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 1 

ABSTRACT 2 

 3 

Dipterocarps are one of the most important tree families in the lowland forests of 4 

Southeast Asia and are somewhat unusual among tropical trees in that they form 5 

ectomycorrhizal (EcM) symbiotic root-inhabiting fungal associations. It has been 6 

hypothesised that dipterocarps have been partnered in this mutualistic association prior 7 

to the separation of Gondwana. Under many conditions EcMs form rapidly on 8 

dipterocarp seedlings through inocula present in the soil, although few studies have 9 

been conducted to provide evidence that they improve seedling establishment and 10 

performance. There are hundreds of EcM species associated with dipterocarps. Fungal 11 

fruit body surveys suggest the most important families are Amanitaceae, Boletaceae and 12 

Russulaceae, although Thelephoraceae also become numerically important when root 13 

tips are examined. EcM communities are affected by various biotic and abiotic factors, 14 

as well as anthropogenic perturbations, and I examine the importance of these in 15 

structuring EcM communities. 16 

 17 

Key words: fungi; mycorrhiza; molecular identification; mutualism; seedling 18 

performance; soils; symbiosis. 19 
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LOWLAND EVERGREEN RAIN FORESTS OF SOUTHEAST ASIA ARE HIGHLY SPECIES RICH. 22 

Their tree communities are dominated by members of the Dipterocarpaceae (Proctor et 23 

al. 1983, Newman et al. 1996, 1998; Brearley et al. 2004, Slik et al. 2009). In addition 24 

to their ecological dominance, dipterocarps also provide significant economic resources, 25 

producing not only valuable timber, but also a number of non-timber forest products 26 

such as oils, nuts and resins (Shiva & Jantan 1998).  With continued degradation of 27 

forests in the Southeast Asian region, there is an increased interest in establishing 28 

plantations of forest trees and promoting restoration strategies (Kettle 2010). Due to 29 

their important ecological and economic roles, understanding the growth and 30 

regeneration of dipterocarps is an important research priority. The role of light and 31 

nutrients in seedling growth and performance has received much attention in this regard; 32 

that of mycorrhizas has often been invoked but much less studied.  33 

 34 

Mycorrhizas are an intimate symbiotic association between specialised root-inhabiting 35 

fungi and the roots of living plants; they are generally considered mutualistic as benefits 36 

are accrued by both partners. The plant provides the fungus with carbon derived from its 37 

photosynthetic activity and, in return, the fungus can improve nutrient uptake, growth, 38 

water relations, pathogen and heavy metal resistance of the plant (van der Heijden & 39 

Sanders 2002, Smith & Read 2008, and references therein). Mycorrhizas are important 40 

as they extend roots’ nutrient depletion zones, especially for poorly mobile inorganic 41 

nutrients such as phosphorus (P) that are found at especially low concentrations in many 42 

tropical soils (Proctor et al. 1983, Brearley 2003, Brearley et al. 2004, Paoli et al. 2006). 43 

Early work on mycorrhizas focused on this nutrient uptake capability of the symbiosis 44 

but we are now aware of the multifunctional role played by mycorrhizas in enhancing 45 

protection against a number of environmental stresses, and it is clear that this role acts 46 
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independently of improved plant nutrition (Read 1986, Newsham et al. 1995). This led 47 

Read (1998) to propose a definition of mycorrhizas as ‘structures in which a symbiotic 48 

union between fungi and plant roots leads to increases in fitness of one or both 49 

partners’. An estimated 95 percent of plant species are in characteristically mycorrhizal 50 

families (Read 1999) and they are found in almost every terrestrial ecosystem. The 51 

arbuscular mycorrhizal (AM) symbiosis, formed by members of the Glomeromycota, is 52 

the most abundant type of mycorrhiza, and most tropical trees form AMs (de Alwis & 53 

Abeynayake 1980, St. John 1980, Chalermpongse 1987, Newbery et al. 1988, 54 

Moyersoen 1993, Béreau et al. 1997, McGuire et al. 2008). An important, and often 55 

dominant, minority of tropical tree families, including the Dipterocarpaceae, form EcMs 56 

(Figure 1) that are mostly members of the Basidiomycota or Ascomycota. EcM trees in 57 

the tropics often form monodominant stands (Connell & Lowman 1989, Henkel 2003, 58 

Peh et al. 2011) but the dipterocarps rarely do so.  59 

 60 

In this review, I outline the current state of knowledge of dipterocarp EcM fungi and 61 

their role in tropical ecosystems.  The vast majority of current work is from the Asian 62 

dipterocarps and studies on these species, therefore, form most of the body of this 63 

review. I focus on the role of EcMs in improving seedling growth and performance (see 64 

also Brearley 2011), and on EcM species diversity and factors affecting patterns of 65 

diversity. I start with a brief history of dipterocarp mycorrhizal research and the 66 

biogeographical insights it has provided. I then examine the role of EcMs in the growth 67 

and performance of dipterocarp seedlings under both nursery and field conditions. The 68 

range of fungal species that form EcMs on dipterocarps is then explored, and I outline 69 

the how new molecular techniques have improved our knowledge of dipterocarp EcMs. 70 

Key determinants of EcM community dynamics, including various biotic and abiotic 71 
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factors and perturbations, are then evaluated. Colonization by other symbiotic fungi is 72 

briefly assessed. The review concludes with some thoughts on future research priorities. 73 

 74 

BRIEF HISTORY OF DIPTEROCARP MYCORRHIZAL RESEARCH 75 

Van Roosendael and Thorenaar (1924) and de Voogd (1933) both noted the presence of 76 

‘mycorrhizas’ on the roots of dipterocarp seedlings although it is not clear exactly what 77 

they saw as they did not publish pictures or record further observations. Although John 78 

Corner (1972, among others) noted EcM fungal fruiting bodies in dipterocarp forests, he 79 

attributed this to the presence of the Fagaceae (long known to be EcM in temperate 80 

regions), and it was not until 1966 that Singh recorded that dipterocarps, in common 81 

with a few other tropical angiosperms (Peyronel & Fassi 1957), formed EcMs. Early 82 

work (1960s to 1980s) simply noted various dipterocarp species as forming EcM 83 

associations (Singh 1966, de Alwis & Abeyneyake 1980, Alexander & Högberg 1986) 84 

and made cursory attempts to ascertain which fungal species were putative EcM formers 85 

(Hong 1979). The first attempts at in vitro synthesis of EcMs were not reported until the 86 

late 1980s (Louis & Scott 1987, de Alwis & Abeyneyake 1988) along with early reports 87 

of increased growth of inoculated seedlings also around this time (Hadi & Santoso 88 

1988, Santoso 1988). In the late 1980s and early 1990s, Lee Su See’s work advanced 89 

EcM research by examining functional aspects of the symbiosis e.g., interactions of 90 

EcMs with nutrients to determine seedling growth (Lee & Alexander 1994), and the 91 

succession of EcM fungi on seedlings (Lee & Alexander 1996) and her collaborations 92 

with Frédéric Lapeyrie advanced inoculation techniques with a range of fungal species 93 

(Yazid et al. 1994, 1996; Lee et al. 1995b, 2008). Throughout the 1990s to mid 2000s 94 

the IUFRO-SPDC funded BIO-REFOR conferences led to more work being published 95 

in the region; although some of these papers were valuable, many had limited value due 96 
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to inappropriate design or lack of detail in reporting (Brearley 2011). The involvement 97 

of Roy Watling in the 1990s started to build knowledge of the fungal flora of Peninsular 98 

Malaysia from the strong foundations laid by Corner (Watling & Lee 1995, 1998, 2007; 99 

Watling et al. 1995a, 1998, 2002, 2006; Lee et al. 2002a, 2003; Lee 2005).  100 

Subsequent eco-physiological work examined how EcM communities were affected by 101 

biotic and abiotic perturbations (Brearley 2006, Brearley et al. 2003, 2007) and 102 

examined the role of EcMs in organic nitrogen acquisition (Brearley et al. 2003). The 103 

first molecular study of dipterocarp EcM communities appeared in 2003 104 

(Sirikantaramas et al. 2003), and since then there have been a few more (Moyerseon 105 

2006, Yuwa-Amornpitak et al. 2006, Tedersoo et al. 2007a, Peay et al. 2010) although 106 

until the comprehensive study by Peay et al. (2010) these had mostly focused on rare or 107 

outlying members of the Dipterocarpaceae. Most recently, advances based on early 108 

nursery-based inoculation studies have been extended to the field performance of 109 

dipterocarp seedlings (Brearley 2003, Turjaman et al. 2007, Lee et al. 2008, Tata et al. 110 

2010).  111 

 112 

INSIGHTS FROM ECTOMYCORRHIZAS INTO THE ORIGINS AND 113 

BIOGEOGRAPHY OF THE DIPTEROCARPACEAE 114 

The biogeography of the Dipterocarpaceae is interesting as the vast majority of the 520 115 

or so species are found in Southeast Asia with around 30 species in Africa and two in 116 

South America (Dayanandan et al. 1999). The consistent EcM status of 117 

Dipterocarpaceae in Southeast Asia, the dipterocarp sub-family Monotoideae in Africa 118 

and the Neotropical genus Pakaraimaea, suggests a common EcM ancestor and 119 

evolution of the EcM habit before continental separation of Gondwana. Doucousso et 120 

al. (2004) placed the origin of the EcM habit at least 88 million yr ago, prior to the 121 
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separation of Madagascar and India, as the closest relative of the Dipterocarpaceae 122 

sharing a common ancestor, the Madagascan Sarcoleanaceae, are also EcM. The more 123 

recent discovery by Moyersoen (2006) that Pakaraimaea dipterocarpacea, basal in the 124 

dipterocarp clade, is also EcM suggests an earlier origin of the EcM habit to around 135 125 

million yr ago before the continental separation of South America from Africa. This 126 

predates the earliest EcM fossils, which are around 50 million yr old (LePage et al. 127 

1997, Beimforde et al. 2011) and sets the evolution of the EcM habit on the same 128 

timescale as the rise and radiation of the angiosperms. The evidence is not conclusive, 129 

however, as Alexander (2006) suggests that the Dipterocarpaceae might not have been 130 

EcM prior to the separation of the continents but became EcM at a later stage. 131 

 132 

EFFECTS OF ECTOMYCORRHIZAL COLONIZATION ON THE GROWTH 133 

AND PERFORMANCE OF DIPTEROCARP SEEDLINGS 134 

The importance of EcMs for dipterocarp seedling growth and performance has been 135 

reviewed recently (Brearley 2011) and so this topic is only briefly addressed here. 136 

Numerous nursery experiments show that EcMs improve dipterocarp seedling growth 137 

and nutrient uptake (Hadi & Santoso 1988, 1989; Santoso 1988, 1991; Lee & Alexander 138 

1994; Yazid et al. 1994, 1996; Turjaman et al. 2005, 2006; Lee et al. 2008) and 139 

facilitate access to organic N sources (Brearley et al. 2003). These experiments have 140 

often been conducted with exotic EcM isolates, as it has proved difficult to isolate fungi 141 

from fruit bodies found in Southeast Asian forests. Simple observations and 142 

experiments have also correlated seedling biomass (Turner et al. 1993), relative growth 143 

rates (Saner et al. 2011) and foliar P concentrations (Lee & Lim 1989) with percentage 144 

EcM colonization. It should be reiterated, however, that most of the above experiments 145 
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have been conducted under controlled nursery conditions, sometimes with only a single 146 

species of EcM inoculated onto the roots of the experimental seedlings.  147 

 148 

Experiments under field conditions are rarer and seedlings do not show as clear a 149 

response to the presence of EcMs when planted in natural forest or rubber agroforest 150 

(Brearley 2003, Tata et al. 2010). For example, there was no clear biomass response of 151 

Hopea nervosa and Parashorea tomentella seedlings to a reduction in EcM colonization 152 

by fungicide addition, though foliar nutrient concentrations did show a decline (Brearley 153 

2003). There are significant challenges, however, in conducting field experiments, the 154 

major one being that it is very difficult to create truly non-mycorrhizal controls. 155 

Similarly, for inoculation experiments, such as that of Tata et al. (2010), where EcM 156 

inoculum is already present in the soil, the benefits of inoculating seedlings are not 157 

clear, especially if the inoculated EcM species does not remain on the roots of the 158 

seedlings. In contrast, the work of Turjaman et al. (2007) in degraded peat swamp forest 159 

did show improved growth of inoculated dipterocarp seedlings when out-planted in a 160 

degraded peat swamp area. This suggests that EcMs are most likely to benefit seedling 161 

performance when seedlings are planted in degraded areas where suitable EcM  162 

inoculum is not available, such as mine tailings (Lee et al. 2008), burnt areas (Akema et 163 

al. 2009), degraded peatlands (Turjaman et al. 2007) or areas previously used for 164 

agriculture (Ingleby et al. 2000). In many cases, such as in logged forest, EcM 165 

colonization occurs rapidly and naturally (Lee & Alexander 1996, Lee et al. 1996b) and 166 

under such conditions inoculation might not be worthwhile (Brearley 2011). 167 

Furthermore, inoculated EcM species do not always remain on the seedling roots, for 168 

example Chang et al. (1994, 1995) showed that a species of Pisolithus in Malaysian 169 
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inoculation experiments had mostly disappeared from roots six months after colonised 170 

seedlings were planted into the field.  171 

 172 

Clearly, we need to further evaluate the growth and survival of EcM versus non-EcM 173 

seedlings in the field, as positive responses to EcMs in simplified nursery environment 174 

are unlikely to be representative of those found in forest sites. In addition, we need an 175 

effective way to create truly non-mycorrhizal control seedlings for comparisons with 176 

experimental seedlings.  177 

 178 

NURSING ROLE OF PARENT TREES 179 

Early colonization of dipterocarps is dependent upon mycorrhizal connections made 180 

with parent trees (Alexander et al. 1992), but the importance of these connections for 181 

carbon transfer between plants via hyphal connections of non host-specific fungi, which 182 

has been demonstrated by Simard et al. (1997) in boreo-temperate forests, is not clear. 183 

Potentially, movement of compounds through hyphal connections could provide an 184 

important carbon subsidy to maintain dipterocarp seedlings in a light-limited state in the 185 

forest understory. Two experiments conducted in Malaysian Borneo have shown that 186 

inter-individual connections by EcM hyphal networks do not appear to influence 187 

dipterocarp seedling growth (Brearley 2003, Saner 2009). These results contrast with 188 

that of McGuire (2007) who found that incorporation into an EcM hyphal network was 189 

important for seedling growth in a similarly EcM-dominated forest of Guyana. 190 

Differences among these forest systems could be related to the differences in tree 191 

diversity between the sites, with a monodominant stand in Guyana compared with the 192 

high-diversity sites in Southeast Asia. Where there are many EcM parent trees 193 



 10 

belonging to different species, as in Southeast Asia, supporting heterospecific seedlings 194 

with carbon compounds may well be selected against. 195 

 196 

FUNGAL FLORAS AND NEW FUNGAL SPECIES 197 

The fungal flora of most dipterocarp forests is still very poorly known. Hong (1979) 198 

made the first note of putative EcM fungi including Amanita, Boletus, Gyrodon, 199 

Lactarius and Russula species from around dipterocarps at the Forest Research Institute 200 

of Malaysia’s grounds at Kepong, Peninsular Malaysia. Malaysia is probably one of the 201 

best-documented tropical countries in terms of its fungal flora but, even here, it is 202 

estimated that only 20 percent of the Peninsula’s larger fungi have been collected 203 

(Corner, in Lee et al. 1995a).  204 

The main site where detailed fruit body surveys have been carried out is Pasoh Forest 205 

Reserve in Peninsular Malaysia where Lee Su See, Roy Watling and colleagues have 206 

been working since the early 1990s (Lee et al. 2002a, 2003; Watling et al. 1998, 2002, 207 

2006). From these surveys, we know that the most common families found as fruiting 208 

bodies are Russulaceae, Boletaceae and Amanitaceae, and 296 species of fruiting body 209 

(in 19 predominantly EcM-forming families) have been recorded over a six-yr period 210 

(Lee et al. 2003). Around two-thirds of these were undescribed, and over three-quarters 211 

of the species were only collected once. Good information on fungal communities is 212 

also available from planted dipterocarps at Kepong, Peninsular Malaysia (Lee et al. 213 

1996a, Watling & Lee 1995, 1998) and natural forest at Wanariset Samboja, 214 

Kalimantan (Smits 1994, Yasman 1995) and from Corner’s early work in Malaysia and 215 

Singapore (Corner 1988). 216 

The fruiting bodies in the more seasonal dipterocarp forests of Thailand are broadly 217 

similar at the family level to those in Malaysia and Indonesia, with addition of Astraeus 218 
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(Chalermpongse 1987) that appears to be absent from the more aseasonal forests. There 219 

are also minor fungal inventories from Uppangala in the Western Ghats of India 220 

(Natarajan et al. 2005) and Sakaerat in Thailand (Chalermpongse 1987) which show 221 

similar patterns to the more extensive inventories. López-Quintero et al. (in press) have 222 

provided the first records of EcM fruiting bodies associated with the Neotropical 223 

dipterocarp Pseudomonotes tropenbosii in Colombia. 224 

 225 

DESCRIPTIONS OF DIPTEROCARP-ASSOCIATED ECTOMYCORRHIZAS 226 

There are very few published descriptions of dipterocarp EcMs and this hinders research 227 

for ecologists and mycologists who lack access to molecular sequencing facilities. 228 

Becker (1983) and Lee (1988, Lee et al. 1997) described over 25 EcM morphotypes 229 

from the roots of Shorea leprosula, and this is currently the most comprehensive set of 230 

dipterocarp EcM descriptions that we have. Watling et al. (1995a) described the EcM 231 

formed by Pisolithus aurantioscabrosus, Tedersoo et al. (2007a,b) described the EcMs 232 

formed by Sordariomycete and Coltriciella species on Vateriopsis seychellarum and 233 

Jülich (1985) described the distinctive EcMs of Riessia and Riessiella with abundant 234 

cystidia (noted as conidia by Jülich: 1985), with Lee et al. (1997) showing how these 235 

particular species differ from many EcMs in lacking a Hartig net. Lee et al. (2010) also 236 

described a new Thelephoraceae species (FP160; most probably Tomentella) used in 237 

Malaysian inoculation trials. 238 

 239 

MOLECULAR STUDIES ON DIPTEROCARP-ASSOCIATED 240 

ECTOMYCORRHIZAS 241 

Two of the most comprehensive studies of dipterocarp EcM communities have, 242 

ironically, been conducted on rare or outlying species within monospecific genera. 243 
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Moyersoen (2006) found nine EcM species on Pakaraimea dipterocarpacea in 244 

Venezuela, and Tedersoo et al. (2007a) found 18 EcM species on Vateriopsis 245 

sechellarum in the Seychelles. In Malaysian forests, Sirikantaramas et al. (2003) took 246 

root samples from five sites and showed that, belowground, the family producing the 247 

greatest number of sequences was the Thelephoraceae with just over half of the 248 

sequences. Other important families were Boletaceae, Russulaceae and 249 

Sclerodermataceae. Numerically this was similar to the results of Yuwa-Amornpitak et 250 

al. (2006) who obtained sequences from root tips from eight sites in Thailand and 251 

found, again, Thelephoraceae to provide the greatest number of sequences followed by 252 

Russulaceae and Sclerodermataceae. Sirikantaramas et al. (2003) also suggested that 253 

Thelephoraceae were often found associated with Shorea species but did not present 254 

further evidence to support their case. Currently, the most comprehensive study we have 255 

is that of Peay et al. (2010) who examined EcMs in two soil types at Lambir Hills in 256 

Sarawak and found that members of the Russulales represented around one-third of the 257 

sequences, and the Thelephorales were the fourth most abundant clade (after Boletales 258 

and Agaricales). In a dry dipterocarp forest in Thailand, Phosri et al. (in press) found 259 

Russulales and Thelephorales to be the most important taxa. In addition, Roy et al. 260 

(2009) determined that EcM fungi were associated with three Thai orchid species (two 261 

from forests with dipterocarps). These orchids are highly likely to be obtaining carbon 262 

subsidies from the associated dipterocarps. Numerically important fungal groups 263 

associated with these orchids were Thelephoraceae, Russulaceae, Clavulinaceae and 264 

Sebacinales. Tedersoo et al. (2011) have also noted the important EcM species in two 265 

African forests containing dipterocarps as non-dominant species. Table 1 summarises 266 

the importance of various fungal groups in the studies above with some additional 267 

studies also reported. 268 
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 269 

Tedersoo and Nara (2010) suggest that tropical regions have lower EcM species 270 

diversity than temperate regions due to reduced phylogenetic diversity of host trees, and 271 

a simpler soil profile, among other reasons. It is difficult, however, to reconcile this 272 

suggestion with the very high diversity of fruit bodies collected by Lee et al. (2003) as 273 

noted above, especially as belowground diversity has been shown to be higher than 274 

aboveground diversity in tropical forest EcM fungal surveys (Henkel et al. in press); 275 

clearly more work is needed to resolve this problem. 276 

 277 

ECTOMYCORRHIZAL COMMUNITY DIVERSITY, DYNAMICS AND 278 

RESPONSES TO PERTURBATIONS 279 

On Shorea leprosula, Lee et al. (1997) described 24 EcM morphotypes from various 280 

sites in Peninsular Malaysia and 36 at Danum Valley in Borneo (Lee et al. 1996b), 281 

Ingleby et al. (1998) found a similar number (26) on the roots of Shorea parvifolia as 282 

did Moyersoen (2000) on Shorea pachycarpa (29). A much higher richness of 56 EcM 283 

morphotypes were found on Hopea nervosa at Danum Valley (Lee et al. 1996b). The 284 

number of EcM morphotypes found in two nursery studies (14 and 16 species, Brearley 285 

2003 and Saner et al. 2011 respectively) appears to be lower than the field studies as 286 

many late-stage fungi (sensu Deacon et al. 1983) will be absent from nurseries. 287 

Individual seedlings may possess up to five different EcM morphotypes with 2–3 being 288 

the median number (Lee & Alexander 1996, Brearley et al. 2003). A succession of EcM 289 

fungi was observed on Shorea leprosula seedling root tips during early seedling 290 

establishment, and the number of morphotypes increased over the first seven months of 291 

seedling growth (Lee & Alexander 1996). Comparisons between seedling EcM 292 

communities will therefore be sensitive to seedling age. 293 



 14 

 294 

Studies on the population structure of dipterocarp EcMs appear to be limited to a single 295 

study. Rivière et al. (2006) examined the spatial distribution of a Russula species in 296 

dipterocarp forests dominated by Vateria indica and Dipterocarpus indicus in the 297 

Western Ghats of India. The fruiting bodies were highly aggregated but, using 298 

molecular methods, genet size was shown to be vary variable, ranging from a number of 299 

single fruiting body genets, to the largest genet containing three fruiting bodies with a 300 

maximum distance of 70 m between them. These data suggest that Russula species can 301 

form large genets, in contrast to earlier work that has shown Russula species to form 302 

relatively small genets (Redecker et al. 2001, Liang et al. 2004).  303 

 304 

HOST SPECIFICITY.— Smits (1983, 1985) provided anecdotal evidence suggesting that 305 

dipterocarp associated EcMs are highly host specific. Unfortunately, due to the lack of 306 

methodology presented in his papers it makes them difficult to evaluate. Furthermore, 307 

these results do not agree with those found in temperate regions where many fungi have 308 

an intermediate to broad host range, certainly at the host genus taxonomic level or 309 

above (Molina et al. 1992). Current evidence suggests that host specificity of 310 

dipterocarp EcMs is not as common as claimed by Smits (1983, 1985) with weak 311 

evidence for host specificity provided by Ingleby et al. (2000) who showed that 312 

seedlings of Dipterocarpus alatus grown in soil from a Hopea odorata plantation in 313 

Vietnam formed only one EcM morphotype, and this was different to the four 314 

morphotypes on Hopea odorata seedlings. Becker (1983) described ten EcM 315 

morphotypes from Shorea leprosula and Shorea maxwelliana at Pasoh of which two 316 

were shared between the two hosts. Similarly, Berriman (1986) showed that three out of 317 

11 morphotypes were shared between three Shorea seedling species (Shorea leprosula, 318 
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Shorea lepidota and Shorea macroptera) and seven were found on only one of the 319 

species. In nursery-grown dipterocarp seedlings, seven of 14 EcM morphotypes found 320 

were present on the roots of at least three of the four host seedling species of 321 

Dryobalanops lanceolata, Hopea nervosa, Parashorea tomentella and Shorea leprosula 322 

(Brearley et al. 2003, 2007). Lee et al. (1996b) recorded 61 EcM morphotypes on the 323 

roots of seedlings of Hopea nervosa and Shorea leprosula in forests at Danum Valley in 324 

Sabah, of which 31 were found on both species, 25 were found on Hopea nervosa only, 325 

and only five were found exclusively on Shorea leprosula. Examination of associations 326 

of fruit bodies with planted dipterocarp species suggests that Russula virescens is 327 

putatively associated with at least ten dipterocarp species and Boletus aureomycelinus 328 

with 21 species (Watling and Lee 1998). All of the above evidence suggests a modest 329 

amount of host specificity although the degree to which this simply represents random 330 

sampling of rare species can only be ascertained with more extensive sampling. 331 

At a higher taxonomic level, two dipterocarp-associated EcM fungi (Pisolithus 332 

aurantioscabrosus and Tomentella FP160) have also been shown to form EcMs on 333 

Acacia mangium although it is not yet known if these are functionally important (Lee & 334 

Patahayah 2003). Of the 18 species of EcM fungi on Vateriopsis seychellarum, three 335 

were shared with Intsia bijuga, and another three were shared with introduced 336 

Eucalyptus robusta (Tedersoo et al. 2007a). As a long-isolated island endemic 337 

(occurring only on a single island of the Seychelles) and an evolutionary basal lineage, 338 

V. seychellarum might not, however, be very representative of the Asian dipterocarps in 339 

this respect.   340 

 341 

REPONSES TO NUTRIENT AVAILABILITY.— Many studies show that mycorrhizal 342 

colonization decreases under conditions of higher soil, and especially P, fertility (Jones 343 
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et al. 1990, Baum & Makeschin 2000, Treseder 2004) but the results from dipterocarps 344 

are variable. Turner et al. (1993) found that NPK fertilization increased percentage EcM 345 

colonization on Shorea macroptera seedlings, and the correlation between percentage 346 

EcM and seedling biomass was stronger if the unfertilised seedlings were analysed 347 

alone. Similarly, Lee and Lim (1989) found that only seedlings from a less fertile site 348 

had a correlation between percentage EcM colonization and foliar P concentrations. 349 

Irino et al. (2004) showed that addition of a NPK fertilizer increased EcM colonization 350 

on pot-grown Dryobalanops lanceolata, although colonization was very low (8%) in the 351 

control seedlings. In contrast, addition of P in various studies had no effect on % EcM 352 

on Shorea leprosula (Suhardi 2000), two species of Dryobalanops in two contrasting 353 

soil types (Palmiotto et al. 2004), or on Hopea nervosa and Shorea leprosula (Brearley 354 

et al. 2007). However, the latter study did find species-specific responses to increased 355 

nutrient availability, most notably for Riessiella sp. that increased following P 356 

fertilization. This suggests that Riessiella might not be a fully mutualistic fungus 357 

(Brearley et al. 2007); further evidence for this hypothesis is that it also does not 358 

possess a Hartig Net (Lee et al. 1997), which is the site of nutrient transfer between the 359 

fungus and the plant. The lack of a consistent response to P fertilization in these studies 360 

suggests that EcMs are important even under conditions of higher nutrient supply as 361 

colonization rarely declines, suggesting they are still involved in assisting in seedling 362 

nutrient uptake. 363 

 364 

When an organic nutrient source of mixed leaf litter was added to the soil medium there 365 

was no change in percentage EcM colonization for three dipterocarp seedling species 366 

(Brearley et al. 2003).  In contrast, the diversity of EcM species on seedling’s roots was 367 

reduced with litter addition; this was partly driven by the reduction in colonization by 368 
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Cenococcum geophilum. Addition of Imperata cylindrica (alang-alang) litter reduced 369 

percentage EcM colonization in Shorea bracteolata (Suhardi et al. 1993), perhaps due 370 

to its allelopathic nature (Brook 1989). 371 

 372 

RESPONSES TO SOIL TYPES .—The EcM community on the roots of nursery-grown 373 

Dryobalanops lanceolata is considerably different when seedlings are grown on 374 

ultramafic (with high levels of metals such as Fe, Mg, Ni, Co and Cr) as compared to a 375 

more typical non-ultramafic ultisol soil (Brearley 2006), notably in that Cenococcum 376 

geophilum and Inocybe spp. decreased, and Boletales sp. increased in ultramafic soils, 377 

and EcM diversity was also higher. Similarly, Iwamoto and Kitayama (2002) found 378 

eleven EcM morphotypes in ultramafic soil compared to only two in a sedimentary soil 379 

from dipterocarp-dominated forests at around 700 m asl on Mount Kinabalu in Borneo. 380 

 381 

Sandy soils at Lambir Hills, Sarawak, had a greater number of EcM species than clay 382 

soils (65 vs. 41), perhaps due to more differentiated soil horizons of the sandy soils or 383 

the lower nutrient concentrations, allowing coexistence of a greater number of species 384 

(Peay et al. 2010). Such results might also, however, be due to different tree 385 

compositions on the different soil types. There was also evidence of more phylogenetic 386 

clustering of EcM species on the clay soil, giving rise to a community more dominated 387 

by Russulales and Thelephorales and lacking Cortinariaceae. Seedlings of 388 

Dryobalanops lanceolata (but not D. aromatica) at Lambir Hills had more than double 389 

the biomass of EcM when grown on their preferred soil type (clay and sandy soils 390 

respectively; Palmiotto et al. 2004) 391 

 392 
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REPONSES TO IRRADIANCE.— Studies examining changes in EcM colonization in 393 

response to differing irradiances are somewhat contrasting, most likely this is due to 394 

changes in carbohydrate flow from plant to fungus but will also be due to the differing 395 

environmental conditions associated with higher irradiance, such as higher soil 396 

temperatures. High light conditions (e.g. in forest gaps) appear to increase EcM 397 

colonization (Becker 1983; Ingleby et al. 1998). EcM colonization on five Sri Lankan 398 

Shorea species was also greatest under higher irradiances, often under full sunlight, 399 

even though this did not correspond to conditions most suited to seedling growth of 400 

these species (Tennakoon et al. 2005). In contrast, Yasman (1995) found the greatest 401 

EcM colonization under irradiances where seedling growth was also most rapid, while 402 

other studies have shown no clear difference among different light treatments of EcM 403 

abundance on seedlings of two contrasting species, Shorea leprosula and Hopea 404 

nervosa (Brearley et al. 2007). When considering diversity of EcMs under differing 405 

conditions we may also need to examine the size of the root system and the number of 406 

root tips present, as, analogous to a species-area effect, larger root systems with more 407 

root tips may well host more EcM species (see Taylor 2002). 408 

 409 

RESPONSES TO BURNING.— Tata et al. (2003) did not find any EcM fruit bodies in 410 

forests burnt in 1998 in East Kalimantan (examined in 2000) and, using two dipterocarp 411 

seedling species as bait plants, she found there was no difference in the proportion of 412 

seedlings with EcM (although values for both species were low at around 5%) among 413 

seedlings grown in the burnt and unburnt forest soils. In contrast, Akema et al. (2009) 414 

found that in a severely burnt site (examined in 2002) there were no EcM root tips in the 415 

soil, although there were some fruiting bodies of typically early stage fungi (Laccaria 416 

vinaceoavellana). In the moderately burnt site, four EcM morphotypes were found, with 417 
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dominance by one species, compared to a much more even EcM community in 418 

undisturbed forest where eight morphotypes were found. There was also an indication 419 

that EcMs in the unburnt forest were concentrated in the surface soil layer, but were 420 

more evenly distributed in the soil in the moderately fire-affected site. Several reasons 421 

for severe reduction in EcMs in burnt forests include changed microclimate, changes in 422 

the input of leaf litter, volatilization of organically bound nutrients, the death of host 423 

trees, and possible sterilization of upper layers of the soil by the fires (Certini 2005) 424 

 425 

REPONSES TO LOGGING DISTURBANCE.— Initial fruit body data from Pasoh showed 426 

slightly more EcM species in logged (98) than unlogged (75) forest (largely due to more 427 

Russula species), although only around 10 percent of species were shared by both forest 428 

types (Watling et al. 1998). Additional data revealed that logged forests contained only 429 

32 percent of the fungal flora of the forest reserve as a whole (Watling et al. 2002), 430 

although this number is difficult to put into context given the differences in area and 431 

sampling effort between the logged and unlogged forests. Lee et al. (1996b) found no 432 

difference in percentage EcM on Hopea nervosa and Shorea leprosula in recently 433 

logged (up to three yr previously) and unlogged plots at Danum Valley, Sabah, and the 434 

number of EcM morphotypes on the roots of the seedlings showed no consistent 435 

patterns across the three paired sites studied. Of the 61 EcM morphotypes, 30 were 436 

exclusive to unlogged forest whereas 16 were restricted to logged forest; furthermore, of 437 

29 EcM morphotypes which were found only in one of the sixteen plots, around three-438 

quarters of these were found in unlogged forest only, suggesting that logging may have 439 

more of a negative impact on uncommon EcM morphotypes. Ingleby et al. (1998) 440 

examined EcMs on Shorea parvifolia nine months after hand logging and found an 441 

increased diversity of EcM morphotypes under the logged, higher irradiance conditions. 442 
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However, in this study it is difficult to disentangle the effects of logging from increased 443 

light levels created by logging disturbance.  The immediate impacts of logging on the 444 

diversity and functioning of the EcM communities has not yet been assessed. 445 

 446 

COLONIZATION BY OTHER (SYMBIOTIC) FUNGAL STRUCTURES 447 

There are reports of some dipterocarps also forming arbuscular mycorrhiza (AM) 448 

associations (Shamsudin 1979, Chalermpongse 1987, Ibrahim et al. 1995, Dhungana et 449 

al. 1996, Shi et al. 2002, 2007; Tawaraya et al. 2003) and an important question is how 450 

common is dual colonization, and are interactions among colonisers beneficial to the 451 

host plants, as seen by Chen et al. (2000) for eucalypts? The only data on dual 452 

colonization did not find a difference in the relative growth rate of Hopea odorata 453 

seedlings with EcM alone (38 out of 54 seedlings) or dual EcM/AM colonization (16 454 

out of 54 seedlings) (Ibrahim et al. 1995). Ectendomycorrhizal colonization has also 455 

been reported in Shorea parvifolia (Louis 1988) and other dipterocarps (Chalermpongse 456 

1987, Tupas and Sajise 1976). All of the above information suggests that there could be 457 

a considerable diversity of mycorrhizal morphologies in the Dipterocarpaceae, and 458 

additional morphological information on mycorrhizal symbioses is needed. 459 

 460 

FUTURE WORK 461 

Increased knowledge of dipterocarp-associated EcM fungal community structure is 462 

being facilitated by extensive and long-term fruiting body surveys as well as molecular 463 

analyses of belowground EcM communities. Nursery and field based studies are 464 

improving understanding of growth and nutrition relations of EcM dipterocarp seedlings 465 

(Brearley 2011). The following areas for future research on dipterocarp-associated EcM 466 

fungi and plant-fungal ecosystem interactions are suggested: 467 
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 468 

(1) Bring more EcM fungi into culture and test them for functional symbiotic 469 

capabilities. Fungi that appear to promote plant performance should be further 470 

investigated in field studies where the ecological importance of EcM for dipterocarp 471 

growth and survival is most important although currently equivocal. 472 

 473 

(2) It is important to determine the roles that fungi might be playing in ecosystem 474 

nutrient cycling processes. How do they influence leaf litter decomposition and the 475 

subsequent release of nutrients? This might be achieved by analyses of extracellular 476 

enzyme activities. Do EcMs influence ecosystem processes? A nitrogen isotopic budget 477 

of ecosystem compartments might shed some light on the importance of EcM fungi in 478 

nitrogen-cycling processes (see Hobbie & Hobbie 2008). 479 

 480 

(3) Community studies on EcM root tips and fruiting bodies are needed, as are studies 481 

of community dynamics in response to land-use change or other current global changes. 482 

Our understanding of EcM responses to logging remains rudimentary, and it is not clear 483 

which species or groups of species are more or less affected by disturbances. Although 484 

some studies have suggested that temperate and tropical EcM communities have similar 485 

diversity, tropical studies are mostly short term and have not examined, for example, 486 

differentiation by depth or seasonal changes. Linking fungal diversity with ecosystem 487 

processes in tropical forests, and how such relationships are affected by disturbances is 488 

another area of considerable research importance.. 489 

 490 

(4) Taxonomic capacity for fungal studies in the appropriate geographical regions needs 491 

to be improved, for both traditional taxonomy as well as molecular taxonomy.  Herbaria 492 
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provide a valuable repository of sequence diversity (e.g., Brock et al. 2008) and 493 

sequences from identified fungal fruit body specimens would allow us to relate 494 

belowground to aboveground fungal diversity in a more meaningful way. 495 

 496 

(5) We should be determining the ecophysiological requirements of selected 497 

functionally important tropical EcM isolates. Other than those studies on species of 498 

interest for inoculation schemes (Patahayah et al. 2003, Brearley et al. 2005) there is 499 

minimal knowledge on the ecophysiology of tropical EcM fungi. For example, what are 500 

their temperature and nutrient requirements? Can they access organic nutrients, as has 501 

been shown in temperate regions? 502 

 503 

(6) And finally, what is the morphological diversity of mycorrhizal types? Is dual 504 

mycorrhizal colonization common and functionally important? If so, what are the 505 

developmental, physiological and environmental factors in controlling potential dual 506 

colonization? 507 

 508 
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FIGURE 1. Ectomycorrhizas formed by A) Scleroderma species, B) Inocybe species 988 

and C) Thelephorales species on roots of various member of the Dipterocarpaceae 989 

(Photograph C by Götz Palfner). 990 
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TABLE 1. Molecular identification of ectomycorrhizas associated with Dipterocarpaceae hosts in a number of studies. All values are the 

percentage of sequences found within the particular fungal lineage (taxonomic nomenclature follows Tedersoo et al. 2010). Note that studies are 

not strictly comparable due to different primer pairs used to amplify fungal DNA. 

 Malaysia (Five 

sites) 

Venezuela 

(Pakaraimea 

dipterocarpacea) 

Thailand (Eight 

sites) 

Seychelles 

(Vateriopisis 

seychellarum) 

Sarawak (Lambir 

Hills) 

Sumatra (Jambi) Thailand 

(Phitsanulok) 

Kalimantan 

(Bukit Bangkirai) 

 Sirikantaramas et 

al. 2003 

 

Moyersoen 2006 Yuwa-

Amornpitak et al. 

2006 

Tedersoo et al. 

2007a 

Peay et al. 2010 Tata et al. 2010 Phosri et al. in 

press 
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Ascomycota - - - - - - - 3 

 Elaphomycetales - - - - 1 - 4 - 

 Helotiales - - - - 1 - - - 

 Pezizales - - - - - - 3 - 

 Sordariales - - - 11 5 - 6 - 

Basidiomycota - - - - - - - - 

 Agaricales - - 3 - 3 - - - 

 /amanita 1 11 3 - 3 - 3 6 

 /cortinarius 1 11 - 11 10 - - 6 

 /hygrophorus 1 - - - - - - - 

 /inocybe - 22 9 6 - - 4 2 
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 /laccaria - - - - - - 1 - 

 Atheliales - - - - 3 - 1 - 

 Boletales - - - - 5 - - 15 

 /boletus 17 - 6 6 11 - 1 - 

 /pisolithus-

scleroderma 

10 - 21 6 2 25 3 - 

 Cantharellalaes - - - - 3 - - 11 

 /cantharellus 2 - - 6 3 8 4 - 

 /clavulina - 22 - - 6 8 3 - 

 Hymenochaetales - - - 17 2 - - - 

 Hysterangiales - - - - 1 - - - 

 Russulales 16 - 18 6 28 - 32 31 

 Sebacinales - 11 - - 2 8 6 2 

 Thelephorales 51 - 36 33 12 50 25 25 

Unidentified - 22 3 - - - - - 


