/formlets-draft2007.pdf. Cited on page 84.

[12] B. Crandall, G. Klein, and R. R. Hoffman. Working Minds: A prac-
titioner’s guide to cognitive task analysis. MIT Press, 2006. Cited on
page 84.

[13] Django framework. http://www.djangoproject.com/. Cited on
page 36.

[14] M. Elsman and K. Friis Larsen. Typing XHTML web applications in
ML. In Proceedings of the 6th International Symposium on the Practical
Aspects of Declarative Programming, PADL ’04, volume 3057 of Lecture
Notes in Computer Science, pages 224–238. Dallas, TX, USA, Springer-
Verlag, June 2004. Cited on page 83.

[15] M. Elsman and N. Hallenberg. Web programming with SMLserver. In
Proceedings of the 5th International Symposium on the Practical Aspects
of Declarative Programming, PADL ’03. New Orleans, LA, USA, Springer-
Verlag, Jan. 2003. Cited on page 83.

[16] ExtJS framework. http://www.extjs.com/. Cited on page 36.

[17] D. Fahland and H. Woith. Towards process models for disaster response.
In M. Leoni, S. Dustdar, and A. Hofstede, editors, Proceedings of the
First International Workshop on Process Management for Higly Dynamic
and Pervasive Scenarios (PM4HDPS), co-located with 6th International
Conference on Business Process Managemen (BPM’08)., 2008. Cited on
pages 121, 124, and 134.

[18] M. Fowler and J. Highsmith. The agile manifesto. Software Development,
9(August):2835, 2001. Cited on page 109.

158

[19] M. Fussel. Foundations of object-relational mapping.
http://www.chimu.com/publications/objectRelational/index.html, 1997.
Whitepaper. Cited on page 107.

[20] J. van Groningen, T. van Noort, P. Achten, P. Koopman, and R. Plas-
meijer. Exchanging sources between Clean and Haskell - A double-edged
front end for the Clean compiler. In J. Gibbons, editor, Proceedings of
the Haskell Symposium, Haskell ’10, Baltimore, MD, USA, pages 49–60.
ACM Press, 2010. Cited on page 57.

[21] O. M. Group. The semantics of business vocabulary and business rules,
2009. http://www.omg.org/spec/SBVR/1.0/. Cited on page 118.

[22] T. Halpin. Information modeling and relational database: from conceptual
analysis to logical design. Morgan Kaufmann Publishers Inc, 2001. Cited
on page 92.

[23] T. Halpin. Orm 2. In R. Meersman, Z. Tari, and P. Herrero, editors,
On the Move to Meaningful Internet Systems 2005: OTM 2005 Work-
shops, volume 3762 of Lecture Notes in Computer Science, pages 676–687.
Springer-Verlag, 2005. Cited on pages 109 and 118.

[24] M. Hanus. High-level server side web scripting in Curry. In Proceedings of
the 3rd International Symposium on the Practical Aspects of Declarative
Programming, PADL ’01, pages 76–92. Springer-Verlag, 2001. Cited on
pages 36 and 83.

[25] C. Heath. The constellation query language. In R. Meersman, P. Herrero,
and T. Dillon, editors, On The Move To Meaningful Internet Systems:
OTM 2009 Workshops, volume 5872 of Lecture Notes in Computer Science,
pages 682–691. Springer-Verlag, 2009. Cited on page 118.

[26] Z. Hemel, R. Verhaaf, and E. Visser. WebWorkFlow: an object-oriented
workflow modeling language for web applications. In K. Czarnecki, I. Ober,
J. Bruel, A. Uhl, and M. Völter, editors, Proceedings of the 11th Interna-
tional Conference on Model Driven Engineering Languages and Systems,
MoDELS ’08, volume 5301 of Lecture Notes in Computer Science, pages
113–127. Springer-Verlag, 2008. Cited on page 84.

[27] R. Hinze. A new approach to generic functional programming. In T. Reps,
editor, Proceedings of the 27th International Symposium on Principles of
Programming Languages, POPL ’00, Boston, MA, USA, pages 119–132.
ACM Press, 2000. Cited on page 71.

[28] M. Ingmarsson, H. Eriksson, and N. Hallberg. Exploring development of
service-oriented C2 systems for emergency response. In J. Landgren and

159

S. Jul, editors, Proceedings of the 6th International ISCRAM Conference,
Gothenburg, Sweden, 2009. ISCRAM Association. Cited on page 126.

[29] A. Jacobson. Haskell application server, 2006. http://happs.org/.
Cited on page 36.

[30] J. Jansen, B. Lijnse, and R. Plasmeijer. Towards dynamic workflows for
crisis management. In S. French, B. Tomaszewski, and C. Zobel, editors,
Proceedings of the 7th International Conference on Information Systems
for Crisis Response and Management, ISCRAM ’10, Seattle, WA, USA,
May 2010. Cited on pages 10, 82, 83, 131, and 134.

[31] J. Jansen, B. Lijnse, R. Plasmeijer, and T. Grant. Web based dynamic
workflow systems for C2 of military operations. In Revised Selected Papers
of the 15th International Command and Control Research and Technology
Symposium, ICCRTS ’10, Santa Monica, CA, USA, June 2010. Cited on
page 11.

[32] J. Jansen, R. Plasmeijer, P. Koopman, and P. Achten. Embedding a
web-based workflow management system in a functional language. In
C. Brabrand and P. Moreau, editors, Proceedings 10th Workshop on Lan-
guage Descriptions, Tools and Applications, LDTA ’10, pages 79–93, Pa-
phos, Cyprus, March 27-28 2010. Cited on pages 110, 148, and 151.

[33] J. Jansen, R. Plasmeijer, P. Koopman, and P. Achten. Embedding a
web-based workflow management system in a functional language. In
C. Brabrand and P. Moreau, editors, Proceedings 10th Workshop on Lan-
guage Descriptions, Tools and Applications, LDTA ’10, pages 79–93, Pa-
phos, Cyprus, March 27-28 2010. Cited on page 136.

[34] C. Janssen, A. Weisbecker, and J. Ziegler. Generating user interfaces from
data models and dialogue net specifications. In CHI ’93: Proceedings of the
INTERACT ’93 and CHI ’93 conference on Human factors in computing
systems, pages 418–423, New York, NY, USA, 1993. ACM. Cited on
page 107.

[35] S. Jul. Who’s really on first? a domain-level user, task and context analysis
for response technology. In B. v. d. Walle, P. Burghardt, and C. Nieuwen-
huis, editors, Proceedings of the 5th International ISCRAM Conference,
Delft, the Netherlands, 2007. Cited on pages 126 and 129.

[36] P. Koopman, R. Plasmeijer, and P. Achten. An Effective Methodology
for Defining Consistent Semantics of Complex Systems, volume 6299 of
LNCS, pages 224–267. Springer-Verlag, Komarno, Slovakia, 25-130, May
2009. Cited on page 63.

160

[37] P. Koopman, R. Plasmeijer, and P. Achten. An executable and testable
semantics for iTasks. In S.-B. Scholz and O. Chitil, editors, Revised Se-
lected Papers of the International Symposium on the Implementation and
Application of Functional Languages, IFL ’08, Hertfordshire, UK, volume
5836 of LNCS, pages 212–232, Hatfield, UK, 2011. Springer. Cited on
page 18.

[38] G. Krasner and S. Pope. A cookbook for using the model-view-controller
user interface paradigm in Smalltalk-80. Journal of Object-Oriented Pro-
gramming, 1(3):26–49, Aug. 1988. Cited on page 47.

[39] D. Leijen and E. Meijer. Domain specific embedded compilers. In 2nd
USENIX Conference on Domain Specific Languages (DSL’99), pages 109–
122, Austin, Texas, Oct 1999. Also appeared in ACM SIGPLAN Notices
35, 1, (Jan. 2000). Cited on page 108.

[40] B. Lijnse. Between types and tables: Generic mapping between relational
databases and data structures in clean. Master’s thesis, University of
Nijmegen, Jul 2008. Number 590. Cited on pages 96, 97, and 99.

[41] B. Lijnse. Tussen types en tabellen... Optimize: Onafhankelijk vaktijd-
schrift voor de Oracle-professional, 13(4):20–25, Sept. 2010. Cited on
page 9.

[42] B. Lijnse, J. Jansen, R. Nanne, and R. Plasmeijer. Capturing the nether-
lands coast guard’s sar workflow with itasks. In D. Mendonca and J. Dug-
dale, editors, Proceedings of the 8th International Conference on Informa-
tion Systems for Crisis Response and Management, ISCRAM ’11, Lisbon,
Portugal, May 2011. ISCRAM Association. Cited on pages 4, 10, 82, 83,
147, and 153.

[43] B. Lijnse, J. Jansen, and R. Plasmeijer. Incidone: A task-oriented incident
coordination tool. In L. Rothkrantz, J. Ristvej, and Z. Franco, editors,
Proceedings of the 9th International Conference on Information Systems
for Crisis Response and Management, ISCRAM ’12, Vancouver, Canada,
Apr. 2012. Cited on pages 11 and 82.

[44] B. Lijnse and R. Plasmeijer. iTasks 2: iTasks for End-users. In M. Morazán
and S. Scholz, editors, Revised Selected Papers of the International Sym-
posium on the Implementation and Application of Functional Languages,
IFL ’09, South Orange, NJ, USA, volume 6041 of LNCS, pages 36–54.
Springer-Verlag, 2010. Cited on pages 7 and 83.

[45] B. Lijnse and R. Plasmeijer. Between types and tables - Using generic
programming for automated mapping between data types and relational

161

databases. In S. Scholz and O. Chitil, editors, Revised Selected Papers of
the 20th International Symposium on the Implementation and Application
of Functional Languages, IFL ’08, volume 5836 of LNCS, pages 272–290,
Hatfield, UK, 2011. Springer. Cited on pages 9, 118, 145, and 146.

[46] B. Lijnse, P. van Bommel, and R. Plasmeijer. Ccl: A lightweight orm em-
bedding in clean. In P. Herrero, H. Panetto, R. Meersman, and T. Dillon,
editors, On the Move to Meaningful Internet Systems: OTM 2012 Work-
shops, volume 7567 of Lecture Notes in Computer Science, pages 338–347,
Rome, Italy, Sept. 2012. Springer. Cited on page 10.

[47] F. Loitsch and M. Serrano. Hop client-side compilation. In Proceedings
of the 7th Symposium on Trends in Functional Programming, TFP ’07,
pages 141–158, New York, NY, USA, 2-4, Apr. 2007. Interact. Cited on
page 84.

[48] E. Manoku, J. P. Zwart, and G. Bakema. A fact approach to automatic
application development. Journal of conceptual modeling, Sep 2006. Cited
on page 107.

[49] J. McCormack, T. Halpin, and P. Ritson. Automated mapping of concep-
tual schemas to relational schemas. In Proceedings of the Fifth Interna-
tional Conference CAiSE’93 on Advanced Information Systems Engineer-
ing, volume 685 of LNCS, pages 432–448. Springer Verlag, 1993. Cited on
pages 90, 96, and 97.

[50] R. Meersman. The RIDL conceptual langue. Technical report, Interna-
tional Centre for Information Analysis Services, Control Data Belgium
Inc., 1982. Cited on page 118.

[51] E. Meijer. Server side web scripting in Haskell. Journal of Functional
Programming, 10(1):1–18, 2000. Cited on page 83.

[52] E. Meijer, B. Beckman, and G. Bierman. LINQ: reconciling object, re-
lations and XML in the .NET framework. In SIGMOD ’06: Proceedings
of the 2006 ACM SIGMOD international conference on Management of
data, pages 706–706, New York, NY, USA, 2006. ACM. Cited on page 108.

[53] L. Meyerovich, A. Guha, J. Baskin, G. Cooper, M. Greenberg, A. Brom-
field, and S. Krishnamurthi. Flapjax: A programming language for ajax
applications. Tech report, CS-09-04, Brown University, Providence, RI, 04
2009. Cited on page 36.

[54] S. Michels and R. Plasmeijer. Uniform data sources in a functional lan-
guage. Submitted for presentation at Symposium on Trends in Functional
Programming, TFP ’12, 2012. Cited on page 67.

162

[55] S. Michels, R. Plasmeijer, and P. Achten. iTask as a new paradigm for
building GUI applications. In J. Hage and M. Morazán, editors, Pro-
ceedings of the 22nd International Symposium on the Implementation and
Application of Functional Languages, IFL ’10, Selected Papers, volume
6647 of LNCS, pages 153–168, Alphen aan den Rijn, The Netherlands,
2011. Springer. Cited on pages 40, 47, 48, and 50.

[56] G. Nijssen and T. Halpin. Conceptual schema and relational database
design: A fact oriented approach. Prentice Hall, New York, 1989. Cited
on page 118.

[57] U. Norell. Dependently typed programming in agda. Technical Report
ICIS-R08008, Radboud University Nijmegen, 2008. Cited on page 108.

[58] H. Peukert, D. Lincourt, and B. Zimmermann. Support for agile planning
& execution of coordinated actions. In Proceedings of 14th ICCRTS C2
and Agility, 2009. Cited on page 134.

[59] S. Peyton Jones, editor. Haskell 98 language and libraries: the revised
report. Cambridge University Press, 2003. Cited on page 4.

[60] R. Plasmeijer and P. Achten. iData for the world wide web - Programming
interconnected web forms. In Proceedings of the 8th International Sym-
posium on Functional and Logic Programming, FLOPS ’06, volume 3945
of LNCS, pages 242–258, Fuji Susone, Japan, 24-26, Apr. 2006. Springer
Verlag. Cited on page 36.

[61] R. Plasmeijer, P. Achten, and P. Koopman. iTasks: executable specific-
ations of interactive work flow systems for the web. In R. Hinze and
N. Ramsey, editors, Proceedings of the International Conference on Func-
tional Programming, ICFP ’07, pages 141–152, Freiburg, Germany, 2007.
ACM Press. Cited on pages 4, 18, 20, 22, 39, 83, 122, and 132.

[62] R. Plasmeijer, P. Achten, and P. Koopman. An introduction to iTasks:
defining interactive work flows for the web. In Revised Selected Lectures
of the 2nd Central European Functional Programming School, CEFP ’07,
volume 5161 of LNCS, pages 1–40, Cluj-Napoca, Romania, June 2008.
Springer-Verlag. Cited on page 22.

[63] R. Plasmeijer, P. Achten, P. Koopman, B. Lijnse, and T. van Noort. An
iTask case study: a conference management system. In P. Koopman,
R. Plasmeijer, and D. Swierstra, editors, Revised Lectures of the Interna-
tional Summer School on Advanced Functional Programming, AFP ’08,
Heijen, The Netherlands, volume 5832 of LNCS, pages 306–329. Springer-
Verlag, 2008. Cited on pages 11, 18, and 20.

163

[64] R. Plasmeijer, P. Achten, P. Koopman, B. Lijnse, T. van Noort, and J. van
Groningen. iTasks for a change - Type-safe run-time change in dynamically
evolving workflows. In S. Khoo and J. Siek, editors, Proceedings of the
Workshop on Partial Evaluation and Program Manipulation, PEPM ’11,
Austin, TX, USA, pages 151–160. ACM Press, 2011. Cited on pages 8,
44, and 45.

[65] R. Plasmeijer, P. Achten, B. Lijnse, and S. Michels. Defining multi-user
web applications with iTasks. In V. Zsók, Z. Horváth, and R. Plasmeijer,
editors, Proceedings of the 4th Central European Functional Programming
School, CEFP ’11, Revised Selected Papers, volume 7241 of LNCS, pages
46–92, Eötvös Loránd University, Budapest, Hungary, 14-24, June 2012.
Springer. Cited on page 9.

[66] R. Plasmeijer, J. Jansen, P. Koopman, and P. Achten. Declarative Ajax
and client side evaluation of workflows using iTasks. In Proceedings of the
10th International Conference on Principles and Practice of Declarative
Programming, PPDP ’08, pages 56–66, Valencia, Spain, 15-17, July 2008.
Cited on pages 18 and 128.

[67] R. Plasmeijer, B. Lijnse, P. Achten, and S. Michels. Getting a grip on tasks
that coordinate tasks. In Proceedings Workshop on Language Descrip-
tions, Tools, and Applications (LDTA), Saarbrücken, Germany, March
26-27 2011. Cited on page 8.

[68] R. Plasmeijer, B. Lijnse, S. Michels, P. Achten, and P. Koopman. Task-
Oriented Programming in a Pure Functional Language. In Proceedings
of the 2012 ACM SIGPLAN International Conference on Principles and
Practice of Declarative Programming, PPDP ’12, pages 195–206, Leuven,
Belgium, Sept. 2012. ACM. Cited on page 8.

[69] R. Plasmeijer and M. van Eekelen. Clean language report (version 2.1).
http://clean.cs.ru.nl, 2002. Cited on pages 4, 110, and 151.

[70] Ruby on Rails. http://rubyonrails.org/. Cited on page 36.

[71] C. Sell and I. Braun. Using a workflow management system to manage
emergency plans. In J. Landgren and S. Jul, editors, Proceedings of the 6th
International ISCRAM Conference, Gothenburg, Sweden, 2009. ISCRAM
Association. Cited on pages 121, 124, 126, and 134.

[72] M. Serrano, E. Gallesio, and F. Loitsch. Hop, a language for programming
the web 2.0. In Proceedings of the 11th International Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA
’06, pages 975–985, Portland, Oregon, USA, 22-26, Oct. 2006. Cited on
page 84.

164

http://clean.cs.ru.nl

[73] S. Smetsers, A. van Weelden, and R. Plasmeijer. Efficient and type-safe
generic data storage. In Proceedings of the 1st Workshop on Generative
Technologies, WGT ’08, Budapest, Hungary, Apr 2008. Electronic Notes
in Theoretical Computer Science. Cited on page 107.

[74] A. ter Hofstede, H. Proper, and T. van der Weide. Formal definition of a
conceptual language for the description and manipulation of information
models. Information Systems, 18(7):489 – 523, 1993. Cited on page 118.

[75] P. Thiemann. WASH/CGI: server-side web scripting with sessions and
typed, compositional forms. In S. Krishnamurthi and R. Ramakrish-
nan, editors, Proceedings of the 4th International Symposium on the Prac-
tical Aspects of Declarative Programming, PADL ’02, volume 2257 of Lec-
ture Notes in Computer Science, pages 192–208, Portland, OR, USA, 19-
20, Jan. 2002. Springer-Verlag. Cited on pages 36 and 84.

[76] UML version 2.2 specification. http://www.omg.org/spec/UML/2.2/, Feb
2009. Cited on page 92.

[77] M. van der Heijden, B. Lijnse, P. Lucas, Y. Heijdra, and T. Schermer.
Managing COPD exacerbations with telemedicine. In 13th Conference on
Artificial Intelligence in Medicine, AIME ’11, volume 6747 of LNCS, pages
169–178, Bled, Slovenia, July 2011. Springer-Verlag. Cited on pages 4, 11,
and 83.

[78] M. Vervoort and R. Plasmeijer. Lazy dynamic input/output in the lazy
functional language Clean. In R. Peña and T. Arts, editors, Revised Se-
lected Papers of the 14th International Workshop on the Implementation
of Functional Languages, IFL ’02, Madrid, Spain, volume 2670 of LNCS,
pages 101–117. Springer-Verlag, 2003. Cited on page 69.

[79] P. Wadler. Comprehending monads. In Proceedings of the Conference on
Lisp and Functional Programming, LFP ’90, Nice, France, pages 61–77,
1990. Cited on page 44.

[80] A. van Weelden. Putting types to good use. PhD thesis, Radboud Univer-
sity Nijmegen, 17, Oct. 2007. ISBN 978-90-9022041-3. Cited on page 69.

165

Summary

When we use computers to accomplish a task, we usually do so to make our
work easier, faster, cheaper, or simply because the task would be practically
impossible without a computer. Because computers are multi-purpose ma-
chines, we need to program them for the task we intend to accomplish. Ideally
this would be a straightforward process of expressing the task at hand as an
algorithmically solvable problem, but in reality programming is a lot more com-
plex. Contemporary application programming is more about gluing together
existing libraries, components and subsystems than it is about expressing al-
gorithms. With the abundance of libraries, API’s, languages and components
that are available, there are so many technical details to consider that it is
easy to get absorbed by them instead of staying focused on the task at hand.
In such programs one has to read between the lines to figure out what task
is actually being accomplished. To what extent this matters depends on the
application. Integration of the latest fashionable API or service may be what
sells some applications, but for computer systems that support mission-critical
tasks, overhead caused by a bad fit between the computer system and the task
it is supposed to support matters more. To rationally design systems focused
on optimally supporting critical tasks, it is important to understand the task
you aim to support. However, if a task is complex and has no clearly defined
boundaries or outcome, this is much easier said than done.
Task-Oriented Programming (TOP) is a new programming paradigm that uses
“tasks” as central concept for constructing programs. Although tasks are a
common notion in daily life, in order to use them as building block in programs
we need to be more precise. With a formal notion of tasks, a way to express
atomic tasks, and the means to define tasks in terms of other tasks, we can think
about programs in terms of the tasks we need to do, instead of the necessary
underlying technical details. In TOP, a task is a specified piece of work aiming
to produce a result of known type. When executed, tasks produce (temporary)
results that can be observed in a controlled way. As work progresses it can be
continuously monitored and controlled by other tasks. Tasks can either be fully
automated, or can be performed by humans with computer support. TOP is
therefore best suitable for applications that cannot be fully automated. These
can be supported by a mix of interactive and automated tasks that have to be

167

coordinated to achieve a combined goal though. The most extreme examples
of these are those applications in which the conditions under which the task
has to be accomplished are unpredictable, where people have to work together,
and there is time pressure to get it done. Tasks such as responding to incidents
with a rescue operation, or the management of crises in general, belong to this
category. The ideas behind TOP emerged during development of the iTask
System (or iTasks for short), a concrete prototype system that uses tasks as
its core concept, when we applied it to such cases. With iTasks, we have
continuously reflected on TOP to ensure that the paradigm is able to capture
a wide range of real-world tasks.
This dissertation consists of three parts. Each covers a research theme that has
been investigated simultaneously with the other themes. Together they present
the research that I have contributed to, in order to understand the use of tasks
to structure incident response applications. The first part, “Task-Oriented
Programming with iTasks” (chapters 2, 3 and 4), illustrates the evolution of
the iTask System and the emergence of the TOP paradigm, which has been my
main research focus. The chapters report on the status quo and progress early
in the project, more or less halfway and at the end of the project. As a series
they show the progressed insight into TOP. The second part, “Information
Models and Data Types” (chapters 5 and 6), contains contributions concerning
the intersection of information models, for defining shared databases, and data
types that define values in programs. Although these contributions extend
beyond TOP, they enable programming information systems in a task-oriented
way. This is because in such systems most tasks deal with storing, retrieving
and sharing information. The third and final part, “The Netherlands Coast
Guard Case” (chapters 7, 8 and 9), is concerned with TOP’s potential to be
used for the development of incident response applications. The most influential
application with which we reflectled on TOP has been a case study of the search
and rescue operations of the Netherlands Coast Guard. The chapters in this
part cover that case.
With TOP we have a new approach for the design and development of interact-
ive programs. We reduce programming to what matters most: understanding
the task at hand.

168

Samenvatting

Wanneer we computers gebruiken om een taak te volbrengen, doen we dat
meestal om ons werk makkelijker, sneller of goedkoper te maken, of simpel-
weg omdat de taak praktisch onmogelijk zou zijn zonder computer. Omdat
computers universele machines zijn, moeten we ze programmeren voor spe-
cifieke taken. In het ideale geval zou dit het rechttoe-rechtaan uitdrukken
zijn van de uit te voeren taak als een algorithmisch oplosbaar probleem. In
werkelijkheid is programmeren echter een stuk complexer. Het huidige applic-
atie programmeren bestaat meer uit het aan elkaar knopen van bestaande bib-
liotheken, componenten en systemen, dan uit het uitdrukken van algorithmes.
Maar door de overdaad aan bibliotheken, API’s, programmeertalen en compon-
enten die beschikbaar zijn, zijn er zoveel technische details om je mee bezig te
houden dat het makkelijk is om erin te verdrinken in plaats van geconcentreerd
te blijven op de taak die volbracht moet worden. In zulke programma’s moet je
tussen de regels door lezen wat men probeert te bereiken. Of, en in welke mate,
dit een probleem is, hangt af van de toepassing. Integratie met de nieuwste
hippe API of dienst is voor sommige applicaties een belangrijk verkoopargu-
ment. Maar voor computersystemen die kritieke taken ondersteunen weegt
de overhead die ontstaat wanneer een systeem niet bij de uit te voeren taak
aansluit zwaarder. Om rationeel systemen te ontwerpen gefocust op het op-
timaal ondersteunen van kritieke taken, is het belangrijk om die taken goed te
begrijpen. Echter, wanneer een taak complex is en geen duidelijke grenzen of
uitkomsten heeft, is dit makkelijker gezegd dan gedaan.
Taakgeoriënteerd Programmeren (Task-Oriented Programming oftewel TOP)
is een nieuw programmeerparadigma dat “taken” gebruikt als centraal concept
voor het construeren van programma’s. Hoewel taken een bekend begrip zijn
in het dagelijks leven, om ze als bouwstenen van programma’s te gebruiken
moeten we preciezer zijn in wat we ermee bedoelen. Door een formele notie
van taken te definiëren samen met een manier om atomaire taken te beschrijven
en middelen om taken uit te drukken in termen van andere taken, kunnen we
over programma’s nadenken in termen van de taken die we moeten doen in
plaats van de noodzakelijke technische details om ze te realiseren. In TOP
is een taak een vastgestelde eenheid werk gericht op het leveren van een res-
ultaat van een bekend type. Wanneer taken uitgevoerd worden, produceren ze

169

(tijdelijke) resultaten die op gecontroleerde wijze geobserveerd kunnen worden.
Terwijl het werk vordert, kan het continue gemonitord en gecontroleerd worden
door andere taken. Taken kunnen ofwel volledig geautomatiseerd zijn, ofwel
uitgevoerd worden door mensen met computerondersteuning. TOP is daarom
vooral geschikt voor het soort toepassingen dat niet volledig geautomatiseerd
kan worden. Deze kunnen wel ondersteund kunnen worden met een mix van
interactieve en geautomatiseerde taken die op gecoördineerde wijze een geza-
menlijke doel trachten te bereiken. De meest extreme voorbeelden hiervan zijn
toepassingen waarbij taken onder onvoorspelbare omstandigheden en onder
tijdsdruk uitgevoerd moet worden, en waarbij mensen samen moeten werken.
Taken zoals het uitvoeren van een reddingsoperatie naar aanleiding van een
incident, of het managen van crises in het algemeen, behoren tot deze cat-
egorie. De ideeën achter TOP zijn ontstaan toen we het iTask Systeem (kortweg
iTasks), een prototype systeem dat taken gebruikt als kernconcept, gingen toe-
passen op dergelijke cases. Om te zorgen dat het TOP paradigma een breed
scala aan reëele toepassingen aan kan, hebben we continue met iTasks gere-
flecteerd op de mogelijkheden.
Dit proefschrift bestaat uit drie delen. Ieder deel behandelt een eigen on-
derzoeksthema’s dat gelijktijdig met de andere thema’s onderzocht is. Samen
illustreren ze het onderzoek naar het gebruik van taken voor “incident response”
toepassingen waaraan ik bij gedragen heb. Het eerste deel, “Task-Oriented
Programming with iTasks” (hoofdstukken 2, 3 en 4), illustreert de evolutie
van het iTask systeem en het ontstaan van het TOP paradigma. Dit thema
was mijn primaire onderzoeksfocus. De hoofdstukken rapporteren de status
en voortgang vroeg in het project, ongever halverwege het project, en aan het
einde van het project. Samen geven ze het voorschrijdend inzicht in TOP
weer. Het tweede deel, “Information Models and Data Types” (hoofdstukken
5 en 6), bevat bijdragen op het snijvlak tussen informatiemodellen, voor het
beschrijven van gedeelde databases, en datatypes die lokale gegevens in pro-
gramma’s beschrijven. Alhoewel deze bijdragen breder zijn dan TOP alleen,
maken ze het programmeren van informatiesystemen op een taakgeoriënteerde
manier mogelijk. Dit is omdat de meeste taken in zulke systemen te maken
hebben met het opslaan, terughalen en delen van informatie. Het derde en
laatste deel, “The Netherlands Coast Guard Case” (hoofdstukken 7, 8 en 9),
heeft betrekking op TOP’s potentiële gebruik voor het ontwikkelen van “incid-
ent response” toepassingen. De belangrijkste toepassing waarmee we op TOP
gereflecteerd hebben was een casus over de “Search and Rescue” operaties van
de Nederlandse Kustwacht. De hoofdstukken in dit deel behandelen deze casus.
Met TOP hebben we een nieuwe aanpak voor het ontwerpen en ontwikkelen
van interactieve programma’s. We reduceren programmeren tot de hoofdzaak:
het begrijpen van de taak die je wilt volbrengen.

170

Acknowledgements

Although writing a dissertation is by definition a one-man project, I have never
felt I had to do it alone. I have been lucky to have been surrounded by so many
supporting people to whom I owe my gratitude, that it is impossible to mention
each of them here without forgetting anyone. If you feel your name should be
mentioned on this page, you are probably right and I apologize.
First of all, I want to thank my promotor Rinus and copromotor Jan Martin for
their advice and support. I have met few PhD students who have received the
amount of attention from their advisors as I have enjoyed the past few years.
I want to thank everyone at MBSD with whom I have worked together with,
or who have had to endure my occasional rants simply because we shared an
office. Thomas, Peter, Pieter, John, Erik, Steffen, Jeroen, László, Maarten,
Sander, Marina, Freek, Martijn, Patrick, Stijn and Peter, thanks.
Similarly, I want to thank the people I have worked together with directly at
the NLDA. Ruud, Tim, Dick and Fok, thanks. I also want to thank everyone
who have made it possible for me to work both in Nijmegen and Den Helder.
Thanks to them, and to the off-work hours company of people like Paul, Lanah
and Ralph, my trips to Den Helder have been both enjoyable and productive.
I am grateful to everyone at the Netherlands Coast Guard. People who enabled
my research like KTZ Trimpe Burger, Gerrit, Andre and Jan, but most of all
Duty officers Sjaco, Ron, Rolf and all the Watch officers who have accepted me
in their environment and gave me an impression of their work.
I am also grateful to the countless people from the functional programming and
ISCRAM communities with whom I have had valuable discussions at confer-
ences, summerschools and other events. Especially ISCRAM with its encour-
aging attitude towards PhD students has meant a lot. Who knew how much
influence a summerschool in Tilburg would have on my project.
I want to thank Kol Klaren and the members of SENECA for giving me a
chance to take this research to the next level and show how it can be applied
in an operational setting.
Finally I want to thank my parents and family for teaching me to have faith
in myself, and to confidently follow my curiosity, Linda who is always there for
me reminding me every now and then to relax and enjoy what I have, and of
course Mara who already means more to me than this dissertation.

171

Curriculum Vitae

Bas Lijnse was born on January the 13th 1984 in Valkenisse, The Netherlands.
He started his secondary education (VWO) in 1995 at the Christelijke Scholen-
gemeenschap Walcheren in Middelburg and graduated in 2000 through state
examination (Staatsexamen). From 2001 to 2008, he studied Informatics at the
Radboud University Nijmegen where he received a Bachelors degree in 2007 and
graduated with a Masters degree in 2008. During this period he had various
part-time jobs as a software developer. From 2002 to 2004 at Hexon BV, and in
2004 also at Kalden Projects BV. In 2005 he co-founded EntiQ BV, a software
development company that specialized in web-based information systems. In
2007 he left EntiQ to complete his studies. After graduation he remained at the
Radboud University. He started as a scientific programmer between 2008 and
2009. From 2009 to 2012 he got funded by the Netherlands Defense Academy
to pursue a PhD as junior researcher.

173

Titles in the IPA Dissertation Series since 2007

H.A. de Jong. Flexible Heterogen-
eous Software Systems. Faculty of
Natural Sciences, Mathematics, and
Computer Science, UvA. 2007-01

N.K. Kavaldjiev. A run-time
reconfigurable Network-on-Chip for
streaming DSP applications. Faculty
of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2007-02

M. van Veelen. Considerations
on Modeling for Early Detection of
Abnormalities in Locally Autonom-
ous Distributed Systems. Faculty
of Mathematics and Computing Sci-
ences, RUG. 2007-03

T.D. Vu. Semantics and Applic-
ations of Process and Program Al-
gebra. Faculty of Natural Sciences,
Mathematics, and Computer Science,
UvA. 2007-04

L. Brandán Briones. Theories for
Model-based Testing: Real-time and
Coverage. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2007-05

I. Loeb. Natural Deduction: Shar-
ing by Presentation. Faculty of Sci-
ence, Mathematics and Computer
Science, RU. 2007-06

M.W.A. Streppel. Multifunctional
Geometric Data Structures. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2007-07

N. Trčka. Silent Steps in Transition
Systems and Markov Chains. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2007-08

R. Brinkman. Searching in encryp-
ted data. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2007-09

A. van Weelden. Putting types
to good use. Faculty of Science,
Mathematics and Computer Science,
RU. 2007-10

J.A.R. Noppen. Imperfect Inform-
ation in Software Development Pro-
cesses. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2007-11

R. Boumen. Integration and Test
plans for Complex Manufacturing
Systems. Faculty of Mechanical En-
gineering, TU/e. 2007-12

A.J. Wijs. What to do Next?: Ana-
lysing and Optimising System Beha-
viour in Time. Faculty of Sciences,
Division of Mathematics and Com-
puter Science, VUA. 2007-13

C.F.J. Lange. Assessing and Im-
proving the Quality of Modeling: A
Series of Empirical Studies about the
UML. Faculty of Mathematics and
Computer Science, TU/e. 2007-14

T. van der Storm. Component-
based Configuration, Integration and
Delivery. Faculty of Natural Sci-
ences, Mathematics, and Computer
Science,UvA. 2007-15

B.S. Graaf. Model-Driven Evolu-
tion of Software Architectures. Fac-
ulty of Electrical Engineering, Math-
ematics, and Computer Science,
TUD. 2007-16

A.H.J. Mathijssen. Logical Calculi
for Reasoning with Binding. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2007-17

D. Jarnikov. QoS framework for
Video Streaming in Home Networks.
Faculty of Mathematics and Com-
puter Science, TU/e. 2007-18

M. A. Abam. New Data Structures
and Algorithms for Mobile Data.
Faculty of Mathematics and Com-
puter Science, TU/e. 2007-19

W. Pieters. La Volonté Machinale:
Understanding the Electronic Voting
Controversy. Faculty of Science,
Mathematics and Computer Science,
RU. 2008-01

A.L. de Groot. Practical Auto-
maton Proofs in PVS. Faculty of
Science, Mathematics and Computer
Science, RU. 2008-02

M. Bruntink. Renovation of Idio-
matic Crosscutting Concerns in Em-
bedded Systems. Faculty of Elec-
trical Engineering, Mathematics, and
Computer Science, TUD. 2008-03

A.M. Marin. An Integrated System
to Manage Crosscutting Concerns
in Source Code. Faculty of Elec-
trical Engineering, Mathematics, and
Computer Science, TUD. 2008-04

N.C.W.M. Braspenning. Model-
based Integration and Testing of
High-tech Multi-disciplinary Sys-
tems. Faculty of Mechanical Engin-
eering, TU/e. 2008-05

M. Bravenboer. Exercises in Free
Syntax: Syntax Definition, Pars-
ing, and Assimilation of Language

Conglomerates. Faculty of Science,
UU. 2008-06

M. Torabi Dashti. Keeping Fair-
ness Alive: Design and Formal Veri-
fication of Optimistic Fair Exchange
Protocols. Faculty of Sciences, Divi-
sion of Mathematics and Computer
Science, VUA. 2008-07

I.S.M. de Jong. Integration
and Test Strategies for Complex
Manufacturing Machines. Fac-
ulty of Mechanical Engineering,
TU/e. 2008-08

I. Hasuo. Tracing Anonymity with
Coalgebras. Faculty of Science,
Mathematics and Computer Science,
RU. 2008-09

L.G.W.A. Cleophas. Tree Al-
gorithms: Two Taxonomies and a
Toolkit. Faculty of Mathematics and
Computer Science, TU/e. 2008-10

I.S. Zapreev. Model Checking
Markov Chains: Techniques and
Tools. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2008-11

M. Farshi. A Theoretical and Ex-
perimental Study of Geometric Net-
works. Faculty of Mathematics and
Computer Science, TU/e. 2008-12

G. Gulesir. Evolvable Beha-
vior Specifications Using Context-
Sensitive Wildcards. Faculty of Elec-
trical Engineering, Mathematics &
Computer Science, UT. 2008-13

F.D. Garcia. Formal and Com-
putational Cryptography: Protocols,
Hashes and Commitments. Faculty
of Science, Mathematics and Com-
puter Science, RU. 2008-14

P. E. A. Dürr. Resource-based
Verification for Robust Composition
of Aspects. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2008-15

E.M. Bortnik. Formal Meth-
ods in Support of SMC Design.
Faculty of Mechanical Engineering,
TU/e. 2008-16

R.H. Mak. Design and Perform-
ance Analysis of Data-Independent
Stream Processing Systems. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2008-17

M. van der Horst. Scalable Block
Processing Algorithms. Faculty of
Mathematics and Computer Science,
TU/e. 2008-18

C.M. Gray. Algorithms for Fat Ob-
jects: Decompositions and Applica-
tions. Faculty of Mathematics and
Computer Science, TU/e. 2008-19

J.R. Calamé. Testing Reactive Sys-
tems with Data - Enumerative Meth-
ods and Constraint Solving. Faculty
of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2008-20

E. Mumford. Drawing Graphs for
Cartographic Applications. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2008-21

E.H. de Graaf. Mining Semi-
structured Data, Theoretical and Ex-
perimental Aspects of Pattern Eval-
uation. Faculty of Mathematics and
Natural Sciences, UL. 2008-22

R. Brijder. Models of Natural
Computation: Gene Assembly and
Membrane Systems. Faculty of

Mathematics and Natural Sciences,
UL. 2008-23

A. Koprowski. Termination of Re-
writing and Its Certification. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2008-24

U. Khadim. Process Algeb-
ras for Hybrid Systems: Compar-
ison and Development. Faculty of
Mathematics and Computer Science,
TU/e. 2008-25

J. Markovski. Real and Stochastic
Time in Process Algebras for Per-
formance Evaluation. Faculty of
Mathematics and Computer Science,
TU/e. 2008-26

H. Kastenberg. Graph-Based Soft-
ware Specification and Verification.
Faculty of Electrical Engineering,
Mathematics & Computer Science,
UT. 2008-27

I.R. Buhan. Cryptographic Keys
from Noisy Data Theory and Ap-
plications. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2008-28

R.S. Marin-Perianu. Wireless
Sensor Networks in Motion: Cluster-
ing Algorithms for Service Discovery
and Provisioning. Faculty of Elec-
trical Engineering, Mathematics &
Computer Science, UT. 2008-29

M.H.G. Verhoef. Modeling and
Validating Distributed Embedded
Real-Time Control Systems. Faculty
of Science, Mathematics and Com-
puter Science, RU. 2009-01

M. de Mol. Reasoning about Func-
tional Programs: Sparkle, a proof as-
sistant for Clean. Faculty of Science,

Mathematics and Computer Science,
RU. 2009-02

M. Lormans. Managing Require-
ments Evolution. Faculty of Elec-
trical Engineering, Mathematics, and
Computer Science, TUD. 2009-03

M.P.W.J. van Osch. Automated
Model-based Testing of Hybrid Sys-
tems. Faculty of Mathematics and
Computer Science, TU/e. 2009-04

H. Sozer. Architecting Fault-
Tolerant Software Systems. Faculty
of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2009-05

M.J. van Weerdenburg. Efficient
Rewriting Techniques. Faculty of
Mathematics and Computer Science,
TU/e. 2009-06

H.H. Hansen. Coalgebraic Model-
ling: Applications in Automata The-
ory and Modal Logic. Faculty of Sci-
ences, Division of Mathematics and
Computer Science, VUA. 2009-07

A. Mesbah. Analysis and Testing of
Ajax-based Single-page Web Applic-
ations. Faculty of Electrical Engin-
eering, Mathematics, and Computer
Science, TUD. 2009-08

A.L. Rodriguez Yakushev. To-
wards Getting Generic Programming
Ready for Prime Time. Faculty of
Science, UU. 2009-9

K.R. Olmos Joffré. Strategies
for Context Sensitive Program Trans-
formation. Faculty of Science,
UU. 2009-10

J.A.G.M. van den Berg. Reas-
oning about Java programs in PVS

using JML. Faculty of Science,
Mathematics and Computer Science,
RU. 2009-11

M.G. Khatib. MEMS-Based Stor-
age Devices. Integration in Energy-
Constrained Mobile Systems. Faculty
of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2009-12

S.G.M. Cornelissen. Evaluat-
ing Dynamic Analysis Techniques
for Program Comprehension. Fac-
ulty of Electrical Engineering, Math-
ematics, and Computer Science,
TUD. 2009-13

D. Bolzoni. Revisiting Anomaly-
based Network Intrusion Detection
Systems. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2009-14

H.L. Jonker. Security Matters:
Privacy in Voting and Fairness
in Digital Exchange. Faculty of
Mathematics and Computer Science,
TU/e. 2009-15

M.R. Czenko. TuLiP - Reshap-
ing Trust Management. Faculty of
Electrical Engineering, Mathematics
& Computer Science, UT. 2009-16

T. Chen. Clocks, Dice and Pro-
cesses. Faculty of Sciences, Division
of Mathematics and Computer Sci-
ence, VUA. 2009-17

C. Kaliszyk. Correctness and
Availability: Building Computer Al-
gebra on top of Proof Assistants
and making Proof Assistants avail-
able over the Web. Faculty of Sci-
ence, Mathematics and Computer
Science, RU. 2009-18

R.S.S. O’Connor. Incompleteness
& Completeness: Formalizing Logic
and Analysis in Type Theory. Fac-
ulty of Science, Mathematics and
Computer Science, RU. 2009-19

B. Ploeger. Improved Verifica-
tion Methods for Concurrent Sys-
tems. Faculty of Mathematics and
Computer Science, TU/e. 2009-20

T. Han. Diagnosis, Synthesis
and Analysis of Probabilistic Mod-
els. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2009-21

R. Li. Mixed-Integer Evolution
Strategies for Parameter Optimiza-
tion and Their Applications to Med-
ical Image Analysis. Faculty of
Mathematics and Natural Sciences,
UL. 2009-22

J.H.P. Kwisthout. The Com-
putational Complexity of Probabil-
istic Networks. Faculty of Science,
UU. 2009-23

T.K. Cocx. Algorithmic Tools
for Data-Oriented Law Enforcement.
Faculty of Mathematics and Natural
Sciences, UL. 2009-24

A.I. Baars. Embedded Compilers.
Faculty of Science, UU. 2009-25

M.A.C. Dekker. Flexible Access
Control for Dynamic Collaborative
Environments. Faculty of Electrical
Engineering, Mathematics & Com-
puter Science, UT. 2009-26

J.F.J. Laros. Metrics and Visual-
isation for Crime Analysis and Gen-
omics. Faculty of Mathematics and
Natural Sciences, UL. 2009-27

C.J. Boogerd. Focusing Automatic
Code Inspections. Faculty of Elec-
trical Engineering, Mathematics, and
Computer Science, TUD. 2010-01

M.R. Neuhäußer. Model Check-
ing Nondeterministic and Randomly
Timed Systems. Faculty of Electrical
Engineering, Mathematics & Com-
puter Science, UT. 2010-02

J. Endrullis. Termination and Pro-
ductivity. Faculty of Sciences, Divi-
sion of Mathematics and Computer
Science, VUA. 2010-03

T. Staijen. Graph-Based Specific-
ation and Verification for Aspect-
Oriented Languages. Faculty of Elec-
trical Engineering, Mathematics &
Computer Science, UT. 2010-04

Y. Wang. Epistemic Modelling and
Protocol Dynamics. Faculty of Sci-
ence, UvA. 2010-05

J.K. Berendsen. Abstraction,
Prices and Probability in Model
Checking Timed Automata. Faculty
of Science, Mathematics and Com-
puter Science, RU. 2010-06

A. Nugroho. The Effects of UML
Modeling on the Quality of Software.
Faculty of Mathematics and Natural
Sciences, UL. 2010-07

A. Silva. Kleene Coalgebra. Faculty
of Science, Mathematics and Com-
puter Science, RU. 2010-08

J.S. de Bruin. Service-Oriented
Discovery of Knowledge - Founda-
tions, Implementations and Applica-
tions. Faculty of Mathematics and
Natural Sciences, UL. 2010-09

D. Costa. Formal Models for Com-
ponent Connectors. Faculty of Sci-
ences, Division of Mathematics and
Computer Science, VUA. 2010-10

M.M. Jaghoori. Time at Your Ser-
vice: Schedulability Analysis of Real-
Time and Distributed Services. Fac-
ulty of Mathematics and Natural Sci-
ences, UL. 2010-11

R. Bakhshi. Gossiping Mod-
els: Formal Analysis of Epidemic
Protocols. Faculty of Sciences,
Department of Computer Science,
VUA. 2011-01

B.J. Arnoldus. An Illumination of
the Template Enigma: Software Code
Generation with Templates. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2011-02

E. Zambon. Towards Optimal IT
Availability Planning: Methods and
Tools. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2011-03

L. Astefanoaei. An Executable
Theory of Multi-Agent Systems Re-
finement. Faculty of Mathematics
and Natural Sciences, UL. 2011-04

J. Proença. Synchronous coordina-
tion of distributed components. Fac-
ulty of Mathematics and Natural Sci-
ences, UL. 2011-05

A. Moralı. IT Architecture-Based
Confidentiality Risk Assessment in
Networks of Organizations. Faculty
of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2011-06

M. van der Bijl. On changing mod-
els in Model-Based Testing. Faculty

of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2011-07

C. Krause. Reconfigurable Com-
ponent Connectors. Faculty of
Mathematics and Natural Sciences,
UL. 2011-08

M.E. Andrés. Quantitative Ana-
lysis of Information Leakage in Prob-
abilistic and Nondeterministic Sys-
tems. Faculty of Science, Math-
ematics and Computer Science,
RU. 2011-09

M. Atif. Formal Modeling and Veri-
fication of Distributed Failure Detect-
ors. Faculty of Mathematics and
Computer Science, TU/e. 2011-10

P.J.A. van Tilburg. From
Computability to Executability – A
process-theoretic view on automata
theory. Faculty of Mathematics and
Computer Science, TU/e. 2011-11

Z. Protic. Configuration manage-
ment for models: Generic methods
for model comparison and model
co-evolution. Faculty of Math-
ematics and Computer Science,
TU/e. 2011-12

S. Georgievska. Probability and
Hiding in Concurrent Processes. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2011-13

S. Malakuti. Event Composition
Model: Achieving Naturalness in
Runtime Enforcement. Faculty of
Electrical Engineering, Mathematics
& Computer Science, UT. 2011-14

M. Raffelsieper. Cell Librar-
ies and Verification. Faculty of
Mathematics and Computer Science,
TU/e. 2011-15

C.P. Tsirogiannis. Analysis of
Flow and Visibility on Triangu-
lated Terrains. Faculty of Math-
ematics and Computer Science,
TU/e. 2011-16

Y.-J. Moon. Stochastic Models
for Quality of Service of Component
Connectors. Faculty of Mathematics
and Natural Sciences, UL. 2011-17

R. Middelkoop. Capturing and
Exploiting Abstract Views of States
in OO Verification. Faculty of
Mathematics and Computer Science,
TU/e. 2011-18

M.F. van Amstel. Assess-
ing and Improving the Quality of
Model Transformations. Faculty of
Mathematics and Computer Science,
TU/e. 2011-19

A.N. Tamalet. Towards Correct
Programs in Practice. Faculty of
Science, Mathematics and Computer
Science, RU. 2011-20

H.J.S. Basten. Ambiguity De-
tection for Programming Language
Grammars. Faculty of Science,
UvA. 2011-21

M. Izadi. Model Checking of
Component Connectors. Faculty of
Mathematics and Natural Sciences,
UL. 2011-22

L.C.L. Kats. Building Blocks
for Language Workbenches. Fac-
ulty of Electrical Engineering, Math-
ematics, and Computer Science,
TUD. 2011-23

S. Kemper. Modelling and Analysis
of Real-Time Coordination Patterns.

Faculty of Mathematics and Natural
Sciences, UL. 2011-24

J. Wang. Spiking Neural P Systems.
Faculty of Mathematics and Natural
Sciences, UL. 2011-25

A. Khosravi. Optimal Geomet-
ric Data Structures. Faculty of
Mathematics and Computer Science,
TU/e. 2012-01

A. Middelkoop. Inference of
Program Properties with Attribute
Grammars, Revisited. Faculty of Sci-
ence, UU. 2012-02

Z. Hemel. Methods and Tech-
niques for the Design and Imple-
mentation of Domain-Specific Lan-
guages. Faculty of Electrical Engin-
eering, Mathematics, and Computer
Science, TUD. 2012-03

T. Dimkov. Alignment of Organiza-
tional Security Policies: Theory and
Practice. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2012-04

S. Sedghi. Towards Provably Se-
cure Efficiently Searchable Encryp-
tion. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2012-05

F. Heidarian Dehkordi. Studies
on Verification of Wireless Sensor
Networks and Abstraction Learning
for System Inference. Faculty of
Science, Mathematics and Computer
Science, RU. 2012-06

K. Verbeek. Algorithms for Car-
tographic Visualization. Faculty of
Mathematics and Computer Science,
TU/e. 2012-07

D.E. Nadales Agut. A Composi-
tional Interchange Format for Hybrid
Systems: Design and Implementa-
tion. Faculty of Mechanical Engin-
eering, TU/e. 2012-08

H. Rahmani. Analysis of Protein-
Protein Interaction Networks by
Means of Annotated Graph Mining
Algorithms. Faculty of Mathematics
and Natural Sciences, UL. 2012-09

S.D. Vermolen. Software Language
Evolution. Faculty of Electrical En-
gineering, Mathematics, and Com-
puter Science, TUD. 2012-10

L.J.P. Engelen. From Napkin
Sketches to Reliable Software. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2012-11

F.P.M. Stappers. Bridging Formal
Models – An Engineering Perspect-
ive. Faculty of Mathematics and
Computer Science, TU/e. 2012-12

W. Heijstek. Software Architecture
Design in Global and Model-Centric
Software Development. Faculty of
Mathematics and Natural Sciences,
UL. 2012-13

C. Kop. Higher Order Termination.
Faculty of Sciences, Department of
Computer Science, VUA. 2012-14

A. Osaiweran. Formal Develop-
ment of Control Software in the Med-
ical Systems Domain. Faculty of
Mathematics and Computer Science,
TU/e. 2012-15

W. Kuijper. Compositional Syn-
thesis of Safety Controllers. Faculty
of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2012-16

H. Beohar. Refinement of Com-
munication and States in Models
of Embedded Systems. Faculty of
Mathematics and Computer Science,
TU/e. 2013-01

G. Igna. Performance Analysis
of Real-Time Task Systems using
Timed Automata. Faculty of Science,
Mathematics and Computer Science,
RU. 2013-02

E. Zambon. Abstract Graph Trans-
formation – Theory and Practice.
Faculty of Electrical Engineering,
Mathematics & Computer Science,
UT. 2013-03

B. Lijnse. TOP to the Rescue –
Task-Oriented Programming for In-
cident Response Applications. Fac-
ulty of Science, Mathematics and
Computer Science, RU. 2013-04

Work it harder, make it better, do it faster, makes us stronger, more
than ever hour after our work is never over.

– Daft Punk

	Introduction
	Programming
	Programming with Tasks
	Programming with iTasks
	Programming for Incident Response Tasks
	Scope and Organization of this Thesis
	Future Directions
	TOP to the Rescue

	I Task-Oriented Programming with iTasks
	iTasks for End-users
	Introduction
	Declarative Workflow Specification
	The Revised iTask System
	Dynamic Generic Web-Interfaces
	Related Work
	Conclusions

	Getting a Grip on Tasks that Coordinate Tasks
	Introduction
	The iTask Core System
	The Expressive Power and Limitations of the Combinators
	Redesigning the Core System
	Conclusions

	Task-Oriented Programming in a Pure Functional Language
	Introduction
	The TOP Paradigm
	A Formal Foundation of TOP
	Practical TOP
	Related Work
	Conclusions and Future Work

	II Types and Information Models
	Between Types and Tables
	Introduction
	Motivating Example
	Types and Tables
	Generic CRUD Operations
	Implementation in Clean
	Related Work
	Conclusions & Future Work

	CCL: A Lightweight ORM Embedding in Clean
	Introduction
	A CCL Example
	Defining Conceptual Models with CCL
	Defining Clean Types with CCL
	Discussion
	Related Work
	Conclusions

	III The Netherlands Coast Guard Case
	Towards Dynamic Workflow Support for Crisis Management
	Introduction
	The iTask System
	iTasks for Crisis Management?
	Conclusions

	Capturing the Netherlands Coast Guard's SAR Workflow with iTasks
	Introduction
	Literature Review
	Research Questions
	Methodology
	Results
	Discussion
	Conclusions & Future Work

	Incidone: A Task-Oriented Incident Coordination Tool
	Introduction
	A Watch Officer's View of Incidone
	A Programmer's View of Incidone
	Status Quo and Future Work
	Conclusion

	Bibliography
	Summary
	Samenvatting
	Acknowledgements
	Curriculum Vitae

