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Abstract
This thesis describes the development of a new seal concept for steam turbines called

the Aerostatic Seal. The Aerostatic Seal is a dynamic seal, and so can respond to rotor

radial movement to maintain a low clearance between the seal and the rotor. As the

seal is dynamic, smaller clearances can be achieved without rotor contact compared

to conventional static seals such as the labyrinth seal, hence increasing the efficiency

of the turbine through reduced leakage. Furthermore, as the seal is dynamic it can

tolerate larger radial transients typically found during start up and shut down of the

steam turbine, and so also contributes to increasing the flexibility of the turbine plant.

In this thesis an analytical design and analysis methodology was developed for the

Aerostatic Seal. The methodology was used to generate a number of seal designs which

were experimentally tested in a non-rotating test facility using room temperature air.

The results confirmed that the seal would operate dynamically, and the experimental

campaign provided valuable data on the operation of the seal. The non-rotating rig was

also used to test a second generation seal design.

The seal was then tested in a rotating test facility, which modelled high speed rotor

radial transients with an adjustable eccentric rotor. The Aerostatic Seal demonstrated

the ability to respond to high speed transients.

A final test campaign was conducted in the high temperature steam rig at TU Braun-

schweig, Germany, enabling experimental demonstration of the Aerostatic Seal using

realistic materials and represented realistic steam turbine conditions.

Finally, based on the experimental and analytical work carried out within this thesis,

a proposed Aerostatic Seal design for steam turbine implementation is presented.
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Ac Clearance area m2 L2

Acf Contact face area m2 L2

Af Area of single feed hole Af = πd2

4 m2 L2
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As Surface area of segment side m2 L2

A∆ Area experiencing pressure difference m2 L2

a Acceleration of seal segment ms−2 LT−2

ac Streamline area (Fig. 2.3) m2 L2

acont Area of contact face m2 L2

CD Discharge coefficient 1 -

Cfr Radial force coefficient Cfr = Fr
∆PAr

1 -

Cfs Radial side force coefficient Cfs = Fs
1
2

∆PAs
1 -

Cfµ Frictional force coefficient Cfµ = Fr
∆PAr

1 -

Cke Kinetic energy carry over coefficient 1 -

Cp Pressure coefficient Cpi = Pi−Pout
∆P 1 -

c Clearance m L

cm Mean clearance m L

cr Centroid radial coordinate m L

cx Centroid axial coordinate m L

cret Seal retracted clearance m L

cp Specific isobaric heat capacity J kg−1 K−1 L2T−2Θ−1

D Rotor diameter m L
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Fpr Radial pressure force N MLT−2

Fpx Axial pressure force N MLT−2
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h Specific enthalpy J kg−1 L2T−2

I Integral
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Chapter 1
Introduction
The steam turbine is one of mankind’s most important inventions. The steam turbine

revolutionised electricity production and hence helped create the modern society. In-

vention of the modern steam turbine is largely attributed to Charles Parsons in 1884

[1], [2], although important contributions were made by Carl Gustav de Laval, Auguste

Rateau and Charles Curtis [3].

Today the steam turbine is responsible for generating electricity from coal, nuclear

fission and biomass, and forms part of a combined cycle gas turbine (CCGT) plant. Ta-

ble 1.1 shows the different fuels used globally to generate electricity, and the percentage

contribution of each fuel to meet world electrical demand. The steam turbine is respon-

sible for the majority of electricity production worldwide.

In the future the steam turbine is likely to remain generating significant proportions

Fuel Type Percentage Turbine type

Coal 39.3 Steam

Oil 4.1 Steam

Gas 22.9 GT (66 %) & ST (33 %) approx.

Nuclear 10.6 Steam

Hydro 16.0 Hydraulic

Solar, wind, geothermal, tide 4.9 Various

Biofuels & waste 2.2 Steam

Approx 63.8 % from Steam Turbine

Table 1.1: 2015 world gross electricity production by fuel type. Data from the Interna-

tional Energy Agency [4].

1



1.1. FUTURE ENERGY CHALLENGES 2

of world electricity in technologies such as ‘small modular reactors’ (SMR) 1, concentrated

solar power (CSP) plants [6], biomass and nuclear fusion [7] (assuming that technology

reaches maturity).

Overall, improvements to the steam turbine will have significant impact on current

and future electricity production.

1.1 Future energy challenges
As shown in Table 1.1, the generation of electricity worldwide is as of 2015 still domi-

nated by fossil fuels, and with coal as the largest single fuel source [4]. The fuels used

to generate electricity are constantly changing as new technologies emerge, fuel prices

change, or due to political will. Now there is also the requirement to reduce greenhouse

gas emissions, principally carbon dioxide (CO2), to prevent excessive global warming [8].

To reduce the CO2 emitted generating electricity by burning fossil fuels, and to meet

demand once fossil fuels have ran out, there is increasing deployment of renewable and

low carbon electricity resources.

Figure 1.1 displays the total yearly electricity supplied from themajor types of electri-

cal generation in the UK, using data taken from the UK Department for Business, Energy

and Industrial Strategy quarterly ‘Energy Trends’ reports [9]–[14]. Since 2010 the electric-

ity produced by wind and solar PV has risen to over 14% of total electricity production.

The amount of electricity generated by low carbon technologies is likely to increase as

the cost of these technologies decreases.

The increased deployment of new intermittent sources of electricity onto the grid,

and the desire to reduce CO2 emissions, creates new challenges for conventional power

generation plant.

Challenge 1: Increasedflexibility. Wind and solar are intermittent energy resources,
and so this means that the amount of electricity produced depends on the weather.

Whilst it is largely predictable over a 24 to 48 hour time scale, it is not possible to pro-

duce electricity when there is no wind and no sun light. Therefore to meet consumer

electrical demand, conventional generation technologies need to respond quickly. For

the steam (and gas) gas turbine, this means starting more frequently and reaching full

1
Small nuclear fission reactors, typically with an electrical output less than 700MW [5]
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Figure 1.1: Percentage UK electricity supplied by fuel type. Data from [9]–[14]

load as fast as possible.

More frequent and faster starts has its own challenge for the steam turbine: i) differ-

ential thermal expansion of turbine rotor and casing during start up [15], and ii) thermal

stress and low cycle fatigue (LCF) of turbine components [16]–[18]. Differential thermal

expansion requires detailed assessment of axial and radial turbine clearance to ensure

that adequate clearance is maintained during turbine start [19], [20], increasing leakage

and decreasing efficiency, and raising the temperature of the turbine slow enough that

the thermal gradients have time to even out, reducing the differential expansion. Differ-

ential thermal expansions of the rotor cause maximum stress as the rotor is heating up,

and so increased number of fast starts decreases the life of the turbine.

Challenge 2: Increased efficiency. Increasing the efficiency of the turbine ulti-

mately reduces the amount of fuel required to generate the same quantity of electrical

energy. Therefore increasing the efficiency reduces the amount of CO2 emitted and also

reduces the operating cost of the turbine.

This thesis contributes to these two challenges by developing a new dynamic seal

called the Aerostatic Seal. A seal is used between rotating and non-rotating compo-
nents to limit the amount of steam leaking between turbine stages and from the tur-

bine itself. Steam that does not pass through the blade passages produces no work and

hence reduces the efficiency of the turbine. Also the leakage flow can disrupt the flow
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through the blade passages further decreasing efficiency. The seal also has to tolerate

relative movement between the rotating and non-rotating components, and so is af-

fected by the differential thermal expansions. For a fixed seal, such as the labyrinth seal

commonly employed in turbomachinery (see Section 2.2.1), this means that the clear-

ance must be sufficient to prevent the rotor coming into contact with the seal, causing

damage. To tolerate large differential thermal expansions and rotor excursions a fixed

seal such as the labyrinth seal requires a greater clearance, therefore increasing the

leakage flow through the seal, decreasing the overall efficiency of the turbine. Installing

new seals in a steam turbine to reduce leakage is a cost effective way of increasing the

power output and efficiency of the steam turbine [21].

A dynamic seal, such as the Aerostatic Seal, is a seal that is able to respond to the ro-

tor movements. Therefore the seal canmaintain a small clearance to reduce the leakage

flow and increasing the turbine efficiency, but also tolerate radial rotor movements.

1.2 The Aerostatic Seal: a new dynamic seal
The Aerostatic Seal is a new dynamic seal invented by Jon Seaton [22]. The seal is similar

in construction to the ‘retractable seal’ (see Section 2.2.2) which has seen wide deploy-

ment in steam turbines already. Figure 1.2 shows a potential application of the Aero-

static Seal in a low reaction steam turbine diaphragm.

The seal is made up from a number of circumferential seal segments; each seal seg-

ment consists of a labyrinth seal with an enlarged central pocket supplied with fluid

from immediately upstream of the seal [22]. This central pressurised pocket allows the

seal segment to move away from the rotor when at low clearances, preventing the seal

contacting the rotor surface. At high clearances reduced pressure in the central pocket

moves the seal towards the rotor surface. As in a retractable seal, the seal segments

are held apart by springs which push the seal segment radially out from the rotor when

there is no pressure drop across the seal, shown in Fig. 1.2. The seal segments are

pushed against the contact face of the seal holder by the difference between upstream

and downstream pressure, and to be able to move each segment has to overcome the

frictional force between the holder and seal segment. Each seal segment is also di-

vided circumferentially to create circumferential pockets, each one with its own feed
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hole. These pockets are intended to ensure that each seal segment maintains an even

clearance along the circumferential length of the segment. See Section 3.2 for a full

description of the operation of the Aerostatic Seal.

The standard design of the Aerostatic Seal shown in Fig. 1.2, is referred to as the

Generation I design, and is the focus of most of the investigation in this thesis. The

seal is as drawn in Fig. 1.2 with no rotor castellations as in the retractable seal typically

deployed in a steam turbine diaphragm. The Generation II design includes axial thrust

compensation springs to reduce the frictional force acting on the seal segments.

The Aerostatic Seal was initially the subject of fourMEng final year projects at Durham

University, [23]–[26]. The work of Auld [23] and Rafferty [24] conducted initial investi-

gation on the Aerostatic Seal by developing an analytical model and conducting com-

putation fluid dynamics (CFD) studies, and showed that the Aerostatic Seal was worth

experimental investigation. Durnan [25] developed an initial design for a non-rotating

test facility that was used in this thesis, and MacDonald [26] designed the seal for initial

testing. For full details see Section 2.5.

1.3 Project Objectives and Outline
This thesis documents the development of the Aerostatic Seal from October 2013 to Oc-

tober 2017, which was part of the Future Conventional Power Research Consortium, and

received funding from the Engineering and Physical Sciences Research Council [grant

number EP/K02115X/1] and GE Power, Rugby. The work on the Aerostatic Seal was

largely experimental on two experimental facilities at Durham University. A third test

facility using steam was utilised at TU Braunschweig. The analytical methodology of

Auld and Rafferty [23], [24] was extended to produce Aerostatic Seal designs for use in

the experimental campaigns.

The key aims of this project were as follows:

• Development of the analytical Aerostatic Seal design methodology.

• Experimental proof of concept of the Aerostatic Seal. This was initially in a non-

rotating test facility operating in air, initial design work carried out by Durnan [25].

Following successful proof of concept in the non-rotating rig, the seal was tested in



1.3. PROJECT OBJECTIVES AND OUTLINE 6

Figure 1.2: Diagram of the Aerostatic Seal.



1.3. PROJECT OBJECTIVES AND OUTLINE 7

a rotating test facility designed by Richard Williams.

• Experimental validation (or otherwise) of the design tool.

• Identify the key design features and parameters for a successful Aerostatic Seal

design.

The remainder of the thesis begins with Chapter 2, a review of competing sealing

concepts, with particular relevance to steam turbine application. Also discussed is the

theory of the labyrinth seal as this was also relevant to the Aerostatic Seal, particularly

for the design and analysis tool and understanding experimental results.

The design and analysis methodology is described in detail in Chapter 3. The chapter

ends with a summary of the designs manufactured for testing in the experimental test

campaigns.

The ‘Non-Rotating test rig’ and the ‘Durham Rotating Seals Rig’ are both described in

Chapter 4. Tests were also conducted in the steam test rig at TU Braunschweig - this is

briefly described in Chapter 9.

The experimental results from the ‘Non-Rotating test rig’ and the ‘Durham Rotat-

ing Seals Rig’ are described in Chapters 5 and 6 respectively. Chapter 5 begins with an

overview of the whole test campaign across all of the test facilities.

Along the way a diversion was made to investigate the Gen II design, a possible Aero-

static Seal variant which used ‘axial thrust compensation springs’ to reduce the frictional

force acting on the seal segment and hence make it more responsive. This is the sub-

ject of Chapter 7. The whole of Chapter 8 was dedicated to understanding why the seal

segments would typically operate with one side of the seal segment at a lower clearance

than the other.

Finally the thesis closes with experiments conducted in steam, and a description of a

proposed Aerostatic Seal concept in Chapter 9, and conclusion in Chapter 10.

Overall the work described within this thesis has demonstrated the dynamic capabil-

ities of the Aerostatic Seal, and leaves the seal in state ready for a first test in a steam

turbine.



Chapter 2
Literature Review
2.1 Introduction
Today there are many different and competing sealing technologies available to the de-

signer of turbomachines. However until recently it was only the labyrinth seal that has

seen wide scale deployment into steam turbines. Developments of the labyrinth seal

have been implemented into steam turbines, such as the retractable gland and spring

back gland (Section 2.2.2), and more recently the brush seal (Section 2.3.1). As the de-

signer of the steam turbine has tried to achieve higher efficiency and lower cost, novel

seals are under consideration, including the Aerostatic Seal. In order to place the Aero-

static Seal into context, and the role that the Aerostatic Seal would play in the sealing

technologies available to the designer, a review of existing and potential technologies is

reviewed in this chapter.

Within this thesis, different sealing technologies applicable to steam turbines have

been divided as follows:

• Non-contacting seals. These are fixed seals with a clearance between the seal
and the rotor. Discussed here are the labyrinth seal, the retractable seal and the

fluidic seal.

• Compliant seals. These seals are made from a series of flexible ‘seal elements’
that contact the rotor, but are compliant to allow rotor movement. Examples dis-

cussed here are the brush seal, finger seal and leaf seal.

• Dynamic seals. These are seals that dynamically respond to the rotor position,
8
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and typically operate at very low clearances. Seal types in this category are the Dry

Gas Seal (DGS), floating ring annular seal, the HALO seal, and the Aerostatic Seal,

the subject of this thesis.

2.2 Non-contacting seals
Non-contacting seals maintain a small, constant clearance between the rotating and

non-rotating components. The designer of such a seal is faced with the challenge of

minimising the leakage through the seal, which is achieved by minimising the clearance,

but also allowing enough clearance to allow for rotordynamic movement or thermal

growth of the rotor. Therefore non-contacting seals typically have a relatively large leak-

age compared to compliant or dynamic seals, but have the advantage of being relatively

cheap to manufacture.

2.2.1 Labyrinth seal
The labyrinth seal was the invention of Charles Parsons, and was introduced at the same

time as the steam turbine [27], [28]. The popularity of the labyrinth seal in steam and gas

turbines is due to their ease of manufacture and inexpensiveness, even though reduced

leakage can be obtained using other types of seal (such as brush seals for example) [29].

Labyrinth seals are a series of restrictions, found in various different configurations

shown in Fig. 2.1. The fluid accelerates to travel under each restriction and then ex-

pands uncontrollably in the next cavity. Some of the kinetic energy gained from the

loss of static pressure is lost through viscous effects in the uncontrollable expansion by

formation of turbulent vortices, hence reducing the total pressure of the fluid.

There aremany variants of labyrinth seals. Typically ‘see through’ or ‘straight’ labyrinth

seals (Fig. 2.1a) have the worst leakage performance but the lowest manufacture cost,

while stepped (Fig. 2.1b), Castellated (Fig. 2.1c) or staggered (Fig. 2.1d) labyrinth seals

have the best leakage performance due to the obstruction of the high velocity jet from

under the tooth. This high velocity jet continuing under the next restriction results in

kinetic energy carry over, which reduces the effectiveness of the seal. Inclined fin seals

(Fig. 2.1e) have improved leakage characteristics over non-inclined fins at the expense
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of decreased leakage performance if the flow is reversed due to changing pressure con-

ditions.

Other configurations of labyrinth seal have abradable coatings (Fig. 2.1f) or honey-

comb materials opposite the labyrinth fins. This allows the seal to cut the minimum

necessary clearance, minimising the leakage. This will be the clearance when the ro-

tor goes through an excursion or has expanded due machine heating, so a compliant

seal could operate at a lower clearance during more stable conditions. The honeycomb

material also introduces flow features that disrupt the flow through the labyrinth seal,

reducing leakage. All of the seals shown in Fig. 2.1 are equally valid with sealing fins on

the rotor instead of the stator.

Thermodynamic and fluid mechanics of the labyrinth seal
The flow through a labyrinth restriction can be thought of as two thermodynamic pro-

cesses. The first process is the acceleration of the fluid to pass through the restriction,

which is reversible (assuming no viscous losses), followed by uncontrolled expansion of

the fluid into the next cavity. The acceleration of the fluid converts pressure energy into

kinetic energy. Some of the kinetic energy is converted into heat through viscous mixing

in the cavity, some is recovered back into pressure, and some is ‘carried over’ into the

next restriction [30], [31]. These processes are plotted on an enthalpy - entropy plot for

a three fin ‘see through’ labyrinth seal in Fig. 2.2.

The narrowest part of the streamtube as it passes through the restriction is actually

smaller than the area of the restriction. This is called the ‘vena contracta’, and is demon-

strated in Fig. 2.3. The vena contracta is affected by the pressure ratio at each restriction

[32].

The kinetic energy ‘carried over’ into the next cavity reduces the pressure drop that

could otherwise be achieved if all the kinetic energy was destroyed in the cavity. This is

because the fluid begins to accelerate before all the kinetic energy has been dissipated,

and so more energy is available at the end of the labyrinth seal as pressure, rather than

been converted into heat. The kinetic energy carry over is mainly governed by clearance

to pitch ratio [31] and axial Reynolds number [33].



2.2. NON-CONTACTING SEALS 11

Rotor

(a) ‘See through’ or straight labyrinth

seal

Rotor

(b) Stepped labyrinth seal

Rotor

(c) Castellated labyrinth seal

Rotor

(d) Staggered labyrinth seal

Rotor

(e) Inclined labyrinth seal

RotorAbradable
Coating

(f) Abradable labyrinth seal

Figure 2.1: Labyrinth seal configurations
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Figure 2.2: Enthalpy - entropy diagram for a three fin labyrinth seal.

Figure 2.3: The ‘vena contracta’ through a labyrinth restriction
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Figure 2.4: Cross section of ‘mushroomed’ labyrinth fin.

Damage
The easiest way to reduce the leakage through a labyrinth seal is to either increase the

number of restrictions, or to decrease the restriction clearance. Often there is a limit to

axial space and so it is not possible to keep on adding restrictions indefinitely, and de-

creasing the clearance will increase the possibility of the labyrinth seal becoming dam-

aged due to rotor excursions.

Labyrinth fins can ‘mushroom’ when rotor contact is made, which makes the end of

the fin more nozzle like, increasing the leakage through the seal shown in Fig. 2.4. This

has been examined using CFD by Dogu et al [34]. Zimmermann et al [35] investigated

the flow through worn labyrinth seals with rounded fin tips. They found for fully rounded

fin tip the discharge coefficient of the fins could be increased by up to 35% for a stepped

labyrinth seal.

It is possible to increase the performance of the labyrinth seal without adding more

fins or decreasing the restriction clearance by changing the geometry of the fin and the

cavity, and this has been investigated by other researchers. Chougule et al [36] demon-

strate with CFD how adding an extra small fin on the tip on a honeycomb labyrinth seal

improved the leakage behaviour. Vakili et al [37] investigated a ‘C’ shaped labyrinth fin

which was shown, using CFD, to decrease the leakage through the seal. The fins were de-
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signed to deflect if rotor contact was made, and it was intended that the clearance could

be reduced to further decrease leakage as the seal fins were damage resistant. Similarly

Herrmann et al [38] investigated using flexible labyrinth fins with a reduced clearance

to reduce the leakage flow rate, the flexibility of the fins reducing damage and wear.

Kuwamura et al [39] showed that it was possible to optimise the shape of the labyrinth

cavity to decrease the leakage flow through the seal. In the studies above, geometry of

the labyrinth seal fins and cavities reduce leakage by influencing the vena contracta as

the fluid passes underneath the labyrinth restriction.

2.2.2 The Retractable Gland
The retractable labyrinth seal is a development of the labyrinth seal [40] and has been

widely deployed in steam turbines. The seal is divided into circumferential segments

with springs that push the segments apart when the turbine is unloaded, creating a

larger clearance between the teeth and the rotor. This enlarged clearance is useful

to prevent damage to the labyrinth fins due to increased rotor radial movement dur-

ing start up. As the turbine load is increased, the pressure across each stage is also

increased, and the pressure force on the seal segment outer surface overcomes the

spring force and frictional force, reducing the seal clearance. The segments rest locked

together at the designed clearance and with the seal segments resting on the T slot

shoulders [41], shown in Fig. 2.5. If the rotor was to move radially towards the segments,

there is no mechanism for the segments to increase clearance without rotor contact.

The retractable gland and the Aerostatic Seal are similar in design and construction,

the key difference is the ability of the Aerostatic Seal to move away from the rotor with-

out contact. The retractable gland has been successfully implemented into steam tur-

bines.

2.2.3 Fluidic Seals
Fluidic seals utilise air curtains to improve the performance of labyrinth seals. A fluidic

seal is made up from an axisymmetric jet forming a curtain of high pressure fluid usually

angled towards the oncoming leakage flow. A pressure drop is produced by the oncom-

ing leakage flow turning the jet flow downstream. Curtis et al [42] tested such a seal in
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Figure 2.5: A retractable seal segment at minimum clearance.

a single stage turbine operating in air and demonstrated leakage reduction and overall

efficiency gain accounting for the jet mass flow rate. Hogg and Ruiz [43] used Compu-

tational Fluid Dynamics (CFD) simulations to predict the potential leakage reduction in a

steam turbine, and found an improvement of 25% (including the air curtain flow) over

a labyrinth seal operating at the same conditions. The fluidic seal is usually operated

in conjunction with other sealing devices [44], [45]. The benefits are greater if the fluid

supplied to the fluidic curtain was ‘free’, such as fluid used for blade cooling in a gas

turbine [46].

2.3 Compliant Seals
Compliant seals aremade up from a number of flexible seal elements that form a barrier

to the oncoming leakage flow. In this thesis the brush seal, leaf seal and finger seal have

been considered. The brush seal has been employed in steam and gas turbines for a

number of years, and offers significant leakage performance gains over the labyrinth

seal. The leaf seal and finger seal have not yet been employed in the steam turbine.

Film riding (i.e. non-contacting) versions of the leaf seal and finger seal are available but

they are still considered as compliant seals in this thesis.
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Figure 2.6: Configuration of a typical brush seal.

2.3.1 Brush seal
Brush seals were the first alternative to labyrinth seals and have produced extensive

leakage performance benefits. Brush seals have enabled upwards of 80% leakage re-

duction compared to labyrinth seals [47], as well as more stable leakage characteris-

tics, better accommodation of shaft movements and they require less axial space than

labyrinth seals [29]. Brush seals are made from fine diameter bristles (typically 0.1mm)

layered together to make a dense pack. The bristles are held between two rings and can

have a slight interference fit to the rotor. The bristles are radially angled with the shaft

rotational direction to accommodate rotor radius changes without the bristles buckling

(lay angle), and can be axially inclined [48]. Figure 2.6 shows the configuration of a typ-

ical brush seal. As the brush seal is compliant, it is able to tolerate radial movement of

the rotor.

Brush seals are typically a contacting seal. Therefore there will be heat generation

due to frictional heating in the rotor, and also bristle wear which will lead to deteriora-

tion in the sealing performance over time [49]. One of the key challenges for the design

of brush seals is to ensure good leakage performance over the time between turbine

overhaul, and to ensure that the heating of the rotor is not excessive. Excessive heating

of the rotor surface can lead to thermal instability. This is where the thermal heating due

to rotor contact increases the rotor diameter due to thermal expansion, which causes

further brush seal heat production, in turn increasing rotor thermal expansion until the

rotor contacts the backing plate [29]. ‘Thermal bow’ has also been described by Little et

al [41] where the rotor of a steam turbine can become bowed due to an unbalanced ro-
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tor. With an unbalanced rotor there is a single point on the surface of the rotor that will

have the greatest interference with the seal, and so will be the hottest region. This cre-

ates an asymmetric temperature profile around the circumference of the rotor, leading

to a bowed rotor. Thermal heating of the rotor due to brush seals have been investi-

gated by a number of researchers [50]–[52].

Brush seals are sensitive to the pressure drop across the seal. For example Crudging-

ton and Bowsher [53] demonstrated that increasing the pressure drop across the seal

leads to bristle ‘blow down’, also known as ‘pressure closing’. This is where the bristles

move radially inwards towards the rotor surface, and can decrease the life of the seal

due to extra rotor contact pressure and hence greater seal wear. Increasing the axial

inclination angle of the brush seal increases the radial stiffness of the seal and decrease

the blow down effect on the seal, and so reduces wear of the seal [54]

Friction also influences the performance of the brush seal [29]. The pressure drop

across the seal exerts a pressure force onto the bristles, which get pushed against the

back plate and also into each other giving rise to frictional forces. Therefore if the seal

is deformed due to a rotor radial excursion or thermal growth, then the seal bristles

would stay at a greater clearance until the seal is de-pressurised or the blow down forces

sufficient to push the bristles back down towards the rotor. This is known as hysteresis.

2.3.2 Leaf seals
Leaf seals are made from a stack of thin plates, welded along the top surface [55]. The

seal is radially compliant and axially stiff. A diagram of a leaf seal is shown in Fig. 2.7.

Variations in front and back plate gap are used to control the lift forces on the leaves and

hence reduced wear. The leakage performance of the leaf seal is reported as 33% of an

equivalent four stage 0.5mm gap labyrinth seal, measured experimentally [56]. The leaf

seal was implemented into a Mitsubishi M501G gas turbine by Nakane et al [56].

The leaf seal offers advantages over the brush seal. Due to the greater axial stiffness

of the leaves, there is less friction between the leaves and the rear plate, hence the radial

stiffness of the seal is reduced. This gives the seal a greater ability to accommodate

rotor movements, which was experimentally demonstrated by Jahn et al [57]. Due to

hydrodynamic lift forces acting on the leaf elements, the leaves are able to overcome

the mechanical stiffness of the leaves and the blow down effect due to the pressure
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Figure 2.7: Configuration of a typical leaf seal, from Jahn et al [58].

difference, which reduces wear and rotor heating when the rotor is turning [56], [58].

However despite these apparent advantages, the leaf seal has not been implemented in

a steam turbine that the author is aware.

2.3.3 Finger seals
The finger seal is a sealing concept that has similar leakage performance as brush seals,

but with the cost estimated to be 40 to 50% of the brush seal [59]. The finger seal is

composed of a number annular rings with a series of radial slots cut into it to create

slender finger elements, shown in Fig. 2.8. These have an elongated contact pad at the

tip. The fingers are held between fore and aft cover plates with a spacer in between.

Each of the annular plates are shifted circumferentially so the finger elements of one

ring cover the gaps between elements of the other rings. The whole assembly is then

riveted together at the outer radius [60].

As with the brush seal and the leaf seal, the finger seal is compliant, rotor movement

accommodated through deflection of the fingers radially. As for the brush seal and to a

lesser extend the leaf seal, there is hysteresis in the ability of the seal fingers to respond

to the rotor [61].

The basic finger seal concept has contact between the finger contact pad and the ro-
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Figure 2.8: Configuration of a typical finger seal, from [63].

tor. This has been developed further by shaping the contact pads to generate hydrody-

namic lift forces which prevent contact during normal running, called the non-contacting

finger seal. This is intended to increase the life time of the seal at the expense of a slight

increase of leakage flow through increased clearance. Testing of the non-contacting

finger seal has shown that friction between the finger elements will influence the be-

haviour of the seal, causing hysteresis. When increasing the pressure differential, the

finger elements will move towards the rotor and ‘bind’ (i.e. contact the rotor surface)

[62].

2.4 Dynamic seals
There are many dynamic seal concepts at varying levels of technology readiness, and

a selection of promising designs are summarised here. It can be summarised that dy-

namic seal concepts utilise hydrostatic and/or hydrodynamic forces to achieve a seal

operating at small clearances by providing a radial force away from the rotor surface.

Discussed within this chapter are ‘dry gas seals ’ (DGS), the carbon segmented seal, the

‘HALO’ seal and the floating ring annular seal. Some types such as the ‘dry gas seal’ and

floating ring annular seal have been in operation for many years in small gas compres-

sors in the oil and gas industry. The HALO seal has more recently been commercialised.
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Figure 2.9: Typical configuration of a dry gas seal.

However none of the above have found their way into steam turbines as of 2017.

The Aerostatic Seal is a dynamic seal, and is specifically developed with the steam

turbine as the intended application, although other turbomachinery applications are

feasible.

2.4.1 Dry gas seal (DGS)
One type of dynamic seal that has seen extensive deployment in small high pressure

compressors in the oil and gas industry are ‘Dry Gas Seals’. A typical layout of a dry

gas seal is shown in Fig. 2.9. The seal is a face seal rather than an annular seal, and

consists of a rotating ring and a stationary ring, which is loaded towards the rotating

ring by springs. Dry gas seals use hydrodynamic forces to control the gap between the

stationary and rotating rings, the hydrodynamic pressure force generated by grooves

on the face of the stationary ring (see Fig. 2.9), which produces variations in fluid film

thickness [64].

A recent driver to dynamic sealing concepts is the proposal of supercritical carbon

dioxide (sCO2) Brayton cycles for advanced coal power plants, which offer higher ther-

mal efficiency over typical steam cycles [65], [66]. Leakage from the turbine in sCO2

cycles becomes more significant as there is the penalty of re-compressing the CO2 that

leaks out from the turbine back up to cycle pressure [67], [68].

Dry gas seals have been proposed as a potential end shaft seal for large scale (500MW)

sCO2 turboexpanders [66]. Dry gas seals are already commercially available in small di-

ameters, see [69] for example. Bidkar et al [66] performed analysis on a hydrodynamic

face seal (basically a dry gas seal) for larger shaft diameters. One of the key issues they
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found was deformation of the seal face due to the large diameter and high pressure

drop across the seal. The deformation is detrimental to the development of hydrody-

namic lift forces. The seal analysed was 600mm in diameter, and so was comparable to a

steam turbine diaphragm seal. Deflection of the diaphragm of impulse steam turbines

in operation has been documented and can amount to 0.1 inch (2.54mm) [70]. Typical

fluid film thickness is 0.005mm to 0.013mm [66].

Dry gas seal requires a clean gas supply. Typically the seal buffer gas supply would be

filtered to prevent small particles or condensate getting into the seal [69], which would

need to be considered for steam turbine application. As there are impurities in the

steam of a typically steam turbine, this may make the dry gas seal unsuited to steam

turbine operation.

Dynamic seals have also been developed for more exotic components such as buffer

seals in liquid oxygen turbo pumps for rocket engines [71]. In these applications low

leakage is essential. In an oxygen turbo pump, expanding hydrogen rich steam, which

drives the turbine connected to the oxygen pump, is separated by an external helium

gas supply acting as an inert buffer. Reducing the leakage of the buffer gas requires less

buffer gas to be carried on-board the rocket, freeing up rocket payload. Shapiro and Lee

[71] investigated many different configurations of sectored seals, floating ring seals, and

face seal (similar to dry gas seal). The segmented seal analysed used aerostatic feed

holes to provide radial and axial force balance using the high pressure buffer gas flow

as the supply, shown in Fig. 2.10.

2.4.2 Carbon segmented seal
The carbon segmented seal is a segmented seal that utilises hydrodynamic forces to

control the clearance of the seal segments. A circumferential or garter spring forces

the segment towards the rotor surface, and so during coast down the seal segment will

contact the rotor. Circumferentially spaced pockets are used which produce hydrody-

namic lift. Arghir and Mariot [72] analyse the carbon segmented seal, and present an

analytical model with three degrees of freedom. Similar segmented seals are available

commercially [73], [74].
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Figure 2.10: Oxygen turbo pump seal utilising aerostatic forces, from [71].

2.4.3 ‘HALO’ seal
The ATGI ‘HALO’ seal is a dynamic seal that consists of cantilevered pads that are able to

move radially. The pads are held by a radially soft but axially stiff spring, with a down-

stream secondary seal to prevent leakage through the spring section [75], and is shown

in Fig. 2.11. Hydrodynamic and hydrostatic forces are used to control seal clearance

[76]. The secondary seal can be a brush seal or a plate seal [76]. The HALO seal has

been tested in a high temperature seal test rig and a significant leakage reduction was

achieved [77]. The HALO seal has been successfully implemented in a number of com-

pressors [78], [79], and is commercially available [80].

By having an axially stiff spring which connects the sealing ‘shoe’ to the stator, friction

between the secondary seal, which consists of a simple flat plate, is reduced, although a

low friction nickel-boron coating is still used.

2.4.4 Floating ring annular seal
Floating ring annular seals are dynamic seals that consists of a single annular ring made

from carbon. A cross section is shown in Fig. 2.12. For seal movement to occur, the seal

ring has to overcome friction between itself and the stator, as in the Aerostatic Seal. The

seal ring is made of carbon, and therefore the frictional forces acting on the seal ring
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Figure 2.11: Halo seal general arrangement, from [79].

are low. Including the effects of mixed lubrication, the equivalent coefficient of friction

is expected to be below µ = 0.1 [81]. The ability of the seal to track high speed and low

amplitude rotor vibrations has been demonstrated in a rotating test facility [82].

2.4.5 A note on hydrostatic and hydrodynamic forces
The generation of hydrostatic and hydrodynamic forces are of great importance in the

field of lubrication theory and for the design of hydrodynamic or hydrostatic/aerostatic

bearings. Hydrostatic and aerostatic devices (bearing or seals) are supplied with an ex-

ternal supply of fluid to increase pressure on the surfaces of the bearing, or by the

pressure drop across a restriction (seals).

Hydrostatic (or aerostatic) forces are pressure forces due to the static pressure on

the surfaces of the seal or bearing. An example would be pressure forces acting on the

retractable seal segment to cause the segment to move towards the rotor, or the Aero-

static Seal which uses the feed hole to manipulate the pressure distribution to generate

different radial forces depending on the clearance of the seal segment.

In the aerostatic bearing, high pressure fluid is supplied externally. The bearing oper-

ates at a low clearance, and the load on the bearing is taken by the pressure force on the

bearing surface. If the bearing face was perturbed, then the flow through the feed hole
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Figure 2.12: Floating ring annular seal

would be increased, increasing the pressure drop through the feed hole and reducing

the pressure supplied to the bearing surface. This keeps the bearing operating at a low

clearance, and reduces the amount of externally provided fluid.

Hydrodynamic forces are generated by the flow of the leakage fluid through a clear-

ance of varying height, and are governed by the Reynolds equation [64]. Typically such

forces are generated by the use of the ‘Rayleigh Step’ as in the carbon segmented seal

analysed by Arghir and Mariot [72] or spiral grooves such as those in the dry gas seal.

Arghir andMariot [72] also report the ability to produce hydrodynamic lift force from the

‘waviness errors’ on the surface of the seal and the rotor surface. The ‘waviness errors’

are the deviations from the mean surface position due to surface roughness. However

the forces generated are small, and film thickness is less than 1µm.

2.5 The Aerostatic Seal
Previous work and development on the Aerostatic Seal concept has been carried out at

Durham University with a series of four final year MEng projects - these are summarised

in this section.

Auld [23] conducted the first study on the Aerostatic Seal concept, and produced the

first analytical model. The pocket pressure was calculated to give force equilibrium of
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the seal segment and the feed hole diameter calculated to achieve the required pres-

sure. The analytical model was verified using 2D CFD results which showed good pres-

sure andmass flow rate agreement at low clearances. A force balance was performed on

a seal design based on an existing retractable gland design. A range of feasible geome-

tries that would rest at a non-zero clearance and move away from the rotor at low clear-

ances were found. Auld estimated that the Aerostatic Seal could operate at a clearance

of 0.2mm and hence have a leakage mass flow rate of 27% that of a typical labyrinth seal.

This was similar to the level of leakage associated with a brush seal (20% of labyrinth seal

flow) [47].

Rafferty [24] used a similar analytical model as developed by Auld [23]. He made

an assumption about the mass flow rate through the feedholes where 2ṁf = ṁout at

clearances of 0.1mm or less. This was used to calculate the feed hole diameter in the

same way as by Auld. Rafferty uses this model to develop a Aerostatic Seal calculation

tool which performs a search of all possible designs of seal segment shape within a

number of geometrical limits, set by the user. A design was designated as feasible if

it meets force equilibrium, moment equilibrium and has a positive total force when the

segment is at zero clearance. This was used to obtain a number of possible seal designs;

however there was no seal design in which there were no net pressure forces acting on

the seal at the desired clearance.

Rafferty also conducted 3D CFD analysis on the seal and showed agreement in the

pressures calculated by the analytical model. This was to investigate the effect of the

feed hole flow on the fluid in central the pocket of the seal segment.

Rafferty found it was necessary to increase the width of the segment to achieve a

seal with no net force acting upon it when at the design clearance; the initial width

of the segment was based on a current retractable gland design to retrofit to existing

steam turbines. Rafferty also investigated the conditions required for the segment to

move towards the rotor after a rotor excursion, as well as away from the rotor during

the excursion. It was concluded that the segment would move away from the rotor at

zero clearance and move back towards the rotor at 0.35mm clearance.

Damage to the seal was investigated by considering what would happen if a feed hole

becomes blocked. Rafferty concludes that in a seal segment of 3 feed holes any one of

them becoming blocked would reduce the radial force to the extent that the segment
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would move towards the rotor.

Durnan [25] conducted work to alter the design tool by Rafferty [24] to model a seg-

ment rather than a unit length seal. Durnan developed the non-rotating rig concept, as

detailed in Chapter 4. Originally it was envisaged to have a hydraulically actuated rotor

which would simulate a rotor excursion; however it was deemed too expensive for an

initial test rig.

MacDonald [26] analysed the dynamics of the gland in more detail, as well as the

start-up conditions. The conclusion was that in order to make the seal segment respon-

sive enough that it wouldmove away from the rotor andmove back again, the coefficient

of static friction would have to be reduced or the frictional force reduced via a reduction

in the normal force. It was noted at start-up that the seal segment could stick at the

clearance where the radial force acting on the segment reduces below the dynamic fric-

tional force of the segment. A number of methods of reducing the frictional force were

investigated, including a pressurised cavity in the contact face and low friction coatings

on the seal segment and seal holder. A number of new seal designs were then produced

using these methods and taking into account the dynamic considerations. One of these

seal designs was designated ‘MacDonald 1’ and was manufactured for testing on the

non-rotating test rig.

2.6 Conclusion
Table 2.1 compares the leakage reduction of competing seal technologies. The leakage

reduction was compared to a ‘comparable’ labyrinth seal. As the different researchers

in the references providing the data in Table 2.1 have not all used the same configu-

ration of labyrinth seal, then the values quoted do not represent a definitive leakage

improvement values, but serve as a useful comparison nevertheless.

Dinc et al [47] compares a brush seal to what they described as a typical labyrinth

seal (no other data was given presumably as it was commercially sensitive) in a rotating

seal test facility capable of operating with air or steam as the working fluid. Typically

the leakage through the brush seal was 20% that of the labyrinth seal, although differ-

ent configurations of brush seal gave greater leakage benefit. The brush seals tested

combined a brush seal with labyrinth restrictions rather than a single brush.



2.6. CONCLUSION 27

Technology Flow through seal as

percentage of com-

parable labyrinth seal

flow

Reference

Brush Seal 20% Test rig results - fig 2 from Dinc et al [47]

HALO Seal 30% San Andrés and Anderson [77] (test rig)

Aerostatic

Seal

27% Auld [23] (calculation)

Table 2.1: Comparison of potential leakage reductions of competing seal technologies

San Andrés and Anderson [77] compare the leakage performance of the HALO seal

and a 3 fin labyrinth seal in a rotating seals rig which uses high temperature air. The

labyrinth seal clearance was 0.255mm. The leakage reduction of the HALO seal was 50%

compared to that of the labyrinth, or when the pressure ratio (Pin/Pout) was greater than

3, then the leakage reduction was increased to 70%.

Auld [23] calculated the flow rate through an Aerostatic Seal operating at a clearance

of 0.2mm which was considered a feasible operating clearance for the seal. It was found

that the leakage reduction through the Aerostatic Seal compared to the same seal but

with no feed holes at a clearance of 0.7mm gave a 73% leakage reduction.

Overall the brush seal and HALO seal both offer significant leakage reduction over

the labyrinth seal, and initial investigation on the Aerostatic Seal suggest similar levels

of leakage reduction are also possible. Obviously the level of leakage reduction possible

with the Aerostatic Seal is dependent on the operating clearance of the seal.

A number of competing seal designs have been reviewed in this chapter. The seals

reviewed were categorised as ‘non-contacting seals’ such as the labyrinth seal or re-

tractable, ‘compliant seals’ such as the brush seal, and ‘dynamic seals’ such as dry gas

seals or the HALO seal.

In order to reduce the leakage and hence increase the efficiency of steam turbines,

whilst also increasing the operational flexibility of the turbine, then implementing com-

pliant or dynamic seals becomes necessary. This is because without any method for

the seal to respond to rotor movement, ‘non-contacting’ seals such as the labyrinth seal

become damaged through rubs, increasing the leakage through the seal. Brush seals,

whilst allowing for rotor movement and achieving significant leakage reductions are a

contacting seal. This leads to heat generation at the rotor and seal interface, and also
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the seal wears over time, leading to a gradual reduction in leakage performance.

The Aerostatic Seal offers advantages over other dynamic seal concepts as it is a

development of currently used sealing technology in steam turbine diaphragm seals.

The addition of ‘feed holes’ from the top surface of the seal segments to a central pocket

allow the seal to respond to rotor movement. Due to the similarity of the design to

existing diaphragm and end gland segments, the seal design could be retrofitted into

existing diaphragm and end gland constructions.

The disadvantages of the dry gas seal, HALO seal and floating ring annular seal for

application to steam turbines are the complex manufacturing due to the requirement

for close tolerances. Typical hydrodynamic fluid film thickness in such seals are of the

range 0.005-0.013mm [66]. These seals would also require change to current diaphragm

construction, and are sensitive to deflections or distortions present in steam turbines

due to the high temperature and pressures.

Previous development work on the Aerostatic Seal has used a mixture of analytical

modelling and computational fluid dynamics (CFD) simulations [23]–[26]. The results of

these investigations identified that friction presented the greatest unknown, and which

would also have significant impact on the performance of the Aerostatic Seal. Other dy-

namic seals are more tolerant to the effects of friction by the choice of material (carbon

in the floating ring annular seal), or in the case of the HALO seal the axially stiff support

structure and low friction coatings. The gap that this work fits into is to experimentally

test this promising seal technology to confirm that friction can be overcome to achieve

bidirectional dynamic behaviour of the seal.



Chapter 3
Design and Analysis Methods
3.1 Introduction
This chapter describes the standard design and analysis methodology of the Aerostatic

Seal, as well as the theory behind the operation of the seal. The design and analysis

methodology builds upon the earlier work conducted by Auld [23], Rafferty [24], Durnan

[25] and MacDonald [26].

The standard analysis methodology is an analytical tool used to determine the fluid

flow through a particular seal design. From the fluid flow and pressures, the forces

acting on the Aerostatic Seal segment are found and the success or otherwise of the

design obtained.

The design methodology uses the standard analysis methodology to test a wide

range of possible Aerostatic Seal designs within a solution space defined by the user.

The design code then outputs the best seal designs within the solution space that the

designer can pick from.

Throughout the project a number of Aerostatic Seal designs have been generated

for use in various test rigs described within this thesis. These have been generated us-

ing different versions of the methodology as it developed, although they are compared

using the same analysis methodology at the end of this chapter.

29
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Figure 3.1: The Aerostatic Seal concept, installed in a steam turbine diaphragm.
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3.2 Theory of Operation
The Aerostatic Seal is a segmented seal, similar to the retractable seal described in Sec-

tion 2.2.2, and is shown in Fig. 3.1. Each seal segment is free to move inside the di-

aphragm tee slot, which sets the maximum and minimum clearance. Circumferential

springs between the seal segments ‘retract’ the segments when there are no pressure

forces acting on the segment. Labyrinth fins throttle the leakage flow between the seal

segment and the rotor surface, providing the seal.

The key feature of the Aerostatic Seal is the ‘feed hole’ which allows upstream steam

on top of the segment to flow into the central seal pocket. Upstream pressure is present

on the top of the seal segment as there is a clearance between the upstream face of

the Tee slot and the seal segment, shown in Fig. 3.1. This increases the pressure in the

central pocket, and provides the seal with amechanism to passively control the segment

clearance in a similar manner as the aerostatic bearing. The segment is divided into

circumferential pockets, each pocket having at least one feed hole as shown in Fig. 3.1.

These pockets are intended to ensure an even clearance along the circumference of the

seal segment.

For the Aerostatic Seal segment to move in response to the rotor surface, then the

pressure force must overcome the frictional force between the seal segment and the

diaphragm. If the frictional force is too high, then the seal segment may be unrespon-

sive. Too little friction and the seal segment will be constantly moving which could lead

to wear of the seal segment, and risks rotor rubs due to under damped seal segment

behaviour.

3.2.1 Pressure Distribution
Consider a cross section of a ‘see through’ or ‘straight’ labyrinth seal with four restric-

tions, shown in Fig. 3.2, and operating at a typical labyrinth seal clearance of 0.7mm.

As steam flows through each restriction in turn, there is a pressure drop due to mixing

losses after each fin. (See Section 2.2.1 for a full description of labyrinth seal function.)

The largest pressure drop is at the last restriction due to decreasing density as pres-

sure decreases. As the density decreases, the velocity is greater under the restrictions,

and hence there is greater energy dissipation at the restriction and therefore a larger
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Figure 3.2: Pressure distribution in a ‘see through’ 4 fin labyrinth seal.
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pressure drop. Steam is free to pressurise the top surface of the seal segment, and is

prevented from flowing around the back of the segment by the metal on metal contact

between the diaphragm, shown in Fig. 3.1. In reality there will be a small amount of

leakage through this ‘secondary seal’. As the pressure on top of the seal segment is inlet

pressure, there will be a net pressure force pushing the segment towards the rotor. This

is represented by the blue shaded area on the graph on Fig. 3.2. On the rear section of

the seal segment there is a net force away from the rotor as the pressure on top of the

segment is outlet pressure. This is indicated by the red shaded area on Fig. 3.2. The blue

area is greater than the red area, therefore the net pressure force is acting towards the

rotor surface.

Now consider what happens if the seal was turned into an Aerostatic Seal by drilling

a series of small ‘feed holes’ from the top surface into the central labyrinth seal cavity. If

the seal was operating at the same clearance as before, then the pressure drop across

each restriction is also similar, and is illustrated in Fig. 3.3a. This is because the flow rate

through the feed holes is much smaller than the main leakage flow rate. As before there

is a net pressure force acting towards the rotor surface.

If the seal segment was now operating at a reduced clearance, shown in Fig. 3.3b,

then the main leakage flow rate is reduced. However as the feed hole area will stay the

same, a greater proportion of the flow will be going through the feed holes. Therefore

the velocity of the steam going under the first two restrictions will be reduced, and the

pressure drop reduced accordingly. The last two restrictions will now be providing the

majority of the seal pressure drop. If the seal segment geometry is chosen correctly,

then there will be a net pressure force generated that is away from the rotor surface.

Figure 3.4 demonstrates how the pocket pressures vary continuously with clearance,

calculated analytically. See Section 3.3 for the method. This continuously varying pres-

sure gives rise to a continuously varying pressure force acting in the radial direction.

A pressure coefficient, Cp has been defined, see Eq. (3.1), to non-dimensionalise the

pressure in each pocket of the seal segment. The pressure coefficient would be 1 if the

pocket was at inlet pressure, and 0 if the pocket at outlet pressure. In Eq. (3.1), i = 1, 2, 3,

Cp1, Cp2, and Cp3 refer to the pressure coefficient in the first, second and third pockets

respectively and P1, P2 and P3 refer to the pressure in the first, second and third pockets

respectively.
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Figure 3.4: Variation of Aerostatic Seal pressure distribution with seal clearance. In-

let pressure 6 bar(a), outlet pressure 4 bar(a), MESS01 seal design. Calculated using the
standard analysis methodology (see Section 3.3)

Cpi =
Pi − Pout
Pin − Pout

(3.1)

Auld [23] and Rafferty [24] consider the operation of the Aerostatic Seal more like

an aerostatic bearing. In some respects the Aerostatic Seal does indeed operate in a

manner similar to an aerostatic bearing, particularly the way the central feed holes limit

the feed hole flow into the central pocket when the seal segment is at a high clearance,

leading to a reduction of seal segment clearance. Other aspects of the Aerostatic Seal

operation are dissimilar to an aerostatic bearing. The pressure loss on the underside of

a bearing is due to viscous shearing, rather than a series of throttling processes as in a

labyrinth seal.

3.2.2 Forces and Moments
The previous section has explained how varying clearance will give rise to a varying pres-

sure force. However the pressure force is not the only force acting on the seal segment.

The circumferential springs exert a radial force component onto the seal segment.

The force applied can be thought of in two parts. The force due to change in clearance

and the stiffness of the springs, and the ‘pre load’which is the constant force applied due
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to initial compression of the springs when the seal segment is in the retracted position.

Pre load is important to ensure that the seal segment is retracted when there is no load

(i.e. pressure drop) on the turbine stage.

Other forces acting on the seal segment are weight, a d’Alembert equivalent accel-

eration force if the segment is accelerating, the diaphragm reaction force counteracting

the axial pressure force due to the pressure drop. There is also friction between the seal

segment and the diaphragm opposing the applied radial forces. A free body diagram is

shown later in Fig. 3.10.

The frictional force acting on the seal segment determines if the segment will move.

If the applied forces are large enough to exceed the frictional force, then the seal seg-

ment will move. If the applied forces are smaller than themaximum frictional force, then

the segment will remain in static equilibrium. Friction is proportional the axial pressure

load on the seal segment, the proportionality constant called the coefficient of friction

µ [83]. As the axial pressure force can be controlled to an extent by the geometry of

the seal segment, then the frictional force can be influenced. The coefficient of friction

however is a function of material and material finish. Friction can be modelled with a

static coefficient of friction, and a lower dynamic coefficient of friction.

Figure 3.5 shows radial forces acting on the seal segment at varying clearance. The

radial applied force, Fr, is the vector sum of the pressure force, the spring force and

weight in the radial direction. Also plotted is the positive and negative static friction

force. The minimum clearance limit is called the ‘minimum static clearance’ and the

maximum clearance the ‘maximum static clearance’. If the Aerostatic Seal is between

these clearances, then the segment will remain stationary. If the rotor moves and the

clearance is reduced so it is below the minimum static clearance, the segment will move

away from the rotor. If the rotor moves sufficiently away from the segment so the clear-

ance is greater than the maximum static clearance, then the segment will move towards

the rotor. The segment will stop moving once the applied radial force is below the dy-

namic friction force and seal segment inertia is overcome.

As the pressure forces acting around the seal segment are not evenly distributed

about the centroid of the segment, then a net pressure moment is generated. If the

segment was able tilt forwards inside the diaphragm, then the segment could jam. If

the segment was to tilt forwards the pressure distribution would be effected and could
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Figure 3.5: Variation in radial force with clearance. Inlet pressure 6 bar(a), outlet pressure
4 bar(a), coefficient of static friction µstat = 0.6, MESS01 seal design. Calculated using the
standard analysis methodology (see Section 3.3).

prevent the segment moving away from the rotor as designed. A certain level of applied

moment can be tolerated however as the seal segment contact face is curved. This

allows the axial reaction force to be applied above or below the centroid location to

balance the applied moments. This is further discussed in the following section.

As explained earlier, the intended function of the circumferentially spaced pockets

was to ensure that the seal segment operated at an even clearance. As each pocket has

at least one feed hole (the central pocket has two as it occupies a greater circumferential

portion of the seal segment), then the pockets are individually pressurised. If one side of

the seal segment is at a lower clearance then the pressure in that individual pocket will

be higher (by the samemechanism as discussed previously), and consequently there will

be a righting force generated. (It was discovered in the experimental test campaign that

the mechanism for providing this functionality was more complicated - see Chapter 8.)

The circumferential pockets also contribute to disrupting swirling flow inside the

labyrinth seal cavities. Due to the high level of turning on impulse design steam tur-

bine stators, the is a large tangential component to the steam entering the Aerostatic

Seal. Disrupting this flow improves the rotordynamic stability of the seal, as discussed

in Section 2.2.1. However by disrupting the flow, a tangential force is generated on the
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seal segment. This force is taken on the circumferential springs.

3.2.3 Pressure Effects
The radial pressure force generated by the Aerostatic Seal segment is to a first order

approximation proportional to the pressure difference across the seal. In reality the

pressure ratio, PR, also effects the discharge coefficient of the labyrinth fins, which in

turn effects the pressure distribution underneath the seal segment [84]. The axial pres-

sure force is proportional to the pressure difference; hence the frictional force is also,

assuming a constant coefficient of friction. The spring forces are not affected by the

pressure difference, and therefore at low pressure drops, spring forces are dominant

which retracts the seal segment.

At a particular set of inlet and outlet pressure conditions, the radial force can be

plotted with clearance (as in Fig. 3.5), and the maximum and minimum static clearances

determined. If one were now to plot the maximum and minimum static clearances with

pressure difference, as in Fig. 3.6, then the performance of the seal can be found over

a range of pressure differences. If the seal was operating at a clearance between the

minimum and maximum static clearance lines, then the seal will be stationary. At low

pressure difference both the minimum and maximum static clearances are large, and

hence the seal will be retracted.

Figure 3.6 can be used to imagine how the seal will operate as the pressure is steadily

increased and then decreased. If the pressure is initial low, then the seal segment starts

in a retracted position. The pressure is increased, and when the maximum static clear-

ance is equal to the retracted clearance, the seal segment will move to its operating

clearance, termed ‘close in’, and is indicated in Fig. 3.6. The seal should then remain

static until the pressure is reduced again at which point the segment will retract, shown

on Fig. 3.6, or if thermal growth or another rotor radial transient reduced the clearance

enough that the clearance is below the minimum static clearance.

The pressure drop across a steam turbine stage is roughly proportional to the load on

the turbine. During start up the pressure will be increased enough to spin the turbine up

to speed and the generator synchronised to the grid. The load is then steadily increased

to the desired load. It is desirable for the Aerostatic Seal to be retracted during the initial

run up to speed as this is when the largest rotor radial transient events occur. Once the
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Figure 3.6: Example variation in maximum and minimum static clearance as a function

of pressure difference, with trajectory of seal segment.

rotor is up to speed, then the seal should be at the operating clearance to maximise the

efficiency of the turbine at part load.

3.2.4 Frictional Effects
The maximum and minimum static clearance is sensitive to the coefficient of static fric-

tion. The variation of maximum and minimum static clearance with coefficient of fric-

tion is shown in Fig. 3.7, and was calculated using the analytical model described in this

chapter, and based on the seal design ‘MESS01’ at ∆P = 0.5 bar. At low coefficients of

friction the maximum and minimum static clearance was similar. Increasing the coef-

ficient of friction increases the maximum static clearance and decreases the minimum

static clearance, making the seal less responsive. Beyond a coefficient of static friction

of µ = 0.3, the gradient of the maximum static clearance decreases, and so a relatively

small increase in coefficient of friction has a relatively large increase in maximum static

clearance. Therefore it is possible that small changes in friction over time, or small differ-

ences in the assumed coefficient of friction at the design stage compared to in operation

could have a significant effect on the operating clearance of the Aerostatic Seal. Testing

at representative steam turbine conditions is important to ensure that the Aerostatic



3.3. STANDARD ANALYSIS METHODOLOGY 39

Clearance [mm]

C
oe

ffi
ci

en
t o

f F
ric

tio
n 

µ 
[-

]

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Max. static clearance
Min. static clearance
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friction µstat = 0.6, MESS01 seal design. Calculated using the standard analysis method-
ology (see Section 3.3).

Seal will operate successfully in a steam turbine and not just in the laboratory.

Gen II seal design attempts to reduce the impact of friction by lowering the axial force

on the seal segment, thereby reducing the sensitivity of seal performance to variations

in friction. This is described in detail in Chapter 7.

3.3 Standard Analysis Methodology
The following section describes how an Aerostatic Seal design may be analysed. The

analysis calculates the radial force acting on a seal segment at a range of clearances,

and hence determines at what clearance the seal segment is expected to move away

and towards the rotor. Figure 3.8 shows a cross section of the Aerostatic Seal segment,

and the nomenclature used in the pressure distribution calculation method. For a full

description of the seal dimensions see Appendix H.
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Figure 3.8: Segment cross section and the notation used in the static analysis.

The steps in the analysis method are as follows:

1. Determine the pressure distribution around the seal segment over the full range

of seal segment operating clearances.

2. Integrate the pressure field over the seal segment to obtain the net pressure forces.

3. Based on the geometry of the seal segment, calculate the location of the seal seg-

ment centroid.

4. Calculate the total radial force, including the spring force and gravitational force.

5. Calculate the clearances at which the total radial force and static friction force are

equal.

3.3.1 Pressure calculation method
The flow rate through the seal and pressure distribution is calculated in an iterative

process. In order to determine the pressure in each of the seal segment pockets, a

leakage equation for a labyrinth seal is used which relates the flow through the seal

to the inlet and outlet pressure, fluid temperature and the leakage area of the seal. A

summary of different leakage models for labyrinth seals is given in Appendix A. There

are three widely used leakage equations available - the ‘St. Venant Wantzel’ equation,

‘Martin’s’ equation [27], and what is commonly referred to as ‘Neumann’s’ equation [85].
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Martin’s equation calculates the flow through the seal in a single equation, whereas the

St. Venant Wantzel equation and Neumann’s equation are used to develop a system of

simultaneous equations, each equation applying to a single labyrinth restriction. In the

analytical model developed for the Aerostatic Seal, Neumann’s equation has been used

as it is the easiest equation to invert.

To begin the analysis of the Aerostatic Seal at a particular clearance an initial inlet

mass flow is guessed and the pressures in the downstream pockets P1 and P2 calculated

from Eqs. (3.2) and (3.3). Subscript ‘n’ refers to the iteration number.

P1(n) =

√√√√√P 2
in −

 ṁin(n)

CDCke
Ac√
RTin

2

(3.2)

P2(n) =

√√√√√P 2
1(n) −

 ṁin(n)

CDCke
Ac√
RTin

2

(3.3)

A constant coefficient of discharge of CD = 0.716 is assumed for all restrictions, as

per Eser and Kazakia [86]. There are other methods which account for the variation

of discharge coefficient with pressure ratio, see Appendix A. The kinetic energy carry

over coefficient, Cke, is unity for the first restriction. In subsequent restrictions, the

kinetic energy carry over is calculated using the method of Eser and Kazakia [86], given

in Eqs. (3.4) and (3.5). In Eq. (3.5), s is the restriction pitch (i.e. the axial distance between

restrictions), N is the number of restrictions, 4 in this case, and c the clearance.

Cke =

√
1

1− Γ(N−1)
N

(3.4)

Γ = 1− 1

(1 + 16.6 cs)
2

(3.5)

Within the central cavity there is mixing with the feed hole flow and the main leakage

flow. The feed hole flow is modelled using the St. Venant Wantzel’ equation (see next

section). The mass flow out of the seal segment is given by Eq. (3.6).

ṁout(n) = ṁin(n) + ṁf(n) (3.6)
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The pressure in the third cavity can then be calculated using Eq. (3.7)

P3(n) =

√√√√√P 2
2(n) −

 ṁout(n)

CDCke
Ac√
RTin

2

(3.7)

The mass flow out can then be calculated based the pressure drop between cavity 3

and the outlet pressure, which is known, using Eq. (3.8).

ṁout(n+1) = CDCke
Ac√
RTin

√
P 2

3(n) − P
2
out (3.8)

The initial inlet mass flow rate is then updated using Eq. (3.9).

ṁin(new) = ṁout(n+1) − ṁf(n) (3.9)

To ensure that the iteration procedure is stable, numerical damping is introduced

as in Eq. (3.10) where q is an under-relaxation factor, normally set to q = 0.1. This was

reduced when calculating a clearance less than 0.1mm.

ṁin(n+1) = ṁin(n) + q(ṁin(new) − ṁin(n)) (3.10)

The procedure is used for calculations of both air and steam assuming steam is a

perfect gas through the seal. Steam fluid properties such as ratio of specific heats γ,

specific gas constant R and dynamic viscosity ν are calculated based on the inlet pres-

sure and temperature. XSteam, a Matlab code freely available [87] has been used to
calculate steam thermodynamic properties based on the ‘International Association for

Properties of Water and Steam Industrial Formulation 1997’ (IAPWS IF-97).

Feed hole flow model
Auld [23] and Rafferty [24] used the St. Venant-Wantzel equation with a discharge co-

efficient of CD = 0.6 to calculate the mass flow rate through the feed holes, Eq. (3.11).

This is the same method described by Powell in his book on aerostatic bearings [88] to

calculate the flow through the feed holes.

A second method, based on pipe friction and the Blassius smooth wall equation for

friction factor and described in Appendix B, was used to check that the length of the feed
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hole was not a significant factor in the flow through the feed holes. The two methods

gave good agreement over the expected range of pressure ratios across the feed hole

and length of feed holes. As the pipe friction model was iterative and took longer to

solve, the St. Venant-Wantzel equation was used in the standard analysis methodology.

ṁf = CD
4AfPin√
RTin

√√√√√ 2γ

γ − 1

(Pin
P2

)− 2
γ

−
(
Pin
P2

)− γ+1
γ

 (3.11)

If the feed hole is choked, i.e. when Eq. (3.12) is satisfied, Eq. (3.13) is used instead:

Pin
P2

>

(
2

γ + 1

) γ
1−γ

(3.12)

ṁf = CD
4AfPin√
RTin

√
γ

(
2

γ + 1

) γ+1
γ−1

(3.13)

Secondary Leakage
In addition to the mass flow between the seal restrictions and the rotor surface, there is

a secondary leakage path between the seal segments and through the segment contact

face. The analytical design tool models the secondary leakage flow using the St. Venant-

Wantzel formula, as for the feed holes, and shown in Eq. (3.11), Eq. (3.12) and Eq. (3.13)

when choked. The coefficient of discharge is taken as CD = 1.8 based on measurements

taken on the non-rotating test rig at fixed segment clearance - see Section 5.5.6. The area

is the area between the seal segments, which neglects flow going through the contact

face secondary seal, hence the discharge coefficient is greater than 1. As the secondary

seal is formed over the circumference of the seal segment contact face, then even a

small axial clearance between the seal segment and the seal holder contact face would

have a significant effect on the total secondary leakage flow rate.

3.3.2 Force and Moment Analysis
The first step in calculating the forces acting on the seal segment is to integrate the

pressure over every face of the seal segment to find the pressure forces acting in the

axial and radial direction. Shear forces have been neglected. As absolute pressure was
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Figure 3.9: Pressure forces acting on the Aerostatic Seal segment.

used to calculate the pressure distribution, it was convenient to calculate the ‘absolute’

force acting on the seal segment surfaces. When summing all forces, the net force is the

same. Figure 3.9 shows the area that different pressures are assumed to act on the seal

segment. F0 to F9 assume inlet pressure on these areas of the segment. F10, F11 and

F12 assume P1, P2 and P3 respectively. F13 to F16 assume outlet pressure.

The side pressure force acting in the radial direction, Fs, is calculated by Eq. (3.14).

The method was developed by firstly assuming a linear pressure loss from the inlet of

the seal segment to the outlet. Therefore the side force is the mean of the inlet and

outlet pressure acting over the radially projected side area (As). In reality there is also

flow from the top surface of the segment, and so the pressure distribution is not linear.

Therefore a side pressure distribution coefficient Cfs is introduced to account for this.

This was experimentally found to be Cfs = 1.40, and is reported later in Section 5.5.4. α

is the segment angle, 60◦ for an Aerostatic Seal made from six segments.

Fs = 2Cfs
(Pin + Pout)

2
As sin

α

2
(3.14)

The contact face, which acts as a secondary seal to prevent flow leaking over the

top of the segment, also contributes a pressure force acting on the segment. Arghir

et al [81] and Mariot et al [82] when analysing the floating ring seal (see Section 2.4.4)

used the Greenwood andWilliamson [89], [90] model for mixed lubrication to model the

reduction in friction due to mixed lubrication, secondary seal leakage and to calculate

the contact face force. The same approach has not been used in the Aerostatic Seal
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Figure 3.10: Free body diagram of the Aerostatic Seal and applied forces.

standard analysis methodology as the model includes more material variables that are

unknown (such as the distribution and size of surface asperities). Instead, the contact

face force has beenmodelled as the outlet pressure acting over the whole surface, which

gives the greatest reaction force, and hence greatest frictional force, and is therefore the

most conservative method to use during the design phase of the Aerostatic Seal.

Figure 3.10 shows the location of the forces acting on a Aerostatic Seal segment on

a free body diagram, with forces resolved in the axial and radial direction. The pressure

force has been drawn acting at the centroid of the segment with an applied pressure

momentMpθ.

The spring force, resolved in the radial direction, is calculated as per Eqs. (3.15)

to (3.17). The force is made up of two parts; the ‘pre load’ Fsp0 which is the spring force

when the seal segment is retracted, and the ‘compression force’ Fspk which is due to

the compression of the springs as the segment moves to a lower clearance. The total

spring force from both springs and resolved in the radial direction, Fsp, is the sum of

both of these components. Figure 3.11 shows part of a seal segment and ‘key’ with the

circumferential spring and the geometry of the spring holes. Lsp0 is the free length of

the circumferential spring, and Lfr is the length of the recess in the seal segment and

adjacent key for the circumferential spring. cret is the retracted clearance of the seal

segment measured vertically at the centre of the seal segment, as shown in Fig. 3.11. ksp
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Figure 3.11: Spring shown in retracted seal segment showing spring nomenclature.

is the spring stiffness.

Fsp0 = 2 sin
α

2
(Lsp0 − Lfr)ksp (3.15)

Fspk = 2ksp(cret − c) sin2 α

2
(3.16)

Fsp = Fsp0 + Fspk (3.17)

The gravitational vector acts in different directions for seal segment located at dif-

ferent circumferential positions, as shown in Fig. 3.10. Therefore the gravitational force

is resolved in the radial direction dependant on the circumferential angle δ of the seal

segment being analysed, as shown in Eq. (3.18).

Fgr = mg cos δ (3.18)

If the seal segment was accelerating in the radial direction, then there would also be
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the d’Alembert acceleration force,ma, acting on the segment for it to remain in dynamic

equilibrium. This force is only of consequence if analysing seal segment moments about

a point other than the segment centroid, or the seal segment was accelerating, and is

calculated from dynamic equilibrium.

As described earlier in this chapter, friction has been modelled using simple static

and dynamic coefficients of friction. When analysing the Aerostatic Seal segment stati-

cally, then only a static coefficient of friction is required, and is usually taken as µstat = 0.6

as standard. The frictional force is determined from the reaction force FR as given in

Eq. (3.19).

Fµ =


−µstatFx sgn(Fr) if |Fr| ≥ µstatFx

−Fr if |Fr| < µstatFx

(3.19)

where Fr is the net applied force acting on the seal segment, i.e. all forces except the

frictional force and the d’Alembert equivalent acceleration forcema.

An important consideration in the design of an Aerostatic Seal is themoment stability

of the segment i.e. ensuring that the segment does not tilt inside the seal holder. The

procedure for determining the moment stability of the seal segment is as follows:

1. Determine the location of the seal segment centroid (centre of mass).

2. Determine the centre of pressure for each face the pressure is acting on, and there-

fore determine the moment arm for each pressure force.

3. Calculate the moment generated by each force acting on the seal segment and

sum to find the net moment.

4. Calculate the moment generated by the reaction force acting on the extreme loca-

tions on the contact face. These moments are the maximummoments that can be

tolerated before the seal segment will start to tilt.

5. Determine if the net moment is within the limits.

To determine the location of the centroid of the seal segment, the segment is di-

vided into 17 simple blocks and the centroid of each component found in the axial and

radial dimensions. Each of these blocks represented the main body of the seal segment,
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Figure 3.12: Centroid calculation method

the axial and circumferential fins, and the feed holes and spring holes. The centroid of

the whole segment was then found by performing a volume weighted sum (Eqs. (3.20)

and (3.21)) of each component shape. Figure 3.12 shows the local coordinate system

used for a single block. Note that the blocks representing the holes for the circumferen-

tial springs and feed holes are treated as having negative volume. Calculation for each

individual component block is as per equations Eqs. (3.22) and (3.23). The volume of a

particular block is V (n), where (n) is an index to the particular block. c̄r and c̄x is the

radial and axial coordinates of the seal segment centroid, respectively. cr and cx is the

radial and axial coordinates of the centroid of each individual block, respectively.

c̄r =

∑
cr(n)V (n)∑
V (n)

(3.20)

c̄x =

∑
cx(n)V (n)∑
V (n)

(3.21)

cr =

∫∫
A

z dx dz∫∫
A

dx dz
=

2

3

(r3
2 − r3

1)

(r2
2 − r2

1)

(cos θ1 − cos θ2)

(θ2 − θ1)
(3.22)

cx =

∫∫
A

x dx dz∫∫
A

dx dz
=
x

2
(3.23)

Once the centroid location has been found, the moment acting on the seal segment

can then be calculated about the centroid. The pressure forces on each face of the seal

segment can be analysed as acting at the centroid of each face, and summed together to
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Figure 3.13: Moment stability of seal segment

find the pressure moment acting on the seal. Other forces also generate a moment act-

ing on the seal, such as the reaction force, seal segment weight, the frictional force and

the circumferential spring force. If the seal is moving then there is also an inertial force

acting on the seal segment. These forces and locations are summarised in Fig. 3.10.

Note that the net radial pressure force has been decomposed into a force and moment

acting at the centroid of the seal segment. Other forces are drawn at the location at

which they act on the seal segment.

The exact location of the reaction force applied by the diaphragm on the seal seg-

ment is found from the requirement of moment equilibrium, i.e. the location of the

reaction force must be such that it balances all the other moments acting on the seal

segment. The reaction force must act somewhere on the contact face of the seal seg-

ment, hence the maximum and minimum reaction moment can be found.

LU and LL are the distances from the centroid of the segment (or any other place

about which moments are taken) to the maximum and minimum radial location of the

contact face respectively. This is shown in Fig. 3.13. MU andML are defined in Eqs. (3.24)

and (3.25) and are the greatest range of reaction moments available to balance the ap-

plied moments.

MU = FxLU (3.24)
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ML = FxLL (3.25)

ξ =
MU +Mθ

MU +ML
(3.26)

If the reactionmoment is not big enough to balance the othermoments acting on the

seal segment, then moment stability is lost which could lead to the segment tilting for-

ward and loosing positive radial force, or becoming jammed inside the diaphragm. The

design aim is to have a reaction contact force somewhere in between so as to maintain

moment equilibrium, with a suitable margin. The seal moment criterion (ξ) is defined

as +1.0 when the pressure moment exactly opposes the contact anticlockwise moment

and 0.0 when it exactly opposes the contact clockwise moment, as shown in Eq. (3.26).

Therefore if 0.0 < ξ < 1.0 the seal segment is stable and the moment criterion met.

Figure 3.14 shows typical graphs of moment stability criterion. The shaded region is the

clearance at which the seal segment has no net force acting on it. The discontinuity in

slope is where the net radial force is able to overcome the static friction force, and hence

move away or towards the rotor surface.

Moments can be taken about any point on the seal segment. This has been con-

firmed by taking moments about the lowest point on the contact face, which gives the

same moment criterion.

3.3.3 Limitations
The model described above is a simple one dimensional leakage model. The advantage

of such a simple model is that it is fast to solve making it ideally suited to analysing a

wide range of designs quickly. The rest of this section discusses the limitations of the

standard analytical methodology set out above:

• All the flow is assumed to be axial. In reality the incoming flow will have a level

of swirl due to the stator blades and due to the high rotor surface velocity. This

will effect the leakage flow through the seal, and if the level of circumferential flow

changes through the seal due to the circumferential pockets on the seal, then the

pressure distribution would be affected. Waschka et al [91] found no effect of
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Figure 3.14: Applied radial force and moment acting on a typical Aerostatic Seal design.

rotational speed on seal discharge coefficient for Ta/Rex < 0.2, although this was

without circumferential pockets. Ta is the Taylor number (see Eq. (3.27)) and Rex

is the axial Reynolds number (see Eq. (3.28)).

Ta =
2ucmρ

η

√
2cm
D

(3.27)

Rex =
2ṁ

ηπD
=

2ρvcm
η

(3.28)

There will also be circumferential flow components due to differing pressures in

the circumferential pockets and in the side leakage path.

• The leakagemodel used is that described by Eser and Kazakia [86] (see Appendix A),

which assumes isothermal flow through the seal, and a constant discharge coef-

ficient in Eq. (3.2). Other researchers have found that the discharge coefficient

changes depending on the pressure ratio [32] and also between different restric-

tions in the seal [92].

• The leakage model assumes that the flow never becomes choked across a single

restriction.
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• The model is static, and does not analyse the dynamic behaviour of the seal seg-

ment directly. The method of judging the dynamic performance is to look at the

stiffness curve (force v clearance), and to judge when there is a net radial force that

will move the seal segment away or towards the rotor. The leakagemodel assumes

steady flow. The change in volume of the seal pockets will vary the pressure when

the seal segment moves.

• The force model assumes uniform pressure on the seal faces. There is likely to be

variation in pressure in the seal cavities and on the side face of the seal segment.

• A static friction model is used. There are more detailed friction models available,

although more detail introduces more model variables, for which there is a lack of

available data. Changing the assumed value for the static coefficient of friction has

one of the biggest effects on the expected performance of the Aerostatic Seal.

3.4 Design Methodology
An Aerostatic Seal design tool was first implemented by Rafferty [24] which performed

a full search of the solution space, with bounds set by the designer. The solution space

is made up of the multi-dimensional region consisting of various Aerostatic Seal param-

eters such as the segment width, feed hole diameter, fin pitch etc. For a full list of

dimensions, see Appendix H.

For the Aerostatic Seal a design is sought that is as responsive to rotor movement

as possible but that maintains moment stability. To maximise the responsiveness of the

seal segment, the change in force needs to bemaximised, and this is achieved bymaking

the seal segment with the greatest axial length possible. The radial force varies linearly

with the radially projected area. The axial length of the segment cannot be increased

indefinitely however as increasing the length also increases the pressure moment act-

ing on the segment. In fact the moment increases with the square of the axial length,

considering that the moment is the pressure force multiplied by the moment arm, both

of which depend on the axial length of the segment. Whilst this is useful for the designer

to understand, other variables such as the positioning of the restrictions below the seal

segment also effect the pressure distribution, and hence affect the pressure moment
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and the radial pressure forces.

As part of the work conduced in this project, the seal design methodology has been

updated with the standard analytical model described in the previous section, and the

tool given the ability to pick the best seal design at a given set of design pressures.

3.4.1 Design tool algorithm
The following subsection describes the design tool used for obtaining an Aerostatic Seal

design. A flow diagram is given in Fig. 3.15. The user defines the pressure conditions that

the seal is to operate at, and picks the minimum and maximum operating clearances.

The design tool then loops through the solution space and finds ‘feasible’ seal designs

that would operate at the minimum and maximum clearance. Feasible is defined as

meeting moment stability with a suitable margin at both operating clearances.

Step 1: Define solution space
The first step in designing the Aerostatic Seal is to define the solution space, i.e. the

range of values that each design parameter can take. As there are a large number of

variables that affect the performance of the Aerostatic Seal, suitable limits are required

to ensure the design code will complete in a suitable time. Some design parameters

can be chosen by mechanical design considerations or design rules, such as the height

of the seal for a given rotor radius. Other parameters may be limited through design

experience or analytical considerations. Circumferential springs are chosen by including

a number of standard spring designs with fixed free lengths and springs rates in the

solution space. Circumferential spring pre-load is varied by changing the spring holder

depth within the geometric constraints of the seal segment.

Step 2: Loop through solution space
Loop through the solution space and analyse the seal at the desired pressure conditions

and at two fixed clearances: the user defined minimum andmaximum clearance. Reject

designs that are not in moment equilibrium.

An objective function, Φ, has been defined, given in Eqs. (3.29) to (3.31), which is

used to measure how close the radial force is to overcoming the static friction force at
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Figure 3.15: Flow diagram of the Aerostatic Seal design methodology.
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the user defined minimum and maximum clearances. At the minimum clearance, the

radial force should be positive and equal to the magnitude of the static friction force.

At the maximum clearance the radial force should be negative and also equal in mag-

nitude to the static friction force. The best seal design will minimise the net force at

both of these clearances, i.e.
Fr
Fµ
will be the closest to 1. Figure 3.16 shows an exam-

ple of a seal design, analysed at the minimum and maximum defined clearance, and

the variation of the minimum and maximum objective functions Φmin and Φmax respec-

tively. If the user chosen minimum clearance equals the minimum static clearance then

Φmin = 1.0. Similarly if the user chosen maximum clearance equals the maximum static

clearance then Φmin = 1.0. The perfect seal design for the user’s choice of minimum and

maximum clearances will have a combined objective function of Φ = 2.0. The maximum

and minimum functions refer to the maximum and minimum values of
Fr
Fµ
for all seal

designs tested within the chosen solution space.

Φmin =



[
1.0

1.0−max( Fr
Fµ

)

]
.
[
Fr
Fµ
− 1.0

]
+ 1.0 if

Fr
Fµ
≥ 1.0[

1.0
1.0−min( Fr

Fµ
)

]
.
[
Fr
Fµ
− 1.0

]
+ 1.0 if

Fr
Fµ
≤ 1.0

(3.29)

Φmax =



[
1.0

1.0−max( Fr
−Fµ

)

]
.
[
Fr
−Fµ − 1.0

]
+ 1.0 if

Fr
−Fµ ≥ 1.0[

1.0
1.0−min( Fr

−Fµ
)

]
.
[
Fr
−Fµ − 1.0

]
+ 1.0 if

Fr
−Fµ ≤ 1.0

(3.30)

Φ = Φmin + Φmax (3.31)

As the shape of the force-clearance curve is steepest at low clearance and becomes

less steep at increased clearance, see Fig. 3.16 for example, then the objective function is

more sensitive at the minimum clearance than at the maximum clearance. Another way

of looking at it is that a small offset in force Fr will affect the maximum clearance much

more than the minimum clearance. A linear variation of objective function with
Fr
Fµ
has

been chosen, but a different function could be used or different weightings of minimum

and maximum objective functions to reflect the different sensitivity at the user defined

minimum and maximum clearances.
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Figure 3.16: Example Aerostatic Seal force clearance curve and variation of maximum

(Φmax) and minimum (Φmin) objective function.
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Step 3: Pick top 10 designs
Using the objective function, the top designs from the solution space are chosen. For

each of these designs, the seal is analysed over the full range of operating clearance and

the force-clearance characteristic found. These 10 seal designs are then output to the

user, to choose a design based on engineering judgement.

Step 4: Refinement
Based on the output from the design code, the user may choose to refine the solution

space that the design tool searches or perform further analysis on the design, such as a

sweep of different pressure conditions or friction sensitivity analysis.

3.4.2 Limitations
In addition to the assumptions and limitations associated with the standard analysis

methodology described in Section 3.3.3, the design code, in its currently form does not

consider the start-up behaviour of the seal. i.e. at what pressure the seal closes in.

3.5 Implemented Aerostatic Seal Designs
A number of Aerostatic Seal designs have been generated and are described in this sec-

tion. Not all of the designs have been generated using the same version of the design

method as the methodology has developed over the course of the project; however

they are all analysed using version V20.0 so the expected performance can be com-

pared. Figure 3.17 shows a scale drawing of all seal designs for comparison. Table H.1

in Appendix H lists the different seal designs and the design parameters.

To compare the different seal designs, the variation inmaximum andminimum static

clearance with pressure ratio has been plotted for each seal design in Fig. 3.18. When

the seal segment clearance is greater than the maximum static clearance, the segment

will move towards the rotor. When the seal segment clearance is lower than the mini-

mum static clearance, the segment will move away from the rotor. Contours of moment

criterion ξ are also plotted in Fig. 3.18. Moment stability is lost when the contour is

red or blue. There is variation in the predicted design performance when analysed with
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Figure 3.17: Comparison of Aerostatic Seal geometry for different seal designs.
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the standard design methodology partly due to using different versions of the design

methodology to design the seals, but also due to different seal designs operating at dif-

ferent inlet pressure conditions. The coefficient of friction was assumed to be µstat = 0.6.

3.5.1 ‘MacDonald1’
The first seal design manufactured was designated ‘MacDonald1’, the design produced

by MacDonald [26]. The design was produced for the non-rotating test rig described in

Chapter 4, and was used for the initial testing of the Aerostatic Seal concept. The seal

was designed to be made from aluminium as the weight of the segment was initially

thought to be an issue when operating at lower pressures. Results from the experimen-

tal tests with this seal design are included in Sections 5.2 and 5.3. ‘MacDonald 1’ was

designed with a nominal clearance of 0.4mm, so that the seal radius was 0.4 mm larger

than the rotor radius. The spring hole design was a simple hole without fixing the ends

of the springs, and is shown in Fig. 3.17. This gave 3mm clearance around the spring.

The ‘MacDonald1’ seal design when analysed with version V20.0 of the Aerostatic

Seal analysis code, shown in Fig. 3.18a, was predicted to operate at a high clearance,

approximately 1.8mm - much higher than desirable. This was mainly because of the

large feed hole diameter and the high ‘pre load’ on the circumferential springs.

3.5.2 ‘MESS01’
‘MESS01’ seal design was the next seal design conducted, and was also to be used in the

non-rotating test rig. The seal design aimed to improve over the ‘MacDonald1’ design

by using smaller feed holes to increase the responsiveness of the seal. The segment

was manufactured from S355J2, a structural mild steel, enabling the labyrinth fins to

be sharper, and to reduce wear and damage occurring on the contact face of the seal

segment. The expected performance is plotted in Fig. 3.18b.

This seal design introduces a smaller contact face on the seal holder, which reduces

the frictional force by decreasing the axial force acting on the seal segment as the area

‘F0’ (see Fig. 3.9) is increased. The smaller contact face also would prevent the seal-

ing point on the contact face, which acts as a secondary seal, from moving to a higher

clearance due to diaphragm deflection. The spring hole design was a simple hole, as
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Figure 3.18: Comparison of Aerostatic Seal designs. Coefficient of friction µstat = 0.6.
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in ‘MacDonald1’, although specially designed inserts can be used to fix the ends of the

springs in the segment.

3.5.3 ‘ROT02’
‘ROT02’ seal design was for the Durham Rotating Seals Rig described in Chapter 4. The

rotating rig has a smaller rotor diameter than the non-rotating rig, and models a full set

of seal segments rather than a single seal segment as in the non-rotating test rig. The

seal segments are each held between anti rotation keys which isolate the seal segments

from each other. The keys are shown in Fig. 3.19 for the ‘STR-IP6-07A5’ seal design, which

are similar to the design in ROT02. This is unlike the retractable seal which only has anti-

rotating keys at the half joint in the turbine casing. The cut away which accommodates

the keys was not included in the analysis of the seal performance. The spring hole de-

sign for ‘ROT-02’ was changed so that both ends of the spring are now fixed in the seal

segment and the key, as shown in Fig. 3.17.

The ‘ROT-02’ seal design was made as responsive as possible for operation in the

rotating rig, and as a result would lose moment stability at high clearance once the seal

segment has closed in, as shown in Fig. 3.18c.

3.5.4 ‘MESS04’
‘MESS04’ is the same seal as MESS01, but with axial friction compensator springs in-

cluded. The base design of the seal is the same as ‘MESS01’ except that lands have been

included which allow axial springs to be fitted. Omitting the axial springs allows the seal

to return to ‘MESS01’ configuration.

3.5.5 ‘STR-IP6-07A5’
‘STR-IP6-07A5’ is a seal design for the Braunschweig steam test rig. This seal design is

to operating in steam at high temperature. Particular effort has been made to minimise

the sensitivity to variations in friction coefficient, and as a result the expected operating

clearance is low, as shown in Fig. 3.18d. Like seal design ‘MESS04’, the seal can be oper-

ated with axial friction compensator springs. The spring hole design was as ‘ROT-02’.
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Figure 3.19: Keys between seal segment as on the ‘STR-IP6-07A5’ seal design.

3.6 Conclusion
This chapter has described the design and analysis methodology for the Aerostatic Seal,

as well the theory behind the operation of the seal. The standard analysis methodology

is a simple 1D steady flow model which can calculate the pressure distribution on the

seal segment and hence the forces acting on the segment at different operating clear-

ances. The analysis methodology is built into the design code which performs a solution

space search to find suitable Aerostatic Seal designs. The design code has been used to

generate a number of different designs which have been tested in the non-rotating and

rotating test rigs described in Chapter 4.



Chapter 4
Rig Designs
4.1 Introduction
Three test rigs have been used in the development of the Aerostatic Seal : a non-rotating

rig using air, a rotating rig using air, and a rotating rig using steam. The two rigs using air

are installed on the Durham University Blowdown Facility, and the steam test rig located

at TU Braunschweig, Germany. This chapter details the rigs and the instrumentation at

Durham University. Table 4.1 compares the three test rigs used and the first stage of the

intermediate cylinder of a typical coal fired generator set (IP1).

Initial testing was carried out in a non-rotating rig which was used in the develop-

ment of the Aerostatic Seal concept, and modelled a single full scale seal segment. As

the rig was non-rotating it was reasonably inexpensive to manufacture before devel-

opment work in more advanced rotating rigs, however the rig could not model rotor

excursions. The rig used capacitance sensors to track the position of the seal segment

during operation of the test rig.

The rotating rig was the next stage of development which modelled a full seal at half

Non-rotating

Rig

Rotating Rig Steam Rig IP1 ST condi-

tions

Fluid Air Air Steam Steam

Temperature /
◦C 20 20 400-500 540

Rotor diameter D / mm 732 366 299.8 732

Inlet Pressure / bar(a) 6.0 1.5 7.5 37.2

Max. Surface Speed u / ms−1
0 29 (1500 rpm) 138 (8784 rpm) 138 (3600 rpm)

Table 4.1: Comparison of test rigs.

63
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scale. The rig used an eccentric rotor to model high speed radial rotor excursions and

inductive sensors to track the position of three of the six seal segments. Pressures are

measured at inlet and outlet from the rig, and static pressure measured by pressure

taps drilled in a single seal segment.

A final set of tests was conducted in a steam test rig controlled by TU Braunschweig

in Germany. This test rig used steam rather than air, and represented a closer represen-

tation to steam turbine conditions. The rig was able to offset the casing to simulate low

speed rotor movements, although it cannot model high speed rotor movements. The rig

is half scale, although operates up to 10000 rpm to match steam turbine rotor surface

speed. As the TU Braunschweig rig is an existing test facility and details are previously

published, a detailed description is not given here. Brief details are given in Chapter 9.

The rest of this chapter describes each of the test rigs in detail and the Durham

University Blowdown Facility, which includes some common components to both the

non-rotating and rotating rig.

4.2 Durham University Blowdown Facility
The Durham University Blowdown Facility is a transient open flow test facility capable of

delivering high pressure and high flow rate air for short durations. The facility consists

of a 10m3 air receiver, with a maximum operating pressure of 30 bar, and a control valve

that regulates the supplied pressure. Pipework connects the control valve to a number

of different rigs, housed in an adjacent underground test cell. The facility is equipped

with an instrumentation and control suite external to the test cell to log data and control

the facility.

The Blowdown facility is equipped with common instrumentation infrastructure for

all individual rigs. Measurements typically include:

• Mass flow rate of supply air

• Tank temperature and pressure

• Rig static pressure and temperature

Individual rigs can include further instrumentation specific to that rig, such as load cells,

opto couple speed sensors or displacement sensors.
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Figure 4.1 shows the typical control and instrumentation layout on the blowdown

facility, which can be loosely divided into instrumentation, data acquisition and control

and processing. Instrumentation is built up from a number of rack mounted modules

that are interchangeable across other facilities within the thermo-fluids laboratory and

output an analogue voltage signal. Data acquisition consists of multiple analogue to dig-

ital (A/D) converters: National Instruments USB6218 are used on the blowdown facility.

Control and processing is via the ‘Durham Software for Wind tunnels’ suite of programs

which logs and processes data, and LabView (version 2013 SP1) which is used to control

the facility.

4.2.1 Instrumentation
Two ScaniValve DSA 3217 pressure scanners are used for logging pressures, each with

16 pressure transducers. Each scanner consists of 8 high pressure (max 17.2 bar) and 8

low (6.9 bar) pressure transducers. The pressure scanners output pressure in engineer-

ing units (e.g. pascals) over the network and operate up to 800Hz per channel. The

pressure scanners are supplemented with single First Sensor BTE and CTE series pres-

sure transducers. These output a linear voltage typically in the range 0 to 10V which is

proportional to the measured pressure.

Mass flow rate through the facility is measured with an orifice plate upstream to

the control valve. The orifice plate is manufactured to BS EN ISO 5167-1/2, and uses

interchangeable plates of different bore to allow different flow rates to be measured

accurately. Mass flow rate is calculated from the differential pressure across the orifice

restriction Pdiff , the upstream pressure Pu, and the stagnation temperature T0 mea-

sured in the air receiver. See Appendix E for details on the calculation method.

Temperature was measured using T or K type thermocouples, connected to an am-

plifier (Omega Engineering TXDIN1620) which outputs a programmable voltage output.

4.2.2 Acquisition
Voltage signals are digitised using a National Instruments USB-6218 analogue to digital

converter operated using the ‘Durham Software for Wind Tunnels’ suite of programs for

data acquisition and analysis. The USB-6218 multiplexes between 16 differential chan-
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nels at a frequency up to 250 kS/s and can measure signals between ±10V. The resolu-

tion of the digitised signal is 320µV, well below the accuracy of the pressure transducers.

4.2.3 Control and Processing
The ‘Durham Software for Wind tunnels’ suite of programs is used to record the voltage

signals from the analogue to digital converters and also the data from the pressure

scanners. A new program was created by the author to simultaneously log the data

from multiple pressure scanners and multiple A/D converters. The suite also includes

programs to convert voltage signals into engineering units for individual transducers,

calculate mass flow rate from an orifice plate, and to average and non-dimensionalise

data.

A series of LabView programs are available for controlling the blowdown facility. The

program interfaces with the control valve via a National Instruments NI9265 which gen-

erates an analogue current signal, and can vary the valve position. A separate A/D con-

verter is used to display data in real time and to measure a set point for controlling

the valve position. The program includes a PID controller which can maintain a steady

pressure during operation of the facility.

4.3 Non-Rotating Rig
A non-rotating rig, referred to as the ‘non-rotating rig’, was built to carry out initial testing

on the Aerostatic Seal concept. The initial design was carried out by Durnan [25] and

built and developed as part of this project. Figure 4.2 shows the rig installed in the test

cell. The rig rotor diameter and seal holder dimensions were based on a steam turbine

intermediate pressure diaphragm. The modifications from Durnan’s original design are

outlined at the end of this section.

The rig models a single full scale Aerostatic Seal segment. The rotor was non-rotating

and cannot be actuated during a test, although the position could be changed during rig

set up. The seal segment was free to move as it would in a turbine, and capacitive

sensors were used to measure segment position. Figure 4.3 shows a cross section of

the rig with a seal segment installed, and highlights key features. The rig consists of

the seal holder, made in two parts, which models the diaphragm of the turbine, and
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Figure 4.2: Picture of non-rotating rig within the test cell.

a rotor section with static pressure taps. The seal holder contains spacers which limit

the retracted clearance of the seal segment, and are used in conjunction with the rotor

position to set the initial clearance of the seal segment.

Air was supplied to the rig from the Durham University Blowdown Facility described

previously, and a schematic diagram of the air supply is shown in Fig. 4.4. Maximum

inlet pressure permitted to the rig was 16 bar(g) and was controlled by the blowdown

facility main control valve. Back pressure could be controlled using a manual valve. The

rig was operated with a bypass line to prevent excessive spikes in pressure when the

seal segment clearance changes (i.e. when the seal segment moves from the retracted

position to the operating clearance).

Mass flow rate through the seal was measured using the blowdown facility main

orifice plate installed upstream of the control valve, and an orifice plate installed in the

bypass line.

A total of 5 Fylde FE-925-CDT-04 capacitive sensors were used to measure the seal

segment position. The sensors were arranged in two measurement planes and dis-

tributed circumferentially in order to be able to fully describe the motion of the seal
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Figure 4.4: Schematic diagram of non-rotating rig pipework and instrumentation.

segment. The position of the sensors can be seen in Fig. 4.3. Circumferential distri-

bution of the sensors captures uneven seal segment clearances, while sensors on two

measurement planes captures rotation of the segment about the tangential axis.

Capacitance sensors work by measuring the change in capacitance due to changes

in clearance. Capacitive sensors are only linear over a limited range of clearance due

to fringe effects. A larger diameter of sensor is required to measure larger clearances.

For the sensors installed in the non-rotating rig, this limit was 4mm. A Fylde FE-420-CDT

amplifier unit was used to convert capacitance to a voltage signal output. Linearity of

the voltage signal was checked during calibration, which was performed installed in the

non-rotating rig.

A total of 44 pressure taps were installed in the rig, the position of these is shown

in Fig. 4.3. 25 pressure taps were included on the surface of the rotor to determine

the pressure distribution under the seal segment. The taps were distributed circum-

ferentially on the rotor, 5 positioned upstream the seal, 5 in each of the P1, P2 and P3

cavities, and 5 at seal outlet. A total of 16 pressure taps were installed to measure the

pressure distribution on the side of the seal segment, 8 on each side. A further 3 taps

measure the pressure on the top surface of the segment. The pressures are measured

with two Scanivalve DSA 3217 pressure scanners. Inlet pressure was measured in the

inlet plenum chamber for automatic control of rig inlet pressure, and used a single First

Sensor BTE5000 series transducer. The position of the pressure taps are given in Ta-
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Circumferential position / ◦

Axial Position / mm -20 -17 -10 0 10 17 20

Top 44.3 X X X

Pin -7.8 X X X X X

P1 2.72 X X X X X

P2 33.32 X X X X X

P3 56.42 X X X X X

Pout 75.82 X X X X X

Table 4.2: Pressure tap locations

Tap Number Axial location / mm Radial location / mm

LS/RS 1 7.72 5.68

LS/RS 2 23.72 5.68

LS/RS 3 39.72 5.68

LS/RS 4 55.72 5.68

LS/RS 5 15.72 20.68

LS/RS 6 39.72 15.68

LS/RS 7 15.72 25.68

LS/RS 8 39.72 25.68

Table 4.3: Side pressure tap locations

bles 4.2 and 4.3. The origin for the pressure taps axial coordinates is the upstream face

of the seal segment. The radial origin is the centre of the seal segment arc, i.e. point

(0,0) in Fig. 3.12.

The Gen II Aerostatic Seal designs use axial springs to compensate for axial force,

thereby reducing the frictional force and making the seal segment more responsive.

Axial spring holders were designed which allow the level of axial force to be adjusted

by screwing the spring holder in or out from the seal holder. A total of four holders

are distributed around the circumference of the downstream seal holder as required by

the seal design. The axial spring holders were designed not to interfere with the outlet

plenum so testing could be still conducted with back pressure. Figure 4.5 shows a cross

section of the rig with the axial springs installed. For Gen II testing at atmospheric back

pressure, another set of axial spring holders were manufactured which each contained

a single TE connectivity F22 series load cell to enable themeasurement of the axial force.

The load cell includes an on board amplifier which outputs a voltage signal. As with the

plain axial spring holder, the load cells can be screwed in and out from the downstream

seal holder to vary the level of applied axial force. Figure 4.5 shows a cross section of
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Figure 4.5: Cross section showing axial spring and load cell arrangement.

Measurement Equipment Range Accuracy

Static Pressure DSA3217 pressure scan-

ner

0.000 to 17.240 ±0.0086 bar

Seal Clearance (C1 and

C2) (Upstream)

FE-925-CDT-04 capacitive

sensors

0 to 4 ±0.004mm

Seal Clearance (C3 to C5)

(Downstream)

FE-925-CDT-04 capacitive

sensors

0 to 4 ±0.01mm

Axial force AX0-AX3 F223 Load Cell 0 to 222 ±2.2N
Tank Pressure P0 CTE8035 Press. transmit-

ter

0 to 35 ±0.035 bar

Tank Temperature T0 TXDIN1620 temp. trans-

mitter and T type ther-

mocouple

-100 to 400 ±0.5 ◦C

Mass flow rate Orifice Plate 0.05 to 0.25 ±0.002 kg s−1

Table 4.4: Non-rotating rig instrumentation and capability.

the load cell installed in the rig.

Table 4.4 summarises the installed instrumentation on the non-rotating rig, and lists

the range and accuracy. The Accuracy quoted is based on full scale accuracy from man-

ufacturer data sheets, except seal clearance which is based on the experimental range,

and mass flow rate which is based on the calculated uncertainty as per BS EN ISO 5167-

1/2.

In the initial stages of this project, Durnan’s design was reviewed before manufacture

was commenced. Also a new seal design was undertaken by MacDonald, and so design

modifications were required to test the seal ‘MacDonald 1’. As part of the design, Durnan

specified the capacitance sensor instrumentation. The following details the changes
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made from Durnan’s original concept:

• Introduction of second plane of capacitance sensors for measuring ‘tangential ro-

tation’ of the seal segment, described in the next chapter.

• A new base design was manufactured to enable better set up consistency of the

rotor.

• Introduction of pressure taps above the seal segment and on the sides of the non-

rotating rig to enable the pressure distribution on the side of the seal segment to

be measured.

• Modification for testing the axial thrust compensation springs.

• Redesigned the fixing method for the capacitance sensors.

4.4 Rotating Rig: ‘Durham Rotating Seals Rig’
A rotating seal test facility was constructed that was able to demonstrate the ability of

the Aerostatic Seal to tolerate large transient radial rotor excursions at a wide range

of rotor speeds. The design and manufacture of the test facility was undertaken and

directed by Dr. Richard Williams, although a full description of the rig is given here.

A picture of the rig is shown in Fig. 4.6. The rig was half scale to limit the mass flow

rate through the rig and the axial force acting on the rotor. A cross section is shown in

Fig. 4.7. The facility consists of a two part rotor cantilevered on a stub shaft, driven by

a variable speed electric motor. The outer portion of the rotor can be mounted in ei-

ther a low eccentric position (0.09mm) or a high eccentric position (0.55mm) to simulate

transient rotor movements. The shaft between the rotor and the motor runs through

the centre of the stub shaft, and by having a stationary stub shaft the cyclic stresses are

eliminated on the motor shaft. This arrangement also allows easy assembly and disas-

sembly of the Aerostatic Seal from the front of the rig by removing the front casing. The

rig has a maximum rotational speed of 1500 rpm. Key rig parameters are summarised

in Table 4.5.

Air to the facility was supplied from the Durham University Blowdown Facility, as

shown in Fig. 4.8. The rig was operated with a bypass line, as was the non-rotating rig.
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Figure 4.6: Picture of the ‘Durham Rotating Seals Rig’

Parameter Value

Rotor Diameter D 366mm
Max. Inlet Pressure Pin 6 bar(a)
Rotational Speed ω 26-1500 rpm

High Eccentricity Setting e 0.55mm
Low Eccentricity Setting e 0.09mm
Surface Velocity at 1500 rpm u 28.7m/s
Max. Mass Flow Rate ṁ 0.75 kg/s

Table 4.5: Key parameters of ‘Durham Rotating Seals Rig’.
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Figure 4.7: Cross section of ‘Durham Rotating Seals Rig’
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Figure 4.8: Schematic diagram of ‘Durham Rotating Seals Rig’ pipework and instrumen-

tation.

The rig operated with atmospheric pressure at outlet, and up to a maximum of 1.5 bar(a)

at inlet. The outlet pipes from the rig, shown in Fig. 4.7, were positioned directly behind

each seal segment, and facilitated using a camera tomonitor seal segments during tests.

The inlet and outlet pressure was measured at six locations on the front casing and the

mounting plate respectively, and was measured using the DSA3217 pressure scanner

(see Section 4.2). The inlet temperature was measured with a K type thermocouple

probe mounted on front casing.

The rotating facility used ten Keyence Ex-110 inductive displacement sensors to mea-

sure the seal segment positions: six sensors were mounted around the periphery of the

seal, and were used to measure the clearance between the rotor and the seal segments.

In the configuration used in the testing described in this paper, all 6 sensors were used

on the top 3 seal segments, 2 per segment. Two sensors measured the rotation of the

top-dead-centre segment about the tangential axis. A further two sensors were used

to measure the rotor position, measuring upstream and downstream of the top dead

centre seal segment.

An analogy of a clock face is used when describing positions of seal segments and

sensors, shown in Fig. 4.9, the rotor rotating in a clockwise manner. For example the

top-dead-centre seal segment is designated the 12 O‘clock segment. Each seal segment
on the top half of the rotor (10, 12 and 2 O‘clock seal segment) was monitored by two

inductive sensors, as shown in Fig. 4.9, and so the radial position of the seal segment
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Measurement Range Accuracy

Seal Clearance c 0.00 to 2.00 0.01mm
Inlet Pressure Pin 0.00 to 17.24 ±0.0086 bar
Outlet Pressure Pout 0.00 to 6.89 ±0.0035 bar
Tank Temperature T0 -100 to 400 ±0.5 ◦C
Inlet Temperature Tin -200 to 1370 ±0.5 ◦C
Seal Leakage ṁ 0.05 to 0.25 0.001 kg/s
Rotor Speed ω 60 to 1500 0.1 rpm

Table 4.6: Durham Rotating Seals Rig’ instrumentation and capability.

was fully defined. Each sensor is referred to as either the ‘Up Rotation Side’ (URS) or

‘Down Rotation Side’ (DRS) sensor, with a point on the rotor surface moving from URS to

DRS.

The seal leakage mass flow rate was measured using the orifice plate mounted im-

mediately before the test rig, shown in Fig. 4.8. The rotor speed was determined using

an optical sensor which would detect a reflective strip on the motor coupling. A com-

parator circuit amplified the signal from sensor to give a 5V square wave, the frequency

corresponding to the rotor frequency.

Table 4.6 summarises the installed instrumentation on the rotating rig, and lists the

range and accuracy of each measurement. The accuracy quoted is based on full scale

accuracy from manufacturer data sheets, except seal clearance which is based on the

experimental range and mass flow rate which is based on the calculated uncertainty as

per BS EN ISO 5167-1/2.

4.5 Conclusion
This chapter has described the two different rigs used to generate the results described

in Chapters 5 to 8. The non-rotating and rotating rigs have been built specifically for test-

ing the Aerostatic Seal concept, and the primary aim was to demonstrate the viability of

the concept and validate the analytical design tool. The following four chapters present

and discuss the results from these tests.

Testing with steam represents the next level of development by testing at elevated

temperature and using representativematerials to achieve in operation levels of friction.

The test facility for this is described in Chapter 9.
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Figure 4.9: Front cross section of ‘Durham Rotating Seals Rig’, viewed from upstream.



Chapter 5
Experimental Results:
Non-Rotating Rig
5.1 Introduction
The following five chapters, (Chapters 5 to 9) present the experimental results gathered

whilst testing the Aerostatic Seal concept. This chapter presents experimental results

for the two GEN I designs, ‘MacDonald 1’ and ‘MESS01’ tested in the non-rotating test

rig. Chapter 6 deals with the demonstration of the Aerostatic Seal in the non-rotating

test facility, and Chapter 7 the testing of the GEN II seal design with axial thrust compen-

sation springs. Chapter 8 provides detailed analysis and additional experimental results

of 3D effects observed in Chapters 5 to 7. Chapter 9 provides results from a set of steam

tests conducted at TU Braunschweig, and brings all the experimental work together in a

proposed generic Aerostatic Seal design.

Figure 5.1 shows an overview of the whole experimental campaign on the Aerostatic

Seal, and how it links together and which results are presented in which chapter.

It should be noted that not every result is presented in this thesis. A large number

of individual tests have been carried out and to present every result would over burden

the reader. The key results are presented in detail, and which capture the characteristics

of the Aerostatic Seal and of its development.

79
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5.1.1 Testing in the non-rotating test rig
The test campaigns conducted in the non-rotating test rig were primarily concerned with

demonstrating the Aerostatic Seal working before the project proceeded to commission

the rotating test facility. Once the seal concept had been proven the rig was used to per-

form seal pressure distribution tests with fixed seal segment clearance which were not

possible in the rotating rig. Finally testing of the Gen II Aerostatic Seal design, detailed

in Chapter 7 was carried out in the non-rotating rig as initial testing would have been

more risky to perform in the rotating rig.

The testing presented in this chapter is divided into 4 main sections: Proof of con-

cept, tangential rotation testing, frictional effects and fixed clearance testing. The Aero-

static Seal provides two critical new functions over the retractable seal: namely that

it is able to move away from the rotor surface if required, as well as moving towards

the rotor during start up. The proof of concept testing, described in Section 5.2, aims to

demonstrate these key functions. The testing conducted within this section gave enough

confidence in the Aerostatic Seal for the rotating test facility to be commissioned.

Possible seal segment tangential rotation, where the upstream side of the seal seg-

ment is at a lower clearance than the downstream side, (see Section 3.2, or Fig. 5.2)

was investigated with the ‘MacDonald 1’ in the non-rotating test rig, and is described in

Section 5.3. Seal segment tangential rotation was also investigated as part of the test

campaign in the rotating test facility using the ‘ROT01’ seal design and is reported in

Chapter 6. Early on it was recognised that the seal segment tilting forward could lead to

the seal segment jamming inside the seal holder, and would also produce a loss of seal

radial force away from the rotor.

An attempt was made to observe the effect of variations in seal performance due

to friction by applying grease to the contact face, described in Section 5.4. It was found

that variations in the set-up of the rig between tests also had a significant effect on the

performance of the seal, and this is discussed in the section.

The seal segment has also been tested in a series of fixed clearances to assess the

variation in radial pressure force with clearance, and these tests are described in Sec-

tion 5.5. The fixed clearance testing was complimented with 3D CFD calculations, and

a comparison made to the analytical model. These tests show important flow features

that have a significant effect on the Aerostatic Seal performance, and which are not well
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Figure 5.1: Overall ‘map’ of experimental campaign
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captured by the analytical design methodology in Chapter 3.

The seal segment would often operate with a non-uniform circumferential clearance,

and there were differences between tests due to test rig set up.

As experimental testing progressed various improvement were made to the non-

rotating test facility. These included side pressure tappings which were introduced for

the fixed clearance testing, a stiffer base to improve rotor positioning repeatability, again

for the fixed clearance testing, and finally the second plane of capacitance sensors for

measuring seal segment ‘tangential rotation’ (see Fig. 5.2). Therefore not all rig function-

ality was available during the tests described in this chapter.

5.1.2 Definitions
Before presenting the results within this chapter and subsequent chapters, it is worth

explaining some of the terminology used. The seal segment starts off in the retracted
position when the steam turbine is not loaded. This is a high clearance position to allow

for large radial transients during start up. The pressure difference across the turbine

stages is small. As the turbine is brought up to full load, the pressure drop increases

across the stage and hence the seal, and the seal segmentmoves down to the operating
clearance. This is a low clearance position while the turbine is operating, minimising
leakage. As the load is reduced the pressure drop reduces and the seal segments move

back to the retracted position.

The seal segment degrees of freedom are shown in Fig. 5.2. The seal segments are

not restricted to move only in the radial direction. As a consequence the seal segment

may rotate about the axial direction axis, and hence have a lower clearance on one

side of the segment compared to the other. When operating in this configuration, the

seal segment is said to be operating with a non-uniform clearance. The angle ψ is the
angle of rotation about the axial axis and is a measure of the non-uniformity of the seal

segment clearance. As discussed earlier, the seal segment can also rotate about the

tangential axis, leading to a lower seal clearance at the upstream side of the segment

compared to the downstream side of the segment. The angle φ is the measure of such

rotation.

In the non-rotating rig and ‘Durham Rotating Seals Rig’, Up Rotation Side (URS) and
Down Rotation Side (DRS) are used to refer to different sides of the seal segment and
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Figure 5.2: Nomenclature and definitions
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the position sensors - see Section 4.4. A point on the rotor surface is moving from URS

to DRS, in an analogue to a particle in the leakage flow through the seal travelling from

upstream to downstream. In the rotating rig, the rotor was always moving in the same

direction: when viewed from upstream looking downstream, the rotor is travelling in a

clockwise direction. In the non-rotating rig, the rotor was fixed, but the same convention

was used for consistency.

5.2 Proof of Concept: Non-rotating Test Facility
The Aerostatic Seal is a dynamic seal concept, and so key to proof of concept is demon-

strating dynamic behaviour of the seal segment. In the non-rotating test rig, which had

a non-actuated rotor, an investigation into the dynamic operation of the Aerostatic Seal

was limited to observing the seal segment transitions from the retracted position to the

operating position. Therefore this section aims to demonstrate the following behaviour:

1. The seal segment will move from the retracted position to a lower operating posi-

tion when the pressure difference across the seal segment is increased. The oper-

ating clearance is set by a radial force equilibrium and not by the T slot shoulders,

as in the retractable seal.

2. The seal segment moves away from the rotor when at a low clearance. This was

achieved by removing the circumferential springs, and so the seal segment would

initially be resting on the rotor when no pressure was applied. After increasing the

pressure difference across the segment, the segment was observed to lift off from

the rotor surface.

5.2.1 Movement towards the rotor
In order to demonstrate the ability of the seal segment to move from the retracted po-

sition to a lower operating position, a number of different tests were performed with

both ‘MacDonald 1’ and ‘MESS01’ Aerostatic Seal designs.
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Figure 5.3: Seal segment and rotor set up position cross section.

‘MacDonald 1’ seal design
The ‘MacDonald 1’ Aerostatic Seal design was tested as part of the phase 1 test cam-

paign, with atmospheric back pressure. The URS and DRS circumferential springs were

‘Sp1 14.83’ and ‘Sp2 14.83’ respectively. See Appendix D for details on the circumferen-

tial springs. The rotor central position, dimension b, was 17.03mm from the seal holder,

and the segment 0.96mm from the seal holder, dimension a, see Fig. 5.3. The mean

retracted clearance of the segment was 3.1mm. The test duration was 100 s and the

pressure and voltages (capacitance sensors, mass flow rate) logged at 20Hz and 800Hz

respectively. The bypass valve was closed in this particular set of tests. The outlet flange

was attached to the rig, but the back pressure valve fully opened. The control valve was

manually operated.

The seal segment clearance and pressure ratio for a typical test with the ‘MacDonald’

seal design is shown in Fig. 5.4. The seal segment was initially in the retracted position

when there was no pressure applied to the test rig as the circumferential springs lift

the segment off the rotor. When the pressure difference across the seal segment had

increased sufficiently that the pressure force can overcome the radial spring force, the

seal segment transitioned to the operating clearance. This occurs at approximately 47 s

in Fig. 5.4a and 66 s in Fig. 5.4b. Because the bypass valve was closed, the transition to the
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Figure 5.4: MacDonald 1 seal design: Close in and retraction

operating clearance was accompanied by a large pressure ratio (Pin/Pout) increase due to

the sudden change in the seal leakage area. When the seal segment was at the operating

clearance, the clearance was set by the balance of radial pressure force, friction and

spring forces. This is in contrast to the retractable seal which relies on the operating

clearance being set by the T slot. Once the seal segment was at the operating clearance

changes in pressure ratio had minimal effect on the seal segment clearance. In test 2,

shown in Fig. 5.4b, there was a difference between the clearance measured by the URS

and DRS sensors, indicating that the clearance at each circumferential position in the

rotor surface was not constant. This was termed non-uniform operating clearance.
After the seal segment had transitioned to the operating clearance, the inlet pressure

was reduced and once the pressure had reduced sufficiently the seal segment transi-

tioned back to the retracted position. This occurred at approximately 70 s in Fig. 5.4a

and 90 s in Fig. 5.4b.

The two tests presented here in Fig. 5.4 show the ‘MacDonald 1’ Aerostatic Seal

design operating experimentally, and demonstrating the Aerostatic Seal behaviour ex-

pected during start up and shut down of the turbine.
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‘MESS01’ seal design
Similar tests as performed on the ‘MacDonald 1’ seal segment were also performed on

the ‘MESS01’ seal segment design, and the results are shown in Fig. 5.5. A number of

different back pressures were tested, and all the tests describedwere conductedwithout

disassembling the test rig.

The testing was conducted with retracted mean clearance of 3.0mm and with circum-

ferential springs of nominal 17.6Nmm−1 stiffness. The spring pre load was 81N, and the

spring ends were fixed into position with the spring holder inserts, as described in Sec-

tion 3.5. The rotor central position was 15.13mm from the seal holder (dimension b), and

the segment 2.57mm from the seal holder (dimension a), see Fig. 5.3. The test duration

was 50 s and the pressure and voltages logged at 600Hz and 1000Hz respectively.

When testing with atmospheric back pressure, the bypass valve was 2 turns from

shut. The inlet pressure was automatically controlled, the valve opened at 4% s−1 open-

ing rate, held for 26 s, and then closed at the same rate. The outlet flange was not at-

tached to test rig.

Two tests were conducted with increased levels of back pressure. In each of these

tests the inlet pressure was kept constant at 3.0 bar(a) and 6.0 bar(a), and the outlet pres-

sure decreased to increase the pressure difference across the seal. The bypass valve was

1.5 turns from shut with 3.0 bar(a) inlet pressure and 0.75 turns from shut with 6.0 bar(a)

inlet pressure. The inlet pressure was automatically controlled with a PD controller to

hold inlet pressure at the desired value when testing with high back pressure. The back

pressure valve was manually operated and started fully closed.

The testing of ‘MESS01’ with atmospheric back pressure, shown in Fig. 5.5a, was sim-

ilar to the performance found with ‘MacDonald 1’. The segment starts in the retracted

position, and as the pressure difference across the seal segment was increased, the seg-

ment transitions to a low operating clearance. As the pressure was decreased the seal

segment then transitioned back to retracted position.

Testing conducted with higher back pressure shown in Figs. 5.5b and 5.5c, and shows

that same response found with atmospheric back pressure with both seal designs. Test-

ing with increased back pressure did show that the operating clearance of the seal seg-

ment was reduced compared to the atmospheric back pressure tests. There was little

effect on the mean clearance comparing the 3.0 bar(a) and 6.0 bar(a) inlet pressure tests.
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It was also found that the pressure difference across the seal segment when the seg-

ment transitions down to the lower operating clearance was approximately the same, at

0.1 bar, with and without back pressure.

Another key observation in the seal performance was the non-uniform clearance

around the circumference of the seal segment, shown by the difference between the

URS and DRS sensors. This was also found in the ‘MacDonald 1’ tests - see Fig. 5.4, but

was more extreme in the tests presented in Fig. 5.5.

5.2.2 Movement away from the rotor
One of the key differences between the Aerostatic Seal and the retractable seal is the

ability for the seal to move away from the rotor; the retractable seal will move towards

the rotor during start up and once it is at the operating clearance it will not move away

until the turbine is taken off load.

To test the ability of the Aerostatic Seal to move away from the rotor, the seal was

assembled in the non-rotating test rig without springs. Initially the seal segment rests

on the rotor before pressure was applied; when pressure ratio increased the movement

of the segment was tracked. The test rig was operated with no back pressure.

Figure 5.6a shows the results from such a test, which shows the seal moving to a

higher clearance when the pressure ratio was increased. The clearance measured by

the URS and DRS capacitance sensors and seal pressure difference is shown in Fig. 5.6a,

with the clearance increasing at around 45 s. Further increase in inlet pressure causes

the URS side of the segment to continue to increase clearance.

The mean seal segment clearance is plotted against pressure difference, shown in

Fig. 5.6b, and shows that the seal segment initially ‘lifts off ’ from the rotor surface around

0.25 bar. With a further increase in pressure difference the seal segment moved further

away from the rotor, occurring at 1.0 bar. This increase in operating clearance is due to

the URS side of the segment moving, the DRS side of the segment remains in roughly the

same position as shown in Fig. 5.6a. As the seal was operated without circumferential

springs, then the operating clearance non-uniformity must be due to circumferential

pressure non-uniformity or friction non-uniformity. As a sanity check on the results,

deflection of the rotor or the sensors positioned above the seal segment would result

in the segment appearing to move downwards, away from the sensors. Therefore rig
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Figure 5.5: Seal response to changing inlet pressure - with and without back pressure
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Figure 5.6: Seal segment response without springs

deformations cannot be the cause of the measured segment movement as the seal

segment has moved towards the sensors.

5.2.3 Discussion and Conclusion
The results presented here were enough to proceed with building and commissioning

the ‘Durham Rotating Seals Rig’. The Aerostatic Seal demonstrated the ability to move

towards the rotor from an initially retracted position. Also, and more importantly, the

Aerostatic Seal demonstrated the ability to move away from the rotor without any cir-

cumferential springs, and so the pressure forces were great enough to lift the segment

away from the rotor, overcoming static friction and the weight of the seal segment.

This conclusively demonstrates that the Aerostatic Seal functions differently from the

retractable seal. Two seal designs have been tested, although no circumferential spring

testing was only carried out for the ‘MESS01’ seal design, both seal designs were shown

to move towards the rotor.

Operating with increased back pressure showed similar results compared to the at-

mospheric back pressure testing, although the mean operating clearance was slightly

reduced. Critically it was demonstrated (in Fig. 5.5) that the pressure difference at which
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the segment would transition to the operating clearance was roughly the same between

the high and low back pressure tests, and which showed that the position of the seal

segment was driven by the pressure difference.

A difference was observed between the clearance measured by the URS and DRS

sensors, indicating that the clearance around the circumference of the seal segment

was not uniform. This was noticed in both sets of seal designs tested and also with and

without springs. The whole of Chapter 8 has been devoted to understanding the causes

of non-uniform operating clearance.
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5.3 Seal segment tangential rotation
One key degree of freedom so far not discussed is seal segment rotation about the

tangential axis, referred to as ‘seal segment tangential rotation’, φ. See Fig. 5.2 for a

reminder of the segment degrees of freedom.

Two seal tangential rotation tests were conducted on the ‘MacDonald 1’ Aerostatic

Seal design. Measurements were not possible with the ‘MESS01’ seal design as the seal

segment was shorter, and so the downstream capacitance sensor measurements were

not reliable. The test set up was identical to the tests conducted with the ‘MacDonald 1’

seal design reported in Section 5.2.

Figure 5.7 shows the upstream and downstream capacitance sensor planes used for

detecting tangential rotation of the seal segment. Note that the sensors are at different

circumferential positions (by 2.5◦) and so the circumferential clearance calculation tool

was used to convert the measurements to the same circumferential position, details

given in Appendix F. The tool calculates the clearance at any circumferential location

from the two experimental clearance measurements at two circumferential locations.

The definition of seal tangential rotation, φ, is shown in Fig. 5.7, positive defined as the

upstream clearance being tighter than the downstream clearance.

The seal tangential rotation angle was then calculated from the difference in clear-

ance between the upstream capacitance sensor plane and the downstream sensor plane,

given in Eq. (5.1), and where cdown is the clearance measured by the downstream capac-

itance sensors and cup the clearance measured by the upstream capacitance sensors.

The maximum rotation that can occur before the top surface of the seal segment

touches the front face of the holder is φ± 0.8◦.

φ = arctan

(
cdown − cup

51.28

)
(5.1)

The clearance data from a typical test is shown in Fig. 5.8. Figure 5.8a shows the

measured clearance for all capacitance sensors during the test. The inlet pressure was

gradually increased until the seal segment moved to the operating clearance at approx-

imately 47 s, and then decreased until the seal segment retracts, occurring at approxi-

mately 70 s. At 30 s there was a slight change in clearance measured by the downstream

sensors whilst the upstream sensors remained constant.
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Figure 5.7: Cross section of seal segment showing upstream and downstream capaci-

tance sensor planes

Initially the segment was tilted forwards in the seal holder, i.e. positive φ. Figure 5.8c

shows the segment tangential rotation for the over the duration of the test. Once the

segment had reached the operating position the measured angle was zero.

At 47 s the seal segment moves from the retracted position to the operating position.

Looking at the tangential rotation angle φ in Fig. 5.8c, there was an initial large rotation

of the seal segment, shown by the spike in the measured angle, before the segment

then returns to a level of rotation close to the retracted position. The angle measured

by both sets of sensors on the URS and DRS side of the segment show the same change

in angle.

Figures 5.8b and 5.8d show all capacitance sensors and the segment tangential an-

gle respectively, looking at the half second period of time when the seal segment was

travelling from the retracted clearance to the operating clearance. The large change in

the segment rotation angle occurs as the seal segment was moving, and so was not the

cause of the seal segment motion.

The uncertainties of the measured clearance are given in Table 4.4, described in

Section 4.3. Taking the difference between two clearances increases the uncertainty in

the measurement: the uncertainty was 0.05◦ in the measured tangential rotation angle,

which was similar to the level of measured rotation.

Overall the level of seal segment tangential rotationmeasured was small and the seal

operated as expected with the low level of tangential rotation observed in the tests pre-

sented in this section. Similar levels of segment rotation were observed in the rotating

test rig, see Section 6.3.3. Larger levels of tangential rotation occurred during the Gen II

testing in Chapter 7, and was shown to have a significant effect on the seal performance.
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Figure 5.8: Measured tangential rotation of ‘MacDonald 1’ seal design.
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5.4 Frictional effects
The testing described in this section attempted to understand the effect friction had on

the performance of the Aerostatic Seal. As demonstrated by the analytical model, the

choice of friction coefficient used in the model had a large effect on the performance of

the Aerostatic Seal.

To investigate this, a series of tests were carried out where the inlet pressure was

increased and decreased a number of times, causing the seal segment to repeatedly

move from the retracted position to the operating position within each test. Between

each test the rig was disassembled and the contact face treated with grease to lower the

coefficient of friction, or cleaned with isopropanol which was intended to increase the

coefficient of friction. Also the circumferential springs were swapped between some of

the tests to investigate the effect on the seal segment response, i.e. which side of the

segment would be at the lowest clearance.

As the segment moves multiple times within each test configuration, the operating

clearance could be measured multiple times to obtain an average value for each test

configuration, and also to assess the variation within a test. The apparent coefficient

of static friction was estimated from the measured pressure forces and spring forces

acting on the seal segment just before the segment moves to quantify the effect of the

different contact face surface treatment had on the level of friction.

5.4.1 Test procedure and Experimental Results
The testing described in this section was carried out with manual inlet pressure control

and atmospheric back pressure. The pressure logging frequency was 20Hz and the volt-

ages (capacitance sensors, mass flow rate) was logged at 1000Hz. The bypass valve was

set to 2 turns from shut.

First, two ‘non-greased’ tests were carried out, non-greased A and non-greased B. Be-

tween these tests the rig was not reassembled, although the bypass valve was increased

to 3 turns from shut in non-greased B. Opening the bypass reduces the rate of increase

of inlet pressure to the seal due to more flow going through the bypass line. This had a

minimal effect on the clearance of the seal, and is demonstrated later in this section.

Next two greased test were conducted, ‘greased A’ and ‘greased B’. The greased case
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was produced by applying a layer of grease (Shell Alvania grease RA) over the whole

of the contact face of the seal segment, approximately 2mm thick. Between test A and

B, the circumferential springs were swapped between sides of the seal segment. This

was to check if the circumferential springs would effect which side of the seal segment

would go to the lowest clearance (i.e. the URS side of the segment or the DRS side of the

segment). It was found to have no effect. The layer of grease was not reapplied before

the ‘Greased B’ test.

After testing with grease applied on the contact face between the segment and the

segment holder, the grease was cleaned off using industrial grade isopropanol. As

the isopropanol would have cleaned off any contaminants present in the non-greased

testing configuration, this was treated as a separate test to the ‘non-greased’ tests. (It

was not normal procedure to clean the contact face between tests, and therefore small

amounts grease on the seal segment and seal holder were present due to handing the

parts during rig assembly.)

Finally the test rig was disassembled and reassembledwith the circumferential springs

swapped back. This was referred to as test ‘non-greased C’. The seal segment initial po-

sition was the same as the ‘greased’ and ‘cleaned’ tests carried out previously.

Figure 5.9 shows a typical test in this manner and shows the seal segment moving

from the retracted clearance to the operating clearance multiple times during a single

test of 100 s duration. The particular test is non greased test B. The multiple increase and

decrease of inlet pressure is evident in the pressure ratio, and each cycle is labelled on

the figure. The operating clearance during cycle 1 is also marked on the figure, and is

between the two dotted lines. It was observed that the DRS side of the segment always

went to a significantly lower clearance than the URS side of the segment during the Non

Greased A and B tests. This is the same effect found on earlier tests described in this

chapter. It was also the DRS side of the segment that went to the lowest clearance in

greased test A. After the rig was reassembled the side of the segment at the lowest

clearance might change. It was only observed once when the low clearance side of the

segment switched - this is described in Chapter 8.

To compare all of the Non Greased, Greased and Cleaned tests, the mean operating

clearance for each cycle is shown in Fig. 5.10. The points indicate the segment operating

clearance for each cycle, and the bars indicate the difference between the clearance
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Figure 5.9: Seal segment response during non greased test B.

measured at the URS and DRS sensor positions for each cycle. The solid line indicates

the mean of all the cycles. For clarity the configurations have been split up into greased,

shown in Fig. 5.10a and greased and cleaned, shown in Fig. 5.10b.

The non-greased tests, shown in Fig. 5.10a, typically show the biggest variation in

the operating clearance, and also have the greatest difference between URS and DRS

sides of the segment. The operating clearances of the greased and cleaned test con-

figurations, Fig. 5.10b, show less variation within each test. The level of circumferential

clearance non-uniformity is much less for the greased and cleaned tests in general, al-

though the greased tests show the occasional test where there was a particularly large

difference between the URS and DRS side of the segment. Examples are cycles no. 3 and

7 for greased A configuration, and cycles no. 1,4 and 6 for the greased B configuration.

It is also apparent in Fig. 5.10 that there was significant variation between the mean

clearance of the different contact face treatment (i.e. Non-Greased, Greased and Cleaned),

and even between tests with nominally the same contact face treatment and set up. For

example there is a difference of approximately 0.8mm between the Greased A and B

tests shown in Fig. 5.10b. The reasons for these differences are discussed in the rest of

this section.
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Figure 5.10: Mean clearance for each individual test point

5.4.2 Effect of Friction on Seal Clearance
The first step to estimating the coefficient of friction acting between the seal segment

and the seal holder was to determine the axial and radial forces. The axial and radial

pressure forces were calculated by summing the static pressure measured on the sur-

faces of the seal segment. The pocket pressures were assumed to act over the same

area assumed in the analytical model. It is shown with 3D CFD described in Section 5.5.5

that this assumption was valid. A correction was applied on the side pressure forces,

which could not be measured as the side pressure taps were not installed when these

tests were undertaken. The correction factor was determined experimentally, and which

was based on side pressure measurements described in Section 5.5.4. The radial force

applied on the segment due to the circumferential springs was added to the radial pres-

sure force, and was calculated from the spring dimensions and the measured clearance

of the seal segment. The weight of the seal segment was also accounted for. Immedi-

ately before the seal segment moves it was assumed that the radial and the frictional

force was equal, and hence allowing calculation of the friction coefficient from the axial

force. The coefficient of friction will include any effects due to mixed lubrication due to

flow past the contact face, see Section 3.3.2. The point in time at which the seal segment
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Retracted Clearance Operating clearance µ
Config. mm mm -

Non greased A 1.675 0.389 0.176

Non greased B 1.675 0.419 0.168

Rig reassembled

Greased A 1.274 0.873 0.148

Rig reassembled

Greased B 1.121 0.091 0.168

Rig reassembled

Cleaned 1.062 0.017 0.200

Rig reassembled

Non greased C 0.973 0.119 0.179

Table 5.1: Repeated test configurations and parameters.

was about to move was determined manually.

Table 5.1 summarises the mean segment retracted and operating clearance for all

the greased, non-greased and cleaned tests and the calculated apparent coefficient of

friction in the order the tests were conducted. The table indicates when the test rig

was reassembled between tests. The values quoted are the arithmetic mean of the re-

peated ‘close ins’ and ‘retractions’ performed in each test. The coefficient of friction was

calculated during ‘close in’. The coefficient of friction could also be determined during

retraction; however these values were much more variable and in some cases negative,

and so were discarded. The pressure forces were higher during close in, and so the ex-

perimental uncertainty of the pressure force measurement was a lower percentage of

the measured value.

The values of friction calculated showed greatest level of friction in the cleaned test

and least in the greased tests. Critically there was no correlation in the calculated fric-

tion and the operating clearance of the seal segment, and there was also significant

variation in the mean clearance at similar calculated coefficients of friction. Therefore

another factor, other than friction, was responsible for significant variation in operating

clearance.

5.4.3 Effect of Rig Setup on Seal Clearance
Comparing the mean operating clearance and apparent coefficient of friction between

different ‘non-greased’ configurations in Table 5.1 shows a large variation in mean clear-

ance (0.119 to 0.419mm), but with only a small variation in coefficient of friction (µ = 0.168
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to µ = 0.179). The same was also true for the Greased tests which varied from 0.091 to

0.873mm with only a variation in friction coefficient from µ = 0.168 to µ = 0.148. As the

large variation in mean operating clearance occurred after the test rig was reassembled,

then the variation was attributed to this rather than the small change in coefficient of

friction. The factor causing the variation was found to be the relative angle of the rotor

part of the test rig to the seal segment.

To demonstrate the effect of rotor angle on the performance of the seal, the clear-

ance and pressure coefficient were plotted for a single ‘close in’, and are shown in

Fig. 5.11 for Greased A and B tests. Figures 5.11a and 5.11b show the clearance for

the Greased A and Greased B test respectively, and Figs. 5.11c and 5.11d the pressure

coefficient for the Greased A and Greased B test respectively. The pressure coefficient

has been used to non-dimensionalise the pressure in each of the seal pockets and on

the top surface of the segment, and is defined by Eq. (3.1). Cp1, Cp2 and Cp3 refer to the

pressure coefficient in the first, second and third seal pocket (see Fig. 3.8), and Cpt to

the pressure coefficient on the top surface of the seal segment.

In the retracted position there was a difference in the measured pressure coefficient,

with the Cp1, Cp2 and Cp3 coefficients higher in greased A than greased B when the

segment was retracted. Note that at high clearances the pressure coefficient in the

upstream axial pocket of the was lower than the central pocket: this is discussed in

Section 5.5. The segment was in a higher retracted clearance in greased A, and so the

pressure coefficients would be expected to be lower in this configuration. When the seal

segment has transitioned to the operating clearance the pressure coefficients have all

increased, as would be expected. However it is clear that Cp2 remains higher in greased

A configuration, even though the segment was at a much higher clearance. It was the

lower pressure below the seal segment in Test B that was the cause of the smaller mean

clearance - lower pressure below the segment means lower radial force away from the

rotor. The pressure coefficient remains higher in Greased Test A as the axial clearance

was larger upstream than downstream, and therefore greater pressure drop occurs at

the downstream restrictions.

After these tests, the base of the non-rotating test rig was modified to the version

described in Chapter 4. The previous version which was used in these tests and the

tests described in Sections 5.2 and 5.3 used jacking bolts to set the position of the rotor,
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Figure 5.11: Comparing the greased test response
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and repeatable positioning of the rotor between tests was difficult to achieve.

5.4.4 Conclusion of Frictional Measurements
The experimental campaign described in this section has found three key results:

1. There was some variation between the different contact face treatments, i.e. greased,

non-greased and cleaned, and this was apparent in the calculated coefficient of

friction. The variation was lower than expected, and may be due to the difficulty

to measure coefficient of friction, which was inferred from the calculated pressure

forces, and also the effects due to mixed lubrication effects due to the secondary

leakage path through the contact face.

2. It was found that the mean clearance of the segment within each test was reason-

able repeatable, although the clearance measured on each side of the segment

varied significantly within each test. This is important for the Aerostatic Seal as it

is desirable that the leakage is consistent throughout the operation of the turbine,

and does not vary significantly after the turbine has been shut down and restarted.

3. There was a significant variation of mean operating clearance between tests when

the test rig was reassembled. This was due to the set-up of the rotor which was

difficult to assemble with the same tangential angle. Whilst this was unintended,

it does show that the initial angle of the seal segment and rotor was extremely im-

portant for successful operation of the seal, and to prevent the seal operating at an

excessively high clearance, increasing leakage, or at an excessively low clearance,

introducing rubs between the seal and the rotor.
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5.5 Fixed clearance testing
The pressure distribution underneath the Aerostatic Seal segment is vital to its func-

tion. Therefore a number of tests were carried out to measure the pressure distribution

at fixed clearances. The seal segment was fixed in place by the use of shims and the

pressure distribution and leakage mass flow rate measured.

The aim of these tests was first of all to demonstrate an increase of pressure below

the seal segment and to provide pressure and mass flow rate data to validate the an-

alytical prediction. 3D Reynolds Averaged Navier-Stokes (RANS) calculations were also

conducted to provide further comparison and insight into the flow through the Aero-

static Seal.

5.5.1 Experimental Method
The seal position was fixed by placing two shims underneath the segment at each of the

extreme URS and DRS sides of the segment and taped into position. Figure 5.12 shows

the arrangement for fixing the seal segment. As the pressure was increased at inlet to

the seal, the seal segment moved to a lower operating position, the clearance set by the

shims. As the rig was operated without back pressure, it was possible to visually check

that the seal segment was resting on the shims, as well as with the capacitance sensors.

A range of shims were used, from no shims for a zero clearance test to 1.0mm shims

for a high clearance test. At shim sizes below 0.20mm, the seal segment was manually

forced onto the shims as the positive radial force would move the seal segment away

from the rotor. (This was further demonstration of the ability of the Aerostatic Seal to

move away from the rotor.) The area of the shims was accounted for when calculating

the mean clearance.

This method was chosen as the best method for fixing the seal segment (without

re-machining a whole new fixed clearance seal test rig) as it ensured that the seal seg-

ment position was fixed during a test, and any segment movement was noticed during

the test. As the segment was free to move down initially, then it also ensured that the

segment is fully pushed against the contact face of the seal segment holder preventing

large secondary leakage flows.

The seal was subjected to a continuous ramp in pressure, with pressure, clearance,
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Force applied

Shim
Shims

+r

+x

Figure 5.12: Seal segment fixing method

and mass flow rate measurements taken constantly. The mean of the pressure, clear-

ance and mass flow rate was calculated over a small period of time (typically 0.2 s, al-

though depending on the rate of increase in pressure) at pressure ratios of 1.2, 1.4, 1.5,

and 1.6. The pressures were logged at 200Hz, giving 40 samples for each measurement.

There was no low frequency variation on the pressure signal observed. It was not possi-

ble to perform these tests at a pressure ratio lower than 1.2 as the seal segment would

be retracted.

Pressure in each of the three seal cavities was non-dimensionalised using a pressure

coefficient, Cp, defined by Eq. (3.1), and described in Chapter 3.

Most results have been taken at atmospheric back pressure, although some have

been taken with higher back pressures. This was limited to higher clearances as there

was no method of pushing the seal segment onto the shims to obtain low clearances.

5.5.2 Computational modelling
3D Reynolds Averaged Navier-Stokes (RANS) calculations have been carried out at three

clearances. The purpose of these calculations was to visualise the key 3D flow features

inside the non-rotating test rig and to evaluate the modelling assumptions in the analyt-

ical design tool.

A hybrid mesh was constructed using Pointwise V17.1R4, a commercially available

meshing program. Figure 5.13 shows a cross section of the computational domain. Un-
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Mean clearance / mm No. of cells ×106

0.550 5.53

0.230 7.59

0.058 7.92

Table 5.2: 3D RANS CFD test cases

structured cells were positioned around the feed holes, above the seal segment and

where the feed holes connected to the leakage path under the seal segment, also shown

in Fig. 5.13. The mesh included the side leakage gap between the seal segment and the

side of the test rig walls. Three meshes were generated, each with a different clearance.

The three CFD cases are listed in Table 5.2.

Mesh errors were checked when loading the mesh into FLUENT. High aspect ratio

cells were inevitable on the surface of the rotor due to the low cell height underneath

the fin tips. However as the high aspect ratio cells were aligned with the flow direction,

the effect on the results was deemed minimal. The mesh quality was more important

around the seal fin tips. Areas where the velocity of the fluid was low were less impor-

tant such as the flow path up to the top surface of the seal segment. Computational

resource limited the maximum number of cells to approximately 8 × 106, and so cells

in the circumferential direction were sacrificed in favour of cells in the axial direction.

Rotor rotation and swirl were not modelled as they were not present in the non-rotating

rig. Ultimately the objective of the CFD was to examine bulk flow features and provide a

comparison to the analytical and experimental results, and therefore time was not spent

on further refinement of the CFD study.

The inlet and outlet of the seal was modelled with a total pressure inlet and pressure

outlet boundary conditions, with the flow angle normal to the boundary. Inlet pressure

was 1.4 bar(a) and outlet pressure 1.0 bar(a), giving a pressure ratio of PR = 1.4. Inlet tem-

perature was 300K. All walls were modelled as smooth and adiabatic with no slip. The

turbulence parameters at inlet were set with turbulent intensity (Λ) equal to 0.054% and

a turbulent length scale of 2.25mm. The turbulent intensity was calculated by Eq. (5.2)

using the Reynolds number based on the inlet velocity and hydraulic diameter [93]. The

turbulent length scale was calculated as per Eq. (5.3) using the hydraulic diameter of the

inlet [93].
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Figure 5.13: Cross section of computational domain.
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Property Value Unit

Specific isobaric heat capacity 1006.43 J kg−1 K−1

Thermal conductivity 0.0242 Wm−1 K−1

Dynamic viscosity 1.7894× 10−5 kgm−1 s−1

Molecular weight 28.966 kg kmol−1

Table 5.3: Fluid properties used in the CFD calculations.

Λ = 0.16(ReDH )−
1
8 (5.2)

l = 0.07DH (5.3)

The calculation has been performed using the steady pressure based solver in FLU-

ENT 15.0. The working fluid was air, modelled as an ideal gas, and with default FLUENT

properties for air, given in Table 5.3. The SIMPLE scheme was used for pressure-velocity

coupling. The gradient was calculated with the least squares cell based method. The

turbulence model was the realisable k − ε model with enhanced wall treatment. A sec-

ond order upwind discretisation has been used for the pressure, momentum, density

and energy and first order upwind for turbulence terms. The calculation was run for a

minimum of 9000 iterations, by which time the mass flow rate had stabilised and the

scaled residuals had fallen below 1× 10−4.

The results in this section are described in three parts: 1) the seal axial pressure

distribution in the pockets of the seal segment, 2) the seal pressure distribution between

seal segments, and 3) the calculated radial force on the seal segment.

5.5.3 Pressure Distribution
The Aerostatic Seal axial pressure distribution and its variation with seal clearance is crit-

ical to obtain a successful seal design. The analytical, CFD and experimental pressures

in each axial pocket in the seal is compared in Fig. 5.14. The pocket pressures have been

normalised by the pressure difference across the seal segment, as per Eq. (3.1). Cp1,

Cp2 and Cp3 refer to the pressure coefficient in the 1
st, 2nd and 3rd seal axial pocket

respectively. Refer back to Fig. 3.8 for the cavity nomenclature. Cpt refers to the pres-

sure coefficient on the top surface of the segment. The results presented in Fig. 5.14
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Figure 5.14: Variation in pressure coefficient with seal clearance

were with atmospheric back pressure and at a pressure ratio of PR = 1.4. As the seal

segment and the rotor have the same diameter, when the segment was operating at a

clearance, the clearance in the centre of the seal segment was larger than at the sides of

the segment. Therefore the method described in Appendix F has been used to calculate

the mean clearance.

The results shown in Fig. 5.14 show the key operating principles of the Aerostatic

Seal. As the clearance of the seal segment was reduced the pressure in the seal cavities

increases, and it is this increase in pressure which generates a positive radial force to

prevent the seal segment from contacting the rotor surface. However there are two key

differences between the experimental, CFD and analytical pressure distributions.

1. Over the full range of tested clearances the experimental pressure distribution was

higher in all axial pockets.

2. At clearances greater than 0.55mm the experimental pressure coefficient in the first

pocket was lower than the second pocket, which was not captured in the analytical

model. This was termed the ‘pressure recovery effect’.

Pressure recovery occurs because the pitch between the first two labyrinth restric-

tions was small, and so at high clearances the vortex that forms in the cavity prevents

diffusion and the associated mixing losses occurring. Therefore the jet that forms under
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Figure 5.15: Large vortex in the first seal cavity

the first fin blows straight through into the second cavity, leading to pressure recovery.

This effect was captured in the 3D CFD and is shown in Fig. 5.15. It is the same effect

also reported by other researchers for a straight through labyrinth seal at high clear-

ances [92], [94]. At low clearances the effect was not observed as the ratio of clearance

to fin pitch was much lower, and at these low clearances, e.g. 0.05mm, the analytical and

CFD pressure distributions agree closely.

The reason that the experimentally measured pressure distribution was higher in all

axial pockets was due to the seal segment lifting off the rotor surface at the upstream

edge of the segment, thereby increasing the clearance at the upstream restrictions. This

was observed in the clearance measured by the capacitance sensors. This tilting of the

segment would decrease the pressure drop in the front restrictions as the leakage area

was increased, and so a greater pressure drop would occur at the last restriction. In the

CFD and analytical model the clearance at each restriction was the same. This was most

significant at the lower clearances where the positive radial force was the greatest. The

level of rotation measured was small, the largest angle being φ = 0.018◦. Therefore small

angles have a large effect on the seal segment pressure distribution.

Reynolds Number Effects
Fixed clearance tests were carried out with elevated back pressure, which increased the

pressure difference across the seal and the Reynolds Number for the same pressure

ratio. In these tests the pressure ratio was PR = 1.2. The inlet pressure was held con-

stant by the control valve, and the pressure ratio increased by lowering the back pres-
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sure by steadily opening the back pressure valve. The lowest fixed mean clearance that

could be obtained with back pressure was 0.56mm. At lower clearances the seal seg-

ment would operate at a clearance higher than the clearance set by the shims due to

the increased radial pressure force. Two sets of back pressure tests were conducted: a

test with 5.60± 0.22 bar(a) inlet pressure and a test with 3.25± 0.60 bar(a) inlet pressure.

The experimental pressure distribution at higher back pressure is shown in Fig. 5.16.

Atmospheric back pressure results are also included for comparison. Comparing the

pressure coefficient measured, it is clear that the increased pressure difference across

the seal has little effect on the pressure coefficient distribution, except on the pressure

measured in the first cavity, Cp1 which was lower at the increased Reynolds number

tests. Therefore the pressure recovery effect was affected by axial Reynolds number.

Other researchers [33] reported kinetic energy carry over was most influenced by axial

Reynolds number, and the pressure recovery effect is an extreme example of kinetic

energy carry over. The axial Reynolds number for the case with 5.60 bar(a) inlet pressure

was Rex = 10 000 at the highest clearance. When the inlet pressure was 3.25 bar(a) Rex =

6700, while for the test with atmospheric back pressure it was Rex = 2400. The axial

Reynolds number for transition from laminar to turbulent flow is around Rex = 6000

[91] for flow through labyrinth seals.

5.5.4 Side Pressure Distribution
The flow around the side surfaces of the Aerostatic Seal is 3D, with flow from the top

surface of the seal segment as well as flow travelling axially through the gap between the

segments. The side pressure force is a significant contributor to the overall radial force

acting on the segment, and so it is important that it is correctly modelled at the design

phase of the Aerostatic Seal. Hence the side pressure distribution has been investigated

experimentally and with CFD calculations.

Figure 5.17 shows the typical experimental side pressure distribution result for the

URS and DRS side of the segment. The pressure has been non-dimensionalised as pres-

sure coefficient using the same method as before, given by Eq. (3.1). Eight pressure taps

distributed on each side of the test rig, and the position of the taps are given in Table 4.2

in Chapter 4. A 2D mesh was constructed on the side of the segment and then used to

integrate the pressure acting over the surface to calculate the force acting on the side
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Figure 5.16: Variation in pressure coefficient at high back pressure, pressure ratio PR =
1.20.

of the segment. Inlet pressure was assumed to be acting at the black nodes, measured

mean top pressure at the grey nodes, and outlet pressure at the red nodes, shown in

Fig. 5.17.

By looking at the pressure distribution over the side surface of the segment, it can be

seen that there is high pressure acting over a large part of the top part of the segment

due to high pressure being present above the segment, and this driving flow from the

top surface into the segment down into the sides of the segment. Also of note is that

there is no obvious disruption of flow in the centre of the segment where the circumfer-

ential spring holes are situated. It could be expected that the spring would cause some

blockage to the flow, however no effects were observed in these tests.

For comparison, Fig. 5.18 shows the side pressure distribution obtained in the 3D

CFD. The side pressure gap is similar to the side gap experimentally. The experimental

and numerical side pressure distributions show a similar pressure profile on the side

surface of the seal segment. The CFD does not model the circumferential springs which

were present in the experimental tests.

The side pressure force was normalised by the average of the inlet and outlet pres-

sure acting over the side area of the seal segment to produce side force coefficient,
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(a) URS side (b) DRS side

Figure 5.17: Experimental pressure coefficient on side faces of seal segment and 2D

mesh used for integration. 0.44mmmean clearance.

defined as per Eq. (5.4). The side leakage area, the axial area of the clearance between

the seal segments, varied at different seal segment clearances. Figure 5.19 plots the

side pressure coefficient over the range of side leakage area tested, and at different

pressure ratios. Over the range of areas tested, the side leakage area does not affect

the measured side pressure coefficient, the force coefficient is approximately constant

at Cfs = 1.4. Each of the different pressure ratios were taken in the same test, which

explains why the points all follow the same distribution. A single test was conducted

with a lower segment position to achieve a lower side leakage area, which is the single

point at a side area of 23mm2.

Critically, the side pressure on each side of the seal segment was the same, the max-

imum difference measured between each side of the segment was 2.1%.

Cfs =
Fs

1
2∆PAs

(5.4)

The side pressure coefficient can be used in the analytical model - see equation

Eq. (3.14).
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Figure 5.18: CFD side pressure coefficient distribution.
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Figure 5.19: Side force coefficient.

Mean clearance / mm Side Pressure Coefficient / 1

0.058 1.602
0.230 1.573
0.550 1.514

Table 5.4: CFD side pressure force coefficient.

Comparison to CFD
The CFD calculations were also used to calculate the side pressure force at each of the

three seal clearancesmodelled. The side pressure coefficient was calculated and is given

in Table 5.4. The CFD showed higher levels of side pressure force than measured exper-

imentally. The side pressure was also affected by changes in seal segment clearance.

The experimental position was set by the shims at the side of the seal segment, and

which will have affected the flow of air from the top surface of the segment into the side

leakage channel. The side leakage channel in the CFD case did not include the circum-

ferential springs, which were present in the experimental case, and which would affect

the flow. Also the experimental grid only consisted of 8 points which might not have

captured all the pressure variations captured in the CFD.
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Figure 5.20: Axial side pressure coefficient distribution.

Side force at increased back pressure
The side pressure distribution was also investigated with increased back pressure. It

was found that the pressure coefficient distribution was similar to the atmospheric back

pressure results. The pressure coefficient has been plotted with axial distance along the

side of the segment and shown in Fig. 5.20. Taps 1 to 4 are the lowest radial position, and

taps 7 and 8 are the upper radial position on the side face of the segment. Tap 5 and 6

have been omitted for clarity, and only the URS side of the segment is shown, although

the DRS side of the segment was similar. The pressure coefficient has been plotted

for atmospheric back pressure, 3.25 bar(a) inlet pressure and 5.60 bar(a) inlet pressure.

There was little variation in the side pressure coefficient between atmospheric and non-

atmospheric back pressure tests.

In summary these results show that the side pressure force measured experimen-

tally was found to be invariant with side leakage area, pressure ratio, and at high back

pressure. As the side gap between the segment and the walls of the test rig were larger

than would be implemented in steam turbine application, then the pressure distribution

might be effected at very small side leakage areas. Also the rotating rig segment used

keys between the segments, which would have an effect on the side pressure distribu-

tion.
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5.5.5 Pressure force measurements
Pressures on the surface of the segment can be used to calculate the pressure forces

acting on the segment. The pressure force can be combined with the segment weight

and the circumferential spring force to calculate the total radial pressure force. The

pressure was assumed to act over the same area as used in the analytical method, given

in Fig. 3.9.

One of the first tasks was to analyse the error due to the discrete sampling of the

pressure distribution in the non-rotating rig rotor surface. The CFD results were em-

ployed to do this. This was also important to understand for the analytical design

methodology.

Table 5.5 lists all the forces calculated by CFD for each of the three clearances mod-

elled. The force nomenclature and location on the seal segment was the same as in the

analytical model, shown in Fig. 3.9.

The pressure forces have been calculated by two methods: the area integration

method integrates the pressure field calculated in the CFDmodel over the surface of the

seal segment. Themean pressuremethod calculates themean pressure by sampling the

pressure at the same location as the rotor pressure taps installed in the non-rotating test

facility. Integrating the pressure over the seal segment area was expected to be themost

accurate method as any localised pressure variations are measured. Table 5.5 lists the

difference in the radial force on each surface of the seal segment for the two different

calculation methods. The difference is also expressed as a percentage of the net radial

pressure force Fpr. The largest difference in the force is F12, the force from the central

pressurised pocket, which is 4.24% at a clearance of 0.55mm. Whilst this is a relatively

large error as a percentage of the net radial pressure force, it amounts only to −4.552N.

The net radial pressure force calculated by each method, also shown in Table 5.5, shows

a small difference between the two methods, the largest difference was 1.2N at 0.55mm.

Therefore the experimental pressures measured on the rotor surface provide a good

measurement of the pressure force on the whole seal segment, although error in radial

pressure force on individual faces of the seal segment may be subject greater error.
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Force Pressure Area Clearance

mm2 0.058mm 0.23mm 0.55mm

∆F / N ∆F
Fpr
/ % ∆F / N ∆F

Fpr
/ % ∆F / N ∆F

Fpr
/ %

F1 Ptop 1170 -0.061 0.45 -0.076 -0.08 -0.094 0.09

F3 Ptop 17741 1.138 -8.49 1.332 1.33 1.638 -1.52

F5 Ptop 1872 0.217 -1.62 0.314 0.31 0.329 -0.31

F7 Pin 4158 0.065 -0.48 0.075 0.08 0.0655 -0.06

F9 Pin 323 -0.004 0.03 -0.029 -0.03 -0.086 0.08

F10 P1 2562 0.004 -0.03 0.403 0.40 1.415 -1.32

F11 P2 15006 -0.485 3.62 -2.137 -2.14 -4.552 4.24

F12 P3 6222 0.001 -0.01 1.176 1.18 2.940 -2.74

F13 Pout 414 0.012 -0.09 -0.292 -0.29 -0.232 0.22

F15 Pout 7182 0.088 -0.66 -0.059 -0.06 -0.144 0.13

Fpr - Area integration / N -13.4 -101.0 -107.5

Fpr - Mean pressure / N -14.4 -101.7 -108.7

Table 5.5: CFD Radial Force comparison

Radial force comparison
The experimental, CFD and analytical radial force coefficients are shown in Fig. 5.21 at

different mean clearances, and different pressure ratios. As the segment mean clear-

ance was reduced, the radial force increases, which is key for the seal segment to move

away from the rotor surface. To account for the effect of the different pressure differ-

ences across the seal at difference pressure ratios, the radial force coefficient, Cf , is

based on the radially projected area of the segment and the pressure difference, given

in Eq. (5.5). Pressure ratios of PR = 1.4 to PR = 1.6 show very similar force coefficients.

The lowest pressure ratio tests, PR = 1.2, show a greater radial force coefficient and

this was because the radial spring force which is the same at different pressure differ-

ences, dominates the radial force. At the higher pressure ratios, the pressure force was

a greater contributor to total radial force produced.

Cfr =
Fr

∆PAr
(5.5)

Figure 5.21 also shows the force coefficient at PR = 1.4 calculated by the analytical

design tool and CFD simulation. As the experimental pressures in the seal pockets were

measured to be higher than the analytical prediction, as shown in Fig. 5.14, the experi-

mentally calculated pressure force was greater than the CFD and analytical model. The
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Figure 5.21: Radial force coefficient.

CFD and analytical model produce similar force coefficients at low clearance, but the an-

alytical force was lower than that calculated by the CFD at higher clearances - i.e. over

0.25mm. The reason for the disagreement is due to two things: 1) the pressure recov-

ery effect after the P1 seal pocket, and 2) the tangential angle φ of the seal segment

relative to the rotor. The CFD did not model the tangential angle between the rotor

and the seal, and so the difference between the experimental results and the CFD mod-

elling was largely due to this effect. The CFD did capture the pressure recovery effect,

hence the disagreement between CFD and the analytical model at high clearance. As

the difference between the radial force at high and low clearance was reduced due to

the pressure recovery effect, then the responsiveness of the seal was also reduced.

During the fixed clearance tests, it was possible to observe the pressure ratio when

the seal segment would retract. This allowed the minimum static clearance (see Sec-

tion 3.2) to be calculated experimentally. Calculating the radial force and axial forces

when the seal segment retracted allowed the apparent coefficient of friction to be de-

termined experimentally. This gave a mean apparent static coefficient of friction was

calculated as µstat = 0.14. The radial force coefficient at which the seal segment moves

away from the rotor was then plotted on Fig. 5.21, and by negating the force coefficient
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(i.e. turning the negative force coefficient positive) the maximum friction line can also

be plotted on Fig. 5.21.

5.5.6 Leakage Mass Flow Rate
Figure 5.22a shows the measured leakage at a pressure ratio of PR = 1.4 compared to

the analytical model and CFD. Secondary leakage around the end of the segment and

through the seal segment contact face has been excluded as the experimental set up

and the CFD had different side leakage areas. Good agreement is shown between the

analytical model, CFD and experimental data. There was slightly increased flow at higher

clearances measured experimentally compared to the analytical model.

The secondary leakage is the flow through the seal at zero clearance. The flow rate at

zero clearance was determined by fitting a linear least squares regression line through

the experimental data and using this regression line to determine the flow at zero mean

clearance. Secondary leakage has also been accounted for in the CFD results by mea-

suring just the flow leaving the seal segment at the last labyrinth fin.

The experimental data has been used to calculate a secondary leakage discharge co-

efficient for use in the standard design and analysis methodology (as per Section 3.3.1).

Themass flow rate at zero clearance was found at a number of pressure ratios, and used

to calculate a discharge coefficient based on the area between the seal segment and the

side of the non-rotating rig. The variation in discharge coefficient is shown in Fig. 5.22b.

The discharge coefficient is greater than 1 as the area through the contact face has not

been accounted for. Figure 5.22b shows increased discharge coefficient with increase

pressure ratio. The mean discharge coefficient of CD = 1.8 has been adopted in the

analytical design methodology to account for secondary leakage.

5.5.7 Discussion
This section has observed some key operational characteristics of the Aerostatic Seal,

both experimentally and numerically.
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Figure 5.22: Seal mass flow rate and secondary leakage discharge coefficient.

Pressure Distribution
The pressure distribution measured highlighted some key effects. First was the pres-

sure recovery effect in the P1 pocket observed at high clearances. This was captured

in the numerical model, although not at all in the analytical model. This had the effect

of increasing the pressures in the downstream pockets at higher clearances, and so de-

creasing the change in pressure force with clearance. This pressure force change needs

to be maximised to achieve a more responsive Aerostatic Seal design. Adding extra fins

and kinetic energy blockers would improve the situation.

Secondly there was the effect of seal segment tilt at low clearances, due to the high

positive radial force. Even though the determined tilt angle was small at φ = 0.018◦, the

effect on the pressure distribution was significant.

Testing at higher back pressure showed that the effect of axial Reynolds number on

the pressure distribution was minimal, and therefore the results here are applicable to

the higher Reynolds numbers at realistic steam turbine conditions.

The side pressure distributions were investigated, and it was found experimentally

that the side pressure force coefficient could be modelled by a constant value of Cfs =

1.4 for the range of different segment clearances and side leakage channel areas tested.

The CFD showed a higher side pressure coefficient and more variation with clearance.
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Pressure Force
Calculating the pressure forces analytically was found to over predict the change in force

expected over the range of seal segment clearance, compared to both the numerical

CFD simulations and the experimentally observed radial force. The coefficient of friction

determined experimentally was quite low compared to the value assumed in the design

tool. Preventing pressure recovery in the second pocket will increase the seal perfor-

mance, and also make the analytical tool prediction better. This has been implemented

in the proposed Gen III design in Section 9.3.

One important finding from the CFD calculations was that the pressure measured

in the experimental location on the rotor surface was within 5% of the mean pressure

acting on the surface of the segment. The difference between the net radial pressure

forces were much closer, the largest difference was 1.2N.

Leakage mass flow rate
There was good agreement with the leakage predicted analytically and numerically to

the leakage measured experimentally. It was found that leakage due to the flow at the

sides of the segment was significant, and should be minimised as much as possible in a

steam turbine application.

5.6 Conclusion
The experimental testing of the Aerostatic Seal in the non-rotating rig was described in

this chapter, and has successfully demonstrated key behaviour required for a successful

Aerostatic Seal design. Two seal designs were tested: ‘MacDonald 1’ and ‘MESS01’.

In the course of the test campaigns, the following key behaviour was demonstrated:

1. Bidirectional movement of the seal segment, and the ability of the seal segment

to move to an operating clearance where the segment was balanced by pressure,

spring and frictional radial forces. Unexpectedly the seal segment showed non-

uniform clearance behaviour, that is, one side of the seal segment operating at a

lower clearance than the other (refer back to Fig. 5.2).
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2. Testing was carried out to measure the tangential rotation of the seal segment.

It was concluded that there was minimal segment rotation in the seal holder, the

measured angles were within the measurement uncertainty. Further investigation

was carried out in the rotating rig, presented in Chapter 6.

3. Repeated testing was carried out to investigate the effect of friction on the seal

performance and to investigate other sources of variability. Friction was shown to

have an effect on the performance of the seal, although mixed lubrication effects

appear to have reduced the effect of friction. Tilt introduced due to the set-up of

the rotor was another factor that would influence the operating clearance of the

seal.

4. Fixed clearance testing demonstrated that the pressure below the seal segment in-

creased with decreased clearance. Pressure recovery from the first to the second

pockets was found, and which had a significant effect on the pressure distribu-

tion. Segment tilt at low clearances also effected the pressure distribution and

explained some of the differences between the experimental and CFD and analyti-

cal pressure distribution. Side pressure distribution was measured experimentally

and a constant side force coefficient was found. The experimental, CFD and an-

alytical mass flow rate predictions showed good agreement. The performance of

the seal segment could be increased if kinetic energy blockers were introduced in

the first pocket.

As non-uniform clearance has been observed in all the tests described in this chap-

ter, and also in the following two chapters, further analysis and test results are pre-

sented within Chapter 8. The next chapter tests the Aerostatic Seal in a rotating test

facility.



Chapter 6
Experimental Results: Rotating Rig
6.1 Introduction
The demonstration of the Aerostatic Seal concept within the ‘Durham Rotating Seals Rig’

is presented in this chapter. A new seal was designed specifically for the test rig, ‘ROT02’,

described in Chapter 3. Details on the construction of the test rig and the instrumenta-

tion is given in Section 4.4.

The key feature of the ‘Durham Rotating Seals Rig’ was an adjustable eccentric rotor,

which enables the Aerostatic Seal to be tested with rotor radial excursions. Changing

the rotor speed and rotor eccentricity allowed different rotor radial excursion rates1 to

be tested.

The test campaign was divided into three parts:

• Testing with the rotor in the low eccentricity position. This was to test the response

of the seal during normal operation of the steam turbine, where there would be a

small rotor run out.

• Testing with the rotor in the high eccentricity position. This was to test the seal

response to large radial rotor excursions typically found during start up or fast

changes in turbine load. Low rotor speeds were used to simulate slow rotor radial

thermal expansion or contraction. High rotor speeds, up to 1500 rpm, were used to

simulate high speed radial excursions due to rotordynamic effects during turbine

start up.

1
The speed at which the rotor surface would be moving towards or away from the seal segment.

123
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Rotor speed Eccentricity

rpm 0.09mm 0.55mm

0 X

26 X

110 X

300 X

600 X X

900 X X

1200 X

1500 X X

Table 6.1: Test matrix: High and low rotor eccentricity

• Assessment of leakage performance. The seal segments were fixed and the feed

holes blocked to simulate a labyrinth seal. This was to enable a comparison of

leakage through an Aerostatic Seal and a labyrinth seal.

A test matrix is shown in Table 6.1 for the high and low rotor eccentricity tests con-

ducted. A number of different rotor speeds were tested in each rotor position. Within

each test point a full sweep of inlet pressure was tested, up to a maximum pressure

of 1.6 bar(a). The outlet pressure remained constant. The 26 rpm test was the slowest

possible rotor speed, other than with the rotor stationary.

6.2 Low Eccentricity Tests
Initial testing was conducted with 0.09mm rotor eccentricity and at rotor speeds of 0, 26,

600, 900 and 1500 rpm. Eccentricity is defined as the radial distance from the centre

of rotor rotation to the centre of the rotor. Therefore the peak to peak variation in the

position of the rotor surface is double the radial eccentricity quoted. The aim of the low

eccentricity testing was to demonstrate Aerostatic Seal performance at similar levels of

eccentricity found in a turbine under normal operating conditions.

Figure 6.1a shows the seal segment position from a typical low eccentricity rotor test

at a rotor speed of 1500 rpm. The position is relative to the mean rotor surface, so zero

position is the rotor surface if it was positionedwithout eccentricity. With eccentricity the

position of the rotor surface varies sinusoidally with time. Results are presented for all

three instrumented seal segments (10, 12 and 2 O’clock) and for both up rotation (URS)
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and down rotation (DRS) sides of the segment. See Fig. 4.9 for nomenclature. From 0

to 5 seconds the seal segments were in the retracted position as there was only a small

pressure difference across the seal. There was some variation in retracted seal segment

clearance between seal segments and also between the URS and DRS of the 10 O’clock

seal segment. This was due to the carrier ring which houses the seal segment being

slightly off centre from the rotor and manufacturing variations between the keys which

set the initial clearance.

The inlet pressure was increased, and once sufficient pressure difference across the

seal was achieved, at around 6 seconds, the seal segments moved towards the rotor

surface. This happened quickly as once the seal segments started moving the friction

force was reduced from static friction to dynamic friction. The seal segments then came

to rest at the operating clearance where the mean clearance is not influenced by fur-

ther increases in pressure ratio. At the operating clearance the difference in clearance

between different sides of the seal segment was only around 0.05mm.

As a consequence of the rotor eccentricity, the 12 O‘clock seal segment was excited

by the rotor, shown in Fig. 6.1a, and enlarged in Fig. 6.1b. The seal clearance is the

difference between the segment position and the rotor position. After 11 seconds this

excitation is damped out by the frictional force. Also of note is the difference in respon-

siveness of the URS and DRS sides of the seal segment. A similar effect was observed in

the non-rotating test facility Chapter 5, and so is not due to the addition of shaft rota-

tion. There appears to be a slight vibration on the other seal segments in Fig. 6.1b; this

was traced to a small oscillation of the output voltage from the amplifier circuitry of the

inductive sensors, at approximately 800Hz, and not to movement of the seal segments.

The circumferential position of the seal segments was shown to have an effect on the

response. The 12 O‘clock segment was the first seal segment to move to the operating

clearance. This was expected since the gravitational force vector is entirely in the radial

direction. The 10 and 2 O‘clock segments moved later and at a higher pressure ratio, and

maintained a slightly higher clearance than the 12 O‘clock segment, due to the reduced

radial component of gravitational force.

A series of six repeated tests were conducted to asses the variability in operating

clearance. The seal segments were not reassembled between tests. The mean clear-

ance of each segment was calculated as per Appendix F. The mean clearance was con-
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(a) Whole test (b) Vibratory response

Figure 6.1: Seal segment response at low rotor eccentricity and 1500 rpm

Seal Segment 10 O‘clock 12 O‘clock 2 O‘clock

Mean Clearance / mm 0.698 0.277 0.548

Range / mm 0.020 0.015 0.015

Table 6.2: Mean seal segment clearances, rotor speed 1500 rpm, low rotor eccentricity.

sistently greater for the 10 and 2 O‘clock seal segment positions compared to the 12

O‘clock position. Table 6.2 gives the mean and range of the six individual tests.

6.2.1 Effect of Rotor Speed
A number of tests were conducted at different rotor speeds from 0 to 1500 rpm and

Fig. 6.2 plots the mean clearance of each segment with rotor speed. Over the range

of speeds tested, there was no noticeable effect of rotor speed on the mean opera-

tional clearance measured. The only exception was 0 rpm where the operating clear-

ance was significantly greater. The largest increase was the 12 O’clock segment which

was about 0.11mm higher than all the tests conducted with rotor rotation. The reason

why is demonstrated in Figs. 6.3a and 6.3b which shows the 12 O’clock seal segment re-

sponse at 0 rpm and 26 rpm respectively. In Fig. 6.3a the 12 O’clock seal segment moves

fast during initial close in, and the clearance reduces as the pressure ratio increased. In
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Figure 6.2: Effect of rotor speed on mean seal segment clearance.

Fig. 6.3b, the 12 O’clock seal segment operating at 26 rpm, the 12 O’clock seal segment

initially moves to a similar clearances as with no rotation in Fig. 6.3a. However as the ro-

tor position was changing due to the eccentricity of the rotor and increase of pressure,

there are a number of secondary movements of the seal segments which further reduce

the seal segment operating clearance.

Overall this result indicates that if the Aerostatic Seal was operating in a turbine with

a well balanced rotor with no run out, then the operating clearance of the seal would

be higher than if there was some rotor radial transient. However it is unlikely that there

would be zero rotor radial transients at all, and so the operating clearance of the seal

will be lowered.
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Figure 6.3: Seal segment response with low eccentricity

6.3 High Eccentricity Tests
High eccentricity testing was conducted to assess how responsive the Aerostatic Seal

was to more extreme rotor radial transients, and to demonstrate the ability of the seal

to respond to the rotor. Testing was conducted at a range of inlet pressures and rotor

speeds, as shown in the test matrix discussed earlier (Table 6.1).

Rather than show the seal segment position with time for all rotor speeds and at all

pressures, it is more informative to focus on a small number of key results. Therefore the

highest rotor speed has been chosen as it was most demanding for the seal to respond

to, and the seal was able to respond to the rotor remarkably well. A pressure ratio of

PR = 1.5 has been chosen as it was the design operating pressure ratio. Together the

high rotor speed and high pressure represent the case where the turbine rotor goes

through a transient event while under load. This is shown in Fig. 6.4.

Two further cases are shown: when the rotor was at high speed and the pressure

low, shown in Fig. 6.5, and when the rotor speed was low and the pressure high, shown

in Fig. 6.6. High speed and low pressure was chosen to demonstrate that at low pressure

rotor tracking was more difficult as the pressure forces are lower. Low rotor speed was

to demonstrate the seal behaviour when responding to low speed rotor transients due

to gradual thermal growth of the turbine rotor. Finally the mean clearance for all speeds

and a selection of pressures are shown in Fig. 6.7.
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Figure 6.4 plots the URS and DRS seal segment position at a rotor speed of 1500

rpm and pressure ratio of PR = 1.5 for the 10, 12 and 2 O‘clock seal segments. The

rotor position at both URS and DRS sensor locations has been plotted as the rotor radial

position was different at each sensor location due to the circumferential distribution of

the sensors. The clearance at each of the sensor locations is the difference between the

segment position and rotor position. Due to the large radial rotor movement the seal

segment has to move in order to prevent contact between the segment and the rotor.

The seal segment was stationary for a period of time at the high and low positions, and

therefore before the seal segment could move it had to overcome static friction rather

than dynamic friction. Both sides of the seal segment move at the same time. Note that

at the lowest position the seal segment was limited by the T slot.

The 12 O‘clock seal segment, Fig. 6.4b, was able to track the rotor the closest. The

10 and 2 O‘clock seal segment responses, Figs. 6.4a and 6.4c respectively, show that the

URS side of the seal segment consistently operates at a higher clearance. The 10 O‘clock

seal segment shows a greater difference in position between the URS and DRS of the

segment; this was due to the uneven initial clearance, as found in Fig. 6.1a. This has lead

to small rubs as the rotor moves towards the seal segment at 20.09 s and 20.13 s. Whilst

only the top three seal segments were instrumented, a camera positioned at the outlet

of the rig provided confirmation that all seal segments responded to the rotor.

At low pressure ratios, just after the seal segment had ‘closed in’, the seal segment

response was not fast enough to track the rotor position to the extent shown in Fig. 6.4.

An example is given in Fig. 6.5, which shows the 12 O‘clock seal segment response at

1500 rpm and at a pressure ratio of PR = 1.1. Note how the time taken to move towards

the rotor is greater than the higher pressure ratio data shown in Fig. 6.4b. As a conse-

quence the seal segment reached the lowest operating position as the rotor was moving

to a greater radial position, which would lead to a greater chance of rotor contact. As

the rotor goes through the 1st critical speed, the pressure drop across each turbine stage

will be low, and the rotor larger than during normal operation. Therefore the key point

for the designer of the Aerostatic Seal is to ensure the seal segment remains retracted

until the rotor is up to speed, and has gone through the rotor critical speed.

Also of interest is the segment response at low speeds. Figure 6.6 shows such a

test at a rotor speed of 110 rpm and a pressure ratio of PR = 1.5. In this operating
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(a) 10 O‘clock Segment

(b) 12 O‘clock Segment

(c) 2 O‘clock Segment

Figure 6.4: High eccentricity, high speed seal response: 1500 rpm, PR = 1.5
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Figure 6.5: Seal response at high speed (1500 rpm) and low pressure ratio (PR = 1.1).

regime the seal segment response towards the rotor shows a number of discontinuities

where the velocity of the seal segment changed. Note that at low rotor speeds the

motor inverter driving the rotor created a significant level of electrical noise which is

the evident on the signals shown in Fig. 6.6. Therefore in slow rotor movements such

as thermal transients, it is much more likely that the seal segments will respond in a

number of discrete movements.

Figure 6.7 shows the mean clearance for each measured seal segment over the full

range of rotor speeds and pressure ratios tested. The mean segment clearance has

been obtained by numerically integrating the seal position with respect to time over an

integer number of rotor periods. Due to 0.55mm eccentricity of the rotor, the minimum

seal position that a fixed labyrinth seal could operate is 0.55mm, which would lead to a

mean clearance of 0.55mm over a rotor period. This is also plotted in Fig. 6.7. As the

mean clearance of the Aerostatic Seal is lower than the minimum mean clearance of a

fixed seal, the potential benefit of a dynamic seal is demonstrated.

At a low pressure ratio of PR = 1.1 the influence of rotor speed was significant,

particularly so for the 10 O‘clock segment, and the seal was operating at a higher mean

clearance. At a pressure ratio of PR = 1.10 the seal segments had only just moved from

the retracted position, and the 10 O‘clock segment was the last to move. However once
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Figure 6.6: Seal response at low speed (111 rpm) and high pressure ratio (PR = 1.5).

the pressure ratio has increased to PR = 1.15 the effect of speed was reduced, and

between pressure ratios of 1.3 < PR < 1.5 the response almost independent of rotor

speed.

The key observation is that the seal segments were able to maintain a mean clear-

ance that was lower than the level of rotor eccentricity once sufficient pressure ratio had

been obtained. This is true over the full range of rotor speeds for the 12 and 2 O‘clock

seal segments. The 10 O‘clock segment response was not as good, and indicates that

initial position of the seal segment influences performance.
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Figure 6.7: Mean seal segment clearance with high rotor eccentricity.
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6.3.1 Circumferential Clearance Distribution
The position of each seal segment was measured at two circumferential locations, which

allows the position of the seal segment at all circumferential angles to be calculated.

Previously in this chapter seal segment position has been presented only at the sensor

locations. This section presents one result where the variation in the position circumfer-

entially has been calculated, and which shows some of the intricacies not obvious in the

previous sections.

Figure 6.8 shows the 12 O‘clock seal segment and rotor circumferential position over

a single rotation with rotor speed 1500 rpm, and pressure ratio PR = 1.5. The positions

have been plotted at eight key moments in time. The black line is the circumferential

position of the rotor surface, and the orange line is the circumferential position of the

seal segment. Arrows show the movement of the seal segment and rotor in each figure.

The clearance is the vertical distance between the segment and the rotor lines in the

plot, and has been indicated in Fig. 6.8a. In each of the plots, the rotor is travelling from

the URS to DRS side of the seal segment, which is from −30◦ to 30◦. 0◦ was the top dead

centre (TDC) of the rotor. The URS and DRS sensor locations are given in each of the

plots.

Note that the curvature of the rotor and segment changes in Figure 6.8 as the radial

position of the segment and the rotor has been ‘unwrapped’ onto straight axes of the

plot, and is not the seal segment and rotor deforming. The methodology for calculating

the seal segment position at all circumferential locations is detailed in Appendix F.

Figure 6.8a shows the seal segment and rotor position at 20.0700 s, where the seg-

ment was stationary and the rotor moving to a lower position. At 20.0750 s (Fig. 6.8b)

the seal segment starts to move towards the rotor, and by 20.0800 s (Fig. 6.8c) the DRS

side of the segment has reached the lowest extent, followed by the URS side of the seg-

ment at 20.0820 s (Fig. 6.8d). It was the DRS side of the seal segment that was the first to

move even though there was actually larger clearance at the URS side of the segment in

Fig. 6.8b.

At 20.0850 s, shown in Fig. 6.8e, the rotor was at the lowest radial position, and the seal

segment is stationary, resting in the T slot. The segment remained stationary until there

was a momentary rotor-segment contact at 20.0885 s (Fig. 6.8f) as the rotor is moving to

a larger radial position, at which point in the time the segment starts to move away from
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(e) t = 20.0850 s, 37.5% of time period, 0.30mm
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Figure 6.8: 12 O‘clock seal segment circumferential clearance distribution at PR = 1.5 and

rotor speed 1500 rpm.
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the rotor. At 20.0930 s (Fig. 6.8g) the rotor and seal segment were travelling to a higher

radial position. At 20.1020 s (Fig. 6.8h) the DRS side of the segment continued to move to

a larger clearance while the URS side of the segment was stationary. The segment then

remained stationary and the cycle begins again.

One of the main observations was that different sides of the seal segment move

at different times, and the segment would pivot around the extreme URS side of the

segment (i.e. at a circumferential angle of −30◦). For example, when the segment is

moving towards the rotor, in Figs. 6.8b and 6.8c, it was the DRS side of the segment

which moves first, and which created an uneven clearance in Fig. 6.8c until the segment

reached the lowest position allowable in the T slot.

Later on in the cycle, when the segment was moving away from the rotor, shown

in Figs. 6.8f to 6.8h, there was a delay before the seal segment moved away from the

rotor, which lead to a brief rotor contact, before the segment begun to move away from

the rotor in Fig. 6.8g. The clearance was uniform as the segment moved away, and

so while the URS pocket was at a very low clearance in Fig. 6.8f, the non-uniformity in

the clearance means that the mean segment clearance was still large enough that the

radial force generated was insufficient tomove the segment away from the rotor without

contact. Once the clearance had become uniform, the segment was able to move away

from the rotor and actually accelerate away from it. In Fig. 6.8h the DRS side of the

segment overshot due to the momentum of the seal segment, and so a non-uniform

clearance was produced. A similar response was found when operating at lower rotor

speeds down to 110 rpm. The other seal segments showed similar behaviour, i.e. brief

moments of rotor contact on one side of the seal segment when the mean seal segment

clearance was too large to generate sufficient force away from the rotor.

The key outcome from this section is that it is mean clearance (or seal area) that

is the key parameter effecting the seal segment response. It was observed that when

the seal area was large due to seal segment non-uniform clearance - i.e. one side of

the segment at a low clearance than the other, that rotor contact would occur due to

insufficient positive radial force to move the segment away from the rotor. The clear-

ance of the circumferentially spaced pockets was not observed to be able to maintain a

uniform clearance. Therefore further seal design optimisation is needed to correct the

non-uniformity in the segment clearance, such as changing the size of the circumferen-
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Figure 6.9: Pressure ratio - clearance plots for the 12 O‘clock seal segment.

tial pockets. Seal segment clearance non-uniformity is discussed in detail in Chapter 8.

6.3.2 Effect of Pressure Ratio
The effect of pressure ratio and rotor speed is shown in Fig. 6.9 where the mean clear-

ance of the 12 O’clock seal segment has been plotted with pressure ratio and different

rotor speeds. Figures 6.9a to 6.9d show the response at 110, 300, 900, and 1500 rpm

respectively.

At a pressure ratio of PR = 1.0 there was no pressure difference across the seal seg-
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ment and so the circumferential springs ensured that the segment was pushed to the

maximum radial position. The graphs still indicate a change in clearance and this was

due to the eccentricity of the rotor, which would vary the clearance even through the

seal segments are stationary relative to the diaphragm. As the pressure ratio increased

the range and mean clearance occupied by the seal segment reduces, with the mini-

mum seal clearance coming to approximately 0.05mm. As the pressure ratio continues

to increase, the measured maximum segment clearance increases in the 110 rpm ro-

tor speed test. At higher rotor speeds, this is not apparent. At 900 rpm and 1500 rpm

rotor speeds and pressure ratio in the interval 1.1 < PR < 1.2 the minimum clearance

becomes very close to the rotor and could in fact have contacted the rotor surface. This

is due to the larger inertia of the seal segment at higher rotational speeds and reduced

radial force due to the low pressure ratio and hence lower pressure difference.

Figure 6.9 also plots the maximum and minimum static clearances calculated an-

alytically using the design methodology described in Chapter 3. The maximum static

clearance is the largest clearance at which the seal segment would be stationary, and

if the seal segment was operating at a higher clearance, then there would be a net ra-

dial force towards the rotor. The minimum static clearance is the smallest clearance at

which the seal segment would be stationary. If the clearance was below this clearance

then a net force would be produced away from the rotor. The maximum and minimum

static clearance is discussed in more detail in Chapter 3. Plotting maximum and mini-

mum static clearance with pressure is a useful tool in designing the Aerostatic Seal as it

enables the calculation at which the seal segment will move from the retracted position

to the operating position. The calculated values of the maximum and minimum static

clearance are dependant on the coefficient of static friction.

The maximum and minimum static clearances have been plotted in Fig. 6.9, assum-

ing a coefficient of static friction of µstat = 0.6. Initially at low pressure ratios the seal

segment is retracted, which is predicted by the analytical model. The actual retracted

clearance is set up dependant and was limited by the keys between the seal segment

in the experimental test. Once there was sufficient pressure difference across the seal,

the clearance reduces. This was well predicted by the analytical model, as the clearance

rapidly reduces when the seal segment clearance reaches the maximum static clearance

line. This was the case in all of the different rotor speeds tested. The operating clear-
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ance of the seal was not well predicted however, with the analytical model predicting

that the operating clearance would be smaller than that measured experimentally. This

is partially explained by considering that the lowest position of the seal segment was

limited, and so the segment can not follow the rotor to its lowest eccentric position. I.e.

the lowest position of the segment was approximately −0.25mm whereas the lowest ra-

dial position of the rotor was −0.55mm. This would increase the clearance between the

segment and rotor during the portion of the rotor cycle that it was at its lowest posi-

tion. However the apparent minimum static clearance of the seal segment was greater

than predicted. This indicates that there was more radial force away from the rotor that

predicted by the analytical model.

The clearance of the 2 O‘clock seal segment has also been plotted at different pres-

sure ratios, shown in Fig. 6.10. The response is similar to the 12 O‘clock seal segment,

although the minimum and maximum clearances are greater due to the reduced radial

gravitational force component. At low pressure ratio and high rotor speeds (1500 rpm

and 1.1 < PR < 1.15), the response of the segment is different with a significant reduc-

tion in maximum clearance, due to a fast seal velocity at high rotor speeds and a low

radial force magnitude due to the low pressure ratio.
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Figure 6.10: Pressure ratio - clearance plots for the 2 O‘clock seal segment.
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6.3.3 Seal Segment Tangential Rotation
Due to the pressure forces acting on the seal segment, there is a moment acting on the

seal segment that tends to rotate the segment forward in the seal holder. See Chapter 3

for more details. The ‘Durham Rotating Seal rig’was equipped with a pair of sensors that

are able to detect seal segment rotation about the tangential axis of the seal segment,

as described in Section 4.4. To prevent seal segment rotation, which could lead to the

segment becoming jammed or a loss of positive radial pressure force, the analytical

design tool checks that there is moment equilibrium over the range of seal segment

clearances.

Figure 6.11 shows the typical tangential rotation of the 12 O’clock segment at 1500

rpm andwith high rotor eccentricity. The response over the full test is shown in Fig. 6.11a,

and the response shown over two rotor periods is shown in Fig. 6.11b. Recall that pos-

itive rotation angle φ is the segment tilting ‘forward’, shown in Fig. 6.12a, and negative

tilting ‘backwards’, shown in Fig. 6.12b. From 5 s to about 8 s, the angle φ of the seal seg-

ment was 0◦, shown in Fig. 6.11a, although the angle is relative to the diaphragm and

so the segment is not necessarily parallel to the rotor surface. As the pressure was in-

creased, from 7 s onwards, the seal segment tilts backwards, before stopping at an angle

of φ = 0.2◦. The seal segment than closes in around 14 s. Figure 6.11b shows greater

detail during two rotations of the rotor. At the lowest clearance of the seal segment the
tangential angle of the segment increases, indicating that the segment has tilted for-

ward. Note that in Fig. 6.11b clearance is the difference between the segment position

(solid lines) and the rotor (dashed lines).

In the set of tests reported here sensor measurements have shown that there was a

small amount of segment rotation, with amaximum change in segment angle of approx-

imately 0.16◦ between the retracted position and theminimum position. When retracted

the seal segment is tilted such that the upstream was at a lower clearance, shown in

Fig. 6.12a. At high clearance there is the greatest tendency for the seal segment to

rotate forward due to the pressure moment acting on the segment. At the minimum

segment position the segment is such that the upstream side is now at a slightly higher

clearance, shown in Fig. 6.12b. As the angle of the seal segment is calculated from two

measurements that are close together, then the uncertainty in the measurement (0.1◦,

see Section 4.4) is the same order as the measured angle.
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Figure 6.11: Seal segment tangential rotation during 1500 rpm and

In summary, measurements on the 12 O’clock seal segment indicate that the seal

segments rotate about the tangential axis during operation. This was predicted by the

analytical model as the ‘ROT-02’ seal design for the rotating rig was designed tomaximise

the seal responsiveness, and so at high clearance and high pressure moment stability

would be lost, however the seal was expected to operate at low clearances in the stable

operating region. The uncertainty in the themeasurements was of the same order as the

measured rotation, and so the exact level of segment rotation was difficult to quantify.
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Figure 6.12: Seal segment tangential rotation, not to scale.

6.3.4 Contact Face Wear
After a number of tests in the rotating facility, wear was observed on the contact face of

the seal segments. The majority of wear on the 12 O‘clock segment was limited to the

extremities of the contact face. Figure 6.13 shows the wear observed on the 12 O’clock

seal segment and on the contact face of the seal holder. The cause of this pattern of

wear is due to the distribution of contact face stress on the seal, which is due to the

pressure moment acting on the seal segment. Areas of wear indicate areas of higher

contact stress. This is discussed in detail in Chapter 8. Seal segments in the lower por-

tion of the seal, such as the 6 O‘clock segment shown in Fig. 6.14, show a more uniform

distribution of wear. As gravity is acting in the opposite direction in the 6 O‘clock seal

segment, so the gravitational moment is also reversed, reducing the moment acting on

the seal segment.

The level of wear shown in Figs. 6.13 and 6.14 are after approximately 1400 ‘cycles’,

with the segment moving towards and away from the rotor in one cycle. As a compari-

son, a steam turbine may be expected to operate up to 20 years and could go through a

start up and shut down each day to meet peak electricity demand, then the number of

cycles would be 7300. In reality the number of cycles would depend upon the operation
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Figure 6.13: Wear on the 12 O‘clock seal segment and seal holder contact faces.
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Figure 6.14: Wear on the 6 O‘clock seal segment contact face.
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of the turbine, maintenance intervals and other operational factors.

As the material of the Aerostatic Seal design tested is not representative of a steam

turbine design, then the level of wear will not be realistic of turbine operation. Also

surface treatments or coating could also be applied to reduce wear and also control

friction.

6.4 Leakage Reduction
In order to assess the potential leakage reduction the Aerostatic Seal presents over

a comparable labyrinth seal, the Aerostatic Seal segments were fixed in position with

shims, shown in Fig. 6.15, and the feed holes covered with foil tape. The mean clearance

of the whole seal, including the gaps between segments, was measured at 0.97mm, and

could tolerate 0.55mm eccentricity of the rotor without contact. The gap between the

seal segments was 5% of the total leakage area.

Leakage mass flow rate was measured with a low rotor eccentricity at a fixed ro-

tor speed over a range of pressure ratios and shows a substantial reduction in leakage

flow compared to the fixed clearance case, shown in Fig. 6.16. Leakage mass flow mea-

surements with fixed seal clearance was taken over a range of rotor speeds from 600

to 1500 rpm, and there was no discernible difference in leakage mass flow rate. This

was confirmed by considering the ratio of Taylor number (Ta) to axial Reynolds number

(Rex). Waschka et al [91] found no effect of rotational speed on seal discharge coeffi-

cient for Ta/Rex < 0.2. The maximum ratio of Ta/Rex for the tests conducted with fixed

segments was approximately Ta/Rex = 0.03.

Leakage mass flow rate was measured with high rotor eccentricity at various rotor

speeds from 300 to 1500 rpm. The eccentric rotor data shows that the leakage through

the seal was not significantly increased due to large radial rotor excursions. At the ROT02

seal design pressure ratio of PR = 1.5, an approximate 35% reduction in leakage mass

flow was measured.

Analytical predictions for the fixed labyrinth seal were used to add confidence to the

measurements taken with the fixed seal segments, and included in Fig. 6.16. Hodkin-

son‘s model [31], which uses Martin‘s leakage equation [27], with a coefficient of dis-

charge Cd = 0.60 gave a good match to the fixed seal leakage data. This analytical
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Figure 6.15: Seal segments fixed into position with aluminium shims.

method was used to obtain a comparison of the leakage through the Aerostatic Seal

to a non-segmented labyrinth seal, and has also been included in Fig. 6.16. The leakage

through a labyrinth seal is proportional to the leakage area, and inversely proportional

to the square root of the number of restrictions [31]. As the gaps between the segments

are a single restriction, and the labyrinth seal has four restrictions, then the leakage per

area through the gaps is twice that of the main seal. Therefore if the gap area is 5%

of the total leakage area of the seal, then 10% of the leakage flow rate is through the

gaps. Comparing the measured leakage of the Aerostatic Seal to the predicted leak-

age through a non-segmented seal, the leakage benefit is still approximately 30% at the

design pressure ratio of PR = 1.5.

6.5 Discussion
The ideal operating characteristics of the Aerostatic Seal is to maintain a low clearance

between the rotor and the seal. As there will inevitably be a small sub 0.1mm run out
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Figure 6.16: Leakage mass flow rate
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on the rotor of a steam turbine, it is desirable that the seal segments do not respond to

these small rotor movements to prevent excessive wear on the contact face. Only when

there are large radial rotor excursions should the seal segments respond, or if thermal

expansion reduced the seal clearance to an extent that there was a danger of the rotor

contacting the seal.

Testing with the rotor in the low eccentricity position has demonstrated these de-

sired operating characteristics of the Aerostatic Seal. The seal starts at a retracted po-

sition and moves to a low, static operating position. The behaviour was similar to the

retractable seal (on which the Aerostatic Seal is based), although rather than setting the

operating clearance with the T slot as in the retractable seal, in the Aerostatic Seal the

clearance is set by the radial pressure and spring forces. The low level of eccentricity

was able to excite the 12 O’clock seal segment, which operated at the lowest clearance,

although this damped out after a few seconds. Seal segment circumferential location

was shown to affect seal performance due to differing levels of gravitational force acting

on the segment as it was found that the 10 and 2 O‘clock segments operated at a higher

clearance.

A series of repeated tests were conducted with the rotor in the low eccentricity posi-

tion. These showed that the operating clearance was consistent over the tests for each

seal segment, the range between tests less than the measurement uncertainty. It is im-

portant that the operating clearance is constant as different clearances will change the

leakage through the seal, which would affect the turbine performance. The tests were

conducted without re-assembling the test rig which would be expected to produce a

greater change to the operating clearance by introducing or removing contaminants to

the contact face, therefore changing the frictional behaviour.

Testing conducted with high rotor eccentricity has demonstrated the high speed re-

sponse of the Aerostatic Seal to significant radial transients. The response of the seal

to high levels of rotor eccentricity not only protects the seal segment labyrinth fins from

damage, but it is also able to maintain a mean seal segment clearance that is lower

than the rotor eccentricity. At low pressure ratios, the ability of the seal segments to

respond to high speed rotor movements was reduced, and the mean clearance that the

seal maintains increases.

The testing of the seal was conducted at a range of rotor speeds up to 1500 rpm
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in the low and high rotor eccentricity position. These test indicated that the effect of

rotor speed on the mean clearance of the seal segments was minimal, once the seal

was operating at pressure ratios above approximately PR = 1.2. The greatest effect due

to speed was between non-rotating and rotating tests, where the non rotating tests

showed a larger mean clearance.

The ‘Durham Rotating Seals Rig’ was not designed to match steam turbine rotor sur-

face velocity as it was half rotor diameter and half rotor speed. Therefore effects of the

rotor velocity and entrained swirling flow due to the rotor are not included in the tests,

however such effects are secondary to the rotor radial velocity due to rotor eccentricity.

Equation (6.1) expresses the rotor radial displacement (vr) as a function of rotor angular

velocity (ω), rotor eccentricity (e) and time (t). Differentiating to get rotor radial velocity

(Eq. (6.2)) and taking the maximum gives Eq. (6.3) which is only a function of rotor eccen-

tricity and rotor angular speed. Therefore to match the peak rotor radial velocity, it is

not necessary to match rotor speed and eccentricity, and so the testing described in this

chapter is representative. The high rotor eccentricity setting tested here was beyond

what would be expected during normal operation of the steam turbine when operating

at 3000 (or 3600) rpm. Furthermore the turbine will go through the critical frequency as

it is accelerating up to operating speed, and so will not be operating at 3000 rpm during

the largest radial rotor excursions.

vr = e sin(ωt) (6.1)

v̇r = eω cos(ωt) (6.2)

v̇rmax = eω (6.3)

By analysing the clearance over the whole circumferential extent of the seal seg-

ments, it was found that the most important factor affecting the response of the seg-

ment was the mean segment clearance. Due to non-uniformities in the segment clear-

ance, i.e. one side of the segment at a higher clearance than the other, and the inabil-

ity of the circumferentially spaced pockets to correct this non-uniform clearance, there

were short periods of time where the segment would contact the rotor because the
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mean segment clearance was too high to generate sufficient radial force away from the

rotor, despite one side of the segment being at a low clearance. Therefore it is required

to further optimise the seal design to combat non-uniform segment clearance. Non-

uniform clearance is further investigated in Chapter 8.

Upon disassembly of the seal segment after high rotor eccentricity testing, all seal

segments showed wear on the contact face. As the seal will be expected to operate

without maintenance for many years, this is undesirable. Hard facing materials are a

possible solution to prevent wear on the contact face. It should also be borne in mind

that during most of the operating life of the seal it will be stationary; the seal should

only need to move during start up and shut down, or if there was some other event

causing a large radial rotor excursion. As the material used to manufacture the seal seg-

ments used in these tests is not representative of steam turbine grade material, further

investigation is left for testing in a steam environment.

The leakage mass flow rate assessment has shown that the Aerostatic Seal was able

to reduce leakage over a similar labyrinth seal. Further improvements to the leakage

performance of the Aerostatic Seal are possible by optimising the design of the seal

segments for different circumferential positions (e.g. 10 O‘clock, 2 O‘clock segments

etc.), and by reducing the mean operating clearance of the seal. These changes can be

implemented by modifying the seal segment geometry, or employing different springs

to alter the radial pre load on the seal segments. Further leakage reductions are possible

by using steps or castellations on the rotor surface, preventing kinetic energy carry over

from one cavity to the next.

6.6 Conclusion
The dynamic capabilities of the Aerostatic Seal have been conclusively demonstrated in

this chapter. A campaign of testing has been conducted in the ‘Durham Rotating Seals

Rig’ at two different rotor eccentricities to model radial rotor excursions and successful

operation of the Aerostatic Seal was achieved.

The Aerostatic Seal could maintain a constant operating clearance with low levels of

rotor eccentricity i.e. during normal steam turbine operation, and the measured oper-

ating clearance was found to be repeatable between different individual tests.
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Tests conducted at high levels of rotor eccentricity showed that the seal was able to

maintain a mean clearance lower than the level of rotor eccentricity, which is not possi-

ble with conventional non contacting seals such as labyrinth and retractable seals. There

were occasional moments of rotor contact in the high rotor eccentricity testing, and this

was because of one side of the segment being at a lower clearance than the other, and

the pressure moment generated to correct this ‘non-uniform’ segment clearance was

insufficient to prevent the lowest side from contacting the rotor. This was only for short

periods of time during operation. The cause of this ‘non-uniform’ clearance is the subject

of Chapter 8.

The leakage performance was measured and compared to a comparable segmented

labyrinth seal by fixing the seal segments in place. This showed a potential leakage

reduction of 35% at the design pressure ratio of PR = 1.5.

The following chapter investigates an Aerostatic Seal design variant that uses ‘axial

thrust compensation springs’ to reduce the frictional force on the seal segment.

Due to the success of the experimental demonstration of the Aerostatic Seal, testing

in steam was conducted. This is reported in Section 9.2.



Chapter 7
Axial Thrust Compensation
7.1 Introduction
It was shown analytically in Section 3.2.4 that the operating clearance of the Aerostatic

Seal is sensitive to variations in friction coefficient. Many factors affect the level of fric-

tion, and in steam turbine operation may be due to wear over time, build-up of scale,

and variabilities in steam quality. Also there will be a different coefficient of friction from

application in the room temperature rig operating in air to high temperature rigs using

realistic materials. Therefore it is desirable to be able to develop the Aerostatic Seal con-

cept to be insensitive to variations in friction coefficient, or at least designed to operate

within known limits.

One method to reduce the impact of friction on the Aerostatic Seal seal design is to

reduce the reaction force. As the frictional force is proportional to reaction force, then

the frictional force is reduced. At lower levels of frictional force the operating clearance

is less sensitive to changes in friction.

The GenII Aerostatic Seal design included ‘axial thrust compensation’ springs to re-

duce the reaction force from the contact face. The axial springs are positioned behind

the seal segment and exert an axial force to counteract some of the axial pressure force

and hence reducing the reaction force and thereby reducing the frictional force.

To test this concept the non-rotating rig was updated to include provision for axial

thrust compensation springs, as described in Section 4.3.

The aim of the testing was to address the following questions:

152
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1. Is the axial thrust compensation concept viable? Will the seal still work with the

addition of axial thrust compensation springs?

2. Assuming that the concept is viable, what is the level of performance gain? It was

expected that reducing the frictional forces acting on the seal segment will make it

more responsive, and would translate into a reduction in the operating clearance

of the seal.

3. What are the limits of operation? It is important to understand how much axial

thrust can be applied before undesirable seal behaviour is observed.

7.2 Seal Design
The seal design, designated ‘MESS04’, was manufactured from the existing ‘MESS01’ de-

sign. The design included 4 lands for mounting axial thrust springs. It was possible

to revert to seal design ‘MESS01’ by simply omitting the axial springs. Four axial thrust

springs were installed, and were distributed about the centroid of the seal segment, as

shown in Fig. 7.1. There were a limited number of axial spring locations possible due

to the positioning of the rear capacitance sensors in the non-rotating rig. Therefore

the axial thrust was adjusted to ensure no overall moment was applied to the seal seg-

ment when the axial springs were compressed. When the seal was retracted, and with a

low pressure difference across the seal segment, the axial springs pushed the segment

against the front face of the T slot, as shown in Fig. 7.2. Note that when the seal was

pushed against the front face, the pressure on the outer surface of the segment be-

comes outlet pressure. This is important for the analysis of the results later on in this

chapter.

As described in Chapter 3, the analytical tool was able to model seal designs with

axial springs installed.

7.3 Experimental Procedure
The experimental procedure was similar to Gen I seal testing described in the Chapters 5

and 6. Testing was conducted over 50 s, starting with zero applied pressure, increasing
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the pressure to a set point (dependant on the particular test undertaken), and then de-

creasing the pressure to zero. Typically the increase in pressure causes the seal segment

to ‘close’ towards the rotor surface and operate at a set clearance (termed the ‘operating

clearance’), and decreasing the pressure beyond a certain value causes the seal segment

to ‘retract’ or move back to the original clearance. Four load cells were mounted exter-

nally to the test rig and connected to the axial springs via the ‘axial spring push rod’ to

measure the applied axial thrust from each of the axial springs, shown in Fig. 4.5. As the

load cells were external, they could not be used when operating with back pressure as

they would prevent the back pressure flange being attached to the rig. For full details

regarding the non-rotating rig and the instrumentation set up, refer to Section 4.3. The

rest of this section details the methodology unique to testing the axial thrust compen-

sated seal design.

In order to ensure that the seal segment does not contact the side walls of the rig

during operation, the side walls have been moved outwards by 0.5mm using shims. As

this opens up a small gap between side components and the seal holder, the air escap-

ing the rig by not passing through the seal was increased. This leakage was quantified

with the back pressure valve fully shut and the flow rate measured. This leakage was

found to be significant at high pressure, and proportional to the pressure applied to the

rig. A correction factor based on inlet and outlet pressure was used to account for the

extra leakage.

The pressure readings taken during the following tests included the side pressure

taps. As there were a limited number of pressure channels available on the pressure

scanners, the central pockets taps were connected together, as shown in Fig. 7.3. Also

note that the same nomenclature in Chapters 5 and 6 has been used to describe the

seal, such as ‘URS’ and ‘DRS’. See Fig. 5.2 for a full description.

As the ‘axial spring push rod’ (see Fig. 4.5) was acted on by the pressure on top of the

seal segment, there will be a pressure force acting on the push rod in addition to the

spring force. Therefore the measured force was corrected to just give the force applied

by the axial springs.

All tests results reported here using the axial thrust compensated design have been

conducted without reassembly of the rig between tests.

The test matrix is shown in Table 7.1. The symbol ‘X’ indicates a chosen test point. A
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Figure 7.3: Circumferential pressure tap positions and connections.

Nominal Fax kax Atmospheric 3.0 bar(a) inlet 6.0 bar(a) inlet
N Nmm−1 outlet pressure pressure pressure

0 N/A X X X

40 2.03 X

60 2.03 X

60 5.28 X X X

70 5.28 X

80 5.28 X

100 5.28 X

100 15.0 X X X

200 15.0 X

Table 7.1: Test matrix: axial thrust compensated design

full sweep of axial thrust settings was performed with atmospheric back pressure, from

no axial thrust up to 200N. Three different axial thrust springs of different stiffness were

used to be able to achieve the different axial thrusts. Two tests were performed with the

same axial thrust setting but with different axial spring stiffness to assess the impact of

axial spring stiffness. For full details of the axial springs used see Appendix D.

Tests were also carried out with increased levels of back pressure for 0N, 60N and

100N axial thrust. In these tests the inlet pressure remained fixed at 3.0 bar(a) and

6.0 bar(a), and the outlet pressure was varied to achieve different pressures across the

seal segment.
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7.3.1 Atmospheric back pressure testing
The outlet ‘flange’ was removed completely if operating with load cells. When operating

with normal axial spring holders (i.e. for back pressure testing) a test was conducted

with the outlet flange in position but with the back pressure valve fully open. The aim

of doing this was to check that the axial springs gave a similar performance to testing

when the axial thrust was measured, and hence were applying a similar level of thrust.

The seal design ‘MESS01’ (on which the design ‘MESS04’ is based) was not designed

for operating at atmospheric back pressure, and so the performance without back pres-

sure was not as good as with back pressure. Furthermore the starting position of the

seal segment was lowered to enable assembly with the axial springs, which increased

the frictional force acting on the seal segment, degrading performance of the seal com-

pared to the results reported in the previous chapter.

7.3.2 Back pressure testing
When operating with back pressure, the inlet pressure was nominally fixed by using

the blow down rig pressure control valve (see Fig. 4.3), and 3.0 bar(a) and 6.0 bar(a) have

been chosen as two operating points. The outlet pressure valve was initially almost

closed, giving a small pressure drop across the seal. The back pressure valve was then

manually opened to increase the pressure drop across the seal until the seal moved to

the operating clearance and closed again until the seal segment retracted. The bypass

helped to make the inlet pressure easier to control when the seal segment moved to the

operating clearance.

7.4 Results
One of the key parameters of the Aerostatic Seal was the operating clearance, i.e. the

clearance of the seal after it had closed in. The operating clearance has been used to

characterise the Aerostatic Seal response to the different axial thrust levels tested. The

operating clearance of each side of the seal segment is plotted in Fig. 7.4 for a range

of axial thrusts. Figure 7.4a shows the operating clearance for tests conducted with

atmospheric back pressure, and Fig. 7.4b the operating clearance with 6.0 bar(a) inlet
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Figure 7.4: Seal operating clearance variation with axial thrust.

pressure. The test case when there were no axial springs is shown as a horizontal line for

the clearance measured with the URS and DRS capacitance sensors. Different symbols

are used to identify different axial string stiffness. It is clearly shown that increasing the

axial thrust decreases the operating clearance of the seal segment. Up to and including

70N of axial thrust the reduction in operating clearance was reasonably small, and at

axial thrust greater than 70N the reduction was much greater. This allows the response

of the seal to be categorised into two operating regimes: ‘low axial thrust’, below 70N,

and ‘high axial thrust’, above 70N.

Figures 7.4a and 7.4b clearly show that the seal segment still operates at an non-

uniform clearance, as found in the previous chapters, i.e. the DRS side of the segment

operates at a lower clearance than the URS side of the segment. Another important

point is that there was virtually no difference between operating clearance for the same

axial thrust and different axial spring stiffness.

This categorisation was also apparent observing the mass flow rate of air through

the seal, which is shown in Fig. 7.5. The mass flow rate is presented with atmospheric

outlet pressure and at a pressure ratio of PR = 1.5. This clearly shows the benefit of the

axial thrust compensated design at reducing the mass flow rate through the seal.

There was also a difference in the seal response before reaching the operating clear-

ance. This is not apparent in Figs. 7.4 and 7.5, but will be shown in detail in the following
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sections. The response of the low operating regime was similar to the tests presented

in Chapter 5 where the segment would transition from the retracted position to the op-

erating clearance without contacting the rotor. In the high axial thrust regime the seal

segment would contact the rotor when the pressure difference across the seal was low,

before the segment would move away again and maintain a constant operating clear-

ance. The exact pressure difference at which the segment would stop contacting the

rotor and transition back to the operating clearance depended on the axial thrust ap-

plied.

Observing the dynamic performance of the seal as it transitioned from the retracted

clearance to the operating clearance also allowed the identification of a further two ax-

ial thrust operating regimes. At axial thrust levels around 200N there was the ‘very high’

axial thrust regime. Here there was an extended amount of time at which the seal seg-

ment would be in contact with the rotor. A final operating regime, termed ‘pressure

activated chatter’, was discovered when the axial springs were not set up to balance the

applied moment to the segment as intended. This resulted in a vibrational seal segment

response as it transitioned from the retracted clearance to the operating clearance.

In summary, the use of axial springs reduced the operating clearance of the Aero-

static Seal. Further, it was found that there are four basic operating regimes:

• ‘Low’ levels of axial thrust, below approximately 70N, where there is a small reduc-
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tion on mean operating clearance.

• ‘High’ levels of axial thrust, greater than 70N, giving a significant reduction in op-

erating clearance. In the high level regime the seal segment will contact the rotor

surface at low pressures. This is not evident in Fig. 7.4 or Fig. 7.5, but is evident in

results presented in Section 7.4.2.

• ‘Very high’ levels of axial thrust, around 200N, where there is a prolonged period

of time where the seal segment is in contact with the rotor surface. This is an

extension of the ‘high’ axial thrust regime.

• Vibratory response, termed ‘pressure activated chatter’ where the seal segment

repeatedly contacts the rotor surface. This has typically been seen at axial thrust

levels in the ‘high’ regime and when the applied moment due to the axial thrust

was not correctly balanced about the segment centroid.

The rest of this section analyses each of these operating regimes in detail, and a

final test which was conducted with the minimum clearance of the segment limited. The

purpose of this final test was to investigate if dynamic movement of the seal could be

achieved successfully with high levels of axial thrust and without rotor contact. For a

table summarising the full set of results, see Appendix C.

7.4.1 ‘Low’ axial thrust regime
As discussed previously, the ‘Low’ axial thrust response was characterised by a small

decrease in the operating clearance of the seal segment, compared to the no axial spring

case. As with the case with no axial springs present, the seal segment did not contact the

rotor surface as in the ‘high’, ‘very high’ and ‘vibrational’ axial spring operating regimes.

To demonstrate the operational characteristics of the ‘low’ operating regime, Fig. 7.6

shows the ‘close in’ and ‘retraction’ behaviour of the seal segment of 60N axial thrust,

atmospheric back pressure, and with axial spring stiffness kax = 5.28Nmm−1. Dur-

ing the test the pressure was slowly increased and decreased over 50 s, and the seal

segment closed in on the rotor once sufficient pressure difference across the segment

was present, and retracted once the pressure difference had sufficiently dropped. Fig-

ures 7.6a and 7.6b show the seal segment clearance during ‘close in’ and ‘retraction’
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respectively. The axial spring force measured by the load cells during close in and re-

traction is shown in Figs. 7.6c and 7.6d, and the pressure coefficient (defined as before,

see Eq. (3.1)) during close in and retraction is shown in Figs. 7.6e and 7.6f. The close in

and retraction behaviour will be discussed in turn.

Close in
Initially the seal segment was retracted and pushed against the front face of the T slot (as

shown in Fig. 7.2). This can be observed in Fig. 7.6e as before 11.5 s the pressure on top

of the seal segment was close to outlet pressure. Once the segment was pushed against

the rear contact face the pressure on top of the segment was equal to inlet pressure.

Note that the calculation of pressure coefficient had the effect of amplifying any noise

on the pressure signal, especially when the pressure difference is small, such as when

the segment was retracted.

As the pressure difference across the seal segment increased, the axial thrust mea-

sured by the load cells and the pressure coefficient on the upper surface of the segment

also increased. This is shown in Figs. 7.6c and 7.6e respectively between 11.0 and 11.6 s,

and is labelled with ’A’ on Fig. 7.6. The force measured by the load cells increased due
to the seal segment being pushed backwards onto the contact face, as so the top sur-

face of the segment was pressurised with fluid from the inlet to the seal, increasing the

pressure in the top surface. As the top pressure coefficient has not increased to a value

close to 1.0, and as the axial force hasmostly increased in springs AX0 and AX3 which are

below the seal segment centroid, then the seal segment was in a tilted forward configu-

ration. This is further demonstrated by the seal pressure coefficients Cp1, Cp2 and Cp3

which reduce between 11.0 and 11.6 s. The region labelled ’A’, between 11.0 and 11.6 s, is

termed ‘pre close’. After the ‘pre close’, at 11.6 s, the seal segment moved down towards

the rotor and was pushed back towards the contact face, indicated by the increase in

AX1 and AX2 axial spring force and increase in pressure coefficient.

It was the behaviour of the seal segment during ‘pre close’ that is important for un-

derstanding if the segment operates in the ‘low’ or ‘high’ axial thrust operating regimes.

Crucially, in the low operating regime, the seal segment has not tilted forward enough

that the seal segment moves towards the rotor immediately, and that when the seal

segment did move towards the rotor there was sufficient positive radial force to prevent
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the segment contacting the rotor surface.

Retraction
The clearance, axial force and pressure coefficient of the seal during retraction are

shown in Figs. 7.6b, 7.6d and 7.6f. The retraction sequence is similar to the ‘close in’

sequence, but in reverse. The seal segment begins to retract at 43.5 s and was accom-

panied by a reduction in pressure underneath the seal segment between 43.5 and 44.0 s.

There was a slight reduction in the AX1 axial force, and a reduction in the top pressure

coefficient Cpt, which would indicate that the segment was tilting forward slightly. Be-

tween 43.5 and 44.0 s it was the CURS side of the segment that retracts, and then at 44.0 s

the segment retracts fully. At this point only the DRS side of the segment was pushed

forwards by the axial springs. This was indicated by the AX2 and AX3 axial force reduc-

ing at 44.0 s and the AX0 and AX1 forces, which are on the URS side of the segment. The

segment was fully pushed forward at 45.6 s.

Summary
This section has described a typical test in the ‘low’ axial thrust operating regime. The key

finding was the existence of a new intermediate position of the seal segment between

the segment being retracted and at the operating clearance. This new position has been

termed ‘pre close’. Figure 7.7 shows the close in sequence. Initially the seal segment was
retracted (Fig. 7.7a), before the ‘pre close’ phase (Fig. 7.7b). The segment then closes

in (Fig. 7.7c) and then stops at the operating clearance (Fig. 7.7d). This sequence of

events also applies in the other operating regimes. During the pre closed phase the seal

segment was tilted forward, and which reduces the pressure below the seal segment,

reducing the radial force. This reduced radial force was responsible for the reduction in

operating clearance observed in the low axial thrust operating regime.
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(d) Segment at operating clearance.

Figure 7.7: Generic close in sequence with axial thrust compensation

7.4.2 ‘High’ axial thrust regime
Figures 7.8 and 7.9 show a typical result in the ‘High’ axial thrust operating regime, op-

erating with total applied axial thrust of 98.6N and axial spring stiffness of 5.28Nmm−1.

Figures 7.8a, 7.8c and 7.8e show the seal segment clearance, axial spring thrust and

pressure coefficient respectively, as the segment closes towards the rotor. Figures 7.8b,

7.8d and 7.8f shows the segment clearance, axial spring thrust and pressure coefficient

in more detail. Figure 7.9 shows the seal segment retracting.

Immediately obvious from inspection of Fig. 7.8b is that the segment briefly touches

the rotor surface on the DRS side of the segment before the clearance increases and an

operating clearance is maintained. Operating clearance was much improved over the

’low’ axial thrust operating regime.

As the pressure difference across the seal segment reduces towards the end of the

test, seen in Fig. 7.9, the segment clearance reduced, and when the pressure difference

was between 0.17 bar and 0.10 bar the seal segment lost lift and contacted the rotor sur-

face all the way around the seal circumference. When the pressure difference was below

0.10 bar, the segment retracted.
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Close in
Initially the seal segment was retracted and pushed forward from the contact face by the

axial springs. At 11.5 s the segment rotated forward about the tangential axis, indicated

by the increase in Fax0 and Fax3 in Fig. 7.8c. Also the pressure coefficient above the seal

segment Cpt increased (Fig. 7.8e) indicating that less air was leaking through the contact

face. This was the beginning of the ‘pre close’ phase.

At 12.5 s the DRS side of the seal segment started to move towards the rotor while

the segment was rotated forward, seen in Fig. 7.8a. The URS side of the seal segment

started to move down as AX1 and AX2 were compressed, indicating that the URS side of

the segment closed in as it was pushed onto the contact face. In Fig. 7.8f there was a

pronounced spike in the pressure above the seal segment (peak at 12.79 s), followed by

a spike and then dip in the pocket pressure (P2) around 12.80 s, caused by the decrease

in contact face leakage as the segment was pushed back against the contact face. The

spike in pressure on top of the segment increased the force towards the rotor surface

leading to the segment touching the rotor on the DRS side of the segment, before the

pressure underneath the seal segment increased sufficiently to move the seal segment

away from the rotor again.

Retraction
Figure 7.9 shows the behaviour of the seal segment before and during retraction. Before

the seal segment retracted, Fax1 and Fax2, seen in Fig. 7.9b, have reduced compared to

the initial axial thrust after ‘close’ (Fig. 7.8d), dropping from about 22.5N to 20N. This

indicates that the seal segment is tilting forwards. The pressure coefficient above the

segment (seen in Fig. 7.9c) also reduces slightly, again indicating that the segment is

tilting forward and entering a ‘pre retraction’ phase. There was no reduction in the Fax1

and Fax2 thrust measurements, but as the segment was operating very close to the

rotor surface any change in angle will have a more significant effect on the pressure

distribution than at a higher clearance.

At 40.4 s the segment lost further radial force (see Figs. 7.9a and 7.9c) and fully con-

tacted the rotor. Until 42.2 s the pressure difference across the seal segment was enough

to keep the axial springs mostly compressed (there is an approximate 4N drop in total).



7.4. RESULTS 166

Time [s]

C
le

ar
an

ce
 [m

m
]

P
re

ss
ur

e 
R

at
io

 [-
]

10.0 10.5 11.0 11.5 12.0 12.5 13.0
0.0

0.5

1.0

1.5

2.0

2.5

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4
URS Sensor
DRS Sensor
PR

A

(a) Seal segment clearance: close in

Time [s]

C
le

ar
an

ce
 [m

m
]

P
re

ss
ur

e 
R

at
io

 [-
]

12.70 12.75 12.80 12.85
0.0

0.5

1.0

1.5

2.0

2.5

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

(b) Seal segment clearance: Detail

10.0 10.5 11.0 11.5 12.0 12.5 13.0
0

20

40

60

80

100

120

Fax0

Fax1

Fax2

Fax3

Fax

A

(c) Axial thrust: Close in

12.70 12.75 12.80 12.85
0

20

40

60

80

100

120

(d) Axial thrust: Detail

P
re

ss
ur

e 
C

oe
ffi

ci
en

t [
-]

10.0 10.5 11.0 11.5 12.0 12.5 13.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Cp1
Cp2
Cp3
Cpt

A

(e) Pressure coefficient: close in

P
re

ss
ur

e 
C

oe
ffi

ci
en

t [
-]

12.70 12.75 12.80 12.85
0.0

0.2

0.4

0.6

0.8

1.0

1.2

(f) Pressure coefficient: Detail

Figure 7.8: Typical ‘high’ axial thrust response during close in: nominal Fax = 100N, kax =
5.28Nmm−1.
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Cp1 Cp2 Cp3 Cpt

‘Low regime 0.35 0.58 0.05 0.80

‘High regime’ 0.24 0.50 0.05 0.49

Table 7.2: Comparison of pressure coefficient at beginning of pre-close phase: ‘low’ and

‘high’ operating regime

The seal segment retracted at 42.2 s and the axial springs decompressed, pushing the

segment towards the front face of the T slot.

Summary
The ‘pre close’ and ’pre retraction’ phases are important to understand why the be-

haviour of the seal segment has changed between the ‘low’ and ‘high’ axial thrust op-

erating regimes. Table 7.2 shows the pressure coefficients at the beginning of the ‘pre

close’ phase for the presented ‘low’ and ‘high’ operating regimes, and indicates that the

seal segment was tilted forward more when in the high operating regime. The evidence

is the lower pressure coefficients of the ‘high’ regime in Table 7.2. It is therefore con-

cluded that it is tilting forward which causes the reduced clearance with increasing axial

thrust, and led to rotor contact in the ‘high’ operating regime.
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Figure 7.9: Typical ‘high’ axial thrust response during retraction: Nominal Fax = 100N,
kax = 5.28Nmm−1.
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7.4.3 ‘Very high’ axial thrust regime
The close in response of the seal segment to ‘very high’ levels of axial thrust is shown in

Fig. 7.10. The axial thrust was increased to Fax = 204N. Figures 7.10a, 7.10c and 7.10e

show the clearance, measured axial thrust and pressure coefficient respectively as the

seal segment closes onto the rotor. Segment retraction is not shown but was similar

to the ‘high’ axial thrust operating regime. Figures 7.10b, 7.10d and 7.10f show greater

detail as the segment first closes. As shown in Fig. 7.10a, there was a significant pe-

riod of time at which the seal segment was in contact with the rotor surface. As the

pressure difference across the seal increases the clearance gradually increases until the

operating clearance was achieved at approximately 34.8 s. ‘Close in’ occurred at a much

increased pressure difference (0.244 bar compared to 0.152 bar at 98.6N axial force), due

to the higher axial thrust to overcome.

The behaviour of the seal segment before it closed was similar to operating in the

‘high’ axial thrust regime, with a ‘pre close’ phase at which the seal segment was tilted

forward, indicated by the label ‘A’ on Figs. 7.10b, 7.10d and 7.10f. A vibratory segment
response was observed between 29.9 s and 30.0 s, immediately after close in.
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Figure 7.10: Typical ‘very high’ axial thrust response during close in: nominal Fax = 220N,
kax = 15.0Nmm−1.
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7.4.4 Vibratory response
If the axial spring force applied about the centroid of the seal segment generates a sig-

nificant net moment, then there will be a vibratory response, termed ‘pressure activated

chatter’. This was observed to occur over a range of total axial force, not just in the ‘very

high’ operating regime where a slight vibratory response was also observed.

The clearance response of such a test is shown in Fig. 7.11, and in which the total

axial force was 75N and the axial spring stiffness 15.0Nmm−1. Such a response in steam

turbine operation would be damaging to the seal due to multiple rotor contacts. Once

the pressure ratio increased to a high enough level, the seal segment operated at a

constant operating clearance. Note that the pressure scanner logging frequency was

200Hz in the test shown in Fig. 7.11, rather than the 600Hz in the results presented

previously. Also the initial starting clearance was lower in this test.

Table 7.3 summarises the axial forces applied to the seal segment when the segment

is pushed onto the contact face, and the net applied moment applied about the tangen-

tial axis. Clearly there was greater moment applied by the axial springs trying to rotate

the seal segment forwards.

As in the ‘high’ axial thrust regime, AX0 and AX3 are the first axial springs to be com-

pressed (at 15.92 s in Fig. 7.11c), and indicate that the seal segment rotated forward, and

that a ‘pre close’ phase of operation had developed.

At 15.97 s the seal segment started to move towards the rotor, with the central axial

springs AX1 and AX2 being compressed afterwards at 15.99 s. As the segment was tilted

forward when it closes in, it contacts the rotor and begins to vibrate, contacting the

rotor surface as it does. When the segment contacted the rotor surface there was a

build-up of the pressure below the segment, which started to move the segment away

from the rotor and tilts backwards. However as the segment moved away it also tilted

forwards again, indicated by the drop in Fax1 and Fax2, and which produced a drop in

Axial thrust / N Applied Moment / Nm
Fax Fax0 Fax1 Fax2 Fax3 Mθ

‘High thrust response’ 98.6 25.5 22.3 23.4 27.5 0.074

‘Vibratory response’ 75.3 17.1 21.0 18.5 18.6 0.241

Table 7.3: Applied axial thrust and moment.
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pressure both above and below the segment. The drop in segment pressure allowed the

segment to drop back down onto the rotor surface and the process to begin again.

Once sufficient pressure had built up, the segment was able to operate at a constant

operating clearance, as shown in Figs. 7.11b, 7.11d and 7.11f. As the seal segment was

nearing the end of the vibrational phase, the frequency and amplitude of the vibrations

was lower. Also the seal segment vibrates without touching the rotor surface.
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Figure 7.11: Vibratory seal segment response
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7.4.5 Limited clearance testing
A test was conducted with shims used to limit the minimum clearance of the seal seg-

ment. The purpose of such a test was to see if operating clearance reductions as great

as the ‘high’ operating regime could be obtained without rotor contact.

Such a test is shown in Fig. 7.12. Shims were taped onto the rotor surface to limit

the clearance of the seal segment to 0.1mm. The total axial force applied was Fax =

106N, kax = 15.0Nmm−1. The test was conducted at atmospheric back pressure, but

without axial load cells installed. Figures 7.12a and 7.12c show the ‘close in’ clearance

and pressure coefficient respectively, and Figs. 7.12b and 7.12d the retraction clearance

and pressure coefficient respectively.

As the clearance was limited to 0.1mm, rotor contact was prevented as the segment

closed in. From about 7.5 s to 7.7 s the segment operated at 0.1mm. Then, once the the

pressure difference across the seal segment increased enough, ∆P = 0.66 bar in this

case, the seal segment moved away from the rotor surface. As the rig inlet pressure was

reduced, shown in Fig. 7.12b, the seal segment lost lift, as in the ‘high’ and ‘very high’

operating regime, and came to rest on the 0.1mm shims before retracting.

Table 7.4 compares the operating clearance between a limited and unlimited test

with the same total axial spring force. The axial spring settings were identical as both

cases were run without adjusting the axial spring force. The case with the limited clear-

ance operated at a higher mean clearance than the unlimited test. The pressure dif-

ference where the segment lost lift was similar, and was a result of the axial spring

force rather than the different operating clearance. Table 7.4 also includes the oper-

ating clearance at the highest axial thrust in the ‘low’ regime and a case without axial

springs. Whilst the operating clearance was increased over the unlimited case, the lim-

ited clearance case operates at a much lower clearance than either the 70N axial thrust

case or the zero axial thrust case. It is also worth pointing out that the level of non-

uniformity in the seal segment clearance was improved in the limited case compared to

the unlimited case with and without axial springs.
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Axial thrust / N Operating clearance / mm ∆P loss of lift
Fax cURS cDRS cm bar

‘Clearance unlimited’ 106 0.244 0.033 0.143 0.249

‘Clearance Limited’ 106 0.371 0.199 0.294 0.229

Best ‘low’ regime 70.4 1.129 0.189 0.680 N/A

Zero axial thrust 0 1.309 0.228 0.793 N/A

Table 7.4: Limited and non limited clearance tests at atmospheric outlet pressure.
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Figure 7.12: High axial thrust regime with set minimum clearance: Fax = 106N, kax =
15.0Nmm−1.
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Summary
The purpose of this test was to demonstrate that the clearance of the Aerostatic Seal

could be minimised by the use of axial thrust compensation springs in the ‘high’ operat-

ing regime setting by limiting the clearance of the segment in some way to prevent rotor

contact. Compared to the ‘high’ operating regime, the operating clearance was slightly

higher when the segment position was limited, although it was significantly lower than

the ‘low’ axial thrust operating regime. This result is important for the Gen III design that

is described in Chapter 9.

7.5 Discussion
The key to understanding why the seal behaves in the three operating regimes is mo-

ment stability. Increasing the axial thrust reduces the portion of the pressure difference

that is balanced by the reaction force. Importantly the reaction force is distributed on

the contact face, and does not need be evenly distributed. In fact the ability for the re-

action force to act at a point on the contact face to balance the net pressure moment

is crucial for the seal segment to maintain moment equilibrium, and not tilt forward. If

the reaction force is reduced, then the range of pressure moments tolerated is reduced,

decreasing the moment stability margin.

Moment stability
The moment stability contour is shown in Fig. 7.13 for seal design ‘MESS04’ operating

with zero axial thrust, and at the same initial position as in the experimental results

discussed above. Over the full range of operating clearances and pressure difference

the moment criterion, ξ, remains within the stable region, i.e. between 0 and 1 (see

Section 3.3.2).

Figure 7.14 shows the moment stability contour with axial thrust applied, Fig. 7.14a

showing 40N applied axial thrust and Fig. 7.14b 100N applied thrust, as produced by the

standard analytical model. Red and blue on the graphs are operating conditions where

moment stability is not met, and with axial springs stable operating conditions are much

reduced. The area with stable operation is reduced further with increased axial thrust.
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Figure 7.13: Moment contour with no axial thrust.

The transition from blue to red in both figures is when the pressure difference is able

to overcome the axial spring thrust and push the seal segment against the rear contact

face.

In the ‘low’ axial thrust operating regime the loss of moment stability was not as

extreme as in the ‘high’ operating regime. This was confirmed by investigation of the

seal axial pocket pressure distribution in Table 7.2, which showed less tilting forward

in the low operating regime. In the ‘high’ operating regime moment stability was not

regained until significant pressure difference had built up across the seal segment. This

was observed in the analytical model as a greater pressure difference is required for the

segment to get out of the unstable region back into the stable region.

To generalise the transition between the ‘low’ and ‘high’ operating regimes, axial pres-

sure forces are considered. The transition point was observed to be when the axial

spring force was approximately 80% of the axial pressure force at which the seal seg-

ment would close in when there were no axial thrust springs. As the seal segment is

tilted forward in the ‘pre close’ phase, then the actual pressure forces acting on the seal

segment are unknown as there is significant leakage through the contact face. The top

pressure taps are able to measure the pressure on the top surface of the segment, and

which might enable a better axial force to be calculated with further analysis, and allow

the ‘low’ and ‘high’ axial thrust regimes to be generalised to other seal designs.
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Figure 7.14: Analytical moment contour.

7.6 Conclusion
This chapter has described experimental testing conducted on an Aerostatic Seal with

axial thrust compensation springs, in the non-rotating rig. A large number of tests were

conducted with different levels of axial thrust. At the beginning of this chapter, three

research questions were presented which have now been answered:

Is the axial thrust compensated design viable?
The axial thrust compensation has been confirmed to work experimentally. Applying

axial force to the seal segment decreased the operating clearance of the seal.

What is the level of performance gain?
The level of performance gain was categorised into four operating regimes:

• ‘Low’ levels of axial thrust, below approximately 75N. There was a small improve-

ment in operating clearance, and consequently a leakage reduction of approxi-

mately 10% was observed.

• ‘High’ levels of axial thrust, greater than 75N. A significant reduction in operating
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clearance was observed, although rotor contact was observed just after the seal

closed, and also before the segment retracts.

• ‘Very high’ levels of axial thrust, around 200N; an extension of the ‘high’ axial thrust

regime. There was a prolonged period of time where the seal segment was in

contact with the rotor surface.

• Vibratory response, termed ‘pressure activated chatter’where the seal segment re-

peatedly contacted the rotor surface. This was due to unbalanced appliedmoment

about the segment centroid due to axial spring force.

The only regime where there is no rotor contact is the ‘low’ axial thrust regime, al-

though the level of operating clearance reduction was limited compared to the much

greater reductions observed in the ‘high’ axial thrust regime. As significant rotor contact

between the seal and the rotor would be damaging in steam turbine operation, then the

‘low’ operating regime is the safest. Moment stability is the governing factor dictating the

performance of the Aerostatic Seal when operating with axial springs.

What are the limits of operation?
During the operation of the seal in a steam turbine it would be undesirable for the seal

to come into contact with the rotor, as this would damage the seal, and in extreme cases

may cause damage to the rotor due to frictional heat generation. Therefore the limit of

operation is the ‘low’ axial thrust regime where the seal segment does not touch the

rotor surface during operation. However the ‘low’ axial thrust regime had a relatively

small improvement in operating clearance compared to the ‘high’ axial thrust operating

regime.

A set of tests was conducted with using shims placed on the rotor surface to simulate

restricting the segment minimum clearance in the T slot. This showed that high levels

of axial thrust could be applied for the seal to operate at a low clearance, and the seg-

ment would move away from the rotor once the pressure had increased enough. This

would prevent rotor contact and maximise the performance gain by using axial thrust

compensation. This is a suggested design feature of the Gen III Aerostatic Seal design

discussed in Section 9.3.
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One other disadvantage of the axial thrust compensated design is that by reducing

the axial force on the seal segment, the moment stability margin is reduced. As stated

in Section 3.4, the most responsive seal is obtained by maximising the axial length of

the seal segment until the segment no longer has moment stability. Therefore adding

axial springs may make a responsive seal design loose moment stability before much

reduction in operating clearance was possible. Another way to reduce the frictional

force would be to reduce the coefficient of friction by introducing a low friction coating.

Whether one could be successfully operated inside a steam turbine will require more

research into the suitability of different coatings. The HALO seal uses a nickel-boron

coating to reduce friction which would be a starting point for further investigation.

It was found during all the axial thrust operating regimes that the seal segment still

operated with significant differences in operating clearance at each end of the seal seg-

ment. This has been termed non-uniform operating clearance. As this is undesirable

(see Section 6.3.1 for example), further analysis and experimental tests have been car-

ried out, which is the subject of the next chapter.



Chapter 8
Non-Uniform Segment Clearance
8.1 Introduction
A non-uniform circumferential clearance has been observed in the operating clearance

of the Aerostatic Seal. This was where one side of the seal segment would operate at

a lower clearance that the other, and was also observed when the segment was transi-

tioning from a retracted position to the operating position.

Non-uniform clearance is undesirable as the extreme sides of the seal segment may

contact the rotor. As it is the mean segment clearance that controls radial force, then

with non-uniform clearance one side of the segment may touch the rotor without pos-

itive radial force to move the segment away. This was demonstrated in the rotating

rig and caused some minor rubs during the high rotor eccentricity testing - see Sec-

tion 6.3.1.

The use of axial thrust compensation springs has not made the operating clearance

more uniform, as discussed in Chapter 7.

Possible causes of uneven clearance that were considered:

• Different circumferential spring forces on each side

• Different coefficient of friction on each side.

• Different pressure distribution on each side of the segment.

• Varying reaction force around the circumference of the contact face.

181



8.1. INTRODUCTION 182

The effect due to springs was eliminated as non-uniform clearance was observed

when no circumferential springs were present, as demonstrated in Section 5.2. The

spring stiffness was found to be similar between sides - see Appendix D.

This chapter investigates the causes and effect of non-uniform seal segment clear-

ance, and aims to answer the following three questions:

1. Why does the seal segment move to a non-uniform clearance when transitioning

from retracted to operating clearance?

2. Why does the segment not restore to a uniform clearance?

3. What are the consequences and effect on the overall Aerostatic Seal performance?

This chapter is split up into three main sections:

Experimental Observations
An experimental case is presented in Section 8.2 which demonstrates the seal segment

operating at a different non-uniform clearance in the same set up. These tests were

performed on the non-rotating rig, with side pressure taps and fully fixed springs. This

was to investigate the causes of non-uniform clearance.

Analytical modelling and considerations
In Section 8.3 a 2D leakage model is described which was used to analyse the pres-

sure moment acting about the axial direction at a range of different seal segment non-

uniform clearances.

The frictional moment, opposing the pressure moment trying to self-right the seal

segment was considered analytically. This was to investigate why the seal segment

would not restore to a uniform clearance.

Non-uniform fixed clearance tests
Finally in Section 8.4 assessment of the pressure moment to restore non-uniform clear-

ance was made experimentally. This was achieved by fixing the clearance of the seal

segment into a non-uniform position in a manner similar to the method described in
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Section 5.5. The circumferential pressure distribution on the rotor and on the sides of

the seal segment was used to calculate the pressure moment acting on the segment to

restore it to a uniform clearance. Comparison was also made to the analytical predic-

tions made previously.

8.2 Experimental Non-Uniform Clearance
The purpose of the experimental tests described in this section was to investigate what

factors were causing one side of the seal segment to operate at a lower clearance than

the other. Two tests, test A and test B, are described which both had the same set up but

in each test it was a different side of the segment that operated at the lowest clearance.

The test rig was not reassembled between tests. Note that it was not intentional that

the lowest side of the seal segment should switch sides between tests, but was observed

when carrying out a series of tests under the same conditions. Typically the lowest side

of the segment was consistent when conducting repeated tests, and would only change

after the test rig was reassembled.

8.2.1 Experimental Method
The control valve was automatically controlled to achieve a steady opening rate of 8% s−1

and with atmospheric back pressure. The spring rate of the URS and DRS circumferential

springs was 17.71Nmm−1 and 17.62Nmm−1 respectively and with the ends of the springs

held in position inside the spring holes - see Section 3.5. The rotor central position was

15.13mm from the seal holder (dimension b), and the segment 2.57mm from the seal

holder (dimension a), as shown in Fig. 5.3. The bypass valve was two turns from shut.

The axial pressure force acting on the segment was increased if a greater portion

of the segment was inside the inner diameter of the contact face, due to an increased

area of the segment surface with outlet pressure rather than inlet pressure acting on it.

Therefore when setting up the test rig, care was taken to ensure that the seal segment

was concentric to the holder. This was to prevent greater axial force on one side of the

segment if that side of the rotor was at a smaller radial position than the other side.
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Figure 8.1: Mean clearance variation with pressure difference

8.2.2 Results
Figure 8.1 plots the mean clearance of the two tests with pressure difference. The mean

operating clearance that was achieved was similar, and was 0.93mm in test A and 0.95mm

in test B. The transition from the retracted to operating position is also similar, the only

difference is between 0.2 bar and 0.4 bar pressure difference where there is a small dif-

ference in the trajectory of the segment. This shows that the mean operating clearance,

which is important for the leakage characteristic of the seal, was very similar, although

the response of the different sides of the segment is very different between two tests

conducted one after the other.

To understand the reasons why the seal segment clearance would be non-uniform,

the pressure moment acting about the axial direction of the segment, Mpx, was calcu-

lated. This was achieved by multiplying the pressure force by the tangential distance

from the centroid of the segment, as demonstrated in Fig. 8.2. Where there was only

one side pressure tap in the pocket, then that pressure was assumed to act over the

entire area of that pocket, and the force to act at the centre of pressure. Where there
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were multiple pressure taps in the pockets, as in the central circumferential pocket and

on top of the segment, then a linear distribution of pressure was assumed between

each pressure tap, and the pressure force per unit segment width integrated to calcu-

late the moment contribution. The moment due to each circumferential position of the

seal segment pocket, dMpx is given in Eq. (8.1). The moment arm L and pressure P

is a function of circumferential position θ. The total moment is then given by the sum

of all these contributions for all circumferential positions and pockets. This is given by

Eq. (8.2) where w is the axial length of the seal segment pocket and D is the diameter

of seal segment. Eight pressure taps were available on each of the side surfaces of the

segment. The same procedure was used as described in Section 5.5 to calculate the side

pressure force, the force then multiplied by the tangential distance from the centroid.

dMpx(θ) = L(θ)P (θ) dA (8.1)

Mpx =
wD

2

∫
L(θ)P (θ) dθ (8.2)

The transition from retracted to operating clearance is compared in Fig. 8.3. The

clearance and pressure moment is plotted in Figs. 8.3a and 8.3c respectively for test A

and in Figs. 8.3b and 8.3d for test B. Comparing the clearance response between the

two tests shows that in test A it was the URS side of the segment operating at the low-

est clearance, and in test B it was the DRS side of the segment operating at the lowest

clearance. The lowest side of the segment operates at a similar clearance in each test,

about 0.5mm at the measurement position. Similarly the high clearance sensor mea-

sures similar clearance at the high clearance side. Together this means that the angle of

the segment was in fact similar, only the other way around.

The pressure moments calculated experimentally, shown in Figs. 8.3c and 8.3d for

test A and test B respectively, initially show the same slightly negative pressure moment.

Critically this pressuremoment was greater than the frictional moment calculated based

on the axial pressure force. The frictional moment is a function of axial force, coefficient

of friction and seal geometry. A coefficient of friction of µ = 0.2 was chosen as this was

slightly higher than the coefficient of friction found experimentally in Chapter 5. The

calculation method is described in the next section. For test A the pressure moment



8.2. EXPERIMENTAL NON-UNIFORM CLEARANCE 186

Figure 8.2: Pressure moment calculation method. (Viewed from upstream of the seal

segment.)

stays negative and it was only after the seal segment reaches the operating clearance

that the pressure moment was less than the frictional moment. Initially the response

was the same for test B where the pressure moment was negative and greater than the

frictional moment. Then at approximately 10.75 s the pressure moment increases and

becomes positive. At the same time the URS side of the segment has become stationary

and it is the DRS side of the segment that continues to decrease in clearance.

In conclusion two key observations were made in this section. Firstly there was a

measured pressure moment which was larger than the calculated frictional moment

when the seal was retracted. This pressure moment was responsible for the initial un-

even operating clearance as the seal segment closes. Once the seal segment was at

the operating clearance the pressure moment was not large enough to overcome the

frictional moment, leading to the seal segment remaining in the non-uniform operating

clearance.

Secondly the pressure moment acting on the seal segment was reversed when a

different side of the segment that was at the lowest operating clearance. However as

the pressure moment changes after the other side of the segment has begun moving,



8.2. EXPERIMENTAL NON-UNIFORM CLEARANCE 187

Time [s]

C
le

ar
an

ce
 [m

m
]

P
re

ss
ur

e 
R

at
io

 [-
]

8 8.5 9 9.5 10
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

URS sensor
DRS sensor
PR

(a) Seal segment clearance: Test A

P
re

ss
u

re
 D

if
fe

re
n

ce
 [

b
ar

]

(b) Seal segment clearance: Test B

Time [s]

M
o

m
en

t 
[N

m
]

8 8.5 9 9.5 10
-4

-3

-2

-1

0

1

2

M px
M µ (µ=0.2)

(c) MomentMx: Test A

Time [s]

M
o

m
en

t 
[N

m
]

10 10.5 11 11.5 12
-4

-3

-2

-1

0

1

2

M px
M µ (µ=0.2)

(d) MomentMx: Test B

Figure 8.3: Comparison between tests: close in behaviour.



8.3. ANALYTICAL MODELLING AND CONSIDERATIONS 188

then it was evident that there must be an uneven frictional moment which contributes

to non-uniform clearance.

8.3 Analytical modelling and considerations
There are two forces acting about the seal segment x axis, namely the pressure moment

and the frictional moment. For the seal segment to be able to restore itself to a uni-

form operating clearance the pressure moment must overcome the frictional moment

opposing motion.

An analytical 2D steady flow model has been developed to investigate the effect of

uneven clearance on the segment pressure distribution. A range of seal segment clear-

ances and angles was investigated.

The frictional moment acting about the seal segment centroid was calculated, which

was not necessarily a straight forward calculation. This was because the frictional mo-

ment depends on the moment arm about the centroid of the segment, which varies

with circumferential position on the contact face, and also the frictional force, which

also varies on the contact face. The frictional force distribution was found by consider-

ing the force and moment equilibrium of the seal segment and Finite Element Analysis

(FEA) calculation of the contact force.

8.3.1 2D seal leakage model
The standard analysis methodology, described in Section 3.3, models the flow through

the seal segment operating at a mean clearance. This takes no account of seal segment

clearance non-uniformity.

To model different clearances about the circumference of the seal segment, the seg-

ment was divided up into the circumferential pockets, and the flow through each of

these modelled with a mean clearance. Now if one side of the seal segment is operating

at a lower clearance then the mean clearance at that circumferential pocket is reduced

accordingly. Circumferential flow will also exist between the circumferential pockets,

and was also modelled.

Figure 8.4 shows a schematic plan view of an Aerostatic Seal segment, and the pocket

pressures and leakage flow rates between each pocket. The direction of the leakage
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Figure 8.4: Plan view of seal segment showing 2D mass flow and pressure.

mass flow rate arrows indicates the direction taken as positive mass flow rate.

To begin with the clearance at the extreme URS and DRS side of the seal segment was

specified and the area of the axial leakage path was calculated for each set of circum-

ferential pockets using the tool described in Appendix F. AU , AC and AD are the axial

leakage path areas for the URS, central and DRS circumferential pockets respectively.

The circumferential leakage area was also calculated between the central circumferen-

tial pocket and the URS and DRS pockets.

A modified version of the standard analysis methodology follows. For each circum-

ferential pocket (URS , Central and DRS) the axial leakage and pocket pressures are cal-

culated iteratively starting from an initial mass flow rate guess. The Eser and Kazakia

leakage model was used, the same as in the standard analysis methodology, and is

shown in Eq. (8.3) to Eq. (8.9) for the URS set of circumferential pockets. The only differ-

ence from the standard analysis method was that circumferential flow, ṁ1UC , ṁ2UC and

ṁ3UC , was included in Eqs. (8.4), (8.6) and (8.9).

Leakage was not modelled between the between the URS and DRS circumferential

pockets and the side leakage channel.

The model is assuming steady flow, as in the standard analysis methodology.

P1U =

√
P 2
in −

(
ṁin

CDCkeAU

)2

RT (8.3)
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ṁ12U = ṁinU − ṁ1UC (8.4)

P2U =

√
P 2

1U −
(

ṁ12U

CDCkeAU

)2

RT (8.5)

ṁ23U = ṁ12U + ṁfU − ṁ2UC (8.6)

P3U =

√
P 2

2U −
(

ṁ23U

CDCkeAU

)2

RT (8.7)

ṁoutU(n+1) =
CdCkeAU√

RT

√
P 2

3U − P 2
out (8.8)

ṁinU(n+1) = ṁout + ṁ3UC + ṁ2UC + ṁ1UC − ṁfU (8.9)

Once the axial mass flow rates have converged, then the circumferential mass flow

rates are calculated using the leakage equation of Eser and Kazakia. For example the

circumferential flow rate from the first URS pocket to the first central pocket, ṁ1UC , is

calculated using Eq. (8.10). A1U is the circumferential leakage area on the URS side of

the seal segment and at the first axial pocket. As the circumferential pockets are much

longer circumferentially than axially, the kinetic energy carry over was assumed to be

zero. Note that the equation was split into a positive and negative version to reverse the

flow should the outlet pressure be greater than the inlet pressure. Once the circumfer-

ential flow rate was calculated, the calculation procedure moves onto the next iteration,

including the newly calculated circumferential flow rates.

ṁ1UC(n+1) =


CdA1U√
RT

√
P 2

1U − P 2
1C if P1C < P1U

−CdA1U√
RT

√
P 2

1C − P 2
1U if P1U < P1C

(8.10)

Once the process has converged, then the pressure forces in each cavity are used to

calculate the moment about the axial direction. The pressure is assumed to be uniform

in each of the circumferential pockets, and so there is only a moment contribution from
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Figure 8.5: Contact face frictional moment about the centroid. (Looking onto the contact

face from upstream.)

the URS and DRS circumferential pockets (P1, P2 and P3 for both). Analytically the side

pressure, top pressure and central circumferential pockets do not contribute a moment.

The moment was calculated about the centroid of the seal segment.

8.3.2 Frictional torque
For the seal segment to move back to a uniform operating clearance, the applied mo-

ment (i.e. pressure moment and moment due to the circumferential springs) must be

greater than the frictional moment, i.e. Mx > Mµ.

To calculate the frictional moment, first consider the area of the seal segment under

contact, as shown in Fig. 8.5. For a small element of the contact area, of area dA and with

contact stress σ, there is a frictional force acting given by Eq. (8.11). The origin for a polar

coordinate system is at the centre of the seal segment, and cr is the radial distance from

the centre of the segment to the centroid of the segment. The frictional force is acting

perpendicular to a line, labelled r̂, from the centroid of the segment to the elemental

area dA, and generating a moment opposing the applied momentMx in Fig. 8.5.
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dFµ = µσ dA (8.11)

The frictional torque due to each element of the contact face, dMµ, is the the fric-

tional force multiplied by the moment arm around the centroid of the segment, and is

therefore:

dMµ = r̂ dFµ = r̂µσ dA (8.12)

At each of the different circumferential positions, the frictionalmoment arm r̂ changes.

The total frictional torque preventing the seal segmentmoving back to an even clearance

is found by integrating the frictional torque over the whole area of the contact face. This

is similar to calculating the friction of a clutch [95].

Mµ =

∫∫
A

dMµ (8.13)

=

∫∫
µr̂2σ dr dθ (8.14)

Therefore to calculate the frictional moment, one has to first determine the contact

stress distribution, and integrate it and the moment arm over the contact face surface.

Contact face stress distribution
The contact face stress is not constant, but a function of the tangential and radial posi-

tion. Consider the seal segment as a free body in equilibrium, shown in Fig. 8.6. Force

equilibrium has to be satisfied in the axial direction and the moment equilibrium about

the tangential and radial axes.

To achieve force equilibrium in the axial direction, the contact face reaction force

must equal the axial pressure force. The reaction force can be found by integrating

the contact stress over the contact face area. This yields Eq. (8.15) where σ(r, θ) is axial

contact stress as a function of r and θ.

Fx =

∫∫
A

σ(r, θ) dA (8.15)

Taking moments about the tangential direction, centred on the centre of the seal
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Figure 8.6: Contact face stress distribution about the centre of the segment.

segment (see Fig. 8.6), then the moment generated by the contact stress acting at each

location on the contact face must balance the moment generated by the pressure acting

on the seal segment surfaces. This requirement leads to Eq. (8.16), where there is now

a r cos(θ) term introduced.

Mθ =

∫∫
A

r cos(θ)σ(r, θ) dA (8.16)

Similarly taking moments about the radial axis yields Eq. (8.17). Normally there is

no net pressure moment acting about the radial direction, and soMr = 0, however this

might not be the case when operating with axial thrust compensation springs.

Mr =

∫∫
A

r sin(θ)σ(r, θ) dA (8.17)

To find the contact stress function σ(r, θ), Eqs. (8.15) to (8.17) have to be solved simul-

taneously. Unfortunately with only the three equilibrium equations there is an infinite

number of possible solutions. Therefore to find a suitable contact face stress distribu-
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tion function two things were carried out. Firstly an even polynomial function of con-

tact stress was assumed and the equations solved analytically. Secondly finite element

stress analysis (FEA) was carried out in SolidWorks. This simulation included modelling

the elastic properties of the contact face which introduces an extra set of equilibrium

equations. Ultimately the analytical method was unnecessary for calculating the fric-

tional moment about the segment centroid, as the best agreement to the FEA stress

analysis was a uniform contact stress distribution, but it is a fast method for calculating

the maximum contact stress and so has some use for the designer of an Aerostatic Seal.

Analytical solutions
An analytical distribution of contact stress was assumed in the form of an even order

polynomial, given in Eq. (8.18), where n = 2, 4, 6 etc. To meet the requirements of mo-

ment equilibrium about the radial direction when there is a net moment present, the

equation has been split into two parts either side of the seal segment. This means the

function is discontinuous, but will not introduce a discontinuity to stress as the stress is

fixed at zero at θ = 0. Constants k1 and k2 are given in Eqs. (8.19) and (8.20) respectively

assuming the seal segment is of 60◦ (i.e. 6 per ring). The peak stress at each end of the

seal segment, where θ = ±π
6 , are given by σ1 and σ2 respectively. The angular location

on the contact face, θ is measured in radians. It was assumed that there was no radial

contact stress variation for simplicity and as the contact face in small. (In the ‘MESS01’

Aerostatic Seal design the contact face is 0.5mm in the radial direction.)

σ(θ) =


k1σ1θ

n −π
6 ≤ θ ≤ 0

k2σ2θ
n 0 < θ ≤ π

6

(8.18)

k1 =

(
− 6

π

)n
(8.19)

k2 =

(
6

π

)n
(8.20)

Substituting Eq. (8.18) into Eqs. (8.15) to (8.17) and denoting the integrals as I yields

Eqs. (8.21) to (8.23). The radial height of the contact face is t, and assumes that the
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thickness is small compared to the circumferential length of the contact face.

FN = rt

π
6∫

−π
6

σ(θ) dθ

= rt

k1σ1

0∫
−π

6

θn dθ + k2σ2

π
6∫

0

θn dθ


= rt

[
k1σ1IFN1 + k2σ2IFN2

]
(8.21)

Mθ = rt

π
6∫

−π
6

σ(θ) cos(θ) dθ

= rt

k1σ1

0∫
−π

6

θn cos(θ) dθ + k2σ2

π
6∫

0

θn cos(θ) dθ


= rt

[
k1σ1IMθ1 + k2σ2IMθ2

]
(8.22)

Mr = rt

π
6∫

−π
6

σ(θ) sin(θ) dθ

= rt

k1σ1

0∫
−π

6

θn sin(θ) dθ + k2σ2

π
6∫

0

θn sin(θ) dθ


= rt [k1σ1IMr1 + k2σ2IMr2] (8.23)

The integration was performed for polynomials up to the eighth order, and was

checked with Wolfram Alpha. The axial force and the moments about the radial and

tangential axis can be found from the pressure distribution on the seal segment. There-

fore the only unknowns remaining are the two peak stresses σ1 and σ2, and the system

of equations can be solved.

Table 8.1 summarises the integrals and gives the peak stresses for seal design ‘MESS01’

operating at 1.25 bar(a) at inlet and 1.00 bar(a) at outlet. Two different clearances were

tested: a high clearance case where the seal mean clearance was 1.5mm and a low clear-

ance case where the seal was operating at 0.003mm clearance. The system of equations
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High Clearance Low Clearance

n I1 I2 k1 k2 σ1 σ2 Rσ1 Rσ2 σ1 σ2 Rσ1 Rσ2
1 1 1 1 Nmm−1

1 1 Nmm−1
1 1

2
Fx 0.0478 0.0478

3.648 3.648 2.29 2.29 2.92 2.92 2.58 2.58 3.00 3.00Mθ 0.0440 0.0440
Mr −0.0182 0.0182

4
Fx 0.007 87 0.007 87

13.305 13.305 3.85 3.85 4.90 4.90 4.33 4.33 5.03 5.03Mθ 0.007 11 0.007 11
Mr −0.003 32 0.003 32

6
Fx 0.001 54 0.001 54

48.530 48.530 5.41 5.41 6.89 6.89 6.08 6.08 7.07 7.07Mθ 0.001 38 0.001 38
Mr −0.000 681 0.000 681

8
Fx 0.000 329 0.000 329

177.015 177.015 6.97 6.97 8.88 8.88 7.84 7.84 9.12 9.12Mθ 0.000 293 0.000 293
Mr −0.000 149 0.000 149

Table 8.1: Analytical contract stress distributions

was solved using Matlab.

The ‘contact stress ratio’, Rσ, was introduced which was defined as the local stress at

a particular position divided by the uniform stress required to counteract the axial force,

shown in Eq. (8.24). It is useful to compare the results to different pressure differences,

although the value is linked to the seal geometry and clearance.

σ(r, θ) = Rσ(r, θ)
Fx
Acont

(8.24)

Increasing the polynomial order n increases the maximum stress required to achieve

equilibrium. The peak stress ratio can be approximated as n+ 1, although this approxi-

mation is not as good at higher orders of polynomial.

Comparing the peak stress ratio between the high clearance and low clearance it was

found that the stress was slightly higher when in the low clearance position. This was

due to the greater axial force acting on the seal segment due to the segment being at a

lower radial position. (This increases the area of the segment with pressure difference

acting on it.)

Finite Element Analysis
A finite element stress analysis (FEA) was performed using the linear stress analysis

solver in the SolidWorks CAD package, and which could analyse the contact face stress.

The contact was modelled with the no penetration constraint at the boundary. Only
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Figure 8.7: Mesh cross section for contact stress analysis.

the seal segment and seal holder were modelled. Different pressures were applied to

each face to set up pressure moment and axial pressure force. A slender beam was

introduced to prevent the seal segment moving radially, but without the beam taking

a significant bending load due to the applied pressure moment. The pressures were

chosen to give the same axial force and tangential moment as calculated in the analytical

case.

Figure 8.7 shows the mesh used in the FEA model and the slender beam introduced

into the model. The cell size on the contact face was set to 0.1mm and the cells were

larger further away from the contact face where the stress distribution was not required

with accuracy. Ideally a smaller mesh size would have been used on the contact face,

but 0.1mm gave the largest number of elements that could be solved with the computing

resource available.

The circumferential distribution of the contact face stress has been plotted for the

minimum, maximum, mid radii of the contact face and mean stress average over the

radial position, shown in Fig. 8.8. The stress ratio Rσ has been used to normalise the

mean contact stress so a direct comparison can bemade to analytically calculated stress
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Figure 8.8: Circumferential distribution of contact stress

given in Table 8.1.

Figure 8.9 plots the circumferential distribution of contact stress calculated analyt-

ically and compares to the numerically calculated radial mean stress. Comparing the

analytically assumed contact face stress distribution and the numerically calculated dis-

tribution, the analytical distribution does not capture the increase in stress at the top

dead centre (θ = 0◦) of the segment. The sixth order polynomial gives the best agree-

ment with the peak radial mean stress predicted by the FEA model.

Frictional moment
Once the contact face stress distribution has been calculated, it is now possible to calcu-

late the frictional moment using Eq. (8.13). As the integration is difficult to solve analyti-

cally, it has been solved numerically using a spreadsheet assuming a number of different

coefficients of static friction. The numerical integration was checked by using the inte-

gration scheme to calculate the contact face area and comparing to the area calculated

analytically. An angular step size of 0.1◦ was found to give sufficient accuracy.
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Figure 8.9: Circumferential distribution of contact stress: analytical and numerical.

The frictional moment factor, ζ , has been defined which relates the frictional mo-

ment to coefficient of friction and axial force for a given contact face geometry. The

unit of frictional moment factor ζ is the metre. This is because it is a geometry factor
describing the shape of the segment about the centroid of the segment and the non-

dimensional stress distribution. It is defined in Eq. (8.25) and calculated by Eq. (8.26).

Mµ = µζFx (8.25)

ζ =

∫∫
A

r̂Rσ
Acont

dA (8.26)

Table 8.2 gives the analytical and numerically calculated frictional moment for the

‘high clearance’ and ‘low clearance’ pressure distributions. Comparing the frictional mo-

ment calculated by FEA and the analytical model, the analytical method over predicts

the frictional moment, even though the order of the stress distribution can be chosen

to match the peak stress acting on the contact face. The best match for the frictional

moment was constant contact stress i.e. Rσ = 1 over the whole contact face.

Wear was observed at the extreme circumferential positions on the contact face of
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Low clearance High clearance

Fx = 157N Fx = 172N
Mθ = −52.5Nm Mθ = −61.0Nm
Mr = 0Nm Mr = 0Nm

ζ Mµ ζ Mµ

m Nm m Nm

FEA 0.111 1.745
Const. Stress 0.101 1.579 0.101 1.579

Analytical

n = 2 0.143 2.251 0.148 2.548
n = 4 0.160 2.513 0.165 2.843
n = 6 0.169 2.646 0.174 2.990
n = 8 0.174 2.726 0.179 3.082

Table 8.2: FEA and analytical frictional moment.

the rotating rig seal segment, shown in Figs. 6.13 and 6.14. The volume of wear is pro-

portional to the normal force applied, and for adhesive wear this is governed by the

Holm-Archard Equation [90]. The wear volume is inversely proportional to hardness of
the material. This provides experimental evidence that the contact face stress is highest

in the side area of the seal segments. In the rotating rig, the 6 O’clock seal segment

exhibited a different wear pattern. This could be due to different tangential moment

acting on the seal segment due to the gravity vector acting radially away from the rotor.

8.3.3 Comparison to generated pressure moment
The goal of this section was to investigate the response of the Aerostatic Seal segment

to non-uniform clearance. If the seal segment is at a non-uniform clearance the seg-

ment needs to generate sufficient pressure moment to overcome the frictional moment

preventing the seal segment from moving. An analytical tool has been developed to cal-

culate the pressuremoment and amethodology to calculate the frictional moment. Now

it is possible to combine these methodologies to understand the conditions at which the

seal segment is able to restore a uniform clearance.

The 2D analytical method was used to calculate the pressure moment generated

with the ‘MESS01’ seal segment design in a number of different non-uniform positions.

The inlet and outlet pressure was 1.5 bar(a) and 1.0 bar(a) respectively and modelled as-

suming air at 20 ◦C. The clearance of the URS side of the segment was fixed and the

clearance at the DRS side of the segment varied from zero to the same clearance. This
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was repeated for four fixed URS clearances: 0.1mm, 0.2mm, 0.4mm and 0.8mm. The gen-

erated pressure moment is shown in Fig. 8.10. For all the different fixed URS side clear-

ances reducing the DRS side clearance, i.e. making the seal segment clearance more

non-uniform, increased the pressure moment. If the URS side clearance was large, then

the maximum pressure moment, which was when the seal segment is at zero clearance

at the other side gives a more modest pressure moment compared to when the URS

side clearance is small. Note that the analytical method would not converge at very low

leakage areas, and this explains why the CURS = 0.1mm and CURS = 0.2mm were not

tested all the way down to zero DRS clearance. Extrapolating the trend indicates that the

seal would generate high pressure moment.

The reason why the high URS side clearance did not generate as much pressure mo-

ment is due to the greater clearance between the circumferential fin and the rotor, al-

lowing flow to leak out from the DRS side pocket and reducing the pressure. Also the

mean clearance of that pocket is greater due to the greater segment angle ψ which re-

duces the pressure in the pockets.

Together this means that at extreme segment non-uniformity the pressure moment

is small, and so it is unlikely that the seal segment is able to restore uniform clearance. If

the DRS side clearance was fixed and the URS side varied the results would be the same,

only the pressure moment would be in the opposite direction.

Figure 8.10 also includes the frictional moment that the seal segment has to over-

come, assuming the seal segment operating at the high clearance and based on the

contact stress distribution calculated using SolidWorks and a coefficient of static fric-

tions of µstat = 0.1. (This is the horizontal dashed line.) Therefore the seal segment

would start to restore itself to an even clearance only when the high clearance side of

the seal segment is at a fairly low clearance of 0.2mm and the low clearance side of the

segment approaches zero. When the high clearance side of the segment is at higher

clearances, such as 0.4mm and 0.8mm there is insufficient pressure moment to over-

come the frictional moment. The coefficient of friction assumed was a little smaller than

that calculated from the experiments conducted in Chapter 5 and so the frictional mo-

ment could be a little higher. Assuming a coefficient of friction of µstat = 0.6, as in the

design process would increase the frictional moment significantly, and as a consequence

the segment will not restore to a uniform circumferential clearance.
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Figure 8.10: Pressure moment generated with segment non-uniform clearance.
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As previously discussed in Section 5.5, the analytical model does not capture all of

the observed behaviours of the Aerostatic Seal well, and so this analysis will also be

effected by these limitations. However the model clearly demonstrates the difficulties

for the seal segment to restore uniform clearance.

8.4 Fixed Non-uniform Clearance
This section investigates the effect of non-uniform clearance on the performance of the

Aerostatic Seal, and tests the ability of the seal segment to restore uniform clearance

experimentally. To achieve this a number of fixed clearance tests were carried in the

same manner as previously discussed in Section 5.5.

The seal segment was fixed into a non-uniform clearance position by fixing differ-

ent sized shims at each side of the segment. Three different positions were tested:

CURS = 0.80mm and CDRS = 0.20mm, CURS = 0.20mm and CDRS = 0.10mm and finally

CURS = 0.20mm and CDRS = 0.00mm. A further three tests were carried out at the same

clearances but where the DRS side of was at the largest clearance rather than the URS

side of the segment. The tests were conducted with atmospheric back pressure, and

the results are reported at a pressure ratio of PR = 1.5. The seal segment was manually

held onto the rotor surface and the inlet pressure varied, as described in Section 5.5.

The mean of the pressures was taken over a small range of time, typically 0.2 s giving

a sample size of 120. What should be expected is that the side of the segment at the

lowest clearance would have a higher pressure in the circumferential pockets to help

restore the segment to a uniform clearance.

Fig. 8.11 shows themean pressure coefficient when the seal segment was positioned

at a non-uniform clearance. Figure 8.11a is where the URS side of the segment was at the

highest clearance, and Fig. 8.11b when the DRS side of the segment was at the highest

clearance. The high clearance was 0.80mm and the low clearance 0.20mm. The pressure

ratio was PR = 1.5. Cp1, Cp2, Cp3 is the pressure coefficient in the P1, P2, and P3 axial

pockets.

First consider when the URS side of the segment was at the highest clearance, shown

in Fig. 8.11a. The P1 pocket shows a significant difference between the two sides. At the

high clearance side of the segment the pressure was below that of the downstream P2
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Figure 8.11: Circumferential pressure distribution with non-uniform segment clearance.

pocket. This was due to the pressure recovery effect in the first pocket at high clearance

already observed in Section 5.5. The P2 pocket pressure was lower at the low clearance

side where a high pressure is needed to restore the segment to a uniform clearance.

The P3 pocket pressures are fairly even.

A similar result was found when the DRS side of the segment was at the highest

clearance, shown in Fig. 8.11b. The P1 pressure was highest on the low clearance side.

The P2 pressure slightly higher on the low clearance side and the P3 pocket pressure

significantly higher on the high clearance side. This has a negative impact on the pres-

sure moment and in fact there was a pressure moment acting to increase the clearance

at the high clearance side of the segment.

The circumferential pressure distributions measured experimentally were used to

calculate the pressure moment acting about the seal segment centroid. The results are

shown in Table 8.3 and also include the analytically expected pressure moment. The an-

alytical pressure moment could not be calculated when the clearance on one side of the

segment was zero as the analytical method would not converge. The experimental pres-

sure moment generated when the DRS side of the segment was at the highest clearance

shows a pressuremoment in the opposite direction to the analytically expected pressure

moment.
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CURS CDRS Exp. Mx AnalyticalMx CURS CDRS Exp. Mx AnalyticalMx

mm mm Nm Nm mm mm Nm Nm

0.80 0.20 −0.086 −0.47 0.20 0.80 0.31 0.47
0.20 0.10 −0.21 −0.25 0.10 0.20 −0.13 0.25
0.20 0.00 −0.34 - 0.00 0.20 0.40 -

Table 8.3: Experimental and analytical moment due to non uniform clearance.

The experimentally calculated moment was acting to make the circumferential clear-

ance more uniform, except when CURS = 0.10 and CDRS = 0.20. There were differences

between the same non-uniform clearance but different sides of the segment at the low-

est clearance. The experimentally calculated moment was more variable. Variation be-

tween sides wasmost likely due to variations in the axial clearance due tomanufacturing

variations.

Overall the pressure moment generated by the seal segment was sensitive to small

variations in the circumferential and axial clearance. The pressure moment was also

influenced by the pressure recovery effect in the first pocket at high clearance.

8.4.1 Comparison to even clearance
For each of the non-uniform fixed clearances, the mean circumferential pressure coeffi-

cient and mean clearance were calculated. The pressure response was then compared

in Fig. 8.12 to the response when the seal segment clearance was uniform in the tests

described in Section 5.5. All tests were at a pressure ratio of PR = 1.5, and both sets

of non-uniform tests are shown. The plot shows that there was little difference in the

mean pressure coefficients calculated, and so the mean clearance is still the governing

factor producing the radial pressure force. The only exception was at 0.1mm where the

CURS > CDRS case pressure coefficient was slightly below the other non-uniform case

and even case, indicated with the arrow in Fig. 8.12.

The effect of non-uniform clearance on the response of the seal segment was also

observed in the testing conducted in the rotating rig - see Section 6.3.1. Here it was

observed that the seal segment would not move away from the rotor when operating

with non-uniform clearance until the mean clearance of the segment was low enough,

even if the clearance in the side circumferential pocket was low. Therefore if the seal

segment was to operate with a highly non-uniform clearance there is potential for the
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Figure 8.12: Pressure coefficient variation: even and uneven seal segment

rotor to rub on the lowest side of the segment before the segment will move away.

8.5 Conclusion
The subject of this chapter was understanding the aspects of non-uniform seal segment

operation. The key question to answer was: why the seal segment initially goes to a

non-uniform clearance, and why the segment does not restore itself to a uniform cir-

cumferential clearance.

• Small variations in the coefficient of friction around the circumference of the seal

segment will lead to an uneven friction torque, and are responsible for the uneven

clearance when the seal segment has closed.

• The circumferential pockets implemented in the seal design MESS01 do not gen-

erate sufficient self-righting moment to correct the uneven clearance, particularly

if the clearance at one side was large. The contact face stress distribution is not

evenly distributed circumferentially or radially, and has been investigated analyti-

cally and numerically. Experimentally observed pressure distributions confirm that

little circumferential pressure moment is generated. The pressure distribution is

not symmetric which could be due to variations in the clearance of the restrictions.
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The frictional moment due to the contact face stress is large, and made larger by

high stress areas furthest away from the centroid.

• It was found that the mean pressure coefficient when the seal segment was at a

non-uniform clearance was similar to the uniform clearance tests performed pre-

viously.

The cause and effects of non-uniform operating clearance have been investigated in

this chapter. The next chapter will now link all the experimental findings together in a

recommended design for the Aerostatic Seal, and includes test results conducted in a

steam environment.



Chapter 9
Steam Turbine Implementation
9.1 Introduction
The work described in previous chapters has experimentally tested a number of dif-

ferent Aerostatic Seal designs in rotating and non-rotating experimental facilities, all of

which operated in air. The tests in air proved that the Aerostatic Seal was able to re-

spond to high speed rotor radial transients. The next step was to test the seal in an

environment closer to steam turbine operation.

The first section of this chapter summarises the experimental testing of the Aero-

static Seal in a high temperature steam test facility at TU Brauschweig in Germany. The

rig was designed for testing seals in a steam environment. The rotor was able to be

translated relative to the casing of the rig to simulate low speed transients. A new Aero-

static Seal design was manufactured, ‘STR-IP6-07A1’, described in Section 3.5, as well as

the necessary seal carrier rings to interface with the facility. The design and manufac-

ture of the Aerostatic Seal, and processing and interpreting the results was conducted

as part of this thesis; the physical testing was undertaken by TU Braunschweig. The

seal was manufactured from X22CrMoV12-11, a martensitic stainless steel that is repre-

sentative of steam turbine materials. The results of the test campaign showed that the

Aerostatic Seal was able to close in and retract, and also respond to the translation of

the rotor.

The second section of this chapter describes a proposed generic Aerostatic Seal seal

design for application into a steam turbine. The proposed design is based on experi-

1
St12T is the GE/Alstom designation for X22CrMoV12-1

208
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mental and analytical results gathered throughout the thesis.

9.2 The Aerostatic Seal in a steam environment
The results reported in Chapters 5 to 8 clearly demonstrate the dynamic capabilities of

the Aerostatic Seal. The next step was to test the capability of the Aerostatic Seal to op-

erate in a high temperature steam environment, using realistic steam turbine materials

and with realistic rotor surface speeds.

The operation of the Aerostatic Seal depends on the level of friction between the seal

segments and the seal holder. A literature survey was conducted into the effect of high

temperatures on the coefficient of friction which revealed that generally friction coef-

ficient increased with temperature. A table of coefficients of friction found by various

researchers is given in Appendix G. Therefore the key for the experimental campaign

was to show that the seal segments would still ‘close in’ towards the rotor surface as the

pressure difference across the seal was increased, and the seal segments were able to

track the rotor position during a rotor translation, showing that the expected increase in

friction due to high temperature was not prohibitive to dynamic operation of the Aero-

static Seal.

Also of importance was the effect of prolonged operation of the seal. In previous

testing at Durham University the tests were of short duration due to the nature of the

test facility (maximum test duration was 100 s). The testing in steam was conducted in a

five day long test to see if any degradation in performance was found during the course

of the test.

9.2.1 Rig and Seal Design
The Aerostatic Seal was tested in the rotating seal test facility at TU Braunschweig. High

pressure and temperature steam is supplied to the facility from a power station boiler.

The test facility is constructed in a double flow arrangement with the high pressure

steam entering the high pressure chamber in the centre, and flowing outwards through

two seals under test. Each side was referred to as the ‘motor side’ and the ‘displace-

ment side’. The rotor diameter is 299.8mm, and so is roughly half that of a typical power

generation steam turbine. A cross section of the facility is shown in Fig. 9.1.
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Figure 9.1: Cross section of rotating steam facility at TU Braunschweig.

The maximum possible inlet pressure to test facility was 50 bar, and typically 400 to

500 ◦C temperature depending on the operation of the power plant. The steam exiting

each side of the test facility was directed back to the boiler, and the pressure at the outlet

of the seal depending on the boiler pressure and the pressure losses in the pipework

leading back to the boiler. The rotor is driven by a 80 kW motor capable of 10 000 rpm to

match rotor surface velocity.

The facility also has the ability to translate the high pressure casing relative to the ro-

tor to simulate low speed rotor excursions. Relative movement of the rotor and casing is

achieved by heating or cooling the high pressure chamber support legs, thereby altering

the thermal expansion of the legs and moving the casing. The relative position between

the rotor and casing was measured during operation and a PID control loop used to ac-

curately control the level of eccentricity. Full details on the facility and its capability can

be found in previously published works [50], [54], [96].

The facility was equippedwith instrumentation tomeasure themass flow rate through

the seal at each side, the rotor speed, torque and eccentricity, and inlet and outlet pres-

sures and temperatures. The mass flow rate through the seal was measured on the

outlet of the test facility for the motor side and displacement side seals using an orifice

plate. The pressure was measured on the cover plate immediately behind each seal,

and the temperature by a probe directly behind the seal enveloped in the steam flow.
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Upstream pressure was measured in the central high pressure chamber, and upstream

temperature measured by a thermocouple located in the steam flow in the high pres-

sure chamber. Rotor speed and torque were measured by the motor controller.

The design for use in the steam tests was conducted using the standard analytical

design methodology. The details of the design are available in Section 3.5 in Chapter 3.

The TU Braunschweig steam test facility was limited to 0.5 kg s−1 total mass flow rate.

Therefore the design inlet pressure was at the low end of the facility capability to ensure

that the mass flow through the seals would not go beyond 0.5 kg s−1when retracted. The

rotor speed was chosen to produce a surface velocity of 137m s−1 which was represen-

tative of a typical steam turbine rotor surface velocity.

Previous testing of the Aerostatic Seal used seal segments manufactured from struc-

tural mild steel as this was readily available and with good machining characteristics.

The seal segments and seal carrier ring designed for testing in steam was manufactured

from X22CrMoV12-1, which is a 12% chromiummartensitic stainless commonly used for

steam turbine components. As with other segmented steam turbine gland seals, the

seal segments and seal carrier ring were machined from forged rings.

Testing in the Durham Rotating Seals test facility (see Chapter 6) found that there

was wear on the contact face of the seal segments due to movement of the segments.

Therefore it was decided to introduce a chromium carbide coating on the seal segment

contact face to prevent excessive wear for a steam turbine application.

The literature survey carried out to investigate the effect of temperature on the co-

efficient of friction included frictional coefficient data of chromium carbide at elevated

temperature, as seen in Appendix G. Although no published data was found for chrome

carbide on X22CrMoV12-1, in a high temperature steam environment, and with similar

normal force, it was found that generally the high temperature and high surface rough-

ness would increase the coefficient of friction. Therefore the chrome carbide coating

on the contact face was ground to achieve a smooth and even surface finish, as recom-

mended by DellaCorte and Sliney [97].

The circumferential springs used in the seal design were custom designed to meet

the geometric and spring force requirements of the Aerostatic Seal design. The springs

were manufactured from Inconel 718, and the spring rate was 10.2Nmm−1 at 500 ◦C.
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9.2.2 Results and Discussion
The testing was conducted in two parts. First there was a five day long test with the seal

segment free to move radially in the seal holder. Second there was a test with the seal

segments fixed at a known clearance to aid calculation of the seal clearance in the first

test.

Figure 9.2 gives the inlet pressure and temperature, outlet pressure, rotor eccen-

tricity and speed, and mass flow rate for the whole five day test. Figure 9.2a is for the

‘displacement side’ seal, and Fig. 9.2b the ‘motor side’ seal. Initially the test facility was

heated by letting a small quantity of steam through the inlet valve and the rotor speed

increased to 8760 rpm, which gave a typical rotor surface speed of a 3600 rpm steam

turbine. The inlet valve was then opened gradually to increase the pressure difference

across the seal, until the seal segments ‘close in’ towards the rotor. Once close in had

occurred the inlet pressure was held constant. The rotor was then gradually displaced

four times over approximately 30 to 60 minutes to observe the capability of the seal to

track the position of the rotor. Between the rotor translations the inlet pressure was

maintained to keep the seal at the operating clearance for 23 hours to observe if there

was any change in seal response to the rotor translation after the seal had operated

at high temperature and pressure for a long duration. Throughout the test the logging

frequency was 0.5Hz.

The test began around midday on day 1, at which point the test rig temperature and

inlet pressure was increased. The temperature of the inlet steam was typically around

420 ◦C during the test, and set by the operation of the power plant boiler. Initially the

inlet pressure was increased quite rapidly and which led to rotor contact and the rotor

stopping, which was rotating at 500 rpm. On the second attempt the rotor speed was

increased to 8760 rpm, the inlet pressure increased more slowly and the seal segments

closed in successfully. Seal segment close in was accompanied by an increase in the

inlet pressure. The mass flow rate through the seal stayed fairly constant due to the

increased inlet pressure, despite the seal moving to a lower operating clearance. The

inlet pressure was reduced to 7.5 bar(g). The outlet pressure stayed constant for both

seals at approximately 3.1 bar(g). The outlet pressure was expected to be 6.0 bar(a) at

outlet, but as there was no independent control over the outlet pressure this could not

be changed. As shown in the previous testing in air, increased pressure across the seal
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Figure 9.2: Overview of steam test results
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does not affect the operation of the seal after it has closed in.

Steady operation was maintained over the night and the first translation of the rotor

took place around midday of day 2. During the translation the rig was tripped a number

of times which would cause the rotor speed to reduce to 500 rpm and the inlet valve

to shut, causing the seal to retract. The causes were not to do with the Aerostatic Seal,

but the test facility operating parameters going beyond the limits due to higher than

normal power station ambient air temperature. The inlet pressure was increased again

to achieve seal close in and the rotor translation continued to 0.5mm eccentricity and

back again.

The translations of the rotor were repeated a further three times (day 3, 4 and 5), and

are labelled on Fig. 9.2. After the 2nd translation the rig again tripped out a number of

times before steady operation was re-established. The pressure for the 3rd translation

was reduced to 7.5 bar(a) rather than 7.5 bar(g). The pressure after the 3rd translation,

between day 4 and 5 was reduced due to an issue with the boiler at the power plant.

After the 4th translation test the rig was shut down and allowed to cool.

The following sections discuss the segment ‘close in’ and rotor translation in detail.

Seal ‘close in’ behaviour
The mass flow rate and pressure difference for a 30 minute time period is shown in

Fig. 9.3. The displacement side seal is shown in Fig. 9.3a, and the motor side seal shown

in Fig. 9.3b. Initially themass flow rate and pressure drop across the seal was low and the

seal segments were in the retracted position. The outlet pressure was constant through-

out the test at 3.6 bar (a), and the inlet steam temperature approximately constant at

420 ◦C. The rotor was held in the centric position throughout this part of the test.

From 18:05 the inlet steam valve was opened slowly which increases the mass flow

rate through the seal. At 18:34 the seal segments close in, causing a large increase in the

pressure difference across the seal, and a slight drop in the mass flow rate through the

seal. The leakage through the seal depends on the leakage area of the seal, the pressure

ratio across the seal, and the fluid density. (Pressure ratio (PR) has been defined at the

absolute inlet pressure divided by the absolute outlet pressure.) Therefore despite the

seal segment moving towards the rotor and reducing the leakage area of the seal, the

mass flow remains virtually the same as the pressure ratio across the seal has increased.
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Figure 9.3: Close in behaviour of Aerostatic Seal
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Rotor translation
Four rotor translations were carried out within the test, inter spaced with periods of

running with the rotor in the centric position. As the rotor was moved the seal segments

above the rotor need to move away from the rotor, and the segments below the rotor

need to move towards the rotor to maintain the same operating clearance.

Figure 9.4 shows the seal rotor eccentricity, mass flow rate and inlet and outlet pres-

sures seal during the 3rd rotor translation. The displacement side seal is shown in

Fig. 9.4a and the motor side seal in Fig. 9.4b.

During the translation of the rotor from the centric to eccentric position the inlet

pressure to the seals decreases and the mass flow rate through the seals increases in-

dicating that the clearance of the seals was increasing, indicated by the arrows labelled

as ‘0’ in Fig. 9.4. The outlet pressure stayed constant throughout the rotor translation.
The inlet pressure however also shows sudden increases in pressure indicating that the

seal segments are decreasing the seal clearance, for example the region marked ‘1’ in
Fig. 9.4a, and the region marked ‘2’ in Fig. 9.4b. The mass flow rate through the seal
stays constant. When the motor side seal reduces clearance, the displacement side seal

was subject to an increased pressure, and vice versa. This was because both seals were

connected to the same inlet plenum chamber.

Maximum eccentricity of the rotor was achieved at approximately 10:05, and held for

approximately 5 minutes. The motor side seal then moves to a lower clearance (labelled

as 2), identified by an increase in inlet pressure and a reduction in mass flow rate. The
displacement side seal stays at the same clearance as the mass flow rate also increases.

At 10:10 the rotor started to return to the non-eccentric position.

As the rotor was returned to the centric rotor position, the motor side seal clearance

reduces, labelled as ‘4’ and ‘6’ in Fig. 9.4b. During the same time the displacement side
seal shows no easily identifiable movements to reduce clearance, however at the region

marked with an arrow labelled ‘3’, the clearance reduces gradually. This will be discussed
further in the following section.
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Figure 9.4: Displacement and motor side seal response during 3rd rotor translation.
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9.2.3 Clearance and Friction Calculation
During the tests conducted with steam there was no method to directly measure the

clearance of the individual seal segments. Therefore the seal mass flow rate and pres-

sure ratio was used to estimate themean clearance of the seal during operation by com-

paring the experimental results to the analytical model. Figure 9.5 shows experimental

mass flow rate and pressure ratio during close in, and is the same data as plotted in

Fig. 9.3. The black and red lines, with no points, refer to the displacement and motor

side seals respectively. The experimental data has been smoothed to remove noise, and

which was amplified by converting the inlet and outlet pressure into pressure ratio.

The experimental results have been plotted over a contour plot of clearance cal-

culated using the analytical model described in Section 3.3. The outlet pressure was

fixed at 4.1 bar(a), similar to the experimental tests. The mass flow rate at the maximum

static clearance was calculated by the analytical tool for a range of static friction coeffi-

cients, and is shown as thick pink lines for the maximum static clearance. Side leakage

through the seal was also calculated by the analytical model and is why the mass flow

rate through the seal is not zero when at zero clearance.

Figure 9.5 allows the clearance of the seal during ‘close in’ to be estimated, indicating

that the seals have transitioned from a retracted clearance of approximately 0.80mm to

an operating clearance of approximately 0.09mm. Arrows on the graph show the seal

segment as it transitions from a retracted clearance to the lower operating clearance.

To validate the analytical model for calculation of the seal clearance, a test was con-

ducted with the seal segment fixed at a known cold clearance. The results from such a

test are also plotted on Fig. 9.5. The outlet pressure of the seals varied more in the fixed

test than during the active seal test, due to the increased flow rate. Therefore the mea-

sured mass flow rate has been normalised by the inlet pressure, temperature and the

specific heat capacity at constant pressure, as shown in Eq. (9.1). Standard temperature

Ts was 673K, i.e. 400
◦C. Standard inlet pressure Pins was calculated from the pressure

ratio and the desired outlet pressure of 4.1 bar(a), as shown in Eq. (9.2). The standard-

ised specific heat capacity cps was calculated from the standardised inlet pressure and

temperature using the XSteam Matlab code freely available [87]. This method of stan-
dardising the flow is similar to that other authors have used to compare different seals

[59], [77], but includes cp to account for property changes due to the change of steam
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Figure 9.5: Mass flow rate and pressure ratio during ‘close in’

pressure and temperature.

ˆ̇m = ṁ

√
cp
cps

√
T

Ts

Pins
Pin

(9.1)

Pins = PR× 4.1 bar(a) (9.2)

Table 9.1 shows the measured cold clearances after the active seal segment test, and

before the fixed seal test. As both the rotor and the Aerostatic Seal carrier ring were

made from martensitic stainless steel, it was assumed that the coefficient of linear ex-

pansion was the same for both materials, and hence there would be no effect on the

clearance of the fixed seal segments. TU Braunschweig calculated that the rotor radius

would increase by 0.08mm due to the rotation of the rotor. Therefore the hot and rotat-

ing clearances were 0.08mm smaller than the cold clearances. The cold clearance was

measured with feeler gauges with resolution of 0.05mm. The side leakage discharge co-

efficient (see Section 3.3) was modified from CD = 1.8 to CD = 1.0 to give agreement

between the analytical model and the fixed seal segment tests. The side leakage dis-
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Clearance Max. / mm Min. / mm Mean / mm

Retracted
Displacement Side 1.30 1.00 1.15
Motor Side 1.20 1.00 1.15

Fixed
Displacement Side 0.70 0.55 0.65
Motor Side 0.85 0.60 0.70

Table 9.1: Measured cold clearances.

charge coefficient is different from the value found from the non-rotating rig due to the

addition of keys between the seal segments.

Overall this section has described the methodology for estimating the seal mean

clearance, allowing the mean clearance to be estimated during ‘close in’.

Rotor Translation
Figure 9.6 shows the mass flow rate and pressure ratio during the 3rd translation plotted

on the same contours of clearances as in Fig. 9.5. The mass flow rate and pressure ratio

was smoothed to remove signal noise. Labels on the figure indicate the same points

labelled on Fig. 9.4. Initially the seal was occupying a location on the graph with a clear-

ance of about 0.10mm. Translating the rotor causes the clearance to increase and the

pressure ratio to drop due to the increased seal area, and so the seal operating point

moves to the left on the graph (labelled as ‘0’ in Fig. 9.6), indicating increased clearance.
The displacement side seal, shown in Fig. 9.6a, reduces clearance when the seal clear-

ance reaches 0.18mm (labelled ‘3’). Similarly the motor side seal, shown in Fig. 9.6b,
reduces the seal mean clearance when the clearance reaches around 0.16mm (labelled

‘2’). Previously it was discussed that the displacement side seal segment gradually re-
duced clearance at point ‘3’ in Fig. 9.4, but which was not easily identifiable. This gradual
reduction in clearance is much easier to see in Fig. 9.6.

From the performancemap of the translation, in Fig. 9.6, it was possible to determine

the apparent coefficient of static friction by observing the point on the clearance contour

when the segment transitions to a lower clearance. For the displacement side seal,

shown in Fig. 9.6a, this was µstat = 0.70, and for the motor side seal, shown in Fig. 9.6b,

this was approximately µstat = 0.65. Note that the coefficient of friction from the resting

point of the segment during close in, shown in Fig. 9.5, was lower at µdyn = 0.40. This
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(a) 3rd Translation: displacement side seal

0.00

0.05

1.0 1.5 2.0 2.5 3.0
0.00

0.05

0.10

0.15

0.20

Clearance [mm]

1.00
0.95
0.90
0.85
0.80
0.75
0.70
0.65
0.60
0.55
0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00Pressure Ratio    P in/Pout    [-]

M
as

s 
F

lo
w

 R
at

e 
[k

g/
s]

1.0 1.5 2.0 2.5 3.0
0.00

0.05

0.10

0.15

0.20

Max. static mass flow

µ = 0.50

µ = 0.40

µ =
 0.

60
µ =

 0.
70

1.0 1.5 2.0 2.5 3.0
0.00

0.05

0.10

0.15

0.20

Fixed displacement side
Fixed motor Side

1.0 1.5 2.0 2.5 3.0
0.00

0.05

0.10

0.15

0.20

Motor Side

Fi
xe

d
S

eg
m

en
ts

0

1

2
3

4

56

7

(b) 3rd Translation: motor side seal

Figure 9.6: Mass flow rate and pressure ratio during 3rd rotor translation.



9.2. THE AEROSTATIC SEAL IN A STEAM ENVIRONMENT 222

would be consistent with dynamic friction.

9.2.4 Steam Testing: Conclusion
Successful steam testing represents a major milestone for the development of the Aero-

static Seal. The key finding was that the effects of high temperature steam and realistic

steam turbine materials do not prevent the Aerostatic Seal from operating dynamically.

The testing also matched typical steam turbine rotor surface velocity. As the test was

conducted with the same rotor speed throughout, it was not possible to observe any ef-

fect on the leakage performance of the seal. However operating at typical steam turbine

surface velocity was not a barrier to successful operation of the Aerostatic Seal.

A single five day long test was conducted. The first major finding was that the seal

was still able to move from a retracted position to a low operating clearance to the ro-

tor, despite the higher levels of friction due to higher temperature components and a

chromium carbide contact face coating on the seal segments. Based on the measured

mass flow rate and pressure ratio, the operating clearance of the displacement and mo-

tor side seal was 0.09mm.

The seal was subject to four low speed rotor displacements during the test. During

these displacements the seal segments were able to respond to the rotor movements.

The response was characterised by discrete seal segment movement due to pressure

forces on the seal segments overcoming static friction. During the maximum translation

of the rotor, the seal clearances were typically larger than the operating clearance, the

displacement and motor side seal clearances being 0.11mm and 0.10mm respectively

when the rotor was at the maximum translation in the case presented.

The apparent coefficient of static friction was found to be between µstat = 0.65 and

µstat = 0.70 from the rotor translation test conducted. This was comparable to the value

used in the design code for the seal. As the coefficient of static friction was not excessive,

then it is expected that responsive seal designs are possible for application in a steam

turbine, made from realistic materials and with a chrome carbide contact face coating

on the seal segments.
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9.3 Proposed steam turbine implementation
Based on the results obtained as part of this project, the base Aerostatic Seal design

has been developed. This section presents a proposed Aerostatic Seal design for a low

reaction steam turbine diaphragm. The proposed design is shown in Fig. 9.7. Key seal

design features are shown in Fig. 9.7, and are described below.

A: New stepped restrictions
The most obvious development from the standard Gen I and II Aerostatic Seal designs

are the inclusion of the stepped restrictions in the P1 and P3 pockets. The extra re-

strictions have two key functions: 1) reduce the leakage through the seal segment by

increasing the number of restrictions, and 2) preventing the ‘pressure recovery’ effect

observed when the seal segments are at a high clearance. The analytical design tool

does not capture the pressure recovery effect, and eliminating this effect will increase

the accuracy of the analytical tool.

To accommodate the steps in the rotor surface the P1 and P3 pockets can no longer

be circumferentially divided. For developing the proposed design it is recommended to

understand the effect on the radial force generation and the ability of the seal segment

to operate at a uniform circumferential clearance. It is assumed that the P1 pocket will

see an increase in pressure due to flow from the sides of the segment - see the side

pressure distribution measured experimentally in Fig. 5.17, and the P3 pocket will see a

reduction in pressure.

The steps on the rotor surface also reduce the axial pressure force acting on the seal

segment. This is because some of the pressure drop is across the raised restrictions,

and so axial force associated with that pressure drop is partially taken by the step on

the rotor surface. The reduction of axial force will reduce the frictional force, but also

reduce the tangential moment that can be accommodated by the axial reaction force.

As the pressure moment acting on the segment is proportional to the square of the

segment axial length, then the segment will have to be shorter axially - see Section 3.4.

It is expected that the stepped restrictions will help the moment to restore uniform

segment clearance if one side of the segment was at a lower operating clearance. It

was found in Chapter 8 that the pressure recovery effect would increase the pressure in
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Figure 9.7: Proposed Aerostatic Seal design for application in a steam turbine.

the P2 pocket at the high clearance side of the segment, and so the generated pressure

moment to restore uniform clearance was reduced.

B: Seal segment keys
As in the Aerostatic Seal design for the Durham Rotating Seals Rig, and the tests con-

ducted in steam, the proposed Gen III design also features ‘keys’ between all seal seg-

ments, as shown in Fig. 3.1. This is a departure from typical retractable seal designs

which only have keys at the half joint of the diaphragm. The advantage of using keys be-

tween all segments is that there is no coupling of the radial and circumferential forces

between segments through the circumferential springs. Also it is proposed to use the

keys to set the retracted position of the segments to ensure that the retracted segment

clearance is the same on each side of the segment.

C: Contact face treatment
A chromium carbide coating was applied to the contact face of the Aerostatic Seal seg-

ments in the tests in steam described above, on the advice of GE Rugby, and is shown in

red on Fig. 9.7. The aim of the coating was to prevent wear on the contact face as was

observed in the Durham Rotating Seals Rig. In the steam tests the coating was plasma

sprayed and then ground smooth. One difficulty that was encountered during the man-

ufacture of the seal for the steam tests was ensuring a smooth and even application on

the contact face in the small area of the contact face. This may become easier with full
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scale seal segments rather than the half scale segment used in the steam testing.

There may be other coatings that would provide wear resistance other than chrome

carbide, and that offer advantages in application (chrome carbide is plasma sprayed and

then ground smooth, increasing the number of manufacturing processes), or that also

reduces friction such as nickel boron coating as applied to the HALO seal.

D: Diaphragm dishing compensation
One mechanical aspect of steam turbine construction is ‘dishing’ of the diaphragm due

to the pressure differential across the stator [70]. Conical dishing of the diaphragm can

be tolerated by the Aerostatic Seal due to the angled contact face design which prevents

the sealing point on the contact face of the segment moving to a significantly larger

radius and hence increasing the axial and frictional force. In the conically dished case

the seal segments remain parallel to the rotor as the contact point is at the same axial

location.

However as the diaphragm is constructed in two parts and bolted together, the di-

aphragm does not dish conically. There is greater axial deflection of the diaphragm at

the half joint, which leads to the seal segments tilting forward as a results of the di-

aphragm deflection by as much as 0.2◦ [98]. As discussed earlier in Chapters 5 and 7, if

the Aerostatic Seal segment tilts forward, then the radial force generated was reduced

and the segment could contact the rotor surface. Therefore it is proposed to manu-

facture the Aerostatic Seal with labyrinth fins that are machined to different heights to

correct the axial clearance variation due to the segment tilting forward due to diaphragm

dishing. It would be desirable to over compensate the dishing compensation to allow a

safety margin to prevent loss of radial force if the rotor dishing was greater than calcu-

lated in the turbine design phase, and to allow for creep of the diaphragm after long

term operation of the turbine.

E: Axial thrust compensation springs
If the seal segment was manufactured such that the seal segment operated with an

even axial clearance distribution when the diaphragm was dished, then when the load

on the turbine was reduced and the diaphragm deflection lower, the Aerostatic Seal
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segment would be in a ‘tilted back’ configuration. When the segment was tilted back-

wards, the radial force was increased, and resulted in the seal operating at a higher

clearance. Furthermore, the seal segment will still be tilted backwards when at full load

if the diaphragm dishing was over compensated. The Aerostatic Seal operating at a

higher clearance increases the leakage through the seal and diminishes the potential

efficiency improvement possible by using the Aerostatic Seal .

To reduce the operating clearance of the Aerostatic Seal, it is proposed to use axial

thrust compensation springs. In Chapter 7, it was shown that in the ‘high axial thrust’

operating regime, there was a significant reduction in the operating clearance of the

seal. This was because the axial thrust compensation springs would tilt the seal segment

forward as the seal segment was transitioning to the operating clearance, reducing the

radial force on the seal segment. In the ‘high’ axial thrust operating regime the seal

segments contact the rotor when they are tilted forwards. It is proposed to limit the

minimum clearance to prevent this.

F: Fixed minimum clearance
The Gen III Aerostatic Seal design proposes to limit the minimum clearance of the seal

to some small clearance - 0.10mm is suggested. This performs two functions: prevent

the seal segment contacting the rotor if the seal was in some way damaged, such as the

feed holes became blocked. Also by limiting the minimum clearance, the best operating

regime of axial thrust compensation springs can be used without the risk of seal seg-

ment damage at some pressure conditions. The function of the seal segment operating

with limited clearance was investigated in Section 7.4.5.

9.4 Conclusion
The objective of this chapter was to further progress the development of the Aerostatic

Seal by bringing the technology to a level ready for first test in a steam turbine.

Firstly testing was conducted in a steam test rig at TU Braunschweig which proved

the Aerostatic Seal would operate in a high temperature steam environment.

Secondly the results from the steam testing and the testing conducted using air at

Durham University was used to propose a generic Aerostatic Seal design. This design
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embodiesmultiple features that are a direct result of the testing conducted in this thesis.

The two most critical are the pressure recovery effect observed in the first pocket and

axial variation of clearance. It was proposed to counter these effects by introducing

stepped restrictions in the P1 and P3 pockets, and by over compensating for diaphragm

deflection by reducing the height of the upstream fins.



Chapter 10
Conclusion
The Aerostatic Seal is a proposed dynamic seal concept, imagined for application in

steam turbines, however also applicable to other turbines. The project described within

this thesis has developed the Aerostatic Seal from concepts analytically investigated in a

series of MEng final year projects [23]–[26] to technology demonstration inside a steam

test rig. The development of the Aerostatic Seal has been through experimental test-

ing in a series of test rigs. A non-rotating test rig operating in air modelled a single

Aerostatic Seal segment allowing pressure measurements in the seal cavities. A rotating

test rig operating in air modelled a whole seal and used an adjustable eccentric rotor to

model rotor radial transients. Finally the steam test rig at TU Braunschweig was used to

perform a test with high temperature steam, realistic rotor surface velocity and realistic

seal and seal holder materials.

In the introduction to this thesis, four major research objectives were set out. First

was development of an analytical design and analysis methodology for Aerostatic Seals,

described in Chapter 3. The methodology uses the analytical model of Eser and Kaza-

kia [86] to calculate the pressure and mass flow rate through the seal, and calculates

the radial and axial force variation with seal segment clearance. The methodology per-

forms a static analysis to find the clearances at which the seal segment will move away

from the rotor, towards the rotor, or remain stationary to gauge the dynamic qualities

of a particular design. To generate seal designs, a set number of design variables is

looped through, and analysed at a high and low clearance. All feasible seal designs are

then ranked and the top ten analysed and output to the designer. The response of a

particular seal design was dependant on the value of the coefficient of friction. Three

228
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designs were generated: ‘MESS01’ for the non-rotating rig, ‘ROT-02’ for the rotating rig,

and ‘STR-IP6-07A1’ for steam testing at TU Braunschweig. A fourth design, ‘MacDonald1’

was generated by MacDonald [26] using a modified version of the design tool developed

by Rafferty [24].

The second research objective was proof of concept (or otherwise) of the Aerostatic

Seal. Demonstration of the dynamic capabilities of the Aerostatic Seal was initially ob-

tained in the non-rotating rig by demonstrating that the Aerostatic Seal segment would

move towards the rotor surface when at a high clearance, and away from the rotor sur-

face when the segment was at a low clearance and without springs. The most dramatic

demonstration of the Aerostatic Seal however was in the ‘Durham Rotating Seals Rig’.

The rig used an adjustable eccentric rotor to model rotor radial transients. In the low ro-

tor eccentricity position the seal segments would close in towards the rotor but operate

at constant clearance (the 12 O’clock segment would sometimes be excited by the low

levels of rotor eccentricity, although this would dampen out after approximately 5 s). In

the high rotor eccentricity position the seal segments were able to respond to large rotor

radial transients over the full range of rotor speeds tested, and critically the measured

seal segment was able to maintain a mean clearance that was smaller than the level

of rotor eccentricity. This would not be possible with a labyrinth seal and conclusively

demonstrates the dynamic capabilities of the Aerostatic Seal.

Following the successful testing in the ‘Durham Rotating Seals Rig’, the Aerostatic

Seal was then tested in steam. Similar operating characteristics were found, where the

seal was able to move from a retracted clearance to a lower operating clearance. By

testing in high temperature steam, with realistic rotor surface velocity, and with realistic

steam turbinematerials in the construction of the seal segments and seal carrier rings, it

was demonstrated that the Aerostatic Seal would have a good chance of functioning as

intended in a steam turbine. The seal was also subjected to a low speed rotor translation

and showed that the seal could respond to the rotor movement.

In the course of demonstrating the potential of the Aerostatic Seal, the following

behaviour of the seal was discovered, and is listed below:

• Pressure recovery effects occurred when the pitch to clearance ratio of the seal

restrictions was small, i.e. the pitch was small and the clearance large. This was

where a powerful vortex would form in the pocket leading to pressure recovery
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in the subsequent pocket. Critically the effect on the Aerostatic Seal was that the

first two restrictions would function as a single restriction, leading to increased

pressure in the pockets, and increased radial pressure force. As a result the seal

was not as responsive as predicted analytically, and the radial force was greater

than expected. This was also confirmed with CFD.

• Non-uniform clearance. This was when one side of the seal segment would oper-

ate at a lower clearance than the other. This could lead to rubs between the seal

segments and the rotor, as found in the rotating rig (see Section 6.3.1). The causes

were investigated in Chapter 8, which concluded that the initial non uniformity was

caused by circumferential variations in the contact face frictional force. Once the

circumferential clearance of the seal segment was non-uniform, then the segment

would not restore a uniform clearance as the pressure moment was too small to

overcome the rotational friction on the contact face. Furthermore if one side of the

seal segment was at a very large clearance, then this would reduce the correcting

moment further.

It was also found that the effect of pressure recovery had an adverse effect on the

ability of the seal segment to correct circumferential clearance non-uniformity.

• Axial variation of clearance was observed to be a significant factor determining the

operating clearance of the seal segment. This could be due to the seal segment

tilting forward or backwards, as observed in the axial thrust compensated design.

Tilting forward reduces the pressure in the seal axial pockets, reducing the radial

force away from the rotor, and can therefore cause the seal segment to come into

contact with the rotor.

Axial variation in clearance can also be due to the positioning of the rotor. It was

found in Section 5.4 that variation in the rotor position had a significant effect on

the operating clearance of the seal segment, greater than the effect due to greasing

the contact face. In the fixed seal segment test conducted in Section 5.5, it was

found that a reduction in clearance of the downstream restriction would increase

the radial force acting on the segment, causing the operating clearance of the seal

segment to be increased.

Due to diaphragm deflection in steam turbine operation, this sensitivity to axial
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clearance variation is significant, although it has been addressed in the proposed

Gen III Aerostatic Seal design.

• Testing in the ‘Durham Rotating Seals Rig’, showed that at low levels of rotor ec-

centricity the seal segments operated at a constant position. This is desirable as

it prevents wear on the contact face from the segment responding to small rotor

movements. In this case the seal segment operating clearance was greater than

the low rotor eccentricity setting.

• It was found in the rotating rig that the key driver for radial force generation was

the mean segment clearance. Variations due to the non-uniformity of the seal seg-

ment were not observed. This was also confirmed in the non-rotating rig when

operating with fixed non-uniform seal segment positions as the pressure distribu-

tion was the same as the uniform seal circumferential pressure distribution.

• The Aerostatic Seal demonstrated a 35% leakage reduction over a fixed seal in the

rotating rig. By further optimisation of the design, as in the seal design for the

steam tests conducted, the leakage reduction could be improved by reducing the

operating clearance of the seal.

• Tangential rotation was measured during normal operation of the ‘MacDonald1’

seal segment in the non-rotating rig, and the ‘ROT-02’ seal design in the rotating

rig. In both cases the level of forward tangential rotation was of the same order as

the measurement uncertainty, and therefore it was concluded that the measured

differences were likely to be due to measurement error. In the tests with axial

springs, which allowed the measurement of seal segment tangential rotation using

the axial spring load cells, the effect of the segment tilting forward was noticeable

by the loss of pressure below the segment and on the top surface of the segment,

which was not observed in the non-rotating rig during normal operation without

axial springs.

• Mean seal operating clearance was unaffected by rotor rotational speed, at both

high and low eccentricity. The only exception was at zero rotor speed. The leakage

was also unaffected at the rotor speed and clearance tested which was confirmed

by considering the ratio of Taylor number to axial Reynolds number Ta/Rex.
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A diversion was made to investigate the Gen II Aerostatic Seal design with used axial

thrust compensation springs, and which was the subject of Chapter 7. Different levels of

axial thrust were tested, and it was found that there were four distinct operating regimes

depending on the level of applied axial thrust:

• ‘Low’ levels of axial thrust. There was a small improvement in operating clearance,

and consequent reduction in leakage mass flow rate was observed.

• ‘High’ levels of axial thrust. A significant reduction in operating clearance was ob-

served, although rotor contact was observed just after the seal closed, and also

before the segment retracts.

• ‘Very high’ levels of axial thrust; an extension of the ‘high’ axial thrust regime. There

was a prolonged period of time where the seal segment was in contact with the

rotor surface.

• Vibratory response, termed ‘pressure activated chatter’where the seal segment re-

peatedly contacted the rotor surface. This was due to unbalanced appliedmoment

about the segment centroid due to axial spring force.

The third key objective set out at the beginning was validation of the Aerostatic Seal

design and analysis methodology. The analytical methodology was largely successful at

predicting the performance of the Aerostatic Seal at low clearances and designed the

manufactured Aerostatic Seal successfully. This was demonstrated by the good agree-

ment at low clearance with the CFD tests conducted in Section 5.5. Experimental agree-

ment was not as good due to compounding effects such as axial variation in clearance in

the fixed seal segment tests. At high clearance the pressure recovery effect dominates

the pressure distribution in the P2 and P3 seal segment axial pockets, which the analyt-

ical model did not capture. As the proposed Gen III seal design proposes to eliminate

the pressure recovery effect with kinetic energy blockers on the rotor surface, then it is

expected that the analytical methodology would be much more successful.

The following relate specifically to the analytical methodology:

• The side pressure forces were determined experimentally in the non-rotating rig. It

was found that a constant side pressure coefficient Cfs = 1.4 would relate the side
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pressure force to the pressure difference successfully, and was found to be con-

stant with clearance. This was contrary to the CFD results which found decreasing

the seal segment clearance increased the side pressure coefficient. The latest seal

segment designs use ‘keys’ between the seal segments which were not modelled

in the non-rotating rig.

• A 2D analytical model was developed in Chapter 8, and included the frictional mo-

ment opposing the restoration of uniform circumferential clearance which was dis-

cussed extensively in the chapter. This could be extended into 3D by including the

effect of axial variation in clearance. As the methodology did not include the pres-

sure recovery effect as in the 1D model, then the model failed to fully capture all

the effects of non-uniform circumferential clearance, although the model was still

useful to understand some of the causes of the segment non-uniformity.

The fourth and final objective set out at the beginning of the project was identifica-

tion of key design parameters and variables. These are embodied in the proposed Gen

III design described in Section 9.3. The following were the key features of the proposed

seal design:

• Castellated rotor surface: prevents the pressure recovery effect increasing the re-

sponsiveness of the seal design, and also reduces the axial force on the segment.

• The seal design uses ‘keys’ between the segments, as in the rotating rig and the

steam tests conducted at TU Braunschweig.

• Chromium carbide contact face treatment to prevent wear, or some other hard

facing surface coating/treatment.

• Diaphragmdishing over compensation by increasing the clearance of the upstream

seal restrictions.

• Axial thrust compensation springs: These are to ensure that the seal segment

operates at a low clearance even if the seal has been over compensated for di-

aphragm dishing. The axial springs are intended to be in the ‘high’ axial thrust

regime, and with the minimum seal segment position limited to prevent rotor con-

tact.
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Overall the significant contribution of this work was the development of an analytical

design methodology for the Aerostatic Seal, experimental proof of concept in a non-

rotating and rotating test facility, and a proposed concept design based on these results.
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Appendix A
Labyrinth Seal Leakage Models
The Aerostatic Seal is made up of a series of restrictions, similar to a labyrinth seal,

coupled to a central feed hole. Therefore to be able to understand the flow through the

Aerostatic Seal and to be able to calculate the pressure on the surface, which give rise to

the force moving the seal segment away and towards the rotor, labyrinth seal leakage

models are used.

Leakage Equations
There are three main basic equations which relate the leakage mass flow rate of fluid

through a labyrinth seal to the inlet and outlet pressure: the St. Venant Wantzel equa-

tion, Martin’s equation [27] and Neumann’s equation [85], [99]. Many researchers have

derived similar equations and methods, such as Morrow [100], Callendar [101] and

Stodola [102]. However the three listed above are the most widely used.

These base equations are then combined with a discharge coefficient, CD, which

accounts for the vena contracta and pressure recovery in the cavity, and a kinetic energy

carry over coefficient, Cke, to account for the kinetic energy carried over into the next

cavity.

St. Venant Wantzel Equation
The St. Venant Wantzel formula, Eq. (A.1), is derived from the Euler equations, assuming

zero inlet velocity, a perfect gas, isentropic acceleration going into the restriction, and

248
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that all the kinetic energy generated at the narrowest part of the restriction is destroyed

[103]. The equation calculates the mass flow rate for a single restriction, and so for

multiple restrictions an iterative method is required to find the mass flow rate through

the whole labyrinth seal. Pi is the static pressure upstream of the restriction, and Pi+1 is

the static pressure downstream of the restriction

ṁ =
AcPi√
RTi

√√√√√ 2γ

γ − 1


(
Pi+1

Pi

) 2
γ

−
(
Pi+1

Pi

) γ+1
γ

 (A.1)

The St. Venant Wantzel equation can be extended by not assuming zero inlet velocity

[103], shown in Eq. (A.2), although in practise the extra accuracy gained in this part of

the calculation is insignificant compared the other errors and assumptions. Aup is the

area of of the channel upstream of the restriction.

ṁ =
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√
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) 2
γ
(
Ac
Aup

)2
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) 2
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−
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γ

 (A.2)

Martin’s Equation
Martin’s equation [27], given in Eq. (A.3), derived in 1908, was the first equation specif-

ically designed for use in labyrinth seals. The equation gives the flow rate through the

whole seal in one step, rather than for each restriction. The equation was derived as-

suming isothermal flow, and that all the kinetic energy is destroyed in the cavities of

the seal. Martin’s equation was extended by Dollin and Brown [104] for any polytropic

process.

ṁ =
AcPin√
RTin

√√√√√√ 1−
(
Pout
Pin

)2

N − ln
(
Pout
Pin

) (A.3)

Martin’s equation has seen wide usage by other authors such as Egli [30] and Hod-

kinson [31].
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Neumann’s equation
Typically referred to as Neumann’s equation in other literature [85], [86], [105] although

the same equation was found earlier by Kearton and Keh [99]. The version derived by

Kearton and Keh is given in Eq. (A.4). The equation assumes isothermal flow, all kinetic

energy is destroyed in the seal cavities and zero velocity in the seal cavities.

ṁ = CD
Ac√
RT

√
F (P 2

i − P 2
i+1) (A.4)

F is a pressure ratio factor, defined in Eq. (A.5), where δP is the pressure drop across

a fin.

F = 1 +
δP

Pi
+ 0.5

(
δP

Pi

)2

+ 0.75

(
δP

Pi

)3

+ ... (A.5)

If the pressure drop at each restriction is small, then F can be taken as 1.

As reported by Kearton and Keh [99], Eq. (A.4) will deviate from the St. Venant

Wantzel formula, Eq. (A.1), by around 3.5% at P2/P1 = 0.80.

Discharge Coefficient
Authors often use constant coefficients of discharge with their formula for the leakage

of steam through a labyrinth seal. For example Hodkinson [31] uses CD = 0.5, Kearton

and Keh [99] CD = 0.672 for all restrictions except the final restriction where CD = 0.74.

Neumann uses Chaplygin’s formula [32], [106] for the discharge coefficient through an

orifice for compressible flow, given in Eqs. (A.6) and (A.7). Eser and Kazakia [86] and

Yucel and Kazakia [107] revert back to a constant discharge coefficients of CD = 0.716

and CD = 0.611 respectively.

CD =
π

π = 2− 5Si + 2S2
i

(A.6)

Si =

(
Pi
Pi+1

)1− 1
γ

− 1 (A.7)

Due to the different velocity profiles under each labyrinth restriction, the discharge

coefficient should not be the same for each restriction. The profile of the first restric-
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tion shows a larger vena contracta. Further through the seal, the vortex in each cavity

reduces the downwards radial momentum of the fluid, reducing the vena contracta ef-

fect and producing a greater velocity near the restriction. Therefore the coefficient of

discharge will be increasing for subsequent restrictions, as found by Zimmermann and

Wolff [92].

Kinetic energy carry-over
The kinetic energy carry over was first treated in detail by Egli [30]. He defined a kinetic

energy carry over coefficient Cke by considering a seal with no kinetic energy carry over,

and a seal with kinetic energy carry over but with more restrictions to give the same

leakage performance. As the leakage is approximately proportional to the square root

of the number of restrictions, then the kinetic energy carry over coefficient becomes

the square root of the ratio of restrictions, as shown in Eq. (A.8). Ni is the number of

restrictions in a seal with no kinetic energy carry-over, and N is the number restrictions

in a seal with kinetic energy carry over.

Cke =

√
N

Ni
(A.8)

Hodkinson
Hodkinson [31] extends the work of Egli [30] by linking the fraction of the kinetic energy

carried over to the carry over coefficient. He defines Γ as the fraction of kinetic energy

generated at a restriction that is not destroyed and carried into the next restriction. For

a single restriction, Hodkinson [31] defines the relationship between this fraction Γ and

the kinetic carry-over coefficient Cke by Eq. (A.9). Likewise if the are multiple restrictions,

Hodkinson derived Eq. (A.10) assuming density was approximately constant.

Cke =

√
1

1− Γ
(A.9)

Cke =

√
1

1− Γ(N−1)
N

(A.10)
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Hodkinson then used his experimental leakage results to find a relationship between

the ratio of kinetic energy carried into the next cavity, Γ, and the ratio of fin clearance

and fin pitch c/s, assuming that the flow under the fin spreads out uniformly into the

cavity, and neglecting the vena contracta. Equation (A.11) shows the relation found by

Hodkinson, who also found the best fin to his data when tan θ = 0.02, or θ = 1.15◦.

Γ =
c/s

c/s+ tan θ
(A.11)

Vermes
Vermes [108] derived another equation to find Γ, this time based on seal clearance, fin

pitch and the fin width, shown in Eq. (A.12). Boundary layer theory was used to arrive the

formula. Equation (A.9) is used to then calculate the kinetic energy carry-over coefficient.

Γ =
8.52

s−τ
c + 7.23

(A.12)

Neumann
Neumann (via Childs [85]) presented anothermethod of calculating Γ, shown in Eq. (A.13).

This is combined with Eq. (A.10) to get the kinetic energy carry-over coefficient.

Γ = 1− 1(
1 + 16.6 cs

)2 (A.13)

Eser and Kazakia [86] used the same model as Neumann for calculating the kinetic

energy carry over.

Yucel and Kazakia
Yucel and Kazakia [107] use Eq. (A.14) to find the kinetic energy carry-over coefficient

directly, and for all fins except the first. This method was used in the analytical model of

the Aerostatic Seal used by Auld [23].

Cke = 1 + 0.0791(N − 1) (A.14)
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Zimmermann and Wolff
Zimmermann and Wolff [109] altered the correlation of Hodkinson, based on their un-

published results. Their altered equation is given by Eq. (A.15)

Cke =

√
1

1− Γ(N−1)
N

√
N

N − 1
(A.15)

Suryanarayanan and Morrison
Suryanarayanan and Morrison [33] extend Hodkinson’s kinetic energy carry over model

through CFD analysis, measuring the divergence angle of the jet to work out the kinetic

energy carry over coefficient. They found it was largely Rex and c/s dependant, and

independent of compressibility effects (i.e. pressure ratio). They present the following

equation for kinetic energy carry over as a function of axial Reynolds number and c/s:

Cke =

(
1− 6.5

c

s

)Re+

(
1− 6.5

c

s

) −1
2.454 cs

2.454 c
s

(A.16)

Conclusion
A large number of equations and correlations have presented. They are of relevance

to the Aerostatic Seal as the pressure distribution is governed by the flow through the

labyrinth restrictions as well as the feed hole in the centre of the seal segment.

Of the three leakage equations presented here, the most useful for analysis of the

Aerostatic Seal is Neumann’s equation, given in Eq. (A.4). Martin’s equation (Eq. (A.3))

only relates the inlet and outlet pressures with the leakage flow rate, and so there the

intermediate pressures are not calculated. The st. Venant Wantzel equation is gener-

ally considered to be more accurate [99], although it is much more difficult to use it to

calculate pressure as required in the Aerostatic Seal design and analysis method (see

Section 3.3).



Appendix B
Pipe Friction Model for Feed Holes
A pipe friction model was considered for the calculation of the flow through the feed

hole. The St. Venant Wantzel formula is widely used in aerostatic bearing calculations

[88]. As the length of the feed hole would vary in different Aerostatic Seal designs and

could be much longer than assumed in aerostatic bearings, then a pipe friction model

has the advantage that the length of the feed hole is involved in the calculation of the

mass flow rate.

The pipe friction model is iterative and obtains a pressure balance between the inlet

and outlet conditions using the Darcy pipe friction model. First an initial approximation

is made for the inlet static pressure Pin and the inlet Mach number calculated assuming

compressible isentropic flow using Eq. (B.1). The inlet static temperature Tin, density ρin,

velocity vin and hence mass flow rate ṁin are calculated using Eqs. (B.2) to (B.5). From

the density and velocity at inlet, the Reynolds number can be calculated (Eq. (B.6)) and

used to estimate the friction factor using the Blasius smooth wall relationship (Eq. (B.7)).

If the roughness of the feed hole was known then the Colebrook-White equation could

be used instead. Finally the Darcy formula (Eq. (B.8)) is used to provide an updated

value for the inlet static pressure based on the friction factor where Kin and Kout are

loss coefficients for the inlet and outlet of the feed hole respectively, and Lc is the length

of the feed hole. The inlet loss is taken as Kin = 0.75, based on CFD results. To ensure

convergence an under relaxation factor is included on the new value of static pressure.

Once the inlet static pressure has converged, the feed hole mass flow rate is given by

Eq. (B.5).
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Min(n) =

√√√√√√ 2

γ − 1

( P0in

Pin(n)

) γ−1
γ

− 1

 (B.1)

Tin(n) =
T0in

1 + 1
2(γ − 1)M2

in

(B.2)

ρin(n) =
Pin(n)

RTin(n)
(B.3)

vin(n) = Min(n)

√
γRTin(n) (B.4)

ṁ(n) = ρin(n)Afvin(n) (B.5)

Re(n) =
ρin(n)vin(n)d

η
(B.6)

f(n) = 0.079Re
− 1

4

(n) (B.7)

Pin(n+1) = P2 +

(
4Lcf

d
+Kin +Kout

)
1

2
ρin(n)v

2
in(n) (B.8)

The above analysis assumes that the inlet flow Reynolds number can be used to de-

termine the friction factor for the whole feed hole, and that the feed hole is not choked.

Furthermore the analysis assumes that the pressure drop through the feed hole can be

approximated by incompressible Darcy friction factor.

The calculated flow through a typical Aerostatic Seal feed hole is shown in Fig. B.1.

Over the range of subsonic pressure ratios, the pipe friction method and the St. Venant

Wantzel equation (also referred to as the orifice method) are in close agreement. As

there was no other data to give preference to one method or the other, the St. Venant

Wantzel equation was used in the analytical methodology as it computationally quicker.
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Figure B.1: Flow through feed holes: comparison of methods.
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Appendix D
Springs
Measurement of spring stiffness
Measurements have been taken to calculate the spring stiffness of the circumferential

and axial springs. All springs were supplied by ‘Flexo Spring Ltd’. Springs were manufac-

tured to British Standard BS 1726: Part 1 Grade 2. The material was BS5216, Grade ND3

spring steel.

Circumferential springs
The measured circumferential spring stiffness is given in Table D.1. Spring ‘Sp1 14.42’

was tested 6 times to evaluate the repeatability of the spring constants measured. All

the other springs were tested once. The range for the six repeated tests was 0.11Nmm−1.

Some springs were measured with and without the ‘base’ to see the effect on the

spring rate. The base was a small insert which would stop the end of the circumferential

spring moving inside the spring hole, as shown in Fig. 3.17. Due to the interference fit

between the spring and the base, then it may have introduced extra stiffness due to fric-

tion between the spring and the base. The difference due to the base was 0.13Nmm−1

which was approximately the same as themeasured range of spring stiffness. Therefore

it was concluded that the difference was negligible.

Axial springs
The measured axial spring stiffness is given in Table D.2.
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Appendix E
Orifice Plate Mass Flow Rate
Calculation
Orifice plates have been used to measure the mass flow rate of air through the non-

rotating rig and the ‘Durham Rotating Seals Rig’.

The international standard BS EN ISO 5167-2 was used to design a set of orifice plates

and orifice plate holders. A code was developed and incorporated into the Durham

Software for Windtunnels suite of programs, based upon the equations detailed in BS

EN ISO 5167-2.

The mass flow rate was determined by:

ṁ =
CD√
1− β4

ε
π

4
d2
√

2ρ1∆P (E.1)

β =
d

D
(E.2)

The discharge coefficient CD was calculated by the Reader-Harris/Gallagher equa-

tion given in Eq. (E.3) for an orifice plate with corner tappings and outer diameter less

than 71.12mm. ρ1 is the density of the fluid at the upstream pressure tapping. D is the

diameter outer diameter, and d is the orifice diameter.
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CD = 0.5961 + 0.0261β2 − 0.216β8 + 0.000521

(
106β

ReD

)0.7

+ (0.08188 + 0.0063A)β3.5

(
106

ReD

)0.3

+ 0.011(0.75− β)

(
2.8− D

25.4

)
(E.3)

The ‘expansibility’ factor ε is given by:

ε = 1− (0.351 + 0.256β4 + 0.93β8)

[
1−

(
P2

P1

)1/γ
]

(E.4)

P1 and P2 are the pressures at the upstream and downstream pressure taps respec-

tively.

Orifice plate holders were designed for this project to accept a wide range of orifice

plate designs with different orifice sizes, to optimise the measurement capability for

differing flow rates. The designed orifice plate holders were designed to bolt between

two 2 inch flanges, as shown in Fig. E.1. The holders feature corner tappings to measure

the pressure differential, and the corner tappings were sized according to BS EN ISO

5167-2.

A Matlab code was developed to specify the desired orifice plate size and calculate

the uncertainty in the mass flow measurement over the range of mass flow rates mea-

sured.
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Figure E.1: Cross section of orifice plate and holder



Appendix F
Calculation of Seal Mean Clearance
The circumferential clearance calculation method is described in this appendix.

The calculation method calculates the clearance at all circumferential locations given

the measured clearance between the rotor surface and seal segment teeth at two spec-

ified points. The clearance area and the segment angle about the axial plane (ψ) is also

calculated.

θURS and θDRS are the circumferential locations of the displacement sensors (i.e.

capacitive or inductive sensors. The rotor and seal segment are assumed to have the

same radius which is a design choice in all but the ‘MacDonald 1’ seal design. Fig. F.1

shows the nomenclature for the calculation method.

A polar coordinate system is set up based at the centre of the rotor. The centre of

the seal segment is (gx, gy), with polar coordinates (rg, θg).

Step 1: Calculate the Cartesian coordinates of the measured seal segment positions

(XURS , YURS) and (XDRS , YDRS).

(XURS , YURS) =

([
D

2
+ cURS

]
cos(θURS),

[
D

2
+ cURS

]
sin(θURS)

)
(F.1)

(XDRS , YDRS) =

([
D

2
+ cDRS

]
cos(θDRS),

[
D

2
+ cDRS

]
sin(θDRS)

)
(F.2)

Step 2: Find the location of the segment centre in Cartesian coordinates. From URS

and DRS clearance measurements, cURS and cDRS respectively, the mean point between

the sensor location, (bx, by), can be found.
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θ = 0o

URS sensor
DRS sensor

Rotor

Seal segment

θURS
θDRS

B B

G

+ψ

(gx,gy)

θg

rg

cDRScURS

b

D/2

D/2

Figure F.1: Seal mean clearance calculation diagram
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(bx, by) =

(
XURS +XDRS

2
,
YURS + YDRS

2

)
(F.3)

B =
√

(by − YURS)2 + (bx −XURS)2 (F.4)

G =

√
D2

4
−B2 (F.5)

ψ = arctan

(
YDRS − YURS
XDRS −XURS

)
(F.6)

(gx, gy) = (bx +G sin(ψ), by −G cos(ψ)) (F.7)

In polar coordinates, the centre of the seal segment is

(rg, θg) =

(√
g2
x + g2

y , arctan

(
gy
gx

))
(F.8)

Once the seal segment centre has been found, then the equation in polar coordi-

nates for the seal segment surface relative to the centre of the rotor is:

r(θ) = rg cos(θ − θg) +

√
D2

4
− rg2 sin2(θ − θg) (F.9)

The seal segment leakage area is then calculated by numerically integrating between

the seal segment and the rotor. The integration has been performed using a spread-

sheet as well as a Matlab function to calculate the mean clearance of experimental re-

sults.

dA =
1

2
(r2
s − r2

r) dθ (F.10)

Finally the mean clearance can be found from the seal leakage area.

cm = −D
2

+

√
(πD)2 + 24πA

2π
(F.11)

dθ was set to 0.1◦ to ensure accuracy. Accuracy was checked with the 3D CAD pro-

gram SolidWorks which gave agreement within 0.02%



Appendix G
Friction at High Temperature
There is a reasonable amount of friction data available in tribology and wear literature,

although there is wide variation in quoted values, mostly due to the wide range of fac-

tors influencing friction and subtle changes in the material and test set up. Table G.1

summarises a range of relevant data for the coefficient of friction, mostly at elevated

temperature, for chrome carbide on metal. This data was used to inform the design of

the ‘STR-IP6-07A5’ seal for testing in steam.

The range in dynamic friction coefficient is 0.35 – 0.72.
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Appendix H
Aerostatic Seal Designs
The full dimensions of all the seal designs are reported here. Table H.1 lists all the di-

mensions. Figure H.1 shows the seal segment nomenclature.

270



271

Parameter Unit MacDonald 1 MESS01 ROT-02 STR-IP6-07A2

Fluid - Air Air Air Steam

Diameter mm 732 732 366 300

No. segments per ring - 6 6 6 6

α degree 60 60 60 59.7

β degree 30 30 30 30

θf1 degree 7.5 7.5 7.5 7.5

θf2 degree 17.5 17.5 22.5 22.5

Seal Material - Aluminium S355J2 S355J2 X22CrMoV12-1

Design Pin bar(a) 6.0 6.0 1.5 7.5

Design Pout bar(a) 5.16 5.16 1.0 6.0

Design Tin
◦C 20 20 20 500

No. feed holes - 4 4 4 4

d mm 4.0 2.0 1.0 1.2

Segment width mm 70.0 67.0 37.0 29.0

x1 mm 5.0 5.0 4.0 9.0

x2 mm 52.0 37.0 18.0 11.0

x3 mm 5.0 15.0 10.0 4.0

τr mm 2.0 2.0 1.0 1.0

τt mm 0.5 0.25 0.5 0.25

L1 mm 10.7 11.0 5.0 4.0

L2 mm 37.0 37.0 20.0 18.0

L3 mm 22.0 19.0 12.0 7.0

L4 mm 4.8 4.8 1.5 2.0

L5 mm 3.0 3.0 1.5 2.0

H1 mm 6.0 6.0 3.0 2.5

H2 mm 8.0 6.0 3.5 2.5

H3 mm 10.0 6.0 3.0 5.0

H4 mm 6.0 6.0 3.0 6.0

H3a mm 0.1 6.2 2.0 3.3

Hc mm 4.6 0.5 0.5 0.5

H3b mm 5.3 5.3 1.0 1.2

Hhold mm 4.6 4.6 2.0 3.3

cn mm 0.4 0 0 0

ksp Nmm−1 14.42 8.92 5.01 10.2

Fspl N 122 73.6 9.0 10.2

xspx mm 27.4 15.0 9.0

xspr mm 16.0 8.51 8.0

xspd mm 32.0 32.0 19.0 19.0

dsp mm 16.0 16.0 7.0 7.0

hax mm - 27.0 - 27.0

θax1 mm - 35 - 54

θax2 mm - 25 - 20

Retracted clearance mm Set up dependant 1.5 1.2

Minimum clearance mm Set up dependant -0.5 -0.5

Table H.1: Implemented seal designs: geometry and design parameters.
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Figure H.1: Seal nomenclature


