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Abstract

We investigate a reformulation of Yang-Mills theory at the level of the expectation

of the non-abelian Wilson loop using a string theory with non-standard interaction

that forms a generalisation of the model formulated in [26]. We find that the path-

ordering of the Wilson loop can be generated either from considering a worldsheet

generalisation of the field theory found in [35] or by introducing a gauge field onto

the worldsheet. Only the gauge theory has the sufficient structure to accommodate

the three gluon vertex of Yang-Mills theory in the string model. Supersymmetric

analogues of these two models are also investigated which, specifically in the gauge

theory model, can be made the basis of a realistic string model formulation of Yang-

Mills theory coupled to spinors.
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Chapter 1

Introduction

The standard model is to date the most complete and well tested theory we have of

particle physics at the most fundamental level. At its core is the existence of local

internal symmetries in the Lagrangians of the various field theories that make it up.

These symmetries, known as gauge symmetries, have been intensely studied in the

context of particle physics yielding one of the most precise agreements between the-

ory and experiment we have yet seen in the measurement of the electron magnetic

moment [1] [2]. This stunning agreement was reached by using the quantum theory

of relativistic fields (QFT) which stands as our primary means of attacking problems

in particle physics and it is QFT in which the standard model is most commonly

formulated. There do, however, exist other methods that allow us to solve problems

that are difficult or sometimes not apparent in QFT. In this thesis we will explore

an alternative to field theory, based on a theory of strings in 4 dimensions with a

non-standard contact interaction.

With all the successes of field theory, one may wish to ask, why consider alternative

formulations? Well, I pose two reasons for doing so. The first and fundamentally

most important reason would be that there still exist many unsolved problems in

fundamental particle physics. Mostly these occur within the framework of quan-

tum chromodynamics (QCD), the theory of the strong force, as perturbation theory

has limited use at low energies due to the phenomena of asymptotic freedom. We

are therefore forced to use non-perturbative methods to ask important questions

in this regime. This is fine of course except for the fact that these methods are

1



1.1. Gauge theory 2

extremely difficult. The area of lattice gauge theory is of use here, though this

method requires complex numerical computations requiring significant computing

power. This method has another downfall in the form of the numerical sign prob-

lem [3] whereby Boltzmann factors, interpreted as probabilities, come out with the

wrong sign or are even complex. A new approach to computing amplitudes would

therefore be highly useful to phenomenologists.

The second reason we may wish to seek alternative formulations would be interest;

is it not interesting that there exists a perfectly good alternative to field theory that

reproduces the same results but reaches these conclusions from a different perspec-

tive? Philosophically it may tell us more about the structure of gauge field theory

and therefore about the structure of the standard model.

The model we investigate consists of a field strength supported on a surface bounded

by two interacting particles moving along their respective worldlines. When inserted

into the standard Maxwell action this model actually describes a string theory with

a non-standard interaction that is only non-zero when the string intersects itself.

We will show that this theory produces results equivalent to the expectation of the

Wilson loop computed using standard Yang-Mills theory. This formulation of gauge

theory where the degrees of freedom are strings is reminiscent of Faraday’s lines of

force [4].

We will begin with a discussion of gauge theories and how they are usually formu-

lated. We will then review how to formulate the most simple Yang-Mills theory,

electromagnetism, using string theory. The aim of this thesis will then be to gen-

eralise this string model to include non-abelian gauge groups such as those at the

heart of the standard model. We will use a result from the worldline formalism

to motivate introducing new fields onto our worldsheet theory whose dynamics will

give rise to the additional features of Yang-Mills theory.

1.1 Gauge theory

Field theories with local internal Lie group symmetries have proved incredibly useful

in particle physics since they were first introduced, unwittingly, in the theory of elec-
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1.1. Gauge theory 3

tromagnetism (EM). Extending these symmetries to the matter sector, and thereby

introducing interactions between bosons and leptons and quarks, is the cornerstone

of the standard model. To understand these symmetries, which we call gauge sym-

metries, we will look at the simplest case, that of EM or the U(1) invariant gauge

theory. The physical fields of the theory are the electric field, E, and magnetic field,

B. The equations governing their dynamics are Maxwell’s equations [5], which in

differential form and S.I. units are

∇ · E =
ρ

ε0
(1.1.1)

∇× E = −Ḃ (1.1.2)

∇ ·B = 0 (1.1.3)

∇×B = µ0(J + ε0Ė). (1.1.4)

where ρ and J are the charge density and current density respectively and Ė ≡

dE/dt. The two curl equations are satisfied by introducing the scalar potential, ϕ,

and vector potential, A, such that

E = −∇ϕ− Ȧ, B = ∇×A. (1.1.5)

The electric and magnetic fields are not completely determined by a single choice of

potentials. These solutions are, in fact, invariant under the transformations

ϕ→ ϕ′ = ϕ+ Λ̇, A→ A′ = A−∇Λ (1.1.6)

where Λ = Λ(t;x) is a scalar space-time function. These are the gauge transfor-

mations of EM. Since we can alter the potentials in this way without affecting the

physics, ϕ and A are unphysical fields. This is why the electric and magnetic fields

are used more commonly. To see why EM is also known as U(1) gauge theory, it will

be useful to move to a more covariant form of Maxwell’s equations. This is done by

placing the two types of potentials into components of a single potential four vector,

Aµ, such that Aµ = (ϕ,A). The charge and current densities are similarly packaged

July 11, 2018



1.1. Gauge theory 4

as the four current, jµ = (ρ,J). The covariant form of Maxwell’s equations are then

written in terms of the field strength tensor, defined as Fµν = ∂µAν − ∂νAµ, and

take the form

∂µF
µν = µ0j

ν (1.1.7)

εµνρσ∂
ρF µν = 0 (1.1.8)

where εµνρσ is the 4 dimensional Levi-Civita symbol. The gauge transformations are

then neatly written as

Aµ → A
′µ = Aµ − ∂µΛ. (1.1.9)

The field strength itself is important as it is invariant under gauge transformations.

The first of the covariant Maxwell’s equations can be obtained by minimising the

action

SEM =

∫
d4x

(
− 1

4µ0

F µνFµν + jµAµ

)
. (1.1.10)

Note, there is a more natural reason for choosing this action to describe the dynamics

of the field theory. It is the only functional that is gauge invariant, Lorentz invariant,

parity invariant and time-reversal invariant. The gauge invariance of the second term

follows from the continuity equation, ∂νjν = 0, which follows from differentiating

(1.1.7) with respect to xν . This action then describes pure EM, i.e. EM without

matter. To couple matter to EM, we simply add the matter action to SEM in a

gauge invariant way. For simplicity we can consider coupling electromagnetism to a

complex free massless scalar field, φ, with free action

Sφ =

∫
d4x ∂µφ∗∂µφ. (1.1.11)

To work out how to add matter to EM in a gauge invariant way requires us to

understand how φ changes under a gauge transformation. To start with note that

this action is invariant under the global transformation

φ→ φ′ = eiqaφ φ† → φ†
′
= φ†e−iqa (1.1.12)
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1.1. Gauge theory 5

where q is a coupling constant and for now a is constant. The gauge transformation

(1.1.9) is local, however. The action for φ is not invariant if we promote a to a

general spacetime function Λ(x). It can, however, be made invariant if we replace

the partial derivatives with the covariant derivatives, Dµ, defined as

Dµ = ∂µ + iqAµ (1.1.13)

so that the combination Dµφ transforms as (Dµφ)′ = eiqΛDµφ iff Aµ transforms like

the four potential (1.1.9). The gauge invariant form of the kinetic action for φ is

then

S ′φ =

∫
d4x Dµφ†Dµφ. (1.1.14)

The physical effect of this replacement is to introduce interactions between φ and

the four potential, Aµ. The full field theory is then the sum of the matter action S ′φ
and the free Maxwell action, SEM . Without the Maxwell action, the action would

describe the dynamics of a complex field coupled to a background four potential.

When a is replaced by a local field, (1.1.12) suggests that φ transforms in the

fundamental representation of the Lie group U(1) i.e. it gets rotated by a factor

of U = eiqΛ. Similarly φ∗ transforms in the anti-fundamental representation. The

covariant derivative is so called because it covaries with the field φ. i.e. it is defined

to transform as Dµφ→ UDµφ = (UDµU
−1)(Uφ). This suggests that Dµ transforms

in the adjoint representation of the Lie group. Finally, this is achieved iff the four

potential, in general called the gauge field, transforms as

Aµ → A′µ = UAµU
−1 − i

q
(∂µU)U−1. (1.1.15)

Explicitly inserting the definition of U into this reduces the transformation to (1.1.9).

We can be more general and consider a phase factor of the form

U = eiqΓ(x) (1.1.16)

where Γ(x) belongs to a general Lie algebra and so can be expanded in terms of the

group generators, τa, as Γ = Γa(x)τa. In this way, we see that the function Λ as just

July 11, 2018



1.1. Gauge theory 6

a spacetime function is an element of the Lie algebra of U(1). In general Γ won’t

commute introducing non-linearities into the Maxwell action. We will come back

to the more general gauge theory where the Lie group is left arbitrary later after a

discussion of string theory and its connection to EM.

1.1.1 String theory

String theory and field theories on the 2 dimensional worldsheet will form a major

part of this thesis and so we give a brief discussion of them here. String theory

has aroused significant interest as a possible theory of quantum gravity ever since

the quantisation of the string and the discovery of the graviton in its spectrum.

It first appeared as the dual resonance theory which was an S-matrix approach to

the dynamics of hadrons, a major result of which was the Veneziano amplitude [6].

Ultimately, it was shown to be an unsuccessful theory when applied to hadrons,

with QCD proving to be the correct theory of the strong interaction. Nambu [7],

Nielsen [8] and Susskind [9]- [11], however, were able to show that the theory was

equivalent to a theory of bosonic strings. Since then string theory, particularly

superstring theory, has had many successes such as the derivation of the Einstein field

equations and Hawking’s black hole entropy formula [12]. It has even found some

applications to field theory such as the discovery of the Bern-Kosower formula [13]

which computes one loopN -gluon amplitudes. More modern aspects of string theory

include the ADS/CFT correspondence [14] and the discovery of the connection to

monstrous moonshine [15]. There are, however, some problems such as the prediction

of extra dimensions and the requirement of spacetime supersymmetry. The string

landscape of superstring theory is also an issue that draws into question whether or

not string theory is even a theory of science.

The study of string theory as a potential quantum theory of gravity is irrelevant to

us in this thesis. Instead, we will use the machinery that has been built to study

string theory over the past 40 years to formulate a string theory in 4 dimensions

that can reproduce field theory results. The problems associated with working in

a non-critical dimension are addressed in [26] and correspond to the appearance of

additional Liouville and super-Liouville degrees of freedom.

July 11, 2018



1.1. Gauge theory 7

A quantum theory of strings is most simply obtained via first quantisation. Just as a

point particle sweeps out a worldline in spacetime, a 1 dimensional extended object

sweeps out a 2 dimensional worldsheet; and just as the point particle’s worldline

minimises its proper time, a string’s worldsheet minimises its proper area which

leads naturally to the Nambu-Goto action describing the dynamics of the string

SNG =

∫
d2σ
√
h (1.1.17)

with h the determinant of the induced metric of the worldsheet. It is the pull-back

of the flat metric on Minkowski space so that

hab = ∂aX
µ∂bX

νηµν . (1.1.18)

The square root in the action makes quantisation difficult. Brink, Di Vecchia and

Howe showed that introducing an additional auxiliary field onto the worldsheet

allows one to obtain a classically equivalent action now known as the Polyakov

action [16], given by

Sp[X, g] =
1

4πα′

∫
Σ

d2ξ
√
g gab∂aX

µ(ξ)∂bXµ(ξ) (1.1.19)

so named because Polyakov was the first to show how to quantise the string via

the functional integral using this action to weight the random surfaces [17]. The

extra field, g, is interpreted as the two dimensional metric on the worldsheet, just as

the einbein introduced in the worldline action is the one dimensional metric on the

worldline. We will see that summing a classical solution to one of Maxwell’s equa-

tions over all possible (genus 0) surfaces weighted by e−Sp leads to the full classical

solution satisfying all field equations. Functional integration over surfaces is rather

non-trivial compared to its path integral sibling. The surfaces encountered in string

theory are diffeomorphism and Weyl invariant and so lead to a large overcounting

of possible surfaces in the partition function Z =
∫
D[X, g] e−Sp[X,g]. It is, therefore,

ill defined without a proper treatment of the symmetries. To become well defined

we must divide out the gauge equivalent configurations via the method of Faddeev-
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1.1. Gauge theory 8

Popov which introduces ghosts into the theory [18].

The ground state of the bosonic string is tachyonic and poses a serious threat to the

validity of the theory as a realistic physical model. It turns out that a string theory

with fermions on the worldsheet lacks this unphysical mode in its spectrum. In the

same way that there exists a worldline supersymmetry between worldline fermions

and bosons, there exist worldsheet supersymmetries between the worldsheet fermions

and bosons. There are five distinct superstring theories with different numbers of su-

persymmetries and gauge fields. Of particular interest in this thesis will be bosonic

and fermionic strings whose worldsheets are closed surfaces in spacetime.

1.1.2 The classical electrostatic field between two point charges

Before deriving the full electromagnetic field produced by two moving charges, we

look at the simpler case of the electric field produced by two, fixed, equal and

opposite point charges inD dimensions. This will introduce the lines of force method

that will be used throughout this thesis. We will also find this particular case useful

when we come to consider how to generalise the string theory to accommodate

general gauge groups.

Consider particle 1 with position vector a and charge +q and particle 2 with position

vector b and charge −q. The physics of the system is described by Gauss’ law (1.1.1)

∇ · E =
q

ε0
(δD(x− a)− δD(x− b)). (1.1.20)

By inspection, a solution is

Ec(x) =
q

ε0

∫
C

δD(x− y)dy. (1.1.21)

The curve C is any curve joining a and b. The proof of this solution is straight

forward

∇ · E =
q

ε0

∫
C

∇xδ
D(x− y) · dy = − q

ε0

∫
C

∇yδ
D(x− y) · dy
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=
q

ε0
(δD(x− a)− δD(x− b)). (1.1.22)

This form of solution describes a single string of field connecting the two particles.

The trouble is, this solution doesn’t satisfy Faraday’s law in D dimensions, which is

from (1.1.8)

∂jEi − ∂iEj = 0. (1.1.23)

We know, however, that the unique solution of Gauss’ law and Faraday’s law that

decays at infinity is

E(x) =
q

2ε0πD/2
Γ (D/2)

[
(x− a)

|x− a|D
− (x− b)

|x− b|D

]
. (1.1.24)

We will now see that a statistical sum of our string solution over all possible curve

configurations reproduces this electric field solution as in [21]. To do this we split

the string solution into N strings, each with associated charge q0 = q/N . We then

perform a path integration between a and b weighted by a suitable Boltzmann

factor, i.e. we require a weight, βH, such that

x− a
|x− a|D

− x− b
|x− b|D

=
1

Z

∫
Dy
∫
C

δD(x− y) dy e−βH (1.1.25)

where Z is a suitable normalisation given by

Z =

∫
Dy e−βH . (1.1.26)

There is a natural weight that arises in the study of Brownian motion and thermal

conduction, the heat kernel, which takes the form

〈b|e−H0T |a〉 =

∫
Dy e−

∫ T
0 dt ẏ

2

2 =
e−
|a−b|2

2T

(2πT )D/2
(1.1.27)

where H0 is the Hamiltonian for a free scalar bosonic particle. The heat kernel is

related by a Wick rotation to the quantum expectation for a particle to travel from

a to b. We have parametrised the curve by t such that y(0) = a and y(T ) = b.

The total electric field should then correspond to the expectation value of the string
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solution (1.1.21). For a general observable, Ω, we have as usual

〈Ω〉 =
1

Z

∫
Dy Ω e−βH . (1.1.28)

We can then obtain the total electric field E = 〈Ec〉 by introducing a source function,

A, so that

〈Ec(x)〉 =
δ

δA(x)

1

Z

∫
Dy e−

∫ T
0 dt ẏ

2

2
− q
ε0

∫ b
a A·dy

∣∣∣∣
A=0

(1.1.29)

where we have used the usual functional differentiation identity

δ

δA(x)

∫
Dy e−

q
ε0

∫ b
a A(y)·dy

=

∫
Dy

(
− q

ε0

∫ b

a

δD(x− y) dy
)
e
− q
ε0

∫ b
a A(y)·dy

.

(1.1.30)

The exponent in (1.1.29) is the action of a point particle coupled to a background

gauge field. From non-relativistic quantum mechanics, we know that this is equiv-

alent to introducing a potential into the Hamiltonian of (1.1.27) so that H0 →

H = (p+iA)2

2
as is done when passing from the classical Lagrangian formulation of

electrodynamics of a point particle to the Hamiltonian formulation via a Legendre

transform. Considering the kinetic part of the action as the Wick rotated quan-

tum action means we need to Wick rotate the source term, leading to the factor

of i here. We now run into an operator ordering ambiguity which is familiar from

the path integral formulation of non-relativistic quantum mechanics. To avoid this

problem we interpret the Hamiltonian as the Laplacian minimally coupled to the

vector potential that acts on scalars so that

Ĥ = −1

2
(∇−A)2. (1.1.31)

We, therefore, find

2
δĤ

δA(x)

∣∣∣∣∣
A=0

= ∇δD(q̂− x) + δD(q̂− x)∇. (1.1.32)
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We can use the completeness relation of position eigenstates,
∫
dDc |c〉 〈c| = I, to

simplify this to

2
δĤ

δA

∣∣∣∣∣
A=0

= −
∫
dDc
−→
∇ |c〉 〈c| δD(c−x)−|c〉

←−
∇ 〈c| δD(c−x) = |x〉∇~

~

〈x| . (1.1.33)

Carrying out the functional integration on the amplitude gives

δ

δA
〈b|e−ĤT |a〉

∣∣∣∣
A=0

= −
∫ T

0

dt 〈b|e−Ĥ0(T−t) δĤ

δA

∣∣∣∣∣
A=0

e−Ĥ0t|a〉

= −1

2

∫ T

0

dt 〈b|e−Ĥ0(T−t) |x〉∇~

~

〈x| e−Ĥ0t|a〉 . (1.1.34)

We now have two amplitudes which we recognise as heat kernels (1.1.27), hence, we

have

1

Z

∫
Dy
∫
C

δD(x− y) dy e−βH = − q(2πT )
D
2

2ε0e
− |a−b|

2

2T

∫ T

0

dt
e−
|x−b|2
(T−t)

(2π(T − t))D/2
∇~

~

e−
|a−x|2

2t

(2πt)D/2
.

(1.1.35)

In the large time limit, T → ∞, the integral is only non-negligible at t ≈ 0 and

t ≈ T and, therefore, it splits into two integrals. Firstly, we note that the exponential

factor outside of the integral becomes unity in the high temperature limit. In the

t ≈ 0 limit (1.1.35) becomes

≈ −1

2

∫ ∞
0

dt e−
|x−b|2

2T ∇~

~

e−
|a−x|2

2t

(2πt)D/2
. (1.1.36)

But, the first exponential goes to unity as T →∞, so this reduces to

−∇
∫ ∞

0

dt
e−
|a−x|2

2t

2(2πt)D/2
. (1.1.37)

When t ≈ T we find that (1.1.35) simplifies to

≈ −1

2

∫ ∞
0

dt
e−
|x−b|2
2(T−t)

(2πT )D/2
(
1− Dt

2T

)∇~ ~e− |a−x|2
2t (1.1.38)
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setting T ≈ t and letting T → ∞, which means that we are only considering long

curves, we find

≈ ∇
∫ ∞

0

dt
e−
|x−b|2

2t

2(2πt)D/2
(1.1.39)

hence,

1

Z

∫
Dy
∫
C

δD(x− y) dy e−βH =
T→∞

∇
∫ ∞

0

dt
1

2(2πt)D/2

(
e−
|x−b|2

2t − e−
|a−x|2

2t

)
.

(1.1.40)

The calculation of the electrostatic field then comes down to solving the integral

I ≡
∫ ∞

0

dt ∇e
− |x−a|2

2t

tD/2
. (1.1.41)

Calculating the gradient first, we find

I = −(x− a)

∫ ∞
0

dt
e−
|x−a|2

2t

tD/2+1
. (1.1.42)

We now use the substitution ξ ≡ |x−a|2
2t

, so that (1.1.42) becomes

I = −2D/2
(x− a)

|x− a|D

∫ ∞
0

dξ ξD/2−1e−ξ. (1.1.43)

This integral is just the definition of the Gamma function, Γ (D/2), and so

I = −2D/2Γ (D/2)
(x− a)

|x− a|D
. (1.1.44)

Using this together with (1.1.38) we find that the D-dimensional electrostatic field

is

〈Ec(x)〉 =
q

2ε0πD/2
Γ (D/2)

[
(x− a)

|x− a|D
− (x− b)

|x− b|D

]
= E(x). (1.1.45)

An interesting feature of the above derivation is the relation between the heat kernel

and the volume of the (D-1)-sphere. Consider (1.1.44) again but by placing a at the

origin so that we have
I(r)

2(2π)D/2
= − Γ (D/2)

2πD/2 rD−1
(1.1.46)
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where r = |x| and I = |I|. Now the volume of the (D-1)-sphere is

Vol(SD−1(r)) =
2πD/2 rD−1

Γ (D/2)
(1.1.47)

so that
1

2
∇
∫ ∞

0

K(t, r) dt = − 1

Vol(SD−1)
. (1.1.48)

The relationship between the electrostatic field of the point particle in D dimensions

and the volume of the (D-1)-sphere comes from the spherically symmetric nature of

the solution to Gauss’s law. Here the relationship comes from the relation of the

heat kernel to the volume of the (D-1)-sphere. This calculation has been studied

in the finite T regime in 3 dimensions in [19] where a deviation from the inverse

square law is observed. We will come back to this calculation in chapter 3 in which

we focus solely on the 2 dimensional case and consider averaging the electric field

line of force solution (1.1.21) over a curved surface.

1.2 Time dependent electromagnetic fields

We now let the two charges move with respect to each other. This generates time

dependent electric and magnetic fields with dynamics determined by the full set

of Maxwell’s equations. We will see that there is once again a string like solution

to one of the equations in covariant form that upon averaging becomes the unique

solution that vanishes at infinity that satisfies the other equations of motion. This

result is important and directly leads to the string theory that this thesis is based

on. We shall, therefore, review the derivation of the full field solution from the

string like solution. Maxwell’s equations in covariant form are (1.1.7) and (1.1.8).

The four-current j(x) arising from two moving charges at 4-positions aµ and bµ with

charges +q and −q respectively is

j(x) = q

∫ ∞
−∞

dt
(
δ4(x− a)ȧµ − δ4(x− b)ḃµ

)
. (1.2.49)
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We, again, seek a string like solution to (1.1.7) with this four-current. The appro-

priate solution is

Fµν(x) = −q
∫

Σ

δ4(x− y)dΣµν(y) (1.2.50)

and was first considered by Dirac while studying the electrodynamics of magnetic

monopoles [20]. This solution requires explanation. The two interacting particles

trace out worldlines C1 and C2 respectively. We may define any surface, Σ, bounded

by the two worldlines that will be open if the two scattering particles go off to (and/or

come in from) infinity or closed if they are spontaneously created and annihilated.

Either way, this field strength is supported on this surface just as the electric field

was supported along the curve, C, in the electrostatic field case. We parametrise

Σ by the two “worldsheet” coordinates ξa. dΣµν is then an infinitesimal element of

area on Σ.

We now prove that Fµν does indeed solve (1.1.7). Differentiating we find

∂µxFµν(x) = −q
∫

Σ

∂µxδ
4(x− y) dΣµν(y) = q

∫
Σ

∂µy δ
4(x− y) dΣµν(y). (1.2.51)

Now dΣµν(y) is the usual area element on a surface given by

dΣµν(y) =
εab

2
∂ayµ ∂byν d

2ξ (1.2.52)

with here ∂a ≡ ∂
∂ξa

is a worldsheet derivative. After expanding the ε sum this

becomes

∂µFµν =
q

2

∫
Σ

d2ξ ∂µy δ
4(x− y) (∂1yµ∂2yν − ∂2yµ∂1yν) =

q

2

∫
Σ

d2ξ
(
∂1δ

4(x− y)∂2yν − ∂2δ
4(x− y)∂1yν

)
(1.2.53)

where in the last line we used the chain rule. Green’s theorem for two functions

M(x, y) and L(x, y) is

∫
Σ

∂xM ∂yL− ∂yM ∂xL dxdy =

∫
∂Σ

M ∂yL dy +M ∂xL dx. (1.2.54)
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We can use this to write (1.2.53) as

∂µFµν =
q

2

∫
δ4(x− y)

(
∂2yνdξ

2 + ∂1yνdξ
1
)∣∣∣∣
∂Σ

= q

∫
δ4(x− y) dyν

∣∣∣∣
∂Σ

. (1.2.55)

Inserting the boundary values (worldlines of the interacting particles) confirms that

F µν does, indeed, solve Gauss’s law. The field strength defined in this way on a

surface is already reminiscent of string theory. This relationship is enhanced when

considering the expectation of the field strength over all possible surfaces bounded

by ∂Σ. This kind of functional integration is exactly what is done to quantise the

string. Indeed, averaging the field strength over all surfaces, where each surface

is weighted by the Polyakov action yields the full field solution satisfying all field

equations [21]

〈Fµν(x)〉Σ =
q

4π2

(
∂µ

∫
∂Σ

dyν
||y − x||2

− ∂ν
∫
∂Σ

dyµ
||y − x||2

)
(1.2.56)

where we define the average of some quantity, Ω, over all surfaces, Σ, spanning ∂Σ

as

〈Ω〉Σ =
1

Z

∫
DgDgx Ω e−Sp[x,g] (1.2.57)

and Sp[x, g] is the Polyakov action (1.1.19). g is an intrinsic metric on Σ which must

be integrated over. Note this result assumes a Euclidean worldsheet and target

spacetime so that ||y−x|| is the Euclidean distance between y and x and 1/||y−x||2

is the Euclidean Green’s function of the Laplacian. The 3+1 dimensional result is

found by Wick rotating back to Minkowski spacetime. The normalisation constant

is Z =
∫
Dg e−F where F is the sum of Sp[x, g] minimised with respect to x and

gives rise to the Liouville theory associated with doing string theory in a non-critical

dimension.

1.2.1 The action and relation to string theory

We can now draw the connection to string theory closer by using the field strength

defined above to formulate a theory of strings with non-standard interaction. The
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Lagrangian of pure electrodynamics without sources is

L =
1

4
FµνF

µν (1.2.58)

as was found in our discussion on gauge theory. Above, we found a solution for the

field strength that satisfied half of Maxwell’s equations. Upon averaging over all

configurations this solution lead to the full physical field strength that satisfies all

of Maxwell’s equations. Simply inserting the line of force solution (1.2.50) into the

action gives

S =

∫
d4X L =

q2

4

∫
d4X

∫
Σ

∫
Σ

δ4(X − Y (ξ))δ4(X − Y (ξ̃))dΣ(ξ)dΣ(ξ̃)

=
q2

4

∫
Σ

∫
Σ

dΣ(ξ)δ4(Y (ξ)− Y (ξ̃))dΣ(ξ̃). (1.2.59)

The action is only non-zero when the argument of the delta function is zero. This

splits the action into the sum of two pieces; one in which ξ = ξ̃ and the other in

which Y (ξ) = Y (ξ̃) when ξ 6= ξ̃. These two contributions reduce the action to

S =
q2

4
δ2(0)Area(Σ) +

q2

4

∫
Σ

∫
Σ

dΣ(ξ)δ4(Y (ξ)− Y (ξ̃))dΣ(ξ̃)

∣∣∣∣
ξ 6=ξ̃

. (1.2.60)

The first term is just the Nambu-Goto action albeit multiplied by a divergent con-

stant corresponding to the free part of the string action. The interesting piece is

the second term that corresponds to a contact interaction that occurs when the

worldsheet self intersects. This kind of interaction has been used in a formulation

of non-linear electrodynamics by Nielsen and Olsen [22] to form a field theory de-

scribing the dual string. Its dual has been used to describe the effective field theory

for a Dirac string linking two magnetic monopoles [23] [24].

The bosonic theory obtained from (1.2.60) was shown to contain unwanted diver-

gences potentially ruining the equivalence between this model and bosonic QED.

It was conjectured in [26] that quantising a suitable supersymmetric analogue of

this action lead to an equivalent formulation of QED without these unwanted diver-

gences.
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In the quantum theory the contact interaction can then be considered as a small

perturbation to the free string. Indeed, the partition function

Z ≡
∫
D[X] e−S =

∫
D[X] e−SNG exp

(
− q2

4

∫
Σ

∫
Σ

dΣ(ξ)δ4(X(ξ)−X(ξ̃))dΣ(ξ̃)

∣∣∣∣
ξ 6=ξ̃

)
(1.2.61)

describes the average of the contact interaction over all worldsheets. We have already

mentioned that the Nambu-Goto action is difficult to work with and so we may go

ahead and replace this with the classically equivalent Polyakov action, being sure to

integrate over the worldsheet metric, g. In fact we will show that the partition func-

tion corresponds to the expectation of products of pairs of vertex operators. For the

bosonic case above, it was shown that the correct kind of dynamics are produced,

namely the perturbative expansion lead to the insertion of propagators onto the

boundary of the worldsheet. This result is equivalent to the perturbative expansion

of the Wilson loop. This equivalence with the Wilson loop follows from consider-

ing the expectation of the contact interaction over genus 0 worldsheets, essentially

because the Wilson loop of QED is evaluated as a closed curve in spacetime, which

contains no holes.

Problems arose, however, when the insertions approached each other near the bound-

ary of the worldsheet leading to divergences that ruin the validity of the theory. It

was shown that when supersymmetry was included on the worldsheet, these diver-

gences were removed by the additional structure and so we have a starting point of

a reformulation of QED. These results will be repeated and streamlined in chapter

2 where we will also discuss a way to generalise the model to non-abelian gauge

theory. A full reformulation of QED will necessarily require us to not only quantise

the gauge fields, but also quantise the charged particles that form the boundary of

the worldsheet. The most natural way to do this is to use the worldline formulation

of QFT [27].
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1.3 The worldline formalism of QFT

We will give a brief review of how one can go from field theory to amplitudes via

worldline quantisation beginning with the simplest case of scalar quantum electro-

dynamics [27] [28] [29].

1.3.1 Scalar QED

We first consider quantising a charged spin-zero scalar field coupled to an external

gauge field, Aµ. In the standard field theory the coupling of the field to the gauge

field is achieved through the gauge covariant derivative, Dµ, so that for a massless

field, the action is (1.1.14). Working now in Euclidean space, where functional

integrals are better behaved, we have

S = −
∫
dDx Dφ† ·Dφ =

∫
dDx φ†D2φ. (1.3.62)

We have performed an integration by parts and dropped the total derivative requir-

ing the fields to vanish at infinity. The effective action is then

Γ[A] = logZ = log

∫
Dφ e−

∫
d4xL = −log(det(−D2)) = −Tr(log(−D2)) (1.3.63)

where we have used the standard result for the integral of a Gaussian operator.

We now introduce a Schwinger time parameter, noting that we should introduce a

regulator to properly define the resulting integral

Γ[A] = Tr

(∫ ∞
0

dT

T
e−T (−D2)

)
(1.3.64)

where D2 = i2(p + qA)2. Formally, this representation is known as the Mellin

transform of the effective action.

We can now perform the functional trace over momentum states as

Γ[A] =

∫ ∞
0

dT

T

∫
dDp

(2π)D
〈p| e−

√
h

2
T (p+qA)2 |p〉 (1.3.65)
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where we have included the arbitrary constant,
√
h, which can be associated with

an intrinsic metric on the worldline (not to be confused with the intrinsic metric on

the worldsheet appearing in the Nambu-Goto action). Inserting two factors of the

completeness relation, 1 =
∫
dDx |x〉 〈x|, and carrying out the p integral produces a

delta function, δD(x− x′), so the effective action becomes

Γ[A] =

∫ ∞
0

dT

T

∫
dDxdDx′ δD(x− x′) 〈x| e−

√
h

2
T (p+qA)2 |x′〉 . (1.3.66)

We recognise the integrand as the amplitude for a bosonic particle coupled to an

external gauge field to travel from x′ to x. This can be written as a phase space

path integral by computing the inverse Legendre transform of the Hamiltonian. The

delta function enforces periodic boundary conditions on the amplitude so that the

path integral sums all paths forming a closed loop. The resulting effective action is

Γ[A] =

∫ ∞
0

dT

T
e−Tm

2

∫
x(T )=x(0)

DxDp e−
∫ T
0 dτ ip·ẋ+

√
h

2
(p+qA)2

. (1.3.67)

Thus, we have succeeded in writing a field theory effective action as a point particle

path integral, where the path can be interpreted as the particles worldline. Now,

completing the square in p allows us to write the effective action as

Γ[A] =

∫ ∞
0

dT

T
e−Tm

2 N
∫
x(T )=x(0)

Dx e−
∫ T
0 dτ ( ẋ2

2
√
h
−iqẋ·A)

. (1.3.68)

N is a normalisation factor that contains the p2 dependence that came from com-

pleting the square. At this point, we realise that by separating off the last term in

the integral and using the chain rule, the effective action can be written as

Γ[A] =

∫ ∞
0

dT

T
e−Tm

2 N
∫
x(T )=x(0)

Dx e−
∫ T
0 dτ ( ẋ2

2
√
h

)
exp

(
iq

∮
dx · A(x)

)
.

(1.3.69)

We see that the effective action is the expectation value of a Wilson loop of the

background field.

Going back to (1.3.68), dropping the normalisation constant which won’t be relevant

to the following discussion, and setting
√
h = 2 so that we obtain a similar form to
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free particle action, we have

Γ[A] =

∫ ∞
0

dT

T
e−Tm

2

∫
x(T )=x(0)

Dx e−
∫ T
0 dτ ( ẋ

2

4
−iqẋ·A). (1.3.70)

We proceed as in [42] by expanding the background gauge field as a sum of N plane

waves

Aµ =
N∑
i=1

εµi e
iki·x (1.3.71)

where εµ is the polarisation four vector associated with each constituent plane wave.

Using this decomposition, we can write the interaction part of the exponential as

e
∫ T
0 dτ iqẋ·A = exp

(∫ T

0

dτ iq

N∑
i=1

εi · ẋeiki·x
)

(1.3.72)

=
∞∑
n=1

1

n!

(∫ T

0

dτ iq
N∑
i=1

εi · ẋeiki·x
)n

. (1.3.73)

Consider the n = N term in this expansion which corresponds to the N vertex loop

amplitude. This is

1

N !

(∫ T

0

dτ iq
N∑
n=1

εi · ẋeiki·x
)N

. (1.3.74)

Now, we expand this, only keeping terms with different polarisations, of which there

are N ! such terms so that

1

N !

(∫ T

0

dτ iq

N∑
n=1

εi · ẋeiki·x
)N
∣∣∣∣∣∣
ε1ε2...εN term

= (iq)N
N∏
i=1

(∫ T

0

dτi εi · ẋieiki·xi
)
.

(1.3.75)

On the right hand side we have defined xi ≡ x(τi), where the subscript on τ labels

each integral in the product. This can then be written as

(iq)N
N∏
i=1

V [ki, εi] (1.3.76)
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where we have defined the photon vertex operator for QED as

V [k, ε] ≡
∫ T

0

dτ ε · ẋ eik·x. (1.3.77)

The amplitude is then the expectation of products of vertex operators which is

reminiscent of how amplitudes are obtained in string theory. We now wish to get

the integrand in exponential form. To do this we rewrite the linear polarisation term

in the vertex operator as the linear term in the expansion of an exponential, i.e.

εi · ẋi = eεi·ẋi
∣∣
lin(εi)

. (1.3.78)

Now that we have separated off the interaction part of the exponential, we can

separate the position as x = x0 + q, where x0 is the loop centre of mass defined as

x0 ≡
1

T

∫ T

0

dτ xµ(τ) (1.3.79)

and q is a quantum fluctuation. The path integration measure then factorises as∫
Dx =

∫
dDx0

∫
Dq. Integrating the position over the entire time period gives the

extra condition on the fluctuation

∫ T

0

qµ(τ) dτ = 0. (1.3.80)

The amplitude then becomes

ΓN [k1, ε1, ..., kN , εN ] =

(iq)N
∫ ∞

0

dT

T

∫
dDx0

∫
Dq

N∏
i=1

∫ T

0

dτi e
εi·q̇i
∣∣
lin(εi)

eiki·(x0+q)e−
∫ T
0 dτ 1

4
q− d2

dτ2 q. (1.3.81)

We can now carry out the x0 integral, which simply implements momentum con-

servation as
∫
dDx0 e

∑
i iki·x0 = (2π)DδD(

∑
i ki). The process of including the loop

centre of mass coordinate has removed the zero mode from the path integration.

We can now invert the operator appearing in the path integral and use the linear
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algebra result ∫
dDx e

−1
4
x·Mx+x·j∫

dDx e
−1
4
x·Mx

= ej·M
−1·j (1.3.82)

hence, we need to find an appropriate source term, j(τ), in (1.3.81). It is simply

j(τ) ≡
N∑
i=1

(iδ(τ − τi)ki − δ′(τ − τi)εi) (1.3.83)

so that

∫ T

0

dτ j(τ) · q(τ) =
N∑
i=1

(
iki ·

∫ T

0

dτ δ(τ − τi)q(τ)− εi
∫ T

0

dτδ′(τ − τi) · q(τ)

)
(1.3.84)

=
N∑
i=1

(iki · qi + εi · q̇i). (1.3.85)

The path integral can then be rewritten

∫
Dq e−

∫ T
0 dτ 1

4
q− d2

dτ2 qe
∑N
i=1(iki·qi+εi·q̇i)

e−
∫ T
0 dτ 1

4
q− d2

dτ2 q
=

∫
Dq e−

∫ T
0 dτ 1

4
q− d2

dτ2 q−j·q

e−
∫ T
0 dτ 1

4
q− d2

dτ2 q
= e−

∫
j·G·j

(1.3.86)

where G is the Green’s function of − d2

dτ2 in this reduced space. This is easily com-

puted as

G(τ, τ ′) = |τ − τ ′| − (τ − τ ′)2

T
(1.3.87)

so that

e−
∫
j·G·j = exp

(
−1

2

∫ T

0

dτ

∫ T

0

dτ ′ j(τ)G(τ, τ ′)j(τ ′)

)
. (1.3.88)

Note, this Green’s function contains an extra term to what one might expect. This

comes from the fact that we were trying to solve Poisson’s equation on a circle which

requires us to add a constant external field [27]. After expanding the js and using

the derivative property of the delta function, we find this can be rewritten as

exp

(
N∑

i,j=1

1

2
Gijki · kj − iεi · kjĠij +

1

2
εi · εjG̈ij

)
(1.3.89)
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where Gi,j ≡ G(τi, τj) and Ġi,j = ∂G
∂τi

. Then the effective action can be written as

Γ(A) = (iq)N(2π)DδD

(
N∑
i=1

ki

)∫ ∞
0

dT

T
(4πT )D/2e−m

2T

N∏
i=1

∫ T

0

dτi×

exp

(
N∑

i,j=1

1

2
Gijki · kj − iεi · kjĠij +

1

2
εi · εjG̈ij

)∣∣∣∣∣
lin εi,j

. (1.3.90)

This is the Bern-Kosower formula for the one loop, N -photon amplitude in scalar

QED, originally discovered from the particle limit of string theory, here derived using

the worldline formalism of QFT [13]. This is of use when quantising the bosonic

particles whose worldlines form the boundary of the worldsheet in the abelian model.

1.3.2 Spinor QED

We now turn to the coupling of a spinning particle to the external gauge field. The

Dirac action describing the dynamics of a spinor coupled to an external gauge field

is

S =

∫
d4x ψ̄(i /D −m)ψ. (1.3.91)

The effective action as a function of the gauge field, Aµ, is then

Γ[A] = log
[
det(i /D −m)

]
. (1.3.92)

We carry out a similar procedure to [43] in which a first order action is transformed

to a second order action so that the effective action can be rewritten as

Γ[A] =
1

2
log
[
det(i /D −m)det(−i /D −m)

]
. (1.3.93)

Then, using det(A)det(B) = det(AB) and expanding we find

det(i /D −m)det(−i /D −m) = det(γµγνDµDν +m2). (1.3.94)
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Now,

γµγνDµDν = (2ηµν − γνγµ)(−igFµν +DνDµ) = 2D2 − iqγµγνFµν − γνγµDνDµ

(1.3.95)

where we have used [Dµ, Dν ] = −iqFµν and the Clifford algebra relation of the

gamma matrices. Rearranging this we find that

γµγνDµDν = D2 − iq

2
γµγνFµν = D2 − iq

4
[γµ, γν ]Fµν (1.3.96)

where we have used AB = 1
2
([A,B] + {A,B}) and {γµ, γν}Fµν = 0 so that the

effective action is

Γ[A] =
1

2
log

[
det(D2 − iq

4
[γµ, γν ]Fµν +m2)

]
. (1.3.97)

This effective action corresponds to the second order action given in [27]. We would

like to carry out a similar procedure to the scalar QED case. To do this we introduce

the Grassmann odd fields, ψµ(τ), as partners of the xµ(τ) fields. The fermionic

commutation relations are

{ψµ, ψν} = gµν (1.3.98)

implying that ψµ =
√

1
2
γµ. We can now turn the effective action into a path integral

over the x and ψ fields as we did in the previous subsection. For the massless case

we have

Γ[A] =
1

2
Tr log

[
D2 − iqψµψνFµν

]
=

−1

2

∫ ∞
0

dT

T

∑
α

∫
d4p

(2π)4
〈α, p|exp

[
−1

2

√
hT
(
(p+ qA)2 + iqFµνψ

µψν
)]
|α, p〉 =

−1

2

∫ ∞
0

dT

T
N
∫
D[x, ψ]Tr exp

[
−
∫ T

0

dτ

(
1

2
√
h
ẋ2 +

1

2
ψ · ψ̇ (1.3.99)

−iqAµẋµ +
iq
√
h

2
Fµνψ

µψν

)]
. (1.3.100)

The exponent has the form of the action of a worldline spinor. When the path

integral is over a closed loop the last two terms make up the exponent of the super-
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Wilson loop, so called because the action is invariant under the supersymmetry

transformation

δηx
µ = −

√
h ηψµ δηψ

µ = ηẋµ (1.3.101)

with η an arbitrary Grassmann function of τ . This will be useful in the proceeding

chapters when we come to consider a string theory that reproduces the properties

of the loop.

We expand the exponential of the gauge terms and write the field as a sum of plane

waves as we did before. Note, the only difference from the scalar case is the coupling

of the fermionic field to the gauge field through the field strength, which after the

plane wave expansion is

Fµν =
N∑
i=1

(iεiνkiµ − iεµkiν) eiki·x (1.3.102)

so that the effective action at order qN is

ΓN [A] = −(iq)N

2

∫ ∞
0

dT

T
N
∫
DxDψ exp

[
−
∫ T

0

dτ

(
1

2
√
h
ẋ2 +

1

2
ψ · ψ̇

)]

Tr
N∏
i=1

∫ T

0

dtiT
ai [εi · ∂ix(ti) + i

√
hεi · ψ(ti)ki · ψ(ti)]e

iki·x(ti). (1.3.103)

We now have our supersymmetric generalisation of the bosonic vertex operator we

had in scalar QED. From here we would proceed as before by introducing source

terms and Green’s functions to obtain the Bern-Kosower formula for spinor QED.

The key point of this section is that we have a way to quantise single particles along

their worldlines that is equivalent to the usual field theory method. This will be

useful as point particles worldline’s will form the boundary of our worldsheet. After

computing worldsheet expectations with the boundary fixed, we can then quantise

the boundary itself using the above results, though we would have to generalise the

method to non-abelian gauge fields.
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1.4 Non-abelian gauge theory

We have seen how to compute amplitudes from the worldlines of particles coupled

to an external gauge field. We can now turn to a discussion of the dynamics of

the gauge field itself, in particular a non-abelian gauge field. A non-abelian gauge

field theory is one that is invariant under the action of some representation of a

general Lie group. In particular the transformation described earlier becomes a

matrix which can still be written in exponential form as

U = exp(qΓ) (1.4.104)

where we have absorbed the factor of i into the coupling q. The exponential of a

matrix is understood by its Taylor expansion so that

U = I + qΓ +
q2

2
Γ2 + ... . (1.4.105)

I is the identity matrix of dimension equal to the dimension of the representation. Γ

can be expanded as Γ = ΓAτA, where ΓA constitutes a set of linearly independent,

real parameters and τA are the generators of the Lie group by which the representa-

tion is defined, which in general are non-commutative. To form a representation of

the group, G, U must satisfy the associated group axioms. We can use the Taylor

expansion of U to determine its properties from these axioms. Closure of the group

demands that the generators close under commutation, i.e.

[τA, τB] = fABCτC (1.4.106)

where fABC are the structure constants.

Yang-Mills theory is the non-abelian gauge theory dealing with the SU(N) group.

In this case the generators are anti-Hermitian, traceless, N × N matrices. There

exist N2 − 1 linearly independent anti-Hermitian, traceless matrices, so that there

are (N2 − 1) ΓA coefficients.

The gauge field itself is now Lie algebra valued and can be decomposed in terms of
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the Lie algebra generators as

Aµ(x) = AAµ (x)τA. (1.4.107)

The covariant derivative in this case is Dµ = ∂µ+q[Aµ, ·]. The field strength defined

as the curvature of the covariant derivatives gains an extra term not present in the

abelian case:

FA
µν ≡

1

q
[Dµ, Dν ]

A = ∂µA
A
ν − ∂νAAµ + q[Aµ, Aν ]

A

= ∂µA
A
ν − ∂νAAµ + qfABCABµA

C
ν . (1.4.108)

This commutator term is responsible for self interactions of the gauge field. The

action is a straight forward generalisation of the abelian case, where now we must

include a trace over the Lie algebra generators to ensure gauge invariance

SYM =
1

2

∫
d4x Tr(F µνFµν) (1.4.109)

where throughout this work we shall use the convention

Tr(τAτB) = −1

2
δAB. (1.4.110)

The quantum theory is obtained from the Euclidean partition function

Z[j] =

∫
DA e−S

YM+
∫
d4x jµAµ , (1.4.111)

and expectations are then obtained by taking functional derivatives

〈
AAµ (x1)ABν (x2)...AMσ (xn)

〉
=

δ

δjAµ (x1)

δ

δjBν (x2)
...

δ

δjMσ (xn)
Z[j]|j=0. (1.4.112)

There is a problem, however, when we come to define the propagator. Focussing

just on the quadratic part of the action we have

Z[j] =

∫
DA e−

∫
d4x(∂µAν−∂νAµ)2+

∫
d4x jµAµ+...
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=

∫
DA exp

(
1

2

∫
d4xd4y AAµ (x)[δABδ4(x− y)(∂2δµν − ∂µ∂ν)]ABν (y) +

∫
d4xjµAµ

)

= (Det(M))−1/2 exp
(

1

2

∫
d4xd4y jAµ (x)(M−1)ABµν(x− y)jBν (y)

)
(1.4.113)

where in going from the second to the third line we have carried out the Gaussian

integral in A, with Mµν the operator sandwiched between the gauge fields in the

second line. M−1 is then the propagator for the gauge field. This is where the

problem with the partition function (1.4.111) lies; the operator M is not invertible

as it has eigenvectors with zero eigenvalues of the form v0
ν = ∂νf since

(∂2δµν − ∂µ∂ν)∂νf = 0. (1.4.114)

These zero modes arise by performing gauge transformations of Aµ = 0. The parti-

tion function thus sums over gauge equivalent configurations of the fields.

To remedy this situation, the method of Faddeev and Popov imposes a gauge con-

dition into the functional integral which is designed to cut each gauge orbit once

so that the partition function sums only one representative from each gauge orbit1.

The effect of this is to introduce unphysical fields with the wrong spin statistics

called ghost fields into the functional integral. The gauge fixed partition function

is, thus,

Z[j] =

∫
D[A, c, b] exp

(
− SYM +

∫
d4x

(
jµAµ − ∂µc̄ADAB

µ cB +
1

2ξ
(∂µAµ)2

))
(1.4.115)

where c̄ and c are the Grassmann odd ghost fields. The quadratic part of the action

can be manipulated as before and the cubic and quartic terms can be treated as

perturbations to the free action so that the full generating functional is

Ztot[j, c] = Z̃[ε]Z[j] (1.4.116)

1Gribov showed that for certain gauge choices like the Landau gauge condition, ∂µAµ = 0, there
remain gauge equivalent configurations in the functional integral.
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where

Z[j] = exp(−SI)exp
(

1

2

∫
d4xd4y jAµ (x)DABµν(x− y)jBν (y)

)
(1.4.117)

is the gauge field part of the partition function and SI is the term generating the

three and four gluon vertices respectively given by

SI = q

∫
d4x fABC∂µ

(
δ

jAν (x)

)
δ

jBµ (x)

δ

jνC(x)

+
q2

4

∫
d4x fABCfARS

δ

jBµ (x)

δ

jCν (x)

δ

jµR(x)

δ

jνS(x)
. (1.4.118)

Each three gluon vertex introduces a factor of q while each four gluon vertex intro-

duces a factor of q2. DABµν(x− y) is the propagator for non-abelian gauge fields in

ξ gauge

DABµν(x− y) ≡
∫

d4k

(2π)4
δAB

(
ηµν − (1− ξ)k

µkν

k2

)
eik·(x−y)

k2
. (1.4.119)

The extra quadratic term produced by the Faddeev-Popov method does enough to

make the operator sandwiching the gauge fields invertible.

The ghost piece of the partition function is

Z̃[ε] = exp(−SIghost)exp
(
−
∫
d4xd4y ε̄A(x)CAB(x− y)εB(y)

)
(1.4.120)

with the ghost propagator defined as

CAB(x− y) ≡
∫

d4k

(2π)4

δAB

k2
eik·(x−y) (1.4.121)

and SIghost describes the gluon-ghost-ghost interaction

SIghost = q

∫
d4x fABC∂µ

(
δ

ε̄A(x)

)
δ

jBµ (x)

δ

εC(x)
. (1.4.122)

Gauge invariant amplitudes are obtained by taking functional derivatives of the

partition function, (1.4.116).
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1.4.1 The Wilson loop

A particularly useful observable in the worldline formalism is the Wilson loop [30]

defined as the path-ordered exponential of the gauge field transported along a closed

loop in spacetime

W = Tr
[
P exp

(
− q

∮
dwµ Aµ

)]
. (1.4.123)

P denotes path ordering, something not present in abelian gauge theory. The trace

once again is needed for gauge invariance and we will use w to parametrise the closed

curve. They are observable in an analogous way to the Aharonov-Bohm effect of

EM [31]. The path-ordering procedure for a product of N operators is defined as

P
(
O1(ξ1)O2(ξ2)...ON(ξN)

)
≡ Ol1(ξl1)Ol2(ξl2)...OlN (ξlN ) (1.4.124)

where on the right hand side the operators are ordered by the position of their

arguments, i.e. ξl1 ≥ ξl2 ≥ ... ≥ ξlN . The path-ordering keeps track of the position

of the matrix valued integrands as we expand the exponential.

The usefulness of the Wilson loop comes from the fact that any local operator can be

written in terms of it. They are also used to differentiate between the confinement

phase and asymptotically free phase of Yang-Mills theory. They have even been used

as a first step towards a quantum theory of gravity, where Wilson loops, written in

terms of a certain set of variables, have been shown to solve the Wheeler De-Witt

equation of quantum gravity [25]. This lead to the study of Loop Quantum Gravity,

a competing theory to string theory.

In the present case of Yang-Mills theory, we can integrate the Wilson loop over the

gauge field and expand it as a Taylor series in powers of q so that

〈W 〉 = Tr
[
P

∞∑
n=0

(−q)n

n!

〈
n∏
i=0

∮
dwµii Aµi

〉]
. (1.4.125)

The evaluation of the expectation of the Wilson loop therefore requires the calcula-

tion of 〈An〉. This is how amplitudes are computed in field theory.

The first non-trivial contribution to 〈W 〉 is shown in Figure 1.1. Analytically, this
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Figure 1.1: The first non-trivial diagram in the perturbative expansion of the Wil-
son loop describing the propagation of a gluon joining two distinct points on the
boundary.

is
q2

2
Tr
[
P
∮ ∮

dwµ1dw
ν
2

〈
AAµ (w1)ABν (w2)

〉
τAτB

]
. (1.4.126)

From the partition function, we see that the first non-trivial term of the expectation

of the expansion of the Wilson loop is therefore

q2

2
Tr
[
P
∮ ∮

dwµ1dw
ν
2

d4k

(2π)4

(
ηµν − (1− ξ)kµkν

k2

)
eik·(w1−w2)

k2
τAτA

]
. (1.4.127)

This result continues to an arbitrary number of pairs of points on the boundary

joined by propagators. Omitting the effects of self interactions, it is clear from the

form of the generating functional that the expectation of the Wilson loop requires

the computation of 〈A2n〉. This will be

〈
A2n
〉

= DA1A2µ1µ2(x1 − x2)DA3A4µ3µ4(x3 − x4)...+ permutations. (1.4.128)

There are (2n− 1)!! different ways of joining pairs of points, where !! is the double

factorial defined as k!! = k(k − 2)(k − 4)... . In the Wilson loop the symmetries are

such that each term in the above sum is equal which can be seen by interchanging

the subscripts of the points on the boundary. Each term in the Taylor expansion of

the Wilson loop is weighted by a factor of 1/(2n)! and so overall for each term we
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have
(2n− 1)!!

(2n)!
=

(2n)!

2n(2n)!n!
=

1

2nn!
. (1.4.129)

The expectation of the Wilson loop, neglecting self interactions, is thus neatly eval-

uated as

〈W 〉 = Tr
(
P exp

(
q2

2

∮ ∮
dwµ1dw

ν
2

d4k

(2π)4

(
ηµν−(1−ξ)kµkν

k2

)
eik·(w1−w2)

k2
τAτA

))
.

(1.4.130)

For the abelian U(1) gauge theory the generators are just 1 and so the trace and

path-ordering are trivial. This result, with ξ = 0, is reproduced in [26] using the

bosonic and fermionic string theory with contact interaction. Producing the path-

ordered result above will be the first step towards a non-abelian generalisation of

this model.

The next non-trivial difference between the abelian and non-abelian theories is the

existence of self interactions. These are the three and four gluon vertices which

appear at O(q3) and O(q4) of the expansion of the Wilson loop. Figures 1.2a and

1.2b show the lowest order in q in which the interactions appear. We can explicitly

(a) The first appearance of the three
gluon vertex in the expectation of
the Wilson loop at q4.

(b) The first appearance of the four
gluon vertex in the expectation of
the Wilson loop at q6.

Figure 1.2: The self interactions of Yang-Mills theory appearing in the perturbative
expansion of the Wilson loop.

calculate their contribution to the expectation of the Wilson loop from the generating
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functional. In Landau gauge (ξ = 0) the three gluon vertex is

Tr
(
P q4

2
fABCτAτBτC

∫
d4k1

(2π)4

d4k2

(2π)4

∮ ∮ ∮
1

k2
1 k

2
2 (k1 + k2)2

×
(
dwµ1 −

kµ1k1 · dw1

k2
1

)(
dw2µ −

k2µk2 · dw2

k2
2

)
e−ik1·w1−ik2·w2

×ikµ1
(
dw3µ −

(k1 + k2)µ(k1 + k2) · dx3

(k1 + k2)2

)
ei(k1+k2)·w3

)
(1.4.131)

while the four gluon vertex is

Tr
(
P q6

4
fEABfECDτAτBτCτD

∫
d4k1

(2π)4

d4k2

(2π)4

d4k3

(2π)4
d4k4

δ4(k1 + k2 + k3 + k4)

k2
1 k

2
2 k

2
3 k

2
4

×
(
dwµ1−

kµ1k1 · dw1

k2
1

)(
dw2µ−

k2µk2 · dw2

k2
2

)(
dwν3−

kν3k3 · dw3

k2
3

)(
dw4ν−

k4νk4 · dw4

k2
4

)

× e−ik1·w1−ik2·w2−ik3·w3−ik4·w4

)
. (1.4.132)

The momentum conserving delta function has been left explicit here for clarity of

the result. The final basic building block for all other diagrams is the 1 ghost loop

shown in Fig. 1.3. The amplitude for this diagram is

q2

2
Tr
(
P fACDfBCDτAτB

∫
d4k

(2π)4

d4k1

(2π)4

1

k2 (k + k1)2

× ikµ

k2
1

(
dwµ1 −

kµ1k1 · dw1

k2
1

)
ikµ

k2
1

(
dwµ2 −

kµ1k1 · dw2

k2
1

)
e−ik1·(w1−w2)

)
. (1.4.133)

We will find that it is the expectation of the non-abelian Wilson loop that is

reproduced in the string model. (1.4.127) is the simplest result to reproduce as it

differs from the abelian result by the path-ordering of the Lie algebra generators.

The additional interactions in the theory will prove more difficult to reproduce and,

in fact, we will only be able to obtain the three gluon vertex in the string theory,

though we believe the other interactions do exist within the model. We will comment

on this later.
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Figure 1.3: The first appearance of the ghosts in the expectation of the Wilson loop
at q4.

1.4.2 The super-Wilson loop

There exists an analogous way to describe the dynamics of gauge fields coupled to

spinors. The action (1.3.100) gives us the Wilson loop for (non-supersymmetric)

gauge fields coupled to particles with spin degrees of freedom. We call this the

super-Wilson loop and define it as

Ws = Tr
(
P exp

(
− q

∮
dt

(
ẋµAµ −

√
h

2
Fµνψ

µψν
)))

. (1.4.134)

It is “super” because of the existence of the previously mentioned worldline super-

symmetry.

The first non-trivial term in the expansion of the expectation of the super-Wilson

loop is analogous to the bosonic result. To show this we need to use the fact that

〈
AAσ (x)FB

µν(x
′)
〉
ψµ(x′)ψν(x′) = 2∂′µ

〈
AAσ (x)ABν (x′)

〉
ψµ(x′)ψν(x′)

= 2ψµ(x′)ψν(x′)∂′µD
AB
σν (x− x′). (1.4.135)

The commutator term in the field strength will lead to O(q3) terms which won’t

contribute to the propagator and so we omit these here. With this the O(q2) expec-
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tation of WS is

〈Ws〉 3
q2

2
Tr
[
P
∮ ∮

dtdt′ (dxµ+
√
hψµψν∂ν)(dx

′α+
√
h′ψ

′αψ
′β∂′β)DAB

µα (x−x′)τAτB
]
.

(1.4.136)

We will calculate this in Landau gauge when we come to look at the string theory.

We will need to extend the worldline supersymmetry along the loop into the interior

which obviously hints at use of the superstring. Higher order diagrams are generated

in the same manner as in the bosonic case, just replacing bosonic propagators with

the supersymmetric worldline structure. We will see that two different methods give

rise to the path-ordering of the generators but only one method that we study will

contain the structure needed to produce the self interactions.

1.5 Notation

We will use 〈Ω[A,B, ...]〉A,B... to denote the functional integral

∫
D[A,B, ...] Ω[A,B, ...] e−S[A,B,...]. (1.5.137)

The subscripts on 〈·〉 will denote the variable being integrated over when it is not

trivial, for multiple integrations etc.

We will use the terminology average to mean thermal average as this is not quantum

mechanical. We will use expectation to mean the functional integral used to calculate

quantum mechanical expectations such as the path integral or Polyakov type surface

integral.
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Chapter 2

A String Model of Gauge Theory

It has been shown that abelian gauge theory can be reformulated as a string theory

in which a line of flux joining two oppositely charged particles is treated as the

degrees of freedom of the gauge field [26]. In the fermionic case, quantising the

string theory as well as the worldlines of the interacting particles was shown to be

equivalent to QED in the tensionless limit [45]. Our aim here is to generalise this

prescription to non-abelian gauge theory. The way in which this will be done is by

introducing Lie algebra valued worldsheet variables, JA, into the vertex operator,

generalising the boundary field theory of [35]. In the following chapters we will look

at two particular field theories that can be used to describe the dynamics of JA.

We will begin with a review of the bosonic abelian case and introduce a streamlined

calculation of the perturbative expansion of the interacting action. We will then

generalise this to the fermionic abelian case where we will deal with the realistic

case of worldline fermions interacting with the gauge bosons. Building on these

results, we will show how to generalise these models to reproduce the expectation of

the non-abelian Wilson loop computed in Yang-Mills theory. This will give certain

requirements for JA that the rest of the thesis will be devoted to fulfilling.
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2.1. A review of scalar abelian gauge theory 37

2.1 A review of scalar abelian gauge theory

Let us briefly recapitulate on the argument for a string theory formulation of gauge

theory. The covariant form of Gauss’ law is

∂µF
µν = jν . (2.1.1)

This is usually solved by introducing a gauge field and formulating an action whose

equations of motion reduce to this. The quantum dynamics of the system is then

obtained by quantising this field theory. We will take a different approach. Firstly,

consider two free equal but opposite charges moving with respect to each other. The

system is described by the four-current

jµ(x) = q

∫
B

δ4(x− w)dwµ (2.1.2)

i.e. the charge density exists on the worldlines of the two interacting particles,

denoted by B. The solution to (2.1.1) with this four-current is

F µν(x) = −q
∫

Σ

δ4(x−X)dΣµν(X) (2.1.3)

where dΣµν is an infinitesimal element of area on the surface, Σ. B therefore consti-

tutes the boundary of this surface. Inserting this solution into the Maxwell action

we get

SEM = −1

4

∫
d4xF µνFµν =

q2

4

∫
Σ

dΣµν(X(ξ))δ4(X(ξ)−X(ξ′))dΣµν(X(ξ′)).

(2.1.4)

The integrand is only non-zero when either ξ = ξ′ or the worldsheet self intersects

i.e. X(ξ) = X(ξ′) with ξ 6= ξ′. This gives two contributions to the action

SEM =
q2

4
δ2(0)Area(Σ) +

q2

4

∫
Σ

dΣµν(X(ξ))δ4(X(ξ)−X(ξ′))dΣµν(X(ξ′))|ξ 6=ξ′ .

(2.1.5)

The first term is proportional to the Nambu-Goto action (and therefore classically

equivalent to the Polyakov action) and the second term is a contact interaction.
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Scalar QED can then be formulated by considering the partition function for this

action

Z =
1

Z0

∫
D(X, g)e−Sp(X,g)− q

2

4
SI(X) (2.1.6)

where Sp(X, g) is the Polyakov action and SI is the contact interaction. Treating the

gauge coupling, q, as a small parameter allows one to Taylor expand the interaction

so that the partition function can be written as a perturbative series of expectations

of the contact interaction. The object of interest in this theory is then the expecta-

tion, qn 〈(SI)n〉, over worldsheets, Σ, spanning B. The first order interaction of the

bosonic theory is thus

q2

4Z0

∫
D(X, g) e−Sp

∫
Σ

dΣµνδ4(X −X ′)dΣ′µν k. (2.1.7)

A brief word on notation here; X ′ ≡ X(ξ′) and dΣ
′µν
k ≡ dΣµν(Xk(ξ

′)). We can, in

fact, write the contact interaction as an integral of vertex operator insertions at ξ

and ξ′ respectively. To show this, we can Fourier decompose the delta function so

that the contact interaction can be written as

SI =

∫
d4k

(2π)4

∫
Σ

dΣµν eik·(X−X
′) dΣ′µν . (2.1.8)

The infinitesimal element of area is as usual

dΣµν(X(ξ)) =
1

2
εab∂aX

µ∂bX
νd2ξ. (2.1.9)

Roman letters here represent worldsheet indices and Greek letters represent target

space indices. Inserting the surface element into (2.1.8) allows us to then write the

contact interaction as

SI =

∫
d4k

(2π)4
V µν
k V ′µν −k (2.1.10)

with the vertex operator, V , defined as

V µν
k ≡

1

2

∫
d2ξ εab∂aX

µ∂bX
νeik·X . (2.1.11)
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〈SI〉 was calculated using Wick’s theorem previously [26], thus requiring a deter-

mination of the entire contraction algebra. Here, we will obtain the same results

using a simpler method that involves projecting X along the direction of the four

momentum k. This reduces the vertex operator to a “projected” vertex plus a total

derivative. The term in SI that consists of the product of total derivatives leads to

the propagator of a scalar boson joining two points on the boundary of the world-

sheet. This is then equivalent to the expectation of the abelian Wilson loop squared.

We begin by defining the projection operator, Pk, that acts on four vectors, vµ, as

Pk(v)µ = vµ − kµk · v
k2

. (2.1.12)

This is defined so that kµPk(v)µ = 0. Using the projection operator to project X

along the direction of k allows us to write the vertex operator as

V µν
k =

1

2

∫
d2ξ εab ∂aPk(X)µ∂bPk(X)νeik·X−

∫
d2ξ ∂a

(
iεab

k2
k[µ∂bPν]

k e
ik·X
)
. (2.1.13)

One can then define the projected vertex operator as

Vµν
k ≡

1

2

∫
d2ξ εab ∂aPk(X)µ∂bPk(X)νeik·X . (2.1.14)

The vertex operator has been decomposed into a projected vertex plus a total deriva-

tive. The contact interaction can now be written as

∫
d4k

(2π)4

[
Vµν
k − d

2ξ ∂a

(
iεab

k2
k[µ∂bPk(X)ν]eik·X

)]
×

[
V′µν−k + d2ξ′ ∂′c

(
iεcd

k2
k[µ∂

′
dPk(X ′)ν]e

−ik·X′
)]
. (2.1.15)

Expanding, and using the fact that Vµν
k kµ = Vµν

k kν = 0 leaves just two terms

SI =

∫
d4k

(2π)4
Vµν
k V′µν−k

−
∫

d4k

(2π)4
d2ξd2ξ′ ∂a

(
iεab

k2
k[µ∂bPk(X)ν]eik·X

)
∂′c

(
iεcd

k2
k[µ∂

′
dPk(X ′)ν]e

−ik·X′
)
.

(2.1.16)
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Focussing firstly on the second term, we recognise this as simply a product of total

derivatives that can be readily calculated. We will show this for the first term in

the product. Define the integral

I ≡
∫
d2ξ ∂a

(
iεab

k2
k[µ∂bPk(X)ν]eik·X

)
. (2.1.17)

In complex worldsheet coordinates this is1

I =
i

k2

∫
d2z

(
∂(k[µ∂̄Pk(X)ν]eik·X)− ∂̄(k[µ∂Pk(X)ν]eik·X)

)
(2.1.18)

where z = x+ iy and z̄ = x− iy so that d2z = 2dxdy. We can use Stoke’s theorem

to take these integrals to the boundary

I =
i

k2

(∫
dz̄ k[µ∂̄Pk(X)ν]eik·X +

∫
dz k[µ∂Pk(X)ν]eik·X

)

=
i

k2

∫
B

k[µdPk(w)ν]eik·w (2.1.19)

where w is the boundary value of X. For the case of two particles created in the

vacuum and then annihilating each other shortly after, the boundary is a closed

curve. This is the case that was proven to reproduce the expectation value of the

Wilson loop to O(q2) and so we shall consider it here.

Inserting the boundary integral into the second term of (2.1.16) gives

∫
d4k

(2π)4

∮
B

∮
B

1

k2
k[µdPk(w)ν]k[µdPk(w′)ν]e

ik·(w−w′)

=
1

2

∫
d4k

(2π)4

∮
B

∮
B

(
dPk(w) · dPk(w′)

k2
− k · dPk(w) k · dPk(w′)

k4

)
eik·(w−w

′) (2.1.20)

The second term vanishes because we have the inner product of the projection

operator and its associated momentum leaving us with just the first term. The

1It is not necessary to use complex coordinates here, however, when we come to the super-
symmetric analogue of this integral we will use Stoke’s theorem in superspace, which is naturally
written in complex coordinates, hence, using them here will be useful when comparing the two
cases.
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contact interaction can then be written as

SI =

∫
d4k

(2π)4
Vµν
k V′µν−k +

1

2

∫
d4k

(2π)4

∮
B

∮
B

dPk(w) · dPk(w′)
k2

eik·(w−w
′). (2.1.21)

We can now consider functionally integrating this over all worldsheets spanning B.

The second term depends only on the boundary and so averaging, holding B fixed,

will have no effect. To consider why the first term vanishes we need to consider the

possible contractions between terms via Wick’s theorem. The full set of contractions

can be found in [26], we will just list the main results. The simplest of which is

〈Xµ(ξ)Xν(ξ
′)〉Σ =: Xµ(ξ)Xν(ξ

′) : +Xµ(ξ)Xν(ξ′). (2.1.22)

The colons indicate normal ordering, meaning all contractions have been carried

out in the functional integral. The generating functional for the string theory was

obtained by expanding around the classical field, Xc, and so

: Xµ(ξ)Xν(ξ
′) := Xµ

cX
ν
c . (2.1.23)

The main contraction is

Xµ(ξ)Xν(ξ′) = α′δµνG(ξ, ξ′). (2.1.24)

α′ is the string scale andG(ξ, ξ′) is the Green’s function for the worldsheet Laplacian.

For a general term of the form Aµeik·B we have

ikνA
µBνexp

(
− 1

2
kνkσB

νBσ

)
: eik·B : +exp

(
− 1

2
kνkσB

νBσ

)
: Aµeik·B : (2.1.25)

and then together with

〈∂1Xµ(ξ)∂′1X
′
ν(ξ
′)〉Σ = 4πα′δµν∂1∂

′
1G(ξ, ξ′) + ∂1Xcµ(ξ)∂′1Xcν(ξ

′) (2.1.26)

we can evaluate the functional integral of V over worldsheets spanning B. It is

easy to convince oneself that the anti-symmetry of the vertex plus the symmetry
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of (2.1.26) means the only contraction that will contribute to the result will be the

self-contractions of the exponentials, e±ik·X , which from (2.1.25) are

e±ik·X =: e±ik·X : e−πα
′k2G(ξ,ξ). (2.1.27)

Therefore, inside the functional integral we can replace the “projected” vertex oper-

ator with

Vµν(k, ξ) =: Vµν(k, ξ) : e−πα
′k2G(ξ,ξ). (2.1.28)

The Green’s function at coincident points diverges and should be regulated with a

short-distance cut-off, ε. We replace it with the regulated heat kernel

Gε(ξ, ξ′) =

∫ ∞
ε

dτ G(ξ, ξ′; τ) (2.1.29)

satisfying

(∂τ + ∆)G = 0, G(ξ, ξ′; 0) =
δ2(ξ − ξ′)
√
g

. (2.1.30)

The heat kernel has the spectral decomposition in terms of the eigenfunctions of the

Laplacian, un,

G(ξ, ξ′; τ) =
∑
n

un(ξ)un(ξ′)e−τλn . (2.1.31)

The short distance divergence of the Green’s function is then associated with the

short-time behaviour of the heat kernel. We can use the Seeley-DeWitt expansion

for the heat kernel at short times [32], modified to take into account the effect of

the boundary [33] [34] so that

Gε(ξ, ξ) ≡ ψ(ξ) ∼
∫ ∞
ε

dτ

4πτ

(
1− exp

(
− σ

4τ

))(
1 +

τ

6
R(ξ)

)

=


σ

16πε
− σln(εR)

96π
σ � ε

1
4π
ln
(
σ
4ε

)
− εR

24π
σ � ε

(2.1.32)

where σ is the square of the distance of the shortest path between ξ and itself via a

reflection from the boundary. In complex coordinates and conformal gauge the line

element is ds2 = eφdzdz̄, therefore σ(z, z′) = eφ|z − z′|2. The heat kernel can then
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be written as

G(ξ, ξ; τ) =
1

4πτ

(
exp
(
− eφ|z − z′|2

4τ

)
− exp

(
− eφ|z − z̄′|2

4τ

))
. (2.1.33)

At leading order in the cut-off it is sufficient to work with φ = 0. The Green’s

function can then be written as

Gε(z, z′) = −f
(
|z − z′|

2
√
ε

)
+ f

(
|z − z̄′|

2
√
ε

)
(2.1.34)

where

f(s) =

∫ ∞
1

dτ

4πτ

(
1− exp

(
− s2

τ

))
. (2.1.35)

This means that f(s) ∼ 1
4π
lns2 when s � 1. For the case above, (2.1.28), where

we have the Green’s function evaluated at coincident points in the interior of the

worldsheet, we have G(ξ, ξ) ∼ 1
2π
ln(y/

√
ε). In the Wick-rotated theory, k2 > 0 and

so e−πα′k2G(ξ,ξ)/2 is suppressed in the interior of the worldsheet for Fourier modes

for which α′k2 is finite as the cut-off is removed. The tensionless limit corresponds

to taking α′/L2 → ∞ where L is a length scale characterising B, enhancing the

suppression. The only remaining term in the expectation of the contact interaction

is then

〈SI〉Σ =
1

2

∮
B

∮
B

dPk(w)µ GB(w,w′) dPk(w′)µ (2.1.36)

where

GB(w,w′) =

∫
d4k

(2π)4

eik·(w−w
′)

k2
(2.1.37)

is the propagator of a scalar boson. This verifies the claim that at first order, the

string theory that follows from the line of force solution to Gauss’ law, reproduces

the expectation value of the Wilson loop, expanded to order q2, where the propagator

is in Landau gauge (ξ = 0) (1.4.127). Note, in this gauge the photon propagator

can be written as

Dµν(x− y) =

∫
d4k

(2π)4

(
ηµν −

kµkν
k2

)
eik·(x−y)

k2
=

∫
d4k

(2π)4
Pk,µν

eik·(x−y)

k2
(2.1.38)
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with

Pk,µν = ηµν −
kµkν
k2

, (2.1.39)

dxµ1Pk,µνdxν2 = Pk(dx1) · dx2 = dx1 · Pk(dx2) = Pk(dx1) · Pk(dx2) (2.1.40)

i.e. we see the appearance of the projection operator and why we have equivalence

in this particular gauge. This suggests that the expectation value of the Wilson

loop to all orders might be expressed as the worldsheet average of the exponential of

SI . However, divergences appear when the exponential is expanded in powers of SI

that potentially spoil the suppression of unwanted terms. Vertex operators placed

at points close to each other and near the boundary lead to divergences that are not

necessarily suppressed in the tensionless limit.

It has been shown in [26] that these extra terms are not produced in the supersym-

metric generalisation of this model. The supersymmetric case is also more realistic

as it naturally incorporates the coupling of fermions to the gauge bosons. It is this

case that we will study in the next section. The problem of extra unwanted terms

will arise again when we look at a non-abelian generalisation of the bosonic string

theory for the same reasons. Even though the bosonic theory is simpler, and the

computations of expectation values are similar, it will ultimately be the supersym-

metric theory that we wish to obtain.

2.2 Fermionic abelian gauge theory (QED)

In this section we consider replacing the bosonic point particles that live on the

boundary of the worldsheet by fermionic point particles. Doing this gives the bound-

ary extra spin degrees of freedom, characterised by the worldline spinors, ψ (1.3.2).

These spin degrees of freedom will then naturally exist within the interior of the

worldsheet. The free string theory that describes the dynamics of the string will

then be that of the spinning string given by a straightforward generalisation of the

Polyakov action. The underlying structure of the spinning particle and string is an

N = 1 worldline and worldsheet supersymmetry respectively. These are 1 and 2

dimensional symmetries relating the bosonic and spin degrees of freedom. Before
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defining the action and contact interaction in the supersymmetric case we will briefly

describe the superspace formulation of 2 dimensional supersymmetric field theories

as this will be used extensively throughout.

2.2.1 Superspace

An efficient method of incorporating supersymmetry into a theory is to introduce

the anti-commuting superpartners, θ and θ̄, for the coordinates z and z̄ respectively.

By superpartner we mean that the coordinates will be related to the new variables

by a supersymmetry transformation. This changes the original 2 dimensional surface

into a so called “super” surface. The supersymmetry transformations by which the

two sets of coordinates are related are parametrised by η and η̄ and given by

δz = −ηθ, δz̄ = −η̄θ̄, δθ = η, δθ̄ = η̄ (2.2.41)

with θ, θ̄, η and η̄ Grassmann-odd. This can be compared with the worldline

supersymmetry (1.3.101). The fact that the new variables anti-commute allows one

to Taylor expand any “super”-function, f(z, z̄, θ, θ̄), into its component functions as

f = f0(z, z̄) + θf1(z, z̄) + θ̄f̄1(z, z̄) + θθ̄f2(z, z̄). (2.2.42)

The supersymmetry transformation of a superfunction can then be written as

δf = η(∂θ − θ∂ + ∂θ̄ − θ̄∂̄)f = η(Q+ Q̄)f (2.2.43)

where Q = ∂θ − θ∂ and Q̄ = ∂θ̄ − θ̄∂̄ are the generators of the supersymmetry. We

define the covariant derivatives as

ηD ≡ δθ ∂θ − δz ∂ = η(∂θ + θ∂) (2.2.44)

η̄D̄ ≡ δθ̄ ∂θ̄ − δz̄ ∂̄ = η̄(∂θ̄ + θ̄∂̄). (2.2.45)
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One defines left differentiation as

∂θ (θf1) = −∂θ (f1θ) = f1 (2.2.46)

for f1 Grassmann-odd. Integration is defined by

∫
d2θ 1 =

∫
d2θ θ =

∫
d2θ θ̄ = 0,

∫
d2θ θ̄θ = 1 → d2θ = dθdθ̄ (2.2.47)

i.e. integration picks out the θ̄θ term of a superfunction and is equivalent to differ-

entiation by ∂θ∂θ̄. The supersymmetric generalisation of Stokes’ theorem is

∫
d2zd2θ (Df+D̄g) =

∫
d2zd2θ (θ∂f+θ̄∂̄g) =

∮
dz̄d2θ θf |−

∮
dzd2θ θ̄g| (2.2.48)

where | denotes the functions f and g are evaluated on the boundary. There is a nice

way of making any functional supersymmetric that we utilise over and over again.

This makes the additional boundary term in the action for an open spinning string

less mysterious. Consider a general functional, W, such that

W =

∫
Σ

d2zd2θ Ψ(z, θ). (2.2.49)

We take Σ to be closed and so choose the unit disk for simplicity. A conformal

transformation can take the disk to the upper half plane. The boundary of the

surface is, thus, the x axis. The variation under a supersymmetry transformation is

δW =

∫
d2zd2θ ε(Q+Q)Ψ = −

∫
d2zd2θ ε(θ∂ + θ̄∂̄)Ψ = −

∫
dxd2θ ε(θ − θ̄)Ψ|.

(2.2.50)

Ψ| denotes the boundary value of Ψ. We can expand Ψ in terms of its component

fields as Ψ = Ψ0 + θΨ1 + θ̄Ψ2 + θθ̄Ψ3 so that this variation can be written as

δW =

∫
dx ε(Ψ2 + Ψ1)|. (2.2.51)
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Note, that δΨ0 = ε(Ψ2 + Ψ1) and so the total variation of the functional under a

supersymmetry transformation is

δW =

∫
dx δ(Ψ0). (2.2.52)

Therefore, adding the boundary term −
∫
dx Ψ0 to W will make it supersymmetric.

There is a nice way of writing this boundary term by noting that Ψ0 =
∫
d2θ θ̄θ Ψ0,

then the supersymmetric functional W ′ is

W ′ =

∫
d2zd2θ Ψ

(
1− θ̄θδ(y)

)
. (2.2.53)

The action describing the dynamics of the spinning string turns out to be the su-

perspace generalisation of the Polyakov action. To motivate this we start with the

gauge fixed Polyakov action for the bosonic string

Sbos =
1

4πα′

∫
d2z ∂̄Xµ∂Xµ. (2.2.54)

Now replace Xµ by the superfield Xµ which is expanded as

Xµ = Xµ + θΨµ + θ̄Ψ̄µ + θ̄θBµ. (2.2.55)

On the boundary this is Xµ|+θ(Ψ+Ψ̄)µ|. We impose Dirichlet boundary conditions

at y = 0 that relate X to the worldline variables as

X| = w, (Ψ + Ψ̄)| = h1/4ψ (2.2.56)

where the factor of h1/4 is required as ψ is a worldline scalar. Ψ and Ψ̄ form a

spinor on the worldsheet and a vector in spacetime. The worldsheet scalar B is an

auxiliary field that plays no role in the action. These boundary fields play a role

if we consider the abelian super-Wilson loop in terms of the boundary superfield,

which is

Ws[C] = Tr
[

exp

(
−
∮
dtdθ DX · A(X)

)]
(2.2.57)
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where X = w + iθ(h)1/4ψ. The first term appears as a superfield generalisation of

the bosonic Wilson loop. There exists a non-abelian generalisation of this result,

but it requires an understanding of path-ordering in superspace. We will look at

this in chapter 4 when considering the so-called loop equations.

In the case of the string, we replace partial derivatives with the superderivatives

and integrate over the θ coordinates. Then, from the above discussion to make the

resulting action supersymmetric we multiply the integrand by (1 − θ̄θδ(y)). This

leads us to the action for the spinning string

Sspin =
1

4πα′

∫
d2zd2θ D̄X ·DX(1− θ̄θδ(y)) (2.2.58)

which can be expanded into its more familiar form [44]

Sspin =
1

4πα′

(∫
d2zd2θ D̄X ·DX−

∫
y=0

dx Ψ̄ ·Ψ
)
. (2.2.59)

Inserting the expansion of the superfield and integrating over the θ coordinates

reduces this to the more familiar form of the spinning string action which is the

Polyakov action plus the action for a worldsheet spinor.

The same thing can be done with the infinitesimal area element which now takes

the form

dΣ̃µν =

∫
d2zd2θ D̄X[µDXν](1− θ̄θδ(y)) =∫

d2zd2θ
(
D̄X[µDXν] − θθ̄δ(y)Ψ̄[µΨν]

)
. (2.2.60)

Using this we can form the supersymmetric generalisation of the contact interaction

as

S̃I = q2

∫
Σ̃Σ̃′

dΣ̃µν(z, θ) δ(X(z, θ)−X(z′, θ′)) dΣ̃µν(z
′, θ′)|z 6=z′,θ 6=θ′ . (2.2.61)

Fourier decomposing as before allows one to write the contact interaction as the

product of two vertex operators so that

S̃I = q2

∫
d4k

(2π)4
Ṽ µν
k Ṽ ′µν −k (2.2.62)
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where the supersymmetric vertex operators are now

Ṽ µν
k =

∫
d2zd2θ D̄X[µDXν]

(
1− θθ̄δ(y)

)
eik·X. (2.2.63)

The method of projecting along k works for the supersymmetric case too, and we

will show that the vertex operator can be split into a piece on the boundary plus

a “projected” vertex. Projecting X along k so that Xµ = P(X)µ + kµk·X
k2 allows the

vertex operator to be written as

Ṽ µν
k =

∫
d2zd2θ D̄

(
Pk(X) + k

k ·X
k2

)[µ

D

(
Pk(X) + k

k ·X
k2

)ν]

eik·X(1− θθ̄δ(y))

= Ṽµν
k +

k[µ

k2

∫
d2zd2θ

(
k ·D̄Pk(X)DPk(X)ν] +k ·DPk(X)D̄Pk(X)ν]

)
eik·X(1− θ̄θδ(y))

(2.2.64)

where again we have defined a “projected” vertex operator. Rewriting the second

term as the sum of total derivatives requires subtracting off the contributions from

the derivatives of the boundary piece. The result is

Ṽ µν
k = Ṽµν

k −
ik[µ

k2

∫
d2zd2θ D̄

(
DPk(X)ν]eik·X(1− θ̄θδ(y))

)

−ik
[µ

k2

∫
d2zd2θ D

(
D̄Pk(X)ν]eik·X(1− θ̄θδ(y))

)

−ik
[µ

k2

∫
dxd2θ θ

(
DPk(X)ν]eik·X

)
+
ik[µ

k2

∫
dxd2θ θ̄

(
D̄Pk(X)ν]eik·X

)
. (2.2.65)

Now, note that applying Stokes’ theorem in reverse allows us to write the last two

terms as

ik[µ

k2

∫
d2zd2θ

[
D

(
DPk(X)ν]eik·X

)
+ D̄

(
D̄Pk(X)ν]eik·X

)]
. (2.2.66)

To complete the derivation we can show that the first two integrals simplify. Using

Stokes’ theorem on the total derivatives produces a single θ and θ̄ cancelling the
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δ(y) terms and so we drop them. This leaves us with the conclusion that

Ṽ µν
k = Ṽµν

k −
ik[µ

k2

∫
d2zd2θ (D + D̄)

(
(D + D̄)Pk(X)ν]eik·X

)
. (2.2.67)

We can now apply Stokes’ theorem to the total derivatives and expand the integrand

in terms of the component fields. The result of this is

Ṽ µν
k = Ṽµν

k +

∫
y=0

i

k2
k[µPk(dX)ν]eik·X +

k[µ

k2

∫
y=0

dx Pk(Ψ + Ψ̄)ν](Ψ + Ψ̄) · k eik·X

(2.2.68)

which is the supersymmetric generalisation of (2.1.13). Using the boundary values

(2.2.56) allows us to write the vertex operator as

Ṽ µν
k = Ṽµν

k +
i

k2
k[µ

∫
B

dx

(
Pk(dw)ν]

dx
−
√
h Pk(ψ)ν] ψ · ik

)
eik·w. (2.2.69)

The interaction term in the action (2.2.62) then becomes

S̃I =

∫
d4k

(2π)4
Ṽµν
k Ṽµν−k

+
q2

2

∫
d4k

(2π)4

∫
B

∫
B

dxdx′
(
Pk(dw)

dx
−
√
h Pk(ψ) ψ · ik

)µ
×
(
Pk(dw′)
dx′

+
√
h′ Pk(ψ′) ψ′ · ik

)
µ

eik·(w−w
′). (2.2.70)

Now, consider the expectation of the contact interaction, computed by functionally

integrating over all worldsheets bounded by B, which is held fixed. This has no effect

on the second term as before. The first term is suppressed in the same way as in the

bosonic model. The only possible remaining contractions are the self-contractions

of the exponential which are

e±ik·X =: e±ik·X : e−πα
′k2GF (z,z). (2.2.71)
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GF (z, θ; z′, θ′) is the Green’s function of the super-Laplacian, −4D̄D, subject to the

boundary conditions GF = 0 when zi = z̄i and θi = θ̄i. The required solution is

GF = − 1

4π
log(z12z̄12) +

1

4π
log(zR12z̄

R
12) (2.2.72)

where

z12 = z1− z2− θ1θ2, z̄12 = z̄1− z̄2− θ̄1θ̄2, zR12 = z1− z̄2− θ1θ̄2, z̄R12 = z̄1− z2− θ̄1θ2.

(2.2.73)

At coincident points on the worldsheet, GF diverges and so must be regulated.

Introducing a short distance cut-off as in the bosonic case allows us to rewrite the

GF as

Gε
F = −f

(√
z12z̄12

ε

)
+ f

(√
zR12z̄

R
12

ε

)
(2.2.74)

where

f(s) =

∫ ∞
1

dτ

4πτ

(
1− exp

(
− s2

τ

))
. (2.2.75)

Expanding the exponential term in (2.2.71) in powers of θ gives

e−πα
′k2GεF (0) =

(
1 +

i

2
θθ̄

∂

∂y

)
e
−πα′k2f( 2y√

ε
)
. (2.2.76)

When s is large f(s) ∼ (log s)/2π as in the bosonic case so, for k2 > 0 and taking the

tensionless limit, this exponential suppresses (2.2.71) at all points in the interior of

Σ when the cut-off is removed. The “projected” vertex, therefore, doesn’t contribute

to the expectation of the contact interaction.

We are left with the conclusion that

〈
S̃I

〉
=
q2

2

∫
d4k

(2π)4

∫
B

∫
B

dxdx′
(
Pk(dw)

dx
−
√
h Pk(ψ) ψ · ik

)µ

×
(
Pk(dw′)
dx′

+
√
h′ Pk(ψ′) ψ′ · ik

)
µ

eik·(w−w
′) (2.2.77)

which is equal the expectation of the super-Wilson loop to order q2 (1.4.136). At

higher orders the unwanted divergences that arise in the bosonic theory do not ap-
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pear [45], and so we can make the conclusion that this result can be exponentiated

and we can make the equivalence between the abelian string theory and the expec-

tation of the super-Wilson loop. The way in which we will generalise this model

to incorporate non-abelian gauge theories will not affect this result and so at least

at this level we will be able to state the equivalence between the non-abelian string

theory and the non-abelian super-Wilson loop. The downside of course is that the

bosonic theory will still contain the unwanted divergences and will therefore not be

equivalent to the expectation of the non-abelian Wilson loop.

2.3 Non-abelian gauge theory

The main aim of this thesis is to formulate a non-abelian generalisation of the above

theory, i.e. find a string theory with contact interaction that can reproduce the

expectation value of the super-Wilson loop computed in Yang Mills theory. In this

section we detail how one can reproduce the results from perturbatively expanding

the super-Wilson loop by introducing additional fields onto the worldsheet, at this

point leaving out the details of the fields which will be filled in in the proceeding

chapters. The one detail we do specify is the propagator the fields must have.

To motivate how we may wish to generalise the string theory to include non-abelian

gauge groups we look at the simpler case of generalising the bosonic non-abelian

Wilson loop. In Euclidean spacetime it is

W [C] = Tr
[
P exp

(
− q

∮
B

Aµdw
µ

)]
(2.3.78)

where the gauge field, A, can be expanded in terms of the anti-Hermitian Lie algebra

generators, τA, as A = τAAA. Taylor expanding the exponential gives a power series

weighted by qn:

W [C] = Tr
[
P

∞∑
n=0

(−q)n

n!

(∮
B

Aµdw
µ

)n]
. (2.3.79)

To obtain the expectation of the Wilson loop to O(qn) in field theory requires us

to calculate the expectation of 〈An〉. We have already calculated the expectation of
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the Wilson loop neglecting self interactions (1.4.127). This differs from the abelian

result by the path-ordering of the Lie algebra generators. This path-ordering can be

replaced by a functional integral over an anti-commuting field, ψ, on the boundary,

B, [35] as ∫
D(ψ†, ψ)ψ†(1)ψ(0) exp

(
−
∫ 1

0

ψ†ψ̇ dt+

q2

2

∫
d4k

(2π)4

∮
B

∮
B

(
ψ†τAψ Pk(dw)µ

)
|ξ
(
eik·(w−w

′)

k2

)(
ψ†τAψ Pk(dw)µ

)
|ξ′
)
. (2.3.80)

The step functions following from the free worldline fermion action mean that the

integrand is only non-zero when the generators are in the correct order as we traverse

the boundary between 0 and 2π, which is the definition of path-ordering (1.4.124).

Apart from the kinetic term for ψ, this differs from the abelian case by the inclusion

of the Lie algebra terms JA ≡ ψ†τAψ. This suggests a natural extension of the

string model where we let the boundary field, ψ, extend into the interior of the

worldsheet. This will be the first method we study. In the second method, we obtain

the same relation from a 2 dimensional gauge theory where JA will be restricted to

the boundary.

(2.3.80) suggests a generalisation to the bosonic contact interaction of the form

SYMI = q2

∫
JA(ξ)dΣµνδ

4(X(ξ)−X(ξ′))JA(ξ′)dΣ′µν . (2.3.81)

This essentially modifies the vertex operator to

V µνA
k =

1

2

∫
d2ξ JAεab∂aX

µ∂bX
νeik·X . (2.3.82)

We can again use the projection of X along the direction of k and to rewrite the

vertex operator as

V µνA
k = VµνA

k +

∫
d2ξ ∂a

(
iεab

k2
k[µ∂bPk(X)ν]eik·X

)
JA. (2.3.83)
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For simplicity we will define

Laµνk ≡ iεab

k2
k[µ∂bPk(X)ν]eik·X . (2.3.84)

The contact interaction is then

SYMI =

∫
d4k

(2π)4

(
VµνA
k VA

µν−k + d2ξd2ξ′ ∂aL
aµν
k JA ∂′cL

′c
µν−kJ

′A

)
. (2.3.85)

We will look at each product of the second term separately by defining

I2 ≡
∫
d2ξ ∂aL

aµν
k JA. (2.3.86)

Integrating by parts we find

I2 =

∫
d2ξ

[
∂a(L

aµν
k JA)− Laµνk ∂a(J

A)
]
. (2.3.87)

Now, the first term is a total derivative and similar to what we had in the abelian

case but the second term here is new. The first integral is computed using Stokes’

theorem as before to give

∫
Σ

d2ξ ∂a(L
aµν
k JA) =

i

k2

∫
B

k[µPk(dw)ν]eik·wJA ≡ BµνA
k . (2.3.88)

We have denoted this term BµνA
k as it is an integral around the boundary that will

lead to propagators in the functional integral as in the abelian case. We will define

the new term in (2.3.87) as CµνA
k ≡

∫
d2ξLaµνk ∂aJ

A as this is the term that will lead

to the self interactions in the Wilson loop via contractions of the derivatives of JA.

The expectation value of the contact interaction is then

〈
SYMI

〉
Σ,J

= q2

〈∫
d4k

(2π)4
VµνA
k VA

µν−k

〉
Σ,J

+q2

〈∫
d4k

(2π)4
(B − C)µνAk (B′ − C ′)Aµν −k

〉
Σ,J

(2.3.89)
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from which we obtain three new terms. At this order the B · C cross terms and

C ·C terms do not contribute to the expectation of the contact interaction as there

is always at least one factor of e±ik·X in the interior of the worldsheet. As discussed

in the abelian model, these terms will be suppressed in the tensionless limit and so

do not contribute to the expectation of the contact interaction. The same argument

can be applied to the first term of (2.3.89). We will thus require the expectations〈
JA∂bJ

B
〉
|J and

〈
∂aJ

A∂bJ
A
〉
|J to not produce anything that will lead to additional

terms that will not be suppressed in the string functional integral. The second

condition will follow from the three gluon vertex condition we will find later. The

first condition must be satisfied within the particular model describing JA.

The only term contributing to the expectation of the contact interaction is then

〈∫
d4k

(2π)4
BµνA
k B

′A
µν −k

〉
B,JA

=

〈
1

2

∫
d4k

(2π)4

∮
B

∮
B

Pk(dw) · Pk(dw′)
k2

eik·(w−w
′)(JAJ

′A)

〉
B,J

(2.3.90)

=
1

2

〈∫
d4k

(2π)4

∮
B

∮
B

Pk(dw) · Pk(dw′)
k2

eik·(w−w
′)(JAJ

′A)

〉
J

(2.3.91)

where we have carried out the functional integration over Σ holding B constant. If

JA = ψ†τAψ then we have reproduced the first order expansion term of (2.3.80).

In any case, for this to be equivalent to the expectation of the non-abelian Wilson

loop we require a contraction of the JAs that produces path-ordering of Lie algebra

generators, i.e. a contraction such that we can make the replacement

JA|BJ
′A|B ∼ P(τAτA). (2.3.92)

It will be the subject of the following chapters to explain how this comes about. By

considering this property of JA to arise by averaging the number of intersections of

curves we will essentially find a way to continue path-ordering into the interior of

the worldsheet. This reproduces the propagator of the worldline theory (2.3.80) and

so can be considered a worldsheet generalisation of this theory. The other model

we consider is similar in the sense that we will use a path integral over ψ and ψ† to
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obtain (2.3.92). In this model, the new variables are restricted to the boundary and

arise as the source for a new gauge field on the worldsheet.

This path-ordering result naturally generalises to all orders and reproduces (1.4.130).

The expectation of the contact interaction to the n’th power contains n factors of

B ·B which leads to n propagators joining pairs of points on the boundary as〈
(−SYMI )n

〉
Σ,J

n!
=

P (q2)n

2nn!

∫ n∏
i=1

〈
d4ki
(2π)4

∮
B

∮
B

Pk(dwi) · Pk(dw′i)
k2
i

eiki·(wi−w
′
i)(JAiJ

′Ai)

〉
J

. (2.3.93)

The condition (2.3.92) then generalises for 2n insertions on the boundary to

〈
n∏
i=1

JAi(ξi)|BJAi(ξ′i)|B

〉
= P

( n∏
i

τAiτAi
)
. (2.3.94)

If this is satisfied then
〈
e−S

YM
I

〉
Σ,J

contains (1.4.130), but, we know from the abelian

case that worldsheet supersymmetry is required to eliminate extra divergences when

there are products of interactions. The contractions of the J and X are independent

from each other and so the abelian result still stands. We will look at the super-

symmetric case after looking at how the three gluon vertex arises in the bosonic

model.

2.3.1 The three gluon vertex

So, we must find a field theory that can implement path-ordering along the boundary

of the worldsheet. This is the first step to generalising the string model to incorpo-

rate non-abelian gauge symmetries. The next step is to include the self interactions

of the gauge fields. The three gluon vertex comes from contractions of the CµνA
k

terms in the functional integral. This interaction is of O(q) and first appears in the

O(q3) expansion of the expectation of the Wilson loop and so the diagram is itself

of order O(q4). We, therefore, expect this interaction to appear in the expectation
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of (SYMI )2. Omitting the projected vertex terms this is

〈
(SYMI )2

〉
Σ,J
3 q4

〈∫
d4k

(2π)4

d4k′

(2π)4
(B1 − C1)µνAk (B2 − C2)Aµν −k

× (B3 − C3)λσBk′ (B4 − C4)Bλσ −k′
〉

Σ,J
. (2.3.95)

From the previous section, we can immediately identify the term B4 that leads to

two gauge bosons joining two pairs of vertices on the boundary of the worldsheet.

The three point vertex comes from the contraction of the derivatives of the JAs in

the Cs in each term of the form

〈
(SYMI )2

〉
Σ,J
3 q4

〈∫
d4k

(2π)4

d4k′

(2π)4
BµνA

1k CA
2µν −kC

λσB
3k′ B

B
4λσ −k′

〉
Σ,J

. (2.3.96)

To produce exactly the three point vertex we require

∂aJ
A∂bJ

B ∼ εabf
ABCJCδ2(ξ1 − ξ2). (2.3.97)

where ∼ denotes that this is satisfied within the functional integral. There could

(and will) be extra terms on the right hand side, but these must be suppressed upon

integration. With this ansatz (2.3.96) becomes

q4

〈∫
d4k

(2π)4

d4k′

(2π)4
fABCBµνA

1k

×
∫
d2ξ

εab

k2k′2
k[µ∂aPk(X2)ν]k

′[λ∂bPk′(X2)σ]JC(X2)ei(k
′−k)·X2BB

4λσ −k′

〉
Σ,J

. (2.3.98)

Expanding the boundary integrals and carrying out the (tensor) contractions we

find
q4

2

〈∫
d4k

(2π)4

d4k′

(2π)4
fABC

∮
B

∮
B

Pk(dw1)µ

k2
JA(w1)eik·w1

∫
d2ξ εab∂aX2µ∂bX2νJ

C(X2)ei(k
′−k)·X2

Pk′(dw4)ν

k′2
JB(w4)e−ik

′·w4

〉
Σ,J

. (2.3.99)

We recognise here the emergence of a new vertex operator insertion. We can then

project X2 along (k′− k) to produce the third leg connecting the interacting vertex
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to the boundary. Finally, we find

〈
e−S

YM
I

〉
Σ,J
3 q

4

2

〈∫
d4k

(2π)4

d4k′

(2π)4
fABC

∮
B

∮
B

∮
B

Pk(dw1)µ

k2
JA(w1)eik·w1

i(k′ − k)[µP(k′−k)(dw2)ν]

(k′ − k)2
JC(w2)ei(k

′−k)·w2
Pk′(dw4)ν

k′2
JB(w4)e−ik

′·w4

〉
J

. (2.3.100)

Expanding the inner products and relabelling the dummy indices on the momenta

and positions so that the momentum contracted with the propagator is the momen-

tum associated with the propagator, we reproduce (1.4.131). Note, the antisymme-

try on µ and ν introduces a factor of a half and two terms. One can then replace the

factors of J with the path-ordered product of the Lie algebra generators to verify

the equivalence of these results.

2.3.2 Worldsheet field theory

Thus, we are searching for a field theory on the worldsheet that allows one to replace

products of the field on the boundary with the path-ordered product of the Lie

algebra generators placed at these points. The first model we consider is a two

dimensional generalisation for the boundary field ψ(w). The kinetic action for the

boundary theory is

Sψ =

∫ 1

0

ψ†ψ̇ dt (2.3.101)

which leads to the propagator

〈
ψ†α(ξ1)ψβ(ξ2)

〉
= δαβ sign(t1 − t2). (2.3.102)

This naturally generalises to the propagator for the 2 dimensional worldsheet field

theory 〈
ψ†α(z1)ψβ(z2)

〉
= δαβ sign(z1 − z2) (2.3.103)

where a Euclidean worldsheet is understood and we are using complex coordinates.

On the boundary, this propagator reduces to the boundary theory and so can be used

to represent the path-ordering of Lie algebra generators. In this form, sign(z1− z2),

has the form of an angle between z1 and z2 in the complex plane since sign(z1−z2) =
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eiarg(z1−z2). This relation will lead to the field theory we propose that generalises ψ

into the interior of the worldsheet.

This field theory will be studied in the next section. We note that in this theory we

require the condition

∂aψ
†
α(z1)∂bψβ(z2) ∼ δαβ

1

2
εabδ

2
c (z1 − z2) (2.3.104)

to produce the three gluon vertex. We will, in fact, find that we cannot satisfy

this relation in the worldsheet ψ theory and so we will be unable to make the

equivalence between the string theory supplemented with this worldsheet theory

and the expectation of the Wilson loop.

The next theory we will investigate is similar in the sense that it is introduced onto

the worldsheet via the vertex operator in the same way as the ψ theory. The guiding

principle behind this theory is a gauge symmetry of the contact interaction with the

Lie algebra valued fields, JA. We can use this to introduce a gauge field theory onto

the worldsheet and we will show that this produces the correct contractions required

to implement the above properties of the string theory.

2.3.3 The four gluon vertex and ghost-ghost-gluon vertices

The string theory described above, with contact interaction and additional world-

sheet field(s), reproduces the path-ordering of the Lie algebra generators and the

three gluon vertex in the expectation of the Wilson loop. We have yet to mention

how the four gluon vertex, Fig. 1.2b, and ghost-ghost-gluon vertex, Fig. 1.3, are

generated. In fact, this will be beyond the scope of this thesis. This has been studied

in the context of this string theory independently from me by Prof. Mansfield and

will be detailed in an upcoming paper. Although these interactions do not seem to

appear in the work above, one can show that this is due to using a heat kernel reg-

ulator for the worldsheet Laplacian Green’s function as we will use throughout, and

that by switching to dimensional regularisation, one can show that these missing

interactions do appear.

The terms that give rise to these extra interactions are suppressed in our work and
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so we do not see their effect in the work presented here. The same goes for the

supersymmetric model discussed in the next section, although, it is not clear how

dimensional regularisation of the super-Laplacian Green’s function will work at this

point.

2.4 Supersymmetric model

The above extension to non-abelian gauge groups generalises straight forwardly to

incorporate the supersymmetry of the worldsheet. JA gets promoted to a superfield,

JA, with expansion JA0 + θJA1 + θ̄J̄A1 + θθ̄JA2 . If we were to include a factor of JA

into the integrand of (2.2.63) we would not get the expected results, specifically the

the third leg of the three point vertex, produced by the contraction of the Cs, gains

an extra term that prevents this new boundary piece from being supersymmetric.

Rather, we should include the factor in (2.2.67). The non-abelian generalisation of

the supersymmetric vertex operator is then

Ṽ µνA
k = ṼµνA

k − ik[µ

k2

∫
d2zd2θ JA(D + D̄)

(
(D + D̄)Pk(X)ν]eik·X

)
(2.4.105)

where

ṼµνA
k =

∫
d2zd2θ JAD̄Pk(X)[µDPk(X)ν]

(
1− θθ̄δ(y)

)
eik·X (2.4.106)

is the supersymmetric “projected” vertex operator. Integrating the vertex by parts

again gives two terms which we associate with the supersymmetric analogues of B

and C from the bosonic theory

Ṽ µνA
k = ṼµνA

k − ik[µ

k2

∫
d2zd2θ (D + D̄)

(
JA(D + D̄)Pk(X)ν]eik·X

)

+
ik[µ

k2

∫
d2zd2θ (D+ D̄)JA(D+ D̄)Pk(X)ν]eik·X

)
≡ ṼµνA

k − (B̃− C̃)µνAk . (2.4.107)
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The contact interaction is then

S̃YMI = q2

∫
d4k

(2π)4

(
ṼµνA
k Ṽ′Aµν−k + B̃µνA

k B̃
′A
µν−k

)
+ cross terms. (2.4.108)

Integrating over worldsheets spanning the fixed boundary results in

〈
S̃YMI

〉
Σ,J

= q2

∫
d4k

(2π)4

〈
B̃µνA
k B̃

′A
µν−k

〉
J
. (2.4.109)

where again the B ·C cross terms and C ·C term do not contribute as in the bosonic

case. The “projected” vertex term is also suppressed in the functional integral be-

cause of the self-interactions of the exponentials. For this to reproduce the expected

result note that we must have JA1 | = J̄A1 | = 0. This result will arise naturally in the

second model we study.

The integral B̃ can then be evaluated using Stokes’ theorem

B̃µνA
k =

ik[µ

k2

∮ ∫
dxd2θ (θ − θ̄)

(
JA(D + D̄)Pk(X)ν]eik·X

)

= −ik
[µ

k2

∮
dx JA0

(
dPk(w)ν]

dx
−
√
h Pk(ψν]) ψ · ik

)
eik·w ≡ −ik

[µ

k2

∮
db
ν]A
k (2.4.110)

where we have defined a boundary element

dbνAk = dx JA0

(
dPk(w)ν

dx
−
√
h Pk(ψν) ψ · ik

)
eik·w. (2.4.111)

Defining this will reduce clutter when considering higher orders in the contact in-

teraction as dbk will remain unaltered by the functional integrals as it lies on the

boundary which remains fixed and contains no derivatives of JA. The expectation

of the contact interaction is then

〈
S̃YMI

〉
Σ,J

=
q2

2

∫
d4k

(2π)4
dxdx′

〈
JA0

(
Pk(dw)

dx
−
√
h Pk(ψ) ψ · ik

)µ

× J
′A
0

(
Pk(dw′)
dx′

+
√
h′ Pk(ψ′) ψ′ · ik

)
µ

eik·(w−w
′)

〉
J

. (2.4.112)
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The particular model for JA will tell us how to proceed from here, however, we will

essentially require the bosonic condition (2.3.92). This result can then be compared

with the expectation of the non-abelian super-Wilson loop. Being able to replace JA

on the boundary with the Lie algebra generator τA will allow this result to coincide

with the first order expectation of the super-Wilson loop. Exponentiating this re-

sult will then reproduce the full expectation of the super-Wilson loop neglecting self

interactions of the gauge field. In the supersymmetric model we no longer produce

unwanted divergences that ruin this equivalence [45].

2.4.1 Three gluon vertex in the supersymmetric theory

The three gluon vertex comes again from the particular term in the contact inter-

action squared

〈
(S̃YMI )2

〉
Σ,J
3 q4

〈∫
d4k

(2π)4

d4k′

(2π)4
B̃µνA

1k C̃A
2µν −kC̃

λσB
3k′ B̃

B
4λσ −k′

〉
Σ,J

. (2.4.113)

We now require the contractions

D̄JA1 DJB2 ∼ fABCJCδ2(z1 − z2)δ2(θ1 − θ2) (2.4.114)

D̄JA1 D̄JB2 ∼ DJA1 DJB2 ∼ 0 (2.4.115)

for this term to reproduce one contribution to the three gluon vertex in the super-

Wilson loop. Using these contractions, the expectation of the contact interaction

squared contains

2q4

〈∫
d4k

(2π)4

d4k′

(2π)4
B̃µνA

1k fABC
∫
d2z2d

2θ2

k[µ

k2

k′[λ
k′2

JC(D + D̄)Pk(X2)ν]

(D + D̄)Pk′(X2)σ]e
−i(k−k′)·X2 B̃B

4λσ −k′

〉
Σ,J

. (2.4.116)
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Carrying out the (tensor) contractions of the relevant terms we find

〈
(S̃YMI )2

〉
Σ,J
3 q4

〈∫
d4k

(2π)4

d4k′

(2π)4

∮
dbµAk
k2

fABC
∫
d2z2d

2θ2 JC(D + D̄)X2µ

(D + D̄)X2νe
−i(k−k′)·X2

∮
dbνBk′

k2
2

〉
Σ,J

. (2.4.117)

The integral produced is not quite a new vertex, we must do a little work to get the

form we require. Again, we use the projection of X2 along (k1− k2). Focussing just

on the worldsheet integral we have

∫
d2z2d

2θ2 JC(D + D̄)X2µ(D + D̄)X2νe
−i(k−k′)·X2

=

∫
d2z2d

2θ2 JC(D + D̄)P(X)2µ(D + D̄)P(X)2νe
−i(k−k′)·X2

+2i
(k − k′)[µ

(k − k′)2

∫
d2z2d

2θ2 JC(D + D̄)
(
(D + D̄)P(k−k′)(X2)e−i(k−k

′)·X2
)
. (2.4.118)

In the functional integral the first term is suppressed again and so we will drop it.

The second term now looks like a vertex operator. To obtain the boundary integral

we carry out an integration by parts. This will produce another term with a factor

of DJC , but this will be suppressed by the self-contractions of e−i(k−k′)·X2 . With this

we can effectively drop the DJC terms leaving us with just the boundary integral

2i
(k − k′)[µ

(k − k′)2

∫
d2z2d

2θ2 (D + D̄)
(
JC(D + D̄)P(k−k′)(X2)e−i(k−k

′)·X2
)

= 2B̃C
2µν−(k−k′).

(2.4.119)

Inserting this into the expectation of (SYMI )2, we find

〈
(SYMI )2

〉
Σ,J
3

q4

〈∫
d4k

(2π)4

d4k′

(2π)4
fABC

∮
B

∮
B

∮
B

dbµAk
k2

i(k − k′)[µdb
C
−(k−k′)ν]

(k − k′)2

dbνBk′

k′2

〉
J

. (2.4.120)

Again replacing J on the boundary by the path-ordered product of the Lie algebra

generators reduces this to the first contribution to the three point function in the

expectation of the super-Wilson loop.
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We will see that there exists a natural analogue of the bosonic ψ theory. Again,

this theory won’t contain the required relation to produce the three gluon vertex as

described above. To obtain a theory that does have this structure, we consider the

supersymmetric analogue of the worldsheet gauge theory model. There are some

subtle differences coming from the supersymmetry requirement but this theory will

form a correct generalisation of the bosonic theory, up to path-ordering and the

three gluon vertex. We look at this in chapter 5.
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Chapter 3

The Intersection of Random Curves

and Path-Ordering of the Wilson

Loop

In this section we attempt to find a field theory that satisfies our requirements to

allow a way of introducing path-ordering into the string model and possibly include

the extra self interactions of non-abelian gauge theory. The method of this section

will generalise the worldline theory of [35] where the path-ordering of the Wilson

loop is produced by an additional worldline field on the loop. The field theory we

obtain provides a way of continuing the path-ordering into the interior of the loop.

We will find that there exists both a bosonic and fermionic field theory that one

can use to generalise path-ordering into the interior of the worldsheet. This method

doesn’t contain the correct structure to form the three gluon vertex however, though

we can show how one might be able to use this model to obtain it. In chapter 5

we will introduce another field theory that does include the necessary ingredients

to allow both path-ordering and self interactions in the string model. We will begin

this section with a discussion of one of the simplest 2 dimensional field theories, 2

dimensional electrostatics, a particular case of (1.1.45). We will then show how one

can use this to produce an appropriate field theory for J in the string model.
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3.1 2 dimensional electrostatics

Of particular interest in this thesis is the case when D = 2 in (1.1.45) since we

are working on the 2 dimensional worldsheet. The existence of Weyl symmetric

quantities in 2 dimensions will allow us to generalise the calculation of the average

of the electric field to curved spaces. This will be of use when adding fields to the

worldsheet of our string model as we will when considering the generalisation of the

string model to include non-abelian gauge fields. The electrostatic field produced

by two oppositely charged particles is, from (1.1.45)

E(x) =
q

2ε0π

(
x− a
|x− a|2

− x− b
|x− b|2

)
. (3.1.1)

As this is an important case we will study it in some detail and eventually gener-

alise the discussion to curved space. It is useful in 2 dimensions to use complex

coordinates in which z = x + iy and z̄ = x − iy and we denote the contravariant

components of the electrostatic field as Ez = E and E z̄ = Ē. In flat space the

metric is ds2 = dzdz̄. It will be the geometric properties of the fields that will be

important to us so we will drop the factor of q/ε0 in the discussion. The appropriate

field equations are then Gauss’ law in 2 dimensions

∇ · E = ∂E + ∂̄Ē = 2
(
δ2
c (z − a)− δ2

c (z − b)
)

(3.1.2)

and Faraday’s law

∂E − ∂̄Ē = 0. (3.1.3)

The factor of 2 in Gauss’ law comes from the fact that the invariant delta function

takes the form
δ2(x1 − a)√

g(x1)
. (3.1.4)

This is due to the fact that the invariant volume element is d2x1

√
g(x1) and so

∫
d2x1

√
g(x1)

δ2(x1 − a)√
g(x1)

= 1. (3.1.5)
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For flat space and complex coordinates we have
√
|g| = 1

2
. It is then easy to see

that the solution to (3.1.2) and (3.1.3) is

E =
1

2π

(
1

(z̄ − ā)
− 1

(z̄ − b̄)

)
, Ē =

1

2π

(
1

(z − a)
− 1

(z − b)

)
(3.1.6)

which agrees with (3.1.1), noting that we have

∂∂̄log(zz̄) = 2π δ2(z). (3.1.7)

The single line of force solutions are

Ec(z) =

∫
C

δ2
c (z − w)dw, Ēc(z) =

∫
C

δ2
c (z − w)dw̄ (3.1.8)

with w(0) = a and w(1) = b. The important results we need are then obtained from

(1.1.45)

〈Ec〉 =

〈∫
C

δ2
c (z − w)dw

〉
=

1

2π

(
1

(z̄ − ā)
− 1

(z̄ − b̄)

)
, (3.1.9)

〈Ēc〉 =

〈∫
C

δ2
c (z − w)dw̄

〉
=

1

2π

(
1

(z − a)
− 1

(z − b)

)
(3.1.10)

which is just a restatement of the previous results in complex coordinates. Consider

now integrating over a second curve, C ′, with coordinates z and end points A and

B. Using the above results, observe that the combination

〈ñ〉w =

∫
C′
dz̄

〈∫
C

δ2
c (z − w)dw

〉
w

−
∫
C′
dz

〈∫
C

δ2
c (z − w)dw̄

〉
w

(3.1.11)

naively satisfies

〈ñ〉w =
1

2π
log
(

(B̄ − ā)

(B − a)

(A− a)

(Ā− ā)

(B̄ − b̄)
(B − b)

(A− a)

(Ā− ā)

)
(3.1.12)

which is the sum of angles between the endpoints of the two curves, which is easily

seen by writing the displacements in polar form. We have already shown that the

propagator for the worldsheet field, ψ, goes like the angle between two points in the
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upper half plane, and so this gives us a hint that the quantity ñ is the one that will

lead to the field theory representing ψ in the interior of the worldsheet. Note also

that it appears to satisfy

∂̄B∂a 〈ñ〉w = δ2
c (B − a) (3.1.13)

and

∂B∂̄a 〈ñ〉w = −δ2
c (B − a), (3.1.14)

the condition we require to reproduce the three point vertex of yang-Mills theory

(see (2.3.97) and section 3.3.3). The designation of the symbol ñ for this quantity

will become apparent after a discussion of the supersymmetric version of this.

After removing the averages in (3.1.11), ñ can be written as

ñ =

∫
cz ,cw

(dz̄dw − dzdw̄) δ2
c (z − w) = i

∫
cz ,cw

δ2
c (z − w) εµνdz

µdwν . (3.1.15)

We will define the same quantity on a curved surface and investigate its properties

in the next section.

3.1.1 Electrostatic field in curved space

The worldsheet is a 2 dimensional curved surface embedded in a target spacetime.

Therefore, we would like to generalise the computation above for a curved surface.

Gauss’ law for two equal oppositely charged particles becomes

∇ · E =
1
√
g
∂µ(
√
gEµ) =

δ2(x− a)
√
g

− δ2(x− b)
√
g

. (3.1.16)

In 2 dimensions the metric has three independent components. The worldsheet has

2 dimensional diffeomorphism invariance that can be used to reduce the number of

independent components to just one. The computations are simplest in conformal

gauge and complex coordinates in which the line element takes the form ds2 =

eφdzdz̄. Gauss’ law becomes

∂(eφE) + ∂̄(eφĒ) = 2
(
δ2
c (z − a)− δ2

c (z − b)
)
. (3.1.17)
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This is easily solved by converting to the covariant components of the field which

are

Ez = gzz̄Ē =
eφĒ

2
, Ez̄ = gz̄zE =

eφE

2
. (3.1.18)

Gauss’ law is then

∂Ez̄ + ∂̄Ez = δ2
c (z − a)− δ2

c (z − b) (3.1.19)

so that the conformal factor no longer appears in the field equation. This is because

in 2 dimensions the combination √gEµ =
√
ggµνEν is Weyl invariant, i.e. invariant

under metric rescalings of the form gµν → Ω gµν . The conformal gauge is obtained

by making a Weyl transformation, Ω = eφ, of the flat metric and so writing gµν =

1
2
eφσµν , where σµν has elements σ11 = σ22 = 0 and σ12 = σ21 = 1, then √ggµν = σµν .

Because of this, we can just use the results above by interchanging E → 2Ez̄ etc.

The solution is then

Ez̄ =
1

4π

(
1

(z̄ − ā)
− 1

(z̄ − b̄)

)
, Ez =

1

4π

(
1

(z − a)
− 1

(z − b)

)
. (3.1.20)

Faraday’s law for the covariant components of the field is now ∂Ez̄ − ∂̄Ez = 0 and

so is still satisfied. The simplicity of (3.1.19) allows us to, again, use the flat space

results for the line of force analysis. This time we have

Ez̄ =
1

2

∫
δ2
c (z − w)dw, Ez =

1

2

∫
δ2
c (z − w)dw̄. (3.1.21)

We cannot use the flat space results to calculate the averages over these quanti-

ties however. The functional average over some quantity, Ω, is still given by the

functional integral

〈Ω〉 =
1

Z

∫
D[x, h]

(∫ 1

0

dξ
√
h(ξ)− T

)
Ω e−S[x,

√
h], (3.1.22)

but now the action is that of a free particle in curved space

S[x,
√
h] =

1

2

∫ T

0

dt
gµν(x)√

h
ẋµẋν . (3.1.23)
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So the modification of the calculation involves dealing with the conformal factor,

eφ, in the metric [50]. Note, the normalisation constant, Z, fixes 〈1〉 = 1. To obtain

a scale invariant weight we will take the large T limit corresponding to averaging

over long curves in terms of the einbein,
√
h. The action and average are invariant

under reparametrisations and so we can choose a gauge in which
√
h is constant [17],

explaining the appearance of the delta function insertion.

We will be general in our calculation by considering the average of the quantity∫
C1
δ2(x1 − x2)dxµ1 . We will also this time choose to work on a surface bounded

by a closed curve. There are a few reasons for this, the first and most important

is that this is the case that we will eventually need in our string model where the

worldsheet has boundaries. We will also find that quantities on a closed curved

space will be more manageable due to the existence of a normalisable zero mode of

the Laplacian. Working on a closed surface requires us to consider what happens

when the lines of force reach the boundary. The simplest possibility is to require

curves that reach the boundary be specularly reflected so that the angle of incidence

between the curve and the normal to the boundary is equal to the angle of reflection

between the reflected curve and the normal. This is the most natural choice for the

calculation of the electric field.

For simplicity, we will choose to work on the unit disk as it is conformally equivalent

to the upper half plane. The boundary is now the x axis and we identify x = −∞

and x = +∞ as the same point. Working in the upper half plane allows for a simple

use of the method of images to deal with the effects of the boundary.

Fourier decomposing the delta function allows us to write the average as

〈∫
C1

δ2(x1 − x2)dxµ1

〉
C1

=
1

Z

∫
D[x]

(∫
C1

δ2(x1 − x2)dxµ1

)
e−S[x1]

=
δ

δAµ(x2)

1

Z

∫
D[x] e−

∫ T
0 dt ( 1

2
gµν(x1)ẋµ1 ẋ

ν
1−A·ẋ1)

∣∣∣∣
A=0

. (3.1.24)

The functional integral is the curved space generalisation of (1.1.29) in 2 dimensions.

It is interpreted as the amplitude of a bosonic particle coupled to a vector poten-

tial, iA, in the presence of a curved background, to travel from x(0) to x(T ). The

factor of i here is again due to the Wick rotation of the action. From this we can
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straight forwardly obtain the classical Hamiltonian by a Legendre transformation,

H = 1
2
gµν(p + iA)µ(p + iA)ν . Again, in the quantum theory there is an ordering

ambiguity which is resolved by interpreting the Hamiltonian as the Laplacian mini-

mally coupled to the vector potential, acting on scalars.

Taking the coordinates, xµ, to be points in the upper half-plane, Σ, then we can

use points in the lower-half-plane to parametrise a surface ΣR attached along the

boundary. ΣR is the reflection of Σ in the sense that the value of the metric at a

point in the lower half-plane is taken to be the value of the metric at the point in the

upper half-plane that is its reflection. Any curve C1 from a1 to b1 that is restricted

to Σ but is reflected once has the same Boltzmann factor as a curve that crosses the

boundary between Σ and ΣR but either starts at aR1 , the reflection of a1, or ends

at bR1 , the reflection of b1 . Curves that are reflected an even number of times have

the same weight as curves from a1 to b1 (or from aR1 to bR1 ) that are not restricted

to Σ and curves that are reflected an odd number of times have the same weight as

curves from a1 to bR1 (or from aR1 to b1) that are not restricted to Σ. These two cases

are shown in Figures 3.1-3.3. So, by including reflected curves we are effectively

working on the full plane parametrising Σ∪ΣR but including curves with ends that

are the reflections of one of the original end-points and so we can identify

∫
D[x] e−

∫ T
0 dt ( 1

2
gµν(x1)ẋµ1 ẋ

ν
1−A·ẋ1) = 〈b1|e−ĤT |a1〉+ 〈b1|e−ĤT |aR1 〉 (3.1.25)

= 〈b1|e−ĤT |a1〉+ 〈bR1 |e−ĤT |a1〉 = GT (b1, a1). (3.1.26)

The average of the line of force is then computed by taking a functional derivative

of the heat kernel

〈∫
C1

δ2(x1 − x2)dxµ1

〉
C1

=
δ

δAµ(x2)
GT (b1, a1)

∣∣∣∣
A=0

= − 1

Z

∫ T

0

dt

∫
Σ∪ΣR

d2xd2y
√
g(x)

√
g(y) 〈b1| e−tĤ0 |x〉 〈x| δĤ

δAµ(x2)

∣∣∣∣
A=0

|y〉

× 〈y| e(t−T )Ĥ0(|a1〉+ |aR1 〉) (3.1.27)
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Figure 3.1: An example of a curve with one reflection off the boundary with Σ above
the central line and ΣR below it. The curve has a Boltzmann factor equivalent to
that of the curve that joins aR and b, shown below the boundary.

Figure 3.2: An example of a curve with one reflection off the boundary. The curve
has a Boltzmann factor equivalent to that of the curve that joins a and bR. This
Boltzmann factor is also equal to the Boltzmann factor of the curve in Figure 3.1.

where GT is the heat kernel defined above and we have used the short hand for the

completeness relation over the whole plane,

∫
Σ∪ΣR

d2x
√
g(x) |x〉 〈x| ≡

∫
Σ

d2x
√
g(x) |x〉 〈x|+

∫
ΣR

d2x
√
g(x) |x〉 〈x| = 1. (3.1.28)
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Figure 3.3: An example of a curve with two reflections off the boundary. In this
case the Boltzmann factor of the curve restricted to the upper half plane is equal to
the corresponding curve that is allowed to pass through the boundary.

We recognise the appearance of the heat kernel of the Laplacian at A = 0, denoted

G0, so (3.1.27) can be written

= − 1

Z

∫ T

0

dt

∫
Σ∪ΣR

d2xd2y
√
g(x)

√
g(y) G0

t (b1, x) 〈x| δĤ

δAµ(x2)

∣∣∣∣
A=0

|y〉 G0
T−t(y, a1).

(3.1.29)

Now, we have the matrix elements

〈x | Ĥ | y 〉 = − 1

2
√
g(x)

(∂ −A)α

(
√
g(x) gαν(x)(∂ −A)ν

δ2(x− y)√
g(y)

)
. (3.1.30)

and so

〈x| δĤ

δAµ(x2)

∣∣∣∣
A=0

|y〉 =
1

2
√
g(x)

δ2(x− x2)
√
g(x)gµν(x)∂ν

(
δ2(x− y)√

g(y)

)

+
1

2
√
g(x)

∂ν

(√
g(x)gµν(x)δ2(x− x2)

δ2(x− y)√
g(y)

)
. (3.1.31)

Substituting this into (3.1.29) gives

− 1

2Z

∫ T

0

dt

∫
Σ∪ΣR

d2xd2y

(
G0
t (b1, x)δ2(x− x2)

√
g(x)gµν(x)∂xν

(
δ2(x− y)

)
G0
T−t(y, a1)

+G0
t (b1, x)∂xν

(√
g(x)gµν(x)δ2(x− x2)δ2(x− y)

)
G0
T−t(y, a1)

)
. (3.1.32)

July 11, 2018



3.1. 2 dimensional electrostatics 74

Firstly, computing the y integrals gives

− 1

2Z

∫ T

0

dt

∫
Σ∪ΣR

d2x

(
G0
t (b1, x)δ2(x− x2)

√
g(x)gµν(x)∂xνG0

T−t(x, a1)

+G0
t (b1, x)∂ν

(√
g(x)gµν(x)δ2(x− x2)G0

T−t(x, a1)
))

(3.1.33)

and carrying out an integration by parts on the second term and computing the x

integral we find

〈∫
C1

δ2(x1 − x2)dxµ1

〉
C1

= − 1

2Z

∫ T

0

dt

(
G0
t (b1, x2)

√
g(x2)gµν(x2)∂νG0

T−t(x2, a1)

−∂ν
(
G0
t (b1, x2)

)√
g(x2)gµν(x2)G0

T−t(x2, a1)

)
. (3.1.34)

In the T →∞ limit the integral splits into two pieces. One where t is close to 0 and

the other where t is close to T . We will briefly discuss the spectral decomposition

of the heat kernel as this will allows us to evaluate these cases.

We will start with the eigenfunction equation for the Laplacian

−∆uλ = λuλ. (3.1.35)

As we are working on a compact space we have a normalisable zero mode that

satisfies ∆u0 = 0. To find this zero mode it is most useful to work in complex

coordinates where the zero mode now satisfies ∂̄∂u0(z, z̄) = 0 which has a solution

composed of a holomorphic and anti-holomorphic function, u0 = f+(z) + f−(z̄). We

may expand f± as a power series in zn with corresponding coefficients an. We note,

however, that all coefficients with n > 0 must be zero as otherwise f would blow up

as z → ±∞. This leaves us with the conclusion that the zero mode is a constant.

We can normalise so that

∫
|u0|2

√
g(x)d2x = |u0|2A (3.1.36)
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where A =
∫ √

g(x)d2x is the area of the surface. The normalised zero mode is then

u0 = 1/
√
A. As the eigenfunctions are mutually orthogonal we then find

∫
d2x

√
g(x) u0uλ =

1√
A

∫
d2x

√
g(x)uλ = 0 (3.1.37)

i.e. the integral of uλ with λ 6= 0 over the surface is zero. The heat kernel has the

decomposition

G0
t (x1, x2) =

∑
λ

e−tλuλ(x1)uλ(x2). (3.1.38)

Taking the limit of the spectral decomposition of the heat kernel picks out the zero

mode contribution and so limT→∞ G0
T = 1/A. The spectral decomposition of the heat

kernel allows us to set G0
T−t(x2, a1) = 1/A when t is close to 0 and G0

t (b1, x2) = 1/A

when t ∼ T . Taking the T →∞ limit and using these values then gives

lim
T→∞

〈∫
C1

δ2(x1 − x2)dxµ1

〉
C1

=

1

2AZ

∫ ∞
0

dt

(√
g(x2)gµν(x2)∂νG0

t (b1, x2)−
√
g(x2)gµν(x2)∂νG0

T−t(x2, a1)

)
.

(3.1.39)

The normalisation constant is obtained from

〈1〉 = lim
T→∞

(
1

Z

∫
Dx1 e

−S[x1]

)
=

1

Z
lim
T→∞

G0
T (x1, a1) =

1

ZA
(3.1.40)

Now, (3.1.39) contains the t integral over the heat kernel which is related to the

Green’s function satisfying Neumann boundary conditions

∫ ∞
0

dt

(
G0
t (x1, x2)− 1

A

)
=
∑
λ

uλ(x1)
1

λ
uλ(x2) = 2G(x1, x2) (3.1.41)

where the Green’s function, G, solves

− 1
√
g
∂µ
(√

ggµν∂νG(x1, x2)
)

=
δ2(x1 − x2)
√
g

− 1

A
(3.1.42)

where the Laplacian acts at either x1 or x2. The appearance of the 1/A terms is due

to the existence of the zero mode. Working in the upper half plane allows us to use
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the method of images to solve for the Green’s function by placing a point charge at

the point in the lower half plane that corresponds to the reflection of the original

charge. In complex coordinates, the Green’s function equation is

−4e−φ∂̄∂G(z1, z2) = 2e−φδ2(z1 − z2)− 1

A
(3.1.43)

which has solution

G(z1, z2) = − 1

2π
log(|z1 − z2|)−

1

2π
log(|z1 − z̄2|)−Ψ(z1, z2). (3.1.44)

The second term is due to the image charge; note that ∆log(|z1 − z̄2|) = 4πδ2(z1 −

z̄2) = 0 since we are working on the upper half plane. The last term satisfies

4e−φ(z1)∂̄1∂1Ψ = 4e−φ(z2)∂̄2∂2Ψ = − 1

A
(3.1.45)

and Neumann boundary conditions and is again a consequence of the zero mode.

Note that (3.1.45) suggests Ψ(z1, z2) = ψ(z1) + ψ(z2). From (3.1.39) we find

〈∫
C1

δ2(z1 − z2)dz1

〉
C1

= ∂̄2G(b1, z2)− ∂̄2G(z2, a1)

=
1

4π

(
1

b̄1 − z̄2

+
1

b1 − z̄2

− 1

ā1 − z̄2

− 1

a1 − z̄2

)
(3.1.46)

so the zero mode contribution drops out. We then see that the average of the line of

force reproduces the full electric field (3.1.20) modified by the effect of the boundary.

Similarly we find the conjugate result

〈∫
C1

δ2(z1 − z2)dz̄1

〉
C1

= ∂2G(b1, z2)− ∂2G(z2, a1)

=
1

4π

(
1

b1 − z2

+
1

b̄1 − z2

− 1

a1 − z2

− 1

ā1 − z2

)
. (3.1.47)

Inserting these into the Gauss’ law verifies that these are the solutions, as the terms

corresponding to the reflection vanish since δ2(a − z̄) = 0 etc. on the upper half

plane. We can see that the conformal factor has dropped out of the calculation and
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so we have a result similar to the flat space case. We can form the functional ñ

again that naively looks as if it satisfies the criteria for producing the three point

function. We shall do this in detail after a study of the supersymmetric electrostatic

field.

3.2 Supersymmetric electrostatics

We now turn to the supersymmetric generalisation of the electrostatic field. To do

this we enlarge the parameter space by introducing the Grassmann odd variables θ

and θ̄, being the superpartners of z and z̄ respectively. The electric field becomes

a superfield, E, and the partial derivatives become superderivatives. We will again

consider the electrostatic field produced by two equal opposite charges placed at

(a, ηa) and (b, ηb). We will use the covariant components of the electrostatic field,

Eµ, as we have shown above that Gauss’ law takes the same form in flat and curved

space. This is a unique feature of 2 dimensions where the combination √ggµν is

Weyl invariant. We will show in here that just as in the bosonic case, the problem

in curved 2 dimensional superspace involves dealing with a superconformal factor

which will eventually drop out. In flat superspace, Gauss’ law takes the form1

DĒ + D̄E = δ2(θ − ηa)δ2(z − a)− δ2(θ − ηb)δ2(z − b). (3.2.48)

The solution can be obtained from the Green’s function for the super-Laplacian

−2D̄DGF = D̄(−DGF ) +D(D̄GF ) = δ2(θ1 − θ2)δ2(z1 − z2) (3.2.49)

and so Ē = D̄GF and E = −DGF . These can be evaluated using the results from

Appendix A so that

Ē = − 1

4π

(θ̄ − η̄a)
(z̄ − ā)

+
1

2
(θ̄ − η̄a)θηaδ2(z − a)

1δ2(θ − θ′) = (θ̄ − θ̄′)(θ − θ′) and we denote Ez,θ = E and Ēz̄,θ̄ = Ē.
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+
1

4π

(θ̄ − η̄b)
(z̄ − b̄)

+
1

2
(θ̄ − η̄b)θηbδ2(z − b), (3.2.50)

E =
1

4π

(θ − ηa)
(z − a)

− 1

2
θ̄η̄a(θ − ηa)δ2(z − a)

− 1

4π

(θ − ηb)
(z − b)

− 1

2
θ̄η̄b(θ − ηb)δ2(z − b). (3.2.51)

As in the bosonic case, there exists a supersymmetric line of force solution

Ēc(z, θ) = −
∫
C

dt δ2(z − w − θη)(θ̄ − η̄)(ẇ + θη̇) (3.2.52)

Ec(z, θ) =

∫
C

dt δ2(z − w − θη)(θ − η)( ˙̄w + θ̄ ˙̄η) (3.2.53)

where w = w(t) and η = η(t) are the bosonic and fermionic coordinates of the curve,

C. The proof is more involved than in the bosonic case. The superderivatives of the

field components are

DĒc =

∫
C

dt

(
η∂zδ

2(z − w)(θ̄ − η̄)ẇ + δ2(z − w)(θ̄ − η̄)η̇ − θ∂zδ2(z − w)(θ̄ − η̄)ẇ

)
(3.2.54)

which can be written as

= −
∫
C

dt

(
(θ̄− η̄)(θ− η)ẇ∂wδ

2(z−w) + (θ̄− η̄)

(
d

dt
(θ− η)

)
δ2(z−w)

)
. (3.2.55)

Similarly, one finds

D̄Ec = −
∫
C

dt

(
(θ̄−η̄)(θ−η) ˙̄w∂w̄δ

2(z−w)+

(
d

dt
(θ̄−η̄)

)
(θ−η)δ2(z−w)

)
. (3.2.56)

Combining these results in Gauss’ law we get

DĒc + D̄Ec = −
∫
C

dt
d

dt

(
(θ̄ − η̄)(θ − η)δ2(z − w)

)

= δ2(θ − ηa)δ2(z − a)− δ2(θ − ηb)δ2(z − b) (3.2.57)
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as desired. The form of Ec and Ēc can be simplified by defining the super-displacement,

l = z − w − θη, so that

Ēc =

∫
C

dt δ2(l)D̄l̄ l̇, Ec =

∫
C

dt δ2(l)Dl ˙̄l (3.2.58)

where the superderivative acts with respect to w and η on C. Note, we can write

the bosonic field in a similar way by defining s = z−w. With this, the bosonic lines

of force can then be written as

Ēc z =

∫
C

dt δ2(s)∂̄s̄ ṡ, Ec z =

∫
C

dt δ2(s)∂s ˙̄s. (3.2.59)

It may then be expected from our previous results that summing over all curves

weighted by a suitable action functional reproduces the full solution, (3.2.50) and

(3.2.51). The suitable action in question must be the supersymmetric generalisation

of the massless, free bosonic particle’s action. In [45], the sums over surfaces were

carried out by weighting each curve with the gauge fixed superstring action in the

appropriate number of dimensions. Here, then, we need the action describing the

worldline of a superparticle with a 2 dimensional target space. There are a few

choices of possible actions. As we would like this 2 dimensional theory to live on

the worldsheet of our original string model it is useful to use a superparticle action

with manifest spacetime supersymmetry. This naturally leads us to use the Green-

Schwarz superparticle.

3.2.1 The Green-Schwarz superparticle

Let us recapitulate what we have at this point. In the bosonic case, averaging over

lines of force corresponds to summing over all possible curves joining two fixed end

points with each curve weighted by a factor of e−S. S is naturally interpreted as

the worldline action of a free particle on the surface upon which we are working so

that the curves we are averaging over are like particle worldlines embedded on the

surface. The delta function appearing in the line of force solution can be written as
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a functional derivative of an exponential of the form

∫
dDx1 δ

D(x1 − x2) =
δ

δA(x2)
e
∫
dt ẋ1·A(x1) (3.2.60)

The exponent of (3.2.60) describes a Wilson line and when combined with the action,

S, describes the motion of a particle moving under the influence of an external gauge

field, A(x). In the present case, our target space is the worldsheet of a superstring.

Spacetime quantities are obtained from the superstring model by integrating out

the Grassmann odd coordinates, θ, and so field theories on the superstring world-

sheet should be explicitly dependent on all worldsheet coordinates, including the θ

coordinates. The worldsheet has an N = 1 global supersymmetry between bosonic

and fermionic coordinates given by

δz = −ηθ, δθ = η. (3.2.61)

These two arguments rule out using the traditional superparticle action of Brink,

Howe and Di Vecchia [46] as our weight functional, S. In superstring theory, there

exists a formulation which has manifest target space supersymmetry known as the

Green-Schwarz (GS) superstring [56]. The GS superstring action has an important

additional symmetry not existing in the RNS formalism known as κ invariance. This

is because as it stands the GS action has twice as many degrees of freedom as the

RNS action. The kappa symmetry can then be used to remove these extra degrees

of freedom.

There exists a superparticle analogue of the GS superstring that also has target space

supersymmetry and kappa invariance. We will, therefore, use the action of the GS

superparticle as our weighting functional. We will find that on a 2 dimensional

target space, the κ invariance can be used to reduce the action to that of the free

bosonic particle, making calculations much simpler. The form of the Lagrangian

we use is similar to that studied in [48] except that we are working in a Euclidean

signature and have introduced an extra mass parameter, µ. The Lagrangian of the
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GS superparticle in flat 2 dimensional superspace is then

L0 =
ππ̄√
h
− µ(θ ˙̄θ + θ̄θ̇) + µ2

√
h (3.2.62)

where π ≡ ż+θθ̇ and π̄ ≡ ˙̄z+ θ̄ ˙̄θ are the globally supersymmetric generalisations of ż

and ˙̄z respectively. The Lagrangian is invariant under reparametrisations, t→ f(t)

and the global supersymmetric variations (3.2.61). The action also possesses an

additional worldline symmetry known as kappa invariance which takes the form

δκz = −θδκθ, δκθ = −
(
κ+

κ̄π

µ
√
h

)

δκz̄ = −θ̄δκθ̄, δκθ̄ = −
(
κ̄+

κπ̄

µ
√
h

)
δκ
√
h =

2

µ
( ˙̄θκ+ θ̇κ̄) (3.2.63)

where κ = κ(t) and κ̄ = κ̄(t) are Grassmann-odd worldline functions. We can

use this symmetry to choose a gauge in which θ̇ = ˙̄θ = 0. We can also use the

reparametrisation invariance to fix
√
h = T . In this gauge the θ dependence com-

pletely drops out of (3.2.62) and so it reduces to the Lagrangian of the massive

free bosonic particle. In the bosonic model we used the massless particle action, so

setting µ = 0 gives the action

S =
1

2

∫ 1

0

dt
ż ˙̄z

T
=

1

2

∫ T

0

dt′ ż ˙̄z (3.2.64)

with t′ = tT . This then is the action for the free massless particle. Provided that

a functional, Ω, is κ invariant, then it’s average (in flat space) can be computed

as 〈Ω〉 = 〈Ω′〉B where Ω′ is the functional after gauge fixing and the subscript B

denotes the functional integral computed with the bosonic weight.

We would like to generalise this result to a curved target space which is equivalent to

coupling the superparticle to supergravity. This coupling is best described in terms
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of forms and so we first write (3.2.62) as

L0 =
ėz ėz̄√
h

+ 2µėAΓA + µ2
√
h. (3.2.65)

ėA = żMeAM is the supervielbein and ΓA are gauge fields. In particular we have

ėz = π, ėz̄ = π̄, ėθ = θ̇, ėθ̄ = ˙̄θ, Γθ = θ̄/2 and Γθ̄ = θ/2.

3.2.2 Lorentz superparticle

We are now in a position to consider the dynamics of the GS superparticle on a

curved supermanifold. This is most naturally done in terms of forms, hence why we

wrote the flat space Lagrangian as (3.2.65). We will begin with a discussion of the

superparticle on a supermanifold in Lorentz signature as given in [48] as there are a

few steps which seem unclear or even incorrect. After this, we will turn to the case

that we require of the superparticle on a supermanifold with Euclidean signature.

The difference between each model comes from the supergravity constraints, basi-

cally coming down to factors of i.

The Lagrangian of the superparticle on a curved supermanifold background takes the

same form as (3.2.65) where we promote the flat vielbein, e, to the curved vielbein,

E , and promote the gauge field, Γ, to a general superfield so that the Lagrangian

becomes

L =
ĖzĖ z̄√
h

+ 2µĖAΓA + µ2
√
h (3.2.66)

where Ėz ≡ żME z
M etc. Now, we have to satisfy the Bianchi identities and con-

straints on the connection that allow us to simplify the above Lagrangian. The full

covariant derivative containing the effect of spatial curvature and the gauge fields is

∇̂A = ∇A + ΓA = EMA ∂M + ΩA + ΓA (3.2.67)

where ΩA = ωAM is the spin connection. Note, we have MΓθ = 1
2
Γθ and MΓθ̄ =

−1
2
Γθ̄. The (1,1) supergravity constraints in Lorentz signature are

{∇̂θ, ∇̂θ} = 2i∇̂z, {∇̂θ̄, ∇̂θ̄} = 2i∇̂z̄ (3.2.68)
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Fθθ̄ = Fθ̄θ = ∇θ̄Γθ +∇θΓθ̄ = i. (3.2.69)

Substituting (3.2.67) into (3.2.68) and noting that {∇θ,Γθ} = ∇θΓθ and {Γθ,Γθ} =

0, allows us to solve for Γz in terms of Γθ and an equation relating the covariant

derivatives of z and θ, with similar results for θ̄ and z̄:

Γz = −i∇θΓθ, Γz̄ = −i∇θ̄Γθ̄ (3.2.70)

{∇θ,∇θ} = 2i∇z, {∇θ̄,∇θ̄} = 2i∇z̄. (3.2.71)

The constraints on the covariant derivatives are then solved in conformal gauge in

terms of a compensator superfield, S, as

∇θ = eS
(
D + 2(DS)M

)
, ∇θ̄ = eS

(
D̄ − 2(D̄S)M

)
(3.2.72)

where D ≡ ∂θ + iθ∂ and D̄ ≡ ∂θ̄ + iθ̄∂̄ are the Lorentzian superderivatives. (3.2.70)

gives us

Γz = −ieS[DΓθ + (DS)Γθ], Γz̄ = −ieS[D̄Γθ̄ + (D̄S)Γθ̄] (3.2.73)

and (3.2.71) gives us

∇z = e2S
(
∂−2i(DS)D+2(∂S)M

)
, ∇z̄ = e2S

(
∂̄−2i(D̄S)D̄−2(∂̄S)M

)
. (3.2.74)

From these we can read off the elements of the inverse supervielbein, E M
A ,

E M
A =


e2S
(
1 + 2(DS)θ

)
0 −2ie2SDS 0

0 e2S
(
1 + 2(D̄S)θ̄

)
0 −2ie2SD̄S

ieSθ 0 eS 0

0 ieS θ̄ 0 eS
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One can then invert this to obtain the supervielbein. To invert we need the formula

for the inverse of a supermatrix. For a general even supermatrix,

M =

 A B

C D


with A and D composed of commutative elements and B and C composed of anti-

commutative elements then

M−1 =

 (A−BD−1C)−1 −A−1B(D − CA−1B)−1

−D−1C(A−BD−1C)−1 (D − CA−1B)−1


We can use this to compute the supervielbein:

E A
M =


e−2S 0 2ie−SDS 0

0 e−2S 0 2ie−SD̄S

−ie−2Sθ 0 e−S[1− 2(DS)θ] 0

0 −ie−2S θ̄ 0 e−S[1− 2(D̄S)θ̄]


From this, we obtain sdet(E A

M ) = e−2S [49]. We now have everything we need to

write the Lagrangian in terms of the superspace coordinates (z, θ) as

L = e−4S ππ̄√
h
− 2iµe−S

(
π(DΓθ − (DS)Γθ) + π̄(D̄Γθ̄ − (D̄S)Γθ̄)

)

−2µe−S(Γθθ̇ + Γθ̄
˙̄θ) + µ2

√
h. (3.2.75)

Introducing G ≡ e−SΓθ and Ḡ ≡ e−SΓθ̄ allows us to simplify the Lagrangian to

L =
e−4Sππ̄√

h
− 2iµ[πDG+ π̄D̄Ḡ]− 2µ(Gθ̇ + Ḡ ˙̄θ) + µ2

√
h. (3.2.76)

Comparing this Lagrangian with the Lagrangian for the bosonic particle in a curved

space and in conformal gauge, we see that e−4S represents a superconformal factor.

When expanded into its component fields, one can obtain the various components

of the supergravity multiplet as is done in [48].
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The constraint (3.2.69) becomes

DḠ+ D̄G = ie−2S. (3.2.77)

One can go ahead and solve for G and so obtain the full Lorentzian Lagrangian for

the superparticle coupled to a curved background. With this, one can then use this

Lagrangian as the starting point for a path integral formalism. This will require

a treatment of the various symmetries of the superparticle. We will do this in the

next section for the case of the Euclidean superparticle.

3.2.3 Euclidean superparticle

We now turn to the dynamics of the superparticle on a curved supermanifold with

Euclidean signature. We begin with (3.2.66) as the Lagrangian. The Euclidean

supergravity constraints are

{∇̂θ, ∇̂θ} = 2∇̂z, {∇̂θ̄, ∇̂θ̄} = 2∇̂z̄ (3.2.78)

Fθθ̄ = Fθ̄θ = ∇θ̄Γθ +∇θΓθ̄ = 1. (3.2.79)

Substituting in the covariant derivatives, (3.2.67), gives this time

Γz = ∇θΓθ, Γz̄ = ∇θ̄Γθ̄ (3.2.80)

{∇θ,∇θ} = 2∇z, {∇θ̄,∇θ̄} = 2∇z̄. (3.2.81)

We again solve the constraints on the covariant derivatives by

∇θ = eS
(
D + 2(DS)M

)
, ∇θ̄ = eS

(
D̄ − 2(D̄S)M

)
(3.2.82)

but now with the Euclidean superderivatives D = ∂θ + θ∂ and D̄ = ∂θ̄ + θ̄∂̄, so that

Γz = eS
(
DΓθ + (DS)Γθ

)
, Γz̄ = eS

(
D̄Γθ̄ + (D̄S)Γθ̄

)
. (3.2.83)
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Substituting (3.2.82) into (3.2.81) then gives

∇z = eS[∂ + 2(DS)D + 2(∂S)M ], ∇z̄ = eS[∂̄ + 2(D̄S)D̄ − 2(∂̄S)M ]. (3.2.84)

From these we can write down the inverse supervielbein:

E M
A =


e2S
(
1 + 2(DS)θ

)
0 2e2SDS 0

0 e2S
(
1 + 2(D̄S)θ̄

)
0 2e2SD̄S

eSθ 0 eS 0

0 eS θ̄ 0 eS


and invert to obtain the supervielbein

E A
M =


e−2S 0 2e−SDS 0

0 e−2S 0 2e−SD̄S

−e−2Sθ 0 e−S[1− 2(DS)θ] 0

0 −e−2S θ̄ 0 e−S[1− 2(D̄S)θ̄]


With this, we can write the Lagrangian in superspace coordinates as

L = e−4S ππ̄√
h

+ 2µe−S
(
π(DΓθ − (DS)Γθ) + π̄(D̄Γθ̄ − (D̄S)Γθ̄)

)

−2µe−S(Γθθ̇ + Γθ̄
˙̄θ) + µ2

√
h. (3.2.85)

Defining G and Ḡ as before we find

L = e−4S ππ̄√
h

+ 2µ(πDG+ π̄D̄Ḡ)− 2µ(Gθ̇ + Ḡ ˙̄θ) + µ2
√
h (3.2.86)

and the supergravity constraint (3.2.79) becomes

DḠ+ D̄G = e−2S. (3.2.87)
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The change of the Lagrangian under a general variation of the form δz = −θδθ is

δL = 2e−4S ππ̄√
h

(
δθ̄D̄(−2S) + δθD(−2S)

)
− 2e−4S

√
h

(
π ˙̄θδθ̄ + π̄θ̇δθ

)
−2µe−2S(δθ̄θ̇ + δθ ˙̄θ)− 2µe−2S

(
πδθ̄D(−2S) + π̄δθD̄(−2S)

)
−δ
√
h

(
e−4S ππ̄

h
− µ2

)
(3.2.88)

where we have used (3.2.87). The Lagrangian is then kappa invariant iff

δκθ = −
(
κe2S +

κ̄π

µ
√
h

)
, δκθ̄ = −

(
κπ̄

µ
√
h

+ κ̄e2S

)

δκ
√
h =

2 ˙̄θκ

µ
− 2κπ̄D̄(−2S)

µ
+

2θ̇κ̄

µ
− 2κ̄πD(−2S)

µ
. (3.2.89)

As in the bosonic model we wish to consider the massless limit of the superparticle.

Taking µ = 0 gives the Lagrangian

L = e−4S ππ̄√
h
. (3.2.90)

The massless kappa transformations are obtained by setting κ′ ≡ κ/µ and then

letting µ→ 0.

δκθ = − κ̄π√
h
, δκθ̄ = − κπ̄√

h
, δκz = −θδκθ, δκz̄ = −θ̄δκθ̄

δκ
√
h = 2 ˙̄θκ− 2κπ̄D̄(−2S) + 2θ̇κ̄− 2κ̄πD(−2S). (3.2.91)

The importance of this is that one can use the kappa transformations to pick a gauge

in which θ̇ = ˙̄θ = 0 so that θ(t) = θ(a) and θ̄(t) = θ̄(a) for all t. Gauge fixing θi and

denoting the gauge fixed form of −4S(z, θ(b)) as φ̃(z) we find that the Lagrangian

reduces to

L′2 =
1√
h
eφ̃ż ˙̄z (3.2.92)

which is the Lagrangian of the free massless bosonic particle in conformal gauge. We

cannot gauge fix the einbein in the same way as in the bosonic case as
∫
dt
√
h−T is
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no longer kappa invariant. We will return to this point when evaluating functional

integrals.

In the bosonic case we could consider calculating the expectation of δ(z1− z2). The

problem here is that E defined in (3.2.58) isn’t kappa invariant so we cannot use

gauge fixing to reduce the average to a bosonic calculation. We can, however, build

kappa invariants from E. Recall the functional ñ defined by (3.1.15). Rewriting in

terms of the variable s = z − w we have

ñ =

∫
Cz ,Cw

dtdt′ (ṡs̄′ − ˙̄ss′) δ2(s) (3.2.93)

where s = z(t) − w(t′) and ṡ ≡ d
dt
s and s′ ≡ d

dt′
s. Note, in this form we can quite

easily generalise ñ to be supersymmetric by choosing a suitable s as discussed earlier.

Under a general variation of Cz we have

δñ =

∫
dtdt′

((
δṡ s̄′ − δ ˙̄s s′

)
δ2(s) +

(
ṡs̄′ − ˙̄ss′

)
(δs ∂ + δs̄ ∂̄

)
δ2(s)

)
. (3.2.94)

Integrating by parts on the first term gives

δñ =

∫
dtdt′

(
d

dt

(
δs s̄′δ2(s)− δs̄ s′δ2(s)

)
−
(
δs ˙̄s′ − δs̄ ṡ′

)
δ2(s)

− d

dt′
(
δs ˙̄s δ2(s)− δs̄ ṡ δ2(s)

))
(3.2.95)

for s = z − w the middle term vanishes and the last term is a total derivative. The

variation of this quantity then depends only on the end points of the two curves.

In the next section we will show the reason for this. For now, if we instead use

l = z1− z2− θ1θ2 in (3.1.15), then the middle term doesn’t vanish and the last term

is not a total derivative. The variation of ñ in this case is therefore not so simple.

Also, inserting the κ transformations shows that ñ is not a kappa invariant. If instead

we use l′ = z1− z2 + θ0
1θ1− θ0

2θ2− θ0
1θ

0
2 in ñ, where θ0

i are the end point values of θi,

then we see that again the variation depends only on the endpoints and as δκl′ = 0,

we see that it is also kappa invariant. Importantly, l′ is also supersymmetric. This

is then the functional we wish to consider.
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3.2.4 Supersymmetric average

We can now compute the average of the supersymmetric “line of force” on a curved

supermanifold [47]. To this we should add Faddeev-Popov terms associated with

the fixing of the reparametrisation invariance and kappa symmetry. The former are

the same as in the bosonic case, whilst for the kappa symmetry they take the form

λ̄ (θ(b)− θ) + λ
(
θ̄(b)− θ̄

)
+ B̄

Cπ̄
√
g

+B
C̄π
√
g
. (3.2.96)

λ acts is a Lagrangian multiplier imposing the gauge condition and the ghosts B

and C generate the Faddeev-Popov determinant of a local quantity (as opposed to

a differential operator) which can be ignored.

The observables that we work with should be BRST invariant. For example, in the

bosonic case we focus on long curves by inserting δ(
∫ 1

0

√
g dt−T ) into the functional

integral. This is reparametrisation invariant, which is sufficient in the bosonic case,

but it is not κ invariant which we also need in the supersymmetric case. However,

the kappa variation of

√
h
(
1− (θ̄ − θ̄0)D̄(−2S)− (θ − θ0)D(−2S)

)
≡ ζ (3.2.97)

is zero when we impose the gauge conditions so we can use this to make a BRST

invariant insertion. Actually, imposing the kappa gauge conditions reduces this to

the bosonic condition and so imposing all of the gauge conditions will reduce the

reparametrisation fixing delta function in the functional integral to the bosonic delta

function. The average of some supersymmetric and κ invariant functional, Ω[C1],

over C1 is found by computing the functional integral

〈Ω〉C1
≡ 1

Z

∫
DgDz1Dθ1DλDBDC δ

(∫ 1

0

ζdt− T
)

Ω[C1] e−SFP [
√
h,z1,θ1,λ,B,C] ,

(3.2.98)

where SFP is the gauge fixing action including the superparticle action and Faddeev-

Popov terms. The gauge conditions reduce the functional integral to

〈Ω〉C1
=

1

Z

∫
Dz1 Ω′[C1] e−S

′[z1] (3.2.99)
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with

S ′[z] =
1

2

∫ T

0

dt eφ̃ż ˙̄z (3.2.100)

and Ω′ is the gauge fixed form of Ω. (3.2.99) is then equivalent to the bosonic

functional integral considered before. There is a slight problem with our symmetric

l′. Inserting it into (3.2.58), we see that the electric field no longer satisfies Gauss’

law. This is not too much of a problem as the quantity of interest will be ñ.

The average we calculate will then be the supersymmetric and kappa invariant line

of force

〈∫
C1

dl′1 δ
2(l′)

〉
C1

=
1

Z

∫
D[z1]

(∫
C1

dz1 δ
2(z1 − z2 − θ0

1θ
0
2)

)
e−

1
2

∫ T
0 dt eφ̃ż1 ˙̄z1 .

(3.2.101)

This represents a supersymmetric generalisation of the bosonic “lines of force” rather

than a generalisation of the electrostatic field.

The Faddeev-Popov terms in the action do not take part in the integral and so can

be absorbed into the normalisation constant. Now, if we define z′2 ≡ z2 + θ0
1θ

0
2 then

this average just reduces to the bosonic average. We shall, therefore, revert back to

general coordinates, xµ, to mirror the bosonic derivation, pausing to explain a few

important points. The average to compute now is then

〈∫
C1

δ2(x1 − x′2)dxµ1

〉
C1

=

{
δ

δAµ(x′2)

1

Z

∫
Dx1 e

−
∫ T
0 ( 1

2
gµν(x1) ẋµ1 ẋ

ν
1−Aµẋ

µ
1) dt
} ∣∣∣
A=0

. (3.2.102)

By analogy with the bosonic case this becomes

=
1

2

∫ ∞
0

dt
(
−√ggµν∂νG

′0
t (b1, x

′
2) +
√
ggµν∂νG

′0
T−t(x

′
2, a1))

)
(3.2.103)

after fixing the normalisation constant and taking the T →∞ limit. Now, G ′0t (x1, x
′
2)

is not equivalent to the bosonic heat kernel used in the previous section due to

subtleties involving the θ coordinates. In this case, we have

G ′0T (x1, x
′
2) = 〈x1| e−TĤ0 |x′2 〉+ 〈x1 | e−TĤ0 |x′R2 〉. (3.2.104)

July 11, 2018



3.2. Supersymmetric electrostatics 91

We are still considering specular reflections of the curves when they reach the bound-

ary but in this case the reflected coordinate of the i’th curve is (xRi , θ
R
i ) and so

x′R2 = xR2 +θ0
1θ

0R
2 . The integral of G ′0T over t results in a generalisation of the Green’s

function discussed earlier, denoted by G′:

∫ ∞
0

dt

(
G ′T (z1, z

′
2)− 1

A

)
= 2G′(z1, z

′
2). (3.2.105)

It satisfies

−4e−φ̃∂̄∂G′ = 2e−φ̃δ2(z1 − z2 − θ0
1θ

0
2)− 1

A
(3.2.106)

and modified Neumann conditions

(∂i − ∂̄i)G′(zi, zj, θi, θj)|zi=z̄i,θi=θ̄i = 0. (3.2.107)

The solution to (3.2.106) satisfying (3.2.107) is then

G′ = − 1

2π
log(|z1− z2− θ0

1θ
0
2|)−

1

2π
log(|z1− z̄2− θ0

1 θ̄
0
2|)−Ψ(z1, z2, θ

0
1, θ

0
2) (3.2.108)

where Ψ solves

−4eφ̃(z1,θ
)
1 ∂̄1∂1Ψ = −4eφ̃(z2,θ0

2)∂̄2∂2Ψ =
1

A
(3.2.109)

and the modified Neumann conditions. G′ actually solves the Green’s function

equation for the super-Laplacian, ∆F ≡ −4D̄D. When θ1 and θ2 are dynamical we

believed the spectral decomposition of the supersymmetric heat kernel was needed to

compute the functional integral. With the gauge fixing described above, the problem

reduced to the bosonic calculation and so there was no need for this. Appendix A

gives the derivation of the spectral decomposition of the supersymmetric heat kernel.

Using the results above we find

〈∫
C1

δ2(z1 − z′2)dz1

〉
C1

=
∂G′(b1, z

′
2)

∂z̄2

− ∂G′(z′2, a1)

∂z̄2

. (3.2.110)

From (3.2.109) it is clear that Ψ can be decomposed as Ψ(z1, z2, θ1, θ2) = B(z1, θ1)+

B(z2, θ2). Because of this, (3.2.110) is independent of the zero mode contribution
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to the Green function. Using (3.2.108) we find

〈∫
C1

δ2(z1 − z2 − θ0
1θ

0
2) dz1

〉
C1

=

1

4π

(
1

b̄1 − z̄2 − θ̄0
1 θ̄

0
2

+
1

b1 − z̄2 − θ0
1 θ̄

0
2

)
− 1

4π

(
1

ā1 − z̄2 − θ̄0
1 θ̄

0
2

+
1

a1 − z̄2 − θ0
1 θ̄

0
2

)
.

(3.2.111)

Similarly, we find 〈∫
C1

δ2(z1 − z2 − θ0
1θ

0
2) dz̄1

〉
C1

=

1

4π

(
1

b1 − z2 − θ0
1θ

0
2

+
1

b̄1 − z2 − θ̄0
1θ

0
2

)
− 1

4π

(
1

a1 − z2 − θ0
1θ

0
2

+
1

ā1 − z2 − θ̄0
1θ

0
2

)
.

(3.2.112)

This turns out to be a straight forward analogue of the bosonic result. This is

a good job as the supersymmetric ψ theory used to implement path-ordering has

propagator
〈
ψ†(z1, θ1)ψ(z2, θ2)

〉
∼ sign(z1− z2− θ1θ2). If we can obtain the bosonic

propagator from the quantity n then we should similarly be able to obtain the

fermionic propagator from the supersymmetric generalisation.

We are now finally in a position to obtain this result for the bosonic and fermionic

theories.

3.3 The intersection of random curves

Our aim is find a field theory with the required dynamics for JA. We have seen hints

of the kinds of properties we need. Let us return to the bosonic result (3.1.46):

〈∫
C1

δ2(z1 − z2)dz1

〉
C1

=
1

4π

(
1

b̄1 − z̄2

+
1

b1 − z̄2

− 1

ā1 − z̄2

− 1

a1 − z̄2

)
(3.3.113)

along with the conjugate result (3.1.47)

〈∫
C1

δ2(z1 − z2)dz̄1

〉
C1

=
1

4π

(
1

b1 − z2

+
1

b̄1 − z2

− 1

a1 − z2

− 1

ā1 − z2

)
. (3.3.114)
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Consider associating z2 to the coordinates of a second curve, C2. Integrating the

first result over z̄2 and the second result over z2 in the combination

∫
C2

〈∫
C1

δ2(z1 − z2)dz1

〉
C1

dz̄2 −
∫
C2

〈∫
C1

δ2(z1 − z2)dz̄1

〉
C1

dz2

=
1

4π

(
logC2

(
b1 − b2

b̄1 − b̄2

)
− logC2

(
b1 − a2

b̄1 − ā2

)
+ ...

)
. (3.3.115)

These integrations give a complex logarithm. The complex logarithm is multivalued

and so requires a branch cut in the complex plane to be well defined. On the

worldsheet we have no preferred direction; the only directional option we have after

averaging over the first curve is the second curve C2. We, thus, choose to cut the

logarithm along the second curve, which explains the subscript in (3.3.115). We will

return to this point when we consider averaging over the second curve.

Notice that this result has the form of an angle that C2 makes between the points

b1 and b2 and b1 and a2 respectively since

log
(
z

|z|

)
= 2i arg(z). (3.3.116)

This is the right kind of thing we require for the propagator of the Lie algebra

variables in the contact interaction. We, therefore, propose that the object and its

averages that we should study is:

n[C1, C2] = −i
∫
C2

∫
C1

δ2(z1 − z2) (dz1dz̄2 − dz̄1dz2). (3.3.117)

This functional actually counts the number of intersections of the two curves C1

and C2. It was originally found when we looked for κ invariant functionals in the

supersymmetric theory. Its antisymmetry is emphasised if we use tensor notation

n[C1, C2] =

∫
C2

∫
C1

δ2(x1 − x2) εabdx
a
1dx

b
2. (3.3.118)

In contrast to the previous section, we now have a double integral to worry about.

For naturalness, it therefore makes sense to average over both curves. Taking into

account the skew symmetry of n[C1, C2] under interchange of C1 and C2 its expec-
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tation value will be shown to depend on b1 and b2 as

〈n[C1, C2]〉C1,C2 = k
(b1 − b2)

|b1 − b2|
= k sign(b1 − b2) (3.3.119)

with constant k. This function can be used to implement path-ordering along the

boundary, but also by taking the ends of the curve to move into the interior of the

world-sheet we would obtain an extension of path-ordering into the body of the

world-sheet. Above, we have essentially calculated the expectation value over one

curve. We will now show how one can obtain (3.3.119) by integrating over the sec-

ond.

We mentioned earlier that the only directional object on the worldsheet after av-

eraging over the first curve is the second curve and so chose to cut the logarithms

along C2. The trouble with this is that we want to average over C2. To avoid issues

with averaging over functions cut along the curve we are averaging over, we can

instead express these as integrals cut along a fixed reference curve, C∗2 , from a2 to

b2 plus 2πi multiples of the winding number about the the points b1 and a of the

closed curve made up of C2 and C∗2 reversed. The winding numbers can then be

a2

b2b1

a

C2

C∗2

C∗1

Figure 3.4: A possible configuration of the curves C∗1 , C2 and C∗2 illustrating
(3.3.120). This diagram was produced by Prof. Mansfield and is found in [50].

written in terms of the number of intersections of C2 and C∗2 with a reference curve
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C∗1 from b1 to a, so

〈n[C1, C2] 〉C1 =

− 1

2π
= logC∗2

(
(b1 − b2)(b̄1 − b2)

(b1 − a2)(b̄1 − a2)

)
+

1

2
= logC∗2

(
(a− b2)(ā− b2)

(a− a2)(ā− a2)

)
− (n[C2, C

∗
1 ]− n[C∗2 , C

∗
1 ]) . (3.3.120)

= log denotes the imaginary part of the logarithm and the subscript denotes that

the logarithms, viewed as functions of b1, a and their complex conjugates are cut

along C∗2 . The only dependence on C2 is via n[C2, C
∗
1 ] and a2 so if we now average

over C2 using

〈n[C2, C
∗
1 ] 〉C2 = (3.3.121)

− 1

2π
= logC∗1

(
(b2 − b1)(b̄2 − b1)

(b2 − a)(b̄2 − a)

)
+ = logC∗1

(
(a2 − b1)(ā2 − b1)

(a2 − a)(ā2 − a)

)
(3.3.122)

where now the subscript denotes that the logarithms, viewed as functions of b2, a2

and their complex conjugates, are cut along C∗1 .

Observe that the following difference in logarithms cut along C∗1 and C∗2 is propor-

tional to the number of times C∗1 and C∗2 intersect:

logC∗2

(
(b1 − b2)(a− a2)

(b1 − a2)(a− b2)

)
− logC∗1

(
(b2 − b1)(a2 − a)

(a2 − b1)(b2 − a)

)
= 2πi n[C∗2 , C

∗
1 ] . (3.3.123)

This is illustrated in Figure 3.5. The angle swept out by the line from z to b1 as

a2α2

b2
β2

b1
β1

a
α1

θ

a2α2

b2
β2

b1
β1

a
α1

Figure 3.5: Two configurations of the curves C∗1 and C∗2 . This diagram was produced
by Prof. Mansfield and is found in [50].

July 11, 2018



3.3. The intersection of random curves 96

z moves along C∗2 from a2 to b2 is the imaginary part of logC∗2 ((b1 − b2)/(b1 − a2))

which is −β1 in both figures. Similarly the angle swept out by the line from z to a

is the imaginary part of logC∗2 ((a− b2)/(a− a2)) which is −α1 in both figures. The

imaginary part of logC∗1 ((b2 − b1)(a2 − a)/((b2 − a)(a2 − b1))) is the difference in the

angles swept out by the lines from z to b2 and from z to a2 as z moves along C∗1 from

a to b1. For the left hand figure, in which the curves C∗1 and C∗2 do not intersect,

this is β2−α2. In the right hand figure the line from z to a2 sweeps out −(2π−α2)

so the difference in the two angles is β2 + (2π − α2). Also, in the right hand figure

the curves C∗1 and C∗2 intersect with n[C∗2 , C
∗
1 ] = −1, so for the two figures (3.3.123)

is

α1 − β1 − (β2 − α2) = 0, and α1 − β1 − (β2 + 2π − α2) = −2π , (3.3.124)

both of which hold because α1, α2 and θ are the angles of the top triangle in the

figure and β1, β2 and θ are the angles in the lower triangle. I must thank Prof.

Mansfield for help with computing this second average.

Using (3.3.123), we are just left with

〈 〈n[C1, C2] 〉C1 〉C2 = −=
(

logC∗2
(b̄1 − b2)(ā− a2)

(ā− b2)(b̄1 − a2)
− logC∗1

(b̄2 − b1)(ā2 − a)

(b̄2 − a)(ā2 − b1)

)
.

(3.3.125)

To obtain (3.3.119) we must integrate over one end point of each curve. Integrating

over a and a2 (to obtain a result in terms of b1 and b2) we find

∫
d2ad2a2

eφ(a)+φ(a2)

8πA2
〈 〈n[C1, C2] 〉C1 〉C2 =

−=
∫

Σ

(
logC∗2

(b̄1 − b2)(ā− a2)

(ā− b2)(b̄1 − a2)
− logC∗1

(b̄2 − b1)(ā2 − a)

(b̄2 − a)(ā2 − b1)

)
eφ(a)+φ(a2)

8πA2
d2a d2a2 .

(3.3.126)

We can now interpret this expression in the light of the comments relating to path-

ordering along the boundary using (3.3.119). Let b1 and b2 approach the real axis

so b1 = x1 + iε1 and b2 = x2 + iε2 with x1 and x2 real, and denote by G(x1, x2) the
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resulting value of 〈 〈n[C1, C2] 〉C1 〉C2 then

logC∗2 (b̄1 − b2)− logC∗1 (b̄2 − b1) = iπ
x1 − x2

|x1 − x2|
. (3.3.127)

As this is independent of a and a2, the area integrals in (3.3.126) can be done to

give

G(x1, x2) = − x1 − x2

2|x1 − x2|
+ F (x1)− F (x2) , (3.3.128)

which is (3.3.119) apart from the function F . To interpret F , differentiate with

respect to x1

∂

∂x1

G(x1, x2) = −δ(x1 − x2) + F ′(x1). (3.3.129)

The real axis parametrises the boundary of Σ which has finite length and the co-

ordinates x = ±∞ describe the same point on this boundary so for consistency we

should have

0 =

∫ ∞
−∞

∂

∂x1

〈 〈n[C1, C2] 〉C1 〉C2 dx1 = −1 +

∫ ∞
−∞

F ′(x1) dx1 , (3.3.130)

but from (3.3.126)

F ′(x1) = =
∫

Σ

(
1

x1 − a2

− 1

x1 − ā2

)
eφ(a2)

4πA
d2a2 (3.3.131)

which does indeed integrate to +1. Now (3.3.129) is a Green’s function equation for

∂/∂x on a closed loop, i.e. the propagator for a one-dimensional field ψ with action∫
dx ψ†ψ′.

3.3.1 Path-ordering of the Wilson loop

The field theory, ψ, with propagator
〈
ψ†1ψ2

〉
∼ sign(x1 − x2) has been used to

represent path-ordering around the loop in [35]- [40]. Since G(x1, x2) is just the

boundary value of the average of the intersection number we have a natural way of

extending path-ordering into the interior of Σ. This extension coincides with the

propagator of the topological field theory constructed in [41] for just this purpose.

To see this connection note that in Broda’s model the boundary field ψ is assumed
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to be the boundary value of a bulk field and the extension into the bulk can be

done arbitrarily giving rise to a topological field theory with invariance δψ = θ

with θ being any function vanishing on the boundary. This invariance is gauge-

fixed by requiring ψ to be harmonic. Just as in the topological theory the average

intersection number satisfies Laplace’s equation in the bulk because it is non-singular

as b1 approaches b2 in the interior.

In the string theory, after averaging over worldsheets spanning the fixed boundary,

B, we are left with (2.3.94). We can then use the function (3.3.128) defined on the

boundary as the propagator for ψ

ψ†α(b1)ψβ(b2) = δαβ

∫
d2ad2a2

eφ(a)+φ(a2)

8πA2
〈 〈n[C1, C2] 〉C1 〉C2 = δαβG(b1, b2).

(3.3.132)

With this, the string expectation becomes (2.3.80) and so provides a way to in-

troduce path-ordering into the string theory. We note that this model lacks the

necessary singularities required to produce the three gluon vertex. We will come

back to this point after calculating the average number of intersections of curves on

a supermanifold.

3.3.2 Intersection of curves on a supermanifold

We will now turn to the supersymmetric generalisation of the calculation given

above. As we have shown when looking at supersymmetric electrostatics, we must

modify the displacement such that it is both supersymmetric and kappa invariant.

This leads us to the number of intersections of supersymmetric curves taking the

form

nF [C1, C2] = i

∫
C1,C2

(π0
1π̄

0
2 − π̄0

1π
0
2) δ2(l′) dξ1dξ2 (3.3.133)

with π0
i ≡ żi + θ0

i θ̇i. To begin with, we will consider averaging this functional over

both curves, keeping all four end points fixed. We will then consider averaging over

one of the end points of each curve using a gauge fixed volume element. This will

lead to the supersymmetric analogue of the bosonic result above and so can be used

to implement path-ordering into the supersymmetric string theory.

July 11, 2018



3.3. The intersection of random curves 99

Using (3.2.111), (3.2.112) and (3.3.120) we can conclude that the number of inter-

sections of two curves, C1 and C2, on a supermanifold, averaged over C1 is

〈nF [C1, C2]〉C1
= − 1

2π
=log2∗

(
(b1 − b2 − θ0

1θ
0
2)(b̄1 − b2 − θ̄0

1θ
0
2)

(b1 − a2 − θ0
1θ

0
2)(b̄1 − a2 − θ̄0

1θ
0
2)

)

+
1

2π
=log2∗

(
(a1 − b2 − θ0

1θ
0
2)(ā1 − b2 − θ̄0

1θ
0
2)

(a1 − a2 − θ0
1θ

0
2)(ā1 − a2 − θ̄0

1θ
0
2)

)
−
(
n[C2, C

∗
1 ]−n[C∗2 , C

∗
1 ]
)
. (3.3.134)

The number of intersections of C∗2 and C∗1 is a straight forward generalisation of the

bosonic case and can be obtained by shifting x2 as before, we have

n[C∗2 , C
∗
1 ] =

1

2π
=log2∗

(
(b1 − b2 − θ0

1θ
0
2)(a− a2 − θ0

1θ
0
2)

(b1 − a2 − θ0
1θ

0
2)(a− b2 − θ̄0

1θ
0
2)

)

− 1

2π
=log1∗

(
(b1 − b2 − θ0

1θ
0
2)(a− a2 − θ0

1θ
0
2)

(b1 − a2 − θ0
1θ

0
2)(a− b2 − θ0

1θ
0
2)

)
. (3.3.135)

We also have

〈nF [C2, C
∗
1 ]〉C2

= − 1

2π
=log1∗

(
(b1 − b2 − θ0

1θ
0
2)(b1 − b̄2 − θ0

1 θ̄
0
2)

(a− b2 − θ0
1θ

0
2)(a− b̄2 − θ0

1 θ̄
0
2)

)

+
1

2π
=log1∗

(
(b1 − a2 − θ0

1θ
0
2)(b1 − ā2 − θ0

1 θ̄
0
2)

(a− a2 − θ0
1θ

0
2)(a− ā2 − θ0

1 θ̄
0
2)

)
. (3.3.136)

Using these results we find

〈
〈nF [C1, C2]〉C1

〉
C2

=
1

2π
=log1∗

(
(b1 − b̄2 − θ0

1 θ̄
0
2)(a1 − ā2 − θ0

1 θ̄
0
2)

(a1 − b̄2 − θ0
1 θ̄

0
2)(b1 − ā2 − θ0

1 θ̄
0
2)

)

− 1

2π
=log2∗

(
(b̄1 − b2 − θ̄0

1θ
0
2)(ā1 − a2 − θ̄0

1θ
0
2)

(b̄1 − a2 − θ̄0
1θ

0
2)(ā1 − b2 − θ̄0

1θ
0
2)

)
. (3.3.137)

We can now consider integrating over one of the end points. This is not as straight

forward as in the bosonic case as the invariant volume element on the supermanifold

is sdet(E) d2ad2θa. There are a couple of problems with this. The first is that we

mentioned earlier that we would like the result to be dependent on the θ coordinates,

but, integrating with this measure will remove all this dependence since we have

gauge fixed θ to take the same value along the curves. The second problem is

that sdet(E) = e−2S = eφ̃/2 with an extra factor of 1/2 appearing compared to the
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bosonic case. This is because we are taking into account the θ coordinates. What

we really need is the reduced volume element corresponding to just the bosonic

coordinates. We can obtain this by writing down the line element and imposing the

gauge conditions

ds2 = ηABE A
M dzME B

N dzN = E z̄
z E z

z̄ dzdz̄ +
1

2
{E θ

z , E θ̄
z̄ }dzdz̄

= eφ̃dzdz̄ , (3.3.138)

therefore, the invariant volume element for the i’th end point is √g d2ai = eφ̃d2ai.

We can now integrate over a1 and a2 and let (b1, θ1) and (b2, θ2) approach the bound-

ary. Call the result of these actions GF (x1, θ1;x2, θ2) so that

GF = − (x1 − x2 − θ1θ2)

2|x1 − x2 − θ1θ2|
+ F̃ (x1, x2, θ1θ2). (3.3.139)

The first term generalises the step function to superspace. Differentiating with

respect to (x1, θ1) gives

D1GF = −(θ1 − θ2)δ(x1 − x2) +D1F̃ . (3.3.140)

Integrating along the boundary requires

0 =

∫ +∞

−∞
dx1

∫
dθ1 D1GF = −1 +

∫ +∞

−∞
dx1

∫
dθ1 θ1

∂

∂x1

F̃ . (3.3.141)

The integral on the RHS is exactly the same as in the bosonic case after integrating

out θ1 and so this does hold. (3.3.139) is then the Green’s function equation for

D = ∂/∂θ+θ∂/∂x on a closed loop. This is a suitable supersymmetric generalisation

of the bosonic case that one can use to introduce path-ordering into the interior of

the spinning string model.

3.3.3 Three point vertex?

As alluded to earlier, this model on the worldsheet does not include the necessary

structure required to produce the three gluon vertex. The reason for this is that we
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are forced to cut the logarithms along C2 which we then average over. To do this

calculation we replaced the average over C2 with the average over a reference curve,

C∗2 , plus a winding number. Integrating over this winding number cancelled out the

terms that would give rise to the singularities we seek. Had our theory had some

notion of direction built in we would not have to average over the second branch cut

and would find that the required structure does in fact appear. We will show this in

the bosonic model, though it similarly exists in the supersymmetric model. Imagine

that we have some notion of direction already in our model, say perpendicular to the

x axis for simplicity. Then the average number of intersections between two curves

over C1 is

〈n[C1, C2] 〉C1 = − 1

2π
= logy

(
(b1 − b2)(b̄1 − b2)

(b1 − a2)(b̄1 − a2)

)
+

1

2
= logy

(
(a− b2)(ā− b2)

(a− a2)(ā− a2)

)
.

(3.3.142)

Noting that

= log(b1 − b2) = arg(b1 − b2) =
1

2i
log
(
b1 − b2

b̄1 − b̄2

)
, (3.3.143)

then differentiating this with respect to b̄2 we find

∂

∂b̄2

〈n[C1, C2] 〉C1 =
i

4π

(
1

b̄1 − b̄2

+
1

b1 − b̄2

− 1

ā1 − b̄2

− 1

a1 − b̄2

)
. (3.3.144)

Averaging this result over C2 will then have no effect when the end points are held

fixed. Differentiating with respect to b1 gives

∂

∂b1

〈
∂

∂b̄2

〈n[C1, C2]〉C1

〉
C2

=
i

2
δc(b1 − b2)− i

4π

1

(b1 − b̄2)2
. (3.3.145)

Similarly, one finds

∂

∂b̄1

〈 ∂

∂b2

〈n[C1, C2] 〉C2 〉C1 = − i
2
δc(b1 − b2) +

i

4π

1

(b̄1 − b2)2
. (3.3.146)

The difference in sign of the first term on the right hand side of these two equations

is exactly what we require to produce the three gluon vertex (2.3.97). To show this

we need to look at the contraction terms, C, in the string theory. The relevant term
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is

CA
1µν kC

λσB
2k′ =∫

d2ξ1d
2ξ2 ∂aJ

A(X1)∂cJ
B(X2)

iεab

k2
k[µ∂bPk(X1)ν]

iεcd

k2
k[λ∂dPk(X2)σ]eik·X1+ik′·X2 .

(3.3.147)

where JA = ψ†τAψ. The contractions we need are

∂aJ
A∂cJ

B = ψ†τA∂aψ ∂cψ
†τBψ + ψ†τB∂cψ ∂aψ

†τAψ. (3.3.148)

These contractions can then be evaluated using the above

∂aψ ∂cψ
† = ∂a∂c

〈
〈n[C1, C2]〉C2

〉
C1

=
1

2
εacδ

2(ξ1 − ξ2) + ... (3.3.149)

where the dots represent the extra terms appearing in (3.3.145) and (3.3.146). A

little algebra leads finally to

∂aJ
A∂cJ

B = εabf
ABCδ2(ξ1 − ξ2) JC (3.3.150)

which is precisely (2.3.97). It would remain for us to show that the extra terms

(3.3.145) and (3.3.146) do not contribute to the string functional integral. We will

not do this here as we have a different method of generalising the string theory to

include non-abelian gauge theories that includes path-ordering and self interactions

of the gauge bosons that is applicable to our worldsheet model. Without a natural

notion of direction on the surface, so that we do not have to integrate over a reference

curve, we believe that it may be impossible to find a function, f , that satisfies

∂a∂bf(z1, z2) = εabδ
2
c (z1 − z2). (3.3.151)

The next model we look at satisfies such a relation at the level of the quantum

expectation,
〈
∂aJ

A∂bJ
B
〉

= εabf
ABC JC δ2

c (z1 − z2).

We note that there exists an analogous result within the supersymmetric theory. In
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this case we find

Da
1

〈
Db

2 〈nF [C1, C2]〉C1

〉
C2

=
i

2
σab(θ̄0

1 − θ̄0
2)(θ0

1 − θ0
2)δc(b1 − b2) + ... (3.3.152)

Again, we won’t pursue this line of enquiry any further, since the next model we

consider will contain everything we require.
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Chapter 4

Loop Dynamics of the ψ Theory

4.1 Non-abelian loop dynamics

Work in the 1980s on loop dynamics lead to an interesting result relating the Wilson

loop in the N → ∞ limit to the planar diagrams to all orders of SU(N) gauge

theory [51] [52] [53]. In this section we will show that there exists an equivalent

construction for the ψ theory whose dynamics were investigated above.

We will begin with the result in standard Yang-Mills theory and then generalise this

to the ψ theory. We will show that the loop equation for the ψ theory is equivalent

to the Mandelstam formula [54] but where the path-ordering of the Wilson loop is

achieved by the path integral of the ψ field. The Mandelstam formula leads to the

Migdal-Makeenko equation from which the planar diagrams are obtained, and so

this is an important result to reproduce.

We begin with the standard non-abelian loop variable

L[C] ≡ P exp
(∮

C

AµdX
µ

)
(4.1.1)

where C is a closed curve in spacetime parametrised by Xµ = Xµ(t), 0 ≤ t ≤

2π. Consider now functionally varying the loop, that is considering the effect of

shifting the path of the loop by δX. We need the following relations for path-
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ordered exponentials:

d

dt

(
P exp

∫ t

0

M(τ)dτ

)
=

(
P exp

∫ t

0

M(τ)dτ

)
M(t) (4.1.2)

δ

(
Pexp

∫ 2π

0

M(τ)dτ

)
=

∫ 2π

0

dt

(
P exp

∫ t

0

M(τ1)dτ1

)
δM(t)

(
P exp

∫ 2π

t

M(τ2)dτ2

)

≡
∫ 2π

0

dt P
(
δM(t)exp

∫ 2π

0

M(τ)dτ

)
. (4.1.3)

Using these results we find that the variation of (4.1.1) is

δL[C] =

∫ 2π

0

dt

(
P exp

(∫ t

0

AµdX
µ

))
δ(AµẊ

µ)

(
P exp

(∫ 2π

t

AµdX
µ

))
. (4.1.4)

Expanding the variation in the integrand and performing an integration by parts

gives, using the definition given in (4.1.3),

δL[C] =

∫ 2π

0

dt P
(
Fµν exp

(∮
C

A · dX
))

ẊνδXµ. (4.1.5)

The only gauge invariant quantity we can build from the loop is W [C] = Tr L[C],

hence, the quantities that make sense in the quantum theory will be expectations of

the form 〈W [C]〉, 〈W [C]W [C ′]〉 etc. We will consider the first of these expectations

and define

Ψ[C] ≡ 〈W [C]〉 =

〈
Tr
(
P exp

(∮
C

AµdX
µ

))〉
(4.1.6)

where

〈Ω〉 =

∫
D[A,X] e−SYM . (4.1.7)

Using (4.1.5) we find

δΨ[C] =

〈
Tr
∫ 2π

0

dt P
(
Fµν exp

(∮
C

A · dX
)
ẊνδXµ

)〉
. (4.1.8)

We now make a second variation of X. We obtain two sets of terms, one coming

from the variation of FµνẊνδXµ and the other coming from the loop exponent. The
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result is

δ2δ1Ψ[C] =

〈
Tr
∫ 2π

0

dt P
(
DαFµν exp

(∮
C

A · dX
)
Ẋνδ1X

µδ2X
α

)〉

+

〈
Tr
∫ 2π

0

dt1

∫ 2π

0

dt2 P
(
FµνFαβ exp

(∮
C

A · dX
)
ẊνẊβδ1X

µδ2X
α

)〉
(4.1.9)

where DαFµν ≡ ∂αFµν − [Fµν , Aα] is the non-abelian gauge covariant derivative of

the field strength. Dividing through by δXµ(t1)δXµ(t2) we find

δ2

δXµ(t1)δXµ(t2)
Ψ[C] =

〈
δ(t1 − t2)Tr P

(
DµFµν exp

(∮
C

A · dX
)
Ẋν

)〉

+

〈
Tr P

(
FµνẊ

ν |t1F µ
αẊ

α|t2 exp
(∮

C

A · dX
))〉

. (4.1.10)

We introduce a local derivative

∆ ≡ lim
ε→0

∫ ε

−ε
dt′

δ2

δXµ(t+ t′/2)δXµ(t− t′/2)
(4.1.11)

also known as the area derivative, which, when applied to W [C] picks out only the

first term of (4.1.10) containing the delta function. It is like a Laplacian on the

space of loops. The area derivative of the Wilson loop is then

∆Ψ[C] =

〈
Tr P

(
DµFµν Ẋ

ν exp
(∮

C

A · dX
))〉

. (4.1.12)

Note, DµFµν is proportional to the variation of the Yang-Mills action. In fact we

can integrate out the gauge field by considering the variation of the Yang-Mills part

of the functional integral and relating it to the variation to the integrand of (4.1.12).

Varying the Yang-Mills partition function we find

δAZYM = δA

∫
D[A] exp

(
− 1

4q2

∫
d4X F µνAFA

µν

)
Tr
(
P e

∮
A·dX

)
= 0. (4.1.13)

This leads to the relation

∫
D[A]

(
1

q2

∫
d4X δAAνDµF

µνA

)
e−SYM Tr

(
P e

∮
A·dX

)
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= −
∫
D[A] e−SYMTr

(
P
∮
δAAν τ

AdXν e
∮
A·dX

)
. (4.1.14)

Choosing δAAν = q2τAẊνδ
4(X −X ′) so that we can compare the first term with the

integrand of (4.1.12) we find

∆Ψ[C] = −q2

〈
Tr
(
P
∮

τAdXνδ
4(X −X ′)τAdX ′ν e

∮
A·dX

)〉
. (4.1.15)

Migdal was able to show how one can get from this result to the sum of all planar

diagrams of SU(N) theory in the N →∞ limit [52]. This is the relation we aim to

reproduce in the ψ theory. We expect that the path-ordering will be replaced by a

path integral over ψ, as in the result of the expectation of the Wilson loop (2.3.80).

4.2 Loop dynamics of the ψ theory

We would like to carry out a similar calculation for the boundary ψ theory. In this

theory the path-ordering is achieved by a functional integral over ψ which has a

step function propagator. This simplifies the problem in some sense as the relations

(4.1.2) and (4.1.3) do not need to be used.

To begin with, note that (2.3.80) can be obtained from the loop variable

exp
(
− q

∮
ψ†dX · Aψ

)
. (4.2.16)

At O(q2) the expectation of the loop is

−q
2

2

∮ ∮
ψ†τAψ|ξ

P(dX)µ eik·(X−X
′) P(dX ′)µ

k2
ψ†τAψ|ξ′ . (4.2.17)

The ψ path integral then reduces this to the expectation of the non-abelian Wilson

loop at O(q2). This result continues to all even orders in q when neglecting self

interactions of the gauge field. Therefore, we may propose that the corresponding

loop variable in this theory takes the form of the path integral

Ψ[C] =

〈∫
Dψ e−

∫
dt ψ†(ψ̇+Ẋ·Aψ)

〉
A

(4.2.18)
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where we must include the kinetic term for ψ. We will show that this loop variable

leads to (4.1.15). We begin by varying the curve as before

δXΨ[C] = −
〈∫
Dψ δXS e−S

〉
A

=

〈∫
Dψ

∫
dt δXν(ψ̇†Aνψ + ψ†Aνψ̇ + Ẋµψ†(∂µAν − ∂νAµ)ψ) e−S

〉
A

. (4.2.19)

The computation is slightly easier than the previous one due to the lack of the

path-ordering operator, though, the generation of the commutator terms requires a

different method from above. The way in which we will do this is to make repeated

use of the Schwinger-Dyson equations for Ψ[C]. These equations tell us that for a

general functional integral of the form
∫
Dφ e−S[φ],

∫
Dφ e−S[φ] δS[φ]

δφa(X)
δφa(X) = 0. (4.2.20)

Applying this to (4.2.18) for ψ† and ψ gives

δψ†Ψ[C] = −
〈∫
Dψ

∫
dt δψ†(ψ̇ + Ẋ · Aψ) e−S

〉
A

= 0 (4.2.21)

and

δψΨ[C] = −
〈∫
Dψ

∫
dt (−ψ̇† + ψ†Ẋ · A)δψ e−S

〉
A

= 0. (4.2.22)

We now choose the specific variations δψ† = ψ† δX · A and δψ = δX · Aψ so that

we may use these relations to replace terms in (4.2.19). Inserting these into (4.2.21)

and (4.2.22) gives

〈∫
Dψ

∫
dt δXνψ†Aνψ̇ e−S

〉
A

= −
〈∫
Dψ

∫
dt δXνẊµψ†AνAµψ e−S

〉
A

(4.2.23)

and

〈∫
Dψ

∫
dt δXνψ̇†Aνψ e−S

〉
A

=

〈∫
Dψ

∫
dt δXνẊµψ†AµAνψ e−S

〉
A

(4.2.24)
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respectively. Now inserting these relations into (4.2.19) gives for the variation of the

loop

δXΨ[C] =

〈∫
Dψ

∫
dt δXν(Ẋµψ†(AµAν − AνAµ)ψ + Ẋµψ†(∂µAν − ∂νAµ)ψ) e−S

〉
A

=

〈∫
Dψ

∫
dt δXνẊµψ†Fµνψ e−S

〉
A

. (4.2.25)

Which we note is a similar result to (4.1.8). Dividing out the variation, using

(4.2.32), results in

δΨ[C]

δXµ(t1)
= −

〈∫
Dψ

∫
dt δ(t− t1)Ẋνψ†Fµνψ e−S

〉
A

= −
〈∫
Dψ Ẋνψ†Fµνψ|t1 e−S

〉
A

. (4.2.26)

We now vary (4.2.25) again

δ2δ1Ψ[C] = δ2

〈∫
Dψ

∫
dt δ1X

νẊµψ†Fµνψ e−S
〉
A

=

〈∫
Dψ

∫
dt δ1X

ν(δ2Ẋ
µψ†Fµνψ + Ẋµδ2X

λψ†∂λFµνψ) e−S
〉
A

+

〈∫
Dψ e−S

∫
dt δ1X

νẊµψ†Fµνψ

∫
dt′ δ2X

λ(ψ̇†Aλψ + ψ†Aλψ̇

+Ẋσψ†(∂σAλ − ∂λAσ)ψ
〉
A
. (4.2.27)

We can use the Schwinger-Dyson equations again on (4.2.25) to get the relations

〈∫
Dψ

∫
dt δ1X

νẊµψ†Fµνψ

∫
dt′ δ2X

λψ†Aλψ̇ e−S
〉
A

=

〈∫
Dψ
[ ∫

dt (δ1X
νδ2X

λẊµψ†AλFµνψ

−
∫
dt δ1X

νẊµψ†Fµνψ

∫
dt′ δ2X

λẊσψ†AλAσψ

]
e−S
〉
A

(4.2.28)

and 〈∫
Dψ

∫
dt δ1X

νẊµψ†Fµνψ

∫
dt′ δ2X

λψ̇†Aλψ e−S
〉
A

(4.2.29)
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=

〈∫
Dψ
[
−
∫
dt (δ1X

νδ2X
λẊµψ†FµνAλψ

+

∫
dt δ1X

νẊµψ†Fµνψ

∫
dt′ δ2X

λẊσψ†AσAλψ

]
e−S
〉
A

. (4.2.30)

Inserting these into (4.2.27) gives

δ2δ1Ψ[C] =

〈∫
Dψ
[ ∫

dt δ1X
νδ2Ẋ

µψ†Fµνψ + δ1X
νδ2X

λẊµψ†DλFµνψ

]
e−S
〉
A

+

〈∫
Dψ

∫
dt δ1X

νẊµψ†Fµνψ

∫
dt′ δ2X

λẊσψ†Fσλψ e−S
〉
A

. (4.2.31)

Now, using the standard result for functional differentiation

δXµ(t)

δXν(t′)
= δµνδ(t− t′) (4.2.32)

we can calculate

δ2Ψ[C]

δXα(t1)δXβ(t2)
=

〈∫
Dψ
[
δ′(t1 − t2)ψ†Fαβψ + δ(t1 − t2)Ẋµψ†DβFµαψ

]
e−S
〉
A

+

〈∫
Dψ Ẋµψ†Fµαψ|t1Ẋσψ†Fσβψ|t2 e−S

〉
A

(4.2.33)

and so

δ2Ψ[C]

δXµ(t1)δXµ(t2)
=

〈∫
Dψ
[
δ′(t1 − t2)ψ†F µ

µψ − δ(t1 − t2)Ẋνψ†DµFµνψ

]
e−S
〉
A

+

〈∫
Dψ Ẋνψ†Fµνψ|t1Ẋσψ†F µ

σψ|t2 e−S
〉
A

. (4.2.34)

Applying the area derivative, ∆, to Ψ and using the result (4.2.34) we find

∆Ψ[C] = −
〈∫
Dψ ψ†DµFµνψ Ẋν e−S

〉
A

. (4.2.35)

This is the Mandelstam formula for the ψ theory. We are now in a position to

integrate out the gauge field. The Yang-Mills part of the partition function is this

time

ZA =

∫
DA e

− 1
4q2

∫
d4x FAµνF

µνA

e−
∫
c ψ
†Aψ·dX . (4.2.36)
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The Schwinger-Dyson equations tell us that

δAZA = 0 = −
∫
DA
(

1

4q2

∫
d4X δ(FA

µνF
µνA) +

∫
dX · ψ†δAψ

)
e−S. (4.2.37)

This gives the relation

∫
DA 1

q2

(∫
d4X δAνADµFA

µν

)
e−S =

∫
DA

(∫
dXν ψ

†δAνψ

)
e−S. (4.2.38)

We now choose the variation δAνA = q2ψ†τAψẊνδ(X − X(t)) so that δAν =

τAδAνA = q2τAψ†τAψẊνδ(X − X(t)) and so the Schwinger-Dyson equation be-

comes ∫
DA

(∫
d4X ψ†DµFµνψẊ

νδ(X −X(t))

)
e−S

=

∫
DA

(
q2

∫
dXν ψ

†τAψψ†τAψẊνδ(X −X(t))

)
e−S (4.2.39)

since τAFA
µν = Fµν . Inserting this into (4.2.35) gives

∆Ψ[C] = −q2

∫
Dψ

(
e−S

∫
(dXν ψ

†τAψ)|t′ δ(X(t′)−X(t)) (ψ†τAψẊν)|t
)
.

(4.2.40)

This result is a generalisation of the Migdal-Makeenko equations (4.1.12) for the

non-abelian Wilson loop. In the same way that the path-ordering is achieved in the

expectation of the Wilson loop, the path-ordering of the Lie algebra generators is

achieved via a path integral over an anti-commuting field, ψ. We therefore see that

the two results are equivalent.

4.3 Supersymmetric ψ theory loop equations

We can generalise the previous procedure to the supersymmetric ψ model. The

natural extension to the bosonic model replaces the standard Wilson line term in

(4.2.18) with the super-Wilson line (1.4.134). The loop variable we will now be

considering is, therefore

Ψs[C] =

〈∫
Dψ e−S1

〉
A

(4.3.41)
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where

S1 =

∫
dt ψ†

(
d

dt
+ ẊµAµ −

√
h

2
ηµFµνη

ν

)
ψ. (4.3.42)

Here, we have defined the superpartner of X as η to avoid confusion with the world-

sheet field, ψ. Once again, we can carry out the gauge field integration and show

that this loop variable leads to (2.4.112). There is a slight complication when con-

sidering the loop dynamics in this case due to the appearance of the field strength.

The loop variable exponent is then non-linear in the gauge field making the calcu-

lation more laborious.

One can simplify the calculation by introducing the superpartners of ψ† and ψ [57],

denoted z̃ and z respectively, so that the action can be written as

S2 =

∫
dt

(
ψ†
(
d

dt
+ ẊµAµ −

√
h ηµ∂µAνη

ν

)
ψ +
√
h (z̃ηµAµψ + ψ†ηµAµz + z̃z)

)
.

(4.3.43)

The new fields, z̃ and z, do not have kinetic terms and so we may integrate them

out to get back to (4.3.42). This action is now linear in the gauge field with the

non-linearities being generated by the additional terms containing z̃ and z. The nice

thing about this is that we can massage the action, S2, into a similar form to that of

the exponent of (4.3.42) by appealing to the superspace formulation. We note that

if we define the boundary superfields

X = X + ih1/4θη (4.3.44)

Γ̃ = ψ† + ih1/4θz̃ (4.3.45)

Γ = ψ + ih1/4θz (4.3.46)

and the superderivative

D ≡ ∂θ + θ∂t, (4.3.47)

then we can write S2 as

S2 = −
∫
dtdθ Γ̃(D +DX · A(X))Γ (4.3.48)
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whereby we obtain (4.3.42) by integrating out θ. The advantage of writing the action

in the form (4.3.48) is that it takes a similar form to the bosonic Wilson loop, being

linear in A(X). The full loop variable in the superspace formulation is then

Ψs[C] =

〈∫
DΓ exp

(∫
dtdθ Γ̃(D +DX · A(X))Γ

)〉
A

(4.3.49)

where DΓ ≡ D[ψ†, ψ, z̃, z]. In this form we can vary the superfield, X, as a whole

rather than varying the X and η separately.

The variation of the loop is

δXΨs[C] =

〈∫
DΓ

∫
dtdθ

(
DΓ̃ δX · A Γ− Γ̃ δX · A DΓ

)
e−S2

〉
A

+

〈∫
DΓ

∫
dtdθ Γ̃DXνδXµ(∂µAν − ∂νAµ)Γ e−S2

〉
A

(4.3.50)

where ∂µ ≡ ∂/∂Xµ. Now, we need the superspace generalisations of integration by

parts which are

∫
dtdθ AD(B) =

∫
dtdθ D(AB)−

∫
dtdθ D(A)B (commuting A) (4.3.51)

∫
dtdθ AD(B) = −

∫
dtdθ D(AB) +

∫
dtdθ D(A)B (anti-commuting A).

(4.3.52)

We need to evaluate the term

∫
dtdθ D(AB) =

∫
dtdθ ∂θ(AB) +

∫
dtdθ θ∂t(AB). (4.3.53)

The integrand of the first term is independent of θ, hence the θ integral is 0. The

vanishing of the second term requires the condition
∫
dt ∂t(AB)|θless = 0 which is

the same condition we require in the “bosonic” integration by parts formula. Thus,

effectively

AD(B) = ∓D(A)B (4.3.54)
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with the minus sign for commuting A and the plus sign for anti-commuting A.

The Schwinger-Dyson equations for (4.3.49) for Γ and Γ̃ give

DΓ +DX · AΓ ∼ 0 (4.3.55)

DΓ̃ + Γ̃DX · A ∼ 0 (4.3.56)

where these relations are understood to hold in the functional integration. These

relations allow us to write

δXΨs[C] =

〈∫
DΓ

∫
dtdθ Γ̃DXνδXµFµν(X)Γ e−S2

〉
A

=

〈∫
DΓ

∫
dtdθ DXµδXν Γ̃Fµν(X)Γ e−S2

〉
A

. (4.3.57)

The result (4.3.57) is analogous to (4.2.25). Varying this again, using the Schwinger-

Dyson equations for (4.3.57), gives

δ2δ1Ψs[C] =

〈∫
DΓ

∫
dtdθ δ2DXµδ1X

νΓ̃Fµν(X)Γ e−S2

〉
A

+

〈∫
DΓ

∫
dtdθ DXµδ1X

νδ2X
αΓ̃DαFµν(X)Γ e−S2

〉
A

−
〈∫
DΓ

∫
dt1dθ1 DXµδ1X

νΓ̃Fµν(X)Γ

∫
dt2dθ2 DXβδ2X

αΓ̃Fαβ(X)Γ e−S2

〉
A

.

(4.3.58)

Again, it is the second term we would like to isolate. We can do this by introducing

the superspace analogue of the area derivative

∆̃(t) ≡ lim
ε→0

∫ ε

−ε
dt′dθdθ′

δ2

δXµ((t, θ) + (t′, θ′)/2)δXµ((t, θ)− (t′, θ′)/2)
. (4.3.59)

Here, we use the superspace generalisation for functional differentiation

δXµ(t, θ)

δXν(t′, θ′)
= δµνδ(t− t′)(θ − θ′) (4.3.60)
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so that ∫
dtdθ

δXµ(t, θ)

δXν(t′, θ′)
= δµν . (4.3.61)

To evaluate the θ delta functions we will consider the integral

I =

∫
dηdθ′dθ

δ1X
ν(θ)δ2X

α(θ)

δXµ(θ1(θ′, η))δXµ(θ2(θ′, η))
F (θ) (4.3.62)

where F (θ) represents any other terms. Using (4.3.61) we find

I = δνµδ
αµ

∫
dηdθ′dθ (θ − θ1)(θ − θ2)F (θ) (4.3.63)

where we have neglected the t delta functions here. Now, if we set θ1 = η+ θ′/2 and

θ2 = η − θ′/2 we find

I = δνα
∫
dηdθ′dθ (θ − η)θ′ F (θ) = δνα

∫
dη F (η), (4.3.64)

which is precisely what we require. Applying these results to ∆̃Ψs[C] we find

∆̃(t)Ψs[C] =

〈∫
DΓ

∫
dθ DXν Γ̃DµFµν(X)Γ|t e−S2

〉
A

. (4.3.65)

Thus, we obtain the Mandelstam formula for the supersymmetric ψ theory loop

variable. Integrating out Γ produces the path-ordering of the usual super-Wilson

loop.

We can now use the Schwinger-Dyson equations to integrate out the gauge field.

The gauge field action in this case is

SAYM = − 1

4q2

∫
d4X ′ F

′A
µν (X)F

′µν A(X ′) +

∫
dt′dθ′ Γ̃DX

′νAν(X
′)Γ. (4.3.66)

The variation of this with respect to the gauge field is simply

δAS
A
YM =

1

q2

∫
d4X ′ δAAν (X ′)DµF

µν A(X ′) +

∫
dt′dθ′ Γ̃DX

′νδAν(X
′)Γ. (4.3.67)

Now, we would like to use the first term to substitute an expression into (4.3.65)

that is free of the gauge field. To make this first term equal to the integrand of
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(4.3.65) we choose

δAAν (X ′) = q2

∫
dθ δ4(X ′ −X(t))DXν Γ̃τAΓ (4.3.68)

i.e. we use a delta function to turn DµF
µν(X) from a function of X into a function

of the superfield X. The second term requires us to turn δA from a function of X

into a function of X. We can do this by using the delta function again

δAAν (X) =

∫
d4X ′ δ(X ′ −X) δAAν (X). (4.3.69)

This relation is easily verified by expanding each side

δAAν (X) + ih1/4θηµ∂µδA
A
ν (X) =

∫
d4X ′ δ(X ′ −X) δAAν (X)

−
∫
d4X ′ ih1/4θηµ∂µδ(X

′ −X) δAAν (X)

= δAAν (X) + ih1/4θηµ∂µδA
A
ν (X) (4.3.70)

after an integration by parts. Substituting (4.3.68) into (4.3.69) gives

δAAν (X(t′)) =

∫
d4X(t′) δ4(X(t′)−X(t′))δAAν (X(t′))

= q2

∫
d4X(t′)dθ δ4(X(t′)−X(t′))δ4(X(t′)−X(t))DXν(t)Γ̃τ

AΓ(t)

= q2

∫
dθ δ4(X(t′)−X(t))DXν(t)Γ̃τ

AΓ(t). (4.3.71)

Finally, substituting this into (4.3.67) gives the loop equation for the supersymmetric

ψ theory
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∆̃Ψs[C] =

−q2

∫
DΓ

∫
dt′dθ′dθ (Γ̃τAΓDXν)t′,θ′δ

4(X(t′)−X(t))(DXνΓ̃τ
AΓ)t,θ e

−S2 . (4.3.72)

This is the supersymmetric generalisation of (4.1.15). Path-ordering is achieved by

the path integral over the superfield, ψ, as it is in the expectation of the super-

Wilson loop.

This result may seem less familiar than the bosonic loop equation. To show equiva-

lence, we must obtain the loop equation for the super-Wilson loop. The loop variable

in this case is obtained from (1.4.134)

Ws[C] ≡ P exp
(∮

C

dt

(
ẊµAµ −

√
h

2
ηµηνFµν

))
(4.3.73)

without the minus sign again, which is just a matter of convention. The only gauge

invariant quantity in the quantum theory that can be built from Ws[C] is then

Ψs[C] ≡ 〈Tr Ws[C]〉. We have already shown that the super-Wilson loop has an

intrinsic worldline supersymmetry and seen that supersymmetric functionals have a

superspace representation. This case is no different; there does exist a superspace

representation of the super-Wilson loop, though the proof of its equivalence is non-

trivial. Before we introduce it, we must generalise path-ordering to superspace [58].

Firstly, the superspace path-ordered exponential is defined as

P e
∫
dφ̃ M(φ̃) ≡

∞∑
N=0

∫
[dφ̃]N M(φ̃1)...M(φ̃N) (4.3.74)

where

[dφ̃]N ≡ (dt1dθ1...dtNdθN) Θ(φ̃12)Θ(φ̃23)...Θ(φ̃N−1,N), (4.3.75)

Θ(φ̃ij) = Θ(ti − tj − θiθj) = Θ(ti − tj)− θiθjδ(ti − tj). (4.3.76)

With these results, we introduce the superspace representation of Ψ

Ψs[C] =

〈
Tr
[
P exp

(∫
dφ̃ DXµAµ(X)

)]〉
A

. (4.3.77)
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The exponent, therefore, matches the abelian Wilson line in superspace (2.2.57).

The commutator term of Fµν is generated by the definition of path-ordering (4.3.75)

and the superspace step function (4.3.76). To see this consider expanding the path-

ordered exponential so that

P exp
(∫

dφ̃ DXµAµ(X)

)
= 1 +

∫
dtdθ DXµAµ(X)

+

∫ ∫
dt1dθ1dt2dθ2 (DXµAµ(X))1(DXµAµ(X))2 + ... . (4.3.78)

Integrating out the θ coordinates we get

P exp
(∫

dφ̃ DXµAµ(X)

)
= 1 +

∫
dt (ẊµAµ −

√
h ηµην)+

∫
dt1dt2 Θ(t1 − t2)(ẊµAµ −

√
h ηµην)1(ẊµAµ −

√
h ηµην)2

−
∫
dt1dt2 δ(t1 − t2)

√
h ηµηνAµAν + ... . (4.3.79)

The Θ function in the first term of the second line is what we get for normal path-

ordering. The third line then combines with the first line to produce Fµν . It is easy

to see that this continues to all orders. The relative simplicity of (4.3.77), and its

similarity to the bosonic loop allows one to easily obtain the corresponding loop

equations. Making a variation of δX, noting that (4.1.2) and (4.1.3) continue to

hold, we find

δΨ[C] =

〈
Tr
(
P
∫ 2π

0

dtdθ DXνδXµFµν(X) e
∫
dφ̃ DXµAµ(X)

)〉
A

. (4.3.80)

Computing a second variation and using the definition of the area derivative, (4.3.59),

we find

∆̃(t)Ψ =

〈
Tr
(
P
∫
dθ DXνDµFµν(X)|t e

∫
dφ̃ DXµAµ(X)

)〉
A

. (4.3.81)
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Varying the partition function with respect to the gauge field we find

0 = δAZ =

〈
1

q2

∫
d4X δAAνDµF

µνA Tr
(
P e

∫
dφ̃ DXµAµ(X)

)〉
A

(4.3.82)

+

〈
Tr
(
P
∫
dtdθ DXµδAµ(X) e

∫
dφ̃ DXνAν(X)

)〉
A

. (4.3.83)

Choosing a similar variation to (4.3.68), this time

δAAν (X) = q2

∫
dθ δ4(X −X(t))DXν τ

A, (4.3.84)

we find

∆̃Ψ =

−q2 Tr
(
P
∫
dt′dθ′dθ (τADXν)t′,θ′δ(X(t′)−X(t))(τADXν)t,θ e

∫
dφ̃ DXνAν(X)

)
.

(4.3.85)

This is a straightforward supersymmetric generalisation of (4.1.15). We may now

compare this with (4.3.72) and see that, after the path integration of Γ, they are

equivalent.
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Chapter 5

Yang-Mills Theory on the

Worldsheet

So, we have found a way to incorporate path-ordering into the interior of the Wilson

loop generalising the boundary worldline field theory of [35]- [40]. However, this

model lacks the possibility of generating the self interactions of the gauge bosons.

Here we will describe a model that can be used to impose path-ordering and provide

a way to generate the three gluon vertex of non-abelian gauge theory. This method

relies on the very thing underlying most of this work up to this point: gauge theory.

Turning back to the non-abelian bosonic contact interaction

SYMI = Tr
(
q2

∫
JA(ξ)dΣµν(ξ)δ

4(X(ξ)−X(ξ′))JB(ξ′)dΣµν(ξ′)|ξ 6=ξ′
)
. (5.0.1)

We note, making the spacetime gauge transformation

JA(ξ)→ g(X(ξ))JA(ξ)g−1(X(ξ)), (5.0.2)

with g ∈ G, leaves the action invariant. i.e. JA transforms in the adjoint repre-

sentation of the group, G. The unusual dependence on the spacetime coordinate

rather than the worldsheet coordinates is required because of the insertions of J at

two different points on the worldsheet. The delta function ensures invariance at the

only point where the integrand is non-zero.

It is therefore natural to introduce a new gauge theory onto the worldsheet; doing so
120
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will introduce a new field we will identify with the JAs that has the correct dynamics

we seek.

5.1 2 dimensional Yang-Mills theory

The standard pure Yang-Mills action in 2 dimensions is

SYM2 = − 1

2e2

∫
d2ξ
√
g Tr(F abFab) (5.1.3)

where e2 is the gauge coupling. A simple dimensional analysis shows that in 2

dimensions the gauge coupling has mass dimension [e2] = 2. This is a problem if we

are to consider this gauge theory as living on the worldsheet as we expect it to be

scale invariant since the worldsheet action is Weyl invariant. We would, therefore,

like a 2 dimensional gauge theory with no gauge coupling. We can obtain such a

theory from the action above [59]. Consider the action

I = −
∫

Tr(φF )− e2

2

√
gTr(φ2) (5.1.4)

where we have introduced a Lie algebra valued 0-form, φ, that transforms in the

adjoint representation. Integrating out φ returns us to the Yang-Mills action above.

Now, consider turning off the gauge coupling so that the second term vanishes. We

are left with

S[A, φ] =

∫
d2ξ εab Tr

(
φFab

)
(5.1.5)

where we have emphasised the antisymmetry of the field strength. This action

defines a topological field theory. Varying φ gives the equation of motion for the

field strength as F = 0, or pure gauge. The quantum theory is described by the

partition function composed of the Euclidean functional integral

Z0 =

∫
D[A, φ] e−S[A,φ]. (5.1.6)
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This partition function can be solved as the exponential is linear in φ. Therefore,

Z0 =

∫
D[A, φ] e

1
2

∫
d2ξ φAεabFAab =

∫
DA δ

[
εab

2
FA
ab

]
(5.1.7)

where δ[.] is functional generalisation of the delta function, what we will call the

delta functional. This is the quantum version of the pure gauge mentioned above.

Therefore the theory defined by this partition function is uninteresting; expectations

of the form 〈f [A]〉φ,A = f [Apure] are trivial.

Interesting things happen when we use this partition function to define the gener-

ating functional for the gauge field on the boundary and choose a particular form

of the source. Adding a source term on the boundary to the free action allows us to

define the action

Sκ[A, φ, κ] =

∫
d2ξ εabTr

(
φFab

)
+

∮
dξaAAa κ

A. (5.1.8)

We can then define the generating functional

Z[κ] ≡
∫
D[A, φ] e−Sκ[A,φ,κ]. (5.1.9)

To see how introducing this field theory on the worldsheet is useful for our cause,

we will make repeated use of the Schwinger-Dyson equations for the gauge field. We

begin by making a variation of the gauge field. The expectation of any functional

doesn’t change under such a variation (as long as the functional measure, D[A, φ],

is invariant, which here we assume it is) and so we have

0 = δAZ = −〈δAS 〉A,φ −
〈∮

dξa δAAa κ
A

〉
A,φ

(5.1.10)

where 〈Ω〉A,φ =
∫
D[A, φ] e−Sκ Ω. The change in the action under a variation of A

is

δAS =

∫
d2ξ εabTr(φ δAFab) =

2

∫
d2ξ εabTr(Dbφ δAa)− 2

∫
d2ξ ∂b(ε

abTr(φ δAa)) (5.1.11)
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where Db = ∂b + [Ab, ·] is the non-abelian covariant derivative. The second term can

be written as an integral along the boundary via Stokes’ theorem

−2

∫
d2ξ ∂b(ε

abTr(φ δAa)) = 2

∮
dξa Tr(φ δAa) = −

∮
dξa φAδAAa . (5.1.12)

We see that the variation of the free action on the boundary has a similar form to

the variation of the source term. We may then consider the variation of the gauge

field along the boundary and in the interior separately.

Considering the boundary variation first, which will lead to the path-ordering con-

dition we seek, we find the following relation

〈∮
dξa φAδAAa

〉
A,φ

=

〈∮
dξa δAAa κ

A

〉
A,φ

. (5.1.13)

Now, functionally differentiating and using the relation

δAAa (ξ)

δABb (ξ′)
= δABδba δ

2(ξ − ξ′) (5.1.14)

reduces this to 〈
φA|ξ

〉
A,φ

=
〈
κA|ξ

〉
A,φ

(5.1.15)

where φA|ξ denotes the value of φA at the boundary point ξ. Now comes the impor-

tant part; if we choose κA to coincide with JA from chapter 2 so that κA = ψ†τAψ,

and functionally integrate over ψ and ψ† with the usual kinetic action, we find

∫
D[ψ†, ψ]

〈
φA|
〉
A,φ

e−
∮
ψ†ψ̇ dξ =

∫
D[A, φ, ψ†, ψ] ψ†τAψ e−

∮
ψ†ψ̇ dξ−Sκ . (5.1.16)

Dividing through by Z[κ], which we will incorporate into the expectation when

considering multiple insertions of ψ, we find

∫
D[ψ†, ψ] φA| e−

∮
ψ†ψ̇ dξ =

∫
D[ψ†, ψ] ψ†τAψ e−

∮
ψ†ψ̇ dξ. (5.1.17)

This relation is the first step towards our required result of replacing a product of

JA on the boundary with the path-ordered Lie algebra generators (2.3.94).
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We can prove that the path-ordering of multiple insertions follows by induction.

Consider the functional integral

ZA1...ArB1...Bn(η1, ..., ηr, ξ1, ..., ξn)

=

∫
D[A, φ] e−Sκ (κA1(η1)...κAr(ηr))(φ

B1(ξ1)...φBn(ξn)) (5.1.18)

where ηi is the location of the κAi insertion on the boundary. Then, vary the gauge

field on the boundary. Using the above results we find

0 = δA|Z =

∫
D[A, φ] e−Sκ

(∮
dξaφAδAAa

)
(κA1(η1)...κAr(ηr))(φ

B1(ξ1)...φBn(ξn))

−
∫
D[A, φ] e−Sκ

(∮
dξa δAAa κ

A

)
(κA1(η1)...κAr(ηr))(φ

B1(ξ1)...φBn(ξn)). (5.1.19)

Dividing out the variation of the gauge field gives us the relation

ZA1...ArAB1...Bn(η1, ..., ηr, η, ξ1, ..., ξn) = ZA1...ArB1...BnA(η1, ..., ηr, ξ1, ..., ξn, η).

(5.1.20)

Note, the position of the indices. This relation can then be used to replace all of the

φBi with the corresponding κi on the boundary. To see this we start with no factors

of κAi or φBi . Then applying the above formula n times results in the relation

∫
D[A, φ] e−Sκ (φA1(ξ1)...φAn(ξn)) =

∫
D[A, φ] e−Sκ (κA1(ξ1)...κAn(ξn)). (5.1.21)

Inserting κA = ψ†τAψ, integrating over ψ and ψ† and dividing through by 1
Z[κ]

we

find ∫
D[ψ†, ψ] e−

∮
ψ†ψ̇ dξ

〈
φA1(ξ1)...φAn(ξn)

〉
=∫

D[ψ†, ψ] e−
∮
ψ†ψ̇ dξ(ψ†τA1ψ)|ξ1 ...(ψ†τAnψ)|ξn (5.1.22)
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where now, we have defined

〈Ω〉 ≡
∫
D[A, φ] e−Sκ Ω∫
D[A, φ] e−Sκ

. (5.1.23)

We recognise the right hand side as the path integral representation of the path-

ordered product of Lie algebra generators on the boundary and so we can write

∫
D[ψ†, ψ] e−

∮
ψ†ψ̇ dξ

〈
φA1(ξ1)...φAn(ξn)

〉
= Tr

(
P τA1 ...τAn

)
. (5.1.24)

This tells us that any factors of φ on the boundary in our string theory, where

we include the ψ integration, may be replaced by the trace of the path-ordered

product of the Lie algebra generators inserted at the positions of the φs. Note,

this is a different condition from the previous field theory in that path-ordering is

only achieved on the boundary of the worldsheet. To reproduce the expectation

of the Wilson loop we need only the path-ordering of lie algebra generators on the

boundary so this is not a problem.

5.1.1 Three gluon vertex generation

Next, we can consider the variation of the gauge field in the interior of the surface.

Functionally differentiating the partition function with respect to the gauge field in

the interior, and using (5.1.11), we find

〈
(Daφ)A

〉
A,φ

= 0. (5.1.25)

One can expand the covariant derivative to obtain

〈
∂aφ

A
〉
A,φ

= −
〈
[Aa, φ]A

〉
A,φ

. (5.1.26)

This relation will be of use when we come to consider the loop equations. One can

then consider a variation of the expectation of the partial derivative of φ

0 = δA
〈
∂aφ

A
〉
A,φ
→
〈
∂aφ

A(Dbφ)B
〉
A,φ

= 0. (5.1.27)
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Expanding the covariant derivative then gives the relation

〈
∂aφ

A∂bφ
B
〉
A,φ

= −
〈
∂aφ

A[Ab, φ]B
〉
A,φ

. (5.1.28)

The term on the right hand side can be written in a more useful form by considering

the variation of
〈
[Ab, φ]B

〉
A,φ

in the interior.

δA
〈
[Ab, φ]B

〉
A,φ

= 0

=
〈
[δAb, φ]B

〉
A,φ

+

〈
2

(∫
d2ξ εacTr(Dcφ δAa)

)
[Ab, φ]B

〉
A,φ

. (5.1.29)

Functionally differentiating out the gauge field and using the relation [Ab, φ]B =

AAb φ
CfACB we get

δdbf
ABCδ2(z − z′)

〈
φC
〉
A,φ

= −
〈
εdc(Dcφ)A[Ab, φ]B

〉
A,φ

. (5.1.30)

Multiplying by εad gives

εabf
ABCδ2(z − z′)

〈
φC
〉
A,φ

= −
〈
(Daφ)A[Ab, φ]B

〉
A,φ

. (5.1.31)

Expanding the covariant derivative finally leaves us with

〈
∂aφ

A[Ab, φ]B
〉
A,φ

= −εabfABCδ2(z − z′)
〈
φC
〉
A,φ
−
〈
[Aa, φ]A[Ab, φ]B

〉
A,φ

. (5.1.32)

Inserting this into (5.1.28) gives

〈
∂aφ

A∂bφ
B
〉
A,φ

= εabf
ABCδ2(z − z′)

〈
φC
〉
A,φ

+
〈
[Aa, φ]A[Ab, φ]B

〉
A,φ

. (5.1.33)

The first term on the right hand side is just what is needed to produce the three

gluon vertex in the string theory (2.3.97). This result comes at the expense of

introducing the second term on the right. If we can show that this term vanishes

in the string theory then this is of course not a problem. We can use functional

July 11, 2018



5.1. 2 dimensional Yang-Mills theory 127

methods to evaluate this term

〈
[Aa, φ]A1 [Ab, φ]B2

〉
A,φ

= fCDAfEFB
〈
AC1aφ

D
1 A

E
2bφ

F
2

〉
A,φ

= fCDAfEFB
∂

∂qD1

∂

∂qF2

〈
AC1aA

E
2b e

q1φ1+q2φ2
〉
A,φ

∣∣∣∣
q=0

. (5.1.34)

Subscripts on the fields here denote A1 ≡ A(ξ1). The exponential essentially modifies

the action to S ′ = S − (q1φ
1 + q2φ

2). The effect of this modification is to introduce

two sources for the gauge field, q1 and q2 placed at z1 and z2 respectively. To see

this we can integrate out φ. This inserts a delta function of the form

δ
(
F − q1δ

2(ξ − ξ2)− q2δ
2(ξ − ξ2)

)
(5.1.35)

into the functional integral. F here is the single independent component of the

field strength. We will find it useful to work in complex coordinates and so F =

∂Ā − ∂̄A + [A, Ā]. Note, this delta function implies that the gauge theory is no

longer pure gauge. To proceed, we seek a solution for the gauge field such that

F (z) =
∑

i qiδ
2(z − zi). We will choose A = Ā on the boundary. This is essentially

a Green’s function problem. To see this we write the gauge field as a power series

in q

A = qf1 +
∑
n>1

qnfn. (5.1.36)

Thus, the higher order terms will contribute to the commutator term of the field

strength as it goes as O(q2) and greater. These higher order terms must cancel as

the field strength is linear in q from (5.1.35) and thus only the derivative piece of

the field strength exists. We must then solve

∂f̄1 − ∂̄f1 =
∑
i

qiδ
2(z − zi). (5.1.37)

Note, the defining equation for the bosonic Laplacian is

−2∂̄∂GB(z, z′) = δ2(z − z′) (5.1.38)
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or

∂(−∂̄GB)− ∂̄(∂GB) = δ2(z − z′) (5.1.39)

which we can identify as (5.1.37). Thus f̄1 = −∂̄GB and f1 = ∂GB. GB is detailed

in Appendix A and so we have

A(z) = − 1

4π

∑
i

qi
z − zi

+
1

4π

∑
i

qi
z − z̄i

+ a (5.1.40)

Ā(z) =
1

4π

∑
i

qi
z̄ − z̄i

− 1

4π

∑
i

qi
z̄ − zi

+ ā. (5.1.41)

a and ā are the higher order q terms. With this solution the field strength is thus

F (z) =
∑
i

qiδ
2(z−zi)+∂ā−∂̄a+

1

16π2
[q1, q2]

[(
1

z̄ − z̄1

− 1

z̄ − z1

)(
1

z − z2

− 1

z − z̄2

)
−

(
1

z̄ − z̄2

− 1

z̄ − z2

)(
1

z − z1

− 1

z − z̄1

)]
. (5.1.42)

For the field strength to satisfy our requirement, all other terms must cancel meaning

a and ā are proportional to the commutator [q1, q2]. The exact form of each is

not important here as we need only the linear piece of the gauge field as we are

differentiating with respect to each qi only once. With the linear piece of A and Ā

we can now evaluate (5.1.34) with A now a function of the sources q1 and q2

fCDAfEFB
∂

∂qD1

∂

∂qF2

〈
AC1a(q)A

E
2b(q)

〉
A

∣∣
q=0

. (5.1.43)

There are three terms to consider: AA, AĀ and ĀĀ. Note, evaluating the gauge field

at z1 and z2 using (5.1.40) leads to divergences. Computing the derivatives of these

terms leads to Kronecker deltas that will lead to repeated indices in the structure

constants. We thus drop these terms so that the divergences have no effect. This

can be argued by regulating the divergence. Doing this will keep the gauge field

finite and upon taking the derivatives, these terms will vanish.

For the first case, with a = b = z, the only non-zero term we are left with is then

− 1

16π2
fCDAfDCB

(
1

z1 − z2

− 1

z̄1 − z2

)(
1

z1 − z2

− 1

z1 − z̄2

)
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≡ − 1

16π2
fCDAfDCBfzz. (5.1.44)

For a = z and b = z̄ we have

1

16π2
fCDAfDCB

(
1

z1 − z2

− 1

z̄1 − z2

)(
1

z̄1 − z̄2

− 1

z1 − z̄2

)

≡ − 1

16π2
fCDAfDCBfzz̄ (5.1.45)

and finally for a = b = z̄ we have

− 1

16π2
fCDAfDCB

(
1

z̄1 − z̄2

− 1

z̄1 − z2

)(
1

z̄1 − z̄2

− 1

z1 − z̄2

)

≡ − 1

16π2
fCDAfDCBfz̄z̄. (5.1.46)

These additional terms will arise when considering the contraction of two C integrals

CA
1µν kC

λσB
2k′ ∼

− 1

16π2
fCDAfDCB

∫
d2z1d

2z2 fac(z1, z2) Laµνk(X(z1))Lcλσk′ (X(z2)). (5.1.47)

fac(z1, z2) diverges as z1 → z2 so the surface integrals are ill defined. But, this is

multiplied by exponential terms

eik1·X(z1)eik2·X(z2) ∼: eik1·X(z1)eik2·X(z2) : e−πα
′
(

2k1·k2G(z1,z2)+k2
1G(z1,z1)+k2

2G(z2,z2)
)
.

(5.1.48)

For k1 · k2 > 0 the integral over z1 converges for z1 ≈ z2 because 2πG(z1, z2) ≈

ln|z1 − z2| and this can be used to define the integral by analytic continuation.

However, the remaining terms in the exponent suppress the whole expression as the

cut-off is removed and α′k2 → ∞ because 2πG(z1, z1) ≈ ln(y/
√
ε) as described in

chapter 2. With this overall suppression, the additional term in (5.1.33) can be

ignored and so we can effectively write

〈
∂aφ

A∂bφ
B
〉
φ

= εabf
ABCδ2(z − z′)

〈
φC
〉
φ

(5.1.49)
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This relation is precisely what is required to produce the three gluon vertex in the

string theory as the contraction of two C integrals.

5.1.2 String theory

With this result we can begin to catalogue the expectations of all possible combina-

tions of φ and ∂φ when the two dimensional surface upon which the gauge theory

is supported upon is the worldsheet of the string theory with contact interaction

described in chapter 2. Wherever we have a factor of B in the string theory we will

have a factor of φ on the boundary and so we can immediately replace this with

the path-ordered product of Lie algebra generators described by (5.1.24). This can

be seen from including insertions of φ and ∂φ in the interior of the worldsheet into

(5.1.18). Variations of the gauge field on the boundary won’t affect these insertions

and so we will obtain (5.1.24) with additional insertions. With this result and the

contraction of derivative terms (5.1.49) we can completely determine the expectation

of the contact interaction. To first order we have

〈
SYMI

〉
X,A,φ,ψ†,ψ

= q2

〈∫
d4k

(2π)4

(
V + (B − C)

)
·
(
V + (B − C)

)〉
X,A,φ,ψ†,ψ

(5.1.50)

where A · B ≡ AµνAk · BA
µν−k. Then, as explained earlier, any terms with the pro-

jected vertex vanish because of suppression coming from the self contractions of

the exponential. Also, (5.1.49) means that C · C = 0 because of repeated in-

dices in the structure constant. Terms of the form B · C require the calculation

of
〈
φA|∂aφA

〉
A,φ

which is equal to −
〈
φA|[Aa, φ]A

〉
A,φ

. One can use functional meth-

ods similar to those above to determine that this term will be zero since one will

find fABCδqB/δqC = fABB = 0.

We are then left with

〈
SYMI

〉
X,A,φ,ψ†,ψ

=

〈∫
d4k

(2π)4
B ·B

〉
X,A,φ,ψ†,ψ

(5.1.51)
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which is the only term arising in the expectation of P Tr(
∫
dξ · A)2. In fact, at

higher orders, we can associate the following diagram with each factor of B ·B

B ·B ∼ (5.1.52)

joining two points on the boundary. This is the first step to obtaining the diagrams

found in the introduction. The three gluon vertex arises from the contraction of two

C integrals belonging to different factors of the contact interaction as

B · CC ·B ∼ (5.1.53)

At order q4, the expectation of the contact interaction squared is

〈
(SYMI )2

〉
X,A,φ,ψ†,ψ

∼

q4

〈∫
d4k

(2π)4

∫
d4k′

(2π)4
(B − C) · (B − C)(B − C) · (B − C)

〉
X,A,φ,ψ†,ψ

. (5.1.54)

We immediately identify the diagram with two independent propagators, (B · B)2,

and the four diagrams with the three gluon vertex with external legs attached to

the boundary, (B ·C)2. From our discussion on the q2 calculation we find that these

are the only non-zero contributions to
〈
(SYMI )2

〉
. We must mention that the ghost

diagram, Fig. 1.3, fails to appear at this order. The model at this stage is therefore

incomplete as a possible reformulation of Yang-Mills theory. As mentioned before,

though, this missing feature may be found in the model after all if we change the

regularisation scheme (see conclusion).

We can build more complicated diagrams at higher order q with these basic diagrams,

such as 〈
(SYMI )3

〉
X,A,φ,ψ†,ψ

3 B · CC · CC ·B (5.1.55)

which corresponds to the diagram shown in Figure 5.1. This amplitude will be cal-

culated in the more realistic supersymmetric model.

We can continue to build the full catalogue of diagrams equivalent to those pro-
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Figure 5.1: An example of a more complicated diagram produced by multiple con-
tractions of Cs. In this case the string theory calculation is far simpler than the
field theory calculation.

duced by computing the expectation of the non-abelian Wilson loop. To verify this

equivalence to all orders, one can study the loop dynamics, which we do now.

5.2 Loop dynamics

The expectation of the non-abelian Wilson loop has been computed using a string

theory with contact interaction and an additional gauge field on the worldsheet. This

result is similarly obtainable from the loop variable (after carrying out the ψ and

ψ† integrals to replace φA with the path-ordered product of Lie algebra generators)

Wφ = exp
(
− q

∮
B

dt φAẊ · AA
)

= exp
(
− q

∮
B

dt φAξ̇a∂aX
µAAµ

)
(5.2.56)

where X is the target space coordinate and A is the 4 dimensional Yang-Mills field.

On the right hand side we have written Xµ = Xµ(ξ), where ξ are the worldsheet

boundary coordinates, as we need to compare this exponent with the action of the

2 dimensional gauge theory. This result follows naturally from our discussion of

the ψ theory loop dynamics. From the above results, we are lead to the following

functional integral that describes the quantum dynamics of the loop variable

W ≡
〈∫

D[φ, a] e−
∮
dξa
(
φA∂aXµAAµ+aAa (κA−φA)

)
e−Sbulk

〉
A,ψ†,ψ

(5.2.57)
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where we are now using a to denote the worldsheet gauge field to avoid confusion

with the spacetime gauge field. We have separated (5.1.5) into a boundary integral,∮
dξaaAa φ

A, and a bulk integral given by Sbulk via an integration by parts so that the

total action is linear in the worldsheet gauge field as is done in (5.3.84).

Now consider varying the loop in spacetime

δXΨ =

〈∮
dξaδXµ

(
∂aφ

AAAµ − φA∂aXν(∂µA
A
ν − ∂νAAµ )

)
...

〉
A,φ,a,ψ†,ψ

. (5.2.58)

We would like to be able to replace the first term with

〈
−
∮
dξa δXµφA[Aµ, Aν ]

A∂aX
ν

〉
(5.2.59)

so as to produce a similar result to that of Mandelstam. Note that using the prop-

erties of the Lie commutator, we can rewrite this as

〈∮
dξa δXµ[φ,Aν ]

AAAµ∂aX
ν

〉
= −

〈∮
dξa δXµ[φ,Aµ]AAAν ∂aX

ν

〉
(5.2.60)

and so we need to essentially replace ∂aφA by [φ,Aν ]
A∂aX

ν in the boundary integral.

Firstly, we vary (5.2.57) with respect to φ so that

0 = δφΨ =

〈 ∮
dξa δφA

(
∂aX

νAAν − aAa
)
...

〉
A,φ,a

(5.2.61)

which gives a relation between the spacetime gauge field and the worldsheet gauge

field. The dots here represent the factors of e−S. Since the variation is arbitrary, we

can choose δφA = δXµ[φ,Aµ]A so that we have the relation

〈 ∮
dξa δXµ[φ,Aµ]A∂aX

νAAν ...

〉
A,φ,a

=

〈 ∮
dξa δXµ[φ,Aµ]AaAa ...

〉
A,φ,a

.

(5.2.62)

The left hand side is what we need and the right hand side can be shown to be the

first term of (5.2.58). Again we can use the properties of the commutator:

[φ,Aµ]AaAa = φBACµ a
A
a f

BCA = −φBaAaACµ fBAC = −[φ, aa]
AAAµ . (5.2.63)
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Now we need

〈∮
dξaδXµ∂aφ

AAAµ ...

〉
=

〈 ∮
dξa δXµ[φ, aa]

AAAµ ...

〉
(5.2.64)

(first term of (5.2.58) equal to RHS of (5.2.62)) or

〈∮
dξaδXµDaφ

AAAµ ...

〉
= 0 (5.2.65)

where Daφ
A = ∂aφ

A − [φ, aa]
A is the worldsheet gauge covariant derivative. Well,

we have already shown that
〈
Daφ

A
〉
a,φ

= 0, and so this condition appears naturally

from the quantum dynamics of the system.

We can then write, going back up the steps,

〈∮
dξaδXµ∂aφ

AAAµ ...

〉
=

〈 ∮
dξa δXµ[φ, aa]

AAAµ ...

〉
=

〈 ∮
dξa δXµ[φ,Aµ]AaAa ...

〉

= −
〈 ∮

dξa δXµ[φ,Aµ]A∂aX
νAAν ...

〉
= −

〈 ∮
dξa δXµφA[Aµ, Aν ]

A∂aX
ν ...

〉
(5.2.66)

which is our original requirement. Finally, then we can say

δXΨ = −
〈(∮

dξa δXµφA∂aX
νFA

µν

)
...

〉
A,φ,a,ψ†,ψ

. (5.2.67)

A second variation yields

δ2δ1Ψ = −
〈(∮

dξa δ1X
µφA∂aδ2X

νFA
µν

)
...

〉
−
〈(∮

dξa δ1X
µφA∂aX

νδ2X
α∂αF

A
µν

)
...

〉

−
〈(∮

dξa1 δ1X
µφA∂aX

νFA
µν

)(∮
dξb2 δ2X

λ
(
∂bφ

BABλ + φB∂bX
σ(∂σA

B
λ − ∂λABσ )

))
...

〉
.

(5.2.68)

Now consider varying (5.2.67) with respect to φ, we find

〈∮
dξa δXµδφA∂aX

νFA
µν ...

〉
=

〈(∮
dξa1 δX

µφA∂aX
νFA

µν

)(∮
dξb2 δφ

B(∂bX
λABλ − aBb )

)
...

〉
. (5.2.69)
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Choosing again, δφA = δ2X
α[φ,Aα]A we find, after permuting the positions of the

fields in the commutators

〈∮
dξa δXµδ2X

α[φ,Aα]A∂aX
νFA

µν ...

〉
=

〈(∮
dξa1 δX

µφA∂aX
νFA

µν

)(∮
dξb2 δ2X

α(φB∂bX
λ[Aα, Aλ]

B + [φ, ab]
BABα )

)
...

〉
.

(5.2.70)

Now, note that the first line can be written as

〈∮
dξa δXµδ2X

αφA[Aα, Fµν ]
A∂aX

ν ...

〉
. (5.2.71)

The second term of the bottom line can also be replaced by

〈(∮
dξa1 δX

µφA∂aX
νFA

µν

)(∮
dξb2 δ2X

α∂bφ
BABα

)
...

〉
(5.2.72)

as we did for the first variation. This is simply obtained by varying (5.2.67) with

respect to a and using (5.1.25). With this we can write

−
〈(∮

dξa1 δX
µφA∂aX

νFA
µν

)(∮
dξb2 δ2X

α∂bφ
BABα

)
...

〉
=

−
〈∮

dξa δ1X
µδ2X

αφA[Aα, Fµν ]
A∂aX

ν ...

〉

+

〈(∮
dξa1 δX

µφA∂aX
νFA

µν

)(∮
dξb2 δ2X

λφB[Aλ, Aσ]B∂bX
σ

)
...

〉
. (5.2.73)

We can now substitute this result into (5.2.68) to find

δ2δ1Ψ = −
〈(∮

dξa δ1X
µφA∂aδ2X

νFA
µν

)
...

〉

−
〈(∮

dξa δ1X
µδ2X

αφA∂aX
νDαF

A
µν

)〉

−
〈(∮

dξa1 δ1X
µφA∂aX

νFA
µν

)(∮
dξb2 δ2X

λφB∂bX
σFB

σλ

)
...

〉
. (5.2.74)
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With this result we can calculate the area derivative, ∆, of the loop and so we find

∆Ψ = −
〈(

φAdXνDµFA
µν

)
...

〉
A,φ,a,ψ†,ψ

. (5.2.75)

This is the Mandelstam formula for the gauge theory. We can now integrate out the

spacetime gauge field, A. Varying Ψ with respect to A we find

0 = δAΨ =

〈
1

q2

∫
d4X DµFA

µνδA
νA −

∮
dξa φA∂aX

µδAAµ

〉
.

Choosing δAνA = q2φAdXνδ4(X(ξ)−X(ξ′)) we find the relation

〈(
φAdXνDµFA

µν

)
...

〉
=

〈∮
dξa φA∂aX

µφA(ξ′)dXµ(ξ′)δ4(X(ξ)−X(ξ′))

〉
(5.2.76)

and so we have

∆Ψ =

∫
D[φ, a, ψ†, ψ]

∮
φAdXµ|ξδ4(X(ξ)−X(ξ′))φAdXµ|ξ′ e−S. (5.2.77)

This is the φ gauge field analogy of the Migdal-Makeenko equation for standard

Yang-Mills theory. We can now use (5.1.21) to replace the factors of φA with the

corresponding κA and carry out the ψ and ψ† integrations to obtain the path-ordered

product of Lie algebra generators.

With these results, the theory presented here may then be considered as a first step

to generalising the string theory of [26] to incorporate non-abelian gauge theories.

It reproduces the path-ordering of the Lie algebra generators in the expectation of

the Wilson loop and contains the three gluon vertex. This can be made the basis of

further study, i.e. studying the partition function

Zstring
YM =

∫
D[X, g,A, φ, ψ†, ψ] e−SPol[X,g]−S

YM
I [X,φ]−Sκ[A,φ,ψ†,ψ]. (5.2.78)

We know, however, from the abelian model that divergences arise at higher orders

when vertices approach each other near the boundary, which will prevent us from

identifying

Zstring
YM ∼ 〈W 〉A4

. (5.2.79)
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We expect the supersymmetric string theory to be free of these extra unwanted

divergences and so we now look at generalising this gauge theory to incorporate the

supersymmetry of the superstring worldsheet.

5.3 Supersymmetric gauge theory

We have managed to show that introducing a gauge theory onto the worldsheet of

the string theory can reproduce some features of the expectation of the non-abelian

Wilson loop. It, therefore, seems that it may be possible to generalise the fermionic

string theory to reproduce the expectation of the non-abelian super-Wilson loop by

finding a suitable supersymmetric analogue of the gauge theory just described. In

this section we will formulate such a generalisation.

To motivate the supersymmetric model we start with the bosonic action

S =

∫
d2ξ εab Tr

(
φFab

)
. (5.3.80)

In 2 dimensions Fab has one independent component. In complex coordinates the

action can be written as

S =

∫
d2z

(
εzz̄ Tr

(
φFzz̄

)
+ εz̄z Tr

(
φFz̄z

))
= 2

∫
d2z Tr

(
φFzz̄

)
. (5.3.81)

Now, writing the covariant components of the gauge field as Az ≡ A and Az̄ ≡ Ā,

we have

Fzz̄ = ∂Ā− ∂̄A+ AĀ− ĀA ≡ dĀ− d̄A (5.3.82)

where we have defined the derivative d ≡ ∂ + A and used a lower case d to avoid

confusion with the non-abelian gauge covariant derivative. The action can then be

written as

S = 2

∫
d2z Tr

(
φ
(
dĀ− d̄A

))
. (5.3.83)

Note, it can also be written as

S = 2

∮
dwa Tr

(
φAa

)
− 2

∫
d2z Tr

(
(dφ)Ā− (d̄φ)A

)
(5.3.84)
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where we have used the cyclic property of the trace. Written in this way it is easier to

see the effect of separate boundary and interior gauge field variations, something we

used in the loop equation derivation. This will also be useful for the supersymmetric

model. As a first extension to (5.3.83) we can consider replacing the partial derivates

by super derivatives such that d becomes

ds ≡ D +A (5.3.85)

which suggests that the gauge superfield, A, is Grassmann-odd. This then suggests

that the gauge field, A, is the coefficient of the θ term in the expansion of A. If we

expand the superfields as

A = η + θA+ θ̄λ+ θθ̄σ (5.3.86)

Ā = η̄ + θλ̄+ θ̄Ā− θθ̄σ̄ (5.3.87)

φ̃ = φ0 + θφ1 + θ̄φ̄1 + θθ̄φ2 (5.3.88)

then we can propose the action

S ′ = −2

∫
d2zd2θ Tr

(
φ̃
(
dsĀ+ d̄sA

))
(5.3.89)

which contains the bosonic action above. The integrand then defines the superfield

strength:

F = dsĀ+ d̄sA = DĀ+ D̄A+ {A, Ā} (5.3.90)

with the anti-commutator appearing this time. This is all conjecture at this point

as we have merely promoted the partial derivative to the superderivative and the

fields to superfields, only making sure that the bosonic result is contained within.

To see that this supersymmetric field theory satisfies our requirements we first need

to make sure that it is actually supersymmetric. From (2.2.53) we know that to

make this action supersymmetric we must add the boundary integral

Ssusy =

∫
d2zd2θ θ̄θδ(y)Tr(φF) = 2

∫
dx Tr(φ0F0)
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= 2

∫
dx Tr

(
φ0(λ+ λ̄+ {η, η̄})

)
(5.3.91)

to the action in order for it to be invariant with respect to the worldsheet super-

symmetry (2.2.41).

We can write the supersymmetric gauge theory action in a similar way to the bosonic

action (5.3.84), i.e. as a boundary piece plus a bulk term

S ′ = 2

∫
d2zd2θ Tr(dsφ̃Ā+ d̄sφ̃A) +

∫
dxd2θ

(
θ̄Tr(φ̃A)− θTr(φ̃Ā)

)
. (5.3.92)

Note, as A is Grassmann-odd we have the general cyclic property

Tr(ABC) = (−)(C,AB)Tr(CAB) (5.3.93)

where (C,AB) is 0 if C and AB commute or 1 if they anti-commute. This can be

seen by expanding each field as A = AAτA. The fields can be taken outside of the

trace and permuted into the desired combination picking up minus signs if the fields

anti-commute while the generators can be cyclically permuted within the trace. We

can then add to the boundary integral Ssusy, so that the supersymmetric action is

Stot = 2

∫
d2zd2θ Tr(dsφ̃Ā+ d̄sφ̃A)

+

∫
dx Tr

(
φ0(A+ Ā+ λ+ λ̄+ {η, η̄}) + (φ1η + φ̄1η̄)

)
. (5.3.94)

We can, in fact, use the supersymmetry to fix some of the component gauge super-

fields and thus simplify the boundary piece. A pure supersymmetry transformation

of the gauge superfield is

δA = ε(Q+ Q̄)A (5.3.95)

which gives in terms of components gives

δη = ε(A+λ) δA = ε(∂η+ σ) δλ = ε(∂̄η− σ) δσ = −ε(∂λ− ∂̄A). (5.3.96)
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Similarly, we find that Ā under this transformation gives in terms of component

fields

δη̄ = ε(Ā+ λ̄) δĀ = ε(∂̄η̄ + σ̄) δλ̄ = ε(∂η̄ − σ̄) δσ̄ = ε(∂Ā− ∂̄λ̄). (5.3.97)

On the boundary we take the superfield A to be ’real’ in the sense that A| = Ā| so

that

η| = η̄| (A+ λ)| = (Ā+ λ̄)| (5.3.98)

and add to this σ| = σ̄| which is not determined by the reality condition. The reality

condition is useful as (5.3.98) are invariant under the supersymmetry transforma-

tions. Using these boundary conditions we find that the boundary part of the action

is

2

∫
dx Tr

(
2φ0(A+ λ+ ηη) + η(φ1 + φ̄1)

)
. (5.3.99)

Setting φ1 = φ̄1 = 0 on the boundary means that φ̃| = φ0| which makes sense if we

want the bosonic condition. The total supersymmetric action is then

Stot = 2

∫
d2zd2θ Tr(dsφ̃Ā+ d̄sφ̃A) + 4

∫
dx Tr

(
φ0(A+ λ+ ηη)

)
. (5.3.100)

Under a supersymmetry transformation the combination A+λ+ηη on the boundary

changes as

δ(A+ λ+ ηη) = ε
(
∂xη + [(A+ λ), η]

)
= εD(A+λ)

x η. (5.3.101)

The right hand side is the covariant derivative for the gauge field (A+ λ) along the

boundary. Thus, we can define a boundary gauge field as

A′| ≡ A+ λ+ ηη. (5.3.102)

A boundary gauge field related by a supersymmetry transformation is equivalent to

boundary gauge field related by a gauge transformation. It is, therefore, supersym-

metric and gauge invariant. This naturally leads to a source term for the gauge field
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on the boundary

Ssource = 2

∫
dx (A+ λ+ ηη)AκA = 2

∫
dxdθ θ(DA|+AA|)AκA (5.3.103)

where on the right hand side we have written it as a boundary superspace integral.

From the above, we know that this choice of source term is supersymmetric and

gauge invariant and because it matches the boundary part of the action it will give

us the path-ordering condition upon a variation of the boundary fieldA′ ≡ A+λ+ηη.

Note, here we don’t require the superpartners of ψ and ψ† as we did in chapter 3 to

give the path-ordering condition.

With this, we now have a supersymmetric analogue of the bosonic field theory

described in the last section. We can again use the Schwinger-Dyson equations to

evaluate quantum expectations in this theory. We will again consider varying the

interior and boundary fields separately only this time varying A in the interior and

A′| on the boundary. Beginning with a variation of A′| we find

∫
D[A, φ̃]

(
− 4

∫
dx Tr(φ0δA′)| − 2

∫
dx A′AκA|

)
e−Sκ (5.3.104)

where

Sκ = Stot + Ssource (5.3.105)

which leads to 〈
φA0 |
〉
A′,φ =

〈
κA|
〉
A′,φ =

〈
ψ†τAψ|

〉
A′,φ (5.3.106)

analogously to the bosonic result. To implement path-ordering into the supersym-

metric string theory we need to consider products of φ0| and so we define the integral

analogously to the bosonic integral (5.1.18)

Zs
A1...ArB1...Bn

(η1, ..., ηr, ξ1, ..., ξn)

≡
∫
D[A, φ̃] e−Sκ

(
κA1(η1)...κAr(ηr)

)(
φB1

0 |(ξ1)...φBn0 |(ξn)
)
. (5.3.107)
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Repeating the bosonic calculation using the above results leads to

∫
D[A, φ̃] e−Sκ

(
κA1(η1)...κAr(ηr)

) (
φA0 (ξ) φB1

0 |(ξ1)...φBn0 |(ξn)
)

=

∫
D[A, φ̃] e−Sκ

(
κA(ξ)κA1(η1)...κAr(ηr)

)(
φB1

0 |(ξ1)...φBn0 |(ξn)
)

(5.3.108)

so that

Zs
A1...ArAB1...Bn

(η1, ..., ηr, ξ, ξ1, ..., ξn) = Zs
AA1...ArB1...Bn

(ξ, η1, ..., ηr, ξ1, ..., ξn).

(5.3.109)

This relation can be used to replace each factor of φA0 (ξ) on the boundary by a

corresponding factor of κA(ξ). By starting with no factors of φ0 or κ we can apply

this relation n times to obtain

∫
D[A, φ̃] e−Sκ φA1

0 (ξ1)...φAn0 (ξn) =

∫
D[A, φ̃] e−Sκ κA1(ξ1)...κAn(ξn). (5.3.110)

Now, inserting κA = ψ†τAψ and integrating over ψ and ψ† we find

∫
D[ψ†, ψ] e−

∫
ψ†ψ̇ dξ

〈
φA1

0 (ξ1)...φAn0 (ξn)
〉
A,φ̃ =

∫
D[ψ†, ψ] e−

∫
ψ†ψ̇ dξ (ψ†τA1ψ)|ξ1 ...(ψ†τAnψ)|ξn (5.3.111)

where

〈Ω〉A,φ̃ ≡
∫
D[A, φ̃] e−Sκ Ω∫
D[A, φ̃] e−Sκ

. (5.3.112)

The second line of (5.3.111) is the trace of the path-ordered product of Lie algebra

generators, and so we can write

〈
φA1

0 (ξ1)...φAn0 (ξn)
〉
Aφ̃ = Tr

(
P (τA1 ...τAr)

)
(5.3.113)

This is the bosonic result from the previous section, achieved with the supersymmet-

ric analogue of the bosonic gauge theory, and so at least for the boundary variation

this model reproduces the required result for path-ordering the Lie algebra genera-

tors on the boundary.
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5.3.1 Three gluon vertex generation

Before we show how the three point function arises from this model we write the

action in a more covariant form. To do this we introduce the metric tensor σab with

elements σzz̄ = σz̄z = 1 and σzz = σz̄z̄ = 0. The action (5.3.89) can then be written

in a similar form to the bosonic action as

S ′ = −
∫
d2zd2θ σab Tr(φ̃ Fab) (5.3.114)

where the superfield strength is Fab = 2(D(aAb) + A(aAb)). Now, a variation of the

gauge superfield in the interior gives

δS ′ = 2

∫
d2zd2θ Tr(Daφ̃ δAb) (5.3.115)

where Daφ̃ ≡ Daφ̃ + [Aa, φ̃] is the super gauge covariant derivative acting on a

Grassmann-even field. Therefore, we have

δS ′

δAAa
= −σab(Dbφ̃)A. (5.3.116)

In the interior of the worldsheet a variation of the gauge field then yields

0 =
δZ

δAAa
=

〈
− δS ′

δAAa

〉
= −σab

〈
(Dbφ̃)A

〉
(5.3.117)

or 〈
(Daφ̃)A

〉
= 0. (5.3.118)

A variation of the average
〈

(Daφ̃)A
〉
must again vanish leading to

〈
(Daφ̃)A(Dbφ̃)B

〉
= 0. (5.3.119)

This is the relation that will lead to the result needed to produce the three gluon ver-

tex in the string theory. We therefore repeat the calculation for the supersymmetric
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case. Expanding this gives the correlation function relation

〈
(Daφ̃)A(Dbφ̃)B

〉
= −

〈
(Daφ̃)A[Ab, φ̃]B

〉
. (5.3.120)

We can evaluate the right hand side by considering varying the average
〈

[Ab, φ̃]B
〉

0 = δ
〈

[Ab, φ̃]B
〉

=
〈

[δAb, φ̃]B
〉
− 2

〈
[Ab, φ̃]B

∫
d2zd2θ σcdTr(Dcφ̃ δAd)

〉
.

(5.3.121)

Dividing through by δAAa gives

〈
δab[τ

A, φ̃]Bδ2(z − z′)δ2(θ − θ′)
〉

=
〈
σca(Dcφ̃)A[Ab, φ̃]B

〉
(5.3.122)

where we have computed the trace from the previous equation and swapped the

position of the (Dφ̃)A picking up a minus sign. Multiplying across by σad gives

σab

〈
[τA, φ̃]Bδ2(z − z′)δ2(θ − θ′)

〉
=
〈

(Daφ̃)A[Ab, φ̃]B
〉
. (5.3.123)

Expanding the commutator and using the cyclicity and anti-commutativity of the

structure constants we have

〈
(Daφ̃)A[Ab, φ̃]B

〉
= −σab

〈
fABC φ̃Cδ2(z − z′)δ2(θ − θ′)

〉
−
〈

[Aa, φ̃]A[Ab, φ̃]B
〉
.

(5.3.124)

Then finally substituting this back into (5.3.120) gives

〈
(Daφ̃)A(Dbφ̃)B

〉
= σab

〈
fABC φ̃Cδ2(z − z′)δ2(θ − θ′)

〉
+
〈

[Aa, φ̃]A[Ab, φ̃]B
〉

(5.3.125)

giving us the supersymmetric analogue of (5.1.33) with again an additional term.

For this relation to be of use in generating the three gluon vertex we require the

extra term of the form 〈
[Aa, φ̃]A[Ab, φ̃]B φ̃A|φ̃B|...

〉
(5.3.126)

to vanish in the string theory. The ... denote additional insertions of φ̃ placed at

points non-coincident with any other insertions. We therefore repeat the bosonic
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calculation for the supersymmetric gauge theory constructed above. We begin by

expanding the commutators

〈
...fR1S1AfR2S2BAR1

a (z1)AR2
b (z2)φ̃S1(z1)φ̃S2(z2) φ̃A(z′1)φ̃B(z′2)...

〉
. (5.3.127)

We can replace all factors of φ̃ by their corresponding generators on the boundary

and so we can leave them out of the computation for simplicity. The other two

factors of φSi can be generated by the derivatives

∂

∂qS1
1

∂

∂qS2
2

〈
...fR1S1AfR2S2BAR1

a A
R2
b e q1φ̃1+q2φ̃2

...
〉 ∣∣∣∣

q=0

. (5.3.128)

This exponential can again be used to define a modified action in the functional

integral of the form

S ′′ = S ′ − (q1φ̃
1 + q2φ̃

2). (5.3.129)

Integrating out φ̃ gives a delta function insertion of the form

δ(F − q1δ
2(z − z1)δ2(θ − θ1)− q2δ

2(z − z2)δ2(θ − θ2)) (5.3.130)

into the functional integral. The dynamics of the super gauge field are no longer

pure gauge due to the sources generated by the insertions of φ̃. We then solve for

the super gauge field associated with this field strength. We must, therefore, solve

F = DĀ+ D̄A+ ĀA+AĀ =
∑
i

qi δ
2(z − zi)δ2(θ − θi) (5.3.131)

subject to the boundary condition A| = Ā|. We can use the Green’s function for

the supersymmetric Laplacian to solve this. As

−2D̄DGF (z, θ; z′, θ′) = δ2(z − z′)δ2(θ − θ′) (5.3.132)

or

D̄(−DGF ) +D(D̄GF ) = δ2(z − z′)δ2(θ − θ′) (5.3.133)
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we can therefore identify

A = −qDGF + a =
q

4π
D log(z12z̄12 + ε) + a (5.3.134)

Ā = qD̄GF + a =
q

4π
D log(z12z̄12 + ε) + ā (5.3.135)

where a and ā are the higher order correction terms and z12 ≡ z1− z2− θ1θ2. Note,

we have added the regulator ε as naively

− 1

2π
D̄Dlog(z12z̄12) 6= δ2(z1 − z2)δ2(θ1 − θ2). (5.3.136)

This behaviour is detailed further in appendix A. Calculating the derivatives, taking

the ε→ 0 limit and adding appropriate terms to satisfy the boundary condition gives

AR1(z, θ) =
2∑
i=1

qR1
i

(
1

4π

(
θ − θi
z − zi

− θ − θ̄i
z − z̄i

)
− 1

2
θ̄θ̄i(θ− θi)δ2(z− zi)

)
+ a (5.3.137)

ĀR1(z, θ) = −
2∑
i=1

qR1
i

(
1

4π

(
θ̄ − θ̄i
z̄ − z̄i

− θ̄ − θi
z̄ − zi

)
−1

2
θθi(θ̄−θ̄i)δ2(z−zi)

)
+ā. (5.3.138)

One can obtain the explicit form of a and ā by computing the field strength. As

these are higher order in q they will have no effect in the computation of (5.3.128).

In analogy with the bosonic calculation we need to determine the 3 combinations

AA, ĀĀ and ĀA. Focussing on the first of these we have

AR1(z1)AR2(z2) = qR1
2

(
1

4π

(
θ1 − θ2

z1 − z2

− θ1 − θ̄2

z1 − z̄2

)
− 1

2
θ̄1θ̄2(θ1 − θ2)δ2(z1 − z2)

)

× qR2
1

(
1

4π

(
θ2 − θ1

z2 − z1

− θ2 − θ̄1

z2 − z̄1

)
− 1

2
θ̄2θ̄1(θ2 − θ1)δ2(z2 − z1)

)
. (5.3.139)

This is the only term that will contribute to the differentiation of the sources due

to repeated indices in the structure constants. Differentiating we find

∂

∂qS1

∂

∂qS2
AR1AR2 = δS1R2δS2R1

(
1

4π

(
θ1 − θ2

z1 − z2

− θ1 − θ̄2

z1 − z̄2

)
− 1

2
θ̄1θ̄2(θ1−θ2)δ2(z1−z2)

)
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×
(

1

4π

(
θ2 − θ1

z2 − z1

− θ2 − θ̄1

z2 − z̄1

)
− 1

2
θ̄2θ̄1(θ2 − θ1)δ2(z1 − z2)

)

=
δS1R2δS2R1

16π2

(
θ1 − θ2

z1 − z2

− θ1 − θ̄2

z1 − z̄2

)(
θ1 − θ2

z1 − z2

− θ̄1 − θ2

z̄1 − z2

)

−δ
S1R2δS2R1

8π
θ̄1θ̄2θ1θ2δ

2(z1 − z2)

(
1

z̄1 − z2

− 1

z̄2 − z1

)
≡ δS1R2δS2R1

16π2
fzz. (5.3.140)

Note, the delta function causes this extra term to vanish. Similarly, for ĀĀ we find

∂

∂qS1

∂

∂qS2
ĀR1(z1)ĀR2(z2) =

δS1R2δS2R1

16π2

(
θ̄1 − θ̄2

z̄1 − z̄2

− θ̄1 − θ2

z̄1 − z2

)(
θ̄1 − θ̄2

z̄1 − z̄2

− θ1 − θ̄2

z1 − z̄2

)

− 1

8π
θ̄1θ̄2θ1θ2δ

2(z1 − z2)

(
1

z1 − z̄2

− 1

z2 − z̄1

)
≡ δS1R2δS2R1

16π2
fz̄z̄. (5.3.141)

and, finally, for ĀA
∂

∂qS1

∂

∂qS2
ĀR1(z1)AR2(z2) =

−δ
S1R2δS2R1

16π2

(
θ̄1 − θ̄2

z̄1 − z̄2

− θ̄1 − θ2

z̄1 − z2

)2

− δR1S2δR2S1

4π

δ2(z1 − z2)

z̄1 − z2

≡ δS1R2δS2R1

16π2
fzz̄.

(5.3.142)

In this case, the delta function term survives. In the functional integral we will see

that this term does not contribute to the overall result as it cancels with the AĀ

term.

All of these terms will then arise in the string theory when we consider the contrac-

tions of two factors of C coming from different vertex operators. The relevant terms

will all be of the form

〈CC〉 3 − ik
[µ
1

k2
1

ik
[α
2

k2
2

∫
d2z1d

2θ1d
2z2d

2θ2
1

16π2
(fzz + fz̄z̄ + fzz̄ + fz̄z)

(D + D̄)Pk1(X1)ν](D + D̄)Pk2(X2)β] eik1·X1+ik2·X2 . (5.3.143)

As one can see from above, in the functional integral we will find fzz̄ = −fz̄z and

so the singular piece of (5.3.142) does not contribute. As in the bosonic case, fab

diverges as z1 ≈ z2. But, once again, these terms are multiplied by the exponential

eik1·X1+ik2·X2 which when contracted has an analogous form to the bosonic case. In

the tensionless limit, then, these terms are suppressed and so will not contribute to
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the string functional integral. We can then conclude that

〈
(Daφ̃)A(Dbφ̃)B

〉
∼ σab

〈
fABC φ̃Cδ2(z − z′)δ2(θ − θ′)

〉
. (5.3.144)

This means we will obtain the correct form of the three gluon vertex appearing in

the perturbative expansion of the super-Wilson loop as this is precisely (2.4.114).

5.3.2 Higher order terms

We can play the same game with higher order correlation functions, i.e. expectations

of the form
〈

(Dφ̃)n
〉
with n > 2 with each insertion carrying a distinct colour label

correpsonding to distinct vertex operator insertions. The next order that satisfies

this is S3 which is of the form

S3 ∼ q6

∫
d4k1

(2π)4

∫
d4k2

(2π)4

∫
d4k3

(2π)4
(B−C)µνAk1

(B−C)Aµν−k1
(B−C)ρλBk2

(B−C)Bρλ−k2

× (B − C)αβCk3
(B − C)Cαβ−k3

(5.3.145)

of which there are 6 terms like

S3 3 q6

∫
d4k1

(2π)4

∫
d4k2

(2π)4

∫
d4k3

(2π)4
CµνA
k1

BA
µν−k1

CρλB
k2

BB
ρλ−k2

CαβC
k3

BC
αβ−k3

. (5.3.146)

Evaluating these terms requires the computation of expectations of the form

〈
...Daφ̃

A
1 Dbφ̃

B
2 Dcφ̃

C
3 φ̃A1′ φ̃

B
2′φ̃

C
3′ ...
〉
. (5.3.147)

Now, carrying out a similar calculation as we did for the two point correlation

function we find

〈
Daφ̃

A
1 Dbφ̃

B
2 Dcφ̃

C
3

〉
= σab

〈
[τA, φ̃2]B[Ac3, φ̃3]Cδ2(z1 − z2)δ2(θ1 − θ2)

〉
−σac

〈
[Ab2, φ̃2]B[τA, φ̃3]Cδ2(z1 − z3)δ2(θ1 − θ3)

〉
−

−σbc
〈

[Aa1, φ̃1]A[τB, φ̃3]Cδ2(z2 − z3)δ2(θ2 − θ3)
〉
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−
〈

[Aa1, φ̃1]A[Ab2, φ̃2]B[Ac3, φ̃3]C
〉

(5.3.148)

where Aai ≡ Aa(zi, θi). Focussing on the first term and expanding the commutators,

we have

σabf
ADBfEFC

〈
...φ̃D2 AEc3φ̃F3 δ2(z1 − z2)δ2(θ1 − θ2)φ̃A1′ φ̃

B
2′φ̃

C
3′ ...
〉
. (5.3.149)

We can replace the factors φ̃D2 φ̃A1′ φ̃B2′φ̃C3′ by the corresponding generators on the

boundary using (5.3.113), leaving us to consider

〈
...AEc3φ̃F3 δ2(z1 − z2)δ2(θ1 − θ2)...

〉
. (5.3.150)

Replacing this factor of φ̃ with a differentiation as before leads to a solution for the

gauge field, A(z3)

AE(z3) = −q
E
3

4π

(
θ3 − θ̄3

z3 − z̄3

)
+ a (5.3.151)

and so (5.3.149) becomes

∼ −σabfADBfEFC
〈
...
δEF

4π

(
θ3 − θ̄3

z3 − z̄3

)
δ2(z1 − z2)δ2(θ1 − θ2) Tr(P τDτAτBτC)...

〉

∼ σabf
ADBfEEC ... = 0. (5.3.152)

The next two terms of (5.3.148) are similarly zero. The final term with three com-

mutators will require the functional differentiation of three factors of the super gauge

field. We can use the solutions (5.3.137) and (5.3.138) to determine that this term

will be suppressed by self contractions of the exponential. We, therefore, determine

that 〈
Daφ̃

A
1 Dbφ̃

B
2 Dcφ̃

C
3

〉
∼ 0. (5.3.153)

In fact, the three point correlation function can be found by performing Wick con-

tractions:

Daφ̃
A
1 Dbφ̃

B
2 Dcφ̃

C
3 ∼ Daφ̃

A
1 Dbφ̃

B
2 Dcφ̃

C
3 +Daφ̃

A
1 Dbφ̃

B
2 Dcφ̃

C
3 + ... . (5.3.154)
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The first term is

σabδ
2(z1 − z2)δ2(θ1 − θ2) fABDφ̃DDcφ̃

C
3 (5.3.155)

but, using

δ
〈
φ̃D
〉

= 0 ⇒
〈
φ̃DDcφ̃

C
3

〉
= −

〈
φ̃D[Ac, φ̃]C

〉
(5.3.156)

allows us to replace this with

−σabδ2(z1 − z2)δ2(θ1 − θ2) fABD φ̃D[Ac, φ̃]C

= σabf
ADBfEFC δ2(z1 − z2)δ2(θ1 − θ2) φ̃DAEc φ̃F (5.3.157)

which coincides with the first term of (5.3.148). This goes for the rest of the possi-

ble contractions. This means that the cascade of possible expectations of the form〈
(Dφ̃)n

〉
terminates at the three point function. At higher orders, the expectation

of factors of Dφ can be obtained by applying Wick’s theorem with the “propagator”

(5.3.144). With this, we now look at the expectation of the exponential of the con-

tact interaction.

5.3.3 Superstring theory

As in the bosonic theory, we can use these results to draw Feynman graphs with

which we can associate expectations to all orders in q2. The contact interaction, at

n’th order, is

Sn = q2n

n∏
i=1

∫
d4ki
(2π)4

(
Vi · Vi + (B − C) · (B − C)

)
(5.3.158)

where here A ·B ≡ AµνAk BA
µν−k. Firstly, we note that there is always one such term

of

q2n

n∏
i=1

∫
d4ki
(2π)4

B ·B. (5.3.159)
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We have already evaluated this, it is simply

q2n

n∏
i=1

∫
d4ki
(2π)4

∮
B

∮
B′

φ̃Aiφ̃
′Ai db

[µi
ki
k
ν]
i

eiki·(wi−w
′
i)

k4
i

db′−ki [µki ν] (5.3.160)

=
q2n

2n

n∏
i=1

∫
d4ki
(2π)4

∮
B

∮
B′

φ̃Aiφ̃′
Ai
dbµki

eiki·(wi−w
′
i)

k2
i

db′−ki µ. (5.3.161)

Functionally integrating over worldsheets spanned by B has no effect on this term,

and integrating over φ̃ replaces each factor of φ̃A on the boundary with the associated

generator, τA. This term, then, describes the interaction between n pairs of points on

the boundary joined by a propagator carrying momentum ki which can be compared

with (1.4.136).

Other terms which can easily be evaluated at any order are

〈Sn〉 3 q2n

n∏
i=1

∫
d4ki
(2π)4

〈V · V〉 = 0 (5.3.162)

and

Sn 3 q2n

n∏
i=1

∫
d4ki
(2π)4

〈C · C〉 = 0. (5.3.163)

The first of these is zero in the tensionless limit as self-contractions of the expo-

nentials are suppressed as explained earlier. The second term is zero because of

(5.3.144):

CµνA
k C

′A
µν −k =

∫
d2zd2θ d2z′d2θ′ Daφ̃

AJaµνk Dbφ̃
′AJ

′b
µν −k

∼ −
∫
d2zd2θ σabf

AABφ̃B Jaµνk J
′b
µν −k = 0. (5.3.164)

Note, any term in the expansion of Sn with an odd number of C insertions will

vanish as there will also be an extra C left over after contractions. This extra C will

live in the interior of the worldsheet and there are no contractions left to do that

can bring this to the boundary. Integration over the worldsheets spanning B will

then lead to a suppression of this term due to self contractions of the exponential.

The next non-trivial results are obtained by separating off 2 factors of (B − C) ·
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(B − C) as

Sn ∼ q2n

∫
d4k1

(2π)4

d4k2

(2π)4
...
d4kn
(2π)4

(B − C)A1
k1
· (B − C)A1

−k1
(B − C)A2

k2
· (B − C)A2

−k2

×
(

(B − C) · (B − C)

)n−2

. (5.3.165)

There are n!/2!(n−2)! ways of doing this. We can now contract the Bs with the Cs

in the first line producing the three point function. Additional factors of B · C in

the second line will be distinct and will give rise to additional three point functions.

For now just consider the unique term (B ·B)n−2. This term will then give rise to a

diagram with three points on the boundary linked by a three gluon vertex, and n−2

pairs of points on the boundary each joined by a single propagator. The amplitude

for each i, j is then

q2n

2n−2

∫
d4ki
(2π)4

d4kj
(2π)4

(BAi
ki
· CAi
−ki + CAi

ki
·BAi
−ki)(B

Aj
kj
· CAj
−kj + C

Aj
kj
·BAj
−kj)

×
n−2∏
k 6=i,j

∫
kk

∮
B

∮
B′

φ̃Ak φ̃
′Ak dbµkk

eikk·(wk−w
′
k)

k2
k

db′−kk µ. (5.3.166)

There are 4 ways to combine B · C and so we find that there are

22 n!

2!(n− 2)!
= 2n(n− 1) (5.3.167)

diagrams with one three point function and n−2 propagators joining 2(n−2) points

on the boundary.

We can use Wick contractions to evaluate more complex products of vertex opera-

tors. At higher orders, there exists terms of the form

∫
d4k1

(2π)4

∫
d4k2

(2π)4

∫
d4k3

(2π)4
(B · C)(B · C)(C · C) (5.3.168)

that first appear in S3. Averaging over φ̃ leads to contractions of the form

∫
d4k1

(2π)4

∫
d4k2

(2π)4

∫
d4k3

(2π)4
(B · C)(C · C)(C ·B). (5.3.169)
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Carrying out these contractions results in

=
i

k2
1

∮
dbµAk1

1

k2
2

∫
d2zd2θ fABDJD(D + D̄)Xµ(D + D̄)Xαe

−i(k1−k2)·X

∫
d2z′d2θ′ fBCE(D + D̄)X

′α(D + D̄)X
′λe−i(k2−k3)·X′ i

k2
3

∮
dbCk3λ

. (5.3.170)

We can project each X along the associated momentum to obtain two new boundary

integrals. The result is

= fABDfBCE
∮

φ̃A
dbk1 µ(w1)

k2
1

eik1·w1
1

k2
2

∮
φ̃D

db
[µ
−(k1−k2)(w2)

(k1 − k2)2
i(k1 − k2)ν]e−i(k1−k2)·w2

×
∮
φ̃E

db−(k2−k3) [ν(w3)

(k2 − k3)2
i(k2− k3)ρ]e

−i(k2−k3)·w3

∮
φ̃C

dbρ−k3
(w4)

k2
3

e−ik3·w4 . (5.3.171)

This gives the amplitude for the diagram in Fig. 5.1. The diagram is fairly easily

computed, up to a symmetry factor, since each external leg contributes a factor of

eiki(Xi−X)/k2
i . We also have an internal propagator, along with two integrals over

the two positions of the three gluon vertices. These integrals produce momentum

conserving delta functions that relate the momentum going into the diagram from

each external leg. This explains the extra factor of 1/k2
2 in the amplitude computed

in the string theory.

This is the only additional set of contractions that one can perform on the product

of vertex operators, and it does not lead to the four gluon vertex. This exhausts the

possibilities of finding the four gluon vertex in 〈Sn〉 from the quantum dynamics of

φA. Again, we should mention that it is believed that the four gluon vertex, along

with the ghost interaction, is indeed present in the string theory. It is obtained

from contractions involving the projected vertex operators using dimensional reg-

ularisation to regulate the Green’s function for the Laplacian at coincident points.

These have been studied separately by Prof. Mansfield and will be presented in an

upcoming paper.
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5.3.4 Loop dynamics of the supersymmetric theory

The supersymmetric gauge model has so far resisted a similar treatment to that given

in chapter 4 for the loop dynamics of the supersymmetric ψ theory. The reasons are

that the super-Wilson line is non-linear in the gauge field leading to complications

with the calculation. This was dealt with in the ψ theory by introducing two addi-

tional fields into the loop variable, z̃ and z respectively, that produced the quadratic

terms upon integration. These extra fields naturally entered as the superpartners of

the fields ψ† and ψ and so we were able to use the superfield formalism to write the

super-Wilson loop as linear in the gauge field A(X).

In the present case we can introduce the extra terms linear in z and A as before

except now we are unable to identify z̃ and z as superpartners of the Lie algebra

valued field, φA. There are two reasons for this: firstly, we would need two φ fields

to incorporate z̃ and z as superpartners and secondly we have shown that the su-

perpartner of φA on the boundary vanishes, so that φA| = φA0 .

We also cannot use the standard super-Wilson loop (4.3.73) because the superspace

representation specifically requires the use of path-ordering to generate the commu-

tator terms. Trying a similar thing with this model will lead to the results lacking

this extra structure. This needs resolving if we are to represent the expectation of

the super-Wilson loop as a supersymmetric string theory with an additional gauge

field on the worldsheet.
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Chapter 6

Conclusions and further work

We have seen that introducing an additional Lie algebra valued field, JA, onto the

worldsheet of the string theory described in [26], generalising the boundary field

theory of [35], allows a way of reproducing some of the features of the expectation of

the non-abelian Wilson loop. Particularly, we used the boundary field theory model

to introduce our field theory on the worldsheet in such a way that the path-ordering

of Lie algebra generators was achieved in the same way. This lead to a study of the

possible field theories that may be used to describe the dynamics of JA. We began

with a study of 2 dimensional electrostatics in curved space. An underlying Weyl

invariance simplified the calculation of the average over the line of force solution

to Gauss’ law and generalised the two dimensional result found in [21]. This result

lead to the study of the number of intersections of curves on a curved 2 dimensional

surface. We found that this produces a generalisation of the boundary field theory

by extending the path-ordering of Lie algebra generators into the interior of the

worldsheet. Using the intersection number of curves as the field theory describing

the dynamics of JA allows an implementation of path-ordering of the Wilson loop.

This result was extended to incorporate supersymmetry into the underlying surface,

allowing one to obtain path ordering of the super-Wilson loop. This case is of most

importance as it was shown in the abelian theory that it is free of extra divergences

that would prevent one from making a formal equivalence between the string theory

and the expectation of the Wilson loop.

Introducing JA onto the worldsheet naturally leads to extra terms in the vertex op-
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erator obtained by an integration by parts so that one obtains a boundary integral,

analogous to the abelian vertex operator, plus a term containing the derivatives of

JA. We determined that this additional term gives rise to the three gluon self inter-

action of non-abelian gauge theory when satisfying a specific relation. We, therefore,

tried to find such a relation in the field theory described by the average of the num-

ber of intersections of curves but were ultimately unable to find one, though we did

see some hints of where it may arise. Because of this, we investigated an alternative

method for obtaining the dynamics for JA, this time using an inherent gauge sym-

metry of the contact interaction to introduce a 2 dimensional Yang-Mills field onto

the worldsheet. We calculated correlation functions of the gauge field finding the

path-ordering condition plus the relation required for the three gluon interaction.

Again, we were able to extend this result to incorporate supersymmtery by studying

2 dimensional supersymmteric Yang-Mills theory. Unfortunately, we were unable to

find the four gluon vertex and ghost-ghost-gluon vertex as arising from the dynamics

of the Lie algebra valued field, JA. This, then, requires further work to see if these

interactions do actually exist in the string theory described in this work.

Independent work by Prof. Mansfield has shown that these may arise from contrac-

tions of the projected vertex operator, V. In the work presented here, we used heat

kernel regularisation to regulate the divergence produced in the Green’s function of

the Laplacian when vertex operators were placed at coincident points on the world-

sheet. With this, we found that these particular contractions are suppressed in the

tensionless limit of the string theory. However, using dimensional regularisation,

one finds that this contraction is not suppressed and does indeed contribute to the

expectation of the contact interaction. The idea is to replace (2.1.34) with

Gε(x1, x2) =

∫
d2+εk

(2π)2+ε

eik·(x1−x2)

k2
(6.0.1)

and do the various contractions in 2 + ε dimensions, letting ε→ 0 at the end.

If this prescription is shown to reproduce the four gluon vertex and ghost-ghost-gluon

vertex (and nothing more!), then we will be one step closer to proposing this string

theory as the true non-abelian generalisation of [45] that reproduces the expectation
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of the super-Wilson loop. By quantising the particles that make up the boundary

using Strassler’s worldline formulation we may obtain Yang-Mills theory coupled to

spinors and so obtain a reformulation of QCD. This would be the next step in the

research of this subject, followed by a study of the phenomenology predicted by this

model.
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Appendix A

It was believed that we required a spectral decomposition of the supersymmetric heat

kernel when investigating the number of intersections of curves on a supersurface.

We, ultimately, found that one can do the calculation by gauge fixing the kappa

symmetry and using the bosonic results. However, we did in fact obtain a spectral

decomposition for the heat kernel, Green’s function and identity operator of the

super-Laplacian.

A.1 The Super-Laplacian

Consider a variation of the gauge fixed superstring action (neglecting boundary

terms)

δSspin =
1

4πα′

∫
d2zd2θ

(
D̄δXµDXµ + D̄XµDδXµ

)
=

1

4πα′

∫
d2zd2θ δXµ(−2D̄D)Xµ + ... . (A.1.1)

The equations of motion for the superfield, X, are then

D̄DXµ = 0. (A.1.2)

The operator D̄D is the supersymmetric analogue of the bosonic Laplacian. It is

useful to define

∆F ≡ 4D̄D (A.1.3)

where the factor of 4 is included to match the bosonic Laplacian in complex coordi-

nates which is ∂2
x + ∂2

y = 4∂̄∂. It is like the square root of the bosonic Laplacian in
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the sense that

−∆2
F = −(4)2D̄DD̄D = (4)2D̄2D2 = (4)2∂̄∂ = 4∆B (A.1.4)

where we have used the relation

D2 = (∂θ + θ∂)(∂θ + θ∂) = ∂. (A.1.5)

We are interested in the eigenfunctions and corresponding eigenvalues of ∆F . Their

defining equation is as usual

−∆FΨi = λiΨi. (A.1.6)

Applying the super-Laplacian once more and using (A.1.4) we find

−∆BΨi =
λ2

4
Ψi. (A.1.7)

This is actually four equations that tell us that each component eigenfunction of

the super-Laplacian with eigenvalue λi is therefore an eigenvalue of the bosonic

Laplacian with eigenvalue λ2/4. The decomposition of Ψ can be written as

Ψ = f + θg + θ̄h+ θθ̄k (A.1.8)

where f(z, z̄) and k(z, z̄) are commuting and g(z, z̄) and h(z, z̄) are anti-commuting

fields. Each component satisfies

f = −

(
4

λ

)
k g =

(
4

λ

)
∂h h = −

(
4

λ

)
∂̄g (A.1.9)

meaning we can write Ψ in terms of just two component fields as

Ψ = f(1− θθ̄λ
4

) + θg − θ̄ 4

λ
∂̄g. (A.1.10)
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A knowledge of Ψ allows us to build the Green’s function associated with ∆F from

the qualitative relation

GF ∼
∑
λ 6=0

|Ψ〉 〈Ψ|
λ

. (A.1.11)

Applying −∆F to this gives the associated identity operator

−∆FGF =
∑
λ 6=0

|Ψ〉 〈Ψ| = 2δ2
c (z1 − z2)δ2

c (θ1 − θ2)−
∑
λ=0

|Ψ〉 〈Ψ| . (A.1.12)

Ignoring the zero modes, which will only be normalisable when a boundary is present,

we know the functional form of the Green’s function as the extension of the Laplacian

Green’s function

GF (z1, θ1; z2, θ2) = − 1

4π
log(z1 − z2 − θ1θ2)(z̄1 − z̄2 − θ̄1θ̄2) (A.1.13)

neglecting any boundary effects. Applying the super-Laplacian we find that this

doesn’t actually satisfy (A.1.12), as applying it at z1, θ1 we find

∆F,1GF = 2θ̄1(θ1 − θ2)δ2
c (z1 − z2) (A.1.14)

i.e. it is missing some terms. We need to regulate the logarithm. The simplest way

to do this is to add a small parameter, ε, we set to 0 as

GF = − 1

4π
lim
ε→0

log(z12z̄12 + ε) (A.1.15)

where z12 ≡ z1 − z2 − θ1θ2. With this we can Taylor expand to find

GF = − 1

4π

(
log(z1 − z2)(z̄1 − z̄2)− θ1θ2

z1 − z2

− θ̄1θ̄2

z̄1 − z̄2

+ θ̄1θ̄2θ1θ2 lim
ε→0

ε

|z1 − z2|2 + ε

)
.

(A.1.16)

Taking the ε→ 0 limit this final term becomes a delta function and so we have

− 1

4π

(
log(z1 − z2)(z̄1 − z̄2)− θ1 − θ2

z1 − z2

− θ̄1 − θ̄2

z̄1 − z̄2

+ 2πθ̄1θ̄2θ1θ2δ
2
c (z1 − z2)

)
. (A.1.17)

This now satisfies ∆FGF = 2δ2(θ1 − θ2)δ2
c (z1 − z2).
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A.2 Properties

As with any differential operator whose eigenfunctions we seek, we should test Her-

miticity and therefore if the eigenvalues are real. To test the Hermiticity of the

super-Laplacian we study the inner product, in direct analogy with the bosonic

case,

〈Ψn|∆FΨm〉 = 4

∫
d2z dθdθ̄ Ψ̄nD̄DΨm

= 4

∫
d2z dθdθ̄

(
D̄(Ψ̄nDΨm) +D(D̄Ψ̄nΨm) + (D̄DΨ̄n)Ψm

)
. (A.2.18)

The last term is

4

∫
d2z dθdθ̄ (D̄DΨ̄n)Ψm = 4

∫
d2z dθdθ̄ (DD̄Ψn)Ψm = −4

∫
d2z dθdθ̄ (D̄DΨn)Ψm

(A.2.19)

and so we find

〈Ψn|∆FΨm〉 = −〈∆FΨn|Ψm〉+ 4

∫
d2z dθdθ̄

(
D̄(Ψ̄nDΨm) +D(D̄Ψ̄nΨm)

)
.

(A.2.20)

Now assuming the boundary terms vanish, a point we will return to, we find

〈Ψn|∆FΨm〉 = −〈∆FΨn|Ψm〉 (A.2.21)

meaning the super-Laplacian is anti-hermitian. The anti-hermicity comes from the

anti-commutativity of the superderivatives. Usually this would give a purely imag-

inary eigenvalue, but we will show that λ2 ≥ 0. We can also write the right hand

side of (A.2.19) as

−4

∫
d2z dθdθ̄ (D̄DΨn)Ψm = 4

∫
d2z dθdθ̄ Ψ̄m(D̄DΨn) (A.2.22)

so that

〈Ψn|∆FΨm〉 = 〈Ψm|∆FΨn〉. (A.2.23)
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This odd behaviour is due to the fact that our measure is anti-commutative. This

leads to the conclusion

λm 〈Ψn|Ψm〉 − λ̄n〈Ψm|Ψn〉 = 0. (A.2.24)

We can relate 〈Ψm|Ψn〉 to 〈Ψn|Ψm〉 as follows

〈Ψm|Ψn〉 =

∫
d2zd2θ Ψ̄mΨn = −

∫
d2zd2θ Ψ̄nΨm = −〈Ψn|Ψm〉 (A.2.25)

and so (A.2.24) becomes

(λm + λ̄n) 〈Ψn|Ψm〉 = 0. (A.2.26)

This would usually lead to the conclusion that λ = −λ̄ or λ = iλ̃ with λ̃ ∈ R. This

tells us that we are doing something wrong. We will remedy this after looking at

the boundary terms and the bosonic Laplacian.

A.2.1 Boundary terms

Now we turn to the boundary terms on the right hand side of (A.2.20). We can use

Stoke’s theorem to write them as

∫
d2z dθdθ̄

(
D̄(Ψ̄nDΨm) +D(D̄Ψ̄nΨm)

)

= −
∮
dz dθdθ̄ θ̄Ψ̄nDΨm +

∮
dz̄ dθdθ̄ θD̄Ψ̄nΨm. (A.2.27)

These boundary integrals in terms of the component fields are then

−
∮
dz (f̄n∂fm + h̄ngm)−

∮
dz̄ (∂̄f̄nfm − ḡnhm). (A.2.28)

To see what these are we can consider the analogous bosonic Laplacian case

∫
d2z f̄ ∂̄∂f =

∫
d2z

(
∂̄∂f̄f + ∂̄(f̄∂f)− ∂(∂̄f̄f)

)

=

∫
d2z ∂̄∂f̄f −

∮
(dzf̄∂f + dz̄∂̄f̄f). (A.2.29)
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The extra term is the exactly the f terms in (A.2.27). The remaining terms are

∮
(dz̄ ḡnhm − dz h̄ngm) (A.2.30)

which we will return to. We see that f satisfies exactly the same boundary conditions

as the eigenfunctions of the bosonic Laplacian. What’s more the expansion of the

Green’s function of the super-Laplacian, GF , is

GF = − 1

2π
log(|z1 − z2 − θ1θ2||z1 − z̄2 − θ1θ̄2|) = GB + θ1θ2... . (A.2.31)

Expanding both sides in terms of their respective spectral decompositions gives a

relation between f and the bosonic eigenfunctions as

∑
λ 6=0

ff̄

λ
+ θ1θ2... =

∑
λ′ 6=0

φφ̄

λ′
+ θ1θ2... (A.2.32)

where φ are the eigenfunctions of ∆B with eigenvalue λ′.

A.2.2 Bosonic Laplacian

We have seen that the eigenfunctions of the super-Laplacian are also eigenfunctions

of the bosonic Laplacian. We, therefore, take a brief look at the properties of the

bosonic Laplacian. We begin with the eigenvalue equation

−4∂̄∂φn = γnφn. (A.2.33)

We can write the Green’s function as a spectral decomposition of the eigenfunctions

as

GB =

∫
γn 6=0

d2pn
φnφ̄n
γn

= − 1

2π
log(|z1 − z2||z1 − z̄2|). (A.2.34)

Then we have

−∆BGB =

∫
γn 6=0

d2pn φnφ̄n = 2δ2
c (z1 − z2). (A.2.35)
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We can define an inner product on states

〈φn|φm〉 ≡
∫
d2z φ̄nφm. (A.2.36)

The bosonic Laplacian is Hermitian and so we can use this to prove γ is real

〈φn|∆Bφm〉 = 〈∆Bφn|φm〉 (A.2.37)

which leads to

(γ̄n − γm) 〈φn|φm〉 = 0 (A.2.38)

hence γ̄n = γn and the eigenfunctions are orthogonal. The usual convention is to

choose orthonormal eigenfunctions such that

〈φn|φm〉 = δnm. (A.2.39)

We can also prove that γ ≥ 0:

−4γ

∫
d2z φ̄φ =

∫
d2z φ̄∂̄∂φ = −

∫
∂̄φ̄∂φ = −

∫
d2z |∂φ|2 ≤ 0 (A.2.40)

and therefore γ ≥ 0. The heat kernel has spectral decomposition

KB(t, z1, z2) =

∫
d2pn e

−λntφnφ̄n (A.2.41)

and solves the heat equation

(∂t −∆B)KB = 0. (A.2.42)

It also satisfies

KB(0, z1, z2) =

∫
d2pn φnφ̄n = IB. (A.2.43)

Expanding the exponential in powers of t we find the relation

KB(t, z1, z2) =

∫
d2pn e

−λntφnφ̄n =

∫
d2pn

∑
m

(−λnt)m

m!
φnφ̄n (A.2.44)
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then we can use the relation λnφ = (−1)m∆m
Bφ to write

KB(t, z1, z2) =
∑
m

tm

m!
∆m
B

∫
d2pn φnφ̄n = et∆BIB. (A.2.45)

A.2.3 Super-Laplacian

Each component eigenfunction of Ψ satisfies the bosonic Laplacian eigenvalue equa-

tion from (A.1.4), and so we can use the above information to determine that λ is

real. First of all, the commuting components, f and k, satisfy

〈fn|fm〉B ≡
∫
d2z f̄nfm = δnm (A.2.46)

with λ2 ≥ 0→ λ ≥ 0 and real. The anti-commuting components, g and h, satisfy

〈gn|gm〉B = αδnm (A.2.47)

with α = 1 = −ᾱ. In this case we have λ2 = λ̄2 so that either λ ∈ I,=(λ) ≤ 0 or

λ ∈ R, λ ≥ 0. But g and f share eigenvalues and so we should choose λ ∈ R. Going

back to (A.2.26) we have

(λm + λn) 〈Ψn|Ψm〉 = 0 (A.2.48)

which suggests that

〈Ψn|Ψm〉 ∼ δ(λn + λm). (A.2.49)

This means that 〈Ψn|Ψn〉 = 0 and 〈Ψ−n|Ψn〉 6= 0. This suggests that we should

consider the two sets of eigenfunctions Ψ± with corresponding eigenvalues λ±. The

final piece we need is the fact that g is Grassmann-odd so it must go like g ∼ ηeik·x

where η1η2 = −η2η1.

We now have enough information to determine (A.2.49). We know that the right

hand side is only non-zero when λm = −λn hence we shall consider the inner product

〈Ψ−n|Ψ+m〉. We will define it to be equal to

〈Ψ−n|Ψ+m〉 ≡ cnmδ
2
c (pn − pm) (A.2.50)
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where cnm = c(η̄n, ηm) is a function to be determined. Writing this out in terms of

its component fields gives

〈Ψ−n|Ψ+m〉 =
(λn + λm)

4

∫
d2z f̄nfm −

(λn + λm)

λn

∫
d2z ḡngm. (A.2.51)

Now we can take out the factors of η̄n and ηm and rescale the fields to f ≡
√

2
λ
F

and g ≡ η√
2
G so that the above becomes

〈Ψ−n|Ψ+m〉 =

∫
d2z F̄nFm − η̄nηm

∫
d2z ḠnGm (A.2.52)

F and G are still eigenfunctions of the bosonic Laplacian with the same eigenvalues

and so choosing them to be orthonormal we have

〈Ψ−n|Ψ+m〉 = (1− η̄nηm)δ2
c (pn − pm) (A.2.53)

so that cnm = 1− η̄nηm. We can also write

〈Ψ+n|Ψ−m〉 = c̃nmδ
2
c (pn − pm). (A.2.54)

We can determine c̃ from (A.2.25). We find

〈Ψ+n|Ψ−m〉 = −(1 + η̄nηm)δ2
c (pn − pm) (A.2.55)

and so c̃nm = −(1 + η̄nηm). We can now write down the identity operator on the

space of super-Laplacian eigenfunctions in terms of c and c̄ as

I =

∫
d2pid

2ηi

(
Ψ+iΨ̄−i
cii

− Ψ−iΨ̄+i

c̃ii

)
. (A.2.56)

Which on the face of it looks like a non-trivial combination of the fields and c’s.

Note that this can be written as

I =

∫
d2pid

2ηi

(
Ψ+iΨ̄−i(1 + η̄iηi) + Ψ−iΨ̄+i(1− η̄iηi)

)
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=

∫
d2pid

2ηi

(
(Ψ+iΨ̄−i + Ψ−iΨ̄+i) + η̄iηi((Ψ+iΨ̄−i −Ψ−iΨ̄+i)

)
. (A.2.57)

Now due to the η integration the first term in parenthesis is only a function of

G and the second term is only a function F . Applying this to a general state

Ψ =
∫
d2pj (ajΨ+j + bjΨ−j) gives

I ·Ψ =

∫
d2pid

2ηid
2pj

(
Ψ+i(1 + η̄iηi)aj

∫
d2zd2θ Ψ̄−iΨ+j

+Ψ−i(1− η̄iηi)bj
∫
d2zd2θ Ψ̄+iΨ−j

)

=

∫
d2pid

2ηid
2pj

(
ajΨ+i(1 + η̄iηi)(1− η̄iηj)δ2

c (pi − pj)

= −bjΨ−i(1− η̄iηi)(1 + η̄iηj)δ
2
c (pi − pj)

=

∫
d2pjd

2ηi

(
aiΨ+iη̄i(ηi − ηj) + biΨ−iη̄i(ηi − ηj)

)
. (A.2.58)

It’s straightforward to show that
∫
d2ηi Ψ(ηi)η̄i(ηi−η) = Ψ(η) since Ψ is holomorphic

in η so that η̄i(ηi− ηj) acts as the delta function. Then we are left with our general

state that we started with confirming to us that I is indeed the identity operator.

From this we obtain the Green’s function

GF =

∫
λ>0

d2pid
2ηi

(
Ψ+iΨ̄−i
λicii

+
Ψ−iΨ̄+i

λic̃ii

)
(A.2.59)

which can be written as

GF =

∫
λ>0

d2pid
2ηi

1

λi

(
(Ψ+iΨ̄−i −Ψ−iΨ̄+i) + η̄iηi((Ψ+iΨ̄−i + Ψ−iΨ̄+i)

)
. (A.2.60)

A.2.4 The heat kernel

The heat kernel in flat 2 dimensional space is

KB =
1

4πt
e−

(z1−z2)(z̄1−z̄2)
4t . (A.2.61)
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It satisfies the bosonic heat equation

(∂t −∆B)KB = 0. (A.2.62)

The straightforward generalisation to superspace is found by replacing the bosonic

displacement z1−z2 with the fermionic displacement z12 ≡ z1−z2−θ1θ2. This gives

the fermionic heat kernel

KF =
1

4πt
e−

z12z̄12
4t (A.2.63)

and satisfies a generalisation of the bosonic heat equation

(δ2(θ1 − θ2)∂t −∆F )KF = 0. (A.2.64)

It is related to the Green’s function by

GF = lim
ε→0

∫ ∞
ε

KF dt. (A.2.65)

We can expand KF in powers of θ:

KF = KB + θ1θ2 ∂2KB + θ̄1θ̄2 ∂̄2KB − θ1θ2θ̄1θ̄2 ∂̄2∂2KB. (A.2.66)

Now we turn to the spectral decomposition of the heat kernel. The bosonic case is

simply:

KB =

∫
d2pi e

−λ
2t
4 φiφ̄i (A.2.67)

where −∆Bφi =
λ2
i

4
φi. From (A.2.59), we can straight forwardly write the heat

kernel as

KF (t, z1, z2, θ1, θ2) =

∫
λ>0

d2pid
2ηi

(
e−λit

Ψ+iΨ̄−i
cii

− eλitΨ−iΨ̄+i

c̃ii

)
(A.2.68)

and satisfies

KF (0) = I−Ψ0Ψ̄0. (A.2.69)
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Then

∫ ∞
0

dt
(
KF (t)+Ψ0Ψ̄0

)
=

∫
λ>0

d2pid
2ηi

(
Ψ+iΨ̄−i
λicii

+
Ψ−iΨ̄+i

λic̃ii

)
−ΨF = GF . (A.2.70)

Inserting c and c̃ allows us to write the fermionic heat kernel as

KF =

∫
d2pid

2η e−λt
[
(Ψ+Ψ̄− −Ψ−Ψ̄+) + η̄η(Ψ+Ψ̄− + Ψ−Ψ̄+)

]
. (A.2.71)

In this form it is not easy to see that KF is equivalent to (A.2.63). To see that they

are equivalent we consider the integral over t

∫
KF dt =

∫
dt d2pid

2η e−λt
[
(Ψ+Ψ̄− −Ψ−Ψ̄+) + η̄η(Ψ+Ψ̄− + Ψ−Ψ̄+)

]
. (A.2.72)

Now make the transformation t→ λt
4
so that this becomes

∫
KF dt =

∫
dt d2pid

2η
λ

4
e−

λ2t
4

[
(Ψ+Ψ̄−−Ψ−Ψ̄+)+ η̄η(Ψ+Ψ̄−+Ψ−Ψ̄+)

]
. (A.2.73)

If we take KF to be understood under the t integral then we can take it to be

KF =

∫
d2pid

2η
λ

4
e−

λ2t
4

[
(Ψ+Ψ̄− −Ψ−Ψ̄+) + η̄η(Ψ+Ψ̄− + Ψ−Ψ̄+)

]
. (A.2.74)

We now prove that (A.2.74) is equal to (A.2.63). We can show this by expanding

in powers of θ and showing they are equal to each term of (A.2.66). Firstly, we can

write the eigenfunctions as

Ψ± =

√
2

λ
F±

(
1∓ λ

4
θθ̄

)
+
θη√

2
G± ∓

4θ̄η√
2λ
∂̄G±. (A.2.75)

Then consider firstly the purely bosonic term of (A.2.74)

KF 3
∫
d2pid

2η
λ

4
e−

λ2t
4 η̄η

4FF̄

λ
=

∫
d2pi e

−λ
2t
4 FF̄ = KB. (A.2.76)
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So our purely bosonic terms match. Now consider the θ1θ2 term

KF 3
∫
d2pid

2η
λ

4
e−

λ2t
4 θ1θ2 η̄η

4

λ
G∂2Ḡ

= θ1θ2∂2

∫
d2pi e

−λ
2t
4 GḠ = θ1θ2∂2KB

which matches the θ1θ2 term of (A.2.66). Finally the θ1θ̄1θ2θ̄2 term

KF 3
∫
d2pid

2η
λ

4
e−

λ2t
4 2

(
λ

4

)3

θ1θ̄1θ2θ̄2 ff̄

= −θ1θ̄1θ2θ̄2∂̄2∂2

∫
d2pid

2η e−
λ2t
4 FF̄ = −θ1θ̄1θ2θ̄2∂̄2∂2KB (A.2.77)

as expected. KF satisfies

∫ ∞
0

KFdt =

∫
d2pid

2η
1

λ

[
(Ψ+Ψ̄− −Ψ−Ψ̄+) + η̄η(Ψ+Ψ̄− + Ψ−Ψ̄+)

]
(A.2.78)

which is the Green’s function, GF , that we found earlier. Note that

KF (t = 0) =

∫
d2pid

2η
λ

4

[
(Ψ+Ψ̄− −Ψ−Ψ̄+) + η̄η(Ψ+Ψ̄− + Ψ−Ψ̄+)

]
= −∆F

4
I = δ2(z1 − z2 − θ1θ2). (A.2.79)

Then

δ2(θ1 − θ2)KF (0) = δ2(θ1 − θ2)δ2(z1 − z2). (A.2.80)

So that

∆F

∫
KF dt = δ2(θ1 − θ2)KF (0) = δ2(θ1 − θ2)δ2(z1 − z2). (A.2.81)

We can expand (A.2.68) as we did in the bosonic case

KF =

∫
λ>0

d2pid
2ηi

∑
m

(
(−λit)m

m!

Ψ+iΨ̄−i
cii

− (λit)
m

m!

Ψ−iΨ̄+i

c̃ii

)
(A.2.82)
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then using λmΨ± = (∓1)m∆m
F Ψ± we get

KF = et∆F IF (A.2.83)

in analogy with the bosonic case. We can write the operator as et∆F

et∆F =
∞∑
n=0

(t∆n
F )

n!
. (A.2.84)

Now ∆2n
F = (−1)n∆n

B and ∆2n+1
F = (−1)n∆F∆n

B and so we can split the sum into

odd and even powered terms

et∆F =
∞∑
n=0

(
(−1)nt2n∆n

B

(2n)!
+

(−1)nt2n+1∆F∆n
F

(2n+ 1)!

)
(A.2.85)

which gives the rather nice form

et∆F = cos(t
√

∆B) +
∆F√
∆B

sin(t
√

∆B). (A.2.86)

One could also write

et∆F = cos(t
√

∆B) + t∆F sinc(t
√

∆B). (A.2.87)

A.2.5 Boundary terms, again

We can go back to (A.2.30) and complete our analysis of the boundary terms. If

instead of looking at 〈Ψn|Ψn〉 we look at 〈Ψ−n|Ψ+n〉, then (A.2.30) becomes

∮
(dz̄ ḡ−nh+m − dz h̄−ng+n). (A.2.88)

The relations (A.1.9) allow us to write this as

−4

λ

∮
(dz̄ ḡn∂̄gn + dz ∂ḡngn). (A.2.89)
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After an integration by parts we find that this is

4

λ

∮
(dz̄ ∂̄ḡngn + dz ḡn∂gn) (A.2.90)

which now has the same form as the bosonic eigenfunction boundary conditions

(A.2.29), as we would expect as both f and g are eigenfunctions of the bosonic

Laplacian.

A.2.6 Useful formulae

D1 δ
2
c (z1 − z2)δ2(θ1 − θ2) = −(θ̄1 − θ̄2)

(
δ2
c (z1 − z2)− θ1θ2∂1δ

2
c (z1 − z2)

)
(A.2.91)

D̄1δ
2
c (z1 − z2)δ2(θ1 − θ2) = (θ1 − θ2)

(
δ2
c (z1 − z2)− θ̄1θ̄2∂̄1δ

2
c (z1 − z2)

)
(A.2.92)

−D̄D δ2
c (z1 − z2)δ2(θ1 − θ2) = δ2(z1 − z2 − θ1θ2). (A.2.93)

Then from the equation

−4D̄DGF = 2δ2
c (z1 − z2)δ2(θ1 − θ2) (A.2.94)

we find

−D̄D(−4D̄DGF ) = −4D̄2D2GF = −∆BGF = 2δ2(z1 − z2 − θ1θ2) (A.2.95)
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