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Abstract
The majority problem is a special case of the heavy hitters problem. Whilst the special case
of two-colours has been well studied, the average-case performance for arbitrarily many colours
has not. In this paper we present an analysis of the average-case performance of the three
deterministic algorithms that appear in the literature. For each, we consider straightforward
optimisations that, to our knowledge, have not been previously considered.
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1 Introduction

The majority problem is a special case of the heavy hitters problem. Indeed, research into
the more general case was prompted by one of the solutions to the majority problem (see [4],
Sec. 5.8 and [10]).

Given a collection of balls, {x1, ...xn}, each of which is coloured with one of m colours,
the majority problem is to produce a ball with the same colour as more than 50% of the
balls, or to state that no such ball exists.

Boyer and Moore were the first to propose a solution which they called MJRTY [4]. Soon
after, Fischer and Salzberg proved that when there are arbitrarily many colours d 3n

2 e − 2
comparisons are necessary and sufficient [7]. They provided an algorithm with that worst-case
performance. Some time later, Matula repeated the proof independently and proposed an
alternative algorithm that has since been called the Tournament algorithm [9].

Aside from the proofs for the worst-case, all the analysis of the majority problem has been
for the special case where there are only two possible colours. In that case it has been shown
that n− ν(n) comparisons are necessary and sufficient, where ν(n) is the number of 1s in the
binary expansion of n [11, 2, 12]. Assuming that all 2n possible inputs are equally probable,
the average-case complexity has been shown to be lower-bounded by 2n

3 −
√

8n
9π +O(logn) [3].

Under the same assumption, it has been shown that the average-case complexity of Boyer
and Moore’s MJRTY algorithm is n−

√
2n/π +O(1) [1].

In this paper, we consider the average-case complexity of the three deterministic algorithms
and analyse the expected number of comparisons assuming that there are an arbitrary number
of colours and these colours are uniformly distributed among the balls. For each of the
algorithms we note straightforward optimisations and analyse their effects.

We present our analysis in terms of the plurality colour (the colour that appears with
the highest frequency) which may or may not be a majority. This is to enable a more
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straightforward comparison of the algorithms without reference to the number of colours or
their distributions.

2 Boyer and Moore’s MJRTY Algorithm

2.1 Brief Description of the Algorithm
Boyer and Moore’s algorithm, MJRTY, is based on the concept of pairing off balls. They
note that if a majority exists it is possible to pair every majority-coloured ball with one other
ball of a different colour, discard those pairs and be left with at least one unpaired ball of
the majority colour. If there is no majority, however, this process may leave an unpaired ball
of an arbitrary colour and so a second, verification phase is needed.

During the first phase two variables are needed - one to store the index of the candidate
ball (whose colour is candidate for the majority) and one to store the counter for the candidate
which is initially zero. Whenever the candidate counter is zero the next ball drawn becomes
the candidate colour; otherwise the ball that is drawn is compared to the candidate ball. If
the two balls are the same colour then the candidate counter is incremented otherwise it
is decremented. Incrementing the candidate is a way of storing the fact that we have seen
more balls of that colour and decrementing the counter is a way of pairing off and discarding
those pairs.

The second phase performs a linear scan counting the number of balls that match the
candidate colour. If more than half the balls match then there is a majority, otherwise there
is not.

The pseudocode for the algorithm is in Appendix A.

2.2 Analysis of the Algorithm
In the first phase we compare balls every time we go through the loop except when the
counter is zero. Calculating the expected number of comparisons is therefore the problem of
calculating the expected number of times the counter will be zero. In order to present our
analysis in terms of the plurality colour we assume that whenever the counter is zero, the
next ball drawn will be of the plurality colour. This gives a lower-bound on the number of
times the counter will be zero and therefore an upper-bound on the number of comparisons.

To analyse the number of times the counter will be zero we consider the expected number
of balls that are drawn between the counter being zero and returning to zero. Suppose that a
ball has been drawn, then the counter is now equal to one and we must continue comparing
balls until we have drawn one more non-matching ball than the matching balls.

Let p be the proportion of balls of the plurality colour, then after T draws we will
have drawn Tp balls of the plurality colour (which we assume matches the candidate) and
T (1− p) non-matching balls. The number of draws we have to make before having one more
non-matching ball is the solution to the equation T (1− p)− Tp = 1. That is, T = 1/(1− 2p)
and the number of draws between consecutive zeros is 1 + 1/(1− 2p). Clearly this has no
sensible solution when p ≥ 0.5 and therefore when there is a majority we would expect that
once a ball is drawn the counter never returns to zero.

If the number of draws between consecutive zeros is 1 + 1/(1 − 2p) then the expected
number of times the counter is zero is 1 + n(1− 2p)/2(1− p) and the expected number of
comparisons is n− 1− n(1− 2p)/2(1− p) = n/(2− 2p)− 1.

During the second phase the algorithm will perform comparisons until the counter
reaches n/2 + 1. When there is no majority this will never happen and we will have n
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comparisons. When there is a majority then, by the uniformity assumption, this will happen
when Tp = n/2 + 1 which is when T = (n+ 2)/2p.

Overall, then, the expected number of comparisons is:

E[C] =


≤ n

2− 2p − 1 + n if p < 0.5

n− 1 + n+ 2
2p otherwise

(1)

2.3 Optimisations and their Analysis

Here we consider three straightforward optimisations and analyse their impact on the number
of comparisons.

The first improvement is to stop the first phase if the candidate counter reaches n/2 + 1
and then the second phase is not needed at all. From our uniformity assumption we can say
that we expect Tp balls to be drawn from the majority colour and T (1 − p) to be of the
other colours. The candidate counter would therefore be expected to be T (2p− 1). Setting
this to n/2 + 1 gives the expected number of balls that must be seen before the candidate
counter reaches n/2 + 1 which is:

E[T ] = n

2(2p− 1) + 1
2p− 1

The maximum number of balls that can be drawn is obviously n and so the minimum
value of p for which we can expect this improvement to apply can be found by resolving
n/2(2p− 1) + 1/(2p− 1) = n. This gives a value of p = 3/4 + 1/2n ≈ 3/4, for large n.

If we modify the algorithm to retain a counter for the number of remaining balls, then
two other early stopping conditions apply. Firstly, the first phase can stop if the candidate
counter is larger than the number of remaining balls since then the candidate will not change.

Here we again utilise the fact that after T balls the candidate counter would be T (2p− 1)
and this time set that equal to the number of remaining balls which is n− T . This gives the
expected number of balls that must be drawn before the condition becomes active, namely
n/2p.

This improvement potentially conflicts with the more powerful one introduced earlier
because it could end the first phase before the counter reaches n/2 + 1 and necessitate a
second phase when otherwise no second phase would be needed. We have already seen that
if p ' 0.75 we can expect the candidate counter to reach n/2 + 1. Therefore, the MJRTY
algorithm must be modified to approximate p during the first phase by using the assumption
that the candidate counter c = T (2p − 1). For the analysis we apply the first stopping
condition when p ' 0.75 and the second condition when 0.5 < p / 0.75.

A second improvement available by counting the remaining number of balls is to end the
second phase if the counter plus the number of remaining balls is less than n/2 + 1 because
then the candidate is certainly not the majority.

Since there is no majority we cannot predict which ball will be chosen as the candidate
but we can provide an upper-bound on the expected number of comparisons by assuming
that the plurality colour is chosen. In this case after seeing T balls the candidate counter will
be Tp and we add n− T and set to n/2 + 1 to give the number of balls processed before the
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Figure 1 A comparison of the expected and actual number of comparisons for the MJRTY
algorithm with all the optimisations validates our analysis, providing an upper bound for p < 0.5.

condition activates which is n/(2− 2p). Combining all of these conditions gives the overall
expected number of comparisons:

E[T ] =



≤ 2n
2− 2p − 1 if p ≤ 0.5

n+ 1
2p + n

2p if 0.5 < p / 0.75

n

2(2p− 1) + 1
2p− 1 otherwise

(2)

2.4 Experimental Validation

We validate our analysis with experiments in which we create 1,000 arrays each of 1,000,000
items. For each array a set of proportions is generated by iteratively selecting a proportion,
qi, at random from a uniform distribution in the range (0, r) where r is 1−

∑
qi, i.e. the

remaining proportion available. The process continues until r becomes less than 10% at
which point the final proportion is taken as simply 1− r. Once the proportions have been
generated, an array is created with colours chosen in accordance with the proportions.

This generation method gives an arbitrary number of colours (depending on the propor-
tions selected). The final array is randomly shuffled such that the colours are approximately
uniformly distributed throughout the array.

The results in Fig. 1 show the different behaviour of the MJRTY algorithm in the
three regions depending on p. Experimental results validated our analysis with the average
discrepancy between our analysis and experimental results being just 2.1% with a standard
deviation of 5.0%. This is obviously skewed by the values where p < 0.5 where our analysis
provides only an upper bound. In the range of p > 0.5, the average error falls to 0.04% with
a standard deviation of 0.1%.
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3 Fischer and Salzberg’s Algorithm

3.1 Brief Description of the Algorithm
The idea behind the Fischer-Sazlberg algorithm is that, if there is a majority, it is impossible
to order all the balls without at least one pair of adjacent balls having the same colour 1.
Their algorithm therefore attempts to produce such an arrangement and fails to do so if a
majority colour exists.

There are two phases to the algorithm. During the first phase the balls are drawn and
placed either in the list or the bucket. If the ball is the same colour as the last ball in the list
then it is placed in the bucket. Otherwise it is added to the end of the list and a ball from
the bucket is then added after it if there are any balls in the bucket. The final ball in the list
at the end of the first phase is the candidate ball and will be the same colour as all the balls
in the bucket if there are any. At this point, the list has an ordering without adjacent balls
of the same colour. The second phase serves to check whether the balls from the bucket can
be inserted into that ordering without breaking the adjacency constraint.

During the second phase the list is traversed in reverse order with the last ball in the list
compared to the candidate. If the two are the same then the last two balls in the list are
discarded because balls from the bucket cannot be inserted aither at the end of the list or
between the last two balls. If they are not the same then the last ball in the list and one from
the bucket are discarded because a ball from the bucket can be inserted at the end of the list
without breaking the adjacency constraint. The algorithm stops if a ball is ever needed from
the bucket but the bucket is empty because then we have successfully found an ordering that
does not break the adjacency constraint and there is no majority colour. If the entire list is
traversed and balls remain in the bucket then any of those balls is of the majority colour.

The pseudocode for the algorithm is in Appendix B.

3.2 Analysis of the Algorithm
The original algorithm will always use n− 1 comparisons in the first phase but the second
phase will depend on whether or not there is a majority. If there is a majority then the entire
list is traversed two balls at a time and so the number of comparisons is half the number of
balls in the list.

Following our uniformity assumption we would expect that every second ball in the list
is of the majority colour. Therefore, the length of the list is determined by the number of
non-majority coloured balls which is n(1− p). The total number in the list is twice this but
we traverse the list two balls at a time so the expected number of comparisons in the second
phase is n(1− p).

When there is no majority we would expect the bucket to be empty after the first phase
and the second phase would end as soon as an item is encountered in the list that does not
match the candidate. If p = 0.5 then we would expect every second item in the list to be
of the same colour and need to traverse the entire list before finishing. If the number of
balls in the plurality were one less than half then we would expect one pair of balls that
do not contain the plurality colour and which would trigger the stopping condition when
encountered. By the uniformity assumption we would expect this pair to be in the middle of
the list. If there were two balls fewer than half then we would expect to have two pairs of

1 There is one exception, in the case that n is odd and the first, last and every second ball is of the same
colour. We do not consider this case here for simplicity
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non-plurality colours set at a third and two-thirds of the way through the list. In general, if
there are n/2− x balls of the plurality colour then we would expect to require n/2(x+ 1)
operations in the second phase. Since we know that there are, in fact, pn balls of the plurality
colour we can give the expected number of comparisons in the second phase:

E[T2] = n

2n(0.5− p) + 2

3.3 Optimisations and their Analysis
If we add a counter to the bucket, we can provide two early stopping conditions. The first
is triggered if the bucket ever contains more than half the balls in which case we know it
contains the majority balls and do not even need the second phase. If, during the second
phase, we also record the number of balls remaining in the list then we can end the second
phase early if there are more balls in the bucket than in the list as we can be sure that the
bucket contains the majority balls.

The first stopping condition can only apply when there is a majority. Since we are
assuming that the balls are drawn uniformly we would expect that every second ball in the
list is from the majority with some other colour in between. After T balls are drawn the
expected length of the list is 2T (1− p) which means that the expected size of the bucket is
T (2p− 1). From this we can derive the expected number of balls that must be drawn before
the bucket contains n/2 + 1 balls:

E[T ] = n

2(2p− 1) + 1
2p− 1

The maximum number balls that can be drawn is obviously n and so the minimum
value of p for which we can expect the first condition to apply can be found by resolving
n/2(2p− 1) + 1/(2p− 1) = n. This gives a value of p = 3/4 + 1/2n ≈ 3/4, for large n.

The other stopping condition also applies when there is a majority which means that we
would expect to never remove a ball from the bucket and simply traverse the list until the
number remaining in the list becomes smaller than the number in the bucket. The expected
size of the bucket is n(2p − 1) after the first phase and the expected length of the list is
2n(1− p). This means that we would expect there to be n(3− 4p) more balls in the list than
the bucket and hence we would expect to need n(3− 4p)/2 comparisons in the second phase.

This condition can only be triggered during the second phase which only happens when
the first optimisation does not trigger. Since the first optimisation applies whenever p ' 0.75
the third condition will only apply when p is between 0.5 and 0.75. Combining the analysis
of the original algorithm with these two optimisations gives the following expected number
of comparisons:

E[T ] =



n− 1 + n

2n(0.5− p) + 2 if p ≤ 0.5

n− 1 + n(3− 4p)
2 if 0.5 < p / 0.75

n

2(2p− 1) + 1
2p− 1 otherwise

(3)
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Figure 2 The Fischer-Salzberg algorithm has three distinct behaviours corresponding to its three
stopping conditions which are shown in equation (3).

3.4 Experimental Validation
Fig. 2 shows the behaviour of the Fischer-Salzberg algorithm and validates our analysis.
Three regions are evident in the experimental results corresponding to the three stopping
conditions we have identified. The average discrepancy between our analysis and the observed
results was 0.1% with a standard deviation of 1.1%.

4 Matula’s Tournament Algorithm

4.1 Brief Description of the Algorithm
The Tournament algorithm, first proposed by Matula, is also based on the pairing off of balls
but it stores the results of those comparisons for future use. The algorithm maintains a set
of lists where each list has an associated weight (w = 0, 1, 2, 3 . . . ) such that every item in
the list is a shorthand for 2w balls of the same colour. There is also a list of tuples of the
form {v′, v′′, j} where v′ and v′′ are balls of different colours both of which represent a list of
2j balls of that colour.

Initially all balls are placed in the list with weight 0. Then pairs of balls from the same
list are compared and either merged or discarded. If they match then they are merged and
placed as a single ball in the next list. If they do not match then they are formed into a
tuple and added to the list of discarded tuples. The process continues until no list contains
more than one ball. At this point the candidate ball is the one in the most heavily weighted
list which contains a ball (if none of the lists contain balls then there is no majority). A
verification phase is needed in which the lists are traversed in reverse order and balls (really
representing collections of balls) are compared to the candidate.

The pseudocode for the algorithm is in Appendix C.

4.2 Analysis of the Algorithm
The first phase of the Tournament algorithm must always run until no list contains more
than one ball. The second phase stops when the counter reaches n/2 + 1.
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The analysis of the Tournament algorithm is given in terms of recurrence relations with
no closed form. Let q1, q2 . . . qk be the proportion of balls of colours 1, 2 . . . k. Since balls are
drawn at random we would expect to select two balls of the same colour, x, with probability
approximately equal to q2

x. In the first list (L0) we have n balls and n/2 comparisons so that
we would expect the number of balls in the second list, L1, to be:

L1 = n/2
k∑
x=1

q2
x

The proportion of balls with a given colour changes from list to list because colours which
appear frequently in one list are more likely to get through to the next list whereas if a
colour appears rarely then it is unlikely that two balls with that colour will have been paired
in the previous list. Let qx,i be the proportion of balls of colour x in list i. We form the
following recurrence relation for the proportion of a given colour in a given list:

qx,i+1 = q2
x,i/

k∑
x=1

q2
x,i (4)

The number of balls expected in a given list, Li, is also given by a recurrence relation:

Li+1 = Li/2
k∑
x=1

q2
x,i (5)

These relations have no closed form but they can be applied systematically to derive the
expected number of comparisons since for each list Li we must perform Li/2 comparisons. As
for the second, verification, phase the expected number of comparisons depends on whether
there is a majority or not. If there is no majority then we need to consider all the discarded
tuples. The number of discarded tuples in the list can be derived from the size of each list:

Di = Li−1 − 2Li
2

For each tuple with a weight i there is a pi chance that the tuple contains a ball of
the candidate colour and a (1 − pi) chance that it does not because we assume that the
candidate will be of the plurality colour. A tuple containing a matching ball will have an
equal chance of it being the first ball in the tuple (requiring one comparison) or the second
ball (requiring two comparisons). Other tuples always need two comparisons leading to the
expected number of comparisons per tuple being 1.5pi + 2(1− pi). If we examined all tuples
during the verification phase then the expected number of comparisons during the second
phase would be:

E[Cv] =
∑
i

Di (1.5pi + 2(1− pi))

When there is a majority we would expect the candidate counter to reach pn if we
considered all the balls. By stopping when the counter reaches n/2 + 1 we would expect to
save pn− (n/2)− 1 balls from being counted. We can give an upper-bound on the number of
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comparisons if we assume that all of the skipped balls are stored in the list of discarded tuples
in tuples with weights of 0. These tuples all contain the candidate ball and so the expected
number of comparisons per tuple is 1.5 leading to a total saving of 1.5(pn − (n/2) − 1)
comparisons.

4.3 Optimisations and their Analsysis
As with the MJRTY algorithm, adding a counter of remaining balls to the verification phase
allows the algorithm to end early if the candidate counter plus the number of remaining balls
is less than n/2 + 1.

This improvement only applies when there is no majority. Assuming that the plurality
colour ends up as the candidate, then after counting T balls we would expect the counter to
be at Tp with n− T balls remaining. Summing those values and setting to n/2 + 1 gives
the expected number of balls that must be seen before stopping and therefore the number
of saved balls which is n− (n− 2)/(2− 2p). Here again we assume that all of these are in
discarded tuples with weight 0 and so the number of tuples that do not need to be compared
is half the number of balls saved. The expected number of comparisons for each of those
saved tuples is 1.5p+ 2(1− p). The overall expected number of comparisons in the second
phase is therefore:

E[Cv] =



∑log2n
i=0 Di(1.5pi + 2(1− pi))− 1/2[n− (n− 2)/(2− 2p)][1.5p+ 2(1− p)]

if p ≤ 0.5

∑log2n
i=0 Di(1.5pi + 2(1− pi))− 1.5(pn− (n/2)− 1)

otherwise

(6)

4.4 Experimental Validation
Fig. 3 shows three different regions for the Tournament algorithm and validates our analysis.
Experimental results validate our analysis as the average discrepancy is 1.9% with a standard
deviation of 1.9%. Note that again we have three regions, this is because when there is a
majority the two phases involve a trade-off. The higher the value of p the fewer comparisons
are needed in the second phase but the more are used in the first phase. After p ' 0.75
there are virtually no comparisons in the second phase but the number from the first phase
continues to increase leading to an overall increase in comparisons.

5 Conclusion

The majority problem is an interesting problem that is a special case of the heavy hitters
problem. In this paper we have analysed the expected number of comparisons required by the
three deterministic algorithms that appear in the literature, assuming an arbitrary number
of colours. A direct comparison of the performance of the algorithms is show in Fig. 4.

It is interesting to note that the most-widely discussed of the algorithms (Boyer and
Moore’s MJRTY) algorithm requires the largest number of comparisons in the average
case as well as the worst-case. In contrast, the Tournament algorithm requires the fewest
comparisons for a large range of distributions. On the other hand, the MJRTY algorithm
has very low overhead whereas the Tournament algorithm has significant overhead in terms
of adding balls to lists.
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Figure 3 The Tournament algorithm has three different behaviours corresponding to the analysis
in equation (6) with the third region (p ' 0.75) being when there are virtually no comparisons in
the second phase but an increasing number in the first.

Figure 4 A comparison of the three algorithms shows that the much-discussed MJRTY algorithm
typically requires the most comparisons.
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Nevertheless, our results suggest that a fuller examination of the Tournament algorithm is
warranted. There have been proposals for a parallel version of the MJRTY algorithm [8, 5, 6].
The Tournament algorithm, however, seems better suited for a parallel implementation and
it would be interesting to see whether the overheads of parallelism result in the Tournament
algorithm being more efficient than MJRTY.

The MJRTY algorithm has also been generalised for the heavy hitters problem, becoming
the famous Misra-Gries algorithm [10]. Given that the Tournament algorithm requires fewer
comparisons, it would be interesting to discover whether it could be successfully adapted for
the heavy hitters problem as well.

Acknowledgement The author would like to thank Dr D.E. Rydeheard for his suggestions.
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A
Pseudocode for MJRTY Algorithm

Algorithm 1 Pseudocode for the MJRTY Algorithm
1: c ← 0
2: for i← 1 to n do
3: if c = 0 then
4: j ← i

5: c← 1
6: else if xi = xj then
7: c← c+ 1
8: else
9: c← c− 1

10: end if
11: end for
12: if c = 0 then
13: No majority
14: else
15: c← 0
16: for i← 1 to n do
17: if xi = xj then
18: c← c+ 1
19: if c > n/2 then
20: Majority is of colour xj
21: end if
22: end if
23: end for
24: No majority
25: end if
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B
Pseudocode for the Fischer-Salzberg Algorithm

Algorithm 2 Pseudocode for the Fischer-Salzberg Algorithm
1: l = 0
2: for i← 1 to n do
3: if xi = list[l] then
4: bucket.append(xi)
5: else
6: list.append(xi)
7: l++
8: if bucket.empty() then
9: list.append(bucket.pop())

10: l++
11: end if
12: end if
13: end for
14: C =list[l]
15: while !list.empty() do
16: if list.pop()=C then
17: list.pop()
18: else
19: if bucket.empty() then
20: No majority
21: else
22: bucket.pop()
23: end if
24: end if
25: end while
26: Majority is C
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C
Pseudocode for the Tournament Algorithm

Algorithm 3 Pseudocode for the Tournament Algorithm
1: i← 0
2: while ! list[i].empty() do
3: j ← 0
4: while j < list[i].length() && list[i].length() > 1 do
5: if list[i][j] == list[i][j + 1] then
6: list[i+ 1].append(list[i][j])
7: else
8: tuples.add(list[i][j], list[i][j + 1], i)
9: end if

10: j ← j + 2
11: end while
12: i+ +
13: end while
14: while i > 0 do
15: if list[i].length() == 1 then
16: if Candidate == NULL then
17: Candidate = list[i][0]
18: c = 2i
19: else
20: if list[i][0] == Candidate then
21: c← c+ 2i
22: end if
23: end if
24: end if
25: i−−
26: end while
27: for all tuples do
28: if tuple[0] == Candidate OR tuple[1] == Candidate then
29: c← c+ 2tuple[2]

30: end if
31: end for
32: if c > n/2 then
33: Candidate is majority
34: else
35: No majority
36: end if
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