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Abstract

A structural condition is given for finite maximal antichains in the homomor-
phism order of relational structures to have the splitting property. It turns out that
non-splitting antichains appear only at the bottom of the order. Moreover, we ex-
amine looseness and finite antichain extension property for some subclasses of the
homomorphism poset. Finally, we take a look at cut-points in this order.
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1 Introduction

A homomorphism from a graph G to a graph H is a mapping f : V (G) → V (H) that
preserves the edges of G, that is if xy ∈ E(G) then f(x)f(y) ∈ E(H). The omission
of round or curly brackets indicates that the definition applies to both undirected and
directed graphs, as does the discussion in the next few paragraphs. The definition applies
equally well to finite and infinite graphs, but all graphs we consider in this paper are
finite.

∗ The Institute for Theoretical Computer Science (ITI) is supported as project 1M0545 by the Ministry
of Education of the Czech Republic.
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Existence of homomorphisms defines a relation on the class of all graphs, which is
reflexive (the identity mapping is a homomorphism) and transitive (the composition of
homomorphisms is a homomorphism); thus it is a preorder. Hence we write G ≤ H if
there exists a homomorphism from G to H.

Furthermore we write G ∼ H if G ≤ H and at the same time H ≤ G. Since ≤ is
a preorder, the relation ∼ is an equivalence relation. The preorder ≤ induces a partial
order on equivalence classes of ∼, which is called the homomorphism order.

A core is a graph which admits a homomorphism to no proper subgraph of itself. It
is easy to show that there is exactly one core (up to isomorphism) in each equivalence
class of ∼ (see [14]). So we have a canonical representative in each class, and sometimes
it may be convenient to consider the homomorphism order to be a relation on the set of
all cores rather than ∼-equivalence classes.

Several properties of the homomorphism order have been examined. Perhaps the
earliest result is its universality: Hedrĺın [13] proved that the homomorphism order
contains every countable partial order as an induced suborder. It came as a surprise
that the same is true about the homomorphism order of finite directed paths, which
was proved by Hubička and Nešeťril [15, 16]. Another considered property was density.
Welzl [20] showed that there is only one gap in the homomorphism order of undirected
graphs. There are infinitely many gaps in the order of directed graphs, and they were
described by Nešeťril and Tardif [18]; we give an overview in Section 2.3.

We are interested in finite maximal antichains in the homomorphism order.
As one of the first applications of the probabilistic method, P. Erdős [7] showed that

there exist undirected graphs with arbitrary large girth and arbitrary large chromatic
number. Thus if A is a set of undirected graphs that are not bipartite, there exists
a graph H that is incomparable with all elements of A: it suffices to take H which
has both chromatic number and girth larger than any graph in A. Hence each finite
maximal antichain contains a bipartite graph or a graph with a loop; but there are only
two bipartite cores and only one core with a loop. Therefore there are only three finite
maximal antichains: {K1}, {K2} and {⊤}, where ⊤ denotes the graph consisting of a
single vertex with a loop.

The situation is more intricate in the order of digraphs. There are four one-element
maximal antichains: {K1}, {~P1}, {~P2} and {⊤}; where ⊤ is the graph with a single
vertex with a loop as before, and ~Pk denotes the directed path with k edges.

Maximal antichains of size 2 were classified by Nešeťril and Tardif [19]. They showed
that they are the sets {F,D} such that (F,D) is a homomorphism duality : a pair of
graphs satisfying that F ≤ X is for any digraph X equivalent to X � D.

In general, a maximal antichain A splits if it is a disjoint union A = F ∪D such that
(using fairly standard notation1) the whole poset P = F↑∪D↓. Equivalently, (F ,D) is a
splitting of A if and only if A↑ = F↑ and A↓ = D↓. The result mentioned in the previous
paragraph implies that all maximal antichains of size 2 in the homomorphism order of
digraphs split, because A↑ = F ↑ and A↓ = D↓. Later, Foniok, Nešeťril and Tardif [12]

1 F↑ = {X : ∃F ∈ F , F ≤ X} is the upset generated by F ; and D↓ = {X : ∃D ∈ D, X ≤ D} is the
downset generated by D
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proved that in the homomorphism order of digraphs, all finite maximal antichains of size
greater than one split.

The splitting property of maximal antichains in general posets has been extensively
studied, see [1, 2, 4, 5, 6, 8, 9, 10]. Here we are concerned with the splitting property of
maximal antichains in the homomorphism order of finite relational structures. Relational
structures are generalisations of graphs; they have a set of vertices and multiple sets of
edges, each of which is a relation that is not necessarily binary. We introduce relational
structures and the homomorphism order in Section 2.

Extension of antichains is the topic of Section 3. There we summarise and extend
recent results of [3]. Several properties are defined that imply extensibility of finite
antichains to splitting or non-splitting infinite maximal antichains. We also look at
the problem of cut-points, elements of the poset that cut an interval into two. Some
cut-points are again linked to dualities.

In Section 4, we show that almost all finite maximal antichains in this homomorphism
order have the splitting property. The exceptions appear at the very bottom of the
order, and are formed by structures with few edges. For the antichains that split we
show how to partition them into F and D. This has been known for digraphs [11] and
structures with one relation of arbitrary arity [12].

Lastly, we list some open questions and suggestions for future work in Section 5.

2 Homomorphism order of relational structures

2.1 Relational structures

A type ∆ is a sequence (δi : i ∈ I) of positive integers; I is a finite set of indices. A
relational structure A of type ∆ is a pair (X, (Ri : i ∈ I)), where X is a finite nonempty
set and Ri ⊆ Xδi ; that is, Ri is a δi-ary relation on X. We often refer to a relational
structure of type ∆ as a ∆-structure. In this paper, we do not consider unary relations;
so we assume that δi ≥ 2 for all i ∈ I.

If A = (X, (Ri : i ∈ I)), the base set X is denoted by A and the relation Ri by Ri(A).
The elements of the base set are called vertices and the elements of the relations Ri

are called edges; this terminology is motivated by the fact that relational structures of
type ∆ = (2) are digraphs. To distinguish between various relations of a ∆-structure we
speak about kinds of edges (so the elements of Ri(A) are referred to as the edges of the
ith kind).

Let A and A′ be two relational structures of the same type ∆. A mapping f : A → A′

is a homomorphism from A to A′ if for every i ∈ I and for every u1, u2, . . . , uδi
∈ A the

following implication holds:

(u1, u2, . . . , uδi
) ∈ Ri(A) ⇒ (f(u1), f(u2), . . . , f(uδi

)) ∈ Ri(A
′).

An endomorphism is a homomorphism from a ∆-structure to itself.
If there exists a homomorphism from A to A′, we say that A is homomorphic to A′ and

write A ≤ A′; otherwise we write A � A′. If A is homomorphic to A′ and at the same
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time A′ is homomorphic to A, we say that A and A′ are homomorphically equivalent and
write A ∼ A′. If on the other hand there exists no homomorphism from A to A′ and no
homomorphism from A′ to A, we say that A and A′ are incomparable and write A ‖ A′.

A ∆-structure C is a core if it is not homomorphic to any proper substructure of
itself. Equivalently, C is a core if every endomorphism of C is an automorphism. It is
well-known (consult [14]) that every ∆-structure A is homomorphically equivalent up
to isomorphism to exactly one core C; then C is called the core of A. The class of all
∆-structures which are cores is denoted by C(∆).

2.2 Homomorphism order

Let ∆ be a fixed type. The relation ≤ of being homomorphic is reflexive, as the identity
mapping is a homomorphism from a ∆-structure to itself, and it is transitive, since the
composition of two homomorphisms is a homomorphism. Thus ≤ is a preorder on the
class of all ∆-structures.

This preorder induces a partial order on ∼-equivalence classes, which is naturally
equivalent to the partial order ≤ on the class C(∆) of all core ∆-structures (taken up to
isomorphism). This order is called the homomorphism order.

Note that C(∆) is a distributive lattice: The supremum of two structures A,B is
their disjoint union A + B and the infimum is the categorical product A × B (a precise
definition is found e.g. in [12, 14]).2

2.3 Dualities and gaps

In this section we sum up the results of [12, 18]. We give the definition and the char-
acterisation of homomorphism dualities and describe their connection to gaps in the
homomorphism order.

Let F and D be two finite sets of core ∆-structures such that no homomorphisms exist
among the structures in F and among the structures in D. We say that (F ,D) is a finite
homomorphism duality (often just a finite duality) if for every ∆-structure A there exists
F ∈ F such that F ≤ A if and only if for all D ∈ D we have A � D. In the special case
that |F| = |D| = 1, if ({F}, {D}) is a duality pair, that is if {A : F ≤ A} = {A : A � D},
the pair (F,D) is a duality pair.

For the full description of finite dualities we need some more notions. The incidence
graph Inc(A) of a ∆-structure A is the bipartite multigraph (V1 ∪ V2, E) with parts
V1 = A and

V2 = Block(A) :=
{

(i, (a1, . . . , aδi
)) : i ∈ I, (a1, . . . , aδi

) ∈ Ri(A)
}

,

and one edge between a and (i, (a1, . . . , aδi
)) for each occurrence of a as some aj in an

edge (a1, . . . , aδi
) ∈ Ri(A).

2 Strictly we should say that the supremum is the core of the disjoint union; similarly for infimum.
We allow ourselves the concession to be a little imprecise, which we expect to make the exposition
clearer rather than more confused.
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A ∆-structure A is connected if its incidence graph Inc(A) is connected; it is a ∆-tree
if Inc(A) is a tree; and it is a ∆-forest if Inc(A) is a ∆-forest. A component of a ∆-
structure is its maximal connected substructure. Note that a ∆-structure is a ∆-forest
if and only if each of its components is a ∆-tree.

Let us now give the characterisation of finite dualities.

2.1 Theorem ([12, 18]). If (F,D) is a duality pair, then F is a ∆-tree. Conversely, if
F is a ∆-tree, there exists a unique ∆-structure D ( the dual of F ) such that (F,D) is
a duality pair.

If (F , {D}) is a finite duality, then all elements of F are ∆-trees and D is the product
of their duals. If (F ,D) is a finite duality, then all elements of F are ∆-forests and each
element of D is the product of duals of some components of elements of F . In this case,
D is determined uniquely by F .

In a poset P, a gap is a pair (B,T ) of elements of P such that B < T and whenever
B ≤ X ≤ T , then X = B or X = T . In the homomorphism order of undirected graphs,
there is exactly one gap: (K1,K2). For digraphs and general ∆-structures, the gaps are
as follows:

2.2 Theorem ([18]). A pair (B,T ) is a gap in C(∆) if and only if there exists a ∆-
tree F with dual D such that T × D ≤ B ≤ D and T = B + F . If T is connected, then
there exists a ∆-structure B such that (B,T ) is a gap if and only if T is a ∆-tree. Then
B = T × D.

3 Antichains, looseness and cut-points

In [3], a number of properties of the homomorphism order of graphs and digraphs were
investigated.

First we introduce some of the notions defined there. Let (P,≤) be a poset. An
element Y ∈ P is a cut-point if there exist X,Z ∈ P such that X < Y < Z and the
interval [X,Z] = [X,Y ] ∪ [Y,Z]. A subset A ⊆ P is cut-free if there are no Y ∈ A and
no X,Z ∈ P such that X < Y < Z and A ∩ [X,Z] = A ∩ ([X,Y ] ∪ [Y,Z]).

We write A ‖ X to mean that the element X is incomparable with each element of A.
A subset A ⊆ P is an upward loose kernel in P if for every finite S ⊆ A and every

X ∈ P \ S↑ there exists Y ∈ A such that X < Y and A ‖ Y . Analogously A is an
downward loose kernel in P if for every finite S ⊆ A and every X ∈ P \ S↓ there exists
Y ∈ A such that X > Y and S ‖ Y .

A subset A ⊆ P has no finite maximal antichains in P if there is no finite subset
S ⊆ A that is a maximal antichain in P. Furthermore, A has the finite antichain
extension property in P if for every finite antichain S ⊆ A and every X ∈ P \ S there
exists Y ∈ A such that S ‖ Y but Y is comparable with X. Observe that if A is both
an upward and a downward loose kernel in P, then A has the finite antichain extension
property in P.

In short, the importance of these notions is this: Finite antichains in subsets with
the finite antichain extension property extend to (infinite) splitting maximal antichains.
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And non-maximal antichains in loose kernels extend to (infinite) non-splitting maximal
antichains. For details see [3].

Now let G be the homomorphism poset of undirected graphs and let G′ = G\{K1,K2}
be the set of non-bipartite cores. Then we have:

3.1 Theorem ([3]). The subset G′ is both an upward loose kernel and a downward loose
kernel in G. Hence G′ has the finite antichain extension property in G and it has no
finite maximal antichains in G. Moreover, G′ is cut-free in G.

In addition, G′ is dense, that is it contains no gaps.
As usual, the situation is more complex for digraphs or ∆-structures. To begin with,

it is not entirely clear what subset should play the role of G′. Let us have a look at some
conditions, which are equivalent for undirected graphs.

3.2 Observation. Consider G, the homomorphism order of undirected graphs. The
subset G′ of G is each of the following:

(1) the set of all cores that are not homomorphic to any tree;
(2) the set of all cores that have no component homomorphic to a tree;
(3) the set of all cores that contain a cycle;
(4) the set of all cores that contain a cycle in each connected component;
(5) the set of all cores that contain an odd cycle;
(6) the set of all cores that contain an odd cycle in each connected component.

In the homomorphism order of digraphs D, though, the situation is contrasting: no
two of the sets defined by the conditions (1)–(6) coincide. This fact motivates separate
study of these subsets.

Hence we define subsets D1, D2, . . . , D6 of D so that we set Dk to be the set satisfying
condition (k) of Observation 3.2. For instance, D1 is the set of all core digraphs that are
not homomorphic to an orientation of a tree.

Analogously, in the homomorphism order of ∆-structures, for k = 1, 2, 3, 4, let C(∆)k
be the subset of C(∆) satisfying condition (k) of Observation 3.2.

Some properties of subsets of D defined in this way were examined in [3].

3.3 Theorem ([3]). The subset D5 is a downward loose kernel in D. The subset D6 is
an upward loose kernel in D; D6 has no finite maximal antichains; but D6 does not have
the finite antichain extension property.

The main tool for proving this theorem is sparse incomparability. This essentially
guarantees the existence of digraphs (or ∆-structures) that are locally trees (they have
large girth) but do not admit homomorphisms to and from some prescribed graphs.
Using similar methods as in [3], and exploiting the characterisation of finite maximal
antichains for digraphs, given in [11], we can show the following.

3.4 Theorem. Neither D3 nor D4 has finite maximal antichains in D. The subsets
C(∆)1 and C(∆)2 have no finite maximal antichains. The subset C(∆)1 is a downward
loose kernel in C(∆), and C(∆)2 is an upward loose kernel in C(∆); but neither C(∆)1
nor C(∆)2 has the finite antichain extension property.
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Cut-points are also related to the splitting property of antichains. It follows from [1,
Theorem 2.1] as well as [10, Theorem 2.10] that a finite maximal antichain splits if it
contains no cut-point. Let us look at cut-points a little closer.

3.5 Proposition. Let T be a ∆-tree and let D be its dual. Then the ∆-structures T +D

and T × D are cut-points in the homomorphism order C(∆).

Proof. Consider the interval [K1, T ], which is equal to the downset generated by T .
Suppose that X is a ∆-structure such that X < T . Then X ≤ D, because T � X.
Thus X ≤ T × D. Hence the interval [T × D,T ] contains only its end-points, that is
[T × D,T ] = {T × D,T}. Moreover, [K1, T × D] ∪ [T × D,T ] = [K1, T ], so T × D is a
cut-point.

Similarly, if D < X, then T + D ≤ X. Hence [D,T + D]∪ [T + D,⊤] = [D,⊤] and so
T + D is a cut-point.

No cut-free subset can contain cut-points; and there are cycles and odd cycles in many
duals. Thus T + D is a cut-point belonging to several of the classes defined above, and
hence we have:

3.6 Corollary. None of the classes C(∆)1, C(∆)3 and D5 is cut-free.

4 Splitting antichains

In this section, we prove that many finite maximal antichains in C(∆) split. To do so,
we construct a partition (F ,D) for any finite antichain A and show that this partition
is often a splitting of A; that is, in many cases A↑ = F↑ and A↓ = D↓. So let us reveal
our construction of the partition.

4.1 Splitting a finite antichain. Let A = {A1, A2, . . . , An} be a finite maximal an-
tichain in C(∆). Recursively, define the sets F0, F1, . . . , Fn in this way:

1. Let F0 = ∅.

2. For i = 1, 2, . . . , n: check whether there exists a ∆-structure X satisfying

(i) Ai < X,

(ii) F � X for any F ∈ Fi−1, and

(iii) Aj � X for any j > i.

If such a structure X exists, let Fi = Fi−1 ∪ {Ai}, otherwise let Fi = Fi−1.

3. Finally, let F = Fn and D = A \ F .

We are just about to prove that (F ,D) defined above is a splitting of A unless A lies
“at the bottom” of the order. To formalise “the bottom”, consider D∗: the ∆-structure,
whose components are exactly all trees with at most one edge of each kind. So T is a
component of D∗ if and only if T is a ∆-tree and |Ri(T )| ≤ 1 for all i ∈ I.

A ∆-structure X is small if either X ≤ D∗ or there exists Y ≤ D∗ such that Y < X

and whenever Y < Z < X then Z ≤ D∗.
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4.2 Theorem. Let A be a finite maximal antichain in the homomorphism poset C(∆).
Let F , D be defined as in 4.1. If no element of F is small, then (F ,D) is a splitting
of A, that is A↑ = F↑ and A↓ = D↓.

Idea of proof. The construction in 4.1 ensures that A↑ = F↑. So it remains to prove
that A↓ = D↓. We will assume that there is a ∆-structure Y ∈ A↓ \ D↓ and prove that
then F contains a small element.

By definition of Y , there exists F ∈ F such that Y ≤ F . Using a variant of sparse
incomparability, it can be shown that each element of F is homomorphic to a ∆-tree (it
is balanced). Therefore Y is also balanced.

Next comes a cycle-growing trick. We consider forbidden paths (whose precise def-
inition is technical and we omit it here) and construct big unbalanced structures W

from them. Some considerations show that for each such W there is F ∈ F such that
F ≤ W + Y . Then it follows that F ≤ P + Y , where P is the appropriate forbidden
path. But since F � Y , we have P � Y .

Then we prove that a connected ∆-structure, to which no forbidden path is homomor-
phic, admits a homomorphism to a ∆-tree with at most one edge of each kind. Hence
Y ≤ D∗ whenever Y ∈ A↓ \ D↓.

So we have Y ≤ F for some F ∈ F . If F → D∗, then F is small and we are done.
Otherwise suppose Y ≤ X ≤ F . Then each X such that Y < X < F satisfies that
X ≤ D∗, therefore F is again small.

In conclusion, we remark that splitting finite antichains are homomorphism dualities
in disguise. Indeed, the splitting (F ,D) of a finite maximal antichain is a homomorphism
duality. Conversely, let (F ,D) be a homomorphism duality and let

A = F ∪ {D ∈ D : D � F for any F ∈ F}.

Then A is obviously a finite maximal antichain in C(∆). For relational structures with
one or two relations all maximal antichains, even the non-splitting ones, are created from
finite dualities in this way. For structures with more than two relations this is currently
unknown.

5 Conclusion and extensions

Theorems 3.3 and 3.4 do not cover all the properties for all the classes Dk, C(∆)k. We
would like to find out which classes have which properties. In particular, the question is
interesting for structures that contain cycles only in some components, and for structures
with balanced cycles.

Another class of digraphs is introduced in [3]: digraphs that contain a directed cycle.
This subset has the finite antichain extension property and is cut-free. This class can
be generalised to ∆-structures by looking at their directed shadows (these are directed
multigraphs constructed by replacing each tuple (x1, . . . , xt) of the ∆-structure with the
directed path x1 → x2 → · · · → xt). This class is an upward loose kernel in C(∆) and it
has the finite antichain extension property. Is it also a downward loose kernel in C(∆)?
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In Proposition 3.5 we describe infinitely many cut-points in the homomorphism order.
Currently we do not know any other cut-points; however, it remains open to give the
complete characterisation. In particular, can such a characterisation yield a new proof
of the splitting property (recall that a finite maximal antichain splits if it contains no
cut-points)?

Finally, the connection between gaps and dualities is not restricted to the homomor-
phism order. A similar theory was developed in [17] for Heyting lattices. Thus it is worth
asking what additional axioms enable deriving simple conditions for maximal antichains
to split.
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