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The interplay between cosmology and galaxy
formation

Jaime Salcido Negrete

Abstract
The standard ΛCDM model of cosmology has been very successful in matching a
large set of observational constraints and describes accurately the evolution of our
Universe. Within this framework, the gravitational collapse of cold dark matter
structures depends solely on the cosmological background. The formation of galax-
ies inside these haloes is thought to be determined by complex baryonic process
and we rely on numerical techniques to model their effects.

Here, we investigate the impact of the cosmological background on galaxy for-
mation. We take the advantage of state of the art cosmological hydrodynamical
simulations from the eagle suite to vary the cosmological parameters, in particular,
the cosmological constant, to test its effect on the efficiency of star formation. We
use this set of new simulations to calculate the likelihood of the observed value
of the cosmological constant, given a measure of the multiverse. We discuss the
implication of our results in the context of the anthropic principle.

We use this framework to develop a fully analytic model of galaxy formation that
connects the growth of dark matter haloes in a cosmological background, with the
build-up of stellar mass within these haloes. The model identifies the physical
processes that drive the Galaxy-Halo co-evolution through cosmic time. Despite
the complexity of the baryonic processes involved, galaxy formation is revealed
as a remarkably simple process, where the instantaneous star formation efficiency
within halos is only a function of their virial temperature and can be described with
a ‘single’ differential equation. We find that the model reproduces self-consistently
the shape and evolution of the cosmic star formation rate density, the specific star
formation rate of galaxies, and the galaxy stellar mass function, both at the present
time and at high redshift.

Finally, we use the merger rate of supermassive black holes in the eagle simulations
to estimate the expected event rate of gravitational wave signals that could be
resolved by future space-based gravitational wave detectors. We discuss the power
of these detections to provide information about the origin of supermassive black
holes and the initial mass distribution of black hole seeds.
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In the beginning...





1Introduction

„Scientific progress is the discovery of a more
and more comprehensive simplicity... The
previous successes give us confidence in the
future of science: we become more and more
conscious of the fact that the universe is
cognizable

— Georges Lemaître

The mysteries of the heavens have captivated human imagination since ancient times.
The nature of the cosmos and our place within it has both inspired and intrigued
scientists, philosophers, theologians, artists and science fiction writers alike. From
the scientific point of view, the study of our Universe has been filled with surprising
observational discoveries and revolutionary ideas that trace back to the scientific
revolution during the Renaissance, and the Enlightenment.

In the mid-18th century, Thomas Wright of Durham (not far away from where this
work has been written) first proposed that ‘faint nebulae’ were beyond our own
galaxy. He proposed that the Milky Way was one tiny galaxy in a sea of island
worlds, ‘external creation, bordering upon the known one, too remote for even our
telescopes to reach’ (Wright, 1750). This idea gave rise to a debate that lasted for
centuries, whether ‘spiral nebulae’ were part of our galaxy, or were more distant
objects (Shapley & Curtis, 1921).

It was not until 1925, when Edwin Hubble estimated the distance to faint nebulae
using Cepheid variables, that it was demonstrated they were ‘remote stellar systems’
(Hubble, 1925). He confirmed that spiral nebulae were galaxies, comparable in
size, but laying outside, our own Milky Way. This marked the birth of extragalactic
astronomy. Only four years later, Hubble showed that all distant galaxies are moving
away from us, with velocities that are, on average, proportional to their distance
(Hubble, 1929). Hubble made one of the most important discoveries in the history
of cosmology, he discovered the expansion of the universe.
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However, the idea of a ‘Big Bang’ cosmology precedes the observational evidence
of an expanding universe. In the early 13th century, in his treatise on light, the
English scientist and clergyman Robert Grosseteste was the first to propose a cos-
mological model in which the Universe was created in a Big-Bang-like explosion
(Bower et al., 2014). Almost 700 years later, in 1916, Albert Einstein published his
groundbreaking theory of General Relativity, which allowed us, for the first time,
to construct self-consistent models of the Universe as a whole (Einstein, 1916).
Alexander Friedmann in 1922 and Georges Lemaître in 1927 independently discov-
ered a family of solutions to Einstein field equations of gravitation that describe an
expanding universe (Friedmann, 1922; Lemaître, 1927). Since then, the ‘Hot Big
Bang’ gradually became the most popular hypothesis of cosmology.

Another important turn of events in our understanding of our universe arrived in
the 1930s, when Jan Oort and Fritz Zwicky, while studying the velocities of stars
in the Milky Way, and galaxies within the Coma Cluster respectively, inferred
the existence of an apparently invisible form of matter, to fully account for their
gravitational dynamics (Oort, 1932; Zwicky, 1933). This mysterious ‘dark matter’
has been a topic of increasing interest in cosmology since then.

At the end of 20th century, observations of distant supernovae revealed an even
more unexpected phenomenon, the universe is not only expanding, but it is doing
so, at an accelerated rate (Riess et al., 1998; Perlmutter et al., 1999). This discovery
provided the first suggestion of the existence of a bizarre form of ‘dark energy’ that
competes against gravitational forces on large scales.

Many more careful observations, combined with theoretical breakthroughs, and
technological advances during the last century, have led to the emergence of a com-
prehensive model of the evolution of our Universe. The present best-fit cosmological
model, known as the concordance model, or ΛCDM, includes both, a treatment of
dark energy as a cosmological constant, Λ, and Cold (i.e. non-relativistic) Dark
Matter. This model has been very successful in matching observational data, and
describes accurately the evolution of our Universe. Despite its success, the nature
of its two major components, the cosmological constant and the cold dark matter,
are still unknown. Shedding light on the nature of these two components, is one of
the major challenges of modern cosmology and particle physics.

This chapter reviews the standard model of cosmology and discusses the role of
simulations in understanding galaxy formation.
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1.1 Cosmology

The understanding of the physical laws that govern the origin, evolution, and even-
tual fate of the Universe is a branch of science known as physical cosmology. The
theoretical framework within which we study cosmology rests upon two key as-
sumptions. First, the cosmological principle: that, on large scales, the Universe is
spatially homogeneous and isotropic, i.e. observers at different locations in space
will observe, more or less, the same thing in all directions. Second, that Einstein’s
General Theory of Relativity (GR) is the correct description of gravity. In GR, the
space-time structure of the Universe is determined by the matter distribution within
it via the Einstein Field equations,

Rµν −
1
2
gµνR + Λgµν =

8πG
c4 Tµν, (1.1)

where Rµν is the Ricci curvature tensor, R is the scalar curvature, gµν is the metric
tensor, which captures all the geometric and causal structure of spacetime, Λ is
a cosmological constant, G is Newton’s gravitational constant, c is the speed of
light in vacuum, and Tµν is the stress-energy tensor. The cosmological principle
implies that space is invariant under rotations and translations, i.e. it is maximally
symmetric. The family of solutions of the Einstein field equations that describe
these maximally-symmetric hyper-surfaces evolving in time are described by the
Friedmann-Lemaître-Robertson-Walker (FLRW) metric,

ds2 = −cdt2 + a(t)2
[

dr2

1 − κr2 + r2(dθ2 + sin2 θdϕ2)
]
, (1.2)

where r , θ and ϕ are spherical polar comoving coordinates, a(t) is the dimensionless
time dependent scale factor of the Universe, normalised such that it has a value of
a(0) = 1 at the present time, and κ is the spatial curvature.

Using the FLRW metric into Eq. (1.1), and modelling matter and energy by a perfect
fluid, yields the well know Friedmann equations,(

Ûa
a

)2
= H2(t) = 8πG

3
ρ − κc

2

a2 +
Λc2

3
, (1.3)

and
Üa
a
=

4πG
3

(
ρ + 3

P
c2

)
+
Λc2

3
, (1.4)
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where dotted variables denote time derivatives, the Hubble parameter H(t) is the
rate of change of the size of the Universe with respect to its size, ρ and P are the
density and pressure of the different components of the Universe.

Taking the time derivative of Eq. (1.3) and substituting in Eq. (1.4) yields the
conservation, or fluid equation,

Ûρ + 3
Ûa
a

(
ρ +

P
c2

)
= 0. (1.5)

Perfect fluids relevant to cosmology obey a simple equation of state, of the form,

P = wρc2. (1.6)

If the parameter w is time-independent, then substituting Eq. (1.6) into Eq. (1.5)
yields,

ρ ∝ a−3(1+w), (1.7)

which describes the evolution of the density as a function of the scale factor a. This
is particularly useful, because it allows us to use Eq. (1.3) solely to determine the
evolution of the scale factor a(t), given a specification of the amounts of energy
density, ρ, in all the different species (matter and radiation), along with their equa-
tions of state, the amount of spatial curvature κ, and the cosmological constant Λ.
It is common practice to further simplify Eq. (1.3) by considering the cosmological
constant as an energy component with density ρΛ = Λc2/8πG, with an equation of
state with w = −1, and treating the contribution of spatial curvature as a fictitious
energy density as ρκ = −3κ/8πGa2, with an equation of state with w = −1/3. The
behaviour of all the different components of the energy density, plus curvature, are
then summarised in Table 1.1.

Table 1.1.: Behaviour of the different species of energy density and curvature in a homoge-
neous and isotropic universe, described by Eq. (1.7).

Component w ρ ∝
Matter 0 a−3

Radiation 1/3 a−4

Curvature -1/3 a−2

Vaccum -1 a0
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Using the energy densities of all the different components at the present time, we
can then write Eq. (1.3) as

H2(t) = 8πG
3

[
ρr,0

(
a0
a

)4
+ ρm,0

(
a0
a

)3
+ ρk,0

(
a0
a

)2
+ ρΛ,0

]
, (1.8)

where the subscript ‘0’ denotes values at the present time, ρr, ρm and ρΛ, are
the energy densities of the radiation, non-relativistic matter, and the cosmological
constant components respectively, and ρk is the fictitious energy density of the
spatial curvature.

The universe at a particular epoch tends to be dominated by one component on the
right hand side of Eq. (1.8). In that case, the Friedmann equation can be summarised
as, (

Ûa
a

)2
∝ a−3(1+w), (1.9)

which can be easily solved for each component in Table 1.1,

a ∝



eρΛ,0t = e
√
Λc2
8πG t for Λ-dominated,

t for curvature-dominated,

t2/3 for matter-dominated,

t1/2 for radiation-dominated.

(1.10)

It is immediately evident that for all solutions, except forw = −1 (i.e. aΛ-dominated
model), a(t) → 0 at some finite time, which we define as t = 0. That is a remarkable
result, because any universe containing just radiation or matter predicts a Hot Big
Bang where ρ(t) → ∞ at t = 0. Of course, our Universe contains a combination of
all the different energy density species. It is a common practice to define a special
value of the density that would be required to produce a flat universe, i.e. κ = 0,
and hence ρκ = 0. This is known as the critical density,

ρcrit =
3H2(t)
8πG

. (1.11)

Then, Eq. (1.8) can be written as,(
Ûa
a

)2
= H0

[
Ωr,0a−4 +Ωm,0a−3 +Ωk,0a−2 +ΩΛ,0

]
, (1.12)
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where we have introduced the density parameter Ωi,0 = ρi,0/ρcrit,0. A large amount
of current work in cosmology is focussed upon determining these values. Once the
contribution of all the different components of the universe are known, it allows for
a full description of is evolution.

1.2 The ΛCDM universe

In a Hot Big Bang cosmology, the Universe was smaller, much denser, and hotter
in the past. Under these conditions, the mean free path of photons would have been
short enough to ensure thermal equilibrium, radiation would immediately ionise
any hydrogen atoms that formed from free protons and electrons. The Universe
was then filled with a plasma of protons, electrons and photons. As the Universe
expanded it cooled down; photons lost enough energy to allow electrons and protons
to bind together for the first time and form hydrogen atoms. This epoch, known
as recombination, occurred about 380,000 years after the Big Bang. The Universe
became transparent, letting the photons from this decoupling of radiation from
baryonic matter to travel freely through space, transporting the imprints of this
primordial state. This ‘afterglow of the Big Bang’ propagated freely since then,
shifting in energy as its wavelength was stretched by the expansion of the Universe.
In 1965, while working on a huge horn reflector antenna, Arno Penzias and Robert
Wilson detected, for the first time, a black body radiation with a temperature ∼3K
(Penzias & Wilson, 1965). Now shifted to microwave frequencies, the cosmic
microwave background (CMB) radiation confirmed the Big Bang theory as the
underlying cosmological paradigm.

As the CMB was produced following a state of thermal equilibrium with baryonic
matter, the measurement of tiny temperature fluctuations (of the order of ∆T/T ∼
10−5) in the CMB sky, reflect the variations in the matter density field at the time
of decoupling. Furthermore, before decoupling, the pressure in the photon-baryon
primordial plasma competed with the gravitational forces, creating spherical sound
waves in the CMB anisotropies, leaving critical information about the density of
baryons at the time of recombination and the amount of dark matter. These sound
waves are known as baryon acoustic oscillations (BAOs). Indeed, measurements
of the angular power spectrum of the CMB temperature anisotropies provide the
strongest constraints on the Hot Big Bang and the ΛCDM model. Detailed CMB
experiments have measured the temperature fluctuations in the CMB with increasing
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Table 1.2.: The cosmological parameters inferred by the Planck Collaboration et al. (2016).
Ωm,ΩΛ,Ωb are the average densities of matter, dark energy, and baryonic matter
in units of the critical density at redshift zero; H0 is the Hubble constant, σ8 is
the square root of the linear variance of the matter distribution smoothed with a
top-hat filter of radius 8 h−1 cMpc, ns is the scalar power-law index of the power
spectrum of primordial adiabatic perturbations

Cosmological Parameter Value Uncertainty
Ωm 0.3089 ± 0.0062
ΩΛ 0.6911 ± 0.0062
Ωb 0.0485 ± 0.0009
h ≡ H0/(100 km s−1 Mpc−1) 0.6774 ± 0.0046
σ8 0.8159 ± 0.0086
ns 0.9667 ± 0.0040

fidelity (Smoot et al., 1992; Komatsu et al., 2011; Planck Collaboration et al., 2016),
estimating the cosmological parameters with unprecedented precision.

The current best constraints on the ΛCDM parameters come from the Planck space
observatory (Planck Collaboration et al., 2016), which combine the CMB temper-
ature anisotropies and polarisation, with other observational measurements (e.g.
gravitational lensing data, supernovae type Ia luminosities, and BAO signatures in
the clustering of galaxies). Table 1.2 lists the values of the cosmological parameters
together with their exquisite uncertainties. The picture that has emerged from these
experiments is that our Universe is spatially flat (κ = 0), ∼ 70% of its energy density
content at the present time is dark energy, in a form compatible with a cosmological
constant, and ∼ 30% is matter, out of which only ∼ 5% is in the form of ‘ordinary’
baryonic matter, and the rest ∼ 25% is dark matter.

1.2.1 Dark Energy

The discovery of the accelerating expansion of the Universe was a breakthrough
achievement for modern cosmology (Riess et al., 1998; Perlmutter et al., 1999). Fur-
ther observational evidence of the accelerated expansion comes from the evolution
of the BAOs, comparing the sound horizon at the time of recombination and the
sound horizon today. Measurements of the BAO peak using the clustering of galax-
ies confirmed both the photon-baryon primordial plasma model, and the late time
acceleration due to dark energy (Cole et al., 2005; Eisenstein et al., 2005). Our stan-
dard cosmological model, ΛCDM, passed a rigorous theoretical and observational
test with flying colours.
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However, the nature of dark energy is still unknown. The simplest theoretical de-
scription of dark energy is Einstein’s cosmological constant Λ, originally proposed
to produce a static Universe within the framework of GR. At present, all cosmolog-
ical observations are consistent with a cosmological constant, or a form of energy
whose density remains constant as the Universe expands. One such form of energy
is vacuum energy: the energy of a quantum field in its ground state (zero particles).
Nevertheless, the model raises a number of fundamental problems. Predictions
from quantum field theory for the vacuum energy density overestimate the observed
value of Λ by many orders of magnitude (for a review see Weinberg, 1989; Carroll,
2001). In addition, the energy density of matter and the cosmological constant
are within a factor of a two of each other at the present time, making our epoch
unusual in the evolution of the Universe. This is known as the coincidence problem.
These problems have motivated the search for alternative models of dark energy and
modifications of gravity that might explain the acceleration of the universe more
naturally. In many models, however, fine tuning of the model parameters is still
required to explain their observed similarity (see for example Weinberg, 2000).

1.2.2 Dark Matter

The main motivation for the existence of cosmological dark matter is based on the
need for a dominant, non-baryonic dark mass component, to reconcile the structure
and dynamics of the observed luminous components in the Universe (i.e. stars and
gas), with the gravitational forces inferred both on galactic, and cosmic, scales. The
idea of a dark matter component trace back to the 1930s, when it was proposed as
a means to explain the gravitational dynamics of stars within the Milky Way, and
galaxies within galaxy clusters (Oort, 1932; Zwicky, 1933). This idea was later
supported by observational measurements of flat rotational velocity profiles of stars
in the outskirts of spiral galaxies, implying a mass profile linearly increasing with
radius, far more extended than the stellar distribution (Babcock, 1939; Rubin & Ford,
1970). Further evidence of a ‘missing mass’ comes independently from analysing
the distortion of the images of background galaxies around massive clusters in the
foreground, via gravitational lensing. Measurements of the mass distribution of
these clusters, enough to cause such lensed distortions, exceed the mass inferred
from the baryonic distribution alone (e.g. Tyson et al., 1990).

The study of gravitationally collapsed structures provides another cosmological
probe of the dark matter paradigm. Within a ΛCDM cosmology, the linear growth
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of density perturbations is theoretically well understood. If one calculates the
growth of density perturbations inferred from CMB experiments, one would expect
very few collapsed structures at the present day. However, our Universe is filled
with gravitationally collapsed structure, as the beautiful galaxy we live in. This
discrepancy can be reconciled with the existence of a non-baryonic matter, which
is not coupled to the photon-baryon primordial plasma. Hence, its density fluctu-
ations can grow independently, and can be much larger at the time of decoupling.
Furthermore, a Universe which is dominated by the leading theoretical model of
dark matter, i.e. CDM, predicts the formation of large scale structure which is in
striking agreement with the observed distribution of galaxies (e.g. Davis et al., 1985;
Springel et al., 2006), including the detections of the BAO peak in the clustering of
galaxies (Cole et al., 2005; Eisenstein et al., 2005).

It is usually assumed that dark matter is a fundamental particle that interacts only
gravitationally with other particles. A large number of theoretical models have
been put forward as candidates over the years. In particular, the mass of the
proposed hypothetical particle, has important implications for formation of structure
in the Universe. Although the dark matter particle remains currently undetected,
numerical experiments suggest that it should be ‘cold’, i.e. it has a negligible
thermal velocity at decoupling (e.g. Davis et al., 1985). The CDM model has
been rigorously tested over past two decades, and it is now widely accepted as the
standard model of cosmology.

1.3 The formation of galaxies in a ΛCDM
Universe

The formation of galaxies is thought to be seeded by the tiny density fluctuations in
the early Universe. Under the effect of gravitational forces, these primordial density
perturbations grew in time, eventually becoming massive enough to overcome the
expansion of the Universe, undergoing gravitational collapse to form a dark matter
halo. Following the seminal work of White & Rees (1978), it is now widely accepted
that galaxies form at the centre of these dark matter haloes.

Gas is subject to the same gravitational forces as the dark matter, tracing roughly the
same structure formation. However, contrary to the dark matter, during gravitational
collapse, the gas experience strong shocks and thermalises its kinetic infall energy.
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The thermal pressure then prevents further gravitational collapse, and the gas reaches
a hydrostatic equilibrium. Depending on the temperature, density and composition
of the gas, a variety of cooling processes can take place, allowing the gas to further
condense into the halo potential well. Eventually, self-gravity may dominate over
the gravity of the dark matter halo, and the gas undergoes fragmentation and
catastrophic collapse, leading to the formation of stars.

The physics of star formation are complex and are still not well understood. Nonethe-
less, strong empirical relationships between gas measurements and star formation
rates have been observed, shedding some light into the nature of the formation
of stars. For example, Kennicutt (1998) estimated that the surface density of star
formation follows a power law relation with gas surface density. Furthermore, a
fraction of the newly formed stars will explode in the form of supernovae, releasing
large amounts of thermal energy into the interstellar medium (ISM). Together with
photoionisation and stellar winds, this form of stellar feedback is thought to prevent
further star formation in low mass galaxies (e.g. Dekel & Silk, 1986; White &
Frenk, 1991; Benson et al., 2003). On the other hand, at higher galaxy masses, it
is speculated that star formation is suppressed by feedback from accreting super-
massive black holes (SMBHs, e.g. Bower et al., 2006; Croton et al., 2006). Indeed,
observations of a tight correlation between the mass of a galaxy’s central SMBH
and key properties of its galactic host, such as the bulge mass and stellar velocity
dispersion (e.g. Magorrian et al. 1998; Gebhardt et al. 2000), have led to the idea
that SMBHs play a major role in the evolution of their host galaxies (e.g. Fabian
2012; Kormendy & Ho 2013; Heckman & Best 2014).

The understanding of all these processes and their complex interactions in a cosmo-
logical context is crucial to develop a comprehensive theory of galaxy formation.

1.4 The role of simulations

The formation and evolution of galaxies within dark matter haloes is thought to be
a highly self-regulated process, in which galaxies tend to evolve towards a quasi-
equilibrium state where the gas outflow rate balances the difference between the gas
inflow rate and the rate at which gas is locked up in stars and black holes (e.g. White
& Frenk, 1991; Finlator & Davé, 2008; Schaye et al., 2010; Davé et al., 2012).

Consequently, the physics of galaxy formation can be divided in two parts:
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1. The formation and growth of dark matter haloes, which depends solely on
the cosmological background.

2. Star formation and the regulation of the gas content in these haloes, that
depends on complex baryonic processes such as radiative cooling, stellar
mass loss, and feedback from stars and accreting SMBHs.

These processes happen on timescales that differ by several orders of magnitude,
but are coupled together through the accretion rate of gas onto gravitationally
bound haloes. This co-evolution process results in a tight correlation between the
properties of galaxies and their dark matter haloes (see Wechsler & Tinker 2018 for
a review).

In the following section, we summarise the different techniques that have been
developed to solve the ‘two parts’ of the physics of galaxy formation.

1.5 Part 1: The formation and growth of dark
matter haloes

Elegant analytical methods have been used to study the growth of primordial density
fluctuations. In the linear regime (i.e. before gravitational collapse), we can
calculate the evolution of the initial density field using linear perturbation theory.
This problem is theoretically well understood. However, in the non-linear regime,
the evolution of the density field becomes significantly more complicated, and
perturbation theory is no longer valid. In this regime, no analytic solutions exist,
and accurate modelling of the non-linear growth can only be achieved by numerical
simulation.

1.5.1 Linear perturbation theory

Dark matter structures are assumed to have grown from small initial density pertur-
bations. It is useful then to express the density, ρ, in terms of the density perturbation
contrast against a density background,

ρ(x, t) = ρ̄(t)[1 + δ(x, t)]. (1.13)
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Modelling the evolution of the density as an ideal fluid, the relevant equations are:
the continuity equation (conservation of mass), the Euler equation (momentum
equation), and the Poisson equation (local density and gravitational field). In
comoving coordinates, these equations are,

Continuity:
∂δ

∂t
+

1
a
∇ ·

[
(1 + δ)v

]
= 0, (1.14)

Euler:
∂v
∂t
+

Ûa
a

v +
1
a
(v · ∇)v = −∇Φ

a
− ∇P

a ρ̄(1 + δ), (1.15)

Poisson: ∇2
Φ = 4πρ̄a2δ, (1.16)

where the differential operator ∇ is with respect to the comoving coordinates, ∂/∂t
is at fixed comoving coordinates,Φ is the gravitational potential and v is the peculiar
velocity describing the motion a fluid element relative to an observer comoving with
the cosmological expansion. These equations can be further simplified by assuming
that δ and v are small, so that we can drop second order terms.

For a pressureless fluid, such as e.g. dark matter, P = 0. Then, taking the divergence
of the Euler equation, the time derivative of the continuity equation and substituting
the gravitational potential using Poisson’s equation, the differential equation that
governs the time dependence of the growth of linear perturbations of the dark matter
density field in a cosmological background can be written as,

d2δ

dt2 + 2
Ûa
a

dδ
dt

− 4πG ρ̄δ = 0. (1.17)

An explicit solution for the growing mode of Eq. (1.17) was found by Heath
(1977),

δ(t) = D(t)δ(t0), (1.18)

where D(t) is the linear growth factor, which determines the normalisation of
the linear matter power spectrum relative to the initial density perturbation power
spectrum, and is computed by the integral,

D(t) ∝ Ûa
a

∫ t

0

dt′

Ûa2(t′)
. (1.19)

For a matter-dominated universe, an analytic expression of the linear growth factor
can be found, which yields, D(t) ∝ t2/3 ∝ a(t). For more ‘complicated’ cosmolog-
ical models, the growing mode can be obtained from Eq. (1.19) numerically. In
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Chapter 3 we will introduce a useful new approach to solve the Friedman equations
that will allow us to formulate an analytic model for the growth of structure in the
universe.

1.5.2 Non-linear growth

Analytical approximations using highly idealised models have been put forward to
gain insight into the non-linear evolution of density perturbations. In particular,
using a simple spherically symmetric model to describe the growth and collapse
of a perturbation in a Gaussian random field, Press & Schechter (1974), developed
a very useful formalism that allows us to estimate the mass function of collapsed
objects. In the Press & Schechter theory, the co-moving abundance of haloes of
mass Mh at time t is given by,

dn(Mh, t)
dMh

=

√
2
π

ρ̄

M2
h

δc/D(t)
S1/2 exp ©«−

(
δc/D(t)

)2

2S
ª®¬
�����d ln S1/2

d ln Mh

����� (1.20)

where S = σ2(Mh) is the variance of the density field on the length scale corre-
sponding to the halo mass. According to the spherical collapse model, regions with
δ(x, t) > δc = 1.686, will have collapsed to produce dark matter haloes by time t.

1.5.3 Dark Matter only simulations

The development of efficient numerical simulations have been pivotal in advanc-
ing our knowledge of structure formation in the Universe. The basic principle of
numerical methods is to simulate a representative region of the Universe using N

discrete point particles to sample the matter density field. Given a set of initial con-
ditions (particle positions and velocities), the evolution of the particles is tracked by
integrating their trajectories according to Newton’s equations of motion, embedded
within a cosmological background.

Dark matter only (DMO) simulations are a subset of N-body simulations where
only gravitational forces are considered, so the particles are collisionless. This
type of simulations has played a crucial role in establishing the cold dark matter
paradigm (e.g. Davis et al., 1985; Frenk et al., 1988).
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At present, the formation and evolution of dark matter haloes is considered, for the
most part, a “solved problem” (see however, van den Bosch et al. 2018). Using
extremely accurate measurements of the temperature anisotropies of the CMB as
initial conditions (e.g. Planck Collaboration et al., 2016), many different groups
have produced convergent results using large cosmological N-body simulations
(e.g Springel et al., 2005b; Klypin et al., 2011; Trujillo-Gomez et al., 2011; Angulo
et al., 2012; Fosalba et al., 2015).

1.6 Part 2: Star formation and the regulation of
gas within dark matter haloes

Different approaches have been used to model the more complex baryonic physics of
galaxy formation. The most widely used technique combines the evolution of dark
matter with either a semi-analytical or hydrodynamical treatment of the baryonic
processes involved. A key ingredient in both methods that has led us to a better
understating of the physics of galaxy formation is the use of physically motivated
models for feedback processes (see Somerville & Davé 2015; Naab & Ostriker 2017
for a comprehensive review).

1.6.1 Semi-analytical Models

Semi-analytic models (SAMs) follow the properties of haloes in the merger tree from
DMO simulations (which encapsulates the merging and accretion history of the dark
matter structures), and populates them with galaxies by solving a set of coupled
differential equations (e.g. Cole et al., 1994; Somerville et al., 2008; Henriques
et al., 2015; Lacey et al., 2016). The equations used to model the complex physical
processes of galaxy formation in SAMs are motivated by empirical or theoretical
considerations. These equations provide the prescription for the cooling of gas
in haloes, star and black hole formation, feedback from star formation and active
galactic nuclei (AGN), metal enrichment, etc. SAMs are typically characterised
by a number of free parameters that can be constrained by comparing the model
predictions with statistical properties of the galaxy population, such as the galaxy
stellar mass function.
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A great advantage of SAMs over hydrodynamical simulations is that they are com-
putationally relatively inexpensive to run. Hence, SAMs can be applied to large
cosmological volumes. This also makes them ideal for rapid parameter space explo-
ration, allowing very good fits to observational datasets. On the other hand, some
of the disadvantages of SAMs include that they cannot trace the flow of gas in and
out of galaxies, they cannot predict the back reaction of baryons on the dark matter,
and they do not include any spatial information about the gas distribution.

1.6.2 Hydrodynamical simulations

Hydrodynamical simulations attempt to simulate both the dark matter and the
baryons together (e.g. Schaye et al., 2015; Davé et al., 2016; Dubois et al., 2016;
Pillepich et al., 2018). This represents a much more demanding problem in terms
of computational resources. The principle of hydrodynamic simulations is to take
the initial conditions for a given cosmology, e.g. ΛCDM, and split the particles
into two types of particles, gas and dark matter, according to the universal baryon
fraction, i.e. ρ̄baryon(t)/ρ̄DM(t). The evolution of the fluid is then tracked using
Eqs. (1.14) to (1.16), given an equation of state for the gas elements.

In the context of numerical simulations, there exist two physically equivalent for-
malisms to solve the equations of hydrodynamics; Lagrangian simulations, which
follow the properties of particles (discretising mass), and Eulerian simulations,
which track fluid properties within static grid cells (discretising space). Often
one is more powerful than the other for a particular application. For example,
in Lagrangian simulations, such as smoothed particle hydrodynamics (SPH, Gin-
gold & Monaghan 1977; Lucy 1977) the spatial resolution is naturally highest in
high density regions, coinciding with structures of primary interest such as galax-
ies. Modern Eulerian simulations, such as adaptive mesh refinement codes (AMR
Berger & Colella 1989), increase the spatial resolution in regions of particular in-
terest by progressively refining grid cells, and are in general better at resolving fluid
mixing, shocks and fluid instabilities than Lagrangian codes.

Many important physical processes in galaxy formation occur on scales too small
to be resolved directly within large cosmologically representative volumes. In
this regime, hydrodynamical simulations implement subgrid physics models to
approximate the relevant processes that cannot be simulated directly (e.g. Crain
et al., 2015; Pillepich et al., 2018). Very high-resolution simulations try and bridge
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the gap between unresolved and resolved scales in cosmological scale simulations
(e.g. Hopkins et al., 2011, 2014; Creasey et al., 2013, 2015).

While subgrid models resemble the expressions used in SAMs, in hydrodynami-
cal simulations, local properties of baryonic particles can be used in the subgrid
equations. Similar to SAMs, some of the subgrid physics prescriptions can be
constrained using observations, for example the empirical Kennicutt-Schmidt law
(Kennicutt, 1998). However, processes that are poorly understood, such as stellar
and AGN feedback, need to be calibrated to match statistical properties of the galaxy
population.

1.7 Thesis Structure

The primary aim of the work presented in this thesis is to test and understand the
impact of the cosmological background on galaxy formation. We take the advantage
of state of the art cosmological hydrodynamical simulations from the eagle suite to
vary the cosmological parameters, in particular the cosmological constant, to test its
effect on the efficiency of star formation, and draw conclusions about its observed
value, and the physics driving galaxy formation.

The remainder of this thesis is organised as follows. In Chapter 2, we introduce
the eagle simulation suite and the subgrid models used in the simulations. Using
a modified version of the eagle simulations, in Chapter 3 we investigate the effect
of the accelerated expansion of the Universe on the cosmic star formation rate.
We study these effects beyond the present day by allowing the simulations to run
forward into the future (t > 13.8 Gyr). We also develop a simple analytic model for
the cosmic star formation rate that captures the suppression due to a cosmological
constant. In Chapter 4, we predict the observed value of the cosmological constant,
given a measure of the multiverse. In Chapter 5, we develop an analytic model of
galaxy formation that connects the growth of dark matter haloes in a cosmological
background, with the build up of stellar mass within these haloes. Because in
Chapter 3 and Chapter 5 we show that feedback from accreting supermassive black
holes has a dramatic impact in the efficiency of star formation in massive galaxies,
in Chapter 6, we take a ‘slight’ detour to estimate the expected event rate of
gravitational wave signals from mergers of supermassive black holes that could be
resolved by a future gravitational wave detectors. We show that this can provide
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a profound insight into the origin of supermassive black holes and the initial mass
distribution of black hole seeds. Finally, in Chapter 7, we summarise the results of
this thesis and present ideas for future research work.

1.7 Thesis Structure 17



2The EAGLE simulation suite

„But... Eagle is the real Universe!

— Richard Bower

In this thesis, we make extensive use of the “Evolution and Assembly of GaLaxies
and their Environment” (eagle) suite of cosmological simulations. These simula-
tions consists of a large number of cosmological hydrodynamical simulations that
follow the formation and evolution of cosmic structure and galaxies in cosmologi-
cally representative cubic volumes. Full details of the EAGLE simulations can be
found in Schaye et al. (2015); Crain et al. (2015); here we provide only a brief review
of the aspects of eagle most relevant to the studies presented in this thesis.

2.1 The EAGLE code

The eagle simulation consists of a large number of cosmological hydrodynamical
simulations that include different resolutions, simulated volumes and physical mod-
els. These simulations use advanced SPH and state-of-the-art subgrid models to
capture the unresolved physics. The eagle code contains three primary components:
a gravity solver, a hydrodynamics solver, and subgrid physics modules.

2.1.1 Gravity solver

The eagle code uses a modified version of the gadget-3 SPH code (last described by
Springel 2005). The gravitational forces acting on each particle are calculated using
a Tree-PM method, that combines tree-based and mesh-based methods (Bode et al.,
2000; Bagla, 2002). Long range forces and periodic forces are obtained by mapping
the density field onto a regular mesh and solving Poisson’s Eq. (1.16) in Fourier
space. The short range interactions are computed using an octree, where the volume
is recursively subdivided into a hierarchy of cells. Cells that are close enough will
allow their particles to interact directly using a direct summation algorithm, whilst
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distant cells are calculated using multipole moments of the density field in the
cells.

2.1.2 Hydrodynamics solver

While dark matter particles interact only gravitationally, i.e. they are collisionless,
cosmic gas is described as a collisional ideal fluid. The evolution of the fluid is then
described by Eqs. (1.14) to (1.16), together with an equation of state for the gas that
relates the pressure, density and internal energy, u. The equation of state, typically
P = ρ(γ − 1)u, where the adiabatic index is γ = 5/3 for a monatomic gas.

Using an SPH technique (Gingold & Monaghan, 1977; Lucy, 1977), the fluid is
discretised into point mass particles, which transport the properties of the fluid.
Continuous fluid properties, such as the density or pressure, are computed by
interpolating the particle properties over a finite neighbourhood using a kernel
function that depends solely on the separation of the particles and a smoothing
length.

The eagle code uses a set of modifications to the SPH method, collectively referred
to as anarchy (Dalla Vecchia et al. in preparation), which make use of the pressure-
entropy formulation of SPH derived by Hopkins (2013), the artificial viscosity
switch from Cullen & Dehnen (2010), an artificial conduction switch similar to that
of Price (2008), the C2 kernel of Wendland (1995), and the time-step limiters of
Durier & Dalla Vecchia (2012). The effects of this state-of-the-art formulation of
SPH on the galaxy properties are explored in detail by Schaller et al. (2015b).

2.1.3 Initial conditions

The initial conditions for the eagle simulations were created in three steps. First,
a particle load, representing an unperturbed homogeneous periodic universe was
produced. Secondly, a realisation of a Gaussian random density field with the
appropriate linear power spectrum was created over the periodic volume. Thirdly,
the displacements and velocities, consistent with the pure growing mode of grav-
itational instability, were calculated from the Gaussian realisation and applied to
the particle load producing the initial conditions. The initial density perturbation
power spectrum is commonly assumed to be a power-law, i.e. Pi(k) ∝ kns . From
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the Planck results (Planck Collaboration et al., 2014), the spectral index ns, has a
value of ns = 0.9611. A transfer function with the cosmological parameters shown
in Table 1.2 was generated using CAMB (version Jan_12; Lewis et al. 2000). The
linear matter power spectrum was generated by multiplying the initial power spec-
trum by the square of the dark matter transfer function evaluated at the present day
t = t0, i.e. P(k, t) = Pi(k)T2(k)D2(t).1

2.1.4 Subgrid models

Processes that are not resolved by the simulations are implemented as subgrid
physical models; they depend solely on local interstellar medium (ISM) properties.
A full description of these subgrid models can be found in Schaye et al. (2015). In
summary:

1. Radiative cooling and photoheating are implemented element-by-element as
in Wiersma et al. (2009a), including the 11 elements found to be important,
namely, H, He, C, N, O, Ne, Mg, Si, S, Ca, and Fe. Hydrogen reionization
is implemented by switching on the full Haardt & Madau (2001) background
at redshift z = 11.5.

2. Star formation is implemented stochastically following the pressure-dependent
Kennicutt-Schmidt relation as in Schaye & Dalla Vecchia (2008). Above a
metallicity-dependent density threshold n∗H(Z),

n∗H(Z) = 0.1cm−3
(

Z
0.002

)0.64
(2.1)

where Z is the gas metallicity (i.e. the fraction of the gas mass in elements
heavier than helium). This threshold is designed to track the transition from
a warm atomic to an unresolved, cold molecular gas phase (Schaye, 2004).
The star formation rate is then computed by,

Ûm∗ = mg A
(
1 M⊙pc−2

)−n
(
γ

G
fgP

) (n−1)/2
, (2.2)

where mg is the mass of the gas particle, γ = 5/3, fg is the mass fraction
in gas (assumed to be unity), and P is the pressure. The coefficients A =

1The CAMB input parameter file and the linear power spectrum are available at http://eagle.
strw.leidenuniv.nl/
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1.515 × 10−4M⊙yr−1kpc−2 and n = 1.4 are taken directly from observations
assuming a Chabrier (2003) initial mass function (IMF). Gas particles have a
probability of forming stars on a given time step determined by their pressure
min

(
Ûm∗∆t/mg, 1

)
. Furthermore, because the simulations cannot resolve the

cold phase of the ISM (i.e. T < 104K), in order to prevent fragmentation
of gas and capture the unresolved turbulence, an effective equation of state
is imposed, PEOS ∝ ρ4/3g for gas with ρg > 0.1cm−3 and normalised to a
temperature TEOS = 8000K at the density threshold.

3. Time-dependent stellar mass loss due to winds from massive stars and AGB
stars, core collapse supernovae and type Ia supernovae, is tracked following
Wiersma et al. (2009b).

4. When stellar particles more massive than 6M⊙ reach an age of 3 × 107yr,
they will explode as type II supernovae, releasing ≈ 1051erg per supernova.
Stellar feedback is treated stochastically, using the thermal injection method
described in Dalla Vecchia & Schaye (2012). The gas surrounding the stellar
particles is heated to a temperature ∆T . While the choice of ∆T allows
to suppress numerical losses, the physical efficiency of feedback can be
controlled by injecting more or less energy per feedback event, which is
achieved by multiplying the energy per supernova by a factor of fth(Z, nH),
which depends on the density and metallicity of the gas surrounding the stellar
particle. This parameter is then calibrated to reproduce a set of observational
constraints (Crain et al., 2015).

5. SMBH seeds of mass M = 1.48 × 105M⊙, are placed in haloes with a
mass greater than 1.48 × 1010M⊙ and tracked following the methodology of
Springel et al. (2005a); Booth & Schaye (2009). Accretion onto SMBHs
follows a modified version of the Bondi-Hoyle accretion rate which takes
into account the circularisation and subsequent viscous transport of infalling
material, limited by the Eddington rate as described by Rosas-Guevara et al.
(2015)2. Additionally, BHs can grow by merging with other BHs as described
in Schaye et al. (2015); Salcido et al. (2016).

6. Feedback from AGN is implemented following the stochastic heating scheme
described by Schaye et al. (2015). Similar to the supernova feedback, a

2The eagle simulation do not include a boost factor for the accretion rate of BHs to account for an
unresolved clumping factor.
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fraction of the accreted gas onto the SMBH is released as thermal energy
with a fixed heating temperature into the surrounding gas following Booth &
Schaye (2009).

For the eagle simulations, the subgrid parameters were calibrated to reproduce
three properties of galaxies at redshift z = 0: the galaxy stellar mass function, the
galaxy size–stellar mass relation, and the black hole mass-stellar mass relation. The
calibration strategy is described in detail by Crain et al. (2015), who also explores
the effect of parameter variations.

2.2 Calibration philosophy and the predictive
power of simulations

The recent success of galaxy formation models in matching observational data can,
for the most part, be attributed to the implementation of more effective subgrid
models for feedback processes. However, due to our lack of understanding of
the physical processes that operate below the resolution limit, simulations such as
eagle can only provide limited insight into the nature and source of these feedback
processes. Current galaxy formation models cannot make ab initio predictions of
galaxy properties such as stellar and black hole masses. Therefore, stellar and black
hole feedback efficiencies in the simulations need to be calibrated to reproduce the
correct observational properties.

The eagle simulations were calibrated on a small subset of the observational data,
and validated on the rest. This provides confidence in the sense that eagle is not
just a complicated fitting function. Hence, the simulations have predictive power
on galaxy properties not included in the calibration strategy.

In particular, the eagle simulations were calibrated to reproduce the present-day
galaxy stellar mass function, the amplitude of the galaxy-central black hole mass
relation, and galaxy sizes. Other observables not considered in the calibration, such
as the specific star formation rates of galaxies, passive fractions, the TullyFisher
relation, galaxy colours, the column density distribution function of Hi and the
abundance of H2, have been also found to be in good agreement with observations
(Furlong et al., 2017; Furlong et al., 2015; Trayford et al., 2015; Lagos et al., 2015;
Rahmati et al., 2015).
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2.3 Summary

The eagle simulations comprise a set of state-of-the-art cosmological hydrodynam-
ical simulation that use modern smoothed particle hydrodynamics and physically
motivated subgrid models to capture the unresolved physics. These simulations
have been shown to reproduce the observed galaxy population with unprecedented
fidelity, providing a powerful tool to study galaxy formation and evolution.

Key observations, such as the present-day stellar mass function of galaxies, the
dependence of galaxy sizes on stellar mass, and the amplitude of the central SMBH
mass-stellar mass relation, as well as many other properties of observed galaxies
and the intergalactic medium (both at the present day and at earlier epochs) are
reproduced by the simulations (e.g. Furlong et al., 2017; Furlong et al., 2015;
Trayford et al., 2015; Schaller et al., 2015a; Lagos et al., 2015; Rahmati et al., 2015,
2016; Bahé et al., 2016; Rosas-Guevara et al., 2016).

Is eagle the real Universe then? Despite the humorous assertion in the opening
quote for this chapter, eagle is not the real Universe. There are known discrepancies
between the simulation results and observational data. To mention some examples,
the simulation slightly undershoots the “knee” of the galaxy stellar mass function
(∼ 0.2 dex underprediction of the observed number density). This translates to
approximately 20% lower stellar mass density than inferred from observations
(Schaye et al., 2015; Furlong et al., 2015). The evolution of the specific star
formation rates broadly follows the trends seen in observational data, but with a
normalisation offset of 0.2 − 0.5 dex, depending on redshift (Schaye et al., 2015;
Furlong et al., 2015). This, however, could be a calibration issue of the star formation
indicators (see Driver et al., 2018). At redshift z = 0, the transition from active
to passive galaxies occurs at slightly too high stellar masses (Schaye et al., 2015;
Trayford et al., 2015). The present-day stellar mass-metallicity relation is flatter
than the one inferred from observational data (Schaller et al., 2015c). This problem,
however, seems to disappear at higher resolutions, suggesting it is an issue with the
limited sampling of supernovae feedback events.

Since the eagle simulations reproduce a wide set of observational properties of the
galaxy population, we may expect the physics of the real Universe to be reasonably
well captured by the phenomenological sub-grid models implemented in the simu-
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lations. In this thesis we will use this powerful tool to explore the interplay between
cosmology and the formation of galaxies.

The continuous development of accurate and detailed theoretical predictions of
models such as eagle, combined with the unprecedented amount of observational
data available to us today, are the key to unravel the complex physics of galaxy
formation.
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3The impact of dark energy on
galaxy formation. What does the
future of our Universe hold?

In this chapter we investigate the effect of the accelerated expansion of the Universe
due to a cosmological constant, Λ, on the cosmic star formation rate. We utilise
hydrodynamical simulations from the Eagle suite, comparing a ΛCDM Universe
to an Einstein-de Sitter model with Λ = 0. Despite the differences in the rate of
growth of structure, we find that dark energy, at its observed value, has negligible
impact on star formation in the Universe. We study these effects beyond the present
day by allowing the simulations to run forward into the future (t > 13.8 Gyr). We
show that the impact of Λ becomes significant only when the Universe has already
produced most of its stellar mass, only decreasing the total co-moving density of
stars ever formed by ≈15%. We develop a simple analytic model for the cosmic star
formation rate that captures the suppression due to a cosmological constant. The
main reason for the similarity between the models is that feedback from accreting
black holes dramatically reduces the cosmic star formation at late times. Interest-
ingly, simulations without feedback from accreting black holes predict an upturn in
the cosmic star formation rate for t > 15 Gyr due to the rejuvenation of massive
(> 1011M⊙) galaxies. We briefly discuss the implication of the weak dependence
of the cosmic star formation on Λ in the context of the anthropic principle.

This chapter has been published as a paper in Monthly Notices of the Royal Astro-
nomical Society (MNRAS):

• The impact of Dark Energy on Galaxy Formation. What does the future of
our Universe hold?
Salcido J., Bower, R. G., Barnes, L. A., Lewis, G. F., Elahi, P. J., Theuns, T.,
Schaller, M., Crain, R. A., Schaye, J., MNRAS 2018, Volume 477, Issue 3,
Pages 3744-3759
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3.1 Introduction

Precise observational data from the past two decades has allowed us to measure
the cosmic history of star formation back to very early times (z ≈ 8). The star
formation rate (SFR) density of the Universe peaked approximately 3.5 Gyr after
the Big Bang (z ≈ 2), and declined exponentially thereafter (for a review see Madau
& Dickinson, 2014).

Galaxy formation and evolution is a highly self-regulated process, in which galaxies
tend to evolve towards a quasi-equilibrium state where the gas outflow rate balances
the difference between the gas inflow rate and the rate at which gas is locked up
in stars and black holes (BHs) (e.g. White & Frenk, 1991; Finlator & Davé, 2008;
Schaye et al., 2010; Davé et al., 2012). Consequently, the cosmic SFR density is
thought to be determined both by the formation and growth of dark matter haloes,
and by the regulation of the gas content in these haloes. The former depends solely
on cosmology, whereas the latter depends on baryonic processes such as radiative
cooling, stellar mass loss, and feedback from stars and accreting black holes.

Which of these factors is most responsible for the decline in cosmic star formation?
It could be driven by the ‘freeze out’ of the growth of large-scale structure, caused
by the onset of accelerating cosmic expansion. As galaxies are driven away from
each other by the repulsive force of dark energy, accretion and merging is slowed
and galaxies are gradually starved of the raw fuel for star formation. Or, it could be
caused primarily by the onset of efficient stellar and BH feedback.

The discovery of the accelerating expansion of the Universe was a breakthrough
achievement for modern cosmology (Riess et al., 1998; Perlmutter et al., 1999).
However, the driving force behind the acceleration (generically known as dark
energy) is still unknown. At present, all cosmological observations are consistent
with a cosmological constant, or a form of energy whose density remains constant as
the Universe expands. One such form of energy is vacuum energy: the energy of a
quantum field in its ground state (zero particles). The present best-fit cosmological
model, known as the concordance model, or ΛCDM, includes both a cosmological
constant Λ and Cold (i.e. non-relativistic) Dark Matter. This model has been very
successful in matching the observational data.
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Nevertheless, the model raises a number of fundamental problems. Predictions
from quantum field theory for the vacuum energy density overestimate the observed
value of Λ by many orders of magnitude (for a review see Weinberg, 1989; Carroll,
2001). In addition, the energy density of matter and the cosmological constant
are within a factor of a few of each other at the present time, making our epoch
unusual in the evolution of the Universe. This is known as the coincidence problem.
These problems have motivated the search for alternative models of dark energy and
modifications of gravity that might explain the acceleration of the universe more
naturally. For example, quintessence models propose that the density of matter and
dark energy track each other. In many models, however, fine tuning of the model
parameters is still required to explain their observed similarity (see for example
Weinberg, 2000).

An alternative approach is therefore to explain the observed value ofΛ on anthropic
grounds. This has already been applied very promisingly to the coincidence problem.
Since the coincidence concerns the time that we observe the universe, the nature and
evolution of observers in the Universe is highly relevant. For example Lineweaver
& Egan (2007) argue that the production of planets in our Universe peaks when
matter and dark energy are roughly coincident (see, however, Loeb et al., 2016).

For the cosmological constant and other fundamental parameters, anthropic reason-
ing requires a multiverse. Many models of inflation, such as eternal inflation, imply
that the Universe as a whole is composed of a vast number of inflationary patches or
sub-universes. Each sub-universe inherits a somewhat random set of physical con-
stants and cosmic parameters from a wide range of possible values. Sub-universes
in which the cosmological constant is large and positive will expand so rapidly that
gravitational structures, such as galaxies, are unable to form (e.g. Weinberg, 1987;
Martel et al., 1998; Efstathiou, 1995; Sudoh et al., 2017). Large negative values
will cause the universe to collapse rapidly, also preventing the formation of galaxies.
Only sufficiently small values of Λ will lead to the formation of universes that are
able to host observers. This argument eliminates extreme values ofΛ. For example,
Weinberg (2000) estimates an upper bound on a positive vacuum energy density to
allow for the formation of galaxies of about 200 times the present mass density.

Refining Weinberg’s estimate requires us to more accurately explore the sensitivity
of galaxy formation to the presence of Λ. Here, we use a suite of hydrodynamical
simulations to take a first look at this problem by calculating the effect of the
cosmological constant on galaxy and star formation in our Universe. Specifically,
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we compare the formation of galaxies in our Universe with a hypothetical universe
that is indistinguishable from ours at early times but has no cosmological constant.
Because Λ is negligibly small in the early universe, these two universes will evolve
in nearly identical ways for the first ≈ 2 Gyr of cosmic time (when the dark energy
density is less than 0.03 times the matter density). This means that the epochs of
nucleosynthesis, recombination1, and reionization are indistinguishable.

In recent years, the accuracy of our understanding of galaxy formation has improved
considerably, reaching the point at which it is possible to undertake this compari-
son meaningfully. The increased realism of simulated galaxies (in particular disc
galaxies with more realistic sizes and masses) has been achieved due to the use
of physically motivated subgrid models for feedback processes (e.g. Schaye et al.,
2015; Dubois et al., 2016; Pillepich et al., 2018). One of the key ingredients that
has allowed this progress is the inclusion of realistic models for the impact of feed-
back from the growth of super massive black holes (e.g. Bower et al., 2017). All
successful models now demonstrate the need for active galactic nuclei (AGN) as an
additional source of feedback that suppresses the formation of stars in high-mass
haloes (e.g. Benson et al., 2003; Croton et al., 2006; Bower et al., 2006; Crain et al.,
2015; Pillepich et al., 2018). One of the aims of the present chapter is to compare
the impact of the cosmological constant with that resulting from the inclusion of
black holes (BHs) in the simulation. In a previous study, van de Voort et al. (2011)
found that by preventing gas from accreting onto the central galaxies in massive
haloes, outflows driven by AGN play a crucial role in the decline of the cosmic
SFR.

Different groups have used hydrodynamical simulations to study the effect of dif-
ferent dark energy or modified gravity models on cosmological, galactic and sub-
galactic scales (e.g. Puchwein et al., 2013; Penzo et al., 2014, 2016). Taking a
different approach, in this chapter we investigate the effect of the accelerated expan-
sion of the Universe on galaxy formation by asking the following question:

How different would the Universe be if there had been no dark energy?

For our study, we use a suite of large hydrodynamical simulations from the Evolution
and Assembly of GaLaxies and their Environment (eagle) project (Schaye et al.,

1Of course, an observer in a Λ = 0 universe would measure a different angular power spectrum
in the cosmic microwave background after 13.8 Gyr, because of the very different expansion
history of the Universe at later times.
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2015; Crain et al., 2015). Using state-of-the-art subgrid models for radiative cooling,
star formation, stellar mass loss, and feedback from stars and accreting BHs, the
simulations have reproduced many properties of the observed galaxy population
and the intergalactic medium both at the present day and at earlier epochs (e.g.
Furlong et al., 2017; Furlong et al., 2015; Trayford et al., 2015; Schaller et al.,
2015a; Lagos et al., 2015; Rahmati et al., 2015, 2016; Bahé et al., 2016; Rosas-
Guevara et al., 2016; Segers et al., 2016). Given that the physics of the real
Universe is reasonably well captured by the phenomenological sub-grid models
implemented in the simulations, with the use of appropriate assumptions, we can
run the simulations beyond the present time, and explore the consequences of our
models for the future. Furthermore, the simulation re-scaling strategy developed
here, will be used in a companion paper (Barnes et al., 2018) considering a wider
range of Λ values, and determining the likelihood distribution of possible Λ values
conditioning the existence of observers.

The layout of this chapter is as follows: In Section 3.2, we develop a simple
analytic model of the cosmic star formation rate that captures the suppression due
to a cosmological constant. In Section 3.3, we briefly describe the simulations
from which we derive our results and discuss our criteria for halo and galaxy
definitions. In Section 3.3 we also describe our motivations to run our cosmological
simulations into the future, and our assumptions in doing so. Section 3.4 provides
a detailed discussion of our re-scaling strategy for the alternative cosmological
models. In Section 3.5, we explore the dependence of the star formation history of
the universe on the existence of a cosmological constant and the presence of BHs.
We also explore their impact on other galaxy population properties, both up to the
present time, and into the future. Finally, we summarise and discuss our results in
Section 3.6.

3.2 A simple analytic model for the cosmic star
formation rate density

3.2.1 Comparing different cosmological models

The star formation history of the Universe is determined by the interplay of cosmic
expansion and the timescale at which cold gas can turn into stars. These processes
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happen on timescales that differ by several orders of magnitude, but are coupled
through the accretion rate of gas onto gravitationally bound haloes. The aim of our
paper is to compare theoretical universes in which the star formation timescales are
the same, but the cosmological timescales vary. We need, therefore, to be careful
when comparing the different models, since the choice of coordinates that vary with
cosmological parameters will obscure the similarities of the models. In particular,
the expansion factor at the present day, a0, is often treated as an arbitrary positive
number, and it is common practice to set a0 = 1. In this chapter, we need to take a
different approach since we want to compare the properties of different universes at
the same cosmic time (measured in seconds, or a multiple of key atomic transitions).
Assuming a common inflationary origin, normalising out a0 is not appropriate, since
the expansion factor at the present day (t0 = 13.8 Gyr), would be different for each
universe.

We still need to define a scale on which to measure the size of the universes we
consider. Using a hat notation (ˆ) to denote quantities in our observable Universe,
we set â0 ≡ â(t0) = 1. We want to emphasise that the cosmological models that we
consider all start from very similar initial conditions. It therefore makes sense to
normalise them to the same value of the expansion factor at an early time, t1. We
therefore set a1 ≡ a(t1) = â(t1). We choose â1 = 1/(1 + 127), corresponding to a
redshift of ẑ = 127 for a present-day observer in our Universe2. At this moment, the
age of the universe is t1 = 11.98 Myr. This applies to all of the universes we consider
since the cosmological constant term has negligible impact on the expansion rate at
such early times.

Although time (in seconds) is the fundamental coordinate that we use to compare
universes, it is sometimes useful, for example when comparing to observational
data, to express time in terms of the redshifts measured by a present-day observer
in our Universe, ẑ. We convert between cosmic time t (which is equivalent between
universes) and â by inverting the time-redshift relation for our Universe:

ẑ =
â0

â(t) − 1 (3.1)

It is important to note that ẑ is not the redshift that would be measured by an observer
in an alternative universe.

2 ẑ = 127 was the reference simulation’s starting redshift.
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In this chapter, we will focus our comparison on two cosmological models, a
standard ΛCDM universe as inferred by the Planck Collaboration et al. (2014), and
an an Einstein deSitter (EdS) universe. Assuming both cosmological models have
a common inflationary origin, the models can be normalised as follows:

1. For the ΛCDM model (see Table 3.1) we set â0 = â(t0) = 1, where t0 =

13.82 Gyr is the present-day age of the universe. At time t1 = 11.98 Myr,
â1 = â(t1) = 0.007813. At this time, the expansion rate, as measured by the
Hubble parameter is, Ĥ1 = Ĥ(t1) = 54, 377 km/s/Mpc = 55.6 Gyr−1.

2. We require the EdS model to have the same early expansion history, i.e.,
a(t1) = 0.007813 and H(t1) = 55.6 Gyr−1. In this universe, at the present day
(i.e. t = t0 = 13.82 Gyr) the universe has a size, a0 = a(t0) = 0.8589 and an
expansion rate, H(t0) = 0.0482 Gyr−1 = 47.16 km/s/Mpc.

Figure 3.1 shows the cosmic scale factor as a function of time for the two cosmo-
logical models. As expected, at t = t0, an EdS universe is smaller in size at the
present day, as the cosmic expansion has not been accelerated by the effect ofΛ. As
the two universes evolve into the future, the size differences and relative expansion
rates grow, e.g. at t = 20 Gyr, the scale factor for theΛCDM models is ≈25% larger
than for the EdS, and the expansion rate is ≈50% larger for our Universe.

3.2.2 Cosmological expansion history as a function of
time

In the standard model of cosmology for a homogeneous and isotropic universe,
the geometry of space-time is determined by the matter-energy content of the uni-
verse through the Einstein field equations as described by the Friedmann-Lemaître-
Robertson-Walker metric in terms of the scale factor a(t) and the curvature K ,
yielding the well-known Friedmann equation,(

Ûa
a

)2
= H2(t) = 8πG

3
ρ − Kc2

a2 +
Λc2

3
, (3.2)

where H(t) is the Hubble parameter. As the inflationary models predict that the Uni-
verse should be spatially flat, we only consider universes with no spatial curvature,
i.e. K = 0.
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Fig. 3.1.: Cosmic scale factor as a function of time for two cosmological models. The
model for the cosmological parameters for a standardΛCDM universe as inferred
by the Planck Collaboration et al. (2014) is shown in blue. An Einstein-de Sitter
universe is shown in orange. Note that by construction the scale factors are
indistinguishable when the universes are less than 1 Gyr old. The power series
approximation of Eq. (3.10) is shown with a dashed green line.
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The density of Eq. (3.2) includes the contribution of non-relativistic matter and
radiation (ρm and ρr). The radiation content of the Universe dominated its global
dynamics at very early times (a → 0), but its contribution is negligible thereafter.
Ignoring ρr and using the energy density at an arbitrary time t1, Eq. (3.2) can be
written as, (

Ûa
a

)2
=

8πG
3
ρm,1

(
a
a1

)−3
+
Λc2

3
, (3.3)

where ρm,1 is the matter density of the universe at t = t1, and a1 = a(t1). We choose
t1 such that it corresponds to a sufficiently early epoch, when the contribution of
the cosmological constant term is negligible. As discussed in the previous section,
at this time any universe closely approximates an EdS universe and we can assume
that a1 = â1 and ρm,1 = ρ̂m,1 =⇒ ρ̂m,0(â0/â1)3 = ρm,0(a0/a1)3. Then, Eq. (3.3)
can be written as, (

Ûa
a

)2
=

8πG
3
ρ̂m,0

(
a
â0

)−3
+
Λc2

3
. (3.4)

Note that in Eq. (3.4), the evolution of the scale factor for any arbitrary cosmology
is written in terms of the matter density of our Universe at the present time ρ̂m,0.
We have left the factor of â0 explicit in the equation, but it can be set to â0 = 1,
noting that a0 , 1 for any cosmological model different to our Universe.

The LHS of Eq. (3.4), has units of time−2 and we will later find it useful to represent
the RHS as the sum of two timescales. The cosmological constant is often written
as an energy component with energy density ρΛ = Λc2/8πG, however, we can
express this as a timescale as follows,

tΛ =

√
3
Λc2 =

1
H0

√
ΩΛ,0
. (3.5)

Similarly, the matter content of the Universe can be expressed as a timescale,

tm =

√
3

8πG ρ̂0
=

1

Ĥ0

√
Ω̂m,0

. (3.6)

Using the cosmological parameters for our Universe, tΛ = t̂Λ = 17.33 Gyr and
tm = t̂m = 26.04 Gyr. For an EdS universe, tΛ → ∞.
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Using this notation, Eq. (3.2) can be written as,(
Ûa
a

)2
= t−2

m

(
a
â0

)−3
+ t−2
Λ
, (3.7)

which can be solved analytically to express the expansion factor as a function of
time and the parameters tm and tΛ:

a(t) =
[
1
2

e−3t/2tΛ
(
e3t/tΛ − 1

) (
tΛ
tm

)]2/3

(3.8)

In the limit tΛ → ∞ this reduces to the familiar EdS solution,

lim
tΛ→∞

a(t) =
[
3
2

t
tm

]2/3
(3.9)

In order to explore the significance of the t/tΛ term more clearly, we can expand
Eq. (3.8) as a Taylor series:

a(t) ≈
[
3
2

t
tm

]2/3 (
1 +

1
4

(
t

tΛ

)2
+

1
80

(
t

tΛ

)4
+ ...

)
(3.10)

The coefficients of the series decreased rapidly so that the first three terms provide
a good approximation up to t = 2tΛ and beyond. Figure 3.1 shows how well this
power series approximation works.

3.2.3 The growth of density perturbations

In the standard model of cosmology, structures such as galaxies and clusters of
galaxies are assumed to have grown from small initial density perturbations. Ex-
pressing the density, ρ, in terms of the density perturbation contrast against a density
background,

ρ(x, t) = ρ̄(t)[1 + δ(x, t)], (3.11)

the differential equation that governs the time dependence of the growth of linear
perturbations in a pressureless fluid, such as e.g. dark matter, can be written as (for
a review see Peebles, 1980; Mo et al., 2010),

d2δ

dt2 + 2
Ûa
a

dδ
dt

− 4πG ρ̄δ = 0. (3.12)
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The growing mode of Eq. (3.12) can be written as,

δ(t) = D(t)δ(t0), (3.13)

where D(t) is the linear growth factor, which determines the normalisation of
the linear matter power spectrum relative to the initial density perturbation power
spectrum, and is computed by the integral

D(t) ∝ Ûa
a

∫ t

0

dt′

Ûa2(t′)
. (3.14)

Using the hat notation as before, we normalise D(t) so that,

• D̂(t0) = 1

• D(t1) = D̂(t1)

In general, the growing mode can be obtained from Eq. (3.14) numerically. Fig-
ure 3.2 shows the growth factor as a function of cosmic time for the two cosmological
models. As expected, the figure shows that linear perturbations grow faster in an
EdS universe compared to those in a ΛCDM universe.

It is possible to gain more insight by integrating the power-series approximation
for a(t) from Eq. (3.10). Expanding the solution again as a power series in (t/tΛ),
retaining the leading terms, yields,

D(t) =
[
3
2

t
tm

]2/3 2
5

t2
mKD

(
1 − 0.1591

(
t

tΛ

)2
+ 0.0366

(
t

tΛ

)4
)
, (3.15)

where KD is a normalisation constant. Requiring D̂(t0) = 1 gives KD = 4.70 ×
10−3 Gyr−2. Figure 3.2 shows that Eq. (3.15) provides a good approximation up to
t = tΛ.

This demonstrates that although the tΛ term slows down the growth of perturbations,
its effect is less than 10% until t ∼ tΛ

(
0.1/0.1591

)1/2 ≈ 0.8tΛ corresponding to
≈ 13.8 Gyr (≈t̂0) in our Universe.

As we discuss in the following section, the quantity of fundamental interest for
the accretion rate of dark matter haloes is the relative rate of growth of density
perturbations, 1

D
dD
dt . We show this for the numerical solution in Fig. 3.3. We can also
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(orange). The power series approximation of Eq. (3.15) is shown with a dashed
green line.
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compute the relative growth rate by differentiating the power-series approximation
of Eq. (3.15). Retaining the lowest order terms, we find,

1
D

dD
dt
=

2
3t

(
1 − 0.4773

(
t

tΛ

)2
+ 0.1435

(
t

tΛ

)4
)

(3.16)

This expression does not depend on the constants tm or KD because we are focusing
on the relative change in the growth factor. The impact of the cosmological constant
term is relatively large, creating an ≈50% increase in growth rate for the EdS model
compared to ΛCDM when t ≈ tΛ.

3.2.4 Impact on halo accretion rates

The growth rates of linear perturbations do not directly predict the growth rates of
haloes, however, we can directly connect the two through the approach developed
by Press & Schechter (Press & Schechter, 1974; Bond et al., 1991; Bower, 1991;
Lacey & Cole, 1993). Correa et al. (2015) showed that the accretion rates of haloes
can be written as (see also Neistein et al., 2006),

1
Mh

dMh

dt
=

√
2
π

(δc/D)
S(Mh)1/2

(
qγ − 1

)1/2
1
D

dD
dt
, (3.17)

where Mh is the halo mass and S(Mh) is the variance of the density field on the length
scale corresponding the halo mass. δc is a parameter that represents a threshold in
the linearly extrapolated density field for halo collapse. The parameters, q and γ, are
related to the shape of the power-spectrum around the halo mass Mh. Approximating
the scale dependence of the density field as a power-law, S = S0M−γ

h , Correa et al.
2015 find S ≈ 3.98, γ ≈ 0.3 and q ≈ 3.16, giving

[
S(Mh)

(
qγ − 1

) ]−1/2 ≈ 0.78 for
1012 M⊙ haloes. These values depend only on the initial power spectrum (which we
assume to be the same in all the universes we consider) and do not depend on the
cosmological parameters. This formulation thus neatly separates the contribution
of the power-spectrum shape from the cosmological parameters. We are therefore
able to assume that q and γ are the same for all the universes that we consider, and
focus on the dependence on D(t).
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For the numerical values of the power-spectrum parameters around a halo mass of
1012 M⊙, Eq. 3.17 reduces to

1
Mh

dMh

dt
= 1.0456

1
D2

dD
dt
. (3.18)

This dependence can be understood as the combination of two factors. The first
reflects the relative growth rate of density fluctuations 1

D
dD
dt . The second factor of

1/D comes from the rarity of haloes, reflecting the higher growth rate of fluctuations
in the tail of the density field distribution.

Further insight can be gained by using the series approximation. This gives,

1
Mh

dMh

dt
=

566.61
√

S t5/3t4/3
m

(
1 − 0.3182

(
t

tΛ

)2
+ 0.0563

(
t

tΛ

)4
)
. (3.19)

This explicitly shows how the presence of a cosmological constant modulates the
halo growth rate. In our Universe, the impact of the cosmological constant term is
relatively modest, however; at t = 13.8 Gyr, we expect the difference to be 20%,
growing to 40% at t = 20 Gyr.

As an example, in Fig. 3.4 we show the accretion rate of haloes of Mh = 1012M⊙,
both numerically and using Eq. (3.19).

3.2.5 Impact on the star formation rate of the Universe

In order to link the SFR of halos of mass Mh to their accretion rate, as a first
approximation, we assume a time-independent galaxy specific star formation rate to
host halo specific mass accretion rate relation (e.g. Behroozi et al., 2013a; Tacchella
et al., 2013; Rodríguez-Puebla et al., 2016),

ÛM∗/M∗
ÛMh/Mh

=
∂logM∗
∂logMh

= ϵ(Mh), (3.20)

where the star formation efficiency ϵ , of haloes of mass Mh, is the slope of the
stellar-halo mass relation. From this equation, the star formation as a function of
halo mass can be written as,

ÛM∗(Mh) = ϵ∗(Mh) ÛMh, (3.21)
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where ϵ∗(Mh) := ϵ(Mh) × (M∗/Mh) is completely defined by the stellar-halo mass
relation. As there is no a priori knowledge of the functional form of ϵ∗(Mh), we
use the abundance matching results from Behroozi et al. 2013b to estimate ϵ∗(Mh).
The efficiency ϵ∗(Mh) peaks at masses similar to Milky-Way sized halos (∼1012 M⊙)
and falls steeply for higher and lower masses. ϵ∗(Mh) can be well approximated by
a broken power law as,

ϵ∗(Mh) ∝



(
Mh

1012M⊙

)1
if Mh ≤ 1012M⊙

(
Mh

1012M⊙

)−1
if Mh > 1012M⊙

(3.22)

At low masses, star formation rate is suppressed because of the efficiency of feedback
from star formation, at higher masses the cooling of the inflowing gas is suppressed
by heating from black holes (White & Frenk, 1991; Benson et al., 2003; Bower
et al., 2006; Haas et al., 2013; Crain et al., 2015; Dubois et al., 2016; Bower et al.,
2017).

In order to complete the analysis, we need to combine the specific halo mass
accretion rate with an estimate of the halo abundance.

In the Press & Schechter analysis, the co-moving abundance of haloes of mass Mh

at time t is given by (Press & Schechter, 1974; Bond et al., 1991; Bower, 1991;
Lacey & Cole, 1993),

dn(Mh, t)
dMh

=
ρ̂0

M2
h

δcγ√
2πS1/2

1
D

exp

(
− δ2c

2SD2

)
(3.23)

where we have assumed that the density power spectrum is a power law with
exponent γ and written the co-moving density of the Universe as ρ̂0 following our
convention. Note that we compute co-moving densities. At the same cosmic time,
the different expansion rates will result in different physical (proper) halo and SFR
densities, simply because of the more rapid expansion of the ΛCDM cosmology.

The total cosmic SFR density is given by the integral of all star formation in all
haloes,

Ûρ∗(t) =
∫

ÛM∗(Mh)
dn(Mh, t)

dMh
dMh =

∫
ϵ∗(Mh) ÛMh

dn(Mh, t)
dMh

dMh (3.24)
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Using the power series approximation Eq. (3.19) together with Eq. (3.22) and
Eq. (3.23), the contribution to the cosmic SFR density from haloes of mass Mh (the
integrand of Eq. (3.24)) is given by,

d Ûρ∗
dMh

= ϵ∗(Mh)
[

1
Mh

dMh

dt

]
Mh

dn(Mh, t)
dMh

= ϵ∗(Mh)
46230.9ρ̂0

MhSt7/3t8/3
m

(
1 − 0.1590

(
t

tΛ

)2
− 0.0056

(
t

tΛ

)4
)

× exp
−

232382
S t4/3t8/3

m

(
1 + 0.3182

(
t

tΛ

)2
+ 0.0028

(
t

tΛ

)4
) .

(3.25)

The cosmological constant term enters through both the multiplier and the exponen-
tial terms, with a balance that depends on the halo mass through S (see Eq. (3.17)).
While smaller haloes are more abundant than large objects, a smaller fraction of the
inflowing material is converted into stars. As a result, the SFR density is dominated
by the largest haloes in which star formation is able to proceed without generating
efficient BH feedback. The smaller haloes only contribute significantly at very early
times, when the abundance of larger objects is strongly suppressed by the exponen-
tial term. We see therefore that the level of suppression expected for ≈1012 M⊙

haloes is representative of most of the SFR in the Universe.

The predictions for the contributions of different halo masses are shown in Fig. 3.5,
together with the total expected cosmic SFR density, for the two cosmologies that
we consider in this chapter. We will compare this approximation in Section 3.5 to
the results from the eagle simulations.

3.3 The EAGLE Simulations

The simple analytic model provides a basis for interpreting the results, but it is highly
simplified. We therefore compare the analytic model to numerical hydrodynamic
simulations based on the eagle project. The eagle simulation suite3 (Schaye et al.,
2015; Crain et al., 2015) consists of a large number of cosmological hydrodynam-
ical simulations that include different resolutions, simulated volumes and physical
models. These simulations use advanced smoothed particle hydrodynamics (SPH)

3http://www.eaglesim.org
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Fig. 3.5.: The predicted SFR history of the Universe, and the expected influence of the cos-
mological constant using the simple model developed in Section 3.2.5. Coloured
lines show the contributions from dark matter haloes of different masses (per
dex), using the star formation efficiency described by Eq. (3.25). The total SFR
for the ΛCDM universe calculated numerically is shown in blue. An Einstein-de
Sitter universe is shown in orange. The integrated SFR calculated using the ap-
proximation of Eqs. (3.24) and (3.25), is shown with a dashed green line. The
bottom panel shows the ratio at a given time. The predicted suppression of SFR
due to Λ at the present time is ≈19%. At t ≈ 30 Gys the predicted SFR density
for the EdS model is double than ΛCDM, and ≈6 times higher at t = 50 Gyr. The
approximation of Eqs. (3.24) and (3.25) ceases to work for t ≳ 25 Gyr.
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and state-of-the-art subgrid models to capture the unresolved physics. The simula-
tion suite was run with a modified version of the gadget-3 SPH code (last described
by Springel 2005) and includes a full treatment of gravity and hydrodynamics. The
calibration strategy is described in detail by Crain et al. (2015) who also presented
additional simulations to demonstrate the effect of parameter variations.

The halo and galaxy catalogues for more than 105 simulated galaxies of the main
eagle simulations with integrated quantities describing the galaxies, such as stellar
mass, SFRs, metallicities and luminosities, are available in the eagle database4

(McAlpine et al., 2016). A complete description of the code and physical parameters
used can be found in Schaye et al. (2015).

The eagle reference simulations used cosmological parameters measured by the
Planck Collaboration et al. (2014). In this chapter we introduce three main eagle
simulations that use the same calibrated sub-grid parameters as the reference model,
but change the cosmological model by setting the cosmological constant to zero,
and/or removing feedback from BHs. The values of the cosmological parameters
used for the simulations are listed in Table 3.1. The values of other relevant
parameters adopted by all simulations featured in this study are listed in Table 3.2.
Together these parameters determine the dynamic range and resolution that can be
achieved by the simulations.

4http://www.eaglesim.org/database.php
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Table 3.1.: The cosmological parameters for the eagle simulations used in this study.
ΛCDM model refers to parameters inferred by the Planck Collaboration et al.
(2014). EdS refers to an Einstein-de Sitter universe. Ωm,ΩΛ,Ωb are the average
densities of matter, dark energy, and baryonic matter in units of the critical
density at redshift zero; H0 is the Hubble constant, σ8(t1) is the square root of
the linear variance of the matter distribution at the initial cosmic time of the
simulations (t1 = 11.98 Myr) when smoothed with a top-hat filter of radius 11.8
cMpc (8 h−1 cMpc for a ΛCDM model), ns is the scalar power-law index of
the power spectrum of primordial adiabatic perturbations, and Y is the primor-
dial abundance of helium. Values in bold show differences with respect to the
ΛCDM values.

Cosmological Parameter ΛCDM (Ref) EdS
Ωm 0.307 1
ΩΛ 0.693 0
Ωb 0.04825 0.15717
h ≡ H0/(100 km s−1 Mpc−1) 0.6777 0.3754
σ8(t1) 0.0083 0.0083
ns 0.9611 0.9611
Y 0.248 0.248
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Table 3.2.: Box-size, number of particles, initial baryonic and dark matter particle mass, co-moving and Plummer-equivalent gravitational softening, inclusion
of AGN feedback, cosmological model and Hubble parameter for the eagle simulations used in this chapter. Values in bold show differences
with respect to the Ref simulation. The three bottom small box models were used for convergence tests.

Identifier L N mgas mDM ϵcom ϵprop AGN Cosmology h
[cMpc] [M⊙] [M⊙] [ckpc] [pkpc]

ΛCDM (Ref) 50 2 × 7523 1.81 × 106 9.70 × 106 2.66 0.70 Yes Planck 14 0.6777
ΛCDM (No AGN) 50 2 × 7523 1.81 × 106 9.70 × 106 2.66 0.70 No Planck 14 0.6777
EdS 50 2 × 7523 1.81 × 106 9.70 × 106 2.66 0.70 Yes EdS 0.3754
EdS (No AGN) 50 2 × 7523 1.81 × 106 9.70 × 106 2.66 0.70 No EdS 0.3754
Λ = 0 L12 h0_3754 12.50 2 × 1883 1.81 × 106 9.70 × 106 2.66 0.70 Yes EdS 0.3754
Λ = 0 L12 h0_6777 8.43 2 × 1883 1.81 × 106 9.70 × 106 1.79 0.70 Yes EdS 0.6777
Λ = 0 L12 h0_4716 10.73 2 × 1883 1.81 × 106 9.70 × 106 2.28 0.70 Yes EdS 0.4716
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Fig. 3.6 Shows the projected gas density for the ΛCDM and EdS cosmological
models both at the present day and into the future. At t = 13.8 Gyr, the general
appearance of both models is similar, but over the next 6.8 Gyr, the effect of Λ
becomes more significant slowing down the growth of structure.

3.3.1 Subgrid models

Processes that are not resolved by the simulations are implemented as subgrid
physical models; they depend solely on local interstellar medium (ISM) properties.
A full description of these subgrid models can be found in Schaye et al. (2015). In
summary:

1. Radiative cooling and photoheating are implemented element-by-element as
in Wiersma et al. (2009a), including the 11 elements found to be important,
namely, H, He, C, N, O, Ne, Mg, Si, S, Ca, and Fe. Hydrogen reionization is
implemented by switching on the full Haardt & Madau (2001) background at
the proper time corresponding to redshift z = 11.5 in our ΛCDM Universe.

2. Star formation is implemented stochastically following the pressure-dependent
Kennicutt-Schmidt relation as in Schaye & Dalla Vecchia (2008). Above a
metallicity-dependent density threshold n∗H(Z), which is designed to track the
transition from a warm atomic to an unresolved, cold molecular gas phase
(Schaye, 2004), gas particles have a probability of forming stars determined
by their pressure.

3. Time-dependent stellar mass loss due to winds from massive stars and AGB
stars, core collapse supernovae and type Ia supernovae, is tracked following
Wiersma et al. (2009b).

4. Stellar feedback is treated stochastically, using the thermal injection method
described in Dalla Vecchia & Schaye (2012).

5. Seed BHs of mass M = 1.48×105M⊙, are placed in haloes with a mass greater
than 1.48× 1010M⊙ and tracked following the methodology of Springel et al.
(2005a); Booth & Schaye (2009). Accretion onto BHs follows a modified
version of the Bondi-Hoyle accretion rate which takes into account the circu-
larisation and subsequent viscous transport of infalling material, limited by
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Fig. 3.6.: The evolution of the projected gas density for each eagle model centred on the
most massive halo at the present time (t = 13.8 Gyr). The length of each image is
43 (proper) Mpc on a side, to highlight the difference on cosmic expansion. Left:
ΛCDM universe. Right: EdS universe. Top: Cosmic time t = 13.8 Gyr. Bottom:
Cosmic time t = 20.7 Gyr. The colour coding represents the (proper) surface gas
density projected along the line of sight. At t = 13.8 Gyr, the general appearance
of both models is similar, as the phases of the initial fluctuations are the same.
Over the next 6.8 Gyr, the effect of Λ becomes more significant, slowing down
the growth of structure compared to the EdS model.
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the Eddington rate as described by Rosas-Guevara et al. (2015)5. Addition-
ally, BHs can grow by merging with other BHs as described in Schaye et al.
(2015); Salcido et al. (2016).

6. Feedback from AGN is implemented following the stochastic heating scheme
described by Schaye et al. (2015). Similar to the supernova feedback, a
fraction of the accreted gas onto the BH is released as thermal energy with a
fixed heating temperature into the surrounding gas following Booth & Schaye
(2009).

For the eagle simulations, the subgrid parameters were calibrated to reproduce
three properties of galaxies at redshift z = 0: the galaxy stellar mass function, the
galaxy size–stellar mass relation, and the black hole mass-stellar mass relation6.
The calibration strategy is described in detail by Crain et al. (2015), who explores
the effect of parameter variations.

3.3.2 Halo and galaxy definition

Haloes were identified running the “Friends-of-Friends” (FoF) halo finder on the
dark matter distribution, with a linking length equal to 0.2 times the mean inter-
particle spacing. Galaxies were identified as self-bound over-densities within the
FoF group using the subfind algorithm (Springel et al., 2001; Dolag et al., 2009).
A ‘central’ galaxy is the substructure with the largest mass within a halo. All other
substructures within a halo are ‘satellite’ galaxies.

Comparing haloes from simulations with different cosmologies is not a well-defined
task, as halo masses are usually defined in terms of quantities that depend on the
specific cosmological parameters. Typically, this is done by growing a sphere
outwards from the potential minimum of the dominant dark matter sub-halo out
to a radius where the mean interior density equals a fixed multiple of the critical
or mean density of the Universe, causing an artificial ‘pseudo-evolution’ of dark
matter halos by changing the radius of the halo (Diemer et al., 2013). Star formation,
however, is governed by the amount of gas that enters these halos and reaches their
central regions. Wetzel & Nagai 2015 show that the growth of dark matter haloes is
subject to this ‘pseudo-evolution’, whereas the accretion of gas is not. Because gas

5The eagle simulation do not include a boost factor the accretion rate of BHs to account for an
unresolved clumping factor.

6BH feedback efficiency left unchanged from Booth & Schaye (2009).
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is able to cool radiatively, it decouples from dark matter, tracking the accretion rate
near a radius of R200ρ̄, the radius within which the mean density is 200 times the
mean density of the universe, ρ̄. As we try to connect the accretion of dark matter
haloes to star formation, we define halo masses as the total mass within R200ρ̄,

M200ρ̄ = 200
4π
3

R3
200ρ̄ ρ̄. (3.26)

Additionally, as ρ̄ = Ωm(t)ρc(t) is given in co-moving coordinates, the mean density
of the universe remains constant in time for each cosmological model.

Following Schaye et al. 2015 and Furlong et al. 2015, galaxy stellar masses are
defined as the stellar mass associated with the subhalo within a 3D 30 proper kilo
parsec (pkpc) radius, centred on the minimum of the subhalo’s centre of gravitational
potential. This definition is equivalent to the total subhalo mass for low-mass objects,
but excludes diffuse mass around very large subhaloes, which would contribute to
the intracluster light (ICL).

3.3.3 Continuing the simulations into the future

As Λ continues driving the accelerated expansion of the universe, the linear growth
of density perturbations, D(t) is suppressed (see Eq. (3.15)). Further insight can
be obtained if we analyse the evolution of the potential perturbations given by the
perturbed Poisson equation for an expanding space,

∇2
Φ = 4πG ρ̄pa2Dδ0, (3.27)

where the Laplace operator is with respect to comoving coordinates, and the mean
density ρ̄p is given in proper coordinates. As ρ̄p evolves ∝ a−3, it follows that
∇2Φ ∝ D/a. Using Eq. (3.10) and Eq. (3.15) we can see that for an EdS universe,
both D and a are ∝ t2/3 and the potentials are expected to stop evolving (they are
frozen in). On the other hand, the suppression of growth of density perturbations
due to a cosmological constant causes a decay in the potentials as the universe
expands. As shown in Fig. 3.2, according to linear theory, these two scenarios
have comparable growth factors at the present time (≈10% difference, see Eq. 3.15),
but the difference becomes increasingly important in the future. Furthermore, star
formation is expected to eventually exhaust the finite reservoir of cold gas in galaxies,
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shutting off the production of stars in the universe forever (e.g. Fukugita et al., 1998;
Loeb et al., 2016).

In order to study the impact of Λ in galaxy formation beyond the present day, and
hence explore the uniqueness of the present epoch, and in order to determine the
total mass of stars ever produced by the universe, we allow the simulations to run
into the future, i.e. t > t0 (e.g. Barnes et al., 2005; Loeb et al., 2016). The
subgrid models for star formation, stellar mass loss, stellar feedback, BH seeding
and feedback from AGN were kept as described in Section 3.3.1 as the simulations
ran into the future. On the other hand, as there is no information about the UV and
X-ray background radiation from quasars and galaxies into the future, for simplicity,
we assumed that the background radiation freezes out, i.e. we kept its value at t = t0
constant into the future. We consider this to be a good simplification as the UV
background only affects star formation in very low mass haloes, and hence does not
affect the cosmic SFR at late times (e.g. Schaye et al., 2010).

3.4 Simulations re-scaling

In this section we describe our simulation re-scaling strategy. At early epochs, the
universe was matter dominated, and so we can neglect the contribution ofΛ. Hence,
any universe with non zero matter density, i.e. ρm,0 , 0, will be close to an EdS
universe at early epochs. Therefore, we can assume identical initial conditions for
all cosmological models of interest here.

The initial conditions for the reference ΛCDM model were created in three steps.
First, a particle load, representing an unperturbed homogeneous periodic universe
was produced. Secondly, a realisation of a Gaussian random density field with the
appropriate linear power spectrum was created over the periodic volume. Thirdly,
the displacements and velocities, consistent with the pure growing mode of grav-
itational instability, were calculated from the Gaussian realisation and applied to
the particle load producing the initial conditions. The initial density perturbation
power spectrum is commonly assumed to be a power-law, i.e. Pi(k) ∝ kns . From
the Planck results (Planck Collaboration et al., 2014), the spectral index ns, has a
value of ns = 0.9611. A transfer function with the cosmological parameters shown
in Table 3.1 was generated using CAMB (version Jan_12; Lewis et al. 2000). The
linear matter power spectrum was generated by multiplying the initial power spec-
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Table 3.3.: Parameters re-scaled in the initial conditions. Hat notation indicates parameters
for our Universe.

Parameter Units Re-scaling factor
Box size cMpc h−1 (ĥ−1h) × (â1a−1

1 )
Particle Masses M⊙ h−1 (ĥ−1h)
Particle Coordinates cMpc h−1 (ĥ−1h) × (â1a−1

1 )
Particle Velocities cMpc s−1 (â1a−1

1 )1/2

trum by the square of the dark matter transfer function evaluated at the present day
t = t0, i.e. P(k, t) = Pi(k)T2(k)D2(t).7

The eagle version of gadget uses an internal system of units that includes both co-
moving coordinates and the dimensionless Hubble parameter, h. For the alternative
cosmological models, we have the freedom to choose the present time t0 for each
simulation, and we re-scale all the initial condition such that they are identical
in physical “h-free” units at an early time t1 = 11.98 Myr. Table 3.3 shows the
parameters that have been re-scaled in the initial conditions.

The same tables of radiative cooling and photoheating rates as a function of density
and temperature were used for all cosmological models. The corresponding red-
shifts for the cooling tables were re-scaled such that they correspond to the same
cosmic time for each cosmology. That is, using Eq. (3.8), we find the scale factor,
a, for which the alternative cosmology satisfies,

t(â) = t(a). (3.28)

The average baryonic density Ωb has been re-scaled in such way that the baryon
fraction ( fb = Ωb/Ωm) is equal in both cosmologies, i.e.

Ω̂b

Ω̂m
=
Ωb
Ωm
. (3.29)

Table 3.4 shows additional parameters that have been re-scaled to be equivalent in
h-free physical units. Finally, hydrogen and Heii reionization were also re-scaled
in such way that redshifts correspond to the same cosmic time.

7The CAMB input parameter file and the linear power spectrum are available at http://eagle.
strw.leidenuniv.nl/

3.4 Simulations re-scaling 52

http://eagle.strw.leidenuniv.nl/
http://eagle.strw.leidenuniv.nl/


Table 3.4.: Additional parameters re-scaled in the simulations. Hat notation indicates
parameters for our Universe.

Parameter Units Re-scaling factor
Co-moving Softening ckpc h−1 (ĥ−1h) × (â1a−1

1 )
Max Softening pkpc h−1 (ĥ−1h)
Seed BH Mass M⊙ h−1 (ĥ−1h)
Min MFOF for New BH M⊙ h−1 (ĥ−1h)
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Fig. 3.7.: Global SFR density for three EdS models scaled by the ratio of the initial scale
factors for each model. The initial conditions for each model have been re-scaled
such that the time at which we start the simulations remains unchanged, i.e.
t(a1) = 11.98 Myr.
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In order to demonstrate that this re-scaling strategy works correctly, Fig. 3.7 shows
the global SFR density for the three small box EdS simulations used for convergence
(see Table 3.2). They each represent the same physical scenario, but choose a
different proper time to be “today”, t0. This has the effect of altering the values
of the Hubble parameter h and the redshift of the initial conditions, so that the
simulations begin at proper time t(a1) = 11.98 Myr in all models. Despite the small
size of the simulation boxes (hence the noisy curves), the figure shows consistent
SFRs as a function of cosmic time for the three models. Therefore, our re-scaling
strategy allows us to simulate any cosmological model, regardless of the value of
h.

3.5 Results: The Evolution of Star Formation

3.5.1 The past history of the cosmic star formation rate

Figure 3.8 shows the global SFR density as a function of cosmic time for our
simulation models. For comparison, observations from Cucciati et al. (2012) [FUV],
Bouwens et al. (2012) [UV], Robertson et al. (2013) [UV] and Burgarella et al.
(2013) [FUV + FIR] are shown as well. Solid lines in the figure show the evolution
of the (co-moving) cosmic SFR density for the reference ΛCDM eagle run (blue),
and for an EdS universe (orange). Dashed lines show simulation models without
feedback from AGN. Dotted lines show the prediction for the cosmic SFR density
using Eq. (3.25). We focus first on the evolution of the models up to the present age
of the universe, t = t0 = 13.8 Gyr.

In linear time, the SFR rises very rapidly and most of the plot is dominated by
the slow decline (for an example, see Furlong et al. 2015). Hence, in order to
emphasis the growth and decline of the SFR, and to reproduce the familiar shape
of the star formation history (Madau & Dickinson, 2014), the horizontal time axis
has been plotted in a logarithmic scale for t ≤ 8 Gyr. In order to explore the SFR in
detail at the present epoch and into the future, the horizontal time axis changes to a
linear scale for t > 8 Gyr. The black vertical dotted line shows the transition from
logarithmic to linear scale. For reference, the redshifts, ẑ, for an observer at t0 in
the ΛCDM universe, are given along the top axis. As discussed in detail in Furlong
et al. (2015), the reference simulation (solid blue line) reproduces the shape of the
observed SFR density remarkably well, with a small offset of 0.2 dex at t ≳ 2 Gyr.
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While the simulations agree reasonably well with the observational data at redshifts
above 3, we caution that these measurements are more uncertain.

Remarkably, the shape of the cosmic SFR history is very similar for both theΛCDM
and EdS models: the SFR density peaks ≈3.5 Gyr after the Big Bang and declines
slowly thereafter. The similarity of the universes prior to the peak is expected, since
the Λ term in the Friedman equation is sub-dominant in both cases. At later times,
however, we might naively have expected the decline to be more pronounced in the
ΛCDM cosmology, since the growing importance of the Λ term slows the growth
of density perturbations.

From Fig. 3.2, the linear growth factors of the two cosmological models differ
by ≈10% at the present time, and so we might have expected a similar difference
in the (co-moving) cosmic SFR density (≈15%, read from Fig. 3.8). This naive
expectation is not borne out because of the complexity of the baryonic physics.
Because of stellar and AGN feedback, haloes have an ample reservoir of cooling
gas that is able to power further star formation regardless of the change in the cosmic
halo growth rate.

Our simulation demonstrates that the existence of Λ does play a small role in
determining the (co-moving) cosmic SFR density. However, these differences are
minor. In order to put the differences into context, we compare with a pair of
simulations in which the BH feedback is absent. These runs are shown as dashed
lines in the plot. We focus here on the behaviour before t = 13.8 yrs. As can be
seen, the absence of AGN feedback has a dramatic effect on the shape of the cosmic
star formation density (Schaye et al., 2010; van de Voort et al., 2011). Interestingly,
however, while the normalisation of the SFR density is considerably higher, the
time of the peak is similar. BH feedback is not solely responsible for the decline
in star formation after t ≈ 3.5 Gyr. This hints that the existence of the peak results
from the interaction of the slowing growth rates of haloes (after the peak) and the
star formation timescale (set by the ISM physics) which limits the rate at which the
galaxy can respond to convert in-falling material into stars (before the peak).
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Fig. 3.8.: Global SFR densities. The eagle reference and the EdS models are shown in solid blue and orange lines respectively. Observational data from
Cucciati et al. (2012) [FUV], Bouwens et al. (2012) [UV], Robertson et al. (2013) [UV] and Burgarella et al. (2013) [FUV + FIR] are shown as
symbols. The eagle reference simulation (solid blue) reproduces the shape of the observed SFR density remarkably well, with a small offset of 0.2
dex at t ≳ 2 Gyr (for clarity, all eagle models have been shifted by 0.2 dex). The analytical model of Eqs. (3.24) and (3.25) is shown with dotted
lines for both cosmologies. Power law fittings for the SFR density for t > 8 Gyr, as per Eq. (3.30), for the ΛCDM and EdS models are shown in
pink and red lines respectively. The horizontal time axis has been plotted in a logarithmic scale for t ≤ 8 Gyr changing to a linear scale for t > 8
Gyr. The black vertical dotted line shows the transition from logarithmic to linear scale.
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Table 3.5.: Power law parameter fitting for the median SFR shown in Fig. 3.8.
Model a c k

[M⊙yr−1cMpc−3] [Gyr−1]
ΛCDM 5.42 0.81 2.77
EdS 3.99 0.94 2.41

The SFR history predicted by the simple model developed in Section 3.2.5 (dotted
curves) is in remarkable agreement with the observational data and predicts the
relative difference of the cosmological simulations, both at the present time, and
into the future. We want to emphasise that the model is not a parametric fit to the
data, but rather an analytical model derived from a simple relation of star formation
to halo mass accretion.

3.5.2 The future of the cosmic star formation rate
(t > 13.8 Gyr)

In order to explore whether the relative SFR densities will diverge as the impact of
Λ becomes more pronounced, we ran the simulations for both cosmological models
into the future (i.e. beyond a cosmic time of t = 13.8 Gyr). As the simulations run
into the future, the small differences seen at t = 13.8 Gyr become larger, reading
an ≈40% difference at t = 1.5 × t0 = 20.7 Gyr, which is in agreement with the
predictions shown in Fig. 3.5.

The decline in the SFR density can be approximated by a power law for both the
reference ΛCDM and EdS models (red and pink dashed lines),

Ûρ∗ = a(ct)−k, (3.30)

with the parameters a, c and k given in Table 3.5. We used the reduced chi-squared
statistic for goodness of fit testing. We use this fitting function to extrapolate the
results from the simulations further into the future.

We note here a striking feature of the universes with no BH feedback: the SFR
increases again in the future, both for the ΛCDM and EdS cosmologies. In Sec-
tion 3.5.4 we discuss how this effect originates from massive galaxies (M∗ >

1011M⊙) that rejuvenate in the future. As it is not clear from the simulation whether
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the SFR will continue to rise, or when it would start declining, we have not fitted
any functional form to the “No AGN” models.

3.5.3 The stellar mass density

To study the build up of stellar mass, we present the growth in stellar mass density,
ρ∗, across cosmic time in Fig. 3.9. The colour coding is the same as in Fig. 3.8.
The lower panel shows the ratio of the stellar density compared to the reference
ΛCDM model. Furlong et al. (2015) show that the reference eagle simulation is in
good agreement with the observed growth of stellar mass across cosmic time. In
contrast to Furlong et al. (2015), where the stellar mass density was obtained from
aperture measurements to facilitate comparison with observations, we calculate ρ∗
by integrating the SFR density from Fig. 3.8,

ρ∗ =

∫ t

0
Ûρ∗dt′, (3.31)

in order to provide an estimate of the total mass of stars produced by the universe8.
For the models with AGN feedback, we have extrapolated the power law fit described
in Section 3.5.1 far into the future, up to 10 trillion years, and considered this as
the “Total stellar mass density” of the universe. As suggested by the analytic model
in Eq. (3.25), in universes with feedback from star formation and AGN, the cosmic
SFR density is expected to continue decreasing into the future. At late times, the
SFR becomes orders of magnitude lower than that of the peak at 3.5 Gyr. Figure 3.9
shows that the total stellar mass density is dominated by the contribution from the
peak in star formation and reaches a plateau at t≈t0. Hence, the formal uncertainties
in the extrapolation into the future are unimportant for the predicted total stellar
mass density. The right-hand axis of Fig. 3.9 represents the percentage of the total
stellar density compared to ΛCDM. For the reference ΛCDM model, the universe
has already produced most (≈88%) of its eventual stellar mass by the present day,
adding up very little stellar mass into the future. Although there is no Λ to slow
down the formation of cosmic structure, the EdS model closely resembles aΛCDM
cosmology with only ≈15% more stellar mass produced.

As discussed in Section 3.3.3, a universe with Λ has a very different expansion
history compared to one without dark energy. This produces a different growth of

8As we are interested in total mass of stars produced by the universe, Eq. (3.31) ignores stellar
mass loss.
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Fig. 3.9.: The stellar mass density as a function of time in the eagle simulation models.
The colour coding is the same as in Fig. 3.8. The right-hand axis represents
the percentage of the total stellar density compared to the ΛCDM model. Both
the ΛCDM and EdS models have already produced most of the stars in the
universe by the present day, building up very little stellar mass into the future.
The models without AGN feedback quickly deviate from the reference model,
producing almost twice the mass in stars by the end of the simulation (≈20.7 Gyr).
The figure shows that the effect of dark energy on the overall star formation is
negligible.
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density perturbations, in particular into the future (see Figs. 3.1 and 3.2). Never-
theless, as seen in Fig. 3.9, since both cosmologies have already produced most of
the stars in the universe by the present day, when the contribution of Λ is becoming
increasingly important, the effect of dark energy on the overall star formation, is
negligible.

In contrast, the models without feedback from BHs (dashed curves) quickly deviate
from the reference model, starting from t ∼ 1 Gyr, producing almost twice the mass
in stars by the end of the simulations, 20.7 Gyr after the Big Bang.

3.5.4 Other galaxy population properties

In this section we will compare the galaxy population properties of the two simula-
tion models at the present time, and into the future. In particular, we compare the
galaxy stellar mass function (GSMF), and the specific star formation rate (SSFR)
of galaxies. To compare with observational data, in each of the figures discussed
below, the left panel shows properties at t = 12.5 Gyr, equivalent to redshift ẑ = 0.1
for an observer at the present time in a ΛCDM universe. The right panel shows
the same property but at t = 1.5 × t0 = 20.7 Gyr. To guide the eye, each property
for the reference ΛCDM model at t = 12.5 Gyr is plotted with a black line in each
plot at t = 1.5 × t0 = 20.7 Gyr. Finally, we have also included the ratios of each
quantity to the reference ΛCDM model at the corresponding time at the bottom of
each panel.
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Fig. 3.10.: The GSMF at t = 12.5 Gyr, equivalent to redshift ẑ = 0.1 for an observer at the present time in a ΛCDM universe (left), and t = 1.5 × t0 (right)
for the eagle simulation models. The colour coding is the same as in Fig. 3.8. Observational data from Baldry et al. (2012) and Li & White
(2009) is shown as symbols. The reference and “No AGN” ΛCDM models at t = 12.5 Gyr are plotted in the right panel for reference (solid and
dashed black lines respectively). The effect of dark energy on the GSMF is negligible, with very little evolution into the future. As expected, the
models without AGN feedback predict a higher number density of massive galaxies (M∗ > 1011M⊙). This effect becomes more significant into
the future, going from ≈0.7 dex to ≈1.1 dex.
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The galaxy stellar mass function

The effect of Λ on the GSMF can be seen in Fig. 3.10. The colour coding is the
same as in Fig. 3.8. For comparison, observational data from Baldry et al. (2012)
and Li & White (2009) is shown as well. As discussed in Schaye et al. (2015), the
observed GSMF at redshift 0.1 was used to infer the free parameters of the subgrid
physics used in the simulation. The reference eagle model reproduces the shape
of the observed GSMF reasonably well, with a slight under-abundance of galaxies
at its knee.

Figure 3.10 shows that the effect of Λ on the GSMF is negligible, with very little
evolution into the future. The models without AGN feedback predict a higher
number density of massive galaxies (M∗ > 1011M⊙) compared to the models with
AGN feedback. This effect becomes more significant into the future, going from
0.7 dex to 1.5 dex. The origin of this difference is explored in the next section.

Specific star formation rates

Galaxies can be broadly classified into largely distinct star-forming and passive
populations according to their SSFR,

SSFR =
ÛM∗

M∗
. (3.32)

For star-forming galaxies, there is a well-defined star forming sequence, with SSFR
observed to be approximately constant as a function of stellar mass (e.g. Noeske
et al., 2007; Karim et al., 2011). Figure 3.11 shows the SSFR for star-forming
galaxies in the simulations as a function of galaxy stellar mass at the present day,
and into the future. The colour coding is the same as in Fig. 3.8. The horizontal
dotted lines correspond to the SSFR cut (10−2 Gyr−1) used to separate star forming
from passive galaxies in our Universe. For comparison, observational data from
Gilbank et al. (2010) is shown as well. Furlong et al. (2015) show that the SFFR
in the reference simulations at the present day is similar to observations in the
local universe, with an offset of 0.3 dex. This is possibly consistent with the
systematic uncertainties in the calibration of the observation diagnostics. At low
masses there is an increase in SSFR with stellar mass; however, this has been found
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to be a resolution-dependent effect. Hence, we have plotted the results with lighter
coloured lines (similar to Schaye et al., 2015). The models without feedback from
AGN have higher SSFR for M∗ > 1010M⊙, whereas the effect of Λ on the SSFR of
galaxies is negligible.

Figure 3.11 shows the galaxy population property that has the strongest evolution
into the future. We find that over the next 6.8 Gyr the SSFR will drop by ≈0.4
dex.

Interestingly, the models without AGN feedback predict an increase of the SSFR
of galaxies with M∗ > 1011M⊙ in the future. The figure shows that the increase
in SFR shown in Fig. 3.8, and the higher number density of massive galaxies
in Fig. 3.10, originate from massive galaxies that rejuvenate in the future. A
plausible explanation for this phenomenon is that, according to simple radiative
cooling models, in massive galaxies and clusters, a hot gaseous atmosphere should
lose energy by the emission of radiation, and if there is no heating mechanism to
compensate the cooling (e.g. AGN feedback), cooling flows should form (Fabian,
1994; Peterson & Fabian, 2006), triggering star formation. This result will be
explored in more detail in a follow-up paper.
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Fig. 3.11.: The SSFR of star forming galaxies at t = 12.5 Gyr, equivalent to redshift ẑ = 0.1 for an observer at the present time in a ΛCDM universe (left),
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dashed black lines respectively). The solid curves show the median relation for star forming galaxies, defined as those with an SSFR above the
limit specified by the horizontal dashed line (10−2Gyr−1). The faint shaded regions enclose the 10th to 90th percentiles for the ΛCDM and EdS
Models. Lines are light coloured when the stellar mass falls below that corresponding to 100 baryonic particles, to indicate that resolution effects
will be important. The figure shows that the effect of dark energy on the GSMF is negligible. The models without AGN feedback predict a higher
SSFR for massive galaxies (M∗ > 1010M⊙). The right panel shows that the overall SSFR drops from t = 12.5 Gyr to t = 1.5 × t0. For the “No
AGN” models, however, the SSFR increases for massive galaxies (M∗ > 1011M⊙).
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3.6 Discussion and Conclusions

In this chapter, we explored the dependence of the star formation history of the
universe on the existence of a cosmological constant and feedback from accreting
BHs. We base our results on the eagle simulation code, that has been shown to
compare favourably to observational data, and thus, to provide a good description
of the formation of galaxies in our Universe. Feedback from supermassive BHs
has been shown to be a key ingredient in achieving this match by suppressing star
formation in massive haloes (e.g. Bower et al., 2006; Harrison, 2017), while the
accelerating expansion rate of the Universe suppresses the accretion rates of haloes
at late times (e.g. Jenkins et al., 1998; Huterer et al., 2015). Our study allows us to
assess the relative importance of these ingredients.

The universes that we consider are indistinguishable at early times. They share
a common epoch of equality and recombination, and have equal amplitudes and
spectrum of density fluctuations at early times. We take care to compare the
evolution of models with equivalent starting points, and to demonstrate that the
simulation code correctly scales the different values of the present-day expansion
rate (Hubble parameter). When comparing the universes, it is important that
we compare properties at a fixed cosmic time. Since the processes of stellar
(and biological) evolution provide a common clock, independent of the large-scale
cosmological expansion, these provide an astrophysically relevant comparison.

We have also developed an analytic model derived from a simple relation of star
formation to halo mass accretion rate. Despite its simplicity, the model reproduces
the overall shape of evolution of the cosmic SFR density. The model and the
simulations allow us to explore the effect of a cosmological constant term on the
cosmic SFR density.

Our main conclusions are as follows:

• We find that the existence of the cosmological constant has little impact on
the star formation history of the Universe. The SFR is suppressed by ≈15%
at the present time, and we find that the properties of galaxies are almost
indistinguishable in the two universes.
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• To explore whether this is due to the relatively recent dominance of the dark
energy density in our Universe, we continued the simulations 6.8 Gyr into
the future. Even after this time, the co-moving SFR densities differ only by
≈40%. Clearly, the cosmological constant has only a marginal effect on the
stellar content of the Universe.

• Using the analytic model, we can recognise that the existence of the peak in
the SFR density results from the interaction of the star formation efficiency
(set by the ISM physics) which limits the rate at which the galaxy can respond
to convert in-falling material into stars, the relative abundance of efficiently
star forming haloes (i.e. of masses ≈ 1012 M⊙), and only at late times, the
slowing growth rates of haloes due to the cosmological constant.

• By extrapolating fits to the evolution of the co-moving SFR density into the
future, we show that, in our Universe, more than ≈88% of the stars that
will ever be produced, have already been formed by the present cosmic time.
In the absence of dark energy, only ≈15% more stellar mass would have
been formed in the same time. The difference is small, bringing into question
whether the ‘coincidence problem’ (the comparable energy densities of matter
and dark energy) can be explained by an anthropic argument: the existence of
dark energy (at the observed value) has negligible impact on the existence of
observers or the ability of humanity to observe the cosmos. In Barnes et al.
(2018) we explore this argument in more detail by considering a wider range
of Λ values, and determining the likelihood distribution of possible Λ values
conditioning the existence of observers.

• In comparison, the existence of BHs has a major impact on the Universe. In
the absence of AGN feedback, the co-moving SFR density is enhanced by a
factor of 2.5 at the present day.

• Even in a universe without BHs or dark energy, we find that the co-moving
SFR density peaks at 3.5 Gyr (z≈2 according to a present-day observer in our
Universe). The decline in star formation is however slower at more recent
times.

• For hypothetical universes without feedback from accreting BHs, there is a
comeback of SFR, which increases again in the future. This effect originates
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from massive galaxies (M∗ > 1011M⊙) that rejuvenate as there is no heating
mechanism to compensate the cooling, in turn, triggering star formation.
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4Galaxy formation efficiency
and the Multiverse explanation of
the cosmological constant

Models of the very early universe, including inflationary models, are argued to
produce varying universe domains with different values of fundamental constants
and cosmic parameters. Using the cosmological hydrodynamical simulation code
from the eagle collaboration, we investigate the effect of the cosmological constant
on the formation of galaxies and stars. We simulate universes with values of the
cosmological constant ranging from Λ = 0 to Λ0 × 300, where Λ0 is the value of
the cosmological constant in our Universe. Because the global star formation rate
in our Universe peaks at t = 3.5 Gyr, before the onset of accelerating expansion,
increases in Λ of even an order of magnitude have only a small effect on the star
formation history and efficiency of the universe. We use our simulations to predict
the observed value of the cosmological constant, given a measure of the multiverse.
Whether the cosmological constant is successfully predicted depends crucially on
the measure. The impact of the cosmological constant on the formation of structure
in the universe does not seem to be a sharp enough function of Λ to explain its
observed value alone.

This chapter has been published as a paper in Monthly Notices of the Royal Astro-
nomical Society (MNRAS):

• Galaxy formation efficiency and the multiverse explanation of the cosmolog-
ical constant with EAGLE simulations
Barnes, L., Elahi, P. J, Salcido J., Bower R. G., Lewis, G. F., Theuns, T.,
Schaller, M., Crain, R. A., Schaye, J., MNRAS 2018, Volume 477, Issue 3,
Pages 3727-3743

The simulations and data analysis described in this chapter are the direct work of
the author, in collaboration with the supervisors named above, along with other re-
searchers at the University of Sydney, Western Sydney University and the University
of Western Australia.
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4.1 Introduction

Cosmological inflation, it has been argued, naturally predicts a vast ensemble of
varying universe domains1, each with different cosmic conditions and even different
fundamental constants (see the review of Linde, 2017). A typical mechanism for
generating these universes is as follows (Guth, 2007). The inflaton field undergoes
quantum fluctuations, and so we might expect some parts of the universe to still
be inflating while other parts have entered a post-reheating “big bang” phase. The
universe as a whole consists of post big-bang universes filled with ordinary matter
and radiation, surrounded by an ever-inflating background.

In evaluating such models, predicting what we would expect to observe is necessarily
tied to where observers are formed in the multiverse. In this instance, anthropic
reasoning is inevitable (Carter, 1974; Carr & Rees, 1979; Davies, 1983; Barrow &
Tipler, 1986). With different cosmic and fundamental constants in different parts of
the multiverse, the values we expect to observe are unavoidably tied to their ability
to support the complexity required by life.

These multiverse models could successfully explain the fine-tuning of the universe
for life: small changes in their values can suppress or erase the complexity upon
which physical life as we know it, or can imagine it, depends. The scientific
literature on the fine-tuning of the universe for life has been reviewed in Hogan
(2000); Barnes (2012); Schellekens (2013); Meißner (2014); Lewis et al. (2016).
For example, as pointed out by Davies & Unwin (1981); Sakharov (1984); Linde
(1984); Banks (1985); Linde (1987); Weinberg (1987, 1989), only a small subset of
values of the cosmological constant (Λ) permit structure to form in the universe at
all. Universes in which the cosmological constant is large and positive will expand
so rapidly that gravitational structures, such as galaxies, are unable to form. Large
negative values will cause space to recollapse rapidly, also preventing the formation
of galaxies.

If inflation creates a huge number of variegated universe domains, then a structure-
permitting value of the cosmological constant will probably turn up somewhere.
Any observers will see a universe with at least some structure. In thus way, the
seemingly improbable suitability of our universe for life is rendered more proba-
ble.

1For simplicity, we call such regions “universes”.
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As Weinberg (1987) noted, we can test a particular multiverse model via its pre-
diction of the distribution of universe properties. Observers will inhabit universes
drawn in a highly-biased way from the population of universes, but we can calculate
the typical properties of a universe that contains observers. In this way, we can
calculate the likelihood of our observations, and so compare multiverse models. For
example, a model in which 99% of observers measure a value of the cosmological
constant as large as our value should (other things being equal) be preferred over a
model in which only 1% of observers make such a measurement. Whether these
consistency tests can give absolute (rather than just relative) support to the idea of
a multiverse is the subject of some debate (Ellis & Silk, 2014; Barnes, 2017).

To test the relative merits of multiverse models in this way, we need to know how
life, or at least the cosmic structures that are the likely preconditions for life, depend
on the fundamental constants of nature and cosmic parameters. In the case of
the cosmological constant, the large-scale structure of the universe is most directly
affected. Galaxies are the sites of star formation, and stars provide both a steady
source of energy and the heavier elements from which planets and life forms are
made.

Within an anthropic approach, we can also shed light on the coincidence problem:
we live at a time in the universe when the energy density of the cosmological
constant and the energy density of matter are within a factor of two of each other
(Lineweaver & Egan, 2007). The coincidence problem has motivated a search to
alternative modification to gravity that might explain the value of the cosmological
constant more naturally. Although, alternative models, such as quintessence can
explain why the relative densities of matter and cosmological constant densities
track each other, fine tuning of the model parameters is still required to explain their
observed similarity (Zlatev et al., 1999; Zlatev & Steinhardt, 1999; Dodelson et al.,
2000; Chimento et al., 2003).

Investigations of the effect of the cosmological constant on galaxy formation have
thus far relied on analytic models of increasing levels of sophistication. Efstathiou
(1995) located galaxies at the peaks of the smoothed density field of the universe,
and found that — assuming that the cosmological constant is positive, observers
should expect to see ΩΛ ≈ 0.67 − 0.9. Peacock (2007) extended this approach to
negative values of the cosmological constant, finding a significant probability that
ΩΛ < 0 is observed. These approaches have been extended by Garriga & Vilenkin
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(2000); Garriga et al. (2000); Tegmark et al. (2006); Bousso & Leichenauer (2009,
2010); Piran et al. (2016); Sudoh et al. (2017); Adams et al. (2017).

The modern approach to galaxy formation uses supercomputer simulations that
incorporate the effects of gravity, gas pressure, gas cooling, star formation, black
hole formation, and various kinds of feedback from stars and black hole accretion. It
has been long known that feedback is very important to explaining the star formation
history of our universe; models without feedback are too effective at forming stars,
compared to observations (White & Rees, 1978; Dekel & Silk, 1986; White & Frenk,
1991; Somerville & Davé, 2015). One of the key ingredients that has allowed this
progress is the inclusion of realistic models for the impact of feedback from the
growth of black holes. All successful models now demonstrate the need for Active
Galactic Nuclei (AGN) as an additional source of feedback that suppresses the
formation of stars in high-mass haloes (Benson et al., 2003; Croton et al., 2006;
Bower et al., 2006). Although this idea was initially developed using semi-analytic
models, this has now been confirmed in a wide range of numerical simulations (eg.
Dubois et al., 2016; Bower et al., 2017; Pillepich et al., 2018).

Here, we will use the eagle project’s galaxy formation code to calculate the effect
of the cosmological constant on the formation of structure in different post-inflation
universes. Each of our models will be practically indistinguishable at early times,
including nucleosynthesis and the epoch of recombination. Their histories diverge
at later times due to the onset of cosmological constant-powered accelerating ex-
pansion. In Section 4.2, we describe the eagle galaxy formation code and the suite
of simulations that we have run. In Section 4.3, we describe the effect of changing
the cosmological constant on the global accretion and star-forming properties of the
universe. Section 4.4 looks at the effect on an individual galaxy, and its relation to
its environment. In Section 4.5, we use our simulations to derive prediction from
models of the multiverse.

4.2 Galaxy Formation Simulation Code

The Virgo Consortium’s eagle project (Evolution and Assembly of GaLaxies and
their Environment) is a suite of hydrodynamical simulations that follow the for-
mation of galaxies and supermassive black holes in cosmologically representative
volumes of a standardΛCDM universe. The details of the code, and particularly the
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sub-grid models, are described in Schaye et al. (2015), and are based on the models
developed for OWLS (Schaye et al., 2010), and used also in GIMIC (Crain et al.,
2009) and cosmo-OWLS (Le Brun et al., 2014). The simulations code models the
effect of radiative cooling for 11 elements, star formation, stellar mass loss, energy
feedback from star formation, gas accretion onto and mergers of supermassive black
holes (BHs), and AGN feedback.

The initial conditions for the eagle simulations were set up using a transfer function
generated using CAMB (Lewis et al., 2000) and a power-law primordial power
spectrum with index ns = 0.9611. Particles were arranged in a glass-like initial
configuration were displaced according to second-order Lagrangian perturbation
theory (Jenkins, 2010).

Black holes are seeded in all dark matter haloes with masses greater than 1010h−1 M⊙ =

1.48 × 1010 M⊙. The halo finding algorithm is described in Schaye et al. (2015);
in short, the code regularly runs the friends-of-friends (FoF) finder (Davis et al.,
1985) with linking length 0.2 on the dark matter distribution. When analysing the
simulations in following sections, we are interested in membership with any halo,
rather than distinguishing substructures, so we use the FOF algorithm to identify
haloes.

4.2.1 Cosmological Parameters and Scale Factor

We need to choose the cosmological parameters for our simulation. The problem
with the standard set of cosmological parameters (Ωm,ΩΛ,Ωb, h) is that they are all
time dependent. In the model universes that we will consider, there is no unique
“today” at which we can compare sets of parameters. We follow Tegmark et al.
(2006) by defining cosmological parameters that are constant in time. We use only
one time-dependent parameter, which is cosmic time t. The constant parameters
are listed in Table 4.1. Note that the cosmological constant (Λ) and its associated
energy density are related linearly, Λ = 8πGρΛ/c2.
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Table 4.1.: Free parameters in the FLRW model, defined so that they are constant in time, at least since very early times. The measured value
derives from the Planck Collaboration et al. (2014) cosmological parameters, as used by the eagle project: (Ωm,ΩΛ,Ωb, h, σ8, ns,Y ) =
(0.307, 0.693, 0.04825, 0.6777, 0.8288, 0.9611, 0.248).

Parameter Measured value
ρΛ Cosmological constant energy (mass) density 5.98 × 10−27 kg m−3

ξb Baryon mass per photon ρb/nγ 1.01 × 10−36 kg m−3

ξc Cold dark matter mass per photon ρc/nγ 5.43 × 10−36 kg m−3

κ Dimensionless spatial curvature (in Planck units) k/a2T2
0 |κ | ≲ 10−60 ≈ 0
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How do we solve the Friedmann equations, given the dimensionless cosmological
parameters in Table 4.1, so that we can derive the usual cosmological parameters
for the simulation? We have the freedom to choose “today”, that is, we can rescale
a(t) to make a(t0) = 1 for any time t0. A useful way to proceed initially is to define
t0 to be the time at which the energy densities of the cosmological constant and
matter are equal. Then, we calculate the matter densities,

ρm,0 = ρΛ (4.1)

ξm ≡ ξb + ξc ⇒ ρb,0 =
ξb
ξm
ρm,0 ; ρc,0 =

ξc
ξm
ρm,0 (4.2)

Then, we calculate the photon number density at t0, and from it the CMB temperature
(T0) and the radiation (photons and neutrinos) energy density,

nγ,0 = ρb,0/ξb = ρc,0/ξc = ρm,0/ξm (4.3)

nγ,0 =
2ζ(3)
π2

(
kBT0
ℏc

)3
(4.4)

ρr,0 = g
π2

30
kBT0

(
kBT0
ℏc

)3
(4.5)

where g = 2 + 2
7
8

3
(
4
3

)4/3
. (4.6)

We can then solve the Friedmann equation,

H2 =

(
1
a

da
dt

)2
=

8πG
3

(ρm + ρr + ρΛ + ρk) (4.7)

=
8πG

3
(ρm,0a−3 + ρr,0a−4 + ρΛ + ρk,0a−2) (4.8)

where ρk = −κ 3
8πG

(
kBT0
ℏ

)2
. (4.9)

We can calculate the critical density, ρcrit,0 = 3H2
0/8πG = ρm,0 + ρr,0 + ρΛ + ρk,0

and then the usual cosmological parameters Ωm = ρm,0/ρcrit,0, and similarly for Ωr,
Ωc, Ωb, ΩΛ, and Ωk. With these parameters, FLRW codes can solve the Friedmann
equations2.

2There are two potential complications. If we consider a universe with no cosmological constant
(ρΛ = 0) then the choice of “initial” matter density is effectively arbitrary. Secondly, if the
universe recollapses, then it may never reach the time at which ρm,0 = ρΛ. The most general way
to find some matter density at which we can apply the technique above is to write the Friedmann
equation in terms of the CMB temperature T0. We can then solve for the CMB temperature at
turnaround H(t) = 0, and from this calculate the minimum matter density of the universe.
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Having solved the Friedmann equations for a(t), we can rescale to change the
time of “today” to be any other time (t′0): anew(t) = a(t)/a(t′0), and recalculate
the various density parameters appropriately. We will describe our choices for the
normalisation of a(t) in Sections 4.2.3and 4.2.4.

4.2.2 Initial Conditions and Sub-Grid Physics

We use the same initial conditions for each simulation. For the range of cosmological
constants we consider here, there has been minimal effect on the evolution of the
universe at the start of the simulation. Specifically, we use the same initial conditions
for the SPH particles in physical coordinates: in the eagle code, like its GADGET
ancestor, we need to convert code quantities into physical quantities taking into
account the initial scale factor (ai) and the Hubble parameter (h) of the original
simulation: distance (dphys = aih−1dcode), velocity (vphys = vcode

√
ai), and mass

(mphys = h−1mcode).

We must also be careful regarding parameters in our sub-grid physics recipes. The
sub-grid physics of the eagle code has been checked, and the necessary parameters
rescaled as necessary to keep the same physical values. We also discovered a few
cases in which it was assumed that ρΛ , 0, which needed to be remedied for the
test runs below.

Note the assumptions that we are making when we change the cosmological constant,
but keep the physical parameters of the subgrid model unchanged. This is potentially
worrisome, given that these parameters are often inferred, not from first principles,
but by calibrating against observations of galaxy populations in our Universe. Our
assumptions are twofold. First, we assume that the subgrid model is sufficiently
sophisticated that it captures the relevant physics. For example, we assume that star
formation in any cosmology occurs when the local density is sufficiently high. It
is appropriate to apply such a model to other universes. Secondly, we assume that
the parameters inferred from observations are the same as would be inferred from
a first-principles calculation; they do not depend on the cosmological constant for
such small-scale processes. For example, the local matter density above which star
formation occurs should only depend on conditions within 10-100pc scale molecular
clouds, far below cosmological scales. We can plausibly use the same threshold for
different cosmologies.
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Using the same subgrid parameters would create a problem only if our overall
cosmology is wrong, for it could be the case that we have inferred the wrong
value of some subgrid parameter to partially compensate for an incorrect expansion
history of the universe. In this case, of course, the entire eagle simulation suite
would need to be redone, as would almost every other cosmological simulation. We
will leave that worry for another day.

4.2.3 Testing our Modifications

The freedom to choose “today” t0 in our simulation gives us a way to confirm that
our modifications are correct. Setting ρΛ = 0 and κ = 0, and noting that ρr is
negligible for the time covered by the simulation, we simulate structure formation
in an Einstein de-Sitter (EdS) Universe. We can use this freedom to define three
different sets of simulation initial conditions.

A. The initial time of the simulation has the same scale factor as the correspond-
ing Planck cosmology simulation, ai,A = 1/(1 + zi,A) = 1/128. We solve
for the proper initial time tinit in the Planck cosmology, and then require that
aEdS(t) is normalised so that aPlanck(tinit) = aEdS(tinit). This requires that we
set Hubble parameter to hA = 0.375.

B. We alter the initial redshift of the simulation so that ‘today’ (z = 0, a = 1) is
at t0 = 13.8 Gyr. This requires that we set the initial redshift of the simulation
to zi,B = 108 and the Hubble parameter to hB = 0.4716.

C. The Hubble parameter h of the simulation has the same value as the corre-
sponding Planck cosmology simulation, hPlanck = 0.6777. Having found the
time in the EdS universe when hC = 0.6777, we normalise the scale factor
so that aEdS = 1 at that time. This requires that we set the initial redshift to
zi,C = 85.4.

The simulations A, B and C are trying to solve the same physical problem, and
should produce the same properties of the universe as a function of proper time.
If we have not correctly accounted for factors of h (Croton, 2013) or confused
comoving/physical quantities in our calculations, then these two simulations should
diverge. Inevitably, there will be numerical differences: because the “time” variable
of the simulation is actually log a, the time stepping is not identical.
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Fig. 4.1.: The star formation rate efficiency (that is, star formation rate divided by the total
baryon mass in the simulation box), for three simulations withΛ = 0 but different
choices for “today” (at which a(t0) = 1). While there is scatter between the
different simulations, they show an overall star formation history that is consistent.
The scatter is comparible in magnitude to that caused by using a different seed
for the random number generator associated with subgrid physics.
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Figure 4.1 shows the star formation rate efficiency (that is, SFR divided by the total
baryon mass in the simulation box), for three simulations (A, B and C) with Λ = 0.
While there is scatter between the different simulations, they show an overall star
formation history that is consistent. We have also run simulations that alter the seed
for the random number generator. The scatter that this produces for a single set of
parameters is similar in magnitude to the differences between the simulations A, B
and C. We conclude that the code is functioning as expected.

In a companion paper (Salcido et al., 2018), we consider a more detailed compar-
ison between the EdS cosmology and our universe, to quantify the effect of the
cosmological constant on galaxy formation in our universe.

4.2.4 Simulation Suite

The eagle reference simulations used cosmological parameters measured by the
Planck Collaboration et al. (2014). We run seven eagle simulations that modify the
cosmological constant, while keeping the same baryon mass per photon (ξb), cold
dark matter mass per photon (ξc), and spatial curvature (κ = 0) unchanged. We
also use the same physical sub-grid parameters as the reference model. The values
of the cosmological and numerical parameters used for the simulations are listed in
Table 4.2.

As noted in Section 4.2.1, we can solve the Friedmann equations for a(t) with
an arbitrary normalisation, and then rescale appropriately. For our cosmological
simulations, we choose the initial scale factor (or equivalently, redshift zinitial) to
be the same for all values of Λ. In our universe, zinitial = 127 corresponds to
a proper time of tinit = 11.5 Myr. Thus, for a given value of Λ for which we
have the scale factor a(t) with any arbitrary normalisation, we rescale so that
a(tinitial) = 1/(1 + zinitial).

In fact, we can solve for the new cosmological parameters (H′
0, Ω′

Λ
, Ω′

m) in terms of
their values in our universe (H0, ΩΛ, Ωm) analytically in this case. We require the
expansion of the universe to be the same at early times, which implies that H2

0Ωm

is equal for all universes. In addition, we increase the physical energy density of
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dark energy by a factor f : Λnew = fΛ0, which implies that H′
0
2
Ω′
Λ
= f H2

0ΩΛ.
Combining these equations gives,

H′
0 = H0

√
Ωm + fΩΛ Ω

′
m =

Ωm
Ωm + fΩΛ

(4.10)

Using these equations gives the cosmological parameters in Table 4.2, as a function
of Λ.

We are interested in star formation across cosmic time, and so we want to run the
simulation as far as possible into the future. This becomes increasingly difficult
as the universe transitions into its era of accelerating expansion. The internal-time
variable in the code is log(a), and when a begins to increase exponentially in cosmic
time (t), it takes more and more internal-time steps to cover the same amount
of cosmic time. Furthermore, because the internal spatial variable is comoving
distance, objects that have a constant proper size are shrinking in code units. In
our experience, in the accelerating era, the densest particles in the simulations are
assigned very short internal-time steps. The simulation slows to a crawl, spending
inordinate amounts of CPU time on a small number of particles at the centres of
isolated galaxies.

In future work, we will look for ways to overcome these problems. Here, we have
been able to run the simulation far enough into the future that, particularly for large
values of the cosmological constant, quantities such as the collapse fraction and
the fraction of baryons in stars have approached constant values. The endpoint
of the Λ0 × 30, Λ0 × 100 and Λ0 × 300 simulations can be seen in the figures in
following sections. We have captured the initial burst of galaxy and star formation in
these universes, and the accelerating expansion of space makes any future accretion
negligible. Each galaxy becomes a separate ‘island universe’. Nevertheless, the
far-future (≫ 20 Gyr) fate of baryons in haloes is not captured by our simulations.
Very slow processes that are difficult to capture in any simulation (let alone one in
a cosmological volume) become relevant: gas cooling on very long time scales, a
trickle of star formation, rare supernovae in low density environments, accretion of
diffuse gas onto stellar remnants and black holes. These processes could be relevant
to our models of observer creation over all of cosmic time; we will return to these
issues in Section 4.5.3.

4.2 Galaxy Formation Simulation Code 79



Table 4.2.: Cosmological and numerical parameters for our simulations: Box-size (“comoving”, that is, the size of the box today in the Reference Λ0
simulation), number of particles, and cosmic parameters (h,Ωm,Ωb,ΩΛ). (Larger 50 Mpc boxes were run and are analysed in more detail in
Salcido et al. (2018). For our purposes, their results were consistent with the 25 Mpc simulations we use here.) Note that these numbers use
the convention for ‘today’ defined in Section 4.2.4: the proper age of the universe when ainitial = 1/(1 + zinitial) is the same for all models. The
parameter σ8 is the rms linear fluctuation in the mass distribution on scales of 8 h−1 Mpc, calculated using CAMB (Lewis et al., 2000). Note
that this parameter varies between cosmologies due to differences in the growth of matter fluctuations, and differences in the averaging scale
due to the different values of h. As noted in Section 4.2.4, we do not run CAMB again to generate new initial conditions for each of our
simulations; we use the same initial snapshot (particle positions and velocities) for each simulation. For all simulations, the initial baryonic and
dark matter particle mass, “comoving” and Plummer-equivalent gravitational softening, and initial redshift are as follows: mgas = 1.81× 106 M⊙,
mDM = 9.70 × 106 M⊙, ϵcom = 2.66 kpc, ϵprop = 0.70 kpc, zinitial = 127. Not listed are the three simulations used for the convergence test (Figure
4.1), which use smaller boxes: L = 12.5 cMpc, N = 2 × 1883.

Sim. Name L N h Ωm Ωb ΩΛ σ8
[cMpc]

EdS_25 (Λ = 0) 25 2 × 3763 0.3755 1.0 0.1572 0 0.6826
Ref_25 (Λ0) 25 2 × 3763 0.6777 0.307 0.04825 0.693 0.8288
Λ0 × 3 25 2 × 3763 1.047 0.1287 0.0202 0.8713 0.8913
Λ0 × 10 25 2 × 3763 1.823 0.0424 0.00667 0.9576 0.8955
Λ0 × 30 25 2 × 3763 3.113 0.01455 0.00229 0.98545 0.8434
Λ0 × 100 25 2 × 3763 5.654 0.00441 6.93×10−4 0.99559 0.7476
Λ0 × 300 25 2 × 3763 9.779 0.00147 2.32×10−4 0.99853 0.6446
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4.3 Changing the Cosmological Constant:
Global Properties

We vary the cosmological constant between zero and several hundred times larger
than the value in our Universe. We do not consider negative values of the cosmo-
logical constant here, as it would require significant changes to the time stepping in
the code to handle the transition from expansion to contraction.

Figure 4.2 shows the deceleration parameter q ≡ −Üa/(aH2) and the linear growth
factor D(t) as a function of cosmic time, for different values of the cosmological
constant. As the cosmological constant increases, the time at which the expansion of
the universe begins to accelerate (q < 0) moves to earlier times as taccel ∼ 1/

√
GρΛ.

Once accelerated expansion begins, the formation of structure freezes and accretion
stops. We can see this in linear perturbation theory, where all modes grow in
proportion to the growth factor D(t); we normalise D(t) so the curves are equal at
early times, and D(t0) = 1 in our Universe today. We see that once the expansion
of the universe begins to accelerate, the growth factor approaches a constant, and
structures ceases to grow.

In this section we will characterise the details of structure formation in these uni-
verses. Ordinarily, one describes these properties using comoving quantities, such
as the comoving halo number density and comoving star formation rate density.
One immediate problem is that the term “comoving” is meaningless when different
universes are being compared. There is no “today” that is common to all models,
relative to which we can define comoving volumes, densities and the like. There is
nothing special, cosmically speaking, about 13.8 Gyr or 2.725 K. We can arbitrarily
change the comoving density of star formation, for example, by choosing a different
cosmic time in a given universe to be “today”, which makes the comparison of
comoving densities meaningless.

To overcome this, we will calculate quantities relative to the physical mass (total or
baryonic) in the simulation box3. This provides a meaningful comparison between
the simulated universes, and like comoving densities it does not automatically scale

3We could define comoving densities relative to the initial physical volume of the simulation
box, which is the same in all models. But while this allows a meaningful comparison, the
initial cosmic time is still arbitrary. Choosing an earlier time would increase all the “comoving”
densities, which makes their value in a given universe difficult to interpret. Calculating specific
(per unit mass) quantities overcomes this problem.
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Fig. 4.2.: The deceleration parameter q ≡ − Üa/(aH2) (top) and the linear growth factor D(t)
(bottom) as a function of cosmic time, for different values of the cosmological
constant. Note that q = 1/2 at all times for the Λ = 0 cosmology. As the
cosmological constant increases, the time at which the expansion of the universe
begins to accelerate (q < 0) moves to earlier times as taccel ∼ 1/

√
GρΛ. Once

accelerated expansion begins, the formation of structure freezes and accretion
stops, and D(t) approaches a constant.
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with expansion of the universe. We can ask, for example, what fraction of the total
baryonic mass in the universe is in the form of stars as a function of cosmic time?
What fraction has been converted into metals?

4.3.1 Mass accretion

Formally, in a cold dark matter universe, every particle is in a dark matter halo of
some mass. That is, the collapse fraction of the universe is always unity; from Press
& Schechter (1974) theory,

F(> M |t) = erfc

(
δcrit(t)√
2σ(M, t)

)
, (4.11)

where F(> M |t) is the fraction of matter at cosmic time t that is part of a collapsed
halo of mass greater than M , δcrit(t) is the critical linear overdensity of a collapsed
object, and σ(M, t) is the standard deviation of the cosmic matter field when
smoothed on a scale that encloses mass M . The matter variance σ(M, t) → ∞ as
M → 0, thus F(> 0|t) = 1 at all times.

In the simulation, however, there is a minimum dark matter halo mass that can be
resolved by the particles. Given that each dark matter particle has mass mDM =

9.7 × 106 M⊙ and we require 32 particles to identify a halo, we can resolve haloes
with mass greater than mmin = 3.1 × 108 M⊙. Summing the total mass in these
haloes, then, gives the collapse fraction for resolved haloes: F(> mmin |t). This
approximately excludes haloes that are too small to form stars, so gives us the
fraction of mass in the universe that resides in potentially star-forming haloes; the
remainder can be considered as the inter-galactic medium.
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Fig. 4.3.: Left: The fraction of mass in each simulation that is part of a resolved halo: F(> mmin |t), where mmin = 3.1 × 108 M⊙. This minimum mass is a
consequence of the numerical resolution of the simulations, but is consistent across all of them and approximately excludes haloes that are too small
to form stars. The result is a measure of the fraction of mass in the universe that resides in potentially star-forming haloes. Right: The specific total
halo accretion rate, that is, the time derivative of the left hand curve. The rate peaks at t = 0.8 Gyr in our Universe (Λ = Λ0). Even for a universe
with a cosmological constant ten times larger than ours (Λ0 × 10), there is minimal difference in total halo mass fraction even after 20 Gyrs, well
into the accelerating phase of the universe’s expansion.
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Figure 4.3 shows (left) the fraction of the total mass in the universe that has collapsed
into resolved haloes, and (right) the specific total halo accretion rate, that is, the
time derivative of the left hand curve. In this figure and those following, the time
derivative is calculated after smoothing the accretion fraction. Even for a universe
with a cosmological constant ten times larger than ours (Λ0 × 10), there is minimal
difference in total halo mass fraction even after 20 Gyrs, well into the accelerating
phase of the universe’s expansion. The initial peak in the accretion rate at t = 0.8
Gyr remains largely unchanged even in a universe with a cosmological constant
30-100 times larger than ours. In a universe with Λ = Λ0 × 100, a fifth of the mass
in the universe accretes into haloes with m > mmin = 3.1 × 108 M⊙.

4.3.2 Baryon flow

Baryons are subject to physical forces other than gravity: the smoothing effect of
gas pressure, cooling and heating from radiation, star formation, supernovae-driven
galactic winds, black hole feedback and more. Figure 4.4 shows left the fraction of
the baryonic mass (in the form of stars and gas) in the simulation that is inside dark
matter haloes with m > mmin = 3.1 × 108 M⊙ as a function of cosmic time, and
right the specific rate of baryon accretion (i.e. per unit total baryon mass).

We see the same peak in the accretion rate at t = 0.8 Gyr, and when there is zero
cosmological constant, the baryon accretion rate increases in a similar way to the
total accretion rate (Figure 4.3). As the cosmological constant increases, it has a
much larger effect on the baryons than the dark matter. In fact, for Λ = Λ0 × 10, the
rate of baryon accretion becomes negative, as baryons are — on average — being
ejected from galaxies.

We can understand this effect as follows. We can write the acceleration (ag) of a
test mass at distance r from a large mass M under the Newtonian gravitational force
with a cosmological constant term,

ag = −G
M
r2 +

Λc2

3
r . (4.12)
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If we consider a large collapsed mass, then the distance (d0) at which the force on
a test mass is balanced between attraction to the central mass and repulsion by the
cosmological constant is found by setting ag = 0,

d0 = 1.1 Mpc
(

M
1012 M⊙

)1/3 (
Λ

Λ0

)−1/3
, (4.13)

or equivalently in terms of the ratio ρΛ/ρΛ0 . In our universe, this is ∼ 4 times
larger than the virial radius of the halo (which also scales as the 1/3 power of
mass). In universes in which the cosmological constant is larger, these distances
are comparable.

As seen in Figure 4.4, this does not dramatically affect the growth of the dark matter
halo. But baryonic matter ejected from galaxies in galactic winds or outflows, if it
reaches the outer parts of the halo, is liable to be lost. Rather than raining back down
on the galaxy after a delay of ∼ 1 Gyr (Oppenheimer & Davé, 2008; Oppenheimer
et al., 2010; van de Voort, 2017), this material is lost, drawn away into the expansion
of the universe by the repulsive effect of the cosmological constant (Barnes et al.,
2006).

As we will see in the next subsection, in universes for which (Λ ≳ Λ0 × 10), the
initial burst of star formation in the universe occurs when the universe has begun to
expand exponentially. This rapid star formation, combined with black hole feedback,
launches outflows that are carried away by the accelerating expansion. This effect
overwhelms accretion by gravitational attraction, causing the net accretion rate
to become negative. The result is that there is not a simple, linear relationship
between dark matter halo growth and baryon accretion that holds for all values of
the cosmological constant.
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Fig. 4.4.: Left the fraction of the baryonic mass in the simulation that is inside dark matter haloes with m > mmin = 3.1 × 108 M⊙ as a function of cosmic
time, and Right the specific rate of baryon accretion. The rate peaks at t = 0.6 Gyr in our Universe (Λ = Λ0).
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4.3.3 Star formation

Some of the baryons that accrete into haloes will form stars. Figure 4.5 shows (left)
the fraction of cosmic baryons that are in the form of stars as a function of cosmic
time, and (right) the star formation rate efficiency, which takes into account star
birth only. Note that, as it is commonly used in the galaxy formation literature,
“specific star formation” refers to the star formation rate of a galaxy divided by its
stellar mass. To avoid confusion, we will call the star formation mass (rate) per unit
total baryon mass the star formation (rate) efficiency.

The star formation rate efficiency peaks at t ≈ 3.5 Gyr. This is a delayed conse-
quence of the peak in the mass accretion rate at t = 0.8 Gyr. As the cosmological
constant increases, the haloes are starved both by the cessation of fresh accretion
from the intergalactic medium and the lack of recycling of outflowing gas, noted
above. The result is a significant curtailing of the star formation rate efficiency.
While the Λ = 0 universe has turned ∼ 4% of its baryons into stars by t = 20 Gyr,
for Λ0 × 100, this fraction is essentially constant after 10 Gyr at 0.5%. This factor
of 8 decrease contrasts with the factor of 2.4 decrease in the total mass accretion.
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Fig. 4.5.: Left: the fraction of cosmic baryons by mass that are in the form of stars as a function of cosmic time. Right: the star formation rate efficiency,
which takes into account both star birth only. The rate peaks at t = 3.5 Gyr in our Universe (Λ = Λ0).
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4.3.4 Cosmic metal production

Planets and their occupants are formed from the products of stellar nucleosynthesis.
The eagle code, in addition to primordial H and He, follows 9 metals: C, N, O, Ne,
Mg, Si, S, Ca, and Fe. Figure 4.6 shows (left) the fraction of cosmic baryons that
are in the form of metals in collapsed haloes, and (right) the halo metal production
rate. Note that this includes metals in all phases: inside stars, in dense star-forming
clouds, and in the hot, non-star forming interstellar gas. The halo metal production
rate reflects the balance between metal production in stars, recycling back into the
inter-stellar medium by winds and supernovae, re-incorporation into later generation
stars, ejection from haloes in galactic winds, and reaccretion into haloes.

As star formation peaks (Figure 4.5), metals are being produced in stars and returned
to the IGM in supernovae and planetary nebulae. This feedback also loads metals
into the galactic winds that drive baryons out of haloes (Figure 4.4). As with the
baryon accretion rate, the net accretion rate becomes negative for certain values
of Λ as metals are ejected in winds at a higher rate than they are produced and
reaccreted. Our universe turns approximately a fraction 1.2 × 10−3 by mass of its
baryons into halo metals by 20 Gyr, while for Λ0 × 100 the fraction asymptotes by
10 Gyr to 1.5 × 10−4. This factor of 10 difference contrasts with the factor of 2.5
difference with regards to the total fraction of mass in haloes.
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Fig. 4.6.: Left: The fraction of cosmic baryons that are in the form of metals in collapsed haloes. Right: the halo metal production rate. The rate peaks at
t = 3.2 Gyr in our Universe (Λ = Λ0), and the peak is steadily diminished as the cosmological constant increases.
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4.4 Accretion and star formation in individual
haloes

In this section, we will consider the evolution of a comoving region of space that,
in our universe, evolves into a Milky Way-mass halo (2 × 1012 M⊙) by the present
day. Figure 4.7 shows the projected gas density in a comoving region around the
halo equal to 4 Mpc today in our universe; the cosmic time and proper size of the
region are shown above each panel. The left panels show an EdS universe (Λ = 0);
the right panels show a Λ0 × 30 universe.

The top two panels show this region of the universe at cosmic time t = 0.757 Gyr,
while the Λ0 × 30 is still in its early decelerating phase. The proper sizes of the
boxes are within 1% of each other, and the distributions of matter are very similar.
We see the usual picture of small haloes collapsing and hierarchically merging into
larger haloes.

The middle two panels show this region of the universe at cosmic time t = 6.5 Gyr.
The Λ0 × 30 is undergoing accelerating expansion, so the proper size of the region
is 2.3 times larger than in the EdS universe, and the linear growth factor is 33%
smaller. The large central halo in the EdS simulation has drawn in more matter
from its surroundings, and is still being drawn towards a second halo at the bottom
of the panel.

The bottom two panels show this region of the universe at cosmic time t = 12.5
Gyr. The accelerating expansion of the Λ0 × 30 means that the proper size of the
comoving region is 10 times larger than in the EdS universe. The typical Newtonian
force between two masses in the region is thus 100 times smaller, and the linear
growth factor is 2.3 times smaller. The difference in the distribution of matter
is quite dramatic: in the Λ0 × 30 universe, there has been little evolution of the
structure of the universe since t = 6.5 Gyr. The matter in the vertical filaments
has not fallen into the large halo, starving the galaxy of gas. In the EdS universe,
the halo has been drawn closer to the second halo at the bottom of the panel; the
filament of matter between them has largely fallen into one of the haloes.

To highlight the difference between the final states of the galaxies at the centre of
the halo, Figure 4.8 shows a region of constant proper size (0.5 Mpc) around the
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EdS: t = 0.757 Gyr, box = 0.497 pMpc Lambda x 30: t = 0.757 Gyr, box = 0.504 pMpc

EdS: t = 6.468 Gyr, box = 2.072 pMpc Lambda x 30: t = 6.468 Gyr, box = 4.771 pMpc

EdS: t = 12.465 Gyr, box = 3.208 pMpc Lambda x 30: t = 12.465 Gyr, box = 31.790 pMpc

Fig. 4.7.: The evolution of the projected gas density of a comoving region of space that,
in our universe, evolves into a Milky Way-mass halo by the present day. The
comoving size is 4 Mpc in our Universe. The proper time and proper size of the
region are shown above each panel. Left: an EdS universe (Λ = 0); Right: a
Λ0 × 30 universe. The colour scaling on each row is held constant.
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EdS: t = 6.468 Gyr, box = 0.5 pMpc Lambda x 30: t = 6.468 Gyr, box = 0.5 pMpc

EdS: t = 12.465 Gyr, box = 0.5 pMpc Lambda x 30: t = 12.465 Gyr, box = 0.5 pMpc

Fig. 4.8.: The evolution of the projected proper gas density in a region of fixed proper size
(0.5 Mpc) around the central galaxies in the panels in Figure 4.8. The proper time
is shown above each panel. Left: an EdS universe (Λ = 0); Right: a Λ0 × 30
universe.

central galaxy in the regions shown in Figure 4.8. The colour scaling in all four
panels is held constant.

The top two panels show this region of the universe at cosmic time t = 6.5 Gyr.
Both show a galaxy in formation, being fed by streams of gas. But already we can
see that the EdS galaxy (left) is larger, and is surrounded by a much higher density
circumgalactic medium. In the Λ0 × 30 universe (right), the free fall time from the
edge of the isolated region around the galaxy is a few Gyr, and so the halo accretes
as much material as is available on this timescale. Accordingly, the total mass of
the halo only grows by only ∼ 1% in the 6 Gyr between the two snapshots shown in
Figure 4.8, to a final mass of 8 × 1011 M⊙. In this isolation, the gas collapses into
one monolithic disk. In the same time in the EdS simulation, the halo has doubled
in mass to 4 × 1012 M⊙ at t = 12.5 Gyr, and is still growing.
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4.5 Implications for multiverse models

4.5.1 The measure of the multiverse

We can use our calculations to make predictions from multiverse models. Given a
model that predicts an ensemble of universes with a distribution of values for the
cosmological constant, we can ask what fraction of observers will inhabit a universe
with a particular value of Λ.

If the model in question predicts a finite ensemble of universes, inhabited by a finite
number of observers, then this calculation is straightforward. Scientific theories
are tested by predicting observations, and so all observers are treated as of equal
importance for the purposes of calculating the likelihood4. We thus use a counting
metric to calculate the likelihood,

pobs(Λ|MB) dΛ =
nobs([Λ,Λ + dΛ])

nobs
, (4.14)

where M is the multiverse model, B is any relevant background information
(which should not give away any clues about the properties of the actual universe),
nobs([Λ,Λ + dΛ]) is the number of observers (or observer-moments) that exist in a
universe with cosmological constant in the range [Λ,Λ + dΛ], and nobs is the total
number of observers in the multiverse.

To evaluate these quantities, we calculate (at least approximately) the rate at which
observers are produced per unit time per unit comoving volume, for a given set of
cosmic and fundamental parameters: d2nobs/dtdV . So long as the universe has
finite age, or if the rate at which observers are produced approaches zero quickly

4We will ignore the complication of asking: what exactly counts as an observer? We cannot
predict the occurrence of observers in sufficient detail to make any difference. That is, we might
wonder whether any complex life form counts as an observer (an ant?), or whether we need to
see evidence of communication (a dolphin?), or active observation of the universe at large (an
astronomer?). Our model does not contain anything as detailed as ants, dolphins or astronomers,
so we are unable to make such a fine distinction anyway. In any case, such a distinction is
unlikely to bias our calculation toward any particular value of the cosmological constant.
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enough into the future, then the integral over cosmic time of this rate will be finite.
Then, the likelihood of the cosmological constant is,

pobs(Λ|MB) dΛ =

∫ tmax
0 V(t;Λ) pV (Λ|t) d2nobs

dt dV dt dΛ∬ tmax
0 V(t;Λ) pV (Λ|t) d2nobs

dt dV dt dΛ
, (4.15)

where tmax is the maximum age of the universe (possibly infinite), V(t;Λ) is the
total comoving volume of the universe, pV (Λ|t) dΛ is the fraction of the universe by
comoving volume at time t in which the value of the cosmological constant is in the
range [Λ,Λ + dΛ]. The comoving volume depends on the arbitrary normalization
of a(t), but this cancels in the equation above.

However, most proposed multiverses are not finite. In eternally-inflating universes,
for example, it is argued that not only does the multiverse consist of an infinite
number of universes, but each universe is infinitely large (Vilenkin & Winitzki,
1997; Garriga & Vilenkin, 2001; Knobe et al., 2003; Freivogel et al., 2006; Guth,
2007; Ellis & Stoeger, 2009). Thus, the number of universes with a given value of
Λ, times the average number of observers in those universes, divided by the total
number of observers in the multiverse, is ∞×∞/∞.

These infinities need to be managed with a measure; see, among others, Vilenkin
(1995); Garriga et al. (2006); Aguirre et al. (2007); Vilenkin (2007b,a); Gibbons &
Turok (2008); Page (2008); Bousso et al. (2009); de Simone et al. (2010); Freivogel
(2011); Bousso & Susskind (2012); Garriga & Vilenkin (2013); Page (2017). Sim-
plistically, this measure can be thought of in two ways. Firstly, a multiverse model
could motivate confining our attention to a finite region of the universe with volume
V(t;Λ) (as a function of time and Λ). Then, we can use the finite calculation for
the likelihood (Equation 4.15). Secondly, the measure could specify the fraction
of the volume of the universe in which cosmic parameters are in a given range,
even though the total volume of the universe is infinite. This is used to weight the
integral, effectively “cancelling” the infinite quantity V(t;Λ) from the numerator
and denominator of Equation (4.15), which gives,

pobs(Λ|MB) dΛ =

∫ tmax
0 pV (Λ|t) d2nobs

dt dV dt dΛ∬ tmax
0 pV (Λ|t) d2nobs

dt dV dt dΛ
. (4.16)

Here, rather than focus on a specific multiverse model, we will consider three
measures. Following Weinberg (1987); Efstathiou (1995); Peacock (2007); Bousso
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& Leichenauer (2010), we note that nothing in fundamental physics picks out a
value of the cosmological constant as privileged, including the value zero. This,
in particular, rules out the use of a logarithmic prior. In the range of Λ that we
consider, which is very small compared to the Planck scale, we approximate the
distribution as flat on a linear scale. The difference between the measures is the
quantity with respect to which the distribution is flat.

1. Mass-weighted: there is a uniform probability that a given mass element
in the universe will inhabit a region with a given value of the cosmological
constant. Note that, for reasons discussed in Section 4.3, specifying that there
is uniform probability with respect to comoving volume is not sufficient, as
there is no universal ‘today’ relative to which we can define volume5. We
use the constraint of constant mass to define comoving volumes between
universes.

2. Causal patch: This measure was proposed to solve the quantum xeroxing
paradox in black holes (Susskind et al., 1993; Bousso, 2006; Bousso et al.,
2006), treating the de-Sitter horizon in a universe with Λ analogously to a
black hole horizon. We ask: what is the volume of the region of the universe
at time t that can causally affect a given comoving world line in the future of
t? The comoving extent of the region is,

χpatch(t) =
∫ tmax

t

dt
a(t) . (4.17)

Then, for the spatially flat universes that we consider here, the volume is
V = (4π/3)χ3(t), which goes in Equation (4.15). Note that Equation (4.17)
depends on the arbitrary normalisation of a(t), but this is cancelled out when it
is multiplied by the observer creation rate: d2nobs/ dt dV . The comoving size
of the causal patch is shown in Figure 4.9 (left, relative to the normalisation of
a(t) from Section 4.2.1). Also shown (middle) is the physical mass contained
within the causal patch (which is not relative to the normalisation of a(t)).

3. Causal diamond: This measure is based on the principle that spacetime
regions that are causally inaccessible should be disregarded (Bousso, 2006;
Bousso et al., 2007). We consider a comoving world line in a universe,
extending from the end of inflation (reheating at t = trh) to the distant future.

5Put another way, we are free to renormalise a(t), but this normalisation could depend on Λ. This
will not cancel out in equation (4.16), making the calculated probability arbitrary.
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What is the volume (at time t) of the region of the universe that is enclosed by
a photon that departs the world line at its beginning and returns at the end?
We can write,

χdiamond(t) = min{χpatch(t), η(t)} , (4.18)

where η(t) =
∫ t

trh

dt
a(t) (4.19)

As for the causal patch, the volume V = (4π/3)χ3(t) is used in Equation
(4.15). The causal diamond is shown in Figure 4.9. Also shown is the
physical mass contained within the causal diamond (right).

We stress, however, that the measure is not a “degree of freedom” in a multiverse
model. It must not be inferred from or fit to observations, and the fact that a
particular measure gives good agreement with observations is no reason to prefer
that measure. The reason is that any value of Λ can be made practically certain
with an appropriately jerry-rigged measure. If a model derives its prediction from
observations, then its predictions cannot then be tested by those same observations.
A multiverse model is supposed to tell us about the global structure of the universe.
There should not be any assumptions that need to be added “on top”, because there
are no physical facts left to specify, at least on relevant cosmological scales. The
measure should follow naturally — in some sense — from the multiverse model6.

6To put this another way, suppose a multiverse model specified the global structure of the universe
in painstaking detail: the value of cosmic parameters and properties at every place and time.
What would it mean to apply two different measures to this model, to derive two different
predictions? How could all the physical facts be the same, and yet the predictions of the model
be different in the two cases? What is the measure about, if not the universe? Is it just our own
subjective opinion? In that case, you can save yourself all the bother of calculating probabilities
by having an opinion about your multiverse model directly.
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Fig. 4.9.: Left: Comoving causal patch and causal diamond vs proper time (Gyrs) for different values of the cosmological constant shown in the legend.
The decreasing curves are the causal patch. Increasing (overlapping) curves are the quantity ν(t) from Equation (4.18); the causal diamond is the
minimum of these two curves at a given time. The comoving distance is relative to the chosen normalisation of a(t), as described in Section 4.2.1.
Also shown are the physical mass inside the causal patch (middle) and causal diamond (right) as a function of cosmic time, which are independent
of the normalisation.
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4.5.2 Models of observers

We need to connect the presence of observers to local conditions in our simulations.
This will, inevitably, be a combination of approximation and guesswork. Note that
any constant factor in the observer creation rate will cancel in Equations 4.15 and
4.16, so an absolute rate is not required. We consider three models of observers,
linked to the production of energy and chemical elements.

1. Star formation + fixed delay: Following Bousso & Leichenauer (2010), we
consider a model in which observers follow the formation of a star with a
fixed time delay of 5 Gyr. We also considered a time delay of 10 Gyr, but
it made minimal difference to our conclusions. This is inspired by the time
taken for intelligent life to form on Earth after the birth of the Sun.

2. Star formation + main-sequence lifetime: As first argued by Carter (1983, see
also Barrow & Tipler 1986), if the formation of life is extremely improbable
— that is, if the average timescale for its formation is much longer than the
lifetimes of stars — then it will form at the last available moment, so to speak.
Most stars will host lifeless planets, but where life forms it will do so at a
time that is of order of the main-sequence lifetime of the star. As a first
approximation, we assume that there is a constant probability per unit time
of life forming around stars of all masses. The observer creation rate for each
star population that forms is proportional to the fraction of stars (by number)
that are still on the main sequence after time ∆t,

fms(∆t) =
∫
θ(tms(M) − ∆t) ξ(M) dM∫

ξ(M) dM
, (4.20)

where ξ(M) is the stellar initial mass function (IMF), tms(M) is the main-
sequence lifetime of a star of mass M , the limits of the integral are the
minimum and maximum stellar masses, and θ(x) is the Heaviside step func-
tion, so that only those stars whose main-sequence lifetimes are longer than
the time since the population was born contribute. We use the Chabrier
(2003) initial mass function, and a simple relationship between mass and
main-sequence lifetime drawn from the analytic model of Adams (2008) nor-
malised to tms = 10 Gyr at Solar mass; this broadly consistent with Portinari
et al. (1998). Of particular importance are the maximum and minimum
stellar masses. To be consistent with the IMF used to calibrate the eagle
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simulations, we choose the minimum and maximum stellar masses to be:
Mmin = 0.1 M⊙ and Mmax = 100 M⊙. The resulting main-sequence fraction
is shown in Figure 4.10.

Folding in the star formation (birth) rate density ( Ûρstar), we calculate the
global observer creation rate. A stellar population that formed at time ∆t

before the present time t provides a relative contribution of fms(∆t) to the
observer creation rate,

d2nobs
dt dV

(t) ∝
∫ t

0
Ûρstar(t′) fms(t − t′) dt′ . (4.21)

Note that, since the time at which observers exist is irrelevant to the mass-
weighted measure, the“Star formation + fixed delay” and “Star formation +
main-sequence lifetime” models give identical results. This is not the case
for the causal patch and causal diamond measures — a later observer at the
same comoving position may be outside the patch/diamond, and so does not
contribute to the integral in Equation (4.15).

3. Star formation + metals: The raw materials for life are the product of stellar-
nucleosynthesis, and in particular metals that have been ejected from stars
and returned to the interstellar medium. Planets, it is believed, form from
the debris disks around newly-formed stars, and stars with higher metallicity
are known to be more likely to have giant planets (Gonzalez, 1997; Fischer
& Valenti, 2005). However, this result is less clear for smaller rocky planets
(Buchhave & Latham, 2015; Wang & Fischer, 2015). There must, of course,
be some metallicity dependence, since the probability of a rocky planet form-
ing in a zero-metallicity debris disk is zero. We make the simple assumption
that the probability of a rocky planet forming around a star is proportional
to the metallicity of the star-forming gas, ZSF, so that the observer creation
rate at time t is proportional to the number of planets that exist around main-
sequence stars,

d2nobs
dt dV

(t) ∝
∫ t

0
ZSF(t′) Ûρstar(t′) fms(t − t′) dt′ . (4.22)

where ZSF(t′) is the metallicity of star-forming gas at at time t′.
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Fig. 4.10.: The fraction of stars by number that are still on the main sequence of their
evolution after time ∆t. We assume a Chabrier (2003) IMF, and a relationship
between mass and main-sequence lifetime from Adams (2008), normalised to
tms = 10 Gyr at Solar mass. To be consistent with the IMF used to calibrate the
eagle simulations, we choose the minimum and maximum stellar masses to be:
Mmin = 0.1 M⊙ and Mmax = 100 M⊙.
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4.5.3 Extrapolation

The integral in Equations 4.15 and 4.16 is over all of cosmic time, but our simulations
only extend to a finite time. They capture the initial burst of star formation in our
universe, and so are converging thanks to the isolation of haloes by the acceleration
of the expansion of space. There will, however, be a trickle of star formation into the
future in our galaxies, which our simulations do not capture. Looking at the decline
of star formation in the Λ ≥ Λ0 × 10 simulations, we extrapolate our simulations
using an exponential decrease in star formation (rate) efficiency (SFE) with time
[SFE = a exp(−bt)], for constants a and b that are derived from the final few Gyr of
the simulation. For our simulations, ZSF(t) has converged; extrapolating by fitting
an exponential makes only a negligible difference.

We also use theΛ = 0 simulation to calculate the relevant quantities for 0 < Λ < Λ0.
For Λ < Λ0 × 0.1, the time at which the universe begins to accelerate is greater
than the limits of our simulation, at which time the star formation rate efficiency has
peaked and is declining. By using the Λ = 0 simulation, there will be no difference
in the observer model, but there will be a difference in the causal patch and causal
diamond because these depend on Λ. Note that the both of these measures diverge
for Λ = 0, so we only consider universes with Λ > 0.

As noted in Section 4.2.4, in the far future of our simulations, a variety of very
slow (on Gyr timescales) processes may become relevant but are not captured by
our simulations. In particular, in the distant future of the Λ = 0 cosmology, the
growth function grows without limit and it is likely that close to 100% of the mass
in the universe is found in galaxies. However, in an old, extremely diffuse galactic
disk, baryons may be more likely to accrete directly onto dead stellar remnants
and black holes than collapse into a fresh star. What is the long-term fate of the
interstellar medium in our isolated galaxies? Further modelling may be able to
derive the expected fraction of baryons that will form stars into the distant future,
and in particular, stars that are likely to host planets. Here, in the absence of such a
model, we will simply extrapolate the simulations.

4.5.4 Predicting the cosmological constant

Figure 4.11 shows the integrand in the numerator of Equation 4.15 or 4.16, which
combines the observer creation rate, the measure, and the chosen comoving volume
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(if needed). We will call this the ‘relative observer creation rate’. The value of Λ
is shown in the legend in the top left panel. The first row shows the mass-weighted
measure, derived directly from the star formation rate efficiencies in Figure 4.5 and
metal fraction in Figure 4.6. The second row shows the causal patch measure, and
the third row shows the causal diamond measure.

The columns show the different observer models. The first column shows the star
formation + fixed delay model, the second column shows the star formation + main-
sequence lifetime model, and the third column shows the star formation + metals
model.

The first row (mass weighted) shows most directly the effects of the different observer
models. The grey Λ0 × 0.01 model is indistinguishable from the Λ0 × 0.1 model
because they both use the results of the Λ = 0 simulation, as described above. In
the second column, we can see the effect of folding in the main-sequence stellar
lifetime. The decline in the observer creation rate follows the decline in the main-
sequence fraction, as the initial burst of stars formed in the first 10 Gyr after the big
bang grow old. Because of the abundance of small, long-lived stars, observers are
created even at very late times in the universe (Loeb et al., 2016). The addition of
metal-weighting further diminishes observer creation in large Λ universes, as they
have fewer stars and fewer bound metals to make planets around their stars.

The second and third rows show the causal patch and causal diamond measures. Note
that the Λ0 × 0.01 and Λ0 × 0.1 curves are distinguishable because of the difference
in the comoving volume V(t;Λ). For each observer model, these measures show
similar trends. The smaller comoving volume at earlier times in the causal diamond
moves the peak to slightly later times, but otherwise the two measures are very
similar. The main effect of these measures is to decrease the relative observer
creation rate exponentially once the expansion of the universe begins to accelerate.
This somewhat cancels out the effect of the longer main-sequence lifetimes in the
second and third observer models.
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Fig. 4.11.: The ‘relative observer creation rate’, which is the integrand of Equation 4.15 or 4.16. The value of Λ is shown in the legend in the top left panel.
The first row shows the mass-weighted measure, derived directly from the star formation rate efficiencies in Figure 4.5 and metal fraction in Figure
4.6. The second row shows the causal patch measure, and the third row shows the causal diamond measure. The columns show the different
observer models. The first column shows the star formation + fixed delay model, the second column shows the star formation + main-sequence
lifetime model, and the third column shows the star formation + metals model.
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Table 4.3.: Median and “one-sigma” (68%) probability limits of the cosmological constant
for the three multiverse measures and three observer models. For the causal
patch and causal diamond measures, the value in brackets shows the median
value of the cosmological constant using the observer creation rate (per unit
mass) from the Λ = 0 simulation. This illustrates the effect of these measures.

median Λ/Λ0 ± 68% Mass weighted Causal patch Causal diamond

SF + delay 59+135
−49 0.34+0.62

−0.3 (0.37) 0.65+2.5
−0.52 (0.68)

SF + lifetime 59+135
−49 0.089+0.76

−0.08 (0.095) 0.25+0.71
−0.24 (0.28)

SF + metals 45+118
−37 0.07+0.71

−0.066 (0.072) 0.17+0.7
−0.16 (0.18)

Figure 4.12 shows the relative probabilities p(Λ|MB) from Equation 4.15 or 4.16;
each line integrates a panel of Figure 4.11 over cosmic time. We plot the probability
per unit log Λ, and normalise by setting the maximum value to one, rather than
integrating over the limited range of Λ. Note that in the left plot (mass weighted
measure), the ‘SF + delay’ and ‘SF + lifetime’ curves are indistinguishable — the
integral over cosmic time is not affected by the 5 Gyr delay, and cancels out the
effect of fms. For the range of Λ we consider, the median and “one-sigma” (68%)
values are shown in Table 4.3.

As we have noted previously, the decline in star formation in our universe after
t = 3.5 Gyr is not due to the effect of the cosmological constant (Salcido et al., 2018).
Universes without a cosmological constant show a similar decline. The initial burst
of star-formation in the universe, then, is not dramatically affected by moderate
increases in Λ. Only for Λ ≳ Λ0 × 30 do we see a significant effect on the total
number of stars in the universe. Thus, in the mass-weighted measure, the probability
distribution for Λ is reasonably flat to large values (∼ Λ0 × 30). The median value
in this case is 60 times larger than the observed value. Adding metal-weighting to
the observer model increases the suppressing effects of Λ, but the median value is
still ∼45 times larger than the observed value. While these distributions are broad,
most of the probability is at large values of Λ. Table 4.4 shows the the probability
that the cosmological constant observed by a typical observer is less than or equal to
the value in our universe (Λ0) for the three multiverse measures and three observer
models. For the mass weighted measure, this probability is small (2%).
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Fig. 4.12.: The relative probabilities per unit log Λ from Equation 4.15 or 4.16; each line integrates a panel of Figure 4.11 over cosmic time. The left panel
shows the mass weighted measure the middle panel shows the causal patch measure, and the right panel shows the causal diamond measure.
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Note that the results above are for the parameter range Λ0 × 0.01 < Λ < Λ0 × 300.
The results for small values of Λ have converged, but increasing the upper limit
increases the median value. If we extrapolate the probability distribution to larger
values of Λ, we find that the median value for Λ is ∼200 Λ0 for the mass-weighted
measure.

For the causal patch and causal diamond measures, the fact that the comoving vol-
ume in the measure decreases with time suppresses large values of the cosmological
constant, independently of the effect on the observer creation rate d2nobs/ dt dV .
This leads to the ≳ 50% probabilities for small values of the cosmological constant
(Table 4.4). To illustrate the effect of the measure, we calculate the median value of
the cosmological constant using the observer creation rate (per unit mass) from the
Λ = 0 simulation. The results are shown in brackets in Table 4.3. These values are
consistently larger than the actual median value, but only by a small factor. Thus,
the causal patch and causal diamond measures are playing the dominant role in
setting the expected value of the cosmological constant. The predicted value of
Λ is set by the time at which the star formation efficiency peaks in universes with
small values of Λ, which is set by other cosmological and physical parameters. The
decline of star formation efficiency with Λ plays a secondary role.

Our results are broadly consistent with the analytic model of Bousso & Leichenauer
(2010), who find that for fixed values of the primordial inhomogeneity Q and spatial
curvature, and for Λ > 0, the causal patch and causal diamond measures predict a
value of 0.1 ≲ Λ/Λ0 ≲ 10, depending on the model for observers. As noted there,
the suppression of structure formation by accelerating expansion is only important
for a cosmological constant of order Λ0 × 100. Thus, the agreement between
our calculations is due to the “geometric” effects of the causal patch and causal

Table 4.4.: The probability that the cosmological constant observed by a typical observer
is less than or equal to the value in our universe (Λ0) for the three multiverse
measures and three observer models. For the causal patch and causal diamond
measures, these probabilities are greater than 50%, but the value for the mass-
weighted measure is small.

Prob Λ ≤ Λ0 Mass weighted Causal patch Causal diamond
SF + delay 1.9% 86% 73%
SF + lifetime 1.9% 90% 86%
SF + metals 2.5% 93% 90%
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diamond measures; the astrophysics of galaxy formation does not prefer values of
the cosmological constant less than Λ0 × 100.

4.6 Conclusions

Models of the very early universe, including inflationary models, are argued to
produce varying universe domains with different values of fundamental constants
and cosmic parameters. In such models, predicting observations necessarily in-
volves understanding where observers are created in the multiverse. In particular,
this anthropic approach has been used to predict the value of the cosmological
constant.

Using the cosmological hydrodynamical simulation code from the eagle collabora-
tion, we have investigated the effect of the cosmological constant on the formation
of galaxies and stars. This SPH code follows the gravitational collapse of matter in
an expanding universe, incorporating sub-grid recipes for radiative cooling for 11
elements, star formation, stellar mass loss, energy feedback from star formation, gas
accretion onto and mergers of supermassive black holes, and AGN feedback. We
simulate universes with values of the cosmological constant ranging from Λ = 0 to
Λ0 × 300, where Λ0 is the values of the cosmological constant in our Universe. For
larger values of the cosmological constant, the time at which the expansion of the
universe begins to accelerate declines as tΛ ∝ (Λ/Λ0)−1/2.

Our Universe shows a peak in the global star formation rate at t = 3.5 Gyr, coming
after the peak in the halo matter accretion rate at t = 1 Gyr. By the time the expansion
of our Universe begins to accelerate (at t = 7.6 Gyr), the global halo mass accretion
rate has dropped to about 10% of its earlier maximum, and most of the mass that
will ever accrete into haloes has already accreted. As a result, increases in Λ of
even an order of magnitude have a small effect on the star formation efficiency of
the universe.

One interesting effect that affects the raw materials of life is stellar and AGN
feedback. In our Universe, these processes slow star formation by sending baryons
back into the outer parts of the halo and the local intergalactic medium. This material
is largely recycled into the galaxy after ∼ 1 Gyr, and forms a later generation of stars.
But in universes with Λ ≳ Λ0 × 10, much of this material is lost to the intergalactic
medium, carried away by the accelerating expansion of the universe rather than
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reaccreting. The net baryon accretion rate becomes negative as more material is
lost to galactic winds than is accreted/reaccreted.

In universes with larger values of Λ, galaxies quickly become isolated from their
cosmic surroundings. The familiar ecosystem of galaxies in our universe, which
balance accretion, major and minor merging, galactic cannibalism, star formation,
galactic winds, and reaccretion, is reduced to a closed box, as galaxies become
island universes, surrounded by vacuum and isolated from the rest of the matter
in the universes. They burn through their finite matter supply, forming stars at a
decreasing rate.

We use our simulations to predict the observed value of the cosmological constant,
given a measure of the mulitiverse. We considered three simple but plausible
models for where we would expect observers to be created in our simulations, and
three measures of the multiverse.

In the mass-weighted measure, with a uniform probability that a given mass element
in the universe will inhabit a region with a given value of the cosmological constant,
the predicted size of Λ is determined by the decline in the star formation efficiency
of the universe. For the reasons described above, this is relatively flat as a function
of Λ, and so the predicted (median) value is 50 − 60 times larger than the observed
value. The probability of observing a value as small as our cosmological constant
Λ0 is ∼ 2%. In this case, an anthropic argument for value of Λ, while doing much
better than the famous 120 orders-of-magnitude discrepancy from quantum field
theory, is not a particularly successful prediction.

For the causal patch and causal diamond measures, which consider a subset of the
universe that depends on Λ, the predicted value is within a factor of a few of the
observed value. But, this has very little to do with the decline in the star formation
efficiency (and so, presumably, observer creation rate) with Λ. It is a result of the
rapid decrease in the size of the causal patch/diamond with increasing cosmological
constant.

We stress again: this is no reason to prefer the causal patch and causal diamond
measures. This is not an observational test of these measures. A specific multiverse
model must justify its measure on its own terms, since the freedom to choose a
measure is simply the freedom to choose predictions ad hoc.
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We conclude that the impact of the cosmological constant on the formation of
structure in the universe does not straightforwardly explain the small observed
value of Λ. The prediction depends crucially on the measure. If the observer
creation rate had been sufficiently sharply peaked at values near Λ0, the measure
would not much matter. But in fact, in the absence of a multiverse model that can
convincingly justify a measure, it is not clear whether the anthropic prediction Λ is
successful. Future work will consider varying more cosmological and fundamental
parameters, to shed more light on which kind of universe is to be expected from a
multiverse.
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5The UNIVERSEAPP:
A mathematical model of galaxy
formation

In this chapter, we introduce the UniverseApp (the Universe on A Piece of Paper),
an analytic model that connects the growth of dark matter haloes in a cosmological
background, with the build up of stellar mass within these haloes. The model identi-
fies the physical processes that drive the Galaxy-Halo co-evolution through cosmic
time. Galaxy formation is revealed as a simple process where the instantaneous star
formation efficiency within halos is only a function of their virial temperature. De-
spite its simplicity, the model reproduces self-consistently the shape and evolution
of the cosmic star formation rate density, the specific star formation rate of galaxies,
and the galaxy stellar mass function, both at the present time and at high redshift.

This chapter is work currently in progress, and will be submitted soon in the form
of a paper to Monthly Notices of the Royal Astronomical Society (MNRAS).

5.1 Introduction

The galaxy-halo connection and co-evolution is perhaps one of the most fundamental
features (or predictions) of every galaxy formation model. In our current paradigm
of galaxy formation, every galaxy forms within a dark matter halo. However,
understanding the relationship between a dark matter halo and the galaxies it hosts
is not a trivial exercise due to our lack of understanding of the complex baryonic
process involved.

In a standard Lambda Cold Dark Matter (ΛCDM) cosmology, gravitationally bound
dark matter structures build up hierarchically, primarily by the smooth accretion
of surrounding matter, and by the continuous merging of smaller structures (Qu
et al., 2017). The formation and evolution of galaxies within these haloes is thought
to be a highly self-regulated process, in which galaxies tend to evolve towards a
quasi-equilibrium state where the gas outflow rate balances the difference between
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the gas inflow rate and the rate at which gas is locked up in stars and black holes
(BHs) (e.g. White & Frenk, 1991; Finlator & Davé, 2008; Bouché et al., 2010;
Schaye et al., 2010; Davé et al., 2012). Consequently, galaxy formation is thought
to be determined on the one hand by the formation and growth of dark matter haloes,
which depends solely on the cosmological background, and on the other hand, by
the regulation of the gas content in these haloes, that depends on complex baryonic
processes such as radiative cooling, stellar mass loss, and feedback from stars and
accreting BHs. This co-evolution process results in a tight correlation between the
properties of galaxies and their dark matter haloes (see Wechsler & Tinker 2018 for
a review).

In principle, galaxy formation modelling should aim to reproduce the relation
between stellar mass and halo mass inferred from observations. However probing
the dark matter distribution and its evolution represents an observational challenge.
Direct observational probes include galaxy-galaxy lensing (e.g. Brainerd & Specian,
2003; Hoekstra et al., 2004; Hudson et al., 2015) and the kinematics of satellite
galaxies (e.g. Zaritsky et al., 1993; van den Bosch et al., 2004; Norberg et al.,
2008). However, direct observation techniques are limited to low redshifts (z < 1),
due to the difficulty of resolving individual distant galaxies. Indirect methods
include, for example, comparing the abundance and clustering properties of galaxy
samples with predictions from a phenomenological halo models (e.g. Neyman &
Scott, 1952; Berlind & Weinberg, 2002; Cooray & Sheth, 2002; Cowley et al.,
2018). This method however, depends heavily on the underlying modelling and
assumptions, for example, the bias with which halos trace the underlying matter
distribution.

From the theoretical point of view, the formation and evolution of dark matter
haloes is considered a “solved problem” (see however, van den Bosch et al. 2018).
Using extremely accurate measurements of the density perturbations imprinted onto
the cosmic microwave background radiation fluctuations as initial conditions (e.g.
Planck Collaboration et al., 2014), many different groups have produced convergent
results using large cosmological N-body simulations (e.g Springel et al., 2005b;
Klypin et al., 2011; Trujillo-Gomez et al., 2011; Angulo et al., 2012; Fosalba et al.,
2015).

On the other hand, different approaches have been used to model the more complex
baryonic physics of galaxy formation. The most widely used technique combines
the evolution of dark matter with either a semi-analytical (e.g. Cole et al., 1994;
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Somerville et al., 2008; Henriques et al., 2015; Lacey et al., 2016) or hydrodynamical
(e.g. Schaye et al., 2015; Davé et al., 2016; Dubois et al., 2016; Pillepich et al., 2018)
treatment of the baryonic processes involved. A key ingredient in both methods that
has led us to a better understating of the physics of galaxy formation is the use of
physically motivated models for feedback processes (see Somerville & Davé 2015;
Naab & Ostriker 2017 for a comprehensive review).

Another useful method, known as empirical modelling, takes the advantage of the
vast number of observational data sets from galaxy surveys and relate statistical
galaxy scaling relations to the evolution of dark matter haloes without assuming
strong physical priors (e.g. Behroozi et al., 2013b; Moster et al., 2013; Rodríguez-
Puebla et al., 2016; Behroozi et al., 2018; Moster et al., 2018). This “simple”, yet
powerful, approach could reveal undiscovered properties of baryonic physics (e.g.
Behroozi et al., 2013a).

While all of these approaches have been very productive, the increasing complexity
of the models make it difficult to pinpoint and understand the fundamental physics
driving the results. In this chapter, we examine this issue in detail. We developed
the UniverseApp, a fully analytic model of galaxy formation derived from a simple
relation of the star formation to halo growth rate that disentangle the role of cos-
mology from the role of astrophysics in the galaxy formation process. Our model
restricts the role of baryonic astrophysics to setting the relation between galaxies
and their halos. With this simple relation, we can use an analytic approximation
of the growth of dark matter halos to predict galaxy properties. By providing a
set of analytic equations, the model can be easily “inverted” and allows for rapid
experiments to be conducted, providing a great tool to explore the differential effects
of baryonic physics, averaged over galaxy scales. Despite its simplicity, the model
reproduces self-consistently the shape and evolution of the cosmic star formation
rate (SFR) density, the specific star formation rate (sSFR) of galaxies, and the galaxy
stellar mass function (GSMF), both at the present time and at high redshift.

As the UniverseApp model is highly simplified model, we compare our results to
the numerical hydrodynamic simulations, the eagle project. The eagle simula-
tion suite1 (Schaye et al., 2015; Crain et al., 2015) consists of a large number of
cosmological hydrodynamical simulations that include different resolutions, sim-
ulated volumes and physical models. These simulations use advanced smoothed
particle hydrodynamics (SPH) and state-of-the-art subgrid models to capture the

1http://www.eaglesim.org

5.1 Introduction 114

http://www.eaglesim.org


unresolved physics. A complete description of the code and physical parameters
used can be found in Schaye et al. (2015). Here we compare to the eagle reference
simulations that used cosmological parameters inferred by the Planck Collaboration
et al. (2014). The calibration strategy is described in detail by Crain et al. (2015)
who also presented additional simulations to demonstrate the effect of parameter
variations.

Throughout this chapter, we adopt a flat,ΛCDM cosmology with parameters (Ωm =

0.307, ΩΛ = 0.693, h = 0.6777, σ8 = 0.8288, ns = 0.9611) consistent with the
Planck Collaboration et al. 2014 results.

The layout of this chapter is as follows: In Section 5.2 we introduce the UniverseApp
model. We present two models of instantaneous star formation efficiency: A time-
independent efficiency which depends only on halo mass. And a time-evolving
efficiency that depends on the virial temperature of the halo. In Section 5.3, we
explore the effect of the different efficiency parameters in the galaxy formation
outputs. Namely, the cosmic star formation rate density, the specific star formation
rate of galaxies, and the galaxy stellar mass function. In Section 5.4 we compare
the results from the UniverseApp to different datasets of observational data. We
also discuss the need for a time-evolving efficiency in order to reproduce the rapid
evolution of the galaxy stellar mass function. We discuss the limitations of our
model, and conclude in Section 6.5.

5.2 An analytic model of galaxy formation

5.2.1 The instantaneous star formation efficiency

The formation, evolution and abundance of dark matter haloes can be predicted
accurately when the cosmology and dark matter model (i.e. cold, warm, self-
interacting, etc.) is known. However, the galaxy content of haloes is very sensitive
to the baryonic processes involved in the formation of galaxies. One approach of
galaxy formation modelling is to aim to reproduce the relation between stellar mass
and halo mass inferred from observations. If this is achieved, other fundamental
observables should be reproduced as well.
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Here, we assume an instantaneous star formation efficiency which captures all the
physical processes involved in the conversions of gas into stars, i.e. cooling, star
formation law, feedback mechanisms, etc. We can relate the galaxy SFR to the host
halo mass accretion rate as,

ÛM∗(Mh) = ϵ∗ ÛMh, (5.1)

where the instantaneous star formation efficiency, ϵ∗, could be a complex function of
many parameters. We will consider two models of ϵ∗, a time-independent efficiency
which depends only on halo mass, and a time-evolving efficiency that depends on
the virial temperature of the halo.

• Halo mass-dependent efficiency

In order to model ϵ∗, we first assume a time-independent relation of the galaxy
specific SFR to the host halo specific mass accretion rate (e.g. Rodríguez-
Puebla et al., 2016; Salcido et al., 2018; Tacchella et al., 2018). We can write
Eq. (5.1) as,

ÛM∗(Mh) =
(
dlog10M∗
dlog10Mh

)
M∗
Mh

ÛMh

= ε(Mh)
M∗
Mh

ÛMh

= ϵ∗(Mh) ÛMh.

(5.2)

where, ε(Mh) is the logarithmic slope of the stellar to halo mass relation
(SHMR). Here, ϵ∗(Mh) is completely determined by the SHMR. Using
abundance matching techniques to infer the functional form of ϵ∗(Mh) (e.g.
Behroozi et al., 2013b; Rodríguez-Puebla et al., 2016), it has been estimated to
peak at masses similar to Milky-Way sized halos (∼1012 M⊙) and fall steeply
for higher and lower masses. We model ϵ∗(Mh) using the double power law
parametrisation proposed by Moster et al. 2010,

ϵ∗(Mh) = 2ϵN

[(
Mh

Mcrit

)−α
+

(
Mh

Mcrit

) β]−1

, (5.3)

where ϵN is the normalisation parameter, α and β determine the slope of the
efficiency at low and high masses respectively, and Mcrit locates the transition,
or peak efficiency. Figure 5.1 shows an illustration of the model parameters.
To match observational data, the values of α and β are typically positive, i.e.
at low masses, SFR is suppressed because of the efficiency of feedback from
star formation, at higher masses the cooling of the inflowing gas is suppressed
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Fig. 5.1.: Parametrisation of the instantaneous star formation efficiency ϵ∗(Mh) provided in
Eq. (5.3). ϵN is the normalisation parameter, α and β determine the slope of the
efficiency at low and high masses respectively, and Mcrit locates the transition, or
peak efficiency.

by heating from BHs (e.g. White & Frenk, 1991; Benson, 2012; Bower et al.,
2006; Haas et al., 2013).

As we will show in Section 5.3, a halo mass-dependent efficiency turns out
the be a good approximation of the SFR of galaxies because most of the
stellar mass builds up when the mass of the halo has roughly its current value.
However, a time-independent efficiency model significantly under predicts
the abundance galaxies at high redshifts, which hints to the need of a time-
evolving efficiency model. “Traditional” empirical modelling (e.g Moster
et al., 2018; Behroozi et al., 2018) would relax the physical priors and let, in
this case, the four efficiency parameters in the model to evolve freely in time.
Instead, we propose a physically motivated efficiency model that naturally
evolves with cosmic time.

• Virial temperature-dependent efficiency
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Cooling and heating processes (which dictate the star formation efficiency
of a cloud of gas), are most clearly described by entropy; cooling always
reduces the local entropy of a system, whilst heating always raises it. On the
other hand, idealised gravitational collapse is assumed to be adiabatic (i.e.
entropy is conserved). Assuming a uniform density distribution, the entropy
configuration of a gravitationally collapsed halo is completely characterised
by its virial temperature. We present an instantaneous star formation effi-
ciency model characterised by a time-independent critical virial temperature
Tcrit. That is, there exists a critical halo virial temperature at which there is a
transition from where star formation driven outflows get hotter than the virial
temperature of the halo and can buoyantly escape (i.e. supernovae energy, or
entropy, is much greater than the halo binding energy), to where outflows are
no longer buoyant, and gas stalls inside the halo triggering star formation and
BH growth.

We model the virial temperature-dependent instantaneous star formation ef-
ficiency as a function of the halo’s virial temperature using the same double
power law parametrisation as in Eq. (5.3),

ϵ∗(Tvir) = 2ϵN

[(
Tvir
Tcrit

)−α
+

(
Tvir
Tcrit

) β]−1

, (5.4)

We will further discuss this model in Section 5.4.1, and show that it reproduces
the observational data both at the present time and at high redshift.

5.2.2 Halo definition

Dark matter haloes are typically identified by growing a sphere outwards from the
potential minimum of the dark matter halo out to a radius where the mean interior
density equals a fixed multiple of the critical or mean density of the Universe,
causing an artificial ‘pseudo-evolution’ of dark matter halos by changing the radius
of the halo (Diemer et al., 2013). Star formation, however, is governed by the
amount of gas that enters these halos and reaches their central regions. Wetzel &
Nagai 2015 show that the growth of dark matter haloes is subject to this ‘pseudo-
evolution’, whereas the accretion of gas is not. Because gas is able to cool radiatively,
it decouples from dark matter, tracking the accretion rate near a radius of R200ρ̄, the
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radius within which the mean density is 200 times the mean density of the universe,
ρ̄. As we try to connect the accretion of dark matter haloes to star formation, we
define halo masses as the total mass within R200ρ̄,

Mh = 200
4π
3

R3
200ρ̄ ρ̄, (5.5)

where ρ̄(t) = ρ̂0a(t)−3.

We assume that during gravitational collapse, the gas experience strong shocks and
thermalises its kinetic infall energy to the virial temperature of the halo, given by,

Tvir =
µmpGMh

5kBrh(t)
, (5.6)

where we have assumed a uniform cloud of monatomic gas, Mh is the mass of
the halo, µ is the mean molecular weight of the gas in the halo, which we have
assumed µ ≈ 0.6 for a fully ionized plasma of primordial composition, kB is the the
Boltzmann constant, mp the proton mass, and rh(t) is the virial radius of the halo,
defined in Eq. (5.5). For a given halo mass, the radius of the halo rh(t) changes with
time as the mean density of the Universe evolves.

5.2.3 The UniverseApp model

We now present the main components of the fully analytical UniverseApp model,
which are summarised in the schematic diagram of Fig. 5.2. The derivation of the
equations presented here can be found in Appendix A.

By using the Taylor expansion solution of the Friedmann equation introduced in
Salcido et al. 2018, the formation and evolution of dark matter haloes are fully
described analytically by the components in the blue block of Fig. 5.2, given that
the cosmological parameters ρ̂0

2,Λ, H0 and the shape of the matter power-spectrum,
parametrised by the variance of the smoothed density field S = σ2(Mh), which we
approximate3 as a power law S ≈ S0M−γ

h with slope γ, are known. All astrophysical
processes enter into the model by the instantaneous star formation efficiency ϵ∗
(shown in green), which is fully described by the SHMR in the four free parameters
Mcrit or Tcrit, ϵN, α and β in Eqs. (5.3) and (5.4).

2We use a hat notation (ˆ) to denote quantities in our observable Universe.
3Approximating the scale dependence of the density field as a power-law around 1012 M⊙ haloes,

Correa et al. 2015 find S0 ≈ 104.2, γ ≈ 0.3.
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Fig. 5.2.: A schematic diagram of the UniverseApp analytic model of galaxy formation.
The blue block components depend only on cosmology. By using the Taylor
expansion solution to the Friedmann equations in (Salcido et al., 2018), all the
cosmological components can be calculated analytically for every cosmological
parameters ρ0, Λ, H0 and the shape of the power-spectrum parametrised by S and
γ. All astrophysical processes (green) enter into the model by the instantaneous
star formation efficiency ϵ∗, which is fully described by the four free parameters
Mcrit or Tcrit, ϵN, α and β in Eq. (5.3) or Eq. (5.4). The galaxy formation outputs
are summarised in the orange block.
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• Halo mass history

The mass of a halo as a function of time is given by,

Mh(t) =
−

424.958γ
√

S0tm4/3
©«t−2/3

0

(
1 + 0.1590

(
t0
tΛ

)2
− 0.0112

(
t0
tΛ

)4
)

−t−2/3
(
1 + 0.1590

(
t

tΛ

)2
− 0.0112

(
t

tΛ

)4
)ª®¬ + M−γ/2

0


−2/γ

,

(5.7)

where t0 = 13.8 Gyr, is the present cosmic time, tm =
√

3/8πG ρ̂0, tΛ =
√

3/Λc2,
ρ̂0 is the matter density of our Universe at the present time, and Λ is the value of
the cosmological constant. Substituting the numerical values for the cosmological
parameters for a standard ΛCDM universe as inferred by the Planck Collaboration
et al. (2014) in Eq. (5.7), i.e. tm=26.039, tΛ=17.3317, γ=0.3, t0=13.8 and S0=104.2,
Fig. 5.3 shows the individual mass histories for halos of a given mass M0 at the
present cosmic time (represented by the colour coding). An Einstein-de Sitter
universe is shown in dashed lines.

• The galaxy star formation rate

The stellar evolution of individual halos through cosmic time is given by the integral
of,

dM∗
dt
= ϵ∗

[
1

Mh

dMh

dt

]
Mh

= ϵ∗
566.61

√
S0 t5/3t4/3

m

(
1 − 0.3182

(
t

tΛ

)2
+ 0.0563

(
t

tΛ

)4
)

Mh(t)(
γ
2+1),

(5.8)

where ϵ∗ is given by Eq. (5.3) or Eq. (5.4), and Mh(t) by Eq. (5.7).

• The galaxy stellar mass function
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Fig. 5.3.: Average halo mass as a function of cosmic time derived in Eq. (5.7). A model
for the cosmological parameters for a standardΛCDM universe as inferred by the
Planck Collaboration et al. (2014) is show with solid lines. An Einstein-de Sitter
universe is shown in dashed lines. Colour coding represents different halo mass
at the present time M0 = Mh(t0).

5.2 An analytic model of galaxy formation 122



The GSMF could be obtained by convolving the mass function of dark matter haloes
and the SHMR,

ϕ(M∗) =
dN

dlog10M∗(Mh)
=

dN
dlog10Mh

(
dlog10M∗
dlog10Mh

)−1

=
dN

dlog10Mh
ε(Mh)−1,

(5.9)

where, ε(Mh) can be thought as a galaxy formation efficiency of haloes of mass Mh,
and can be obtained by the integral of Eq. (5.8).

• The cosmic star formation rate density

The cosmic SFR density is given by the integral of,

d Ûρ∗
dMh

= ϵ∗

[
1

Mh

dMh

dt

]
Mh

dn(Mh, t)
dMh

= ϵ∗
46230.9ρ̂0

MhSt7/3t8/3
m

(
1 − 0.1590

(
t

tΛ

)2
− 0.0056

(
t

tΛ

)4
)

× exp
−

232382
S t4/3t8/3

m

(
1 + 0.3182

(
t

tΛ

)2
+ 0.0028

(
t

tΛ

)4
) .

(5.10)

Here again, ϵ∗ could be modeled using either Eq. (5.3) or Eq. (5.4). The differential
form of Eq. (5.10) explicitly shows the contribution from haloes of different masses
Mh, to the total cosmic SFR density.

Equations (5.7) to (5.10), together with a model of the instantaneous star formation
efficiency, Eq. (5.3) or Eq. (5.4), provide a full mathematical framework to explore
the effects of cosmology and baryonic physics on galaxy formation. In the next
section, we will explore the effect of the different efficiency parameters on the
galaxy SFR, GSMF and the cosmic SFR density.

5.3 The impact of the instantaneous star
formation efficiency

We now use the UniverseApp to explore the effect of the different efficiency
parameters in the galaxy formation outputs in the orange block of Fig. 5.2. It is
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Table 5.1.: Instantaneous star formation efficiency parameters for the six idealised models.
ϵN Mcrit α β

Fiducial 0.02 1012 1 1
Constant 0.02 1012 0 0
No AGN 0.02 1012 1 0
No SN 0.02 1012 0 1
Mcrit = 1010 0.02 1010 1 1
Mcrit = 1014 0.02 1014 1 1

common to characterise galaxy properties over halo masses, and for simplicity, in
this section we will only use a halo mass-dependent star formation efficiency model
(i.e. we will model ϵ∗ using Eq. (5.3)).

It has been estimated that the SHMR peaks at masses similar to Milky-Way sized
halos (∼1012 M⊙). Typically, at low masses, the SFR is suppressed because of the
efficiency of stellar feedback. On the other hand, at higher masses the cooling of
the inflowing gas is suppressed by heating from supermassive BHs (e.g. White &
Frenk, 1991; Benson, 2012; Bower et al., 2006). The “Fiducial” model captures
this behaviour with both α and β being positive and equal to 1.

We consider five variants to explore the physics of galaxy formation. An extreme
idealised case label as “Constant”, describes a model where a fixed fraction of the
baryon budget is turned into stars, regardless of the halo mass. The “No AGN”
model describes a scenario where the efficiency of feedback process is weak for
massive objects. Physically, this could be thought as a model where feedback from
active galactic nuclei is inefficient. The “No SN” model describes a scenario where
the efficiency of feedback process is weak in small haloes. Physically, this could be
thought as a model where feedback from supernovae is inefficient4. Two additional
models labelled “Mcrit = 1010” and “Mcrit = 1014” explore the effect of changing
the critical, or transition, halo mass. We show in Fig. 5.4 the instantaneous star
formation efficiency for the six models, and their parameters are summarised in
Table 5.1.

4This model would also require that accretion onto BHs in low mass galaxies is suppressed (see
Dubois et al., 2016; Bower et al., 2017; Habouzit et al., 2017; McAlpine et al., 2018)
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Fig. 5.4.: The instantaneous star formation efficiency ϵ∗ as a function of halo mass for the
six models described in Table 5.1.

5.3.1 The build up of stellar mass

We begin by exploring the effect of the efficiency parameters in star formation in
individual galaxies. Using the six efficiency models, the build up of stellar mass in
individual haloes can be calculated self-consistently by integrating Eq. (5.8).

Fig. 5.5 shows an example of the evolution of the stellar mass in a halo of mass
M0 = 1013M⊙ at the present time for the six efficiency models. It can be seen in the
figure, that for the constant efficiency model, the stellar mass inside the halo grows
steadily with time, and starts to slow down only at late times due to the cosmic
expansion. For the fiducial model, the build up of stellar mass is faster (steeper
slope). Once the critical halo mass is reached (Mcrit = 1012M⊙, corresponding
to M∗ ≈ 1010M⊙ for this model), the stellar mass plateaus. The No AGN model
has a similar behaviour at early times, but once the critical halo mass is reached,
star formation does not slow down and the halo reaches a higher stellar mass. On
the other hand, the No SN model produces much more stellar mass at early times,
but once the critical halo mass is reached, star formation slows down, and the halo
reaches a similar final stellar mass as the fiducial model. The two models with
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Fig. 5.5.: An example of the evolution of the stellar mass in a halo of mass M0 = 1013M⊙ at
the present time. The different colours represent the different efficiency models.

different Mcrit present a similar behaviour to the fiducial model, i.e. once the halo
reaches the critical mass, it hardly produces any additional stellar mass.

5.3.2 The stellar mass function

As shown in the previous section, we can use Eq. (5.8) to calculate the stellar mass
of any halo as a function of time. This allows us to obtain the SHMR and convolve
it with the halo mass function in Eq. (A.15) to calculate the GSMF.

Fig. 5.6 shows the GSMF at the present time for the six efficiency models. As it
has been pointed out before (e.g Bower et al., 2006; Mutch et al., 2013), if feedback
process are inefficient both at the low mass and high mass end, i.e. a constant
fraction of the baryon budget is turned into stars in every halo, then, the GSMF
does not exhibit the characteristic knee obtained in observations (constant model
shown in blue). Once feedback process are implemented, the location of the knee
of the GSMF is determined by the the critical mass in the star formation efficiency
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Fig. 5.6.: The GSMF at the present time. The different colours represent the different
efficiency models.

(fiducial, Mcrit = 1010 and Mcrit = 1014). The No AGN model has the same shallow
slope at the faint end of the GSM function as the fiducial model, with a slight bend
at high masses driven only by the halo mass function. The No SN model presents
the same knee as the fiducial model, but the slope of the faint end of the GSM
function is much steeper.

5.3.3 The cosmic SFR density

The cosmic history of star formation is perhaps one of the most fundamental observ-
ables of our Universe. It has been observed to peaked approximately 3.5 Gyr after
the Big Bang (z ≈ 2), and declined exponentially thereafter (for a review see Madau
& Dickinson, 2014). Different groups have tried to model the complex physics driv-
ing the cosmic SFR by using, for example, full hydrodynamical simulations (e.g.
Schaye et al., 2015; Davé et al., 2016; Dubois et al., 2016; Pillepich et al., 2018).
The UniverseApp provides a simple model that disentangle the role of cosmology
from the role of astrophysics, which in turn, allows us to examine the effect of the
different efficiency parameters on the cosmic SFR density.
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Fig. 5.7.: The cosmic SFR density for the six efficiency models.

We begin by noting that Eq. (5.10) has two main terms. First, a multiplier term
that originates from both, the halo accretion rate, and the halo mass function, and
is ∝ t−7/3. This, comes from the dynamical timescale of the universe getting
larger. Second, an exponential term contribution due to the build up of halos in the
halo mass functions that is ∝ e−t−4/3 . For a given halo mass then, the exponential
term dominates at early times, and the contribution to the cosmic SFR density is
driven by the exponential build up of haloes. At late times, the exponential term
asymptotically tends to a constant value, and the further evolution of the cosmic SFR
is dominated by the multiplier term, i.e., it behaves as a power law. As discussed in
Salcido et al. 2018, the contribution of dark energy is only relevant at late times, and
at its observed value, it has a negligible impact on star formation in the Universe.

Figure 5.7 shows the integrated cosmic SFR density for the six efficiency models
computed using Eq. (5.10). For the fiducial model, while smaller haloes are more
abundant than large objects, a smaller fraction of the inflowing material is converted
into stars. As a result, the SFR density is dominated by the largest haloes in which
star formation is able to proceed without generating efficient feedback. The smaller
haloes only contribute significantly at very early times, when the abundance of larger
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objects is strongly suppressed by the exponential term in the mass function. We see
therefore that the contribution of halos of mass ≈ Mcrit = 1012 M⊙, is representative
of most of the SFR in the model.

If star formation is efficient at all halo masses (constant model), then the cosmic
SFR behaves like a power law with time, which only deviates from this behaviour
at late times due to the contribution of the cosmological constant.

Examining the No SN model reveals that origin of the observed peak in the cosmic
history of star formation is the efficient feedback in low mass galaxies. Without
a mechanism to suppress star formation in small haloes, the history of the cosmic
SFR density would not have its characteristic peak. Supernovae feedback is then
mainly responsible for shaping the cosmic SFR density of the Universe. On the
other hand, examining the No AGN model reveals that efficient feedback in high
mass haloes only has a moderate effect on shaping the cosmic star formation.
Without a mechanism to prevent star formation in massive galaxies, the cosmic
SFR density would still exhibit a peak, only changing mildly its amplitude and
localisation. However, the slope of the decline would be similar (orange vs green
dashed lines).

Finally, changing the transition mass Mcrit has a great impact on the localisation of
the SFR peak. As in the fiducial model, the contribution of halos of mass ≈ Mcrit,
is representative of most of the SFR in each model.

5.4 Fitting observations

In this section we compare the results from the UniverseApp to different datasets
of observational data. We begin by calibrating our model the GSMF at ẑ = 0
using observations from the Galaxy And Mass Assembly (GAMA) survey (Baldry
et al., 2012) and the Sloan Digital Sky Survey (SDSS) (Moustakas et al., 2013).
We use the reduced chi-squared statistic to derive the best-fitting instantaneous star
formation efficiency ϵ∗(Mh). Because the model is fully analytic, this calibration
process is fast and easy to perform. Figure 5.8 shows the best fit model in orange.
The best best fit efficiency parameters are shown in Table 5.2.
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Fig. 5.8.: GSMF for the best fit parameters in Table 5.2.

Table 5.2.: Best fit parameters for a time-independent star formation efficiency model
ϵ∗(Mh).

ϵN Mcrit [M⊙] α β χ2
ν

0.028 1011.68 1.537 0.656 1.50
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5.4.1 The need for an evolving efficiency

Having stablished the best-fitted efficiency parameters for the UniverseApp model,
we can study the evolution of the model outputs. By construction, ϵ∗(Mh) is only
a function of halo mass and is fixed in time. Hence, the evolution of the GSFM
depends only on the evolution of the abundance of halos of mass Mh as a function
of time, as described by the halo mass function. Figure 5.9 shows the evolution of
the predicted GSMF for the halo mass-dependent star formation efficiency model
in dashed lines. Colour coding represents different redshifts for a ΛCDM universe.
Observation data from Baldry et al. 2012; Moustakas et al. 2013; Tomczak et al.
2014; Ilbert et al. 2013; Muzzin et al. 2013; Song et al. 2016 is show in coloured
symbols.

While the observed data at high redshift is highly uncertain, the halo mass-dependent
model significantly under predicts the abundance of distant galaxies. This hints to
the need of a time-evolving efficiency model. “Traditional” empirical modelling
(e.g Moster et al., 2018; Behroozi et al., 2018) would relax the physical priors and
let, in this case, the four efficiency parameter in the model to evolve freely in time.
Instead, we propose a physically motivated efficiency model that naturally evolves
with cosmic time.

The three phases of galaxy formation

Using a simple analytical model, Bower et al. 2017 described the build up of gas
within haloes using the interaction between buoyant, high entropy star formation
driven outflows and the rate of cosmic gas inflow. In low mass systems the adiabat
of star formation driven outflows exceeds that of the halo’s diffuse corona, and can
buoyantly escape (i.e gas gets hotter than the virial temperature of the halo). In
turn, the density within the halo remains low. As the halo grows, a hot corona
forms and the star formation driven outflows are no longer buoyant relative to their
surroundings (i.e the virial temperature of the halo is higher than that of the stellar
feedback outflows). This triggers the build up of a high density of gas within the
halo. By equating the adiabat of stellar feedback outflows to that of the galaxy’s
diffuse corona, Bower et al. 2017 predicted a critical halo mass (Mcrit ≈ 1012 M⊙

with a redshift dependance) for this transition.
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1.5 < ẑ ≤ 2.5

2.5 < ẑ ≤ 3.5
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Fig. 5.9.: Evolution of the predicted GSMF for the halo mass-dependent, and the virial
temperature-dependent star formation efficiency models. Colour coding repre-
sents different observed redshifts. Observation data with their associated uncer-
tainties from Baldry et al. 2012; Moustakas et al. 2013; Tomczak et al. 2014;
Ilbert et al. 2013; Muzzin et al. 2013; Song et al. 2016 is show in coloured sym-
bols. The halo mass-dependent model is shown in dashed lines (ϵ∗(Mh)). The
virial temperature-dependent model is shown in solid lines (ϵ∗(Tvir)). While both
models have been calibrated to reproduce the GSMF at low redshift, the halo
mass-dependent model significantly under predicts the abundance of galaxies at
high redshift.
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An instantaneous star formation efficiency model characterised by a time-independent
critical virial temperature, Tcrit, assumes that there exists a critical halo virial tem-
perature at which there is a transition from where star formation driven outflows
can buoyantly escape, to where outflows are no longer buoyant, and gas stalls inside
the halo. Using the viral temperature of the halo provides a natural evolution of the
star formation efficiency, because for a fixed halo mass, early collapsed haloes are
more compact (denser), and one might expect a higher efficiency (for haloes with
Tvir < Tcrit).

In this simple picture, we can distinguish three phases of galaxy formation, charac-
terised by the virial temperature of the halo:

• Stellar feedback regulated phase: buoyant star formation driven outflows
effectively regulate the gas content of galaxies residing in haloes with virial
temperature Tvir < Tcrit. In this phase, the density within the halo remains
low, resulting in limited star formation and starved BH growth.

• Efficient star forming/rapid growing black hole phase: as haloes grow, the
virial temperature increases to the point that the stellar outflows are no longer
buoyant relative to their surroundings, and therefore stall (i.e Tvir ≈ Tcrit). The
density of gas builds up within the halo triggering high star formation rates
and rapid BH growth.

• AGN feedback regulated phase: In haloes with Tvir > Tcrit, the central BH
is massive enough to produce efficient AGN feedback, in turn, regulating the
gas content of the halo and preventing further star formation.

An additional advantage of using the virial temperature to characterise the star
formation efficiency, is that we can add a proxy for the effect of cosmic reionisation.
Ultraviolet radiation from the first stars formed reionised neutral hydrogen, raising
its entropy to a temperature of ≈ 104K. This process prevented further cooling,
hence preventing star formation, in haloes with Tvir < 104K (Doroshkevich et al.,
1967; Couchman & Rees, 1986; Rees, 1986; Efstathiou, 1992; Loeb & Barkana,
2001). As a result of this suppression of star formation, only a fraction of the haloes
with present-day mass ≈ 1010M⊙ form a galaxy, and no galaxies form below a halo
mass of ≈ 107M⊙ (Sawala et al., 2013, 2016; Fitts et al., 2017; Bose et al., 2018).
We therefore include the effect of reionisation by setting ϵ∗(Tvir < 104K) = 0.
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halo mass for different redshifts in aΛCDM universe. The sharp cut in efficiency
in low mass halos is the effect of cosmic reionisation, ϵ∗(Tvir < 104K) = 0.

Table 5.3.: Best fit parameters for an evolving star formation efficiency model ϵ∗(Tvir).
ϵN Tcrit [K] α β χ2

ν

0.022 105.34 2.377 0.840 1.59

We again calibrate the ϵ∗(Tvir) model to the GSMF at ẑ = 0 using the reduced
chi-squared statistic to derive the best-fitting parameters. The best fit efficiency
parameters are shown in Table 5.3. As we have discussed, using the virial tem-
perature of the halo to characterise the star formation efficiency, provides a natural
time evolution of the efficiency in cosmic time. Figure 5.10 shows the evolution of
the instantaneous star formation efficiency as a function of halo mass for different
redshifts in a ΛCDM universe. The sharp cut in efficiency in low mass haloes is
the effect of setting ϵ∗(Tvir < 104K) = 0.

It is important to highlight that the models were calibrated to reproduce only the
observed GSMF at redshift z = 0. Figure 5.8 shows the best fit virial temperature
model in blue. The figure shows that both, the halo mass-dependent efficiency
ϵ∗(Mh), and the virial temperature-dependent efficiency ϵ∗(Tvir) models, provide
a good fit to the present-day GSMF (see also the reduced chi squared statistics in
Table 5.2 and Table 5.3). Remarkably, Fig. 5.9 shows that a star formation efficiency
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Fig. 5.11.: Evolution of the stellar mass within haloes using the best-fit virial temperature
efficiency model (Table 5.3). Colour coding represents different present-day
halo mass Mh(t0). Solid lines represent a ΛCDM universe. An EdS universe is
shown in dashed lines. Halos of a present-day mass ⪅ 1010M⊙ do not host any
galaxies. The effect of the cosmological constant is negligible in the build up of
stellar mass.

as a function of the virial temperature of the halo reproduces the abundance of
galaxies both at low and high redshift.

Figure 5.11 shows the build up of the stellar mass within haloes using the best-fit
virial temperature efficiency model, and calculated integrating Eq. (5.8). Colour
coding represents different present-day halo mass Mh(t0) on a ΛCDM cosmology.
As expected, haloes of a present-day mass ⪅ 1010M⊙ do not host any galaxies. The
transition of the star formation efficiency at Tcrit can be clearly seen in very massive
haloes, where there is a rapid rise of stellar mass, then, when the halo reaches the
critical temperature, the build up of stellar mass slows down significantly.
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Fig. 5.12.: Predicted SHMR for the time-independent, and evolving star formation effi-
ciency models. Colour coding represents different observed redshifts. The halo
mass-dependent model is shown as a dashed black line. Vertical dotted lines
indicate the critical mass derived in Bower et al. 2017.

Figure 5.12 shows the predicted SHMR from both efficiency models. Colour coding
represents different observed redshifts. The critical halo mass predicted in Bower
et al. 2017 is shown in vertical dotted lines. Recently, McAlpine et al. 2018 showed
that the critical halo mass predicted in Bower et al. 2017 agrees remarkably well
with the triggering of a rapid black hole growth phase in the eagle simulations.

The UniverseApp model using a virial temperature efficiency predicts a SHMR
relation that differs from observational contains using abundance and clustering
properties of galaxy samples with predictions from a phenomenological halo models.
For example, recently Cowley et al. 2018 calculated that the peak of the SHMR shifts
to higher masses for earlier times. As we discussed before, these methods however,
depend heavily on the underlying modelling and assumptions. More sophisticated
empirical models (e.g. Behroozi et al., 2018; Moster et al., 2018) find that the peak
in the SHMR movies first to higher masses for low redshifts, and then to lower
masses at high redshifts.

Figure 5.13 shows the predicted cosmic SFR for the two efficiency models. Using
the UniverseApp model, we can clearly see the contribution to the total SFR density
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Fig. 5.13.: The predicted SFR history of the Universe for the two efficiency models pre-
sented in this chapter. Coloured lines show the contributions from dark matter
haloes of different masses (per dex), using the star formation efficiency de-
scribed by Eq. (5.10), and using the virial temperature efficiency model. The
total SFR for the virial temperature efficiency model is shown in blue. The
time-independent efficiency model is shown in orange. Results from the eagle
simulation are shown in green for reference. Observational data compiled by
Behroozi et al. 2013b is shown as grey symbols. Observational data from Driver
et al. 2018 is shown as black symbols.
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from dark matter haloes of different masses (per dex), shown as coloured dashed
lines (only shown for the virial temperature-dependent efficiency model). The total
SFR for the virial temperature efficiency model is shown in blue. The halo mass-
dependent efficiency model is shown in orange. Results from the eagle simulation
are shown in green for reference. Observational data compiled by Behroozi et al.
2013b is shown as grey symbols. The latest observational results from the GAMA
survey from Driver et al. 2018 are shown as black symbols. The UniverseApp
model using a virial temperature efficiency reproduces the amplitude and shape of
the observed SFR density remarkably well, while the halo mass-dependent efficiency
model, produces a lower SFR at high redshift.

Finally, in Fig. 5.14 we show the SSFR of galaxies different redshifts. The Uni-
verseApp model using a virial temperature efficiency is shown in solid lines. The
halo mass-dependent model is shown in dashed lines. Results from the eagle sim-
ulations are shown in dotted lines for reference. The halo mass-dependent model
agrees surprisingly well with the sophisticated physics and full hydrodynamic sim-
ulations used in eagle. On the other hand, the virial temperature efficiency model,
predicts significantly lower SSFR. This is, perhaps counterintuitive, since the virial
temperature model is more efficient in low mass haloes at higher redshifts. This
is because galaxies of a fixed stellar mass are hosted by more massive haloes, so
experience a greater cosmological accretion rate and must increase their SFR to
achieve self-regulation.

5.5 Discussion and Conclusions

In our current paradigm of galaxy formation, every galaxy forms within a dark matter
halo. Due to the tight correlation observed between the properties of galaxies and
their host haloes, it is natural to expect that individual galaxy assembly could be
correlated with halo assembly (see Wechsler & Tinker 2018 for a review).

In this chapter, we developed a fully analytic model of galaxy formation that connects
the growth of dark matter haloes in a cosmological background, with the build
up of stellar mass within these haloes. The model restricts the role of baryonic
astrophysics to setting the relation between galaxies and their halos. We assume
an instantaneous star formation efficiency which captures all the physical processes
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Fig. 5.14.: The sSFR of galaxies at different redshifts for an observer at the present time in a
ΛCDM universe. The UniverseApp model using a virial temperature efficiency
is shown in solid lines. The halo mass-dependent model is shown in dashed lines.
Results from the eagle simulations are shown in dotted lines for reference.

involved in the conversions of gas into stars, i.e. cooling, star formation law,
feedback mechanisms, etc.

We show that galaxy formation is revealed as a simple process where the instan-
taneous star formation efficiency within halos is only a function of their virial
temperature. We show that all the complex physics of galaxy formation, the in-
terplay between cosmology and baryonic process can be understood as a single
differential equation. Despite its simplicity, the model reproduces self-consistently
the shape and evolution of the cosmic star formation rate density, the specific star
formation rate of galaxies, and the galaxy stellar mass function, both at the present
time and at high redshift.

The instantaneous star formation efficiency model characterised by a time-independent
critical virial temperature, Tcrit, assumes that there exists a critical halo virial tem-
perature at which there is a transition from where star formation driven outflows can
buoyantly escape, to where outflows are no longer buoyant, and gas stalls inside the
halo. In this simple picture, we can distinguish three phases of galaxy formation:
A stellar feedback regulated phase, where buoyant star formation driven outflows
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effectively regulate the gas content of galaxies residing in haloes with virial temper-
ature Tvir < Tcrit. An efficient star forming/rapid growing black hole phase, where
stellar outflows are no longer buoyant relative to their surroundings, and therefore
stall (i.e Tvir ≈ Tcrit). The density of gas builds up within the halo, triggering high
star formation rates and rapid BH growth. Finally, an AGN feedback regulated
phase, where the central BH is massive enough to regulate the gas content of the
halo, preventing further star formation.

Our model is limited to the connection between haloes and central galaxies only.
Subhaloes and satellite galaxies are subject to complex processes, such as tidal
and ram pressure stripping, which are not included. Furthermore, for simplicity,
our model neglects the effect of stellar mass loss and stellar build up by mergers.
Nevertheless, the model can be easily extended to include such processes. Finally,
one of the main advantages of the model is that by providing a set of analytic
equations, the model can be easily “inverted” and allows for rapid experiments to
be conducted, providing a great tool to explore the differential effects of baryonic
physics, averaged over galaxy scales.
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6Music from the heavens -
Gravitational waves from
supermassive black hole mergers in
the EAGLE simulations

In this chapter, we estimate the expected event rate of gravitational wave signals
from mergers of supermassive black holes that could be resolved by a space-based
interferometer, such as the Evolved Laser Interferometer Space Antenna (eLISA),
utilising the reference cosmological hydrodynamical simulation from the eagle
suite. These simulations assume a ΛCDM cosmogony with state-of-the-art subgrid
models for radiative cooling, star formation, stellar mass loss, and feedback from
stars and accreting black holes. They have been shown to reproduce the observed
galaxy population with unprecedented fidelity. We combine the merger rates of
supermassive black holes in eagle with the latest phenomenological waveform
models to calculate the gravitational waves signals from the intrinsic parameters of
the merging black holes. The eagle models predict ∼ 2 detections per year by a
gravitational wave detector such as eLISA. We find that these signals are largely
dominated by mergers between seed mass black holes merging at redshifts between
z ∼ 2 and z ∼ 1. In order to investigate the dependence on the assumed black hole
seed mass, we introduce an additional model with a black hole seed mass an order
of magnitude smaller than in our reference model. We also consider a variation of
the reference model where a prescription for the expected delays in the black hole
merger timescale has been included after their host galaxies merge. We find that
the merger rate is similar in all models, but that the initial black hole seed mass
could be distinguished through their detected gravitational waveforms. Hence, the
characteristic gravitational wave signals detected by eLISA will provide profound
insight into the origin of supermassive black holes and the initial mass distribution
of black hole seeds.

This chapter has been published as a paper in Monthly Notices of the Royal Astro-
nomical Society (MNRAS):
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• Music from the heavens - gravitational waves from supermassive black hole
mergers in the EAGLE simulations
Salcido J., Bower R. G., Theuns T., McAlpine S., Schaller M., Crain R. A.,
Schaye J., Regan J., MNRAS 2016, Volume 463, Issue 1, Pages 870-885

6.1 Introduction

In our current understanding of extragalactic astrophysics supermassive black holes
(SMBHs) reside at the centres of most galaxies at z = 0 and were responsible for
powering the luminous quasars observed within the first billion years of the Universe
(e.g. Fan 2006; Volonteri & Bellovary 2012). Observations of a tight correlation
between the mass of a galaxy’s central SMBH and key properties of its galactic
host, such as the bulge mass and stellar velocity dispersion (e.g. Magorrian et al.
1998; Gebhardt et al. 2000; Ferrarese & Merritt 2000; Gültekin et al. 2009), have
led to the idea that SMBHs play a major role in the evolution of their host galaxies
(e.g. Bower et al. 2006; Volonteri & Bellovary 2011; Fabian 2012; Alexander &
Hickox 2012; Kormendy & Ho 2013). It seems, therefore, that feedback from
active galactic nuclei (AGN), galaxy mergers, and the growth of SMBHs are closely
intertwined (e.g. Kauffmann & Haehnelt 2000; King 2003; Di Matteo et al. 2005;
Booth & Schaye 2009; Fanidakis et al. 2011).

In a standard Lambda Cold Dark Matter (ΛCDM) cosmology cosmic structures
build up hierarchically by the continuous merging of smaller structures and the
accretion of surrounding matter. In this hierarchical scenario central SMBHs follow
a similar build-up process and are the result of a complex evolution, in which black
hole (BH) seeds grow both through accretion episodes and mergers with other
BHs. However, constraining the formation mechanisms of BHs represents a major
observational challenge. The direct detection of gravitational wave (GW) signals
from SMBH mergers may prove to be a viable way to discriminate among the
different BH seed formation models (e.g. Volonteri, 2010; Amaro-Seoane et al.,
2012). The discovery of the GW source GW150914 by the LIGO collaboration
provided the first observational evidence for the existence of binary BH systems that
inspiral and merge within the Hubble time (Abbott et al., 2016). The gravitational
radiation emitted during the merging of SMBHs in the centres of colliding galaxies
will produce some of the ‘loudest’ events in the Universe, which can provide us
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with unique information about the nature of BHs and also provides a test of our
understanding of gravity and galaxy evolution.

In the last decade major efforts have been made to predict the event rate of GWs
in the frequency band of a space-based GW detector such as the Evolved Laser
Interferometer Space Antenna (eLISA, Amaro-Seoane et al. 2012, 2013). These
predictions range from a few, up to a few hundred events per year, depending on the
assumptions underpinning the calculation of the SMBHs coalescence rate. Early
works derived the SMBH coalescence rate from observational constraints such as
the observed quasar luminosity function (Haehnelt, 1994), whilst more recent stud-
ies have utilised semi-analytical galaxy formation models and/or hybrid models
that combine cosmological N-body simulations with semi-analytical recipes for the
SMBH dynamics (e.g. Wyithe & Loeb, 2003; Enoki et al., 2004; Koushiappas &
Zentner, 2006; Sesana et al., 2007; Micic et al., 2007; Sesana et al., 2009; Barausse,
2012; Klein et al., 2016). In contrast to semi-analytic models, hydrodynamical
simulations follow the dynamics of the cosmic gas by direct numerical integra-
tion of the equations of hydrodynamics capturing non-linear processes that cannot
be described by simple mathematical approximations. Hence a more complete
and consistent picture of the evolution of SMBHs and their host galaxies can be
obtained.

The Evolution and Assembly of GaLaxies and their Environment (eagle) project
(Schaye et al., 2015; Crain et al., 2015) consists of a suite of hydrodynamical simu-
lations of a ΛCDM cosmogony. Using state-of-the-art subgrid models for radiative
cooling, star formation, stellar mass loss, and feedback from stars and accreting BHs,
the simulations reproduce the observed galaxy population with unprecedented fi-
delity. Key observations, such as the present-day stellar mass function of galaxies,
the dependence of galaxy sizes on stellar mass, and the amplitude of the central BH
mass-stellar mass relation, as well as many other properties of observed galaxies
and the intergalactic medium (both at the present day and at earlier epochs) are
reproduced by the simulations (e.g. Furlong et al., 2017; Furlong et al., 2015; Tray-
ford et al., 2015; Schaller et al., 2015a; Lagos et al., 2015; Rahmati et al., 2015,
2016; Bahé et al., 2016; Rosas-Guevara et al., 2016). In this study we introduce
the first estimate of the event rate of GWs expected from SMBH mergers utilising
large-scale cosmological hydrodynamical simulations. We compute that the event
rate of GW signals is low enough to produce a set of events that are resolvable by a
space-based interferometer, such as eLISA.
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The layout of this chapter is as follows: In Section 6.2 we provide a brief summary of
the basic equations of the GW signals produced by the SMBH coalescence process.
Section 6.3 presents a brief overview of the eagle simulation suite, including the
list of simulations used in this study, a discussion of the BH seeding mechanism
and growth, as well as the calculated SMBH merger rates from the simulations. In
Section 6.4 we present the predicted GW signals from the simulations and discuss
our main results. We discuss the limitations of our analysis, making some remarks
on the simulations and the SMBH seeding model adopted in eagle and conclude
in Section 6.5.

6.2 Gravitational Wave emission from SMBH
mergers

Studying SMBH mergers involve physical processes that cover many orders of
magnitude in physical size. From mergers of dark matter haloes and galaxies driven
by the cosmic web at large scales (>Mpc), to the final SMBH merger via the emission
of GWs that occurs at sub-parsec scales. The overall scenario was first outlined
by Begelman, Blandford & Rees (1980). When two dark matter halos merge, the
galaxies that they host will eventually merge by the effect of dynamical friction.
After the galaxy merger, the central SMBHs are brought near the centre of the main
halo due to dynamical friction against the dark matter, background stars, and gas.
The efficiency of dynamical friction decreases when the SMBHs become close and
form a bound binary (Mayer et al., 2007). The dynamical evolution of the SMBH
binary is expected to be radically different in gas-rich and gas-poor galaxies. In
gas-rich galaxies planet-like migration can effectively dissipate energy and angular
momentum from the binary, leading to a short coalescence time-scale, typically in
the order of ∼ 107 − 108 yrs (Escala et al. 2005; Colpi 2014 but see e.g. Tamburello
et al. 2017). In gas-poor systems, the evolution of the binary is largely determined
by three-body interactions with the background stars, leading to a long coalescence
timescale of the order of a few Gyrs. At milliparsec separations, GW emission
drives the final coalescence process (see Colpi & Dotti 2011, Mayer 2013 and Colpi
2014 for a review on SMBH dynamics in galaxy mergers).

The BH binary merging process can be divided in three distinct phases which are
illustrated by Fig. 6.1:
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1. The inspiral phase, during which the distance between the bound SMBH
binary is larger than the Last Stable Circular Orbit (RLSCO) and the mu-
tual gravitational field strength is weak. Since the location of the LSCO
is very difficult to calculate for a binary BH system, here RLSCO is approx-
imated by the limiting case of a test particle orbiting a non-rotating BH,
RLSCO = 6GM1/c2 = 3RS, where RS is the Schwarzschild radius of the most
massive BH in the binary. Post-Newtonian equations provide an accurate
representation of the dynamical evolution of the binary in this phase. The
GW signals emitted during the inspiral phase have a characteristic shape with
slowly increasing frequency and amplitude.

2. In the highly non-linear merger phase SMBHs approach to within the last
stable circular orbit (≤ RLSCO) and the dynamics evolve to a rapid plunge and
coalescence. In this regime the event horizons of the BHs overlap and the
geometry of the local spacetime becomes extremely complicated. Analytical
schemes break down in this regime and numerical relativity (NR) is needed
to model the dynamics through the merger phase.

3. Finally, the quasi-normal-ringdown phase, where the resulting BH settles
down to a rotating Kerr BH emitting GWs due to its deviations from the
final axisymmetric state. Perturbation theory can be applied to obtain the
quasi-normal modes in this phase. The GW signal emitted during the ring-
down phase has a characteristic shape consisting of the superposition of
exponentially damped sinusoids.

In general relativity the ‘no-hair’ theorem posits that BHs are entirely characterised
by only three parameters, namely their mass, spin, and electric charge. For astro-
physical BHs the electric charge is usually expected to be negligible (Misner et al.,
1973, pp. 875-876). Therefore each coalescing SMBH is fully characterised by
the total mass Mtotal = M1 + M2, the mass ratio M1/M2 of the binary and the BH
spin angular momenta ®S1 and ®S2. M1 is defined as the more massive member of the
BH binary (M1 ≥ M2). The most general detectable signal from a SMBH binary
is a function of the intrinsic properties of the binary, the merger redshift z, and the
observer’s orientation. In this study for simplicity we focus on non-spinning SMBH
binaries as potential sources of GWs. In Appendix B we extend our analysis to
investigate the case of rapidly spinning coalescing SMBHs. The inclusion of the
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Fig. 6.1.: Schematic diagram of the phase evolution (inspiral, merger, and ringdown) of a
non-spinning SMBH binary coalescence process. The Last Stable Circular Orbit
(LSCO) of the binary is shown as the red curve. The resulting SMBH may be
rapidly rotating even if the progenitor BHs had very small or no spin (Flanagan
& Hughes, 1998). Below each phase an example of the strain amplitude, h, as a
function of time is shown for the dominant spherical harmonic mode of the GW
signal from the non spinning SMBH binary. This specifies the fractional change
in the relative displacement between freely falling test masses in a detector due
to the GW.

6.2 Gravitational Wave emission from SMBH mergers 146



signal from the ringdown phase increases the signal-to-noise ratio (S/N) of observed
binaries and enable measurements of the parameters of the resulting SMBH (Klein
et al., 2016).

6.2.1 Characteristic strain

It is difficult to determine accurately the total gravitational energy radiated as GWs
in a BH binary coalescence and modelling the GW signal from these processes still
represents a challenge for GW astronomy (Ohme, 2012; Hannam, 2014).

In general, the total energy radiated during a BH coalescence will be some fraction,
ϵ , of the total rest mass energy of the binary (Mtotalc2) that depends on the mass
ratio M1/M2, the orbital angular momentum and the initial spin of the BHs.

In GW astronomy it is common to describe the amplitude of a source using the
dimensionless strain as a function of time, h(t). This specifies the fractional change
in the relative displacement between two test masses, h(t) = ∆L(t)/L0, where L

is the distance between free-falling masses that constitute the GW detector. The
dimensionless characteristic strain amplitude, hc, is not the instantaneous strain of a
source but rather an accumulated signal, intended to include the effect of integrating
a signal during the inspiralling phase. The characteristic strain amplitude, hc, is
defined as [

hc( fs)
]2
= 4 f 2

���h̃( fs)
���2 , (6.1)

where h̃( fs) is the Fourier transform of the strain signal, h̃( fs) = F {h(t)}( fs) =∫ ∞
−∞ h(t)e−2πi fstdt, and fs = fobs(1 + z) is the rest-frame frequency of the signal

(Moore et al., 2015).

We employ the most recent phenomenological frequency-domain gravitational wave-
form model for non-precessing BH binaries described in Khan et al. (2016) (com-
monly referred to as “PhenomD”). The PhenomD model provides the waveform
families in the Fourier domain of the dominant spherical-harmonic modes of the
GW signal in aligned-spin systems in terms of the signal amplitude, A( fs), and
phase, ϕ( fs), given by

h̃( fs) = A( fs)e−iϕ( fs). (6.2)
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In this hybrid model, the inspiral and merger-ringdown parts of the signal are
modelled separately in two frequency regimes of the waveform. The first region
covers the inspiral signal, up to the merger frequency

fmerger = 0.018 c3/GMtotal, (6.3)

which is approximately the frequency at the LSCO of a test particle orbiting a
non-rotating BH (RLSCO = 6GM1/c2) (Flanagan & Hughes, 1998). In the inspiral
region, analytic post-Newtonian prescriptions and effective-one-body methods are
used to describe the signal.

The second region (which is is further sub-divided into intermediate and merger-
ringdown regions) uses phenomenological models calibrated to pure NR simulations
to describe the signal. The full waveform strain signal is parameterised by the
physical parameters of the BH binary, total mass (Mtotal = M1 + M2), luminosity
distance (DL(z)), symmetric mass ratio (η = M1M2/M2

total), and the dimensionless
spin parameters defined as

χi =
®Si · L̂
M2

i

, (6.4)

where χi ∈ [−1, 1] and the BH spin angular momenta, ®Si, are assumed to be parallel
to the direction of the orbital angular momentum, L̂.

The loss of energy through GWs leads to a decrease in the separation of the BH
binary and hence the orbital frequency increases. For Keplerian circular orbits the
frequency of the GWs is twice the orbital frequency ( fs = 2 forbit). Integrating the
frequency evolution of the inspiral phase, or chirp, Ûf = d f /dt, we can estimate
the time it takes for the binary to evolve between any two frequencies. It can be
shown (Shapiro & Teukolsky, 1983; Tinto, 1988) that for BH binaries on Keplerian
circular orbits

t( f2) − t( f1) =
5

256
c5

G5/3
(M1 + M2)1/3

M1M2

× (2π)−8/3
(

f −8/3
1 − f −8/3

2

)
.

(6.5)

The intrinsic duration of the inspiral phase is then given by

τinspiral = t( fmerger) − t( fmin), (6.6)
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where the value of fmin at which the inspiral spectrum starts is uncertain. Since
fmerger is set by Eq. (6.3), fmin is a free parameter in our calculations. Clearly,
choosing fmin very close to fmerger gives short inspiral times. On the other hand,
fmin ≪ fmerger will produce the opposite effect. Following the approach of Koushi-
appas & Zentner (2006), we choose fmin to be close to fmerger to ensure reasonable
values for the time that the BH binary systems spend in the inspiral phase, which
are also comparable to the orbital frequency at the BH binary hardening radius
(Quinlan, 1996). We have chosen fmin = 1 × 10−3 c3/GMtotal for our analysis.

The intrinsic duration of the merger phase is approximated by (Koushiappas &
Zentner, 2006),

τmerger ∼ 14.7

(
Mtotal

1 × 105 M⊙

)
[sec] . (6.7)

Khan et al. (2016) show that the phenomenological approach is capable of describing
waveforms from BH binaries with a high degree of physical fidelity. The range
of calibration of the model is: mass-ratio ∈ [1, 18] and spins ∈ [−0.95, 0.98].
Nonetheless, the model can be evaluated at any physically allowed mass-ratio. In our
study, it was required to extend the use of the PhenomD model outside its calibration
region for some SMBH binary cases, which can produce physically plausible results
that are reasonable for our event rate estimations. However, individual binary
parameter estimation would require one to check the model in this region against
fully general relativistic NR calculations. More details about the PhenomD model
can be found in Khan et al. (2016).

In Fig. 6.2 we show some examples of the dimensionless characteristic strain am-
plitude hc produced by massive BH coalescence events with different masses and
occurring at different redshifts, calculated with the equations given in this section.
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Fig. 6.2.: Example of the dimensionless characteristic strain amplitude, hc, produced by non-spinning SMBH coalescence events (χi = 0). Maximally
spinning SMBHs aligned with the orbital angular momentum of the binary are shown in dotted lines (χi = 1). In all panels the inspiral and
merger-ringdown phases are shown for an equal mass BH binary (Mass ratio M1/M2 = 1, M1 = M2 = 1 × 105 M⊙) that merge at redshift z = 0.1
as reference (blue line). The frequency at the transition from the inspiral phase to the merger phase ( fmerger = 0.018 c3/GMtotal) is highlighted with
a blue dot. The sensitivity curve of eLISA was calculated from the analytic approximation provided by Amaro-Seoane et al. (2013). The black
dashed line indicates the low-frequency cut-off of the sensitivity curve fcut = 3 × 10−5 Hz. GW signals above the sensitivity curve and to the right
of the low-frequency cut-off can be resolved from the eLISA data stream. LEFT PANEL: The effect of increasing the total mass of the SMBH
binary. An equal mass SMBH binary (Mass ratio M1/M2 = 1) with M1 = M2 = 1 × 107 M⊙ that merges at redshift z = 0.1 is shown in green.
MIDDLE PANEL: The effect of redshift. An equal mass SMBH binary (Mass ratio M1/M2 = 1, M1 = M2 = 1× 105 M⊙) merging at redshift z = 7
is shown in magenta. RIGHT PANEL: The effect of mass ratio. A BH binary with total mass Mtotal = 2 × 105 M⊙ and mass ratio M1/M2 = 100
merging at redshift z = 0.1 is shown in cyan.
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6.2.2 The eLISA sensitivity curve

The Evolved Laser Interferometer Space Antenna is a space-based mission designed
to measure gravitational radiation over a broad band of frequencies ranging between
f ∼ 0.1 mHz to f ∼ 1 Hz. The final design specification of the mission are yet
to be evaluated, including key features like the low-frequency acceleration noise,
mission lifetime, the length of the interferometer arms, and the number of laser
links between the spacecraft (Klein et al., 2016). In our study we will use the New
Gravitational Observatory (NGO) concept, which was proposed to the European
Space Agency (ESA) during the selection process for the L1 large satellite mission.
We refer the reader to Amaro-Seoane et al. (2013) for a detailed description of the
eLISA concept and architecture.

According to the design requirements, the sensitivity that eLISA will be able to
achieve in dimensionless characteristic strain noise amplitude is

hn( fobs) =
√

Sn( fobs) fobs, (6.8)

where the strain noise power spectral density Sn( fobs) is given by the analytical
approximation,

Sn( fobs) =
20
3

4 × Sacc( fobs) + Ssn( fobs) + Somn( fobs)
L2

×
©«1 +

©«
fobs

0.41
(

c
2L

) ª®®¬
2ª®®®¬ ,

(6.9)

where fobs is the observed frequency and L = 1 × 109 m is the optical path-length
between the free-falling masses. At low frequencies the noise spectrum of the
instrument is dominated by residual acceleration noise of the test masses caused by
force gradients arising due to the relative movement of the spacecraft with respect
to the test masses

Sacc( fobs) = 1.37 × 10−32

(
1 +

10−4Hz
fobs

) (
Hz
fobs

)4 [
m2Hz−1

]
. (6.10)
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For fobs ≳ 5 × 10−3 Hz, the arm length measurement noise dominates, for which
the quantum mechanical photon shot noise is

Ssn( fobs) = 5.25 × 10−23
[
m2Hz−1

]
. (6.11)

At higher frequencies the sensitivity decreases again, due to the arm-length response
to multiple wavelengths of GWs. This effect is included with other combined
measurement noise in,

Somn( fobs) = 6.28 × 10−23
[
m2Hz−1

]
. (6.12)

The eLISA sensitivity curve obtained from Eq. (6.8) is plotted as the red curves in
Fig. 6.2.

The measurement frequency bandwidth requirement for the detector is (10−4 Hz to
1 Hz) with a target of (3 × 10−5 Hz to 1 Hz) (Amaro-Seoane et al., 2013). For our
analysis we adopt the target frequency cut fcut = 3 × 10−5 Hz.

6.2.3 Resolved events

An advantage of using the characteristic strain to describe the amplitude of GW
sources given the sensitivity of the detector is that the S/N averaged over all possible
orientations of the source and interferometer can be written as

S/N =

√√√∫ f+∆ f

f

[
hc( f ′obs)
hn( f ′obs)

]2
df ′obs
f ′obs
, (6.13)

which allows one to assess by eye the detectability of a given source if hc is plotted
against the observed frequency (Moore et al., 2015).

The resolution frequency bin, ∆ f , is set by the minimum frequency resolvable by
the instrumentation. It is the inverse of the mission lifetime ∆ f ∼ 1/Tobs, where
Tobs is the length of observation (Gair et al., 2013). For small ∆ f , we can assume
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a constant ratio k = hc( f ′obs)/hn( f ′obs). Then, by changing the integration limits as
f + ∆ f = f (1 + α), where α = ∆ f / f , we can rewrite Eq. (6.13) as

(S/N)2 = k2
∫ f (1+α)

f

df ′obs
f ′obs

= k2 ln(1 + α).
(6.14)

The eLISA mission has an expected duration of 3 years. Therefore ∆ f ∼ 1/Tobs =

1/(3yrs) ≈ 10−8 Hz. If we impose S/N ≳ 5 for all the frequency bandwidth
(3 × 10−5 Hz to 1 Hz) in Eq. (6.14), this results in k ≳ 1.76. In the examples
shown in Fig. 6.2 it can be seen that once any given GW signal crosses the detector
sensitivity curve, the ratio of the signal to the sensitivity curve, k, rapidly increases
by a few orders of magnitude. Therefore we can safely assume that all GW signals
above the sensitivity curve (i.e. hc( fobs) ≥ hn( fobs)) can be detected by eLISA.

6.2.4 Event rate

We calculate the number of detected sources (i.e. hc( fobs) ≥ hn( fobs)) per redshift in-
terval z+∆z and co-moving volumeVc, and denote this quantity as N̄(z, k ≥ 1)/∆zVc ≈
d2n̄(z, k ≥ 1)/dzdVc. Integrating over all redshifts, the estimated event rate of de-
tected GW sources per observed time is given by

dN̄
dtobs

=

∫ ∞

0

d2n̄(z, k ≥ 1)
dzdVc

dz
dt

dVc

dz
dz

(1 + z) . (6.15)

The total number of observed events in a given observation time is simply

Ntotal =

∫ Tobs

0

dN̄
dtobs

dtobs, (6.16)

where Tobs = 3 yrs is the length of the mission. We now seek to estimate this quan-
tity using the merger rates of SMBHs in the eagle cosmological hydrodynamical
simulations.
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6.3 The EAGLE Simulations

The eagle simulation suite1 (Schaye et al., 2015; Crain et al., 2015) consists of a
large number of cosmological hydrodynamical simulations that include different res-
olutions, simulated volumes and physical models. These simulations use advanced
smoothed particle hydrodynamics (SPH) and state-of-the-art subgrid models to
capture the unresolved physics. Radiative cooling (Wiersma et al., 2009a), star for-
mation (Schaye & Dalla Vecchia, 2008; Schaye, 2004), metal enrichment (Wiersma
et al., 2009b), energy input from stellar feedback (Dalla Vecchia & Schaye, 2012),
BH growth (Rosas-Guevara et al., 2015; Schaye et al., 2015), and feedback from
active galactic nuclei (Schaye et al., 2015) are included. The simulation suite was
run with a modified version of the gadget-3 SPH code (last described by Springel
2005) and includes a full treatment of gravity and hydrodynamics. The modifica-
tions to the SPH method, collectively referred to as anarchy (Dalla Vecchia et al.
in preparation), make use of the pressure-entropy formulation of SPH derived by
Hopkins (2013), the artificial viscosity switch from Cullen & Dehnen (2010), an ar-
tificial conduction switch similar to that of Price (2008), the C2 kernel of Wendland
(1995), and the time-step limiters of Durier & Dalla Vecchia (2012). The effects
of this state-of-the-art formulation of SPH on the galaxy properties are explored in
detail by Schaller et al. (2015b). The calibration strategy is described in detail by
Crain et al. (2015) who also presented additional simulations to demonstrate the
effect of parameter variations.

The halo and galaxy catalogues for more than 105 simulated galaxies of the main
eagle simulations with integrated quantities describing the galaxies, such as stel-
lar mass, star formation rates, metallicities and luminosities, are available in the
eagle database2 (McAlpine et al., 2016). A complete description of the code and
physical parameters used in the eagle simulations can be found in Schaye et al.
(2015), here we present a brief overview of the BH seeding and growth mecha-
nisms. Cosmological parameters for a standard ΛCDM universe were adopted by
these simulations. The values of the key cosmological parameters implemented are
Ωm = 0.307, ΩΛ = 0.693, Ωb = 0.04825, h = 0.6777 and σ8 = 0.8288, as inferred
by the Planck Collaboration et al. (2014).

1http://www.eaglesim.org
2http://www.eaglesim.org/database.php
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The label for each simulation denotes the comoving cubic box length and the cube
root of the number of particles in the simulation. For example, Ref-L100N1504 cor-
responds to a simulation volume of (100 cMpc)3 (where cMpc denotes co-moving
megaparsecs) using 15043 particles of dark matter and an equal number of baryonic
particles. A prefix distinguishes the subgrid variations. For example, the prefix
‘Ref-’ refers to a simulation using the reference model.

We compare the predicted GW signals from two eagle models, our reference
simulation Ref-L100N1504, and a modified version of the Ref-L050N0752 model
which uses the same calibrated subgrid parameters as the reference model, but
smaller BH seeds, as described in Section 6.3.1. We have labeled this model SS-
L050N0752. Additionally, in order to test for convergence with simulated volume
size and resolution, the Ref-L050N0752, Ref-L025N0376 and Recal-L025N0752
models are compared in Appendix B. As discussed by Schaye et al. (2015), the
‘Recal-’ higher-resolution simulation uses values of the subgrid parameters that
were recalibrated following the same procedure used for the reference simulation,
enabling the user to test the “weak convergence” properties of the simulations.
In Table 6.1 we summarise the simulation models used in this chapter, including
the comoving cubic box length, initial baryonic and non-baryonic particle masses,
Plummer-equivalent gravitational softening lengths and BH seed mass. Together
these parameters determine the dynamic range and resolution that can be achieved
by the simulations.
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Table 6.1.: Box-size, number of particles, initial baryonic and dark matter particle mass, co-moving and Plummer-equivalent gravitational softening, and
BH seed mass for the eagle simulations used in this chapter. Values in bold show differences with respect to the Ref-L100N1504 simulation.

Simulation L N mgas mDM ϵcom ϵprop mseed
[cMpc] [M⊙] [M⊙] [ckpc] [ckpc] [M⊙]

Ref-L100N1504 100 2 × 15043 1.81 × 106 9.70 × 106 2.66 0.70 1.475 × 105

SS-L050N0752 50 2 × 7523 1.81 × 106 9.70 × 106 2.66 0.70 1.475 × 104

Ref-L050N0752 50 2 × 7523 1.81 × 106 9.70 × 106 2.66 0.70 1.475 × 105

Ref-L025N0376 25 2 × 3763 1.81 × 106 9.70 × 106 2.66 0.70 1.475 × 105

Recal-L025N0752 25 2 × 7523 2.26 × 105 1.21 × 106 1.33 0.35 1.475 × 1056.3
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6.3.1 Black hole seeding

To explain the population of luminous quasars in the high-redshift Universe (z ≥ 6)
SMBHs must have formed early and grown rapidly (e.g. Volonteri & Bellovary
2012). Different formation and evolution mechanisms for BH seeds have been
proposed to explain the rapid growth that enables these seeds to grow to masses of
109 M⊙ in less than one billion years. These SMBHs may have originated from
the remnants of the very first generation of stars, runaway collisions of stars and/or
stellar mass BHs, direct collapse of supermassive stars, or from an even more exotic
process (refer to Volonteri 2010 for a review on formation models for SMBHs). We
now briefly review the most promising models for forming SMBH seeds in the early
Universe:

1. Remnants of the first generation of stars

BH seeds may have formed from remnants of Population III stars (e.g. Madau
& Rees, 2001; Volonteri et al., 2003). If stars more massive than ∼ 250 M⊙
formed from primordial gas, they are predicted to directly collapse into BH
seeds with masses of ∼ 100 M⊙. However, it is still unclear if most of the
first stars were born with such large masses (e.g. Clark et al., 2011; Greif
et al., 2011). Additionally, in order to grow to masses in excess of 109 M⊙
as early as redshift z ∼ 6 seeds would require to grow close to the Eddington
rate for the majority of their lifetime. The shallow potential wells in which
Population III stars form makes this scenario rather unattractive (e.g. Johnson
et al., 2008; Alvarez et al., 2009; Volonteri et al., 2016). Growth through
super-Eddington accretion phases may solve this conflict (e.g. Volonteri et al.,
2015; Lupi et al., 2016; Inayoshi et al., 2016). However, further theoretical
work on this mechanism and its sustainability is required.

2. Collapsing nuclear star clusters

In this model, stellar-dynamical instabilities in proto-galactic discs may lead
to infall without fragmentation of low metallicity gas, increasing the central
galactic density (e.g. Seth et al., 2008; Devecchi & Volonteri, 2009; Devecchi
et al., 2012; Lupi et al., 2014; Katz et al., 2015). Within the nuclear region
a dense stellar cluster forms. As the central cluster undergoes core collapse,
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runaway collisions of stars may lead to the formation of a single SMBH seed
with a mass up to ∼ 103 M⊙.

3. Direct collapse of supermassive stars

It has been proposed that in high-redshift haloes radiation emitted by nearby
star-forming galaxies could cause the photo-dissociation of H2. This prevents
the temperature of primordial gas from reaching very low values and thus
elevates the Jeans mass, allowing the formation of a large central mass,
possibly evolving into a supermassive star (e.g. Omukai, 2001; Wise et al.,
2008; Regan & Haehnelt, 2009; Agarwal et al., 2014; Sugimura et al., 2014;
Regan et al., 2016). Another mechanism to form a supermassive star is by
rapid funnelling of low metallicity gas in low angular momentum haloes with
global or local dynamical instabilities (e.g. Loeb & Rasio, 1994; Koushiappas
et al., 2004; Begelman et al., 2008). Once a supermassive star forms its core
may collapse to form a small BH within the radiation-pressure-supported
object. In this scenario the central BH can accrete the entire envelope and
form a SMBH seed of mass ∼ 103 M⊙ up to ∼ 105 M⊙.

Constraining the formation mechanisms of BH seeds represents a major observa-
tional challenge. As we will show, the detection of GW signals from SMBH co-
alescences represents a promising way to discriminate among different theoretical
formation models by determining the mass function of seed BHs.

Since the SMBH seed formation processes are not resolved by cosmological simu-
lations, it is assumed that every halo above a certain threshold mass hosts a central
BH seed. For a comprehensive description of the BH seeding mechanisms in these
simulations see Springel et al. 2005a, Di Matteo et al. 2008, Booth & Schaye
2009, and Schaye et al. 2015. In the Ref-L100N1504 model high-mass BH seeds3

(mseed = 1.475 × 105M⊙) are placed at the centre of every halo with total mass
greater than mhalo,th = 1.475 × 1010M⊙ that does not already contain a BH. For the
SS-L050N0752 model the BH seed mass is mseed = 1.475× 104M⊙. We choose to
place BH seeds in haloes of mass mhalo,th = 1.475×1010 M⊙ (which corresponds to
mhalo,th ∼ 1.5 × 103 mDM for the reference models and mhalo,th ∼ 1.2 × 104 mDM for
the high-resolution ‘Recal’ model) to ensure that the structure of haloes containing
BHs is always well resolved. Halos are selected for seeding by regularly running

3mseed = 1.475 × 105M⊙ = 1 × 105M⊙h−1, where h = 0.6777.
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the “Friends-of-Friends” (FoF) halo finder on the dark matter distribution, with a
linking length equal to 0.2 times the mean inter-particle spacing.

6.3.2 Black hole dynamics and delays

Our aim is to calculate the GW signals from the merger rates of SMBHs across
cosmic time, which depend crucially on how many galaxies host BHs and on the
galaxy merger history. Therefore, full cosmological models including BH physics
are necessary to study the merger rates of SMBHs. Nonetheless, given the limited
spatial resolution in large scale cosmological simulations, information on the small-
scale dynamical evolution of SBMH binaries is lost. To overcome this limit and
obtain realistic SMBH dynamics and merger rates we employ advection schemes
that correct the motion of BH particles and apply a time delay corrections to the BH
merger timescales to account for the unresolved small-scale dynamical evolution of
the binaries.

In the simulations, when a halo grows above the threshold mass mhalo,th, its highest-
density gas particle is converted into a collisionless BH particle with subgrid mass
mBH = mseed. Since the BH seed mass is usually significantly lower than the
baryonic particle mass (mseed ≪ mgas), the use of a subgrid mass is necessary for
BH-specific processes such as accretion (Springel et al., 2005a). On the other hand,
gravitational interactions are computed using the BH particle mass.

Since the simulations cannot model the dynamical friction acting on BHs with
masses ≲ mgas, BHs with mass < 100 times the initial gas particle mass mgas

are re-positioned to the local potential minimum. To prevent BHs in gas poor
haloes from jumping to nearby satellites, we limit this process to particles whose
velocity relative to the BH is smaller than 0.25cs, where cs is the local sound speed,
and whose distance is smaller than three gravitational softening lengths. Tracking
the evolution of BH orbits in individual galaxy mergers during code development
showed this eliminated spurious repositioning events in fly-by encounters. However,
within∼kpc separations, repositioning of BHs to account for unrealistic dynamics in
cosmological scale simulations may cause spurious SMBH mergers and/or SMBHs
to merge sooner than what is predicted by their orbital decay time-scale (Tremmel
et al., 2015). Hence, a SMBH merger time delay is needed to correct for this
effect.

6.3 The EAGLE Simulations 159



Two BHs merge if they are separated by a distance that is smaller than both the SPH
smoothing kernel of the BH, hBH, and three gravitational softening lengths (this
criteria gives a median separation of ∼ 1pkpc at all redshifts and halo masses). hBH

is chosen such that within a distance hBH from the BH there are Nngb = 58 weighted
SPH neighbours. Furthermore, in order to prevent BHs from merging during fly-by
encounters we impose a limit on the allowed relative velocity of the BHs, required to
be smaller than the circular velocity at the distance hBH (vrel <

√
GM1h−1

BH, where G

is the gravitational constant and M1 is the mass of the most massive BH in the pair).
Triple BH mergers can happen in a single time-step in the simulations. However,
due to their extreme rarity, we do not consider these events in our analysis.

As we briefly discussed in Section 6.2, after two galaxies merge a variety of effects
can affect the dynamical evolution of the SMBH binary and finally lead (or not) to
a merger within a Hubble time. Dynamical friction, three-body interactions with
stars, interactions with gas, including planet-like migration and/or orbital decay of
the binary due to the clumpy gas and the heating of the cold layer of the disc by BH
feedback can either prevent or promote the SMBH merger (Colpi & Dotti, 2011;
Mayer, 2013; Colpi, 2014; Tamburello et al., 2017). A binary could stall at ∼ pc
separations, which is known as the “final-parsec” problem (Begelman et al., 1980).
However, a later galaxy merger may trigger the SMBH merger (Hoffman & Loeb,
2007). Given the uncertainties in these mechanisms, and the potential variability
from galaxy to galaxy, we adopt simplified prescriptions to estimate the SMBH
merger time delays based on the gas content in the nuclear region of the resulting
galaxy after the merger, similar to the method adopted by Antonini et al. (2015).

• Gas rich galaxies: For galaxies with gas mass within a 3D aperture with radius
3 pkpc greater than or equal to the total BH mass (Mgas@3pkpc ≥ M1 +M2), a
0.1 Gyr delay was added to the BH merger time recorded in the simulation.

• Gas poor galaxies: For galaxies with gas mass within a 3D aperture with
radius 3 pkpc less than the total BH mass (Mgas@3pkpc < M1 + M2), a 5 Gyr
delay was added to the BH merger time recorded in the simulation.

As we will discuss in Section 6.4, we find that adding a significant delay in gas-poor
galaxies gives a very similar result of the expected rate of GW signals than our
model assuming no delays.
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6.3.3 Black hole growth

Once seeded, BHs are free to grow via gas accretion at a rate that depends only
on the local hydrodynamical properties, namely: the mass of the BH, the local
density and temperature of the surrounding gas, the velocity of the BH relative to
the ambient gas, and the angular momentum of the gas with respect to the BH.
Accretion onto BHs follows a modified version of the Bondi-Hoyle accretion rate
which takes into account the circularisation and subsequent viscous transport of
infalling material, limited by the Eddington rate (as described by Rosas-Guevara
et al. 2015). Additionally, BHs can grow by merging with other BHs as described
in the previous section.

It is important to highlight that the sub-grid physics in the eagle simulations were
calibrated to reproduce the observed galaxy stellar mass function at redshift z = 0.1,
the amplitude of the galaxy stellar mass-central BH mass relation and galaxy sizes
(Crain et al., 2015). Although not part of the calibration procedure, Rosas-Guevara
et al. 2016 show that the simulations also reproduce the observed BH mass function
at z = 0 and show good agreement with the observed AGN luminosity functions
in the hard and soft X-ray bands. Additionally, Trayford et al. (2016) shows the
important role of BH growth in quenching star formation and establishing the
high-mass red sequence of galaxies in eagle.

Figure 6.3 shows the halo mass-central BH mass relation at redshift z = 0 for the
eagle simulations discussed here. The halo mass, M200, is defined as the total mass
within the radius within which the mean density is 200 times the critical density of
the Universe.

Regardless of the initial seed mass, BHs that reside in low-mass haloes barely
grow because star formation driven outflows are efficient and able to prevent large
reservoirs of cold low angular momentum gas accumulating around the BH. Then,
the accretion behaviour changes dramatically in haloes with mass ∼ 1012M⊙. At
this halo mass, the hot gas in the corona causes the star formation driven outflows to
stall and conditions become optimal for BH accretion, and BHs grow rapidly. The
growth of BHs residing in haloes more massive than ∼ 1012M⊙ is self-regulated by
AGN feedback and BHs reach similar masses regardless of their initial seed mass.
The physical origin of this transition is further discussed by Bower et al. (2017).
As a result of this transition there are two prominent populations of SMBHs in the
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Fig. 6.3.: Halo mass-central BH mass relation for two eagle simulations at redshift z = 0.
Lines represent the median of the distribution for each simulation. Only bins
containing 5 objects or more have been plotted. The shaded region encloses the
10th to 90th percentiles for each model. The black line is shown as reference for
a relationship MBH ∝ M200. Regardless of the initial BH seed mass the halo
mass-BH mass relation exhibits a steep slope in haloes with mass ∼1012M⊙ .
At this halo mass, the hot gas in the corona causes the star formation driven
outflows to stall and conditions become optimal for BH accretion, and BHs grow
rapidly (Bower et al. in preparation). For BHs hosted by haloes more massive
than ∼1012M⊙ the growth is self-regulated by AGN feedback. Two prominent
populations of SMBHs are highlighted: BHs not much more massive than the
seed mass (L for ‘low mass’) and very massive BHs with masses > 107 M⊙ (H
for ‘high mass’).
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simulations. These are highlighted in the figure: BHs not much more massive than
the seed mass (L for ‘low mass’) and very massive BHs with masses > 107 M⊙ (H
for ‘high mass’).

6.3.4 Black hole coalescence

For each SMBH merger that takes place in the simulations we store the mass of
both SMBHs, M1 and M2, and the redshift z at which the merger event takes place.
On Fig. 6.4 we show the 2D histogram of the mass of each BH member for all the
mergers in the eagle simulation models considered here. The total number of BH
mergers in each simulation model is indicated in the figure. For Ref-L100N1504 a
total of NBHM = 54, 850 BH mergers take place across cosmic time. A factor of ≈ 8
fewer mergers occur in the small seeds (NBHM = 7, 045) model almost entirely due
to the factor of 8 smaller volume of the simulation. Three prominent populations of
characteristic SMBH binaries build up. These are the result of the halo mass-central
BH mass relation in eagle, shown in Fig. 6.3. The groups are: SMBH binaries that
involve two BHs not much more massive than the seed mass (L+L); high mass ratio
binaries where M1 is massive (> 107M⊙) and M2 is not much more massive than
the seed mass (L+H); the case where both BHs are massive, with masses between
107 and 108 M⊙ (H+H).

In Fig. 6.5 we show the co-moving number density distribution as a function of
the more massive member of the BH binaries, M1, plotted for five non-contiguous
ranges in the mass of the least massive member, M2. The (L+L) and (L+H)
populations of binaries correspond to the left and right peaks of the distribution
in the top two panels. The population (H+H) is shown in the bottom two panels.
Naturally, the larger simulation volume samples more massive structures, hence the
observed BH coalescence distribution in each panel extends to higher values of M1.
Since we keep the same vertical axis range for all five panels we can compare the
contribution of each mass bin to the total SMBH merger rate. The population of
binaries where both BHs are massive (H+H), shown in the bottom panel, is at least
two orders of magnitude smaller than that of high mass ratio binaries (L+H) and
SMBH binaries that involve two BHs not much more massive than the seed mass
(L+L), shown in the top two panels of the figure.
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Fig. 6.4.: 2D histogram of all BH mergers for all redshifts in the eagle simulations. Ref-L100N1504 (left panel) and SS-L050N0752 (right panel). M1 is
the more massive member of the SMBH binary (M1 ≥ M2). The total number of coalescence events in each simulation model, NBHM, is shown in
the top left corner of each panel. Colour coding represents the number density of SMBH mergers per binary mass bin. As a result of the transition
in the Halo mass-central BH mass relation shown in Fig. 6.3, there are three prominent populations of SMBH binaries in the simulations, which
are highlighted in the figure: SMBH binaries that involve two BHs not much more massive than the seed mass (L+L); high mass ratio binaries
where M1 is massive (> 107M⊙) and M2 is not much more massive than the seed mass (L+H); the case where both BHs are massive, with masses
above 107 M⊙ (H+H). Since the populations of high-mass SMBHs in both simulation models reach similar masses (Fig. 6.3), the population of
(H+H) binaries occupies the same region in both models. On the other hand, both the (L+L) and (L+H) populations are shifted in M1 and M2 in
the SS-L050N0752 model compared to Ref-L100N1504.
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Fig. 6.5.: Co-moving number density of the more massive member of the BH binaries with
mass M1, for five non-contiguous ranges in the mass of the least massive member,
M2, as indicated in the legend (top to bottom). The population of SMBH binaries
that involve a BH not much more massive than the seed mass (< 106M⊙) are
then shown in the top panel. Binaries where both BHs are massive (> 107M⊙)
are shown in the two bottom panels. The population (H+H), shown in the two
bottom panels, is at least two orders of magnitude smaller than the (L+L) and
(L+H) populations, shown in the top two panels.
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6.4 Predicted gravitational wave event rate

In order to compute the expected GW signals from SMBH mergers in the simu-
lations, we adopt the following strategy. We first calculate the frequency at the
transition from the inspiral phase to the merger phase, fmerger = 0.018 c3/GMtotal,
for each merger event in eagle. We compute the minimum inspiral frequency fmin =

1 × 10−3 c3/GMtotal and an arbitrary final frequency fmax = 2 × 10−1 c3/GMtotal.
Assuming that both SMBHs in the binary have no spin, we use the Inspiral-Merger-
Ringdown waveform model PhenomD (Khan et al., 2016) to compute the charac-
teristic strain amplitude of the GWs from each binary, which depends only on the
merging redshift (z) and the mass of each SMBH (M1 and M2). We compute the
sensitivity curve of eLISA using the analytical approximation given in Eqs. (6.8)
to (6.12). For this analysis we adopt the target frequency cut of the detector,
fcut = 3 × 10−5 Hz. From all the computed GW signals, we filter the events that
would be resolvable by the detector using Eq. (6.14) with a ratio of the signal to the
sensitivity curve k ≥ 1 (i.e. S/N ≳ 5). For all resolvable events we compute the
observed duration τobs = τinspiral,obs + τmerger,obs using Eqs. (6.5) and (6.7) for the
detected frequencies. Finally, from the number of resolvable sources we estimate
the event rate of GW sources and the total number of expected observable events
during the lifetime of the eLISA mission using Eqs. (6.15) and (6.16).

For SMBH binaries the S/N of the GW signals is accumulated in the last month of
the inspiral phase (Sesana et al., 2011). Therefore, in this study we choose to only
include sources that “merge” during the mission time, i.e., to construct the expected
event rate we only consider events with τobs ≤ Tobs. In Fig. 6.6 we show the
distribution of the observed duration for all the resolvable events. The performance
of the detector improves as a function of the duration of mission and gaps in the data
stream would affect the number of resolved events (e.g. Sesana et al., 2011). For
this study we assume a fiducial eLISA mission continuous lifetime of Tobs = 3yrs.
We show in Figs. 6.7 and 6.8 the characteristic strain amplitude as a function of the
observed merger frequency for all the GW events produced by SMBH coalescences
in the eagle Ref-L100N1504 and SS-L050N0752 simulations respectively. To help
visualise the mass range and redshift of BH coalescences that would be detected by
eLISA, grey lines indicate the characteristic strain and observed merger frequency
emitted by equal mass BH binaries (M1 = M2) coalescing at different redshifts z.
The following characteristic features can be seen in the figures:
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Fig. 6.6.: Distribution of the observed duration of the events that would be resolvable by
the eLISA detector (i.e. the ratio of the GW signal to the detector’s sensitivity
curve k ≥ 1). For this study, we assume an eLISA mission lifetime of Tobs = 3 yrs
(dashed vertical line). We only consider events with τobs ≤ Tobs in the rest of the
chapter.

1. For both models, the most densely populated region of events (1 × 10−3 ≲
fmer,obs/[Hz] ≲ 1×10−2 and 1×10−19 ≲ hc ≲ 1×10−17 for Ref-L100N1504
and 1×10−2 ≲ fmer,obs/[Hz] ≲ 1×10−1 and 1×10−20 ≲ hc ≲ 1×10−18 for SS-
L050N0752) corresponds to SMBH binaries where both BHs have masses not
much greater that the seed mass (L+L). As illustrated in Fig. 6.2, we expect
higher GW frequencies and smaller strain amplitudes from less massive
BH mergers. Therefore, for the small seeds model the (L+L) population
shifts to higher frequencies and lower amplitudes compared to the reference
model. For both Ref-L100N1504 and SS-L050N0752 eagle models the
(L+L) population of events occupies a region above the detection threshold
of eLISA and hence will provide a high contribution to the data stream (as
seen in Fig. 6.10).

2. The second most populated region of events (1 × 10−5 ≲ fmer,obs/[Hz] ≲
1×10−4 and 1×10−18 ≲ hc ≲ 1×10−16 for both simulations) corresponds to
binaries from the (L+H) population. For both the Ref-L100N1504 and SS-
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L050N0752 eagle models, there are significantly less events in the (L+H)
population compared to the (H+H), with some falling outside the detection
threshold of eLISA. Hence will not contribute significantly to the data stream.

3. Only few events from the (H+H) population occupy a region above the
detection threshold of eLISA. However, there are significantly fewer events
in the in this population of binaries compared to the (L+L) and (L+H)
populations (at least two orders of magnitude fewer events, as seen in Fig. 6.5).
Therefore, the binaries from the (H+H) population do not show up as a dense
region in the plot.
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Fig. 6.7.: Characteristic strain amplitude hc of the GW signals emitted by all SMBH coalescences in the eagle Ref-L100N1504 simulation as a function
of the observed frequency at the transition between the inspiral phase and the merger phase of the SBMH coalescence process fmer,obs =

(0.018 c3/GMtotal)/(1 + z). Colour coding represents the co-moving number density of events per characteristic strain-observed merger frequency
bin. Grey contour lines indicate the characteristic strain and observed merger frequency for equal mass BH binaries (M1 = M2) coalescing at
different redshifts z. The sensitivity curve of eLISA calculated from the analytic approximation in Eq. (6.8) is shown in red. The black dashed
line indicates the low-frequency cut-off of the sensitivity curve fcut = 3 × 10−5 Hz. GW signals above the sensitivity curve and to the right of the
low-frequency cut-off can be resolved from the eLISA data stream.
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Fig. 6.8.: As Fig. 6.7 but for the eagle SS-L050N0752 simulation.
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The characteristic shift in amplitude and frequency of the detected GW signals that
results from the different SMBH seed masses suggests that eLISA will be a powerful
tool to discriminate between different SMBH seeding mechanisms. In Fig. 6.9 we
show the number of detected SMBH coalescences observed per year at redshift
z = 0 as a function of the frequency at the transition between the inspiral phase and
the merger phase, fmer,obs. The figure shows a shift of a decade in frequency for the
whole distribution between the simulation models. The amplitude of the peak of the
distribution is, however, the same for both models. For lower frequencies (i.e. more
massive mergers) the SS-L050N0752 model has fewer detected events (∼0.3 dex)
because these events have lower characteristic strain amplitude and therefore some
fall below the detection threshold of the eLISA sensitivity curve.

For the signals detected by eLISA it will be possible to extract the physical pa-
rameters of the BH sources, such as their masses, luminosity distance, and sky
locations, using a set of theoretical templates for the waveforms for each phase
(i.e inspiral, merger, and ringdown phases) (Cutler & Flanagan, 1994; Flanagan &
Hughes, 1998; Amaro-Seoane et al., 2013; Abbott et al., 2016). In Fig. 6.10 we have
plotted the redshift distribution, the mass function of the more massive member of
the binary, M1, and the distribution of the mass ratio, M1/M2, of the number of
detected SMBH coalescences per observed year at redshift z = 0 (left, central and
right panels respectively). In this plot we have also included a variation of the
Ref-L100N1504 simulation that include a delay to the SMBH merger timescales as
detailed in Section 6.3.2.

From the first panel it is clear that SMBHs merging between redshift z ∼ 2 and
z ∼ 1 will provide the greatest contribution to the event rate of GW signals in the
eagle models. On the basis of the redshift distributions of detected signals it is thus
not possible to discriminate between the SMBH seeding mechanisms implemented
in our simulations. The M1 mass function of the predicted event rate has a very
pronounced peak at the SMBH seed mass mseed (105 M⊙h−1 for the ‘Ref-’ model
and 104 M⊙h−1 for the ‘SS-’ model). Given the logarithmic scale of the plot, the
galaxy formation model implemented in eagle predicts that GW signals will be
dominated by the coalescence of BH seeds, which is also shown in the last panel
of the figure, in which the mass ratio distribution peaks for equal mass SMBH
coalescences for both models. This is a remarkable result, since it implies that
the physical parameters of the GW sources recovered from the eLISA data stream
will provide us with a profound insight into the nature of SMBHs and the initial
mass distribution of seeds. We also find that adding a delay to the SMBH merger
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Fig. 6.9.: Number of detected SMBH coalescences per observed year as a function of
the frequency at the transition between the inspiral phase and the merger phase
fmer,obs. A shift of a decade in frequency of the whole distribution is observed
for the SS-L050N0752 compared to the Ref-L100N1504 model. The amplitude
of the peak of the distribution is the same for both models. For lower frequencies
(i.e. more massive mergers), the SS-L050N0752 model has fewer detected events
(by about 0.3 dex) because these events have lower characteristic strain amplitude,
as expected for lower mass BHs, and therefore fall outside the detection threshold
of the eLISA sensitivity curve.
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timescales makes no significant difference in either the predicted event rate, nor to
the mass function of the detected binaries. This is to be expected, since the galaxy
formation model implemented in eagle predicts GW signals that will be dominated
by the coalescence of BH seeds. These low mass SMBHs are hosted mainly by gas
rich galaxies in which planet-like migration is predicted to lead to short coalescence
time-scales (Colpi & Dotti, 2011; Mayer, 2013; Colpi, 2014).

We use Eq. (6.15) to calculate the event rate of GW signals resolved by the eLISA
mission. The results are shown in Table 6.2. By propagation of error, the uncertainty
on the expectation event rate due to the finite volume of the simulations is given
by

σ =

√√√√z=∞∑
z=0

(√
N̄(z, k ≥ 1)
∆z∆Vc

∆z
∆t
∆Vc

∆z
∆z

(1 + z)

)2

. (6.17)

The actual number of detections is drawn from a Poisson distribution that depends
on the duration of the mission multiplied by the expectation rate given in the table.
We find that for the estimated event rate of GWs is ∼ 2 events per year for the
inspiral and the merger-ringdown phases (for both the Ref-L100N1504 with and
without delays, and SS-L050N0752 simulations). We estimate that in a 3 year
mission the eLISA detector should be able to resolve ∼ 6 mergers and ∼ 6 inspiral
signals from SMBH mergers. Even with this low event rate the information carried
by each gravitational waveform would provide us with a powerful tool to constrain
the SMBH seed formation mechanisms.
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Fig. 6.10.: LEFT PANEL: Redshift distribution of the SMBH coalescences resolved by eLISA. The distribution peaks between redshift z ∼ 2 and z ∼ 1 for
both the inspiral and the merger-ringdown phases for both eagle simulation. The differential redshift distribution of the SMBH seeding times
are shown in dotted lines (right-hand axis). MIDDLE PANEL: Mass distribution of the more massive member of the binary, M1, for the SMBH
coalescences resolved by eLISA. For both models, the mass function peaks at M1 ∼ mseed for both the inspiral and the merger-ringdown phases.
RIGHT PANEL: Distribution of the mass ratio M1/M2 of the SMBH coalescences resolved by eLISA. The distribution peaks for equal mass
SMBH binaries for both eagle simulation models. The model with added delay to the SMBH merger timescales has no significant difference in
either the predicted event rate, nor in the mass function of the detected binaries.
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Table 6.2.: Estimated event rates for the different simulation models. σ is the standard Poisson uncertainty on the expectation event rate due to the finite
volume of the simulations.

Simulation Inspiral Phase σI Merger-Ringdown Phase σM−RD
event rate [yr−1] [yr−1] event rate [yr−1] [yr−1]

Ref-L100N1504 2.02 0.01 2.36 0.02
Ref-L100N1504 + Delays 1.89 0.01 2.17 0.01
SS-L050N0752 2.02 0.04 2.16 0.04
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6.5 Discussion and Conclusions

Using the eagle simulations, a state-of-the-art cosmological hydrodynamical simu-
lation suite, we have computed the event rate of GW signals expected from SMBH
mergers that should be resolved by a space-based GW detector such as the Evolved
Laser Interferometer Space Antenna, eLISA.

The eagle simulations use modern smoothed particle hydrodynamics and physically
motivated subgrid models to capture the unresolved physics. These simulations
reproduce the observed galaxy population with unprecedented fidelity, providing a
powerful tool to study galaxy formation and evolution.

A number of SMBH seed formation mechanisms have been proposed to explain the
observed population of high-redshift quasars in our Universe. These mechanisms
predict different initial mass functions of BHs seeds. These characteristic BH seed
mass functions and the dynamical evolution that takes place during the merging
process of SMBH binaries in the centres of colliding galaxies leave a unique imprint
on the GW signals predicted by the models. Therefore, the information carried by
the gravitational waveforms detected by a GW detector such as eLISA will provide
us with a powerful tool to discriminate between different SMBH seeding models.

Since the processes involved in the SMBH seed formation models are not resolved
by the simulations, we assume that seed BHs are produced sufficiently frequently
that every halo above a certain threshold mass contains a central BH seed. In order
to investigate the dependence on the assumed BH seed mass we used two simulation
models using BH seeds that differ by an order of magnitude in mass. For the Ref-
L100N1504 model, high-mass BH seeds (mseed = 1.475 × 105M⊙) were placed at
the centre of every halo with total mass greater than mhalo,th = 1.475× 1010M⊙ that
did not already contain a BH. For the SS-L050N0752 model, the BH seed mass
used was mseed = 1.475 × 104M⊙. These BH seeds then grow by accreting gas
and via mergers with other BHs. In the eagle models, BHs residing in low-mass
haloes barely grow because star formation driven outflows are efficient and able to
prevent cold gas accumulating around the BH (Bower et al. in preparation). As a
result, three prominent populations of characteristic SMBH binaries build up in the
simulations as a result of the halo mass-central BH mass relation in eagle, shown
in Fig. 6.3. The groups are: SMBH binaries that involve two BHs not much more
massive than the seed mass (L+L); high mass ratio binaries in which one BH is
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massive (> 107M⊙) and the other is not much more massive than the seed mass
(L+H); and the case where both BHs are massive, with masses between 107 and 108

M⊙ (H+H). We also consider a variation of the Ref-L100N1504 reference model,
where a prescription for the expected delays in the BH merger timescale has been
included after their host galaxies merge. The added delays are based on the gas
content in the nuclear region of the resulting galaxy after the merger.

We combine the merger rates of SMBHs in the simulations with the most recent phe-
nomenological frequency-domain gravitational waveform model for non-precessing
BH binaries described in Khan et al. (2016) (commonly referred to as “PhenomD”).
We calculated that the merger rate of SMBHs is similar in the simulation models
and will produce a low event rate of GW signals, nonetheless observable by a space-
based interferometer such as eLISA. We find that the predicted event rate of GWs
for the inspiral and merger-ringdown phases for both the ‘Ref-’ and ‘SS-’ models
is ∼ 2 events per year. Hence, in a 3 year mission the eLISA detector should be
able to resolve ∼ 6 mergers and ∼ 6 inspiral signals from SMBH coalescences. Our
analysis shows that these signals will be dominated by the coalescence of BH seeds
(L+L population of binaries) merging between redshifts z ∼ 2 and z ∼ 1. Given
the difference in the BH seed mass of the models, there is a characteristic shift of
a decade in the observed frequency for the whole distribution of the GW signals
(Fig. 6.9).

Compared to previous studies that propose that eLISA could distinguish between
BH seed formation models based on the global properties of the merger distribution
(i.e Sesana et al., 2007, 2011; Barausse, 2012), we find that eLISA could probe BH
seeds down to low redshift because the GW signals from SMBH coalescences will
be dominated by mergers of BHs that have not yet experienced significant growth
(see Fig. 6.3, 6.10, and Bower et al. in preparation). Hence, different physical
BH seeding mechanisms could be distinguished from the detected gravitational
waveforms, allowing eLISA to provide us with profound insight into the origin of
SMBHs and the initial mass distribution of SMBH seeds. We find that adding a
delay to the SMBH merger timescales makes no significant difference in either the
predicted event rate, nor to the mass function of the detected binaries (Fig. 6.10).

We find that eagle predicts GW signals that would be best detected by eLISA, but
complementary observations of GW signals in different frequency windows will
enable us to fully characterise the cosmic history of SMBHs (Crowder & Cornish,
2005; Sesana et al., 2008; Janssen et al., 2015; Moore et al., 2015). For instance,
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pulsar timing arrays will be able to detect GWs in a lower frequency window (i.e.,
fobs < 10−6[Hz] with hc > 10−17, Hellings & Downs 1983; Sesana et al. 2008;
Kelley et al. 2017) than the SMBH mergers arising in our cosmological volume
(Fig. 6.7). On the other hand, if the initial mass function of SMBH seeds extends to
masses < 104M⊙, intermediate frequency missions (i.e. 10−3 ⪅ fobs/[Hz] ⪅ 101

with hc > 10−25), like the proposed Advanced Laser Interferometer Antenna (ALIA,
Bender et al. 2013), the Big Bang Observer (BBO, Harry et al. 2006), and the Deci-
hertz Interferometer GW Observatory (DECIGO, Kawamura et al. 2006), will be
suitable to detect the mergers of seeds and shed light on their initial mass function.
It is also important to highlight that other GW sources, such as galactic white dwarf
binaries, will also contribute to the eLISA data stream.

Since the eagle simulations reproduce a wide set of observational properties of
the galaxy population we may expect the physics of the real Universe to be reason-
ably well captured by the phenomenological sub-grid models implemented in the
simulations. Nevertheless, the predicted GW event rate is specific to the galaxy
formation and evolution model implemented in these simulations and the sub-grid
models for BH seeding and growth via accretion and mergers. In particular, in the
eagle simulations BH seeds are placed into haloes of mass mhalo,th = 1010 M⊙,
which corresponds to a very small galaxy of stellar mass m∗ ∼ 107M⊙. From ob-
servational constraints such galaxies are thought to be the smallest galaxies to host
SMBHs at low redshift (Reines et al., 2013; Seth et al., 2014). In the simulation,
the stellar mass of galaxies in which BHs are seeded depends little on redshift and
the BH mass at birth is already 1% relative to the stellar mass. Some BH formation
models suggest that BH seeds could form even more efficiently in still lower-mass
galaxies at high redshift. In this case, SMBH mergers could be more common and
therefore increase our predicted GW event rate. Our predicted rates are therefore
conservative. Addressing this issue in more depth would require a simulation of
considerably higher resolution (and yet comparable cosmological volume) coupled
to a physical model of BH seed formation. Such a simulation is currently beyond
the scope of cosmological simulation codes. Fortunately, since our models predict
that eLISA should be very sensitive to the initial mass distribution of BH seeds, it
will probe precisely these issues and directly complement theoretical developments.
Further work using the eagle simulations, coupled to physical models of BH seed
formation could be used to predict the GW signals from SMBH mergers that could
be detected by future GW detectors.
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7Conclusions and Future Work

7.1 Summary of this thesis

In the standard model of cosmology, the energy density of the Universe is currently
dominated by a form of dark energy that is consistent with a cosmological constant
Λ, and cold dark matter, with only ∼ 5% of the total cosmic energy density in
the form of ‘ordinary’ baryonic matter. Measurements of the amplitude of the
small temperature fluctuations in the cosmic microwave background (CMB) have
allowed us to estimate the cosmological parameters with unprecedented fidelity
(Planck Collaboration et al., 2016). The ΛCDM model has been tested thoroughly
and it has been proven to successfully fit and predict a vast range of phenomena
in the Universe, such as the large scale distribution of galaxies and the CMB itself.
Despite its success, the nature of its two major components, the cosmological
constant and the cold dark matter, are still unknown. Additionally, the cosmological
constant is afflicted by the ‘fine-tuning’ and ‘coincidence’ problems. In order
to shed light into these problems, this thesis is concerned with the study of the
interplay between cosmology and galaxy formation. In particular, using advanced
cosmological hydrodynamic simulations from the eagle suite (Schaye et al., 2015),
and by developing fully analytic models of galaxy formation, we disentangle the
role of cosmology from the role of astrophysics in the galaxy formation process.

In Chapter 3 we used a modified version of the eagle code to investigate the effect
of the accelerated expansion of the Universe on the cosmic star formation rate. We
compared a ΛCDM Universe to an Einstein-de Sitter model with Λ = 0. Contrary
to previous studies (e.g. Springel & Hernquist, 2003), we find that the existence
of the cosmological constant has little impact on the star formation history of the
Universe. The star formation is suppressed only by ≈15% at the present time,
and we find that the properties of galaxies are almost indistinguishable in the two
universes. By extrapolating fits to the evolution of the co-moving star formation
rate density into the future, we show that, in our Universe, more than ≈88% of the
stars that will ever be produced, have already been formed by the present cosmic
time. In the absence of dark energy, only ≈15% more stellar mass would have been
formed in the same time. The difference is small, bringing into question whether the
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‘coincidence problem’ (the comparable energy densities of matter and dark energy)
can be explained by an anthropic argument, i.e. the existence of dark energy (at
its observed value) has negligible impact on the existence of observers to observe
the cosmos. In comparison, the existence of supermassive black holes has a major
impact on the Universe. In the absence of feedback from accreting black holes, the
co-moving star formation rate density is enhanced by a factor of 2.5 at the present
day.

One of the main outcomes of the work presented in this thesis is the introduction
of a novel way to solve the Friedman equations, which allows us to expand the
solution as a Taylor series. This is proven to be a very powerful tool in many
ways: First, it clearly shows the effect of the cosmological constant in the expansion
history of the Universe, which can be used as a pedagogical way to introduce the
Friedmann equation and the accelerated expansion of the Universe. Second, it
allows us to analytically approximate cosmological quantities, that would otherwise
only be possible to solved numerically, e.g. the linear growth factor of density
perturbations. This provides a simple direct connection of the accretion rate of dark
matter haloes to the cosmological background.

Using this advantage, in Chapter 3 we develop a simple analytic model for the
cosmic star formation rate that captures the suppression due to a cosmological
constant. Using the analytic model, we can recognise that the existence of the peak
in the star formation rate density results from the interaction of the star formation
efficiency (set by the inter stellar medium physics) which limits the rate at which the
galaxy can respond to convert in-falling material into stars, the relative abundance
of efficiently star forming haloes (i.e. of masses ≈ 1012 M⊙), and only at late times,
the slowing growth rates of haloes due to the cosmological constant.

Chapter 4 presents the first rigorous test of the anthropic principle as an explanation
of the observed value of the cosmological constant using the full machinery of
galaxy formation theory developed in the eagle hydrodynamical simulations. We
introduced a set of simulation with a wide range of Λ values, ranging from Λ = 0
to Λ0 × 300, where Λ0 is the value of the cosmological constant in our Universe.
We find that because the global star formation rate in our Universe peaks at t = 3.5
Gyr, before the onset of accelerating expansion, increases in Λ of even an order
of magnitude have only a small effect on the star formation history and efficiency
of the Universe. In universes with larger values of Λ, galaxies quickly become
isolated from their cosmic surroundings, burning their finite matter supply and
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forming stars at a decreasing rate. We use our results to predict the observed value
of the cosmological constant, given a measure of the multiverse. We considered
three simple but plausible models for where we would expect observers to be created.
Testing the observer creation rate per constant mass between universes, we predicted
a value of the cosmological constant that is 50 − 60 times larger than the observed
value. The probability of observing a value as small as our cosmological constant is
∼ 2%. We conclude that the impact of the cosmological constant on the formation
of structure in the universe does not straightforwardly explain the small observed
value ofΛ. The anthropic argument for the value ofΛ is not a particularly successful
prediction.

In Chapter 5, using the solution of the Friedmann equation developed in Chapter 3,
we introduce a fully analytic model of galaxy formation that connects the growth
of dark matter haloes in a cosmological background, with the build up of stellar
mass within these haloes. The model identifies the physical processes that drive
the Galaxy-Halo co-evolution through cosmic time. The model restricts the role
of baryonic astrophysics to setting the relation between galaxies and their halos.
All astrophysical process enter into the model via an instantaneous star forma-
tion efficiency parameter which captures all the physical processes involved in the
conversions of gas into stars, i.e. cooling, star formation law, feedback from star
formation and accreting black holes, etc. We show that galaxy formation is revealed
as a simple process where the instantaneous star formation efficiency within halos
is only a function of their virial temperature. Despite its simplicity, the model
reproduces self-consistently the shape and evolution of the cosmic star formation
rate density, the specific star formation rate of galaxies, and the galaxy stellar mass
function, both at the present time and at high redshift. By providing a set of analytic
equations, the model can be easily “inverted” and allows for rapid experiments to
be conducted, providing a great tool to explore the differential effects of baryonic
physics, averaged over galaxy scales.

As we discussed in Chapters 3 and 5, supermassive black holes play a major role
in the evolution of their host galaxies (e.g. Bower et al., 2006; Croton et al., 2006;
Fabian, 2012; Kormendy & Ho, 2013; Heckman & Best, 2014). Hence, in Chapter 6,
we estimate the expected event rate of gravitational wave signals from mergers of
supermassive black holes that could be resolved by a future space-based interferom-
eter, such as the Evolved Laser Interferometer Space Antenna (eLISA). This work is
the first such estimates using a full set of cosmological hydrodynamical simulations.
We demonstrate how these gravitational wave signals can provide profound insight
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into the origin of supermassive black holes and the initial mass distribution of black
hole seeds. We combine the merger rates of supermassive black holes in the eagle
simulations with “PhenomD”, a phenomenological frequency-domain gravitational
waveform model (Khan et al., 2016). We predict a low event rate of ∼ 2 detec-
tions per year by a gravitational wave detector such as eLISA. Nonetheless, our
analysis shows that the signals will be dominated by the coalescence of black holes
with masses similar to their initial seeds mass. Hence, we find that eLISA could
probe black hole seeds down to low redshift because their gravitational wave signals
will be dominated by mergers of binaries that have not yet experienced significant
growth. This study is the first to predict that eLISA should be very sensitive to the
initial mass distribution seeds, because in low mass galaxies, black holes exhibit
very little growth (e.g. Bonoli et al., 2016; Bower et al., 2017; Bellovary et al.,
2018).

7.2 Looking to the future

In this section, I explore some of the interesting ways in which the investigation in
this thesis can be extended.

7.2.1 Using simulations to directly aid observational
large-scale structure surveys

Despite the great success of the ΛCDM model, it is now being subjected to much
more stringent tests than ever before. For instance, recent large-scale structure (LSS)
measurements appear to be in tension with its predictions. The predicted level of
LSS based on the standard model inferred from CMB measurements significantly
exceeds what is inferred from actual cluster counts (Ade et al., 2014; Aghanim
et al., 2016). Is this tension signalling that new physics is required? For example, a
time-varying dark energy, or perhaps a modified theory of gravity? A contribution
from massive neutrinos?. Cosmological hydrodynamical simulations offer a means
to address this tension by including all the relevant baryonic effects that are key
to understanding the present-day properties of the most massive systems in our
Universe. Nonetheless, because of the large computational cost and complexity
of the physics involved, traditionally, LSS studies have used the predictions from
dark matter only simulations. Based on my experience with eagle, I intend to
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develop a set of large-scale simulations specifically designed for LSS cosmology
applications, with the effects of feedback realistically accounted for. With the
upcoming surveys like the Dark Energy Survey Instrument (DESI), Euclid, and the
Large Synoptic Survey Telescope (LSST), specifically designed for LSS cosmology,
such simulations would be crucial to critically assess the evidence for physics beyond
the standard model.

7.2.2 SMBH formation, growth and dynamics

Understanding the formation mechanisms of SMBHs, the nature of their growth,
and how they affect their host galaxies are areas of exertive research. Nevertheless,
given the limited spatial resolution in large scale cosmological simulations, physical
processes involved in SMBH seeding, feedback, and dynamics are implemented
via sub-grid prescriptions. Recent studies have improved the modelling SBMH
in cosmological simulations (e.g. Tremmel et al., 2015). However, a thorough
exploration of the full parameter space and more physically motivated models of
SMBH formation and growth are needed for a more detailed analysis of the SMBH-
galaxy co-evolution throughout cosmic time. Furthermore, connecting the seeding
mechanisms and dynamics of SMBHs within galaxies is necessary to predict and
inform future gravitational wave observations of merging SMBHs that could provide
insight into their origin.

A new ambitious programme of simulations (eagle2) has been under development
for the past two years, using refined feedback models, improved resolution and
SMBH physical processes that I am helping to develop. There is a wealth of
future projects that could be undertaken using these simulations. For example, the
occupation probability of SMBHs on dwarf galaxies, and the dependance of the
recycling of gas on the SMBH feedback parameters, and its effects on the specific
star formation rate of galaxies.

7.2.3 Study the fundamental constants of nature

I am earnest to investigate how the different fundamental constants of nature affect
galaxy formation and the seemingly fine-tuning of the Universe for life. Following
up on Salcido et al. (2018) and Barnes et al. (2018), I intend to use hydrodynamical
simulations to explore the effect of varying other cosmological parameters in galaxy
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formation (for example, the fraction of baryons to dark matter). Investigating these
fundamental constants is of much interest and provides a great opportunity to com-
bine research on galaxy formation with multidisciplinary projects with scientists,
philosophers, and public engagement.

7.3 Final remarks

It is an exciting time to be cosmologist. The continuous development of powerful
and precise astronomical instrumentation is pushing the boundaries of the faintest
galaxies that we can observe. Even more, the large number of imminent high
precision observational surveys will probe our Universe on the largest cosmological
scales. We have more information about the Cosmos than ever before.

This explosion of observational data will allow us to test our standard model of
cosmology to the limit. Hopefully, this progress will reveal at last the nature of
dark matter and dark energy, or possible extensions beyond the standard model
that could have important implications for fundamental physics. However, this
will only be possible if the data comes hand in hand with accurate and detailed
theoretical predictions of galaxy formation in a cosmological context. On that
note, cosmological hydrodynamical simulations provide a powerful tool to test our
galaxy formation theories, as they are now capable of producing realistic universes.
Furthermore, the time ahead looks even brighter; the future generation of software
and hardware will allow us to build bigger and better simulations. This step however,
will require a better understanding of the underlying physics and the adequacy of
the subgrid models implemented.

This thesis, builds upon the work of many generations of scientists in our quest
to answer some the most fundamental questions in science: How do galaxies
form? How has the Universe become hospitable for life? What is the nature of
the mysterious dark matter and dark energy? What is the ultimate fate of our
Universe? This thesis explicitly tested the effect of the cosmological background
on the formation of galaxies, and the ability of the Universe to produce life. In
the longer term, the analytic model of galaxy formation presented in this work
provides a powerful tool to understand the physics of galaxy formation, and can
complement the more sophisticated techniques such as semi-analytic models and
hydrodynamical simulations.
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ADerivation of the
UNIVERSEAPP model

A.1 Cosmological expansion

Here we provide a brief summary of the analytic solution of the Friedmann equation
developed in Salcido et al. (2018). Using a hat notation (ˆ) to denote quantities in
our observable Universe, we set â0 ≡ â(t0) = 1, where t0 = 13.8 Gyr is the present
cosmic time. We adopt a normalisation such that the value of the expansion factor
at an arbitrarily early time, t1, is identical for every model, i.e. a1 ≡ a(t1) = â(t1).
We refer the reader to Salcido et al. (2018) for a rationale and full description of the
normalisation and equations presented here.

Salcido et al. (2018) introduced a Taylor expansion solution of the Friedmann
equation that provides a deep insight into the effect of the cosmological constant in
the expansion factor,
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where the matter timescale is given by,
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and the dark energy timescale is given by,
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185



A.2 The growth of density perturbations and
the halo accretion rates

Dark matter structures are assumed to have grown from small initial density per-
turbations. Expressing the density, ρ, in terms of the density perturbation contrast
against a density background,

ρ(x, t) = ρ̄(t)[1 + δ(x, t)], (A.4)

the differential equation that governs the time dependence of the growth of linear
perturbations in a pressureless fluid, such as e.g. dark matter, can be written as

d2δ

dt2 + 2
Ûa
a

dδ
dt

− 4πG ρ̄δ = 0. (A.5)

The growing mode of Eq. (A.5) can be written as,

δ(t) = D(t)δ(t0), (A.6)

where D(t) is the linear growth factor, which determines the normalisation of
the linear matter power spectrum relative to the initial density perturbation power
spectrum, and is computed by the integral

D(t) ∝ Ûa
a

∫ t

0
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Ûa2(t′)
. (A.7)

Using the power-series approximation for a(t) from Eq. (A.1), we can obtain an
analytic solution of Eq. (A.7),
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where KD is a normalisation constant. Requiring D̂(t0) = 1 gives KD = 4.70 ×
10−3 Gyr−2.

The growth rates of linear perturbations do not directly predict the growth rates of
haloes, however, we can directly connect the two through the approach developed
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by Press & Schechter 1974. Correa et al. (2015) showed that the accretion rates of
haloes can be written as (see also Neistein et al., 2006),

1
Mh

dMh

dt
=

√
2
π

(δc/D)
S(Mh)1/2

(
qγ − 1

)1/2
1
D

dD
dt
, (A.9)

where Mh is the halo mass and S(Mh) is the variance of the density field on the length
scale corresponding the halo mass. δc is a parameter that represents a threshold in
the linearly extrapolated density field for halo collapse. The parameters, q and γ, are
related to the shape of the power-spectrum around the halo mass Mh. Approximating
the scale dependence of the density field as a power-law around 1012 M⊙ haloes
as S = S0M−γ

h , Correa et al. 2015 find S0 ≈ 104.2, γ ≈ 0.3 and q ≈ 3.16. These
values depend only on the initial power spectrum (which we assume to be the same
for all cosmological models) and do not depend on the cosmological parameters.
This formulation thus neatly separates the contribution of the power-spectrum shape
from the cosmological parameters.

Using the series approximation Eq. (A.1), the specific growth rate of halos can be
written as,
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This explicitly shows how the presence of a cosmological constant modulates the
halo growth rate. This differential equation can be solved by separation of variables
to obtain the average mass history of dark matter halos,
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where t0, and M0 are the present cosmic time and the mass of a halo today respec-
tively. Integrating both sides and solving for M(t) yields,
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Equation (A.12) provides an analytic expression for the of mass of a halo as a
function of time.

A.3 The galaxy SFR

We now have all the necessary ingredients to calculate the stellar evolution of
individual halos through cosmic time. Substituting Eq. (A.10) into Eq. (5.1), the
stellar mass is given by the integral of,
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where ϵ∗ is given by either Eq. (5.3) or Eq. (5.4) and Mh by Eq. (A.12).

A.4 The cosmic SFR of the Universe

In order to calculate the cosmic SFR of the universe, we need to combine the specific
halo mass accretion rate with an estimate of the halo abundance.

In the Press & Schechter analysis, the co-moving abundance of haloes of mass Mh

at time t is given by (Press & Schechter, 1974),
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where we have assumed that the density power spectrum is a power law with
exponent γ and written the co-moving density of the Universe as ρ̂0 following our
convention. Using the approximation we get,
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The total cosmic SFR density is given by the integral of all star formation in all
haloes,
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Using the halo growth rate from Eq. (A.10), the halo mass function fromEq. (A.15),
together with the instantaneous star formation efficiency Eq. (5.3) or Eq. (5.4), the
contribution to the cosmic SFR density from haloes of mass Mh (the integrand of
Eq. (A.16)) is given by,
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BGWs - Parameter variations

In this section we test our predictions against variations of the different parameters
and assumptions used in our calculations. The parameters that we vary are:

• Dimensionless spin parameters (χi)

– χi = 0 for merging BHs with no spin

– χi = 1 for maximally spinning coalescing BHs aligned with the orbital
angular momentum of the binary

• Simulated volume

– Ref-L100N1504 with volume (100 cMpc)3

– Ref-L050N0752 with volume (50 cMpc)3

– Ref-L025N0376 with volume (25 cMpc)3

• Resolution

– Reference model ‘Ref’ (with baryonic particle mass Mgas = 1.81 ×
106 M⊙, dark matter particle mass Mgas = 9.70 × 106 M⊙, co-moving
gravitational softening ϵcom = 2.66 ckpc, and maximum proper gravita-
tional softening ϵprop = 0.70 ckpc)

– High-resolution recalibrated model ‘Recal’ (with baryonic particle mass
Mgas = 2.26×105 M⊙, dark matter particle mass Mgas = 1.21×106 M⊙,
co-moving gravitational softening ϵcom = 1.33 ckpc, and maximum
proper gravitational softening ϵprop = 0.35 ckpc).

We show in Fig. B.01 the redshift distribution of the eLISA SMBH coalescence
detections for both the inspiral and merger-ringdown phases. The event rates for non
spinning and maximally spinning BHS (χi = 0 and χi = 1) are shown in the right
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panel. We obtain consistent results for the different eagle simulation models used
in this study, where for both the inspiral and merger-ringdown phases the redshift
distribution of the event rate peaks between redshift z ≈ 2 and z ≈ 1. There is
a slight increase in the event rate when χi = 1, which is not significant and the
predicted event rate is consistent with ∼ 2.

In Fig. B.02 we show the mass function of the more massive member of the binary,
M1, for the SMBH coalescences resolved by eLISA. For the merger-ringdown phase
non spinning and maximally spinning BHS (χi = 0 andχi = 1) are shown in the
right panel. For both the inspiral and merger-ringdown phases the mass function
has a very pronounced peak at M1 ∼ mseed. Given the logarithmic scale of the plot,
the galaxy formation model implemented in eagle predicts that GW signals will be
dominated by the coalescence of BH seeds (also shown in Fig. B.03, in which the
mass distribution of the mass ratio M1/M2 of the predicted event rate is dominated
by equal mass SMBH coalescences).

Our event rate predictions are robust to variations of simulated volume, resolution,
and parameters used to calculate the GW detections of the eLISA detector such as
the dimensionless spin parameters χ1. We summarise in Table B.01 the predicted
event rates for both the inspiral and merger-ringdown phases for all the different
parameter variations, simulated volumes and resolutions. Overall, the predicted
event rates of GW signals resolved by the eLISA detector are ∼ 2 events per year
for all the reference models, whereas the high-resolution recalibrated model Recal-
L025N0752 yields ∼ 3 events per year. This does not represent a significant change
in the predicted event rate.
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Fig. B.01.: Number of SMBH coalescences resolved by eLISA per observed year, per unit redshift. LEFT PANEL: inspiral phase. RIGHT PANEL: merger-
ringdown phase. Solid lines were calculated using dimensionless spin parameters χi = 0. For the dotted lines χi = 1. The distribution peaks
between redshift z ∼ 2 and z ∼ 1 for both the inspiral and the merger-ringdown phases.
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RIGHT PANEL: merger-ringdown phase. Solid lines were calculated using dimensionless spin parameters χi = 0. For dotted lines χi = 1. The
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Table B.01.: Estimated event rates for the different simulation models. σ is the standard Poisson uncertainty on the expectation event rate due to the finite
volume of the simulations.

fcut χi Simulation Inspiral Phase σI Merger-Ringdown Phase σM−RD

[Hz] event rate [yr−1] [yr−1] event rate [yr−1] [yr−1]

3 × 10−5

0

Ref-L100N1504 2.02 0.01 2.36 0.02
Ref-L100N1504 + Delays 1.89 0.01 2.17 0.01
SS-L050N0752 2.02 0.04 2.16 0.04
Ref-L050N0752 1.93 0.04 2.21 0.04
Ref-L025N0376 1.99 0.11 2.24 0.11
Recal-L025N0752 2.91 0.14 3.12 0.15

1

Ref-L100N1504 2.02 0.01 2.91 0.02
Ref-L100N1504 + Delays 1.89 0.01 2.55 0.02
SS-L050N0752 2.02 0.04 2.75 0.05
Ref-L050N0752 1.93 0.04 2.64 0.05
Ref-L025N0376 1.99 0.11 2.39 0.12
Recal-L025N0752 2.91 0.14 3.24 0.15
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