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Abstract  

 

We investigate the nonlinear dynamical behavior of optical bistability (OB) for 

homogeneously broadened two-level atomic media interacting with a single ring 

cavity mode without invoking the rotating wave approximation (RWA) in the 

dispersive regime. The periodic oscillations (self-pulsing) and chaos of the 

unstable state of the OB curve is affected by the non-vanishing counter rotating 

terms through the appearance of spikes in its periods. Further, bifurcation with 

atomic detuning, within and outside the RWA, shows that the OB system can be 

converted from chaos to self pulsing and vice-versa. Gaussian transverse field 

structure leads to….    
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I Introduction 

 

Optical bistability (OB) phenomena has a vital role in nonlinear optics, both 

experimentally and theoretically [1-13], because of its potential applications that 

yield high speed all optical signal processing and all optical computing. Optically 

bistable elements, those based upon the generation of two stable field states for 

the same input field, can be used as logic gates, memory devices, switches and 

differential amplifiers, components in optical computers and communication 

systems [5, 14-15]. Specifically, the many promising technological applications 

of the bistable phenomenon in all optical telecommunication networks and 

optical computing in nonlinear semiconductor lasers and laser amplifiers have 

been recently reviewed [16]. Further, recent topics such as quantum computation, 

quantum information processing and entanglement would at a certain level, 

benefit from further study of OB systems within the context of cooperative 

atomic behavior [17]. Optical chaos generated in nonlinear optical systems is 

applicable for communication information at high data rates [18] and is used in 

applications of random number generation [19].  

 

Earlier authors [7, 20-21] have applied a linear stability analysis for absorptive 

optical bistability in a ring cavity and showed that, under certain conditions, part 

of the upper branch is unstable. In this case, the system can operate as a 

transformer of continuous wave light into pulsed, where a self pulsing oscillation 

occurs with a period equal to the cavity round-trip time. This analysis was 

generalized in the dispersive case [22] (see [11] and references therein). Another 

mechanism of instability was theoretically studied by Ikeda et.al. [23] where 

periodic instabilities and chaotic behavior may occur in optical bistable two-level 
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systems in a ring cavity with time delay effects, when the time of radiation to 

propagate from the output- to the input-end is longer than the atomic decay time. 

This instability can lead to period doubling and chaos as that observed in [3] for 

Fabry-Perot cavity containing sodium atoms in the absorptive case. Single mode 

instabilities ranging from gain based laser systems [24] to passive two-level 

optical bistable systems have been investigated [25] and revisited with more 

details [26]. Effects of the squeezed vacuum on the dynamic behavior of two-

level OB systems have been discussed in [27]. Recently, novel instability of OB 

systems of very thin material (of thickness much smaller than the wavelength) 

[28] has been discussed in a purely absorptive OB Fabry-Perot cavity with multi-

longitudinal mode depending on the relative position of the thin absorber in the 

cavity.  

 

Self-pulsing and chaos has been exhibited for three-level atoms interacting with 

multiple fields [29, 30], probe field experiencing feedback [31], with single mode 

field in ring cavity environment with squeezed vacuum field [32] and two-photon 

atomic transitions [33, 34]. Recently, the authors of [35] investigated a novel type 

of instability different from earlier instabilities of OB [23, 36-38] in which the 

self-pulsing occurrence does not require finite detuning of either the bistable field 

coupling the atom or the cavity detuning [39], and occurs without involving 

coupling to multiple modes of the cavity field. Further, instability examination in 

the lower cooperative branch for three ˄- and V- atomic system inside a double-

cavity [40] is shown to be due to the leakage of population from the coherently 

prepared lower atomic levels. This leakage occurs via spontaneous emission into 

the ground state leading to instability in the lower cooperative branch. Such 

instability occurs only in the ˄-system wherein incoherent decay coupling of the 

pair of ground states is essential to obtain instabilities in the cooperative branch.     
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As evidenced by other articles in this volume, optical bistability is of interest 

In all previous theoretical studies of OB [1-40] the usual rotating wave 

approximation (RWA) has been adopted, which amounts to neglecting highly 

oscillatory terms in the model Maxwell-Bloch equations. Effects of such terms 

on the bistable behavior for two-level atomic systems in an optical ring cavity 

were recently studied by our group for homogeneously and non-homogeneously 

broadened atomic medium [41-42].  

 

It has been shown that, the first harmonic output field component, generated 

outside the RWA, shows reversed (clockwise) or closed (butterfly) loop 

bistability, simultaneously with the usual (anti-clockwise) bistable output 

fundamental field component. Thus, transforming opposite coding information 

simultaneously in such a system is a physical possibility. Also, the order of the 

first harmonic output field is small, )( 2Ο  ( L/ ;  the atomic damping 

constant, L circular frequency of the injected laser field) and sensitive to the 

damping ratio   / ; where (  ) is the cavity damping constant. As argued in [41] 

such weak output signals may be detected via phase sensitive detection 

techniques used in detecting squeezed light. In addition, when effects of atomic 

linewidth are taken into consideration, the output field component outside the 

RWA, which exhibits the usual anti-clockwise bistable behavior in the absorptive 

case, switches in the dispersive case to a closed loop (switching-down process) 

with Lorentzian linewidth to reversed (clockwise) bistable behavior with 

Gaussian linewidth. 
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Enhancement of the parameter    can be achieved in strong coupling regimes 

1)(  - see recent experiments with superconductor qubits [43], solid-state semi-

conductors [44] and nano-mechanical resonators [45]. See also, recent theoretical 

investigations on entanglement of non-dissipative strongly coupled two-qubit 

system in a single quantized field mode outside the RWA ([46] and refs. therein), 

earlier studies outside the RWA on dissipative quantum systems interacting with 

squeezed vacuum baths [47-49] and non-dissipative mesoscopic multistable [50] 

and pulsed-driven qubit [51] systems. Outside the RWA, critical slowing down 

has been discussed recently [52] in which near the critical point of the incident 

field, the system exhibits switching to the lower branch of the first harmonic 

output field with irregular oscillations in both high and low quality cavity cases.   

 

In the present work, we extend the results in [41] to investigate the dynamical 

behavior of homogeneously broadened two-level atomic systems placed in an 

optical ring cavity outside the RWA. We show that the presence of various types 

of dynamics and chaos is sensitively dependent on the atomic detuning 

parameter. 

 

The paper is organized as follows: The non-autonomous model of Maxwell-

Bloch equations outside the RWA with analytical treatment via Fourier series 

decomposition up to the first generated harmonic component of the output field 

is reviewed in Sec. 2. Nonlinear dynamics and bifurcation behavior are 

computationally investigated in Sec. 3. The effect of Gaussian field mode-

structure on the dynamical behavior is investigated in Sec. 4, followed by a 

summary is Sec. 5.  
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II Model Review 

For a single mode ring cavity containing a homogeneously broadened two-level 

atomic medium of length L, the c-number model Maxwell-Bloch equations,  in 

the plane wave and mean field approximations, and in a rotating frame at L , 

outside the RWA, have the dimensionless form  [41] 

 

  rC22x)i1(Y
dt

dx
,                                                                             (1a)
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The notations in equations 1a to 1c are as follows: r  are the mean values of the 

quadrature atomic polarization components, 3r  is the mean value of the atomic 

inversion,   is the transverse relaxation of the atomic polarization, ll  is the 

longitudinal relaxation of the atomic inversion and  /)(2 Lo  is the 

normalised atomic detuning, where 0  is the atomic transition frequency, L  is 

the input field frequency, and L 2 . The quantities x  and Y  are the normalized 

output and input amplitude fields, respectively,  /)( Lc 
 
is the normalized 

cavity detuning with c  cavity mode frequency,  cavity decay constant and 

)/(gC 2    is the cooperative parameter, where g is the coupling between the 

cavity field and the atoms and (c.c.) stands for complex conjugate.  
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The terms containing  )(
2 titi Lee
    in equations (1b, 1c) represent the effect of 

interaction of the cavity field with the atoms outside the RWA. Within the RWA 

these terms are discarded and equations 1a-1c yield the well-known input-output 

field steady state equation [6-8]: 
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where, ox  is the fundamental output field amplitude within the RWA.  

 

The solution for the atomic Bloch components 3,r  and the cavity field x  

according to equations 1a-1c contain all harmonics of frequency nL2  ( n

integer), due to the presence of the harmonic coefficients tie  . Following our 

analysis in [41, 42] the field and atomic variables are decomposed up to first 

harmonic ( 1n ) as follows: 

 

titio
etretrtrtr  

 )()()()( 3,3,3,3, 
 

titi

o etxetxtxtx  

  )()()()(
  ,                                                                        (3) 

 

where, ox  and o
r 3,  are the fundamental field and atomic variables components, 

respectively, within the RWA, and the corresponding components x , 

3,r  are 

those generated outside the RWA. Substituting equation 3 into 1a-1c and 

comparing the coefficients of tine  (n=0,1) we reach the following system of 

ordinary differential equations (ODEs) for atom and field harmonic amplitude 

components: 
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Our analytical and numerical results [41, 42] show that the amplitude of the 

additional first harmonic component x , is of smaller order, )( 2Ο  with L2/ 

, compared with the fundamental field component amplitude ox , and to the same 

order of approximation the field component 0x  and hence the dipole 

component 0

r . Consequently, equations 4a-4h reduce to the following smaller 

set of ODEs:   
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Traditionally optical instabilities may arise in two well known regimes [25, 53]: 

(i) Interaction of the atomic system with (large) multimode field that 

results from the interplay of varity of time scales leading to chaos and 

self-pulsing. 
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(ii) Interaction of the atomic system with the intense single cavity mode 

that saturates the collection of atoms in the absorptive OB which does 

not involve any cooperative effects. 

 

It is well known that when the system is in the unstable region of the upper branch 

of the OB curve, either it precipitates to the lower transmission branch or exhibits 

oscillatory behavior which is either periodic (self-pulsing) or non-periodic 

(chaotic). The analytical study of instability [11] for absorptive and dispersive 

bistability shows that the instability of the upper branch may exist if at least one 

of the off-resonant modes are unstable. Now we investigate the nonlinear 

dynamical behavior of the OB system within and outside the RWA in the 

dispersive case when the atomic polarization variables are eliminated 

adiabatically. In this adiabatic case, the atomic relaxation time for the atomic 

polarization components is shorter than the other characteristic times (

Cll  ,,, ) of the system. Hence by substuting in equations 5a-5e for 



,or  by 

their stationary values [41], and by expressing the normalized output fields, 

ooo ivux  and   ivux , we obtain the following system of ODEs:     
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t ,  / ,  /  and  / .  

 

Equations 6a-6e are treated numerically in the next section using the standard 

Runge-Kutta method with suitable initial conditions to display various dynamical 

states. For the absorbing medium we take 5.0)0(ro
3   with cavity fields 0)0(x ,o 

.  

 

III Computational Results 

Nonlinear systems that display chaos are sensitive to the system parameters and 

essentially show four modes of operations: chaotic, stable, periodic and 

quasiperiodic. This can be demonstrated in the bifurcation diagram for the 

normalized output field components within and outside the RWA ( ox  and x ) 

against the input field Y for fixed system parameters ( 374 , 340 , 70000C

, 610 , 25.0 ) as seen in Fig. (1a,b). It is noted that, optical bistable devices 

can display chaotic behavior, multi-periodic and single periodic states for both 

output field components by increasing the input field Y. In other words, the OB 

device routes from chaos to self pulsing by increasing Y. In particular, chaotic 

behavior occurs at Y =950, and is transformed to 4-periods doubling at Y=1225, 

to 2-periods at Y=1350 and finally to a single period at Y=2000. These results 
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were obtained earlier in [53] for the output field component ox  within the RWA. 

Note that, each point in the bifurcation diagram represents the peak of the 

oscillation. 

 

The steady state solution that represents the relation between the output field 

component outside the RWA, x  and the input field Y in the dispersive case for 

different detuning parameters ( , ) is shown in Figure (2a, b). The variation of 

the detuning parameters leads to closed loop behavior [41]. Linear stability 

analysis around the stationary state shows that, points on the upper branch of the 

bistable behavior are unstable and the associated instability arises with opposite 

signs of the detuning parameters ( 0 ) and multiple periods of unstable points 

occurs for large cooperativity ( 300C ) [25]. In the (reversed) bistable behavior 

over a certain input range, )2500,0(Y , as shown in the inset of Fig. (2b), the 

points A, B, C, D represent the unstable points in the upper branch of Fig. (2b) 

and correspond to the respective Y values as 950Y  , 1225Y  , 1350Y   and 

2000Y  , respectively.  

 

The system of normalized coupled equations 6a-6e is integrated numerically for 

fixed values of 340 , 374 , 25.0 . For different Y values, the time-

dependence of the output field components ox and x , the phase portrait (

)xRe(),xIm( ,o,o  ), 2-D Poincare map of the solutions at fixed o

3r and power 

spectra diagrams of the input intensities are plotted respectively in Figs. (3-6) for 

fixed parameters of the system. For Y=2000 (Fig. 3a,b), periodic behavior is 

displayed for both field components ( ox , x ) but with significant spikes for the 

output field component of the RWA x . A single period is exhibited in the phase 
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space of the output field component ox , but with weak oscillations occuring in 

the single period of the x  component (Fig. 3b). The presence of spikes in the 

phase portrait is due to the oscillatory nature of the systems that operate outside 

the RWA that generate the virtual photons. This single periodic loop appears in 

the Poincaré diagram of the output field components ( ox , x ) as a single point 

(Fig. 3a, b). The power spectrum shows more oscillations for the component x  

outside the RWA, as compared with the component ox  within the RWA.      

 

Decreasing Y to Y=1350 (Fig. 4a,b), double periods occur for both field 

components ox and x , but with weak oscillatory behavior in the x -phase 

portrait (Fig. 4b). The Poincaré map that confirms the existence of period 

doubling is shown by two points. At Y=1225 we have four periods (Fig. 5) and 

finaly at Y=950  the chaotic behavior is exhibited (Fig.6). Notice the random 

behavior for the field component x  as seen in the phase space of Figs. (5b, 6b). 

For fixed Y=1350, the system can be converted from chaotic to aperiodic 

behavior for both components ox , x  by increasing the atomic detuning from 

360 to 374or vice-versa (Fig. 7).       

 

IV Transverse Field Effect  

Here , we consider that the field and atomic variables are allowed to vary along 

the radial direction by taking into account the possible variations of the field 

along the transverse directions, hence, we can study the effect of the transverse 

field on the dynamics of the OB device. The reduced Maxwell equations, within 

the one transverse mode approximation for the unidirectional normalised field 
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component in the ring cavity configuration, together with the Bloch equations for 

homogeneously broadened 2-level atomic systems driven by a Gaussian field 

)t(x)(a   within the mean field approximation are [42]: 
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Here 
)

w

2
(

2
o

2

e)(a




  is the Gaussian field  shape for Fresnel number 1F  , )(ah o

, in which o  is the radius of the atomic sample and ow  is the spot size or beam 

waist. In the case of adiatatic elimination of atomic polarization , equations 7a-

7e reduce to the following system of ODEs for the output field components 

ooo vux  and   vux  , 
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For large detuning ( 1 ), as we consider throughout this paper, equation 8e can 

be reduced to (see App. I)  
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Hence,
 

)(r o

3   becomes independent of the transverse field parameter and so 

equations 8a-8e become  
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where )(r o

3  obeys equation 9.   

 

 V Summary 

We have investigated the dynamical behavior of an optical bistable system for 

homogeneously broadened two-level atoms interacting with a single mode ring 

cavity outside the RWA in the dispersive regime. The system routes from 

periodic to chaotic behavior by decreasing the input field. This can be viewed 

from the bifurcation diagram ( ,ox against Y) by sweeping the parameter Y forth 

and back. Outside the RWA, the virtual photons (that results from rapidly 

oscillating terms of the atom-field interaction) affect the self-pulsing and chaotic 

behaviors of the unstable state of the system in the form of spiking. The state of 

the OB device changing from regular (self-pulsing) to irregular (chaos) 

oscillations by varying the atomic detuning as seen in the bifurcation diagram of 

the output field against the atomic detuning. Gaussian field mode shape has the 

effect to  
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Figure Captions  

Fig. 1:  (a) Bifurcation diagram represents the maximum value of the output field 

within RWA against the input field Y for fixed C=70000, 340,374 

. 

            (b) As (a) but for the first harmonic output field component x for  

25.0  610 . 
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Fig. 2: (a) The first harmonic output field component x  against the incident 

field Y for C=70000, 25.0  610  and different values of detuning 

parameters 50,30   (), 120,100    () and 220  

225,   (   ). 

            (b) Same as (a) but for 340,374    (  ). Inset shows the zooming 

of x  for ]2500,0[Y .  

Fig. 3: (a) Self pulse oscillations for both ox  and x  components in the 

adiabatic case against the time t   for C=70000, 25.0 , 610 , 

340,374   and Y=2000. 

            (b) The corresponding phase-space representation on ( )Re( ox )Im( ox ) for 

the fundamental output field component and on ( )Re( x )Im( x ) for the 

first harmonic output field component respectively. 

Poincare map for both ox and x . 

Fig.4: Same as (2) but with Y=1350.   

Fig. 5:  Same as (2) but with Y=1225.   

Fig. 6: Same as (2) but with Y=950.   

Fig. 7: (a) Bifurcation diagram that represents the maximum value of the output 

field within RWA against the atomic detuning   for fixed values of other 

parameters as in Fig. 1, but with Y=1350. Insets are phase portrait of 

)Re( ox )Im( ox  for different detuning values 374, 368 and 360. 

           (b) As (a) but for The first harmonic output field component x . 
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