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Abstract

We investigate a reformulation of Yang-Mills theory at the level of the expectation
of the non-abelian Wilson loop using a string theory with non-standard interaction
that forms a generalisation of the model formulated in [26]. We find that the path-
ordering of the Wilson loop can be generated either from considering a worldsheet
generalisation of the field theory found in [35] or by introducing a gauge field onto
the worldsheet. Only the gauge theory has the sufficient structure to accommodate
the three gluon vertex of Yang-Mills theory in the string model. Supersymmetric
analogues of these two models are also investigated which, specifically in the gauge
theory model, can be made the basis of a realistic string model formulation of Yang-

Mills theory coupled to spinors.
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Chapter 1

Introduction

The standard model is to date the most complete and well tested theory we have of
particle physics at the most fundamental level. At its core is the existence of local
internal symmetries in the Lagrangians of the various field theories that make it up.
These symmetries, known as gauge symmetries, have been intensely studied in the
context of particle physics yielding one of the most precise agreements between the-
ory and experiment we have yet seen in the measurement of the electron magnetic
moment [1] [2]. This stunning agreement was reached by using the quantum theory
of relativistic fields (QFT) which stands as our primary means of attacking problems
in particle physics and it is QFT in which the standard model is most commonly
formulated. There do, however, exist other methods that allow us to solve problems
that are difficult or sometimes not apparent in QFT. In this thesis we will explore
an alternative to field theory, based on a theory of strings in 4 dimensions with a
non-standard contact interaction.

With all the successes of field theory, one may wish to ask, why consider alternative
formulations? Well, I pose two reasons for doing so. The first and fundamentally
most important reason would be that there still exist many unsolved problems in
fundamental particle physics. Mostly these occur within the framework of quan-
tum chromodynamics (QCD), the theory of the strong force, as perturbation theory
has limited use at low energies due to the phenomena of asymptotic freedom. We
are therefore forced to use non-perturbative methods to ask important questions

in this regime. This is fine of course except for the fact that these methods are
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1.1. Gauge theory 2

extremely difficult. The area of lattice gauge theory is of use here, though this
method requires complex numerical computations requiring significant computing
power. This method has another downfall in the form of the numerical sign prob-
lem [3] whereby Boltzmann factors, interpreted as probabilities, come out with the
wrong sign or are even complex. A new approach to computing amplitudes would
therefore be highly useful to phenomenologists.

The second reason we may wish to seek alternative formulations would be interest;
is it not interesting that there exists a perfectly good alternative to field theory that
reproduces the same results but reaches these conclusions from a different perspec-
tive? Philosophically it may tell us more about the structure of gauge field theory
and therefore about the structure of the standard model.

The model we investigate consists of a field strength supported on a surface bounded
by two interacting particles moving along their respective worldlines. When inserted
into the standard Maxwell action this model actually describes a string theory with
a non-standard interaction that is only non-zero when the string intersects itself.
We will show that this theory produces results equivalent to the expectation of the
Wilson loop computed using standard Yang-Mills theory. This formulation of gauge
theory where the degrees of freedom are strings is reminiscent of Faraday’s lines of
force [4].

We will begin with a discussion of gauge theories and how they are usually formu-
lated. We will then review how to formulate the most simple Yang-Mills theory,
electromagnetism, using string theory. The aim of this thesis will then be to gen-
eralise this string model to include non-abelian gauge groups such as those at the
heart of the standard model. We will use a result from the worldline formalism
to motivate introducing new fields onto our worldsheet theory whose dynamics will

give rise to the additional features of Yang-Mills theory.

1.1 Gauge theory

Field theories with local internal Lie group symmetries have proved incredibly useful

in particle physics since they were first introduced, unwittingly, in the theory of elec-
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1.1. Gauge theory 3

tromagnetism (EM). Extending these symmetries to the matter sector, and thereby
introducing interactions between bosons and leptons and quarks, is the cornerstone
of the standard model. To understand these symmetries, which we call gauge sym-
metries, we will look at the simplest case, that of EM or the U(1) invariant gauge
theory. The physical fields of the theory are the electric field, E, and magnetic field,
B. The equations governing their dynamics are Maxwell’s equations [5], which in

differential form and S.I. units are

v-E=2L (1.1.1)
€o
VxE=-B (1.1.2)
V-B=0 (1.1.3)
V x B = 1y(J + e E). (1.1.4)

where p and J are the charge density and current density respectively and E =
dE/dt. The two curl equations are satisfied by introducing the scalar potential, ¢,

and vector potential, A, such that
E=-Vp—A, B=VxA. (1.1.5)

The electric and magnetic fields are not completely determined by a single choice of

potentials. These solutions are, in fact, invariant under the transformations
o= =p+A A—-A =A-VA (1.1.6)

where A = A(t;x) is a scalar space-time function. These are the gauge transfor-
mations of EM. Since we can alter the potentials in this way without affecting the
physics, ¢ and A are unphysical fields. This is why the electric and magnetic fields
are used more commonly. To see why EM is also known as U(1) gauge theory, it will
be useful to move to a more covariant form of Maxwell’s equations. This is done by
placing the two types of potentials into components of a single potential four vector,

AHsuch that A* = (¢, A). The charge and current densities are similarly packaged
July 11, 2018



1.1. Gauge theory 4

as the four current, j# = (p,J). The covariant form of Maxwell’s equations are then
written in terms of the field strength tensor, defined as F,, = 9,4, — 0,4, and
take the form

O F" = poj” (1.1.7)

€prpo 0 FH =0 (1.1.8)

where €, is the 4 dimensional Levi-Civita symbol. The gauge transformations are

then neatly written as

AP = A = AP — OFA. (1.1.9)

The field strength itself is important as it is invariant under gauge transformations.
The first of the covariant Maxwell’s equations can be obtained by minimising the

action

1
SEM_/d4£L‘ (—TmFuyFuy—i—juAu). (1110)

Note, there is a more natural reason for choosing this action to describe the dynamics
of the field theory. It is the only functional that is gauge invariant, Lorentz invariant,
parity invariant and time-reversal invariant. The gauge invariance of the second term
follows from the continuity equation, 0,j” = 0, which follows from differentiating
(1.1.7) with respect to ”. This action then describes pure EM, i.e. EM without
matter. To couple matter to EM, we simply add the matter action to Sgy; in a
gauge invariant way. For simplicity we can consider coupling electromagnetism to a

complex free massless scalar field, ¢, with free action

S, = /d% O 0,0 (1.1.11)

To work out how to add matter to EM in a gauge invariant way requires us to
understand how ¢ changes under a gauge transformation. To start with note that

this action is invariant under the global transformation

60— ¢ = ¢l = ol = gle (1.1.12)
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1.1. Gauge theory 5

where ¢ is a coupling constant and for now a is constant. The gauge transformation
(1.1.9) is local, however. The action for ¢ is not invariant if we promote a to a
general spacetime function A(x). It can, however, be made invariant if we replace

the partial derivatives with the covariant derivatives, D,,, defined as
D, =0, +1iqA, (1.1.13)

so that the combination D,¢ transforms as (D,¢)" = €D, ¢ iff A, transforms like
the four potential (1.1.9). The gauge invariant form of the kinetic action for ¢ is

then
Sl = / d'z D"¢'D,é. (1.1.14)

The physical effect of this replacement is to introduce interactions between ¢ and
the four potential, A,. The full field theory is then the sum of the matter action Sy
and the free Maxwell action, Sgy,. Without the Maxwell action, the action would
describe the dynamics of a complex field coupled to a background four potential.
When a is replaced by a local field, (1.1.12) suggests that ¢ transforms in the
fundamental representation of the Lie group U(1) i.e. it gets rotated by a factor
of U = ¢, Similarly ¢* transforms in the anti-fundamental representation. The
covariant derivative is so called because it covaries with the field ¢. i.e. it is defined
to transform as D,¢ — UD,¢ = (UD,U~1)(U¢). This suggests that D, transforms
in the adjoint representation of the Lie group. Finally, this is achieved iff the four

potential, in general called the gauge field, transforms as

A, — AL =UAU - %(@U)U‘l. (1.1.15)
Explicitly inserting the definition of U into this reduces the transformation to (1.1.9).

We can be more general and consider a phase factor of the form
U = '@ (1.1.16)

where I'(x) belongs to a general Lie algebra and so can be expanded in terms of the
group generators, 7%, as I' = I'*(x)7%. In this way, we see that the function A as just

July 11, 2018



1.1. Gauge theory 6

a spacetime function is an element of the Lie algebra of U(1). In general I' won't
commute introducing non-linearities into the Maxwell action. We will come back
to the more general gauge theory where the Lie group is left arbitrary later after a

discussion of string theory and its connection to EM.

1.1.1 String theory

String theory and field theories on the 2 dimensional worldsheet will form a major
part of this thesis and so we give a brief discussion of them here. String theory
has aroused significant interest as a possible theory of quantum gravity ever since
the quantisation of the string and the discovery of the graviton in its spectrum.
It first appeared as the dual resonance theory which was an S-matrix approach to
the dynamics of hadrons, a major result of which was the Veneziano amplitude [6].
Ultimately, it was shown to be an unsuccessful theory when applied to hadrons,
with QCD proving to be the correct theory of the strong interaction. Nambu [7],
Nielsen [8] and Susskind [9]- [11], however, were able to show that the theory was
equivalent to a theory of bosonic strings. Since then string theory, particularly
superstring theory, has had many successes such as the derivation of the Einstein field
equations and Hawking’s black hole entropy formula [12]. It has even found some
applications to field theory such as the discovery of the Bern-Kosower formula [13]
which computes one loop N-gluon amplitudes. More modern aspects of string theory
include the ADS/CFT correspondence [14] and the discovery of the connection to
monstrous moonshine [15]. There are, however, some problems such as the prediction
of extra dimensions and the requirement of spacetime supersymmetry. The string
landscape of superstring theory is also an issue that draws into question whether or
not string theory is even a theory of science.

The study of string theory as a potential quantum theory of gravity is irrelevant to
us in this thesis. Instead, we will use the machinery that has been built to study
string theory over the past 40 years to formulate a string theory in 4 dimensions
that can reproduce field theory results. The problems associated with working in
a non-critical dimension are addressed in [26] and correspond to the appearance of
additional Liouville and super-Liouville degrees of freedom.

July 11, 2018



1.1. Gauge theory 7

A quantum theory of strings is most simply obtained via first quantisation. Just as a
point particle sweeps out a worldline in spacetime, a 1 dimensional extended object
sweeps out a 2 dimensional worldsheet; and just as the point particle’s worldline
minimises its proper time, a string’s worldsheet minimises its proper area which

leads naturally to the Nambu-Goto action describing the dynamics of the string

Sne = /d% Vh (1.1.17)

with A the determinant of the induced metric of the worldsheet. It is the pull-back

of the flat metric on Minkowski space so that
hab = 6aX“8bX”77W. (1118)

The square root in the action makes quantisation difficult. Brink, Di Vecchia and
Howe showed that introducing an additional auxiliary field onto the worldsheet
allows one to obtain a classically equivalent action now known as the Polyakov

action [16], given by

Sp[Xa g9l =

drad /Edzf\/g gabaaXu(g)aqu(g) (1.1.19)

so named because Polyakov was the first to show how to quantise the string via
the functional integral using this action to weight the random surfaces [17]. The
extra field, g, is interpreted as the two dimensional metric on the worldsheet, just as
the einbein introduced in the worldline action is the one dimensional metric on the
worldline. We will see that summing a classical solution to one of Maxwell’s equa-
tions over all possible (genus 0) surfaces weighted by e~ leads to the full classical
solution satisfying all field equations. Functional integration over surfaces is rather
non-trivial compared to its path integral sibling. The surfaces encountered in string
theory are diffeomorphism and Weyl invariant and so lead to a large overcounting
of possible surfaces in the partition function Z = [ D[X, g] e~ X9 Tt is, therefore,
ill defined without a proper treatment of the symmetries. To become well defined

we must divide out the gauge equivalent configurations via the method of Faddeev-
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1.1. Gauge theory 8

Popov which introduces ghosts into the theory [18].

The ground state of the bosonic string is tachyonic and poses a serious threat to the
validity of the theory as a realistic physical model. It turns out that a string theory
with fermions on the worldsheet lacks this unphysical mode in its spectrum. In the
same way that there exists a worldline supersymmetry between worldline fermions
and bosons, there exist worldsheet supersymmetries between the worldsheet fermions
and bosons. There are five distinct superstring theories with different numbers of su-
persymmetries and gauge fields. Of particular interest in this thesis will be bosonic

and fermionic strings whose worldsheets are closed surfaces in spacetime.

1.1.2 The classical electrostatic field between two point charges

Before deriving the full electromagnetic field produced by two moving charges, we
look at the simpler case of the electric field produced by two, fixed, equal and
opposite point charges in D dimensions. This will introduce the lines of force method
that will be used throughout this thesis. We will also find this particular case useful
when we come to consider how to generalise the string theory to accommodate
general gauge groups.

Consider particle 1 with position vector a and charge +¢q and particle 2 with position
vector b and charge —g. The physics of the system is described by Gauss’ law (1.1.1)

V. E=2L("x—a) - (x - b)). (1.1.20)

€o

By inspection, a solution is

E.(x) = E/C(SD(X — y)dy. (1.1.21)

€0

The curve C' is any curve joining a and b. The proof of this solution is straight

forward

vE=Z VxéD(x—y)-aly:—i VyoP(x —y) - dy
€ Jc €0 Jo

July 11, 2018



1.1. Gauge theory 9

— 4(5P(x —a) — 6”(x — b)). (1.1.22)

€o
This form of solution describes a single string of field connecting the two particles.
The trouble is, this solution doesn’t satisfy Faraday’s law in D dimensions, which is
from (1.1.8)
YE —0FE =0. (1.1.23)

We know, however, that the unique solution of Gauss’ law and Faraday’s law that

decays at infinity is

(x —a) B (x —b)
LD/ |~ 7| (1.1.24)

__ 7
2eomD/2

E(x)

We will now see that a statistical sum of our string solution over all possible curve
configurations reproduces this electric field solution as in [21]. To do this we split
the string solution into N strings, each with associated charge gy = ¢/N. We then
perform a path integration between a and b weighted by a suitable Boltzmann

factor, i.e. we require a weight, SH, such that

X —a x—Db 1 -
x—a®  |x—b[P E/DY/CCSD(X_‘Y) dy ¢ (1.1.25)

where Z is a suitable normalisation given by

Z = /Dy e PH. (1.1.26)

There is a natural weight that arises in the study of Brownian motion and thermal

conduction, the heat kernel, which takes the form

la—b|?
—HoT|,\ _ P N
<b|e 0 ’a> = /Dy e Jo 2 = W (1.1.27)

where Hj is the Hamiltonian for a free scalar bosonic particle. The heat kernel is
related by a Wick rotation to the quantum expectation for a particle to travel from
a to b. We have parametrised the curve by ¢ such that y(0) = a and y(7") = b.

The total electric field should then correspond to the expectation value of the string
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1.1. Gauge theory 10

solution (1.1.21). For a general observable, 2, we have as usual

1
== /Dy Qe PH, (1.1.28)

We can then obtain the total electric field E = (E.) by introducing a source function,
A, so that

(Ec(x)) = %@%/Dy o I A= [ Ady (1.1.29)

where we have used the usual functional differentiation identity

a Jo AW)-dy _4 D — L [ Aly)-dy
(5A /Dye /Dy( 60/¢15< y)dy)e )

(1.1.30)

A=0

The exponent in (1.1.29) is the action of a point particle coupled to a background
gauge field. From non-relativistic quantum mechanics, we know that this is equiv-
alent to introducing a potential into the Hamiltonian of (1.1.27) so that H, —
H = M as is done when passing from the classical Lagrangian formulation of
electrodynamics of a point particle to the Hamiltonian formulation via a Legendre
transform. Considering the kinetic part of the action as the Wick rotated quan-
tum action means we need to Wick rotate the source term, leading to the factor
of 7 here. We now run into an operator ordering ambiguity which is familiar from
the path integral formulation of non-relativistic quantum mechanics. To avoid this

problem we interpret the Hamiltonian as the Laplacian minimally coupled to the

vector potential that acts on scalars so that
A 1 9
H:—ﬁ(V—A) : (1.1.31)

We, therefore, find

0H
JA(x)

= Vi’ (q—x)+0"(q —x)V. (1.1.32)
A=0
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1.1. Gauge theory 11

We can use the completeness relation of position eigenstates, [ d”clc)(c| =1, to

simplify this to

H
L0

i /d%% (e| 6P (c—x)— &) ¥ (c| 62 (c—x) = [x) ¥ (x| . (1.1.33)

A=0

Carrying out the functional integration on the amplitude gives

5 A T SH )
O bl Ty = — / dt (ble~ om0 1| ot g
1 4 H (T— H
= | e ) o), (1131)

We now have two amplitudes which we recognise as heat kernels (1.1.27), hence, we

have
| L S
L oy [ sPx —v) d -ﬁH:_u/ g€ e
Z/ Y/C (X Y) ye 2506_% . (QW(T—t))D/Z (me)D/Z
(1.1.35)

In the large time limit, 7" — oo, the integral is only non-negligible at ¢ ~ 0 and
t =~ T and, therefore, it splits into two integrals. Firstly, we note that the exponential
factor outside of the integral becomes unity in the high temperature limit. In the
t ~ 0 limit (1.1.35) becomes

la—x|?

1 [ x—b]2 = e 2
~ —— dt 2T V— 1136
2 /0 ‘ (2rt)D/2 (1.1.36)

But, the first exponential goes to unity as 7" — oo, so this reduces to
_Ja—x/|?

o0 e 2t

When ¢t ~ T we find that (1.1.35) simplifies to

_ |x—b|?

L / Ta T Gt (1.1.38)
~ —— 2t N
2 )y © @rmpr (-2
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1.1. Gauge theory 12

setting T' ~ t and letting T" — oo, which means that we are only considering long

curves, we find

o _Ix=b)?
e 2t
~ dt ————— 1.1.39
V/O 2(2mt)P/2 ( )
hence,
1 D —BH _ > 1 b2 Jax?

(1.1.40)

The calculation of the electrostatic field then comes down to solving the integral

o bl
IE/ dt vetD—ﬂ. (1.1.41)
0
Calculating the gradient first, we find
%) e |x;t8\2

We now use the substitution £ = |X;ta‘2, so that (1.1.42) becomes

= _gpp(X=2) /OO de €021 ¢, (1.1.43)
0

x —alP

This integral is just the definition of the Gamma function, I' (D/2), and so
(1.1.44)

Using this together with (1.1.38) we find that the D-dimensional electrostatic field
Is
(x —a) (x —b)

_ 7 _
(Ec(x)) I'(D/2) x — al? |x — b|D

- 2eqmD/2

- E(x). (1.1.45)

An interesting feature of the above derivation is the relation between the heat kernel
and the volume of the (D-1)-sphere. Consider (1.1.44) again but by placing a at the

origin so that we have
Iy _ T(D/2)
2(2m)P/2 —  2pD/2 D1

(1.1.46)
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1.2. Time dependent electromagnetic fields 13

where r = |x| and I = |[I|. Now the volume of the (D-1)-sphere is

27.[.D/2 7,.D71
VOI(SD—I(T)) = W (1147)
so that
lv/ooK(zt I P (1.1.48)
2 J, T TS -

The relationship between the electrostatic field of the point particle in D dimensions
and the volume of the (D-1)-sphere comes from the spherically symmetric nature of
the solution to Gauss’s law. Here the relationship comes from the relation of the
heat kernel to the volume of the (D-1)-sphere. This calculation has been studied
in the finite 7' regime in 3 dimensions in [19] where a deviation from the inverse
square law is observed. We will come back to this calculation in chapter 3 in which
we focus solely on the 2 dimensional case and consider averaging the electric field

line of force solution (1.1.21) over a curved surface.

1.2 Time dependent electromagnetic fields

We now let the two charges move with respect to each other. This generates time
dependent electric and magnetic fields with dynamics determined by the full set
of Maxwell’s equations. We will see that there is once again a string like solution
to one of the equations in covariant form that upon averaging becomes the unique
solution that vanishes at infinity that satisfies the other equations of motion. This
result is important and directly leads to the string theory that this thesis is based
on. We shall, therefore, review the derivation of the full field solution from the
string like solution. Maxwell’s equations in covariant form are (1.1.7) and (1.1.8).
The four-current j(x) arising from two moving charges at 4-positions a* and b* with

charges +q and —q respectively is

j(z) =g /Oo dt (54(:1: —a)ar — 64z — b)i)“) . (1.2.49)

o0
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1.2. Time dependent electromagnetic fields 14

We, again, seek a string like solution to (1.1.7) with this four-current. The appro-

priate solution is

Fule) = =4 [ 6~ 1)dS0 (0 (1.2.50)

and was first considered by Dirac while studying the electrodynamics of magnetic
monopoles [20]. This solution requires explanation. The two interacting particles
trace out worldlines C'; and Cs respectively. We may define any surface, 32, bounded
by the two worldlines that will be open if the two scattering particles go off to (and/or
come in from) infinity or closed if they are spontaneously created and annihilated.
Either way, this field strength is supported on this surface just as the electric field
was supported along the curve, C', in the electrostatic field case. We parametrise
> by the two “worldsheet” coordinates £*. dX,, is then an infinitesimal element of
area on ..

We now prove that F), does indeed solve (1.1.7). Differentiating we find

%ﬂamz—gé%#u—wdauwzgéwﬁw—md&uw. (1.251)

Now d¥,,,(y) is the usual area element on a surface given by

ab

€
dz,ul/(lU) - Taayu abyl/ d2§ (1252)

with here 0, = % is a worldsheet derivative. After expanding the ¢ sum this

becomes

aﬂFm/ = g/ d2£ 8554(:[ - y) (81yu82yu - aZyualyzx> =
by

4 / d*¢ (3154(x — )oY, — 06 (z — y)aly,,) (1.2.53)
2 s

where in the last line we used the chain rule. Green’s theorem for two functions

M (z,y) and L(z,y) is

/ 0, M 0,L — 0,M 0,L dxdy = M o,L dy+ M 0,L dx. (1.2.54)
s ox
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1.2. Time dependent electromagnetic fields 15

We can use this to write (1.2.53) as

8MF/U/ - %/54(1’ - y) (82?Judf2 + alyudgl) (1255)

= q/54($—y) dy,
ox

1)

Inserting the boundary values (worldlines of the interacting particles) confirms that
F* does, indeed, solve Gauss’s law. The field strength defined in this way on a
surface is already reminiscent of string theory. This relationship is enhanced when
considering the expectation of the field strength over all possible surfaces bounded
by 0%. This kind of functional integration is exactly what is done to quantise the
string. Indeed, averaging the field strength over all surfaces, where each surface
is weighted by the Polyakov action yields the full field solution satisfying all field
equations [21]

-7 dy, dy,.
(Fu(@))s = 13 (@/62 Ty alP ay/az Hy_xHQ) (1.2.56)

where we define the average of some quantity, 2, over all surfaces, >, spanning 0%
as

1
Qg =~ / DgDyx Q e kol (1.2.57)

and Sy[z, g] is the Polyakov action (1.1.19). ¢ is an intrinsic metric on ¥ which must
be integrated over. Note this result assumes a Euclidean worldsheet and target
spacetime so that ||y —z|| is the Euclidean distance between y and z and 1/||y — z||?
is the Euclidean Green’s function of the Laplacian. The 341 dimensional result is
found by Wick rotating back to Minkowski spacetime. The normalisation constant
is Z = [Dg et where F is the sum of Sp,[x, g] minimised with respect to = and
gives rise to the Liouville theory associated with doing string theory in a non-critical

dimension.

1.2.1 The action and relation to string theory

We can now draw the connection to string theory closer by using the field strength

defined above to formulate a theory of strings with non-standard interaction. The
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1.2. Time dependent electromagnetic fields 16

Lagrangian of pure electrodynamics without sources is

1
L= FuF" (1.2.58)

as was found in our discussion on gauge theory. Above, we found a solution for the
field strength that satisfied half of Maxwell’s equations. Upon averaging over all
configurations this solution lead to the full physical field strength that satisfies all
of Maxwell’s equations. Simply inserting the line of force solution (1.2.50) into the

action gives

s=[exe=" [ax [ [t - vienstx - v@nisasd

_ Ly (e)
=L st - venE@. (1.2.59)

The action is only non-zero when the argument of the delta function is zero. This
splits the action into the sum of two pieces; one in which ¢ = £ and the other in

which Y (§) = Y(&t ) when & # €. These two contributions reduce the action to

= q_2 2 rea q_2 4 —~Y(€ 3
5= Lo + 4 [ [ a0©5© - vENE@ IREELD

The first term is just the Nambu-Goto action albeit multiplied by a divergent con-
stant corresponding to the free part of the string action. The interesting piece is
the second term that corresponds to a contact interaction that occurs when the
worldsheet self intersects. This kind of interaction has been used in a formulation
of non-linear electrodynamics by Nielsen and Olsen [22] to form a field theory de-
scribing the dual string. Its dual has been used to describe the effective field theory
for a Dirac string linking two magnetic monopoles [23] [24].

The bosonic theory obtained from (1.2.60) was shown to contain unwanted diver-
gences potentially ruining the equivalence between this model and bosonic QED.
It was conjectured in [26] that quantising a suitable supersymmetric analogue of
this action lead to an equivalent formulation of QED without these unwanted diver-

gences.
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1.2. Time dependent electromagnetic fields 17

In the quantum theory the contact interaction can then be considered as a small

perturbation to the free string. Indeed, the partition function
ZE/DWM*:

[opx1 e exp(—q{ [/ dz<s>64<x<f>—X(é))dz@\#é) (1261)

describes the average of the contact interaction over all worldsheets. We have already
mentioned that the Nambu-Goto action is difficult to work with and so we may go
ahead and replace this with the classically equivalent Polyakov action, being sure to
integrate over the worldsheet metric, g. In fact we will show that the partition func-
tion corresponds to the expectation of products of pairs of vertex operators. For the
bosonic case above, it was shown that the correct kind of dynamics are produced,
namely the perturbative expansion lead to the insertion of propagators onto the
boundary of the worldsheet. This result is equivalent to the perturbative expansion
of the Wilson loop. This equivalence with the Wilson loop follows from consider-
ing the expectation of the contact interaction over genus 0 worldsheets, essentially
because the Wilson loop of QED is evaluated as a closed curve in spacetime, which
contains no holes.

Problems arose, however, when the insertions approached each other near the bound-
ary of the worldsheet leading to divergences that ruin the validity of the theory. It
was shown that when supersymmetry was included on the worldsheet, these diver-
gences were removed by the additional structure and so we have a starting point of
a reformulation of QED. These results will be repeated and streamlined in chapter
2 where we will also discuss a way to generalise the model to non-abelian gauge
theory. A full reformulation of QED will necessarily require us to not only quantise
the gauge fields, but also quantise the charged particles that form the boundary of
the worldsheet. The most natural way to do this is to use the worldline formulation

of QFT [27].
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1.3. The worldline formalism of QFT 18

1.3 The worldline formalism of QFT

We will give a brief review of how one can go from field theory to amplitudes via
worldline quantisation beginning with the simplest case of scalar quantum electro-

dynamics [27] [28] [29].

1.3.1 Scalar QED

We first consider quantising a charged spin-zero scalar field coupled to an external
gauge field, A,. In the standard field theory the coupling of the field to the gauge
field is achieved through the gauge covariant derivative, D,, so that for a massless
field, the action is (1.1.14). Working now in Euclidean space, where functional

integrals are better behaved, we have

S = —/de D¢ - D¢ = /d% dTD*o. (1.3.62)

We have performed an integration by parts and dropped the total derivative requir-

ing the fields to vanish at infinity. The effective action is then
['[A] = logZ = 10g/Dq§ e~ — _Jog(det(—D?)) = —Tr(log(—D?)) (1.3.63)

where we have used the standard result for the integral of a Gaussian operator.
We now introduce a Schwinger time parameter, noting that we should introduce a

regulator to properly define the resulting integral

[[A] = Tr (/Ooo %T e_T(_D2)> (1.3.64)

where D? = i?(p + qA)?. Formally, this representation is known as the Mellin
transform of the effective action.

We can now perform the functional trace over momentum states as

[ %]

dPp _VE
amp Pl T ) (1.3.65)
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1.3. The worldline formalism of QFT 19

where we have included the arbitrary constant, vk, which can be associated with
an intrinsic metric on the worldline (not to be confused with the intrinsic metric on
the worldsheet appearing in the Nambu-Goto action). Inserting two factors of the
completeness relation, 1 = [ dPz|z) (x|, and carrying out the p integral produces a

delta function, 7 (z — '), so the effective action becomes
*dT
I[A] = / ?/dDmdDa:' 6P (z — o) (2] e P TP+a)? |z') . (1.3.66)
0

We recognise the integrand as the amplitude for a bosonic particle coupled to an
external gauge field to travel from z’ to x. This can be written as a phase space
path integral by computing the inverse Legendre transform of the Hamiltonian. The
delta function enforces periodic boundary conditions on the amplitude so that the

path integral sums all paths forming a closed loop. The resulting effective action is

r[4] = / AT e / DaDp e~ o 47 i+ P rad)?, (1.3.67)
0 T z(T)=x(0)

Thus, we have succeeded in writing a field theory effective action as a point particle
path integral, where the path can be interpreted as the particles worldline. Now,

completing the square in p allows us to write the effective action as

.2

[[A] = / a1 s / Dy e do 4 Grp—iarA), (1.3.68)
0 z(T)=xz(0)

T

N is a normalisation factor that contains the p? dependence that came from com-
pleting the square. At this point, we realise that by separating off the last term in

the integral and using the chain rule, the effective action can be written as

o0 T 2 _ T :i:2
T[A] :/ d— e~ Tm N/ D e do I G7) exp iq]{dm -A(x) ).
0 T z(T)=x(0)
(1.3.69)

We see that the effective action is the expectation value of a Wilson loop of the
background field.
Going back to (1.3.68), dropping the normalisation constant which won’t be relevant

to the following discussion, and setting v/A = 2 so that we obtain a similar form to
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1.3. The worldline formalism of QFT 20

free particle action, we have

I'[A] = / L rm? / D e~ o dr (riaid), (1.3.70)
o T (T)=2(0)

We proceed as in [42]| by expanding the background gauge field as a sum of N plane

waves
N

A=) et (1.3.71)

where e is the polarisation four vector associated with each constituent plane wave.

Using this decomposition, we can write the interaction part of the exponential as

T N
efoT dr iqi-A _ exp </ dr ZC] Z € xelklx> (1372)
0 i=1

%) 1 T N . n
= E o / dr iq E € - pe*i ) (1.3.73)
n. 0 -
n=1 =1

Consider the n = N term in this expansion which corresponds to the N vertex loop

amplitude. This is
1 T al N
NI (/0 dr iqnz:l € - :teiki'a:) . (1.3.74)

Now, we expand this, only keeping terms with different polarisations, of which there

are N! such terms so that

1 T N N N T
i ([ o aen) G T ([ o),

€1€2...€N term
(1.3.75)
On the right hand side we have defined x; = x(7;), where the subscript on 7 labels
each integral in the product. This can then be written as
N

(i) [ VK, €] (1.3.76)

i=1
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where we have defined the photon vertex operator for QED as
T .
V[k, € z/ dr e i e, (1.3.77)
0

The amplitude is then the expectation of products of vertex operators which is
reminiscent of how amplitudes are obtained in string theory. We now wish to get
the integrand in exponential form. To do this we rewrite the linear polarisation term

in the vertex operator as the linear term in the expansion of an exponential, i.e.

€ - d = e . (1.3.78)

lin(ei)

Now that we have separated off the interaction part of the exponential, we can

separate the position as x = xy + ¢, where xq is the loop centre of mass defined as

1 /7
xo = —/ dr " (7) (1.3.79)
T Jo

and ¢ is a quantum fluctuation. The path integration measure then factorises as
[ Dz = [dPxy [ Dq. Integrating the position over the entire time period gives the

extra condition on the fluctuation

/T (1) dr = 0. (1.3.80)

The amplitude then becomes

FN[kl, €1y ceny kN7€N] =

0o dT N T
(iQ)N/ —/dD%/DQH/ dr; e
o T i1 Jo

We can now carry out the z integral, which simply implements momentum con-

) 2
lin(e;) eikir(@ota) = Jy dr iq—;jq‘ (1.3.81)

servation as [ dPxy eXithiv0 = (27)P§P (3. k;). The process of including the loop
centre of mass coordinate has removed the zero mode from the path integration.

We can now invert the operator appearing in the path integral and use the linear
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algebra result
D ;lx'Mx—i-a:-j
4 . 1 -

[ dPx g1 Me

(1.3.82)

hence, we need to find an appropriate source term, j(7), in (1.3.81). It is simply

N
J(r) = (i6(r — 1)k — ' (1 — mi)es) (1.3.83)
i=1
so that
T N T T
[ i =3 (- [ ar ot matn) —a [ arde - n)-ain)
0 i1 0 0
(1.3.84)
N
= Z(“ﬁ “Gi + € Gi)- (1.3.85)
i=1
The path integral can then be rewritten
f’Dq e foT dr iq7%q62£1(iki'Qi+€i~Qi) _ f’Dq e~ fonT i 7;—722(17‘7'.(1 _ e_f Jyey
o foT dr iq—%q o foT dr iq—%q
(1.3.86)
where G is the Green’s function of —% in this reduced space. This is easily com-
puted as
_ N\2
Olrry = |r — | - T2 — ) (1.3.87)
so that

e G = exp (—%/OTdT/OTdT'j(T)G(T,T')j(T')). (1.3.88)

Note, this Green’s function contains an extra term to what one might expect. This
comes from the fact that we were trying to solve Poisson’s equation on a circle which
requires us to add a constant external field [27]. After expanding the js and using

the derivative property of the delta function, we find this can be rewritten as

N
1 . 1 ..

ij=1
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where G, ; = G(7;, 7;) and G'i,j = %. Then the effective action can be written as

['(A) = (iq)N (27)PsP (Z k:,) /000 %(ZMT)D/Q@_’”QTH/O dr; X

i=1

(1.3.90)

N
exXp (Z ékal . k‘j — iEi . l{jGij + §Ei . €jGij>

i,j=1 lin €i,j5

This is the Bern-Kosower formula for the one loop, N-photon amplitude in scalar
QED, originally discovered from the particle limit of string theory, here derived using
the worldline formalism of QFT [13|. This is of use when quantising the bosonic

particles whose worldlines form the boundary of the worldsheet in the abelian model.

1.3.2 Spinor QED

We now turn to the coupling of a spinning particle to the external gauge field. The
Dirac action describing the dynamics of a spinor coupled to an external gauge field
is

SZ/&xmw—mm. (1.3.91)

The effective action as a function of the gauge field, A,, is then
['[A] = log [det(i) — m)] . (1.3.92)

We carry out a similar procedure to [43] in which a first order action is transformed

to a second order action so that the effective action can be rewritten as
1
[[A] = §log [det (i) — m)det(—ilp —m)]. (1.3.93)
Then, using det(A)det(B) = det(AB) and expanding we find

det (i) — m)det(—il) —m) = det(v*+"D,D, +m?). (1.3.94)
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Now,

Y4 D,D, = (20" — v"y*)(=igF,, + D,D,) = 2D* — igy"y"F,,, — v*4"D, D,

(1.3.95)
where we have used [D,,D,] = —iqF),, and the Clifford algebra relation of the
gamma matrices. Rearranging this we find that

V"D, D, = D* — 2 ViV Fy = D? — th AN (1.3.96)

where we have used AB = $([4, B] + {A, B}) and {y*,7"} F,, = 0 so that the

effective action is
1 2 Zq v 2
[[A] = Slog |det(D” = [, "] Fp +m) | (1.3.97)

This effective action corresponds to the second order action given in [27]. We would
like to carry out a similar procedure to the scalar QED case. To do this we introduce
the Grassmann odd fields, ¥*(7), as partners of the z*(7) fields. The fermionic

commutation relations are

{v W} = g™ (1.3.98)

implying that Y* = \/gv“. We can now turn the effective action into a path integral
over the x and ¢ fields as we did in the previous subsection. For the massless case

we have

I'[A] = %Tr log [D? — iqu'y" F,,] =

*dT d*
_%/0 ?;/# (a, plexp [—%\/ET ((p+qA)? +inmﬂ/J“¢V)} |, p) =

——/ N/D ] Tr exp {— /OT dr (ﬁﬁ + %@/} -9 (1.3.99)

—igA, it + q\/_ Fipa)” )] (1.3.100)

The exponent has the form of the action of a worldline spinor. When the path

integral is over a closed loop the last two terms make up the exponent of the super-
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Wilson loop, so called because the action is invariant under the supersymmetry

transformation

Syt = —vVh ot St = nit (1.3.101)

with n an arbitrary Grassmann function of 7. This will be useful in the proceeding
chapters when we come to consider a string theory that reproduces the properties
of the loop.

We expand the exponential of the gauge terms and write the field as a sum of plane
waves as we did before. Note, the only difference from the scalar case is the coupling
of the fermionic field to the gauge field through the field strength, which after the

plane wave expansion is

N
Fp =Y (ieiki, — i€ ki) e** (1.3.102)

i=1

so that the effective action at order ¢" is

FN[A]——(iQZ)N /Oood?T,/\/’/Dwa exp [—/OTdT <ﬁx2+%¢¢>}

N T
Tr H/ dtiTai [62‘ : alflf(tz) + l\/EGz : 1/1(251)]{?1 : w(tz)]emlz(tl) (13103)
=170

We now have our supersymmetric generalisation of the bosonic vertex operator we
had in scalar QED. From here we would proceed as before by introducing source
terms and Green’s functions to obtain the Bern-Kosower formula for spinor QED.

The key point of this section is that we have a way to quantise single particles along
their worldlines that is equivalent to the usual field theory method. This will be
useful as point particles worldline’s will form the boundary of our worldsheet. After
computing worldsheet expectations with the boundary fixed, we can then quantise
the boundary itself using the above results, though we would have to generalise the

method to non-abelian gauge fields.
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1.4 Non-abelian gauge theory

We have seen how to compute amplitudes from the worldlines of particles coupled
to an external gauge field. We can now turn to a discussion of the dynamics of
the gauge field itself, in particular a non-abelian gauge field. A non-abelian gauge
field theory is one that is invariant under the action of some representation of a
general Lie group. In particular the transformation described earlier becomes a

matrix which can still be written in exponential form as
U = exp(ql) (1.4.104)

where we have absorbed the factor of ¢ into the coupling q. The exponential of a

matrix is understood by its Taylor expansion so that

2
U:H+qF+%F2+.... (1.4.105)

I is the identity matrix of dimension equal to the dimension of the representation. I"
can be expanded as I' = I'*74, where I'4 constitutes a set of linearly independent,
real parameters and 74 are the generators of the Lie group by which the representa-
tion is defined, which in general are non-commutative. To form a representation of
the group, G, U must satisfy the associated group axioms. We can use the Taylor
expansion of U to determine its properties from these axioms. Closure of the group

demands that the generators close under commutation, i.e.

(74, 78] = fABCTC (1.4.106)

fABC are the structure constants.

where
Yang-Mills theory is the non-abelian gauge theory dealing with the SU(N) group.
In this case the generators are anti-Hermitian, traceless, N x N matrices. There
exist N2 — 1 linearly independent anti-Hermitian, traceless matrices, so that there
are (N2 — 1) I'4 coefficients.

The gauge field itself is now Lie algebra valued and can be decomposed in terms of
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the Lie algebra generators as
A, (z) = Aﬁ(I)TA. (1.4.107)

The covariant derivative in this case is D,, = d,,+¢[A,, -]. The field strength defined
as the curvature of the covariant derivatives gains an extra term not present in the

abelian case:

[D.,D,)* = 0,47 — 0,A7 + q[A,, A"
= 0,4, — 0,AL + qf*PCAD AT (1.4.108)

This commutator term is responsible for self interactions of the gauge field. The
action is a straight forward generalisation of the abelian case, where now we must

include a trace over the Lie algebra generators to ensure gauge invariance

1 v
SYM — 3 /d4x Tr(F*F,,) (1.4.109)

where throughout this work we shall use the convention

1
Tr(t478) = —§5AB. (1.4.110)

The quantum theory is obtained from the Euclidean partition function
Z]j] = /DA e ST e AL (1.4.111)

and expectations are then obtained by taking functional derivatives

6 5 5
0t (1) 63 (w2) 63" (wn)

(A (21) AT (22)... AY () Z[j)lj=0.  (1.4.112)

There is a problem, however, when we come to define the propagator. Focussing

just on the quadratic part of the action we have

Z1j) = / DA ¢~ #5@uA =0 AP+ ] B by
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= /DA exp (% /d4xd4y Aﬁ(m)[éAB(54(x —y)(0%0" — 0"0") AL (y) + / d%j“Au)

= (Det(M)) /2 p(; [ty i@ r e - y>j5<y>) (1.4.113)

where in going from the second to the third line we have carried out the Gaussian
integral in A, with M* the operator sandwiched between the gauge fields in the
second line. M~! is then the propagator for the gauge field. This is where the
problem with the partition function (1.4.111) lies; the operator M is not invertible

as it has eigenvectors with zero eigenvalues of the form v? = 9, f since
(026" — 0"9")d, f = 0. (1.4.114)

These zero modes arise by performing gauge transformations of A, = 0. The parti-
tion function thus sums over gauge equivalent configurations of the fields.

To remedy this situation, the method of Faddeev and Popov imposes a gauge con-
dition into the functional integral which is designed to cut each gauge orbit once
so that the partition function sums only one representative from each gauge orbit!.
The effect of this is to introduce unphysical fields with the wrong spin statistics
called ghost fields into the functional integral. The gauge fixed partition function

is, thus,

Z[j] = /D[A,c, b] exp( —SYM 4 /d4a: (j“A# — 8“EAD;?BCB + 2—16(8“14“)2))
(1.4.115)
where ¢ and ¢ are the Grassmann odd ghost fields. The quadratic part of the action
can be manipulated as before and the cubic and quartic terms can be treated as

perturbations to the free action so that the full generating functional is

Zialj. ] = Z[E)Z]j] (1.4.116)

!Gribov showed that for certain gauge choices like the Landau gauge condition, 9, A* = 0, there
remain gauge equivalent configurations in the functional integral.
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where

Z[j] = exp(—Sr)exp (% / d'zd'y j; (x) DA (x — y)j) (y)) (1.4.117)

is the gauge field part of the partition function and S; is the term generating the

three and four gluon vertices respectively given by

o 4 ABC 5 ) 5 5
o1 = q/ ) 8“<j,;4<x> B (x) 7 (x)

5 8§ 5 5
g (@) 35 () 38 () 35 ()

Each three gluon vertex introduces a factor of ¢ while each four gluon vertex intro-

2
+qz/d4:v FABC ARS (1.4.118)

duces a factor of ¢2. DAPH (z — y) is the propagator for non-abelian gauge fields in

¢ gauge

, d*k , krEY etk (=)
DABr (x—y)E/(27r)4 5AB<77“ —(1-¢) o ) ER (1.4.119)

The extra quadratic term produced by the Faddeev-Popov method does enough to
make the operator sandwiching the gauge fields invertible.

The ghost piece of the partition function is

Z[e] = exp(—SgIhost)exp( - /d4md4y 4 z) OB (2 — y)eB(y)) (1.4.120)
with the ghost propagator defined as

Ak 6B

and Sglhost describes the gluon-ghost-ghost interaction

" 5 5 9
St host = q/d x fABCau(g_A(x)>j5(x) ) (1.4.122)

Gauge invariant amplitudes are obtained by taking functional derivatives of the

partition function, (1.4.116).
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1.4.1 The Wilson loop

A particularly useful observable in the worldline formalism is the Wilson loop [30]
defined as the path-ordered exponential of the gauge field transported along a closed

loop in spacetime

W:Tr[P exp(—q?{dw“ Au>]. (1.4.123)

P denotes path ordering, something not present in abelian gauge theory. The trace
once again is needed for gauge invariance and we will use w to parametrise the closed
curve. They are observable in an analogous way to the Aharonov-Bohm effect of

EM [31]. The path-ordering procedure for a product of N operators is defined as

P(01(61)02(&2).--On(én)) = O, (&,)01 (&) Oy (&) (1.4.124)

where on the right hand side the operators are ordered by the position of their
arguments, i.e. &, > &, > ... > . The path-ordering keeps track of the position
of the matrix valued integrands as we expand the exponential.

The usefulness of the Wilson loop comes from the fact that any local operator can be
written in terms of it. They are also used to differentiate between the confinement
phase and asymptotically free phase of Yang-Mills theory. They have even been used
as a first step towards a quantum theory of gravity, where Wilson loops, written in
terms of a certain set of variables, have been shown to solve the Wheeler De-Witt
equation of quantum gravity [25]. This lead to the study of Loop Quantum Gravity,
a competing theory to string theory.

In the present case of Yang-Mills theory, we can integrate the Wilson loop over the

gauge field and expand it as a Taylor series in powers of ¢ so that

<ﬁ j{dwz‘”z‘lmﬂ. (1.4.125)

The evaluation of the expectation of the Wilson loop therefore requires the calcula-

(W) :Tr[P i

n=0

(—q9)"
n!

tion of (A™). This is how amplitudes are computed in field theory.
The first non-trivial contribution to (W) is shown in Figure 1.1. Analytically, this

July 11, 2018



1.4. Non-abelian gauge theory 31

Figure 1.1: The first non-trivial diagram in the perturbative expansion of the Wil-
son loop describing the propagation of a gluon joining two distinct points on the
boundary.

) q;Tr [P ]{ f dwtdwy (Al (w) A (ws)) TATB} (1.4.126)

From the partition function, we see that the first non-trivial term of the expectation

of the expansion of the Wilson loop is therefore

ik- (w1 —w2)
—Tr[ fj{dwl dw2 <77;w —(1-¢) kf,};l;u) c 12 TATA:|. (1.4.127)

This result continues to an arbitrary number of pairs of points on the boundary

joined by propagators. Omitting the effects of self interactions, it is clear from the
form of the generating functional that the expectation of the Wilson loop requires

the computation of (A?"). This will be
(AP) = D2k (g — gy) DASASI (23 — ) .. + permutations. (1.4.128)

There are (2n — 1)!! different ways of joining pairs of points, where !! is the double
factorial defined as k!! = k(k —2)(k —4)... . In the Wilson loop the symmetries are
such that each term in the above sum is equal which can be seen by interchanging
the subscripts of the points on the boundary. Each term in the Taylor expansion of

the Wilson loop is weighted by a factor of 1/(2n)! and so overall for each term we
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have
(2n — 1N (2n)! 1

2n)  27(2n)lnl 2%l

(1.4.129)

The expectation of the Wilson loop, neglecting self interactions, is thus neatly eval-

uated as

2 4 ik (w1 —w

q , d'k kuk,\ et (wimw2)
(W) ZTT(P eXP(;%% dwy dw; ) (Uuu—(l—ﬁ) 22 ) 7 ) ).
(1.4.130)

For the abelian U(1) gauge theory the generators are just 1 and so the trace and
path-ordering are trivial. This result, with £ = 0, is reproduced in [26] using the
bosonic and fermionic string theory with contact interaction. Producing the path-
ordered result above will be the first step towards a non-abelian generalisation of
this model.

The next non-trivial difference between the abelian and non-abelian theories is the
existence of self interactions. These are the three and four gluon vertices which
appear at O(¢®) and O(g*) of the expansion of the Wilson loop. Figures 1.2a and

1.2b show the lowest order in ¢ in which the interactions appear. We can explicitly

(a) The first appearance of the three (b) The first appearance of the four
gluon vertex in the expectation of gluon vertex in the expectation of
the Wilson loop at ¢*. the Wilson loop at ¢°.

Figure 1.2: The self interactions of Yang-Mills theory appearing in the perturbative
expansion of the Wilson loop.

calculate their contribution to the expectation of the Wilson loop from the generating
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functional. In Landau gauge (¢ = 0) the three gluon vertex is

4 4 4
4 ,ABC_A_B_C d'ky d’ky f%% 1
TY(P 1T [ B3 (1 )

x (dwf; - W) dusy %)
1 2

kv + ko) (ky + ko) - d 4
Xikf (dwgu . ( 1+ ?3{:1(_’_1]:2_)22) x3)61(k1+k2)-w3) (1'4'131)

while the four gluon vertex is

6 4 4 4 4
T — d°k
(P o et [ et S
k?lljlkfl . dw1 k’g k‘Q . de v k‘gylfg . dw3 k?4l,k’4 . dw4
X <dwf——k% dwsg, ——+—5—= 2 dws, _—k:g dw;;,,——ki
X 6—ik1~w1 —ik2~w2—ik3~w3—ik4~w4) . (14 132)

The momentum conserving delta function has been left explicit here for clarity of
the result. The final basic building block for all other diagrams is the 1 ghost loop
shown in Fig. 1.3. The amplitude for this diagram is

2 4 4
q ACD sBCD_A_B A’k dky 1
i

2 r<73f T /(2@4 2r)% k2 (k + k)2

1 Kk - duwn ik Kek - d |
X Zk—z(dwf— TR wl) Zk—2<dw§‘— R wQ)e“ﬂ'(wlwz)). (1.4.133)
1 1 1 1

We will find that it is the expectation of the non-abelian Wilson loop that is
reproduced in the string model. (1.4.127) is the simplest result to reproduce as it
differs from the abelian result by the path-ordering of the Lie algebra generators.
The additional interactions in the theory will prove more difficult to reproduce and,
in fact, we will only be able to obtain the three gluon vertex in the string theory,
though we believe the other interactions do exist within the model. We will comment

on this later.
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Figure 1.3: The first appearance of the ghosts in the expectation of the Wilson loop
at ¢t

1.4.2 The super-Wilson loop

There exists an analogous way to describe the dynamics of gauge fields coupled to
spinors. The action (1.3.100) gives us the Wilson loop for (non-supersymmetric)
gauge fields coupled to particles with spin degrees of freedom. We call this the

super-Wilson loop and define it as

W, = Tr (7? exp( i 7{ dt <:z;uA“ - gﬂwww))) (1.4.134)

It is “super” because of the existence of the previously mentioned worldline super-
Symmetry.
The first non-trivial term in the expansion of the expectation of the super-Wilson

loop is analogous to the bosonic result. To show this we need to use the fact that
(A (@) F(a')) ¢ (2" (') = 28], (A7 () A] (') ¥ (a")g" (2')

= 2" ()" ()0, D (v — o). (1.4.135)

The commutator term in the field strength will lead to O(¢?®) terms which won’t

contribute to the propagator and so we omit these here. With this the O(¢?) expec-
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tation of Wy is

(Wy) 2 (";Tr {P 7{ ]{ dtdt’ (dx~+\/sz)”ay)(dx’a+ﬁ¢’a¢’ﬂa;)Dﬁf(x—x')TATB].

(1.4.136)
We will calculate this in Landau gauge when we come to look at the string theory.
We will need to extend the worldline supersymmetry along the loop into the interior
which obviously hints at use of the superstring. Higher order diagrams are generated
in the same manner as in the bosonic case, just replacing bosonic propagators with
the supersymmetric worldline structure. We will see that two different methods give
rise to the path-ordering of the generators but only one method that we study will

contain the structure needed to produce the self interactions.

1.5 Notation

We will use (Q[A, B, ...]) , g to denote the functional integral
/ DA, B,..] Q[A, B, ..] ¢S5, (1.5.137)

The subscripts on (-) will denote the variable being integrated over when it is not
trivial, for multiple integrations etc.

We will use the terminology average to mean thermal average as this is not quantum
mechanical. We will use expectation to mean the functional integral used to calculate
quantum mechanical expectations such as the path integral or Polyakov type surface

integral.
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Chapter 2

A String Model of Gauge Theory

It has been shown that abelian gauge theory can be reformulated as a string theory
in which a line of flux joining two oppositely charged particles is treated as the
degrees of freedom of the gauge field [26]. In the fermionic case, quantising the
string theory as well as the worldlines of the interacting particles was shown to be
equivalent to QED in the tensionless limit [45]. Our aim here is to generalise this
prescription to non-abelian gauge theory. The way in which this will be done is by
introducing Lie algebra valued worldsheet variables, J4, into the vertex operator,
generalising the boundary field theory of [35]. In the following chapters we will look
at two particular field theories that can be used to describe the dynamics of J4.
We will begin with a review of the bosonic abelian case and introduce a streamlined
calculation of the perturbative expansion of the interacting action. We will then
generalise this to the fermionic abelian case where we will deal with the realistic
case of worldline fermions interacting with the gauge bosons. Building on these
results, we will show how to generalise these models to reproduce the expectation of
the non-abelian Wilson loop computed in Yang-Mills theory. This will give certain

requirements for J# that the rest of the thesis will be devoted to fulfilling.
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2.1 A review of scalar abelian gauge theory

Let us briefly recapitulate on the argument for a string theory formulation of gauge

theory. The covariant form of Gauss’ law is
0, " = j¥. (2.1.1)

This is usually solved by introducing a gauge field and formulating an action whose
equations of motion reduce to this. The quantum dynamics of the system is then
obtained by quantising this field theory. We will take a different approach. Firstly,
consider two free equal but opposite charges moving with respect to each other. The

system is described by the four-current

g (x) = q/B54(x — w)duw* (2.1.2)

i.e. the charge density exists on the worldlines of the two interacting particles,

denoted by B. The solution to (2.1.1) with this four-current is
Fr(z) = —q/ 5z — X)d¥"(X) (2.1.3)
>

where d¥*" is an infinitesimal element of area on the surface, ¥. B therefore consti-
tutes the boundary of this surface. Inserting this solution into the Maxwell action

we get

2

Sew == [ doPE = [ a5,,(X(€)5(X(0) - Xz (X(©)).
(2.1.4)

The integrand is only non-zero when either £ = £ or the worldsheet self intersects

ie. X(§) = X(¢) with £ # ¢'. This gives two contributions to the action

2 2

q q v
Sear = S OArea(S) + & [ 45, (X(E)FCX(E) - X (DX |ese
b
(2.1.5)
The first term is proportional to the Nambu-Goto action (and therefore classically

equivalent to the Polyakov action) and the second term is a contact interaction.
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Scalar QED can then be formulated by considering the partition function for this

action

1 *
7= 5 [ Dix,gestroini (2.1.6)
0

where S,(X, g) is the Polyakov action and S; is the contact interaction. Treating the
gauge coupling, ¢, as a small parameter allows one to Taylor expand the interaction
so that the partition function can be written as a perturbative series of expectations
of the contact interaction. The object of interest in this theory is then the expecta-
tion, ¢ ((S7)™), over worldsheets, ¥, spanning B. The first order interaction of the
bosonic theory is thus

q* -S vl NS

4—ZO/D(X,g) c P/EdZ“ 51X — X)L, (2.1.7)
A brief word on notation here; X’ = X(¢') and dZ;j“’ = dX"(Xi(€)). We can, in
fact, write the contact interaction as an integral of vertex operator insertions at &
and &' respectively. To show this, we can Fourier decompose the delta function so
that the contact interaction can be written as

d4k wv ik-(X—X") I
S[: W . dx € dEW. (218)

The infinitesimal element of area is as usual
1
dXM (X (€)) = 5gabaa)(“ab)(”d?g. (2.1.9)

Roman letters here represent worldsheet indices and Greek letters represent target
space indices. Inserting the surface element into (2.1.8) allows us to then write the

contact interaction as

dE
Sp = ook VIV (2.1.10)

with the vertex operator, V', defined as

1 A
V= 3 / d%¢ e®9, X X" e X (2.1.11)
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(Sy) was calculated using Wick’s theorem previously [26], thus requiring a deter-
mination of the entire contraction algebra. Here, we will obtain the same results
using a simpler method that involves projecting X along the direction of the four
momentum k. This reduces the vertex operator to a “projected” vertex plus a total
derivative. The term in S} that consists of the product of total derivatives leads to
the propagator of a scalar boson joining two points on the boundary of the world-
sheet. This is then equivalent to the expectation of the abelian Wilson loop squared.
We begin by defining the projection operator, Py, that acts on four vectors, v*, as

k-v
k2

Pp(v)* = vt — kM (2.1.12)

This is defined so that k,P;(v)* = 0. Using the projection operator to project X

along the direction of k allows us to write the vertex operator as

ab

v = [ et apxpam e [ #ea, ( wabP:}e"k'X)- (2.1.13)

One can then define the projected vertex operator as

1 .
Vi = 5 / d*€ € 0,Pr(X ) OpP(X) e, (2.1.14)

The vertex operator has been decomposed into a projected vertex plus a total deriva-

tive. The contact interaction can now be written as

4 ab
/ (;l l‘; {VW d*¢ 0, ( Z k“abPk(X)”]eik'X)} X
T

cd
|iVll/ k +d2£ a/< k2 k aélPk(X/)u]elle>:| . (2115)

Expanding, and using the fact that V}"k, = V}"k, = 0 leaves just two terms

d*k
pu— MV
S[ / (27]') V VMV k

d4k‘ ab ] , . ,

— / 2 ——d*¢d*¢ 0, ( kP (X )%M)a( ki, Oy (X ),,]e”“'x)
(2.1.16)
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Focussing firstly on the second term, we recognise this as simply a product of total
derivatives that can be readily calculated. We will show this for the first term in

the product. Define the integral

ig® N ik
I = /d2£ aa( e (X) 1e”). (2.1.17)
In complex worldsheet coordinates this is*
I= k2 d*z (a(k[ﬂapk()()”leik'x) — a(k[ﬂam()()%i”)> (2.1.18)

where z = x + iy and Z = x — iy so that d*z = 2dxdy. We can use Stoke’s theorem

to take these integrals to the boundary
1 = . .
I = @< / dz KWOP,(X)Te™ X + / dz k[#apk(x)”}d”>

kg k;[“dIP’k( )Meihw (2.1.19)

where w is the boundary value of X. For the case of two particles created in the
vacuum and then annihilating each other shortly after, the boundary is a closed
curve. This is the case that was proven to reproduce the expectation value of the
Wilson loop to O(¢?) and so we shall consider it here.

Inserting the boundary integral into the second term of (2.1.16) gives

&k —
/ % f —]f #de )V]k[ude (w/)y] ik (w—w')
/ % }{ <de le’k( )k de(w)kf - dP(w') ) el w=u) (9.1.90)

The second term vanishes because we have the inner product of the projection

operator and its associated momentum leaving us with just the first term. The

Tt is not necessary to use complex coordinates here, however, when we come to the super-
symmetric analogue of this integral we will use Stoke’s theorem in superspace, which is naturally
written in complex coordinates, hence, using them here will be useful when comparing the two
cases.
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contact interaction can then be written as

&k 1 [ dk dPy(w) - AP (W) g
SI:/(2W)4 Vi V“”‘”i/(m)‘*fif[} s )kz {0 gt (.1.91)

We can now consider functionally integrating this over all worldsheets spanning B.

The second term depends only on the boundary and so averaging, holding B fixed,
will have no effect. To consider why the first term vanishes we need to consider the
possible contractions between terms via Wick’s theorem. The full set of contractions

can be found in [26], we will just list the main results. The simplest of which is

(Xu(O) X))y = Xu(©) X, (€) : +XH(E) X (). (2.1.22)

L1

The colons indicate normal ordering, meaning all contractions have been carried
out in the functional integral. The generating functional for the string theory was

obtained by expanding around the classical field, X, and so

: X#(g)X,,(f’) = XI'X7. (2.1.23)
The main contraction is
XHEX(E) = d'"™G(E €. (2.1.24)

o is the string scale and G (¢, ¢’) is the Green’s function for the worldsheet Laplacian.

For a general term of the form A*e™* B we have

1 A 1 .
ik:l,A“B”eXp< — —kaJB”B") ek B +exp( — —kryk:aB”B”> At B (2.1.25)
L1 2 L1 2 [
and then together with
(OX, (0 XL (€)= A/ DG €) + XD Xa(€)  (21.26)

we can evaluate the functional integral of V over worldsheets spanning B. It is

easy to convince oneself that the anti-symmetry of the vertex plus the symmetry
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of (2.1.26) means the only contraction that will contribute to the result will be the

self-contractions of the exponentials, e***  which from (2.1.25) are

GERX . kX —maK2G(EE) (2.1.27)

Therefore, inside the functional integral we can replace the “projected” vertex oper-
ator with

Vo (k, &) =V, (K, €) : e ™ FGCEE), (2.1.28)

The Green’s function at coincident points diverges and should be regulated with a

short-distance cut-off, e. We replace it with the regulated heat kernel

Ge(&ﬁ’)z/ dr G(§,&57) (2.1.29)

satisfying
(€ =¢)
0. +A)G =0, GE&¢E&;0)=——2, 2.1.30
( ) ( ) 7 ( )
The heat kernel has the spectral decomposition in terms of the eigenfunctions of the
Laplacian, u,,

G(&,€57) = un(&un(&)e ™. (2.1.31)

The short distance divergence of the Green’s function is then associated with the
short-time behaviour of the heat kernel. We can use the Seeley-DeWitt expansion
for the heat kernel at short times [32], modified to take into account the effect of
the boundary [33] [34] so that

Gleo=ve~ [ Tz (1 - exp( - %)) (1 + gR@)

o oln(eR)
167e 967 oK €

- (2.1.32)

%ln(i)—% o>¢€

where o is the square of the distance of the shortest path between & and itself via a
reflection from the boundary. In complex coordinates and conformal gauge the line

element is ds? = e®dzdz, therefore o(z,2') = €|z — 2/|>. The heat kernel can then
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be written as

g(&f;T)z%(exp(—M) —exp(—%)). (2.1.33)

At leading order in the cut-off it is sufficient to work with ¢ = 0. The Green’s

function can then be written as

6 =—1( 52 )+ 1 (5 (2131)

£(s) :/Iwﬁr—i(pexp(—?)). (2.1.35)

This means that f(s) ~ ;=Ins® when s > 1. For the case above, (2.1.28), where

where

we have the Green’s function evaluated at coincident points in the interior of the
worldsheet, we have G(&, ) ~ 5=In(y/v/€). In the Wick-rotated theory, k* > 0 and

SO efﬂ-a/kQG(&é)/Z

is suppressed in the interior of the worldsheet for Fourier modes
for which o’k? is finite as the cut-off is removed. The tensionless limit corresponds
to taking o//L?> — oo where L is a length scale characterising B, enhancing the
suppression. The only remaining term in the expectation of the contact interaction

is then

(S1)s, = % 7}{3 fi APy (w) Gy, w') dPy(w'), (2.1.36)

where
dk eik(wfw’)
Gy, ) = / CET (2.1.37)

is the propagator of a scalar boson. This verifies the claim that at first order, the

string theory that follows from the line of force solution to Gauss’ law, reproduces
the expectation value of the Wilson loop, expanded to order ¢, where the propagator
is in Landau gauge (£ = 0) (1.4.127). Note, in this gauge the photon propagator

can be written as

d'k kuk, \ e ey) d'k etk (@=y)
D/tl/(l'_y) :/(27_[_)4 (77;1,1/_ 22 ) k‘2 :/W Pk”‘“’T (2138)
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with
kK,
IP’;W,, = Nuw — %, (2.1.39)

APy dry = Py(dzy) - deg = dxy - P(dzs) = Py(dry) - Pr(dxs) (2.1.40)

i.e. we see the appearance of the projection operator and why we have equivalence
in this particular gauge. This suggests that the expectation value of the Wilson
loop to all orders might be expressed as the worldsheet average of the exponential of
S7. However, divergences appear when the exponential is expanded in powers of Sy
that potentially spoil the suppression of unwanted terms. Vertex operators placed
at points close to each other and near the boundary lead to divergences that are not
necessarily suppressed in the tensionless limit.

It has been shown in [26] that these extra terms are not produced in the supersym-
metric generalisation of this model. The supersymmetric case is also more realistic
as it naturally incorporates the coupling of fermions to the gauge bosons. It is this
case that we will study in the next section. The problem of extra unwanted terms
will arise again when we look at a non-abelian generalisation of the bosonic string
theory for the same reasons. Even though the bosonic theory is simpler, and the
computations of expectation values are similar, it will ultimately be the supersym-

metric theory that we wish to obtain.

2.2 Fermionic abelian gauge theory (QED)

In this section we consider replacing the bosonic point particles that live on the
boundary of the worldsheet by fermionic point particles. Doing this gives the bound-
ary extra spin degrees of freedom, characterised by the worldline spinors, ¢ (1.3.2).
These spin degrees of freedom will then naturally exist within the interior of the
worldsheet. The free string theory that describes the dynamics of the string will
then be that of the spinning string given by a straightforward generalisation of the
Polyakov action. The underlying structure of the spinning particle and string is an
N = 1 worldline and worldsheet supersymmetry respectively. These are 1 and 2

dimensional symmetries relating the bosonic and spin degrees of freedom. Before
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defining the action and contact interaction in the supersymmetric case we will briefly
describe the superspace formulation of 2 dimensional supersymmetric field theories

as this will be used extensively throughout.

2.2.1 Superspace

An efficient method of incorporating supersymmetry into a theory is to introduce
the anti-commuting superpartners, 6 and 6, for the coordinates z and Z respectively.
By superpartner we mean that the coordinates will be related to the new variables
by a supersymmetry transformation. This changes the original 2 dimensional surface
into a so called “super” surface. The supersymmetry transformations by which the

two sets of coordinates are related are parametrised by 1 and 7 and given by
bz=-n, dz=-n, 60=mn 0=q (2.2.41)

with 6, #, n and 7 Grassmann-odd. This can be compared with the worldline
supersymmetry (1.3.101). The fact that the new variables anti-commute allows one

to Taylor expand any “super™function, f(z, z,6,0), into its component functions as

f = fo(Z, 2) + Qfl(z, 2) + e_f_l<2, 2) + Qe_fg(z, 2) (2242)

The supersymmetry transformation of a superfunction can then be written as

0f =n(9p — 00+ 05 — 00)f =n(Q +Q)f (2.2.43)

where Q = 9y — 00 and Q = 05 — 00 are the generators of the supersymmetry. We

define the covariant derivatives as
nD =860 Oy — 6z 0 = n(0y + 60) (2.2.44)

nD =60 05 — 6z 0 = 7(0p + 00). (2.2.45)
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One defines left differentiation as
9 (0f1) = =09 (10) = f1 (2.2.46)
for f; Grassmann-odd. Integration is defined by
/d20 1= /d29 0= /d20 6 =0, /d20 00 =1 — d?0=dodi  (2.2.47)

i.e. integration picks out the 86 term of a superfunction and is equivalent to differ-

entiation by 0y0;. The supersymmetric generalisation of Stokes’ theorem is

/ d22d*0 (Df+Dg) = / d22d?0 (00 f+00g) = f dzd?0 0 f|— }z{ dzd20 Og| (2.2.48)

where | denotes the functions f and g are evaluated on the boundary. There is a nice
way of making any functional supersymmetric that we utilise over and over again.
This makes the additional boundary term in the action for an open spinning string

less mysterious. Consider a general functional, W, such that
W = / d*2d*0 V(z,0). (2.2.49)
b

We take ¥ to be closed and so choose the unit disk for simplicity. A conformal
transformation can take the disk to the upper half plane. The boundary of the

surface is, thus, the x axis. The variation under a supersymmetry transformation is

W = /szdQG ((Q+ Q) = —/d22d20 (00 + 00)¥ = —/da:d29 e(§ —0)v|.
(2.2.50)
U| denotes the boundary value of ¥. We can expand ¥ in terms of its component

fields as U = Uy 4+ OW; + OF, + 0005 so that this variation can be written as

S — /d:r; €(Ws + 1)), (2.2.51)
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Note, that 0¥y = €(¥y + ¥;) and so the total variation of the functional under a

supersymmetry transformation is
oW = /dl’ d(Wy). (2.2.52)

Therefore, adding the boundary term — [ dz Uy to W will make it supersymmetric.
There is a nice way of writing this boundary term by noting that W = [ d%6 66 U,

then the supersymmetric functional W’ is
W = /d2zd29 U (1—005(y)). (2.2.53)

The action describing the dynamics of the spinning string turns out to be the su-
perspace generalisation of the Polyakov action. To motivate this we start with the

gauge fixed Polyakov action for the bosonic string

Sbos =

Y / d*z 0X"0X,,. (2.2.54)

Now replace X* by the superfield X* which is expanded as
XH = XF 4+ QU+ + G0 + 00 B*. (2.2.55)

On the boundary this is X*|+6(¥ +W¥)#|. We impose Dirichlet boundary conditions

at y = 0 that relate X to the worldline variables as
X|=w, (V+0)=hrY% (2.2.56)

where the factor of h'/* is required as 1 is a worldline scalar. ¥ and ¥ form a
spinor on the worldsheet and a vector in spacetime. The worldsheet scalar B is an
auxiliary field that plays no role in the action. These boundary fields play a role
if we consider the abelian super-Wilson loop in terms of the boundary superfield,
which is

W,[C] = Tr[exp ( - jq{ dtd) DX - A(X))} (2.2.57)
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where X = w + i0(h)"/*. The first term appears as a superfield generalisation of
the bosonic Wilson loop. There exists a non-abelian generalisation of this result,
but it requires an understanding of path-ordering in superspace. We will look at
this in chapter 4 when considering the so-called loop equations.

In the case of the string, we replace partial derivatives with the superderivatives
and integrate over the 6 coordinates. Then, from the above discussion to make the
resulting action supersymmetric we multiply the integrand by (1 — #65(y)). This

leads us to the action for the spinning string

Sspin =

/d2zd29 DX - DX(1 — 065(y)) (2.2.58)

Aol

which can be expanded into its more familiar form [44]

1 _ _
Sepin = —(/d2zd29 DX - DX —/ dx U - @) (2.2.59)
Ao/ y=0

Inserting the expansion of the superfield and integrating over the 6 coordinates
reduces this to the more familiar form of the spinning string action which is the
Polyakov action plus the action for a worldsheet spinor.

The same thing can be done with the infinitesimal area element which now takes

the form

dSH = / d*zd*0 DX¥DX"(1 - 065(y)) =

/ d*2d*0 (DX¥ DX — 005 (y)Ulw). (2.2.60)

Using this we can form the supersymmetric generalisation of the contact interaction

as
Si=a [ dE(.0) 5(X(2.6) = X(0)) Ayl 0) | proger. (2261
¥y

Fourier decomposing as before allows one to write the contact interaction as the

product of two vertex operators so that

= o [ d% e
S =q o VIV (2.2.62)
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where the supersymmetric vertex operators are now
Vi = / d*2d*0 DX DX" (1 - 005(y))e™*. (2.2.63)

The method of projecting along k works for the supersymmetric case too, and we
will show that the vertex operator can be split into a piece on the boundary plus
a “projected” vertex. Projecting X along k so that X# = P(X)* + 52 k“k X allows the

vertex operator to be written as

- _ k- X\ " k-X\" _
v :/szdQG D(M(X) 12 ) D<Pk(X)+k?> e X(1—005(y))

v k[ N v N v ik- )
= V¥ btz d*zd*0 (k-DPk(X)D}P’k(X) 4+ k- DP,(X)DPy(X) J)e FX(1-065(y))
(2.2.64)
where again we have defined a “projected” vertex operator. Rewriting the second
term as the sum of total derivatives requires subtracting off the contributions from

the derivatives of the boundary piece. The result is

) f | )
VR = % d22d%0 D (D]P’k(X)”]e““‘X(l . 99(5(@/)))

n | i
le; d?2d*) D (Dpk(X)V}e’k'Xu - 995(y)))
Zk 2 V] Jik-X ikl 2 V] ik X
— [ dad®0 6( DPU(X)YeX ) 4 T [ dad® 6( DBL(X)TX ). (2.2.65)

Now, note that applying Stokes’” theorem in reverse allows us to write the last two

terms as

ikle

7 d?zd*0 {D (DIF’k(X)”]e““'X) +D(DIP’;€(X)”]@““'X)} (2.2.66)

To complete the derivation we can show that the first two integrals simplify. Using

Stokes’ theorem on the total derivatives produces a single § and 6 cancelling the
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d(y) terms and so we drop them. This leaves us with the conclusion that

V4124 W14 Zk‘['u M B v] ik-
VI =V — 3 /d2zd29 (D + D) ((D + D)P(X) et X) (2.2.67)
We can now apply Stokes’ theorem to the total derivatives and expand the integrand

in terms of the component fields. The result of this is

V4714 STV i ik X k[#
v = +/ Z KPR (dX) e 4

5 / dz Pp(¥ + 0)(U + 0) - | FX
y=0 k k y=0

(2.2.68)
which is the supersymmetric generalisation of (2.1.13). Using the boundary values

(2.2.56) allows us to write the vertex operator as
N - ; P V] .
VI =V 4 %k[“/ dx (% —Vh Pi() 4 - zk:) ek, (2.2.69)
B

The interaction term in the action (2.2.62) then becomes

s Ak
81:/— ViV

(2m)*
o e st (o )
X (P’“C(lié”,) + VI Py(y) w’-m) et (w=w), (2.2.70)

Now, consider the expectation of the contact interaction, computed by functionally
integrating over all worldsheets bounded by B, which is held fixed. This has no effect
on the second term as before. The first term is suppressed in the same way as in the
bosonic model. The only possible remaining contractions are the self-contractions

of the exponential which are

kX _. xikX . —ma'k’GF(22) (2.2.71)
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Gr(z,0; 2,0 is the Green’s function of the super-Laplacian, —4D D, subject to the

boundary conditions G = 0 when 2, = Z; and 6, = ;. The required solution is
1 _
where
219 =21 — 20— 0102, Zig =21 — 20— 010y, 2fs = 21— 20— 0105, Z{5 = Z1 — 20— 0,0,.
(2.2.73)

At coincident points on the worldsheet, G diverges and so must be regulated.

Introducing a short distance cut-off as in the bosonic case allows us to rewrite the

i) () .
f(s):/1 465:7 (l—exp( 5:)) (2.2.75)

Expanding the exponential term in (2.2.71) in powers of 6 gives

Gr as

where

—ma’'k2G%(0) _ 1 ieéﬁ —T k2f(7y) 2.2.76
e < +2 ay (2.2.76)

When s is large f(s) ~ (log s)/27 as in the bosonic case so, for k? > 0 and taking the
tensionless limit, this exponential suppresses (2.2.71) at all points in the interior of
Y2 when the cut-off is removed. The “projected” vertex, therefore, doesn’t contribute
to the expectation of the contact interaction.

We are left with the conclusion that

<S}>:%/d4 //dd ( ;) Vi Pu(y) o ik:)“

X (P’“(dw)Jr\/_ Py (¢ )w'.z’k> eth-(w=w) (2.2.77)

/
dx i

which is equal the expectation of the super-Wilson loop to order ¢* (1.4.136). At

higher orders the unwanted divergences that arise in the bosonic theory do not ap-
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pear [45], and so we can make the conclusion that this result can be exponentiated
and we can make the equivalence between the abelian string theory and the expec-
tation of the super-Wilson loop. The way in which we will generalise this model
to incorporate non-abelian gauge theories will not affect this result and so at least
at this level we will be able to state the equivalence between the non-abelian string
theory and the non-abelian super-Wilson loop. The downside of course is that the
bosonic theory will still contain the unwanted divergences and will therefore not be

equivalent to the expectation of the non-abelian Wilson loop.

2.3 Non-abelian gauge theory

The main aim of this thesis is to formulate a non-abelian generalisation of the above
theory, i.e. find a string theory with contact interaction that can reproduce the
expectation value of the super-Wilson loop computed in Yang Mills theory. In this
section we detail how one can reproduce the results from perturbatively expanding
the super-Wilson loop by introducing additional fields onto the worldsheet, at this
point leaving out the details of the fields which will be filled in in the proceeding
chapters. The one detail we do specify is the propagator the fields must have.

To motivate how we may wish to generalise the string theory to include non-abelian
gauge groups we look at the simpler case of generalising the bosonic non-abelian

Wilson loop. In Euclidean spacetime it is

Wic] = Tr[ P exp( - qji Audwﬂ)] (2.3.78)

where the gauge field, A, can be expanded in terms of the anti-Hermitian Lie algebra

A

generators, 74, as A = 74 A4, Taylor expanding the exponential gives a power series

weighted by ¢™:

n!

W[C]:Tr[P 3 (_Q)n(é Audw#ﬂ. (2.3.79)

n=0

To obtain the expectation of the Wilson loop to O(¢") in field theory requires us
to calculate the expectation of (A™). We have already calculated the expectation of
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the Wilson loop neglecting self interactions (1.4.127). This differs from the abelian
result by the path-ordering of the Lie algebra generators. This path-ordering can be
replaced by a functional integral over an anti-commuting field, ¥, on the boundary,

B, [35] as
/D(W,w) P (1) ¥(0) exp (—/0 Wi di+

] o f sy (S5) wrvname). cas

The step functions following from the free worldline fermion action mean that the
integrand is only non-zero when the generators are in the correct order as we traverse
the boundary between 0 and 27, which is the definition of path-ordering (1.4.124).
Apart from the kinetic term for ¢, this differs from the abelian case by the inclusion
of the Lie algebra terms J4 = ¢fr4¢. This suggests a natural extension of the
string model where we let the boundary field, v, extend into the interior of the
worldsheet. This will be the first method we study. In the second method, we obtain
the same relation from a 2 dimensional gauge theory where J4 will be restricted to
the boundary.

(2.3.80) suggests a generalisation to the bosonic contact interaction of the form
SPM = [ IO (E) - XENINENE (2381)
This essentially modifies the vertex operator to
v = % / A€ JAP, X1, XV e X (2.3.82)

We can again use the projection of X along the direction of k and to rewrite the

vertex operator as

: ~ab
|GG / d*¢ 0, (ZZQ k[uﬁbm(x)”]e“”) JA. (2.3.83)
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For simplicity we will define

Z‘Eab

L™ = e ko, (X )Y e X (2.3.84)
The contact interaction is then
Y M d4k prvAgrA 2 ¢ 12+ apy 7A 9l 1ic 'A
S = o) Vi Vw_k—i—dﬁd{ 0. LT 8CLW_kJ ) (2.3.85)

We will look at each product of the second term separately by defining
I = / d*¢ 0,L" JA. (2.3.86)
Integrating by parts we find
I = / d?¢ [0, (L T4 — L 0,(JY)]. (2.3.87)

Now, the first term is a total derivative and similar to what we had in the abelian
case but the second term here is new. The first integral is computed using Stokes’

theorem as before to give
/ d*¢ 0, (L™ J*) = é / kWP (dw)Ye* v A = B, (2.3.88)
b B

We have denoted this term B “4 as it is an integral around the boundary that will
lead to propagators in the functional integral as in the abelian case. We will define
the new term in (2.3.87) as O/ = [ d2¢L{*9,J* as this is the term that will lead
to the self interactions in the Wilson loop via contractions of the derivatives of J4.

The expectation value of the contact interaction is then

(57 = ([ e VL)
,J (2ﬂ)4 pv— v
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from which we obtain three new terms. At this order the B - C cross terms and
C - C terms do not contribute to the expectation of the contact interaction as there

+ik-X in the interior of the worldsheet. As discussed

is always at least one factor of e
in the abelian model, these terms will be suppressed in the tensionless limit and so
do not contribute to the expectation of the contact interaction. The same argument
can be applied to the first term of (2.3.89). We will thus require the expectations
(JA0,JB) |, and (9, J*8,J*) | to not produce anything that will lead to additional
terms that will not be suppressed in the string functional integral. The second
condition will follow from the three gluon vertex condition we will find later. The

first condition must be satisfied within the particular model describing J4.

The only term contributing to the expectation of the contact interaction is then

d*k /
B/UJAB A B >
</ (271’)4 k v —k A

- <% / (347’“)4 é 7{3 Pk(dw)éfk(dw/>eik'<ww/>(JAJ’A)> (2.3.90)

B,J

[ g R en) s

where we have carried out the functional integration over ¥ holding B constant. If

JA = 974 then we have reproduced the first order expansion term of (2.3.80).
In any case, for this to be equivalent to the expectation of the non-abelian Wilson
loop we require a contraction of the J4s that produces path-ordering of Lie algebra

generators, i.e. a contraction such that we can make the replacement
JA g A ~ P(rA74). (2.3.92)

It will be the subject of the following chapters to explain how this comes about. By
considering this property of J4 to arise by averaging the number of intersections of
curves we will essentially find a way to continue path-ordering into the interior of
the worldsheet. This reproduces the propagator of the worldline theory (2.3.80) and
so can be considered a worldsheet generalisation of this theory. The other model

we consider is similar in the sense that we will use a path integral over ¢ and ' to
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obtain (2.3.92). In this model, the new variables are restricted to the boundary and
arise as the source for a new gauge field on the worldsheet.

This path-ordering result naturally generalises to all orders and reproduces (1.4.130).
The expectation of the contact interaction to the n’th power contains n factors of
B - B which leads to n propagators joining pairs of points on the boundary as

<(_S}/M>n>z,J

n!

(¢2)" / " Aok ]{ flPk(dwi)-IPk(dw;) ol AL A,
TS H )t Js)s 2 e (JHT7) R (2.3.93)

The condition (2.3.92) then generalises for 2n insertions on the boundary to

<H JA (&) s (€ > HT (2.3.94)

If this is satisfied then <e‘S{M >2 ; contains (1.4.130), but, we know from the abelian
case that worldsheet supersymmétry is required to eliminate extra divergences when
there are products of interactions. The contractions of the J and X are independent
from each other and so the abelian result still stands. We will look at the super-

symmetric case after looking at how the three gluon vertex arises in the bosonic

model.

2.3.1 The three gluon vertex

So, we must find a field theory that can implement path-ordering along the boundary
of the worldsheet. This is the first step to generalising the string model to incorpo-
rate non-abelian gauge symmetries. The next step is to include the self interactions
of the gauge fields. The three gluon vertex comes from contractions of the C vA
terms in the functional integral. This interaction is of O(q) and first appears in the
O(q*) expansion of the expectation of the Wilson loop and so the diagram is itself

of order O(q*). We, therefore, expect this interaction to appear in the expectation
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of (SYM)2. Omitting the projected vertex terms this is

(812 oy = R

X (Bs — Ca)37 " (Ba— C1)%y o), ;- (2.3.95)

From the previous section, we can immediately identify the term B* that leads to
two gauge bosons joining two pairs of vertices on the boundary of the worldsheet.
The three point vertex comes from the contraction of the derivatives of the J4s in

the C's in each term of the form
(15,3 0 [ e e B, (OB, ) . (2396)
2,J (2m)4 (27r) e 7 5.7
To produce exactly the three point vertex we require
0aJ A0 JB ~ e fABCTC52(& — &). (2.3.97)

where ~ denotes that this is satisfied within the functional integral. There could
(and will) be extra terms on the right hand side, but these must be suppressed upon

integration. With this ansatz (2.3.96) becomes

d*k  d*K
4 ABC pprA
‘ </ eryini! P

Eab
X/d2f k%/?kma Py (Xa2)uk PO (X2)7 JC (Xy) e ™ R X2 BB k,> . (2.3.98)
2,7

Expanding the boundary integrals and carrying out the (tensor) contractions we

find
f /ﬁ dAE! ABCfka (dwq )" JA )zkw1
2 (2m)4

o Py (d :
/ d*€ €00, X2, 0, X2, J (X ) F 7122 By (duy)” I (wy)e™* 'w4> . (2:3.99)
3,J

k"2

We recognise here the emergence of a new vertex operator insertion. We can then

project X, along (k' — k) to produce the third leg connecting the interacting vertex
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to the boundary. Finally, we find

4 4 410
—sYM q d*k  d*k ABC% f‘ ]{ Pk(dw1>u " o
<6 >Z’J = 2 </ (271-)4 (2ﬂ)4f 5 )5 B—kz J (w1)6

Z(]f, — k)[,u]P)(k’—k) (dw2)y
(K — b

]Pk/ (dw4)”
k2

}JC(UJQ)(BZ'(k,_k)'w2 JB(w4)e_ik,'w4> . (2.3.100)

J

Expanding the inner products and relabelling the dummy indices on the momenta
and positions so that the momentum contracted with the propagator is the momen-
tum associated with the propagator, we reproduce (1.4.131). Note, the antisymme-
try on p and v introduces a factor of a half and two terms. One can then replace the
factors of J with the path-ordered product of the Lie algebra generators to verify

the equivalence of these results.

2.3.2 Worldsheet field theory

Thus, we are searching for a field theory on the worldsheet that allows one to replace
products of the field on the boundary with the path-ordered product of the Lie
algebra generators placed at these points. The first model we consider is a two
dimensional generalisation for the boundary field 1)(w). The kinetic action for the

boundary theory is
1
Sy :/ Yl dt (2.3.101)
0

which leads to the propagator

(YL (E)Y(62)) = das sign(ts — ta). (2.3.102)

This naturally generalises to the propagator for the 2 dimensional worldsheet field

theory
(Y5 (21)05(22)) = Sap sign(z — 20) (2.3.103)

where a Euclidean worldsheet is understood and we are using complex coordinates.
On the boundary, this propagator reduces to the boundary theory and so can be used
to represent the path-ordering of Lie algebra generators. In this form, sign(z; — 22),
has the form of an angle between z; and z3 in the complex plane since sign(z; — z9) =
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e@8(21=22) " This relation will lead to the field theory we propose that generalises v
into the interior of the worldsheet.
This field theory will be studied in the next section. We note that in this theory we

require the condition

1
Datl (21)Bpt5(22) ~ bag §5ab53<21 — 22) (2.3.104)

to produce the three gluon vertex. We will, in fact, find that we cannot satisfy
this relation in the worldsheet v theory and so we will be unable to make the
equivalence between the string theory supplemented with this worldsheet theory
and the expectation of the Wilson loop.

The next theory we will investigate is similar in the sense that it is introduced onto
the worldsheet via the vertex operator in the same way as the ¢ theory. The guiding
principle behind this theory is a gauge symmetry of the contact interaction with the
Lie algebra valued fields, J4. We can use this to introduce a gauge field theory onto
the worldsheet and we will show that this produces the correct contractions required

to implement the above properties of the string theory.

2.3.3 The four gluon vertex and ghost-ghost-gluon vertices

The string theory described above, with contact interaction and additional world-
sheet field(s), reproduces the path-ordering of the Lie algebra generators and the
three gluon vertex in the expectation of the Wilson loop. We have yet to mention
how the four gluon vertex, Fig. 1.2b, and ghost-ghost-gluon vertex, Fig. 1.3, are
generated. In fact, this will be beyond the scope of this thesis. This has been studied
in the context of this string theory independently from me by Prof. Mansfield and
will be detailed in an upcoming paper. Although these interactions do not seem to
appear in the work above, one can show that this is due to using a heat kernel reg-
ulator for the worldsheet Laplacian Green’s function as we will use throughout, and
that by switching to dimensional regularisation, one can show that these missing
interactions do appear.

The terms that give rise to these extra interactions are suppressed in our work and
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so we do not see their effect in the work presented here. The same goes for the
supersymmetric model discussed in the next section, although, it is not clear how
dimensional regularisation of the super-Laplacian Green’s function will work at this

point.

2.4 Supersymmetric model

The above extension to non-abelian gauge groups generalises straight forwardly to
incorporate the supersymmetry of the worldsheet. J4 gets promoted to a superfield,
JA, with expansion J@' + 0J2 + 0J1 + 00.J3'. If we were to include a factor of J4
into the integrand of (2.2.63) we would not get the expected results, specifically the
the third leg of the three point vertex, produced by the contraction of the C's, gains
an extra term that prevents this new boundary piece from being supersymmetric.
Rather, we should include the factor in (2.2.67). The non-abelian generalisation of

the supersymmetric vertex operator is then

~ v ~ v ’Lk[u — B v| ik
v A _ v A _ 3 /d22d20 JAD+ D) ((D + D)P(X) le kX) (2.4.105)
where
@ZVA _ /d22d29 JADIP’k(X)[“DIP’k(X)”](l _ 9@5(y))eik'x (2.4.106)

is the supersymmetric “projected” vertex operator. Integrating the vertex by parts
again gives two terms which we associate with the supersymmetric analogues of B

and C from the bosonic theory

T L (D + D) J*(D + D)P(X)"e*X
k - 'k k‘2 k
Jal _ _ , ~ .
+ZZ—2 d*2d*0 (D + D)J*(D + D)Pk(X)VJe”f'X> = V4 —(B—O)™4. (2.4.107)
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The contact interaction is then

SYM 2 d4k; V,LLVAV ,LLZIA A
I =4q pr—k + B B

(27 ) v— k) + cross terms. (2.4.108)

Integrating over worldsheets spanning the fixed boundary results in

<S}”M>EJ _ / (g:; <B;;”AB;£_,€>J. (2.4.109)

where again the B-C cross terms and C'- C' term do not contribute as in the bosonic

case. The “projected” vertex term is also suppressed in the functional integral be-
cause of the self-interactions of the exponentials. For this to reproduce the expected
result note that we must have Ji'| = J{!| = 0. This result will arise naturally in the
second model we study.

The integral B can then be evaluated using Stokes’ theorem
pUvA _ Zk[ 2 A v] jik-X
By dzd®0 (0 — ) J*(D + D)Py(X)"e

o P () | f
- —ZZ—Q dz J (% — VR Py(yp") 9 - zk:) et w = _"Z fdb”]A (2.4.110)

where we have defined a boundary element

it = o g (T VR 0 ) (24111)

Defining this will reduce clutter when considering higher orders in the contact in-
teraction as dby will remain unaltered by the functional integrals as it lies on the
boundary which remains fixed and contains no derivatives of J%4. The expectation

of the contact interaction is then

< ——/d4 dzdz’ <J0<P( W) _ R By() z’k;)u

dx
x JoA (Pk(dw) + VI Pp(¥') ¥ k) e"k'<w—W’>> : (2.4.112)

dz’
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The particular model for J4 will tell us how to proceed from here, however, we will
essentially require the bosonic condition (2.3.92). This result can then be compared
with the expectation of the non-abelian super-Wilson loop. Being able to replace J4
on the boundary with the Lie algebra generator 74 will allow this result to coincide
with the first order expectation of the super-Wilson loop. Exponentiating this re-
sult will then reproduce the full expectation of the super-Wilson loop neglecting self
interactions of the gauge field. In the supersymmetric model we no longer produce

unwanted divergences that ruin this equivalence [45].

2.4.1 Three gluon vertex in the supersymmetric theory

The three gluon vertex comes again from the particular term in the contact inter-

action squared

9

<(§YM)2> > ¢ / Ak AW puwaga  osps (2.4.113)
1 o (271')4 (27’(’)4 1k 2uy —k~ 3k 4ho —k EJ. s

)

We now require the contractions

DILDIB ~ fABCIO52(2) — 25)6% (0, — 6,) (2.4.114)
NTADTB A B
DJ*DJIS ~ DI{DIZ ~ 0 (2.4.115)

for this term to reproduce one contribution to the three gluon vertex in the super-
Wilson loop. Using these contractions, the expectation of the contact interaction

squared contains

Ak A b Ky )
2q4 </ (27T)4 (27T)4 B{Lk fABC/d2ZQd2 2 k_gﬁJC(‘D—FD)Pk(XQ)V]

(D + D)Pp(Xy)ppe i) Xe BB _k,> . (2.4.116)
»,J
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Carrying out the (tensor) contractions of the relevant terms we find

. Ak dK [ ap? _
Y M\2 4 k ABC 2 2 C D D)X
<(SI ) >27J >4 </ (2m)t (2m)° 7{ 12 /d 22d "0y J7(D + D)Xy,

vB
(D + D)X, et k=k)-Xe f{ db—’;> : (2.4.117)
k3 [sg

The integral produced is not quite a new vertex, we must do a little work to get the
form we require. Again, we use the projection of Xy along (k; — k). Focussing just

on the worldsheet integral we have

/d222d292 JC(D + D)qu(D + D)que—i(k—k;’).XQ

= / d*2,d*0; I (D + D)P(X)a,(D + D)P(X)q e )Xo

(k= k)

+24 —(k ")

/ d*2d*05 J9(D + D)((D + D)Pgj_i(Xa)e "*FF)X2) - (2.4.118)

In the functional integral the first term is suppressed again and so we will drop it.
The second term now looks like a vertex operator. To obtain the boundary integral
we carry out an integration by parts. This will produce another term with a factor
of DJ®, but this will be suppressed by the self-contractions of e “*=*¥)X2_With this

we can effectively drop the DJ¢ terms leaving us with just the boundary integral

[g / d*2,d*05 (D + D)(J(D + D)P(j_p (Xg)e "+ X2) = QBgV_(k_k,).
(2.4.119)

Inserting this into the expectation of (S} *)?, we find

((S7Y))5s 2

&k K b i(k — K)pudb g, dbyP
¢ </(2T ABC]{ %7{ (L i kf; . (2.4.120)
J

Again replacing J on the boundary by the path-ordered product of the Lie algebra

generators reduces this to the first contribution to the three point function in the

expectation of the super-Wilson loop.
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We will see that there exists a natural analogue of the bosonic 1 theory. Again,
this theory won’t contain the required relation to produce the three gluon vertex as
described above. To obtain a theory that does have this structure, we consider the
supersymmetric analogue of the worldsheet gauge theory model. There are some
subtle differences coming from the supersymmetry requirement but this theory will
form a correct generalisation of the bosonic theory, up to path-ordering and the

three gluon vertex. We look at this in chapter 5.
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Chapter 3

The Intersection of Random Curves
and Path-Ordering of the Wilson
Loop

In this section we attempt to find a field theory that satisfies our requirements to
allow a way of introducing path-ordering into the string model and possibly include
the extra self interactions of non-abelian gauge theory. The method of this section
will generalise the worldline theory of [35] where the path-ordering of the Wilson
loop is produced by an additional worldline field on the loop. The field theory we
obtain provides a way of continuing the path-ordering into the interior of the loop.
We will find that there exists both a bosonic and fermionic field theory that one
can use to generalise path-ordering into the interior of the worldsheet. This method
doesn’t contain the correct structure to form the three gluon vertex however, though
we can show how one might be able to use this model to obtain it. In chapter 5
we will introduce another field theory that does include the necessary ingredients
to allow both path-ordering and self interactions in the string model. We will begin
this section with a discussion of one of the simplest 2 dimensional field theories, 2
dimensional electrostatics, a particular case of (1.1.45). We will then show how one

can use this to produce an appropriate field theory for J in the string model.
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3.1. 2 dimensional electrostatics 66

3.1 2 dimensional electrostatics

Of particular interest in this thesis is the case when D = 2 in (1.1.45) since we
are working on the 2 dimensional worldsheet. The existence of Weyl symmetric
quantities in 2 dimensions will allow us to generalise the calculation of the average
of the electric field to curved spaces. This will be of use when adding fields to the
worldsheet of our string model as we will when considering the generalisation of the
string model to include non-abelian gauge fields. The electrostatic field produced
by two oppositely charged particles is, from (1.1.45)

E(x) = -2 (X_a _ x=b ) (3.1.1)

2¢om \|x —al> |x—bl?

As this is an important case we will study it in some detail and eventually gener-
alise the discussion to curved space. It is useful in 2 dimensions to use complex
coordinates in which z = z + iy and z =  — 1y and we denote the contravariant
components of the electrostatic field as £ = F and E? = E. In flat space the
metric is ds? = dzdz. It will be the geometric properties of the fields that will be
important to us so we will drop the factor of ¢/€g in the discussion. The appropriate

field equations are then Gauss’ law in 2 dimensions
V-E=0E+0E =2 (8(z—a) — 62(z — b)) (3.1.2)

and Faraday’s law

OE — OF = 0. (3.1.3)

The factor of 2 in Gauss’ law comes from the fact that the invariant delta function

takes the form
6%(zy — a)

. 3.1.4
g(1) (314

This is due to the fact that the invariant volume element is d?z; /g(z;) and so

Px1 \/g(z1) \/x% = 1. (3.1.5)
1
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For flat space and complex coordinates we have \/|g| = 1

- It is then easy to see
that the solution to (3.1.2) and (3.1.3) is

P-wlemwmn) Prlemaemm) O

which agrees with (3.1.1), noting that we have
00log(22) = 2m §%(2). (3.1.7)
The single line of force solutions are

E.(z) = /c 62(z —w)dw, E.(z) = /c 62(z — w)dw (3.1.8)

with w(0) = a and w(1) = b. The important results we need are then obtained from

(1.1.45)
B = ( [ o) =5 (- ) (319)

(E):<Z;ﬁ@—wﬂ@>=é%@zi®—%zim> (3.1.10)

which is just a restatement of the previous results in complex coordinates. Consider

now integrating over a second curve, C’, with coordinates z and end points A and

B. Using the above results, observe that the combination

(7)., :/,dz </C 5f(z—w)dw>w—/,dz </C 5§(z—w)dw>w (3.1.11)

naively satisfies

o _ Ly ((B=a) (A-a) (B=D) (A-q)
i = 5t g((B—a) (A—a) (B—b) (A—a)) (3.1.12)

which is the sum of angles between the endpoints of the two curves, which is easily
seen by writing the displacements in polar form. We have already shown that the

propagator for the worldsheet field, v, goes like the angle between two points in the
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upper half plane, and so this gives us a hint that the quantity n is the one that will
lead to the field theory representing v in the interior of the worldsheet. Note also
that it appears to satisfy

dp0, (1), = 62(B — a) (3.1.13)

and

950, (), = —02(B — a), (3.1.14)

the condition we require to reproduce the three point vertex of yang-Mills theory
(see (2.3.97) and section 3.3.3). The designation of the symbol 7 for this quantity
will become apparent after a discussion of the supersymmetric version of this.

After removing the averages in (3.1.11), . can be written as

n= / (dzdw — dzdw) 62(z — w) = z/ 62(z — w) eudztdw”.  (3.1.15)

Cz,Cw

We will define the same quantity on a curved surface and investigate its properties

in the next section.

3.1.1 Electrostatic field in curved space

The worldsheet is a 2 dimensional curved surface embedded in a target spacetime.
Therefore, we would like to generalise the computation above for a curved surface.

Gauss’ law for two equal oppositely charged particles becomes

Ou(\/gE") = J (:f/; a) ¢ (:f/; i (3.1.16)

1

V-E-=
V9

In 2 dimensions the metric has three independent components. The worldsheet has
2 dimensional diffeomorphism invariance that can be used to reduce the number of
independent components to just one. The computations are simplest in conformal
gauge and complex coordinates in which the line element takes the form ds? =

e?dzdz. Gauss’ law becomes
I(e’E) + 0(e’E) =2 (82(2 — a) — 02(2 — b)). (3.1.17)
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This is easily solved by converting to the covariant components of the field which

are B
E,=g:E = e(ﬁTE E; =g E = G%E (3.1.18)

Gauss’ law is then
OF; + 0E, = 6%(z —a) — 6*(z — b) (3.1.19)

so that the conformal factor no longer appears in the field equation. This is because
in 2 dimensions the combination \/gE" = /99" E, is Weyl invariant, i.e. invariant
under metric rescalings of the form g,, — €2 g,,. The conformal gauge is obtained
by making a Weyl transformation, = e, of the flat metric and so writing g,,, =
%e‘%um where 0, has elements 011 = 092 = 0 and 012 = 091 = 1, then /gg"" = """
Because of this, we can just use the results above by interchanging £ — 2F; etc.

The solution is then

Ef:ﬁ((zi@ - <zi6>)’ Ezzﬁ(@ia) - (Zi@)- (3.1.20)

Faraday’s law for the covariant components of the field is now 0F: — 0E, = 0 and
so is still satisfied. The simplicity of (3.1.19) allows us to, again, use the flat space

results for the line of force analysis. This time we have

E; = %/53(2 —w)dw, E,= %/53(2‘ — w)dw. (3.1.21)

We cannot use the flat space results to calculate the averages over these quanti-
ties however. The functional average over some quantity, €2, is still given by the

functional integral

() :% /D[x,h] (/Oldg\/@—T) Q e SV (3.1.22)

but now the action is that of a free particle in curved space

Slz, Vh] = %/OT dt g“\”/%”)j;%”. (3.1.23)
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So the modification of the calculation involves dealing with the conformal factor,
e?, in the metric [50]. Note, the normalisation constant, Z, fixes (1) = 1. To obtain
a scale invariant weight we will take the large 7' limit corresponding to averaging
over long curves in terms of the einbein, v/h. The action and average are invariant
under reparametrisations and so we can choose a gauge in which /A is constant [17],
explaining the appearance of the delta function insertion.

We will be general in our calculation by considering the average of the quantity
Jo, 0*(x1 — wa)dal. We will also this time choose to work on a surface bounded
by a closed curve. There are a few reasons for this, the first and most important
is that this is the case that we will eventually need in our string model where the
worldsheet has boundaries. We will also find that quantities on a closed curved
space will be more manageable due to the existence of a normalisable zero mode of
the Laplacian. Working on a closed surface requires us to consider what happens
when the lines of force reach the boundary. The simplest possibility is to require
curves that reach the boundary be specularly reflected so that the angle of incidence
between the curve and the normal to the boundary is equal to the angle of reflection
between the reflected curve and the normal. This is the most natural choice for the
calculation of the electric field.

For simplicity, we will choose to work on the unit disk as it is conformally equivalent
to the upper half plane. The boundary is now the x axis and we identify r = —c0
and z = 400 as the same point. Working in the upper half plane allows for a simple
use of the method of images to deal with the effects of the boundary.

Fourier decomposing the delta function allows us to write the average as

</C1 6% (z1 — xz)dzv’f>01 = % /D[x] (/01 6% (zy — xQ)diElf) o Slan]

- 0 —1 r 1 ol g .
A (o D —Jo dt (Gguv(z1)dldy —A-d1)
Z / 7] e

() (3.1.24)

A=0

The functional integral is the curved space generalisation of (1.1.29) in 2 dimensions.
It is interpreted as the amplitude of a bosonic particle coupled to a vector poten-
tial, 4.4, in the presence of a curved background, to travel from z(0) to #(T"). The

factor of 7 here is again due to the Wick rotation of the action. From this we can
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straight forwardly obtain the classical Hamiltonian by a Legendre transformation,
H = 19, (p +iA)"(p + iA)”. Again, in the quantum theory there is an ordering
ambiguity which is resolved by interpreting the Hamiltonian as the Laplacian mini-
mally coupled to the vector potential, acting on scalars.

Taking the coordinates, x,, to be points in the upper half-plane, ¥, then we can
use points in the lower-half-plane to parametrise a surface ¥y attached along the
boundary. g is the reflection of ¥ in the sense that the value of the metric at a
point in the lower half-plane is taken to be the value of the metric at the point in the
upper half-plane that is its reflection. Any curve C; from a; to b; that is restricted
to X but is reflected once has the same Boltzmann factor as a curve that crosses the
boundary between ¥ and Xy but either starts at aff, the reflection of a;, or ends
at bt the reflection of b; . Curves that are reflected an even number of times have
the same weight as curves from a; to b; (or from aff to bft) that are not restricted
to X and curves that are reflected an odd number of times have the same weight as
curves from a; to b (or from af* to by) that are not restricted to . These two cases
are shown in Figures 3.1-3.3. So, by including reflected curves we are effectively
working on the full plane parametrising ¥ U X g but including curves with ends that

are the reflections of one of the original end-points and so we can identify
/ Dlz] e Jo ¢ Gowlifay—Ai) —  1e=HT|q ) 4 (b|e~HT|o5) (3.1.25)

= (bile MT)ay) + (BFle T |ar) = Gr by, an). (3.1.26)

The average of the line of force is then computed by taking a functional derivative

of the heat kernel

)
8z — m)drh ) = —— Gr(b
< C1 (xl xz) x1>01 0 #(xQ) gT( 1’a1)

A=0

I 2, 12 ~tHo o
= _Z/o « /zUsz vd®y/g(x)\/g(y) (bi] e |z) (] 5 AL () | g v
x (y| e(t_T)ﬁ°(|a1> + lat)) (3:1.27)
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b
a
a/

Figure 3.1: An example of a curve with one reflection off the boundary with 3 above
the central line and Y below it. The curve has a Boltzmann factor equivalent to
that of the curve that joins a* and b, shown below the boundary.

b
v/
\ bR
Figure 3.2: An example of a curve with one reflection off the boundary. The curve

has a Boltzmann factor equivalent to that of the curve that joins a and b%. This
Boltzmann factor is also equal to the Boltzmann factor of the curve in Figure 3.1.

where Gr is the heat kernel defined above and we have used the short hand for the

completeness relation over the whole plane,

/M P2/g0) |7) (] E/Ede\/g(x) 12) <x\+/2 /g0 |2) (2] = 1. (3.1.28)
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Figure 3.3: An example of a curve with two reflections off the boundary. In this
case the Boltzmann factor of the curve restricted to the upper half plane is equal to
the corresponding curve that is allowed to pass through the boundary.

We recognise the appearance of the heat kernel of the Laplacian at A = 0, denoted
G, so (3.1.27) can be written

) G (y, ar).
A=0
(3.1.29)

T o ; 6H
:7/0 dt/zUszfﬂd yv/9(2)V/9(y) G (b1, 2) (z] 5 A, (22)

Now, we have the matrix elements

N 1 6 (x —y
T = — 0—A), x 0—A), . (3.1.30
(z|H|y) g(x)( ) <\/§( ) g (2)( NI ) ( )
and so
SH TR o 0*(z — y)
o Y = gy Vi (S )

(\/_g“” )62 (x — ) 52<x_y)). (3.1.31)

N_ Vo)

Substituting this into (3.1.29) gives

/ dt/ d*xd*y (gt (b1, )6 (x — x2)\/g(x)g" (@ ax(52 z— ))g%,t(y,al)
SUSR

+G) (b, 2)0% (v g(2) g () 6% (x — 22)6% (x — y))gg_t(y,al)) (3.1.32)
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Firstly, computing the y integrals gives

—— dt/ (gt by, 2)0%(z — 29)\/g(2)g" (2)0*GY_,(x,a1)
YUXR

+G2(by, x) (\/ x)g" (2)0% (1 — 22)G_,(, al))> (3.1.33)

and carrying out an integration by parts on the second term and computing the x
integral we find

1 T

< 52<x1—x2)drcﬁ‘> SN (93<b1,x2> G@2)g" (22)0,G% (22, )
Cq C1 2Z 0

~0,(G¢ (b1, 72)) g(:cg)g“”(:rg)g%_t(:cz,al)). (3.1.34)

In the T — oo limit the integral splits into two pieces. One where t is close to 0 and
the other where t is close to 1. We will briefly discuss the spectral decomposition
of the heat kernel as this will allows us to evaluate these cases.

We will start with the eigenfunction equation for the Laplacian

As we are working on a compact space we have a normalisable zero mode that
satisfies Aug = 0. To find this zero mode it is most useful to work in complex
coordinates where the zero mode now satisfies 9ug(z, 2) = 0 which has a solution
composed of a holomorphic and anti-holomorphic function, ug = f, () + f_(z). We
may expand fi as a power series in 2" with corresponding coefficients a,,. We note,
however, that all coefficients with n > 0 must be zero as otherwise f would blow up
as z — £o0o. This leaves us with the conclusion that the zero mode is a constant.

We can normalise so that

/|u0\2\/g(q:)d2:c — Ju2A (3.1.36)
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where A = [ \/g(x)d*z is the area of the surface. The normalised zero mode is then

u =1/ V/A. As the eigenfunctions are mutually orthogonal we then find

/d% VvV 9(x) uguy = ﬁ/d% Va(x)uy =0 (3.1.37)

i.e. the integral of u) with A # 0 over the surface is zero. The heat kernel has the

decomposition

G (w1, w2) = > _ e Mun(ar)us(xa). (3.1.38)

A

Taking the limit of the spectral decomposition of the heat kernel picks out the zero
mode contribution and so limy_,,, G% = 1/A. The spectral decomposition of the heat
kernel allows us to set G%_,(z2,a1) = 1/A when t is close to 0 and G (b1, z2) = 1/A

when t ~ T'. Taking the T"— oo limit and using these values then gives

lim </ 6% (2 —:Eg)dx’f> =
T—o00 o o

1 o0
m/ dt ( 9(w2)g" (22)0,G; (by, x2) — 9(%‘2)9””(%)31/9%t(%,al))-
0
(3.1.39)
The normalisation constant is obtained from
(1) = lim 1 Dy e Sl ) = 1 lim Go(x1,a;) = < (3.1.40)
T500 \ Z ! 7 Tosoo TNDEU 7 4 T

Now, (3.1.39) contains the ¢ integral over the heat kernel which is related to the

Green’s function satisfying Neumann boundary conditions
/00 dt | G (w1, x2) — L Zuk(:cl)lm(:cg) = 2G/(z1, x9) (3.1.41)
0 A A /\ A ’

where the Green’s function, GG, solves

S
NG

059" 0,G a1, 32)) = ‘”—J;) - (3.1.42)

where the Laplacian acts at either z; or xo. The appearance of the 1/A terms is due

to the existence of the zero mode. Working in the upper half plane allows us to use
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the method of images to solve for the Green’s function by placing a point charge at
the point in the lower half plane that corresponds to the reflection of the original

charge. In complex coordinates, the Green’s function equation is

- 1
—4e7°00G (21, 22) = 2¢7%6% (21 — 25) — 1 (3.1.43)
which has solution
G(z1,22) = L) (1 ) L) (Iz1 = 22|) = W (21, 22) (3.1.44)
Z1,29) = o ogl %1 z9 o ogl %1 Z9 Z1,292). .

The second term is due to the image charge; note that Alog(|z; — Z|) = 4762(2 —

Zy) = 0 since we are working on the upper half plane. The last term satisfies

_ ~ 1
49,0, = 4e=?(22) 5,0, U = - (3.1.45)

and Neumann boundary conditions and is again a consequence of the zero mode.

Note that (3.1.45) suggests W(z1, 22) = 1¥(21) + 1(22). From (3.1.39) we find

< 52(21 — 22)d2’1> - 52G(b1, 22) — 62G(22, al)
Cvl C1

:L< v, ot 1 ) (3.1.46)

47 bl—gz 61—22 61—22 al—Zz

so the zero mode contribution drops out. We then see that the average of the line of
force reproduces the full electric field (3.1.20) modified by the effect of the boundary.

Similarly we find the conjugate result

</ (52(21 — 22>d21> = 82G(b1, 22) — aQG(ZQ, Cbl)
Cl Cl

:i( t .t t 1 ) (3.1.47)

47 bl—ZQ bl—ZQ ay — 29 a; — 29

Inserting these into the Gauss’ law verifies that these are the solutions, as the terms
corresponding to the reflection vanish since ¢*(a — z) = 0 etc. on the upper half

plane. We can see that the conformal factor has dropped out of the calculation and
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so we have a result similar to the flat space case. We can form the functional n
again that naively looks as if it satisfies the criteria for producing the three point
function. We shall do this in detail after a study of the supersymmetric electrostatic

field.

3.2 Supersymmetric electrostatics

We now turn to the supersymmetric generalisation of the electrostatic field. To do
this we enlarge the parameter space by introducing the Grassmann odd variables 6
and 6, being the superpartners of z and Z respectively. The electric field becomes
a superfield, E, and the partial derivatives become superderivatives. We will again
consider the electrostatic field produced by two equal opposite charges placed at
(a,n,) and (b,n,). We will use the covariant components of the electrostatic field,
E,, as we have shown above that Gauss’ law takes the same form in flat and curved
space. This is a unique feature of 2 dimensions where the combination ,/gg"” is
Weyl invariant. We will show in here that just as in the bosonic case, the problem
in curved 2 dimensional superspace involves dealing with a superconformal factor

which will eventually drop out. In flat superspace, Gauss’ law takes the form?
DE + DE = 6*(0 — 1,)0*(z — a) — 6*(6 — )% (2 — b). (3.2.48)
The solution can be obtained from the Green’s function for the super-Laplacian
—2DDGr = D(—DGFr) + D(DGr) = 6*(0) — 02)0% (21 — 22) (3.2.49)

and so E = DGp and E = —DGp. These can be evaluated using the results from
Appendix A so that

E:_i(é_ﬁa)

4%(2——5) + %(9_ — 7a)0N.6°(z — a)

162(0 —6') = (0 — 6')(6 — ¢') and we denote E. g =E and E, 5 = E.

July 11, 2018



3.2. Supersymmetric electrostatics 78

= %% - %6_77(1(9 - na)62(z - CL)
_% ((i__zb)) _ %enb(e — m)62(z — b). (3.2.51)

As in the bosonic case, there exists a supersymmetric line of force solution

Ec(z,0) = — /Cdt 6% (z —w — ) (0 — ) (w + 0n) (3.2.52)

E,(z,0) = /Cdt 52(= — w — O) (6 — ) (i + 07) (3.2.53)

where w = w(t) and n = n(t) are the bosonic and fermionic coordinates of the curve,
C. The proof is more involved than in the bosonic case. The superderivatives of the

field components are

DE. = /Cdt (778252(2 —w)(0 — 7w+ 6*(z — w)(0 — 7)1 — 00,0%(z — w) (0 — n)w)
(3.2.54)

which can be witten as
= [t (@m0 - mioni -+ @-n(H6-0)P6-w). B25)
Siuilarly, one finds
DB, =~ [ at ((6-n)6-0)00* ()4 ( 50 ) 6-0)5"-w)). (3250)

Combining these results in Gauss’ law we get

DI_EC+DEC:—/Cdt %((9_—77)(9—77)52(z—w))

= 5%(0 — 12)8%(2 — a) — 82(0 — ,)3%(z — b) (3.2.57)
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as desired. The form of E, and E,. can be simplified by defining the super-displacement,
l =2z —w —6n, so that

Ecz/dt §2(1)DI I, Ec:/dt §2(1)DI | (3.2.58)
C C

where the superderivative acts with respect to w and 7 on C'. Note, we can write
the bosonic field in a similar way by defining s = z —w. With this, the bosonic lines

of force can then be written as
E, .= / dt $*(s)05 5, E.,= / dt 6*(s)0s 5. (3.2.59)
c c

It may then be expected from our previous results that summing over all curves
weighted by a suitable action functional reproduces the full solution, (3.2.50) and
(3.2.51). The suitable action in question must be the supersymmetric generalisation
of the massless, free bosonic particle’s action. In [45], the sums over surfaces were
carried out by weighting each curve with the gauge fixed superstring action in the
appropriate number of dimensions. Here, then, we need the action describing the
worldline of a superparticle with a 2 dimensional target space. There are a few
choices of possible actions. As we would like this 2 dimensional theory to live on
the worldsheet of our original string model it is useful to use a superparticle action
with manifest spacetime supersymmetry. This naturally leads us to use the Green-

Schwarz superparticle.

3.2.1 The Green-Schwarz superparticle

Let us recapitulate what we have at this point. In the bosonic case, averaging over
lines of force corresponds to summing over all possible curves joining two fixed end
points with each curve weighted by a factor of e™. S is naturally interpreted as
the worldline action of a free particle on the surface upon which we are working so
that the curves we are averaging over are like particle worldlines embedded on the

surface. The delta function appearing in the line of force solution can be written as
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a functional derivative of an exponential of the form

1) .
/deL'l (SD(I'l - 1’2) == m@fdt 1 Az) (3260)

The exponent of (3.2.60) describes a Wilson line and when combined with the action,
S, describes the motion of a particle moving under the influence of an external gauge
field, A(x). In the present case, our target space is the worldsheet of a superstring.
Spacetime quantities are obtained from the superstring model by integrating out
the Grassmann odd coordinates, €, and so field theories on the superstring world-
sheet should be explicitly dependent on all worldsheet coordinates, including the 6
coordinates. The worldsheet has an N = 1 global supersymmetry between bosonic

and fermionic coordinates given by
dz=—nl, 00 =n. (3.2.61)

These two arguments rule out using the traditional superparticle action of Brink,
Howe and Di Vecchia [46] as our weight functional, S. In superstring theory, there
exists a formulation which has manifest target space supersymmetry known as the
Green-Schwarz (GS) superstring [56]. The GS superstring action has an important
additional symmetry not existing in the RNS formalism known as « invariance. This
is because as it stands the GS action has twice as many degrees of freedom as the
RNS action. The kappa symmetry can then be used to remove these extra degrees
of freedom.

There exists a superparticle analogue of the GS superstring that also has target space
supersymmetry and kappa invariance. We will, therefore, use the action of the GS
superparticle as our weighting functional. We will find that on a 2 dimensional
target space, the k invariance can be used to reduce the action to that of the free
bosonic particle, making calculations much simpler. The form of the Lagrangian
we use is similar to that studied in [48] except that we are working in a Euclidean

signature and have introduced an extra mass parameter, u. The Lagrangian of the
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GS superparticle in flat 2 dimensional superspace is then

T CE—

Ly = N 11(00 + 660) + 1>V (3.2.62)

where 7 = 2+00 and 7 = +9_§ are the globally supersymmetric generalisations of 2
and Z respectively. The Lagrangian is invariant under reparametrisations, t — f(t)
and the global supersymmetric variations (3.2.61). The action also possesses an

additional worldline symmetry known as kappa invariance which takes the form

5/l = %(5/@' + 0R) (3.2.63)

where k = k(t) and & = R(t) are Grassmann-odd worldline functions. We can
use this symmetry to choose a gauge in which 6 =0 = 0. We can also use the
reparametrisation invariance to fix vVh = T. In this gauge the 6 dependence com-
pletely drops out of (3.2.62) and so it reduces to the Lagrangian of the massive
free bosonic particle. In the bosonic model we used the massless particle action, so

setting p = 0 gives the action

1 Y zzo1 (7 .
== dt = == dt’ 2z .2.64
S 2/0 T 2/0 2z (3.2.64)

with ¢/ = ¢1". This then is the action for the free massless particle. Provided that
a functional, €2, is k invariant, then it’s average (in flat space) can be computed
as () = (') where ¥ is the functional after gauge fixing and the subscript B
denotes the functional integral computed with the bosonic weight.

We would like to generalise this result to a curved target space which is equivalent to

coupling the superparticle to supergravity. This coupling is best described in terms
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of forms and so we first write (3.2.62) as

e*é” .
Lo = 7+ 2u¢ T 4 + p?>Vh. (3.2.65)
et = iMe4, is the supervielbein and I'y are gauge fields. In particular we have

z

F=m =76 =0, =0,Ty=0/2and [y = 0/2.

3.2.2 Lorentz superparticle

We are now in a position to consider the dynamics of the GS superparticle on a
curved supermanifold. This is most naturally done in terms of forms, hence why we
wrote the flat space Lagrangian as (3.2.65). We will begin with a discussion of the
superparticle on a supermanifold in Lorentz signature as given in [48] as there are a
few steps which seem unclear or even incorrect. After this, we will turn to the case
that we require of the superparticle on a supermanifold with Euclidean signature.
The difference between each model comes from the supergravity constraints, basi-
cally coming down to factors of 7.

The Lagrangian of the superparticle on a curved supermanifold background takes the
same form as (3.2.65) where we promote the flat vielbein, e, to the curved vielbein,
&, and promote the gauge field, I', to a general superfield so that the Lagrangian

becomes o
B E*E*
vh

where £7 = M &,/ etc. Now, we have to satisfy the Bianchi identities and con-

L 1 2uET 4 + 12V h (3.2.66)

straints on the connection that allow us to simplify the above Lagrangian. The full

covariant derivative containing the effect of spatial curvature and the gauge fields is
@A:VA+FA:8%8M+QA+FA (3267)

where 24 = waM is the spin connection. Note, we have MT'y = %Fe and MI'y =

—%Fg. The (1,1) supergravity constraints in Lorentz signature are

~

{Vo,Vo} =2iV., {V; V) =2V (3.2.68)
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Substituting (3.2.67) into (3.2.68) and noting that {Vy, Ty} = VeI'g and {T'y, T} =
0, allows us to solve for I', in terms of [y and an equation relating the covariant

derivatives of z and @, with similar results for  and Z:
[, =—iVyly, T©'s=—iVyly; (3.2.70)

{Ve,Vo} =2iV., {V; V;}=2iV-. (3.2.71)

The constraints on the covariant derivatives are then solved in conformal gauge in

terms of a compensator superfield, S, as
Vo=e*(D+2(DS)M), Vz=e°(D—2(DS)M) (3.2.72)

where D = 0y + 00 and D = 95 + 00 are the Lorentzian superderivatives. (3.2.70)

gives us
I, = —ie®[DTy 4 (DS)Ty], T:= —ie’[DT;+ (DS)Ty] (3.2.73)
and (3.2.71) gives us
V. =e*(0-2i(DS)D+2(0S)M), V:=e**(0—2i(DS)D—2(0S)M). (3.2.74)

From these we can read off the elements of the inverse supervielbein, &€,

e*5 (14 2(DS)0) 0 —2ie*DS 0
o _ 0 e*5(1+2(DS)0) 0 —2ie*°DS
A - .
ieS0 0 e 0
0 ie0 0 ed
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One can then invert this to obtain the supervielbein. To invert we need the formula

for the inverse of a supermatrix. For a general even supermatrix,

A B
¢ D

M =

with A and D composed of commutative elements and B and C composed of anti-

commutative elements then

(A— BD-'C)™! —A'B(D — CA'B)~!
—D7'C(A—- BD™'C)™! (D — CA='B)~!

M=

We can use this to compute the supervielbein:

e 28 0 2ie=*DS 0
A 0 e 2" 0 2ie™DS
gM - : —2S -5
—ie >0 0 e >[1 —2(DS)0) 0
0 —ie~ 2590 0 e %[1 —2(DS)0)

From this, we obtain sdet(€,7) = e725 [49]. We now have everything we need to

write the Lagrangian in terms of the superspace coordinates (z, ) as

L= 6—45% — 2ipe™ (W(DF@ — (DS)Ty) + #(Dl'g — (DS)F9)>

—2ue~%(Tf 4 Tg0) + 1>V (3.2.75)
Introducing G = ¢ °Ty and G = e~°T; allows us to simplify the Lagrangian to

e~ Snw

Y. 2ip[r DG + #DG] — 2u(GO + GO) + p*Vh. (3.2.76)

I —

Comparing this Lagrangian with the Lagrangian for the bosonic particle in a curved

45 represents a superconformal factor.

space and in conformal gauge, we see that e~
When expanded into its component fields, one can obtain the various components

of the supergravity multiplet as is done in [48].
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The constraint (3.2.69) becomes
DG + DG = ie™, (3.2.77)

One can go ahead and solve for G and so obtain the full Lorentzian Lagrangian for
the superparticle coupled to a curved background. With this, one can then use this
Lagrangian as the starting point for a path integral formalism. This will require
a treatment of the various symmetries of the superparticle. We will do this in the

next section for the case of the Euclidean superparticle.

3.2.3 Euclidean superparticle

We now turn to the dynamics of the superparticle on a curved supermanifold with
Euclidean signature. We begin with (3.2.66) as the Lagrangian. The Euclidean

supergravity constraints are
{Vy, Vol =2V., {V; V;}=2V. (3.2.78)

Fog = Fyy = VTg + Vol'y = 1. (3.2.79)

Substituting in the covariant derivatives, (3.2.67), gives this time
T, = Vly, Ts=V,T; (3.2.80)

{Vy,Vo} =2V,, {V5 Vs}=2V:. (3.2.81)

We again solve the constraints on the covariant derivatives by
Vo=¢*(D+2(DS)M), Vz=e(D—2(DS)M) (3.2.82)
but now with the Euclidean superderivatives D = dy + 00 and D = 9 + 00, so that

I, =e%(Dly+ (DS)Iy), T:=e”(Dly+ (DS)y). (3.2.83)
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Substituting (3.2.82) into (3.2.81) then gives

V. =e’[0+2(DS)D +2(0S)M], V. =e%[0+2(DS)D —2(0S)M]. (3.2.84)

From these we can write down the inverse supervielbein:

¢*5(1+2(DS)0) 0 2¢*DS 0
oM _ 0 e (1+2(DS)0) 0 225D S
A
e 0 e® 0
0 e30 0 e’

28 0 2¢e°DS 0
0 e 28 0 2e°DS
Ef =
—e~ 259 0 e %[1 —2(DS)6) 0
0 —e~250 0 e=%[1 — 2(DS)0)

With this, we can write the Lagrangian in superspace coordinates as

L= e’4sﬁ +2ue™d <7T(DF9 — (DS)Ty) + 7(Dl'g — (DS)F9)>

—2e™5 (Tl + T40) + 12Vh. (3.2.85)
Defining G and G as before we find

g mm

Vh

L=e*"2 1 2u(xDG + 7DG) — 2u(GO + GO) + 1>Vh (3.2.86)

and the supergravity constraint (3.2.79) becomes

DG + DG = 75, (3.2.87)
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The change of the Lagrangian under a general variation of the form 6z = —040 is

2 —45

Vh

—45 T

0L = 2e
Vh

(60D(—25) + 660D (—2S)) — (7868 + 7666)

—2pe”2%(566 + 595) —2ue”* (100 D(—28) + 760D (—25))

—svh (e—“% _ ,ﬂ) (3.2.88)

where we have used (3.2.87). The Lagrangian is then kappa invariant iff

6.0 = — | ke + R—W) 6.0 = —( T —l—ReZS)
( b uvh

5T = 20k 2k7D(-2S) . 20k _ 2RwD(=25)
1 Il p o

(3.2.89)

As in the bosonic model we wish to consider the massless limit of the superparticle.
Taking 1 = 0 gives the Lagrangian
_ s

L=et (3.2.90)

The massless kappa transformations are obtained by setting ' = x/u and then

letting p — 0.

~ KT _
6.0=—"2 §.2=-05.0, 0.2=—05.0
Vh

KT

I —
Vvh

5.:Vh = 20k — 257 D(—2S) + 20k — 2rmD(—25). (3.2.91)

The importance of this is that one can use the kappa transformations to pick a gauge
in which § = 8 = 0 so that 0(t) = 0(a) and 0(t) = 0(a) for all t. Gauge fixing 6; and
denoting the gauge fixed form of —45(z,0(b)) as ¢(z) we find that the Lagrangian
reduces to

L= —e%:% (3.2.92)

which is the Lagrangian of the free massless bosonic particle in conformal gauge. We

cannot gauge fix the einbein in the same way as in the bosonic case as [ dtvh—T is
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no longer kappa invariant. We will return to this point when evaluating functional
integrals.

In the bosonic case we could consider calculating the expectation of §(z; — 22). The
problem here is that E defined in (3.2.58) isn’t kappa invariant so we cannot use
gauge fixing to reduce the average to a bosonic calculation. We can, however, build
kappa invariants from E. Recall the functional 7 defined by (3.1.15). Rewriting in

terms of the variable s = 2z — w we have

n

/ dtdt’ (55 — i5') 0%(s) (3.2.93)
CZ7Cw

d

s and s’ = 4 s. Note, in this form we can quite

where s = z(t) —w(t') and s = =4

easily generalise 1 to be supersymmetric by choosing a suitable s as discussed earlier.

Under a general variation of C, we have
571 = / dtt ((53- 5 — 65 ) %(s) + (55 — 5) (35 D+ 05 8)52(3)). (3.2.94)
Integrating by parts on the first term gives
~ / d —1 <2 V) =/ AR Y
on = [ dtdt E(és §6%(s) — 05 §'6%(s)) — (0s § — &5 §)0%(s)

_ 4
dt’

(65 56%(s) — 65 5 52(3))) (3.2.95)
for s = 2z — w the middle term vanishes and the last term is a total derivative. The
variation of this quantity then depends only on the end points of the two curves.
In the next section we will show the reason for this. For now, if we instead use
[ = 21— 23— 0105 in (3.1.15), then the middle term doesn’t vanish and the last term
is not a total derivative. The variation of n in this case is therefore not so simple.
Also, inserting the  transformations shows that 7 is not a kappa invariant. If instead
we use I = z; — 29 + 096, — 0965, — 6969 in 1, where 69 are the end point values of 6;,
then we see that again the variation depends only on the endpoints and as 0.l = 0,

we see that it is also kappa invariant. Importantly, [’ is also supersymmetric. This

is then the functional we wish to consider.
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3.2.4 Supersymmetric average

We can now compute the average of the supersymmetric “line of force” on a curved

supermanifold [47]. To this we should add Faddeev-Popov terms associated with

the fixing of the reparametrisation invariance and kappa symmetry. The former are

the same as in the bosonic case, whilst for the kappa symmetry they take the form
_ _C7 Cr

X(0(b) — 6) + A (A(b) — 0) +B B (3.2.96)

A acts is a Lagrangian multiplier imposing the gauge condition and the ghosts B
and C' generate the Faddeev-Popov determinant of a local quantity (as opposed to
a differential operator) which can be ignored.

The observables that we work with should be BRST invariant. For example, in the
bosonic case we focus on long curves by inserting ¢ ( fol /9 dt—T) into the functional
integral. This is reparametrisation invariant, which is sufficient in the bosonic case,
but it is not x invariant which we also need in the supersymmetric case. However,

the kappa variation of
Vi (1— (0 —0°)D(—28) — (8 — 6°)D(-2S)) = ¢ (3.2.97)

is zero when we impose the gauge conditions so we can use this to make a BRST
invariant insertion. Actually, imposing the kappa gauge conditions reduces this to
the bosonic condition and so imposing all of the gauge conditions will reduce the
reparametrisation fixing delta function in the functional integral to the bosonic delta
function. The average of some supersymmetric and « invariant functional, Q[C}],

over (] is found by computing the functional integral

1 1
Q)c, = / DgD2z DY DXDBDC § ( / Cdt — T> Q[Cy] e SrplVha101ABC]
0
(3.2.98)
where Sgp is the gauge fixing action including the superparticle action and Faddeev-

Popov terms. The gauge conditions reduce the functional integral to

1 :
()¢, = 7 / Dz Q[Cy] e 2] (3.2.99)
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with

LT
S’[z]:§/0 dt e?2z (3.2.100)

and ' is the gauge fixed form of Q. (3.2.99) is then equivalent to the bosonic
functional integral considered before. There is a slight problem with our symmetric
I'. Inserting it into (3.2.58), we see that the electric field no longer satisfies Gauss’
law. This is not too much of a problem as the quantity of interest will be 7.

The average we calculate will then be the supersymmetric and kappa invariant line

of force

</ dn; 52(z’>> -2 / Dlz] (/ dz 6*(z1 — 2 —0?98>> emh ot tah
C1 Cq Z Ch

(3.2.101)
This represents a supersymmetric generalisation of the bosonic “lines of force” rather
than a generalisation of the electrostatic field.
The Faddeev-Popov terms in the action do not take part in the integral and so can
be absorbed into the normalisation constant. Now, if we define 2 = 25 + 6763 then
this average just reduces to the bosonic average. We shall, therefore, revert back to
general coordinates, x*, to mirror the bosonic derivation, pausing to explain a few

important points. The average to compute now is then

</ 6% (zy — x;)dx’f> =
Cq C1

) 1 T(1 T Iy
I R S TG L e W R ’ , 3.2.102
{MH(:U'Q)Z/ A=0 (32102

By analogy with the bosonic case this becomes

1

= 5/ dt ( — /99" 9,G,° (br, 74) + /39" 0,67, (25, a1))) (3.2.103)
0

after fixing the normalisation constant and taking the T' — oo limit. Now, G;°(z1, )
is not equivalent to the bosonic heat kernel used in the previous section due to

subtleties involving the 6 coordinates. In this case, we have

/To(xl,xé) = (14| e~ THo |25) + (a1 | e~ THo |ZL‘/2R ). (3.2.104)
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We are still considering specular reflections of the curves when they reach the bound-
ary but in this case the reflected coordinate of the i’th curve is (zf, %) and so
o = 284+ 09097. The integral of G¥ over ¢ results in a generalisation of the Green’s

function discussed earlier, denoted by G”:

/ T (g’T(zl,z;) _ %) — 2 (21, ). (3.2.105)
0

It satisfies

- ; 1
—4e7?00G" = 2e7 6% (2, — 2 — 0963) — T (3.2.106)

and modified Neumann conditions

(az — éz')G,<Zi, Zj, 01', 8j)|2i:5i79 =0, — 0. (32107)

The solution to (3.2.106) satisfying (3.2.107) is then

1 1 A
G = —%logﬂzl — 29 — 009]) — %log(lﬁ — 2 — 0103]) — U(z1, 2,67, 63) (3.2.108)
where W solves
. _ - ~ 1
_46¢(z1,916181\p _ _4€¢(Z2798)0282\1; = 1 (3.2.109)

and the modified Neumann conditions. G’ actually solves the Green’s function
equation for the super-Laplacian, Ap = —4DD. When #; and 6, are dynamical we
believed the spectral decomposition of the supersymmetric heat kernel was needed to
compute the functional integral. With the gauge fixing described above, the problem
reduced to the bosonic calculation and so there was no need for this. Appendix A
gives the derivation of the spectral decomposition of the supersymmetric heat kernel.

Using the results above we find

0G'(by, z5)  0G'(2h,a4)
0%(2 — 25)dz > = 2 2 3.2.110
< Cl ( ! 2) ! Cl 852 822 ( )

From (3.2.109) it is clear that ¥ can be decomposed as W(zy, 22, 61,62) = B(z1,61) +

B(z2,65). Because of this, (3.2.110) is independent of the zero mode contribution
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to the Green function. Using (3.2.108) we find

</ (52(21 — 29 — 0(1)9(2)) d21> =
C C

1

1 1 n 1 1 1 . 1
47 1_71 — 2y — 0_(1)0_3 bl — 29 — 0?9_8 4 a1 — 29 — 5?9_[2) ay — 29 — 0?0_8 ‘

(3.2.111)
</ 52(21 — Z9 — 0?95) d2’1> =
Cq C1

1 1 n 1 1 1 . 1
47 b1 — 29 — 9?98 Bl — Z9 — 9_?98 4 a; — 29 — 6?08 a1 — 29 — 0_?08 ‘
(3.2.112)

Similarly, we find

This turns out to be a straight forward analogue of the bosonic result. This is
a good job as the supersymmetric ¢ theory used to implement path-ordering has
propagator <W(21, 01)1( 22, 02)> ~ sign(z; — 2o — 016,). If we can obtain the bosonic
propagator from the quantity n then we should similarly be able to obtain the
fermionic propagator from the supersymmetric generalisation.

We are now finally in a position to obtain this result for the bosonic and fermionic

theories.

3.3 The intersection of random curves

Our aim is find a field theory with the required dynamics for J4. We have seen hints

of the kinds of properties we need. Let us return to the bosonic result (3.1.46):

1 1 1 1 1
</ % (21 _22)d21> = —( — _) (3.3.113)
o Ch 4 bl — 29 b1 — 29 ay — 29 a; — 29

along with the conjugate result (3.1.47)

1 1 1 1 1
6%(z1 — = dz> :—( + = — - ) 3.3.114
</01 (= 2z ol dr\bi—22 bi—2 @—2z2 4 —2 ( )
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Consider associating z» to the coordinates of a second curve, (5. Integrating the

first result over Z; and the second result over z, in the combination

/ </ 52(2’1 — 22)d2’1> ng — / </ 52(21 - Zg)d21> dZQ
Co Cq Ch Ca Ch 4
1 bl — bQ bl — as
=—1 — ) =1 = e - 3.3.115
47r(0g02<b1—b2> 0g02<b1—a2) " ) ( )

These integrations give a complex logarithm. The complex logarithm is multivalued

and so requires a branch cut in the complex plane to be well defined. On the
worldsheet we have no preferred direction; the only directional option we have after
averaging over the first curve is the second curve C3. We, thus, choose to cut the
logarithm along the second curve, which explains the subscript in (3.3.115). We will
return to this point when we consider averaging over the second curve.

Notice that this result has the form of an angle that C'; makes between the points

b1 and by and by and as respectively since

1og<i) — 2i arg(2). (3.3.116)

||

This is the right kind of thing we require for the propagator of the Lie algebra
variables in the contact interaction. We, therefore, propose that the object and its

averages that we should study is:

TL[Cl, OQ] = —l/ / 52(21 - 2,’2) (ledEQ - dzleQ). (33117)
Cy JC

This functional actually counts the number of intersections of the two curves C}
and Cy. It was originally found when we looked for x invariant functionals in the

supersymmetric theory. Its antisymmetry is emphasised if we use tensor notation

n[Ch, Cy] :/ / 6%(21 — ) eqpdaidab. (3.3.118)
oy Jou

In contrast to the previous section, we now have a double integral to worry about.
For naturalness, it therefore makes sense to average over both curves. Taking into

account the skew symmetry of n[C}, Cs] under interchange of C; and Cj its expec-
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tation value will be shown to depend on b; and by as

(b1 — b2)

n|Cy, Col)ey.on =k
(G, Coee, = b=

with constant k. This function can be used to implement path-ordering along the
boundary, but also by taking the ends of the curve to move into the interior of the
world-sheet we would obtain an extension of path-ordering into the body of the
world-sheet. Above, we have essentially calculated the expectation value over one
curve. We will now show how one can obtain (3.3.119) by integrating over the sec-
ond.

We mentioned earlier that the only directional object on the worldsheet after av-
eraging over the first curve is the second curve and so chose to cut the logarithms
along C'5. The trouble with this is that we want to average over C5. To avoid issues
with averaging over functions cut along the curve we are averaging over, we can
instead express these as integrals cut along a fixed reference curve, C5, from ay to
by plus 27i multiples of the winding number about the the points b; and a of the

closed curve made up of C5 and C3 reversed. The winding numbers can then be

a

Cy a2

Figure 3.4: A possible configuration of the curves Cf, Cy and Cj illustrating
(3.3.120). This diagram was produced by Prof. Mansfield and is found in [50].

written in terms of the number of intersections of C'y and C35 with a reference curve
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C7 from b; to a, so

<n[Cl> 02] >C1 =

3% (o) 2% (e )

— (n[Cy, Cf] — n[C3, CT]) . (3.3.120)

S log denotes the imaginary part of the logarithm and the subscript denotes that
the logarithms, viewed as functions of by, a and their complex conjugates are cut
along C3. The only dependence on Cs is via n[Cy, Cf] and ay so if we now average
over (' using

(n[Cs2, CTl)e, = (3.3.121)

Ve (a=0)Be=b)Y (a2 —b1) (@ —by)
2w %80 ( (b2 — a)(by — a) ) * o, ( (a2 —a)(az —a)

where now the subscript denotes that the logarithms, viewed as functions of by, as

) (3.3.122)

and their complex conjugates, are cut along C7.
Observe that the following difference in logarithms cut along C} and Cj is propor-

tional to the number of times C} and C3 intersect:

(b1 — ba)(a — as) (b —bi)(az —a)\ = o
log s ((b1 e b2>> — loge ((az - a)) = 2mi n[C5,Cy]. (3.3.123)

This is illustrated in Figure 3.5. The angle swept out by the line from z to b; as

b

Figure 3.5: Two configurations of the curves C} and C5. This diagram was produced
by Prof. Mansfield and is found in [50].
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z moves along C5 from as to by is the imaginary part of logey ((b1 — b2)/(b1 — az))
which is —f; in both figures. Similarly the angle swept out by the line from 2 to a
is the imaginary part of logc, ((a — b2)/(a — az)) which is —a; in both figures. The
imaginary part of logc, ((b2 — b1)(a2 — a)/((b2 — a)(az — b1))) is the difference in the
angles swept out by the lines from 2 to by and from z to ay as z moves along C} from
a to by. For the left hand figure, in which the curves C and C5 do not intersect,
this is By — ap. In the right hand figure the line from z to as sweeps out — (27 — a)
so the difference in the two angles is 53 + (2m — ay). Also, in the right hand figure
the curves C} and Cj intersect with n|[C5, C}] = —1, so for the two figures (3.3.123)

is
a1 — 51 — (62 — CKQ) = O, and a1 — ﬁl — (ﬁg + 21 — 042) = —27T, (33124)

both of which hold because oy, as and 6 are the angles of the top triangle in the
figure and [, B2 and 6 are the angles in the lower triangle. I must thank Prof.
Mansfield for help with computing this second average.

Using (3.3.123), we are just left with

e (l_)l — bg)(C_L — ag) (bQ — bl)(C_LQ — CL)
(nlCh e ) = = (lomcs 3= 2 = o (2= i3] )
(3.3.125)

To obtain (3.3.119) we must integrate over one end point of each curve. Integrating

over a and ay (to obtain a result in terms of b; and by) we find

o e®(@)+o(az)
/d ad as W <<n[017 CZ]>C1 >C'2 =

_C\/ log s @1 — bQ)(,d — ) — log - @2 —b)(@ — a) H e d*ad*a
s\ 0% (@ —by) (b — ap) “by—a)a—b)) 8SmA2 2
(3.3.126)

We can now interpret this expression in the light of the comments relating to path-
ordering along the boundary using (3.3.119). Let b; and by approach the real axis

so by = x1 + i€, and by = xy + i€s with 7 and x5 real, and denote by G(x1,x3) the
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resulting value of ((n[C}, Cs] )¢, )o, then

Ty — T2

logos (by — by) —loge: (by — by) = i (3.3.127)

Im—.
|71 — 22

As this is independent of a and ag, the area integrals in (3.3.126) can be done to

give
Ty — T2

G(z1,x9) = + F(z1) — F(x2), (3.3.128)

B 2’1’1 — 33'2|
which is (3.3.119) apart from the function F. To interpret F, differentiate with
respect to x;

0

—G(1, 1) = —0(x1 — x2) + F'(11). (3.3.129)
81’1

The real axis parametrises the boundary of ¥ which has finite length and the co-

ordinates x = 400 describe the same point on this boundary so for consistency we
should have

[e.9]

. ((n[Cy, Co] )y )op day = —1+/ F'(z1) dxy (3.3.130)

0= [ —
— 0 81’1 oo

but from (3.3.126)

1 1 b(az2)
F'(z,) = %/ ( - ) " Pay (3.3.131)
b

1 — Qa2 xr1 — Q9 47 A

which does indeed integrate to +1. Now (3.3.129) is a Green’s function equation for

0/0z on a closed loop, i.e. the propagator for a one-dimensional field ¢ with action

[ da iy,

3.3.1 Path-ordering of the Wilson loop

The field theory, v, with propagator <1/JI¢2> ~ sign(xr; — z3) has been used to
represent path-ordering around the loop in [35]- [40]. Since G(z1,x2) is just the
boundary value of the average of the intersection number we have a natural way of
extending path-ordering into the interior of . This extension coincides with the
propagator of the topological field theory constructed in [41] for just this purpose.

To see this connection note that in Broda’s model the boundary field v is assumed
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to be the boundary value of a bulk field and the extension into the bulk can be
done arbitrarily giving rise to a topological field theory with invariance d¢) = 6
with 6 being any function vanishing on the boundary. This invariance is gauge-
fixed by requiring ¢ to be harmonic. Just as in the topological theory the average
intersection number satisfies Laplace’s equation in the bulk because it is non-singular
as by approaches b, in the interior.

In the string theory, after averaging over worldsheets spanning the fixed boundary,
B, we are left with (2.3.94). We can then use the function (3.3.128) defined on the

boundary as the propagator for ¢

0(a)+6(az)

. _ )
U0 (be) = 80s [ dader

({(n[C1, Ca])cy )ey = 0apGby, b2).
(3.3.132)
With this, the string expectation becomes (2.3.80) and so provides a way to in-
troduce path-ordering into the string theory. We note that this model lacks the
necessary singularities required to produce the three gluon vertex. We will come

back to this point after calculating the average number of intersections of curves on

a supermanifold.

3.3.2 Intersection of curves on a supermanifold

We will now turn to the supersymmetric generalisation of the calculation given
above. As we have shown when looking at supersymmetric electrostatics, we must
modify the displacement such that it is both supersymmetric and kappa invariant.
This leads us to the number of intersections of supersymmetric curves taking the

form

nelCy, Cy) = i / (7970 — 70x0) 62(T') desde (3.3.133)
C1,C2

with 70 = 2, + 8?@. To begin with, we will consider averaging this functional over
both curves, keeping all four end points fixed. We will then consider averaging over
one of the end points of each curve using a gauge fixed volume element. This will
lead to the supersymmetric analogue of the bosonic result above and so can be used

to implement path-ordering into the supersymmetric string theory.
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Using (3.2.111), (3.2.112) and (3.3.120) we can conclude that the number of inter-

sections of two curves, C; and (5, on a supermanifold, averaged over C is

1
<HF[01, 02]>C’1 = ——glog?k (

(b1 — by — 6963) (b — by — 6963)
2

(bl — a9 — Q?Qg)(l_)l — a9 — 9_?0(2))

(Cll — b2 — 9?68)(@1 — bz — 5?68)

(CLl — a9 — 0?98)(@1 — Ay — 6908)

1
+2—%10g2* ( ) — (n[Cs, Cf]—n[C5, CT]). (3.3.134)
T

The number of intersections of C5 and C7 is a straight forward generalisation of the

bosonic case and can be obtained by shifting x5 as before, we have

6 1= g0 (== e =)
(o) 64
We also have
onton i, = =0 (G0 )
() 6

Using these results we find

1 b—l_) —609_0 ar — a _609_0
<<”F[01,C2]>01>02 - —Slogl*(( 1= by = 0705) (a1 — Gz — 0y 2))

27 (a1 — by — 0?@8)(51 — 02— 09@3)
1o (b — by — 0368) (ay — az — 8909)
e b ; 103) \ 3.3.137
5 108, ((bl — as — 0969)(ay — by — 6969) ( )

We can now consider integrating over one of the end points. This is not as straight
forward as in the bosonic case as the invariant volume element on the supermanifold
is sdet(€) d*ad?@,. There are a couple of problems with this. The first is that we
mentioned earlier that we would like the result to be dependent on the 6 coordinates,
but, integrating with this measure will remove all this dependence since we have
gauge fixed 6 to take the same value along the curves. The second problem is

that sdet(€) = e™25 = ¢%/2 with an extra factor of 1/2 appearing compared to the
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bosonic case. This is because we are taking into account the 6 coordinates. What
we really need is the reduced volume element corresponding to just the bosonic
coordinates. We can obtain this by writing down the line element and imposing the
gauge conditions

Ndzdz

z

_ 1
ds® = nap€yfdz" €PN = £7€ dadz + (€1 €

= e®dzdz, (3.3.138)

therefore, the invariant volume element for the i’th end point is /g d’a; = e"gd%i.
We can now integrate over a; and ay and let (by, 61) and (bs, 65) approach the bound-

ary. Call the result of these actions Gg(x1,6;;x2,6,) so that

_ (1’1 — Ty — 0192)
2|$1 — T9 — 9192|

GF = + F(l’l, 9, 0102). (33139)

The first term generalises the step function to superspace. Differentiating with

respect to (z1,0;) gives

DlGF = —(61 — 92)(5(1’1 — 332) + DlF (33140)

Integrating along the boundary requires

+oo +o0o _
—00 —00 1

The integral on the RHS is exactly the same as in the bosonic case after integrating
out #; and so this does hold. (3.3.139) is then the Green’s function equation for
D = 0/00+00/0x on a closed loop. This is a suitable supersymmetric generalisation
of the bosonic case that one can use to introduce path-ordering into the interior of

the spinning string model.

3.3.3 Three point vertex?

As alluded to earlier, this model on the worldsheet does not include the necessary

structure required to produce the three gluon vertex. The reason for this is that we
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are forced to cut the logarithms along C'; which we then average over. To do this
calculation we replaced the average over C5 with the average over a reference curve,
C5, plus a winding number. Integrating over this winding number cancelled out the
terms that would give rise to the singularities we seek. Had our theory had some
notion of direction built in we would not have to average over the second branch cut
and would find that the required structure does in fact appear. We will show this in
the bosonic model, though it similarly exists in the supersymmetric model. Imagine
that we have some notion of direction already in our model, say perpendicular to the
x axis for simplicity. Then the average number of intersections between two curves

over (] is

(n[Cy, Co] e, = —imogy <<bl —ba)(br b2)) + lglogy ((a —by)(a - b2)) .

2 (by — az)(by — asg) 2 (a —ag)(a — as)
(3.3.142)
Noting that
1 _
S log(by — by) = arg(by — by) = —log o1 — b (3.3.143)
21 b1 — bQ
then differentiating this with respect to by we find
0 7 1 1 1 1
cy, C = — | —— — — — — — . 3.3.144
ab2< [ b 2]> 47T(b1—b2+b1—bg C_Ll—bg Cbl—bg) ( )

Averaging this result over Cs will then have no effect when the end points are held

fixed. Differentiating with respect to b; gives

0 0 i i 1
— = —0u(by — by) — —— . 3.14
b, <ab2 (nlCr, Cale >02 R0l =) = (by — by)? (3:3.145)
Similarly, one finds
0,0 ' 1
= Cy, C = ——(5 by — b —_— 3.3.146
8bl<8b2< n[C1, Cal )y ey (b1 — b2) + 47T B —by) ( )

The difference in sign of the first term on the right hand side of these two equations
is exactly what we require to produce the three gluon vertex (2.3.97). To show this

we need to look at the contraction terms, C', in the string theory. The relevant term
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18

Cluy kc«)\aB
20 12 A B i i A o] Jik-X14ik'-X
/d éld 52 8 J (X1)8J (XQ) ]{) k[ﬂﬁbPk(Xl),,] k‘2 k ade(XQ) e ! 2,
(3.3.147)
where J4 = 1741, The contractions we need are
Ag 7B _ i A B t._B A
0,J70.J V' 720, 0D T + YT O ) Ou b T . (3.3.148)
These contractions can then be evaluated using the above
1
a’@ZJ 8&[) = 8 8 < Ol, Cg CQ> Sac (51 52) + ... (33149)

where the dots represent the extra terms appearing in (3.3.145) and (3.3.146). A
little algebra leads finally to

0, J 0. T8 = e fABCS2 (& — &) JC (3.3.150)

which is precisely (2.3.97). It would remain for us to show that the extra terms
(3.3.145) and (3.3.146) do not contribute to the string functional integral. We will
not do this here as we have a different method of generalising the string theory to
include non-abelian gauge theories that includes path-ordering and self interactions
of the gauge bosons that is applicable to our worldsheet model. Without a natural
notion of direction on the surface, so that we do not have to integrate over a reference

curve, we believe that it may be impossible to find a function, f, that satisfies
0u0yf (21, 22) = €ap02(21 — 22). (3.3.151)

The next model we look at satisfies such a relation at the level of the quantum
expectation, (9,J40,J7) = eq fAPC JC 62(21 — 22).

We note that there exists an analogous result within the supersymmetric theory. In
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this case we find

D (Db (np[Ch, Cal), ), = %aab@g — 00)(60 — 09)5,(by — by) +...  (3.3.152)

C

Again, we won’t pursue this line of enquiry any further, since the next model we

consider will contain everything we require.

July 11, 2018



Chapter 4

Loop Dynamics of the i) Theory

4.1 Non-abelian loop dynamics

Work in the 1980s on loop dynamics lead to an interesting result relating the Wilson
loop in the N — oo limit to the planar diagrams to all orders of SU(N) gauge
theory [51] [52] [53]. In this section we will show that there exists an equivalent
construction for the ¢ theory whose dynamics were investigated above.

We will begin with the result in standard Yang-Mills theory and then generalise this
to the ¥ theory. We will show that the loop equation for the 1) theory is equivalent
to the Mandelstam formula [54] but where the path-ordering of the Wilson loop is
achieved by the path integral of the 1 field. The Mandelstam formula leads to the
Migdal-Makeenko equation from which the planar diagrams are obtained, and so
this is an important result to reproduce.

We begin with the standard non-abelian loop variable

L] =P exp( ﬁ AMX“) (4.1.1)

where C' is a closed curve in spacetime parametrised by X* = X#(t), 0 < t <
2m. Consider now functionally varying the loop, that is considering the effect of

shifting the path of the loop by 6X. We need the following relations for path-
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ordered exponentials:
d t t
E(P exp/ M(T)dT) = (79 exp/ M(T)dT) M(t) (4.1.2)
0 0

5(Pexp /0 2sz(f)ch) - /0 . dt(P exp /0 tM(ﬁ)dﬁ)éM(t) (73 exp /t 2FM(TQ)dTQ)

— /O TP (5M(t)exp /0 - M(T)df). (4.1.3)

Using these results we find that the variation of (4.1.1) is

SL[C) = /O " dt (P exp( /0 t AudX“>>5(A“X“) (73 exp( /t " AudX“)). (4.1.4)

Expanding the variation in the integrand and performing an integration by parts

gives, using the definition given in (4.1.3),

SL[C) = /027r dt P(F,w exp<7{CA : dX))X”(SX“. (4.1.5)

The only gauge invariant quantity we can build from the loop is W[C] = Tr L[C],
hence, the quantities that make sense in the quantum theory will be expectations of

the form (W[C]), (W[C|W[C"]) etc. We will consider the first of these expectations

and define
¥[C] = (W[C]) = <Tr (73 exp( fé AudX“)>> (4.1.6)

Q) = /D[A,X] e Svm, (4.1.7)

where

Using (4.1.5) we find

SV[C) = <Tr /0 " dt P(FW exp( fc A- dX) X”éX“>> : (4.1.8)

We now make a second variation of X. We obtain two sets of terms, one coming

from the variation of F, WX Yo X* and the other coming from the loop exponent. The
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result is

27
5,0, U [C] = <Tr / dt P(DaFW exp( % A- dX) X”61X“52X0‘)>
0 C
27 21 . .
+<Tr / dt, / dty P(FWFaﬁ exp( jf A-dX)X”XBcSlX“égX“)> (4.1.9)
0 0 C

where Dy F),, = 0aF,, — [Fu, Al is the non-abelian gauge covariant derivative of

the field strength. Dividing through by 6.X*(¢1)6.X,(t2) we find
52 -
VO] = — 1) T D!F A-dX )| X"
e 1~ (P06 e f 4-0x)60) )

+ <Tr 73<FWX”]t1F’;Xa\t2 exp(% A- dX>)> : (4.1.10)
C

We introduce a local derivative

€ 2
A = lim dt 0

0 ) SX(t+1]2)5X, (L — 1]2) (4.1.11)

also known as the area derivative, which, when applied to W[C] picks out only the
first term of (4.1.10) containing the delta function. It is like a Laplacian on the

space of loops. The area derivative of the Wilson loop is then

AV[C] = <Tr P(D“FW XV exp<jiA : dX)) > : (4.1.12)

Note, D*F),,, is proportional to the variation of the Yang-Mills action. In fact we
can integrate out the gauge field by considering the variation of the Yang-Mills part
of the functional integral and relating it to the variation to the integrand of (4.1.12).

Varying the Yang-Mills partition function we find

0aZym =04 / D[A] exp( - 4—(1]2 / d'X F“”AF;‘V) Tr (77 ef AdX) =0. (4.1.13)

This leads to the relation

/ D[A] (12 / d*X 6A,f‘DMF””A> e~V Ty (P et AdX)
q
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= / D[A] e M Ty (P f SAATAIXY ef A'dX). (4.1.14)

Choosing 6 A7 = ¢*>74X,6*(X — X') so that we can compare the first term with the
integrand of (4.1.12) we find

AV[C] = —¢* <Tr (73 f{ T4dX,6NX — X')7AdX" ef A'dX>> : (4.1.15)

Migdal was able to show how one can get from this result to the sum of all planar
diagrams of SU(N) theory in the N — oo limit [52]. This is the relation we aim to
reproduce in the ¢ theory. We expect that the path-ordering will be replaced by a
path integral over v, as in the result of the expectation of the Wilson loop (2.3.80).

4.2 Loop dynamics of the ¢ theory

We would like to carry out a similar calculation for the boundary 1 theory. In this
theory the path-ordering is achieved by a functional integral over 1 which has a
step function propagator. This simplifies the problem in some sense as the relations
(4.1.2) and (4.1.3) do not need to be used.

To begin with, note that (2.3.80) can be obtained from the loop variable

exp< — qj{ YTdX - A1/J). (4.2.16)
At O(q?) the expectation of the loop is

2 P(dX)" et X=X) P(dX’
—%]{f PIrie (dX)" e 12 [@X), PIrieper. (4.2.17)

The v path integral then reduces this to the expectation of the non-abelian Wilson
loop at O(q?). This result continues to all even orders in ¢ when neglecting self
interactions of the gauge field. Therefore, we may propose that the corresponding

loop variable in this theory takes the form of the path integral

v[C] = </D¢ el W<¢+X'A¢>> (4.2.18)

A
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where we must include the kinetic term for ). We will show that this loop variable

leads to (4.1.15). We begin by varying the curve as before

SxV[C </D¢ 5x S e_S>
A

= < / D) / dt 6 X7 (A + T A + XPpt (0,4, — 0,A,)0) es> . (4.2.19)
A

The computation is slightly easier than the previous one due to the lack of the
path-ordering operator, though, the generation of the commutator terms requires a
different method from above. The way in which we will do this is to make repeated
use of the Schwinger-Dyson equations for W[C]. These equations tell us that for a

general functional integral of the form [ D¢ e ],

st _951¢] _
/m ¢ 50 (X )5¢ o(X) =0. (4.2.20)

Applying this to (4.2.18) for " and 1 gives

St W[C D dt oY+ XA S> =0 4.2.21
g </w/ Wi+ X ) ) (4.2.21)
and
5, 0(C] = — </D¢/dt (=it + T X - A)50 e—5> ~0. (4.2.92)
A

We now choose the specific variations §1f = 1 §X - A and 6y = §X - Ay so that
we may use these relations to replace terms in (4.2.19). Inserting these into (4.2.21)

and (4.2.22) gives

< / D / dt 6 X T A eS>A = < / D / dt 5X"XPpt A, A eS>A

(4.2.23)

< / Dy / dt 5 XVt A e—S>A = < / Dy / dt 6X7 X pt A, A e_S>A

(4.2.24)

and
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respectively. Now inserting these relations into (4.2.19) gives for the variation of the

loop

oxV[C] = < / D) / dt X" (X1 (A, A, — AL A + XM (9,A, — 0,A,)0) e—S>

A

— </D¢ /dt SXV X F b eS> . (4.2.25)
A

Which we note is a similar result to (4.1.8). Dividing out the variation, using

(4.2.32), results in

5@12[83) = — < / D / dt 5(t —t)) X Y F 0 e—S>A

— </D¢ XYY E ), e—5> : (4.2.26)
A

We now vary (4.2.25) again

520, U[C] = &, < / D) / dt 5, X" X")1F0 e—S>

A

— < / D) / dt 51X (82X T Fytp 4 X PGy X b1 0y Fth) eS> +

A
< / Dy ¥ / dt 5; X" X")1F,0 / dt' S XM (T Ay + T Ayid
FXTH (0, Ay — 8AA(,)¢>A . (4.2.27)

We can use the Schwinger-Dyson equations again on (4.2.25) to get the relations

< / D / dt 6, X" X F0 / dt’ 6, X Mt Ay e—S>

A
= < / m{ / dt (5; X" 6, XA XHapt Ay F b
— / dt 5, X" X")TF,0 / dt’ 62XAX"¢TAAA014 eS> (4.2.28)
A
and
< / D) / dt $; X" X" 1F,0 / dt' S, X Mpt Ay eS> (4.2.29)
A
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- < / be[— / dt (6, X 6 XXM F, Ayy)

+ / dt 5, X" X")TF,0 / dt’ 52XAX"¢TAJAA1/J} eS> . (4.2.30)
A

Inserting these into (4.2.27) gives

520, W [C] = < / Dw[ / dt 5, X8, X pT F b +51XV52X*XM¢TDAFW4 e—S>

A
+ < / D) / dt 5, X" X")TF,0 / dt’ 5, X X YT E, e—S> . (4.2.31)
A
Now, using the standard result for functional differentiation
SXH(t)
=05t —t 4.2.32
S = A=) (12:32)

we can calculate

32U[C]
X (1)0X Pt

= < / D) {5’(@ — L)W Fogth + 5(t; — tg)X“z/JTDgFWz/;} e >

A

+ </D¢ XN¢TFua¢|t1XU¢TF05¢|t2 €_S> (4233)

A

and so

5200
SXH(11)0X (L

= < / D) {5’(1&1 — to) T Flp — (1, — tg)X”z/JTD“le/J} e_s>

A

+ < / D X YT E,ab]y, XOWTFR ), e > . (4.2.34)

A

Applying the area derivative, A, to ¥ and using the result (4.2.34) we find

AV[C] = — </D¢ W DFE, 0 XY e—S> : (4.2.35)

A

This is the Mandelstam formula for the 1 theory. We are now in a position to
integrate out the gauge field. The Yang-Mills part of the partition function is this
time

Zy= / DA ¢ a4 TR o= [ ufAvax (4.2.36)
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The Schwinger-Dyson equations tell us that

0aZa=0= —/DA(4—12/d4X S(F ) +/dX-¢T5A¢)e—S. (4.2.37)
q

This gives the relation

/ DA q%( / d*X 5A”AD“F;“V> e = / DA ( / dX, ¢T5A”¢) e . (4.2.38)

We now choose the variation §A*4 = ¢*pfr49X76(X — X (t)) so that JA” =
TASAYA = @rigirAyYXvs(X — X(t)) and so the Schwinger-Dyson equation be-
comes

/ DA ( / d'X I DFF, X" 6(X — X(t)))es

- / DA (q2 / dX, YirigptrAp Xre(X — X(t))> e (4.2.39)

since 7' F;, = F,,,. Inserting this into (4.2.35) gives

AV(C) = ¢ [ Dy ( [, virtol s @) - x ) <w*TAwX”)!t)-
(4.2.40)
This result is a generalisation of the Migdal-Makeenko equations (4.1.12) for the
non-abelian Wilson loop. In the same way that the path-ordering is achieved in the
expectation of the Wilson loop, the path-ordering of the Lie algebra generators is
achieved via a path integral over an anti-commuting field, ). We therefore see that

the two results are equivalent.

4.3 Supersymmetric ¢ theory loop equations

We can generalise the previous procedure to the supersymmetric ¢» model. The
natural extension to the bosonic model replaces the standard Wilson line term in

(4.2.18) with the super-Wilson line (1.4.134). The loop variable we will now be

,[C] = </D¢ e—Sl>A (4.3.41)
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where

d . h
&z/ﬁw«a+XMVj§W&mjw (4.3.42)

Here, we have defined the superpartner of X as n to avoid confusion with the world-
sheet field, ). Once again, we can carry out the gauge field integration and show
that this loop variable leads to (2.4.112). There is a slight complication when con-
sidering the loop dynamics in this case due to the appearance of the field strength.
The loop variable exponent is then non-linear in the gauge field making the calcu-
lation more laborious.

One can simplify the calculation by introducing the superpartners of ¥" and v [57],

denoted z and z respectively, so that the action can be written as

Sy = / dt (w (% + X*A, —Vh n“é?uAm”) U+ Vh Gt A + it Az + zz))

(4.3.43)
The new fields, Z and z, do not have kinetic terms and so we may integrate them
out to get back to (4.3.42). This action is now linear in the gauge field with the
non-linearities being generated by the additional terms containing z and z. The nice
thing about this is that we can massage the action, S5, into a similar form to that of
the exponent of (4.3.42) by appealing to the superspace formulation. We note that
if we define the boundary superfields

X = X + ik (4.3.44)
T = + itz (4.3.45)
I =+ ih'/*0z (4.3.46)

and the superderivative
D = 0y + 00, (4.3.47)

then we can write S; as
Sy = —/dtd@ I'(D + DX - A(X))T (4.3.48)
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whereby we obtain (4.3.42) by integrating out . The advantage of writing the action
in the form (4.3.48) is that it takes a similar form to the bosonic Wilson loop, being

linear in A(X). The full loop variable in the superspace formulation is then

T,[C] = </DF exp(/dtd9 I'(D + DX - A(X))F) >A (4.3.49)

where DI' = D[, 4, 2, 2]. In this form we can vary the superfield, X, as a whole
rather than varying the X and 7 separately.

The variation of the loop is

oxV,[C] = </DF/dtd6 (Df 6X-AT -T 66X A DF) 652>
A

+ < / DI / dtdd TDX"6X*(d,A, — 9,A,)T e—S2> (4.3.50)
A

where 0, = 0/0X". Now, we need the superspace generalisations of integration by

parts which are

/dtd@ AD(B) = /dtdé’ D(AB) — /dtd0 D(A)B  (commuting A)  (4.3.51)

/dtd& AD(B) = — /dtd@ D(AB) + /dtd@ D(A)B (anti-commuting A).
(4.3.52)

We need to evaluate the term
/ dtdh D(AB) / dtdh 9y(AB) + / dtdo 00,(AB). (4.3.53)

The integrand of the first term is independent of 8, hence the 6 integral is 0. The
vanishing of the second term requires the condition [ dt 9;(AB)|gess = 0 which is
the same condition we require in the “bosonic” integration by parts formula. Thus,
effectively

AD(B) =F¥D(A)B (4.3.54)
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with the minus sign for commuting A and the plus sign for anti-commuting A.

The Schwinger-Dyson equations for (4.3.49) for T and T give
DI+ DX - Al ~ 0 (4.3.55)

DI +TDX-A~0 (4.3.56)

where these relations are understood to hold in the functional integration. These

relations allow us to write

ox VU, [C] = < / DT / dtdf T DX" X" F,,,(X)T e_SQ>
A

= < / DT / dtdd DX"6X” T'F,,(X)T 6—52> : (4.3.57)
A

The result (4.3.57) is analogous to (4.2.25). Varying this again, using the Schwinger-
Dyson equations for (4.3.57), gives

0520, 0,[C] = < / DI / dtdf 5, DX"§, X "TF,,(X)T e—Sz>
A

+ < / DI / dtdf DX"5,X"6,X°T Do F,, (X)T e—Sz>
A

— < / DI / dt,d6, DX, X"TF,,(X)T / dtydfy DXP5,XTFs(X)T e ) .
A

(4.3.58)

Again, it is the second term we would like to isolate. We can do this by introducing

the superspace analogue of the area derivative

~ € 52
A(t) =1 dt'dode’ . 4.3.59
=I5 ) OV e + @ oo - e
Here, we use the superspace generalisation for functional differentiation
5XU (tJ 9) 17 !/ /
ikl b A/ — — 4.3.
X1, 0) ot —t)0—6) (4.3.60)
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so that

0X (t76) o
/dtd9 X (00 or (4.3.61)

To evaluate the 6 delta functions we will consider the integral

5, X" (0)8,X°(0)
OXK(01(6", 1)K, (62(6", )

I= / dndd'do F(0) (4.3.62)

where F'() represents any other terms. Using (4.3.61) we find
I=04",0" / dndd'dd (0 — 61)(0 — 02)F(6) (4.3.63)

where we have neglected the ¢ delta functions here. Now, if we set §; = n+6’/2 and

0y =n —0'/2 we find

=5 / dndg'dd (0 —n)¢' F(6) = 5 / dy F(n), (4.3.64)

which is precisely what we require. Applying these results to A\IJS[C] we find

A(t)U,[C] = < / DU / d6 DX” T D"F,,(X)T|, 6—52> . (4.3.65)
A

Thus, we obtain the Mandelstam formula for the supersymmetric v theory loop
variable. Integrating out I' produces the path-ordering of the usual super-Wilson
loop.

We can now use the Schwinger-Dyson equations to integrate out the gauge field.
The gauge field action in this case is

1 / / -~ ’
S = “I7 d'X' FO(X)F* (X" + / dt'd¢’ TDX VA, (X)T.  (4.3.66)

The variation of this with respect to the gauge field is simply

1 S

0aSTy = = / d* X’ SANX')YD, " A(X') + / dt'dd’ TDX6A,(X')I'. (4.3.67)
q

Now, we would like to use the first term to substitute an expression into (4.3.65)
that is free of the gauge field. To make this first term equal to the integrand of
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(4.3.65) we choose
SANX") = ¢° / df 64 (X' — X(t)) DX, I'm4T (4.3.68)

i.e. we use a delta function to turn D, F*(X) from a function of X into a function
of the superfield X. The second term requires us to turn §A from a function of X

into a function of X. We can do this by using the delta function again
SANX) = / d*X' 5(X' —X) §AN(X). (4.3.69)
This relation is easily verified by expanding each side
SANX) 4 ih 000,06 AN (X) = / d*X' 5(X' — X) 6AX(X)
- / d* X" ih 00" 0,6(X' — X) 6AN(X)

= §ANX) + ih 00" 0,0 A (X) (4.3.70)

after an integration by parts. Substituting (4.3.68) into (4.3.69) gives

SAJ(X(t)) = / d'X (1) 61 (X(t) = X(t))6 A (X (1)

=q° / d*X (t)dO 61X (1) — X(t))6*(X (') — X (t)) DX, (t) [ 74T (¢)

= / do 5 (X(¢') — X(t)) DX, () DTAT(t). (4.3.71)

Finally, substituting this into (4.3.67) gives the loop equation for the supersymmetric
1 theory
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AY,[C] =
—q¢? / Dr / dt'd'd9 (TTT DX )y ¢ 0*(X(t') — X()) (DX, T74T) 9 e72. (4.3.72)

This is the supersymmetric generalisation of (4.1.15). Path-ordering is achieved by
the path integral over the superfield, ¢, as it is in the expectation of the super-
Wilson loop.

This result may seem less familiar than the bosonic loop equation. To show equiva-
lence, we must obtain the loop equation for the super-Wilson loop. The loop variable

in this case is obtained from (1.4.134)

W,[C] =P exp( fc dt (X“AM — gnﬂnwﬁw)) (4.3.73)

without the minus sign again, which is just a matter of convention. The only gauge
invariant quantity in the quantum theory that can be built from W[C] is then
U [C] = (Tr W,[C]). We have already shown that the super-Wilson loop has an
intrinsic worldline supersymmetry and seen that supersymmetric functionals have a
superspace representation. This case is no different; there does exist a superspace
representation of the super-Wilson loop, though the proof of its equivalence is non-
trivial. Before we introduce it, we must generalise path-ordering to superspace [58|.

Firstly, the superspace path-ordered exponential is defined as

P el 4o M©) = i /[dds]N M(¢r)...M(dy) (4.3.74)

where
[dQ;]N = (dtldeldtNdGN) @(leg)@(qggg)@(dg]v_LN), (4375)
O(dij) = O(t; — t; — 0;,0;) = O(t; — t;) — 0:0,6(t; — t;). (4.3.76)

With these results, we introduce the superspace representation of ¥

0,[C) = <Tr [P exp(/dq? DX“AH(X))} >A. (4.3.77)
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The exponent, therefore, matches the abelian Wilson line in superspace (2.2.57).
The commutator term of F),, is generated by the definition of path-ordering (4.3.75)
and the superspace step function (4.3.76). To see this consider expanding the path-

ordered exponential so that
P exp( / do DX“AH(X)) =1+ / dtdd DX"A,(X)

+ / / dtdfydtadfy (DXFA, (X)) (DXFA, (X)) + ... . (4.3.78)

Integrating out the 6 coordinates we get
P eXp(/dé DX“AM(X)> =1+ /dt (X"A, = Vh ')+

/dtldtg @(tl — tz)(X'uAM — \/g 77M77V)1<XuAu - \/E 77#77”)2

The © function in the first term of the second line is what we get for normal path-
ordering. The third line then combines with the first line to produce F),,. It is easy
to see that this continues to all orders. The relative simplicity of (4.3.77), and its
similarity to the bosonic loop allows one to easily obtain the corresponding loop
equations. Making a variation of 60X, noting that (4.1.2) and (4.1.3) continue to
hold, we find

21 ~
SU[C] = <Tr <7> / dtdd DXV6X"F,,(X) el 4 DX”AH(X))> . (4.3.80)
0 A

Computing a second variation and using the definition of the area derivative, (4.3.59),

we find

AW = <Tr< P / 9 DX”D"F,,(X)|, el 4 DX“AH<X>)> : (4.3.81)
A
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Varying the partition function with respect to the gauge field we find

1 i Iz
0=047 = < = /d4X SAXD, F'4 Ty (73 el 49 DX AM<X>)> (4.3.82)
q A
+< Tr (7? / dtdf DX!5A,(X) el ¥ DX”Av<X>>> . (4.3.83)
A
Choosing a similar variation to (4.3.68), this time
SANX) = qQ/dG 5N (X — X(t))DX,, 74, (4.3.84)

we find

AV =

—¢* Tr (73 / dt'd0'do (T DXY)y g 8(X (') — X(£))(TADX,))pp ) 9@ DX AX) )
(4.3.85)
This is a straightforward supersymmetric generalisation of (4.1.15). We may now
compare this with (4.3.72) and see that, after the path integration of I', they are

equivalent.
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Chapter 5

Yang-Mills Theory on the
Worldsheet

So, we have found a way to incorporate path-ordering into the interior of the Wilson
loop generalising the boundary worldline field theory of [35]- [40]. However, this
model lacks the possibility of generating the self interactions of the gauge bosons.
Here we will describe a model that can be used to impose path-ordering and provide
a way to generate the three gluon vertex of non-abelian gauge theory. This method
relies on the very thing underlying most of this work up to this point: gauge theory.

Turning back to the non-abelian bosonic contact interaction

S =T [ OB KO - XNl ). (5:0)

We note, making the spacetime gauge transformation

JAE) — (X (€)M (&g (X(€)), (5.0.2)

with ¢ € G, leaves the action invariant. i.e. J# transforms in the adjoint repre-
sentation of the group, G. The unusual dependence on the spacetime coordinate
rather than the worldsheet coordinates is required because of the insertions of J at
two different points on the worldsheet. The delta function ensures invariance at the
only point where the integrand is non-zero.

It is therefore natural to introduce a new gauge theory onto the worldsheet; doing so
120
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will introduce a new field we will identify with the J“4s that has the correct dynamics

we seek.

5.1 2 dimensional Yang-Mills theory

The standard pure Yang-Mills action in 2 dimensions is

1
SyM = ~5 / d*¢\/g Tr(F™F,) (5.1.3)

where e? is the gauge coupling. A simple dimensional analysis shows that in 2
dimensions the gauge coupling has mass dimension [e¢?] = 2. This is a problem if we
are to consider this gauge theory as living on the worldsheet as we expect it to be
scale invariant since the worldsheet action is Weyl invariant. We would, therefore,
like a 2 dimensional gauge theory with no gauge coupling. We can obtain such a

theory from the action above [59]. Consider the action

I= —/ Tr(oF) — %2\/§Tr(q§2) (5.1.4)

where we have introduced a Lie algebra valued 0-form, ¢, that transforms in the
adjoint representation. Integrating out ¢ returns us to the Yang-Mills action above.
Now, consider turning off the gauge coupling so that the second term vanishes. We

are left with

S[A, ¢] = / d*¢ € Tr(¢Fu) (5.1.5)

where we have emphasised the antisymmetry of the field strength. This action
defines a topological field theory. Varying ¢ gives the equation of motion for the
field strength as F' = 0, or pure gauge. The quantum theory is described by the

partition function composed of the Euclidean functional integral

Zy = /D[A,gb] e~ Sl (5.1.6)
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This partition function can be solved as the exponential is linear in ¢. Therefore,

ab
Zy = /D[A,¢] ez [ € $AEG /DA 5 {%Fﬁ} (5.1.7)

where 0[.] is functional generalisation of the delta function, what we will call the
delta functional. This is the quantum version of the pure gauge mentioned above.
Therefore the theory defined by this partition function is uninteresting; expectations
of the form (f[A]), 4 = f[Apure] are trivial.

Interesting things happen when we use this partition function to define the gener-
ating functional for the gauge field on the boundary and choose a particular form
of the source. Adding a source term on the boundary to the free action allows us to

define the action

S.JA, b, k] = / d*¢ e Tr(pF ) + ]4 de“ AL KA, (5.1.8)

We can then define the generating functional
2l = / DIA, ] e=SelAon] (5.1.9)

To see how introducing this field theory on the worldsheet is useful for our cause,
we will make repeated use of the Schwinger-Dyson equations for the gauge field. We
begin by making a variation of the gauge field. The expectation of any functional
doesn’t change under such a variation (as long as the functional measure, D[A, ¢|,

is invariant, which here we assume it is) and so we have

0=04Z = — (045 ) a4 — <j[d§a 5A;4/{A> (5.1.10)

A7¢

where (Q) 4 4 = [ DIA, ¢] e~ Q. The change in the action under a variation of A

548 = / d?¢ e®Tr(p 04 F,) =
2 / d*¢ e Tr(Dyop 5A,) — 2 / d*¢ 0y (e Tr(¢ §A,)) (5.1.11)
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where Dy, = 0, + [Ay, -] is the non-abelian covariant derivative. The second term can

be written as an integral along the boundary via Stokes’ theorem

—2 / d?¢ 0y(e™Tr(¢ 6A,)) =2 j'{ de® Tr(¢ 64,) = — j[ de oA, (5.1.12)

We see that the variation of the free action on the boundary has a similar form to
the variation of the source term. We may then consider the variation of the gauge
field along the boundary and in the interior separately.

Considering the boundary variation first, which will lead to the path-ordering con-

dition we seek, we find the following relation

<7{ de® ¢A5Ajj> = <7{d§“ 6A;4/<;A> . (5.1.13)
A A

Now, functionally differentiating and using the relation

6A21,4(€> AB b 2 /
= 67757 0°(€ — 5.1.14
sapey 0 =) (5.1.14)
reduces this to
(M) ay = () ay (5.1.15)

where ¢*|¢ denotes the value of ¢ at the boundary point £&. Now comes the impor-
tant part; if we choose k“ to coincide with J# from chapter 2 so that K = T4,

and functionally integrate over ¢/ and v with the usual kinetic action, we find

/DW,@/}] (o)), e = /D[A, o, 01, 0] wirdy = FV10 4=k (51.16)

Dividing through by Z[k], which we will incorporate into the expectation when

considering multiple insertions of ¢, we find

/DW,M A /D[ww] Pirdy e FvT0 e (5.1.17)

This relation is the first step towards our required result of replacing a product of

J4 on the boundary with the path-ordered Lie algebra generators (2.3.94).
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We can prove that the path-ordering of multiple insertions follows by induction.

Consider the functional integral

Zay. AB1 B (M oes My &1y o &)

/ DlA A () oo (1)) (67 (€1)- 6P (€4) (5.1.18)

where 7; is the location of the k¢ insertion on the boundary. Then, vary the gauge

field on the boundary. Using the above results we find
0=1042 =
[P 6l e (fdero0AL ) (6 ) ()0 €00 60)

- / D[A, ¢] e ( 7{ de* M;;w) (K4 () k™ () (97 (61) .07 (€0)). (5.1.19)

Dividing out the variation of the gauge field gives us the relation

ZAlu-ArABl---Bn(nl? ceey My 1, 617 ) fn) = ZAl...ATBl...BnA(nlv vy My gla ) €n7 77)
(5.1.20)

Note, the position of the indices. This relation can then be used to replace all of the
@B with the corresponding x’ on the boundary. To see this we start with no factors

of k% or @B . Then applying the above formula n times results in the relation

/D “ (¢ (&) .0 (&) = /D[A,¢>] e (kM (&) ..k (&), (5.1.21)

Inserting k4 = 744, integrating over ¢ and ' and dividing through by ﬁ we
find
[ Pl il e (6o 6) =

[ Dl vl e 8 i i (51.22)
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where now, we have defined

_ [ DIA, ¢] e~ Q

Q) = DA e (5.1.23)

We recognise the right hand side as the path integral representation of the path-

ordered product of Lie algebra generators on the boundary and so we can write

/DW,@ZJ] e $V A (A gy g (E,)) = Te(P 74 ), (5.1.24)

This tells us that any factors of ¢ on the boundary in our string theory, where
we include the ¢ integration, may be replaced by the trace of the path-ordered
product of the Lie algebra generators inserted at the positions of the ¢s. Note,
this is a different condition from the previous field theory in that path-ordering is
only achieved on the boundary of the worldsheet. To reproduce the expectation
of the Wilson loop we need only the path-ordering of lie algebra generators on the

boundary so this is not a problem.

5.1.1 Three gluon vertex generation

Next, we can consider the variation of the gauge field in the interior of the surface.
Functionally differentiating the partition function with respect to the gauge field in

the interior, and using (5.1.11), we find

((Da)") 4 = 0. (5.1.25)

One can expand the covariant derivative to obtain

(026") 4y = = ([Aas8]") 4 - (5.1.26)

This relation will be of use when we come to consider the loop equations. One can

then consider a variation of the expectation of the partial derivative of ¢

0=04(0u0"), , = (00" (Dp)"), , = 0. (5.1.27)
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Expanding the covariant derivative then gives the relation

<aa¢Aab¢B>A7¢ - - <aa¢A[Ab) ¢]B>A7¢ : (5128)

The term on the right hand side can be written in a more useful form by considering

the variation of ([4s, ¢]”) , , in the interior.

5A <[Aba ¢]B>A7¢ =0

= (04, ¢17) , , + <2(/d2§ 9Ty (D, 5Aa)> [Ay, ¢]B>A7¢. (5.1.29)

Functionally differentiating out the gauge field and using the relation [Ay, ¢]? =

AAGC FACE we get
OpfAPCE (2 = 2) (6,1, = = (e"(Ded)*[An, 0]7) (5.1.30)
Multiplying by €, gives
eanf P (2 =) (67),, = = ((Dad)* |4, 8]") , - (5.1.31)
Expanding the covariant derivative finally leaves us with
(0045, 9]7) 1, = —eanf PO (2 = ) (), — ([Aas 8][4, 9] , - (5.1.32)
Inserting this into (5.1.28) gives
<aa¢Aab¢B>A’¢ = e P08 (2 = 2) <¢C>A,¢ + ([Aa, ¢ [As, ¢]B>A,¢ . (5.1.33)

The first term on the right hand side is just what is needed to produce the three
gluon vertex in the string theory (2.3.97). This result comes at the expense of
introducing the second term on the right. If we can show that this term vanishes

in the string theory then this is of course not a problem. We can use functional

July 11, 2018



5.1. 2 dimensional Yang-Mills theory 127

methods to evaluate this term

([Aas 811 (A, 8l5') 4 o = FOPASEIP (AT A3 ) 4

_ fCDAfEFBii <A§;A§, €q1¢1+q2¢2> (5.1.34)

dqp dq3

A | =g
Subscripts on the fields here denote A; = A(&;). The exponential essentially modifies
the action to S’ = S — (q1¢' + ¢2¢*). The effect of this modification is to introduce
two sources for the gauge field, ¢; and ¢» placed at z; and z respectively. To see

this we can integrate out ¢. This inserts a delta function of the form

5(F - %52(5 — &) — Q252(§ - 52)) (5.1.35)

into the functional integral. F' here is the single independent component of the
field strength. We will find it useful to work in complex coordinates and so F' =
OA — OA + [A, A]. Note, this delta function implies that the gauge theory is no
longer pure gauge. To proceed, we seek a solution for the gauge field such that
F(z) = >, 4:6%(z — ;). We will choose A = A on the boundary. This is essentially
a Green’s function problem. To see this we write the gauge field as a power series
in g

A=qfi+> q"fa (5.1.36)

n>1
Thus, the higher order terms will contribute to the commutator term of the field
strength as it goes as O(¢?) and greater. These higher order terms must cancel as
the field strength is linear in ¢ from (5.1.35) and thus only the derivative piece of
the field strength exists. We must then solve

Note, the defining equation for the bosonic Laplacian is

—200Gp(z,7') = 6*(z — 2) (5.1.38)
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or

O(—IGp) — B(OGE) = 6*(z — ') (5.1.39)

which we can identify as (5.1.37). Thus f_l = —0Gp and f1 = 0Gg. Gp is detailed

in Appendix A and so we have

1 4i 1 4di
N - 5.1.40
N;Z—Zi—{_ﬁlﬂ';/z—zi—{_a ( )

1 q; 1 q; _
= — - — ) 5.1.41
47?22—21- 47T;Z—zi+a ( )

a and a are the higher order g terms. With this solution the field strength is thus

| 1 1 1 1
§ 2 _ _ —
ql(s Z— ZZ)+86L aa+16 2[q17q2]|:(2_21 Z_Z]_) (2_22 Z_ZZ)

(2_122_2_1%)(2_121_2_121)} (5.1.42)

For the field strength to satisfy our requirement, all other terms must cancel meaning

a and a are proportional to the commutator [qi,¢z]. The exact form of each is
not important here as we need only the linear piece of the gauge field as we are
differentiating with respect to each ¢; only once. With the linear piece of A and A

we can now evaluate (5.1.34) with A now a function of the sources ¢; and ¢

fOPAFEEE 9 (A ()AL (q (5.1.43)

8(11

>A ‘q:O'

There are three terms to consider: AA, AA and AA. Note, evaluating the gauge field
at z; and zy using (5.1.40) leads to divergences. Computing the derivatives of these
terms leads to Kronecker deltas that will lead to repeated indices in the structure
constants. We thus drop these terms so that the divergences have no effect. This
can be argued by regulating the divergence. Doing this will keep the gauge field
finite and upon taking the derivatives, these terms will vanish.

For the first case, with a = b = z, the only non-zero term we are left with is then

1 fC’DAfDCB 1 o 1 1 . 1
167’(’2 Z1 — 29 21— 29 21 — 29 21— 29
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1

=16 fOPAFPCB (5.1.44)
For a = z and b = Z we have
1 _L_poDA DOB 1 11
1671'2 21 — 22 21 — 29 21 — 22 21 — 22
=— 167T2 —_fOPA§DCB ¢ (5.1.45)
and finally for a = b = Z we have
1 fCDAfDCB 1 _ 1 1 _ 1
1677'2 21 — 22 21 — 29 21 - 22 Z1 — 52
1
=15 — fOPAFPOB (5.1.46)

These additional terms will arise when considering the contraction of two C' integrals

Ao B
Cluy kC2k’ ~

1

BT LA / Pord®zs fae(21,22) Lop(X(20))LE7 (X (2)).  (5.1.47)

fac(z1, 22) diverges as z; — 23 so the surface integrals are ill defined. But, this is

multiplied by exponential terms

kX (1) ik X (23) . ikt X (21) gika X (22) . = (2k1-k:gG(zl,zz)—l—ka(zq,zﬂ-{—k%G(zg,zg)).

(5.1.48)
For ki - ko > 0 the integral over z; converges for z; &~ zy because 27G(z1, 22) =~
In|z; — 25| and this can be used to define the integral by analytic continuation.
However, the remaining terms in the exponent suppress the whole expression as the
cut-off is removed and o’k? — oo because 2mrG(21, 1) ~ In(y/+/€) as described in
chapter 2. With this overall suppression, the additional term in (5.1.33) can be

ignored and so we can effectively write

(0a0"8050") , = ean fAPO6% (2 = 2') (6), (5.1.49)
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This relation is precisely what is required to produce the three gluon vertex in the

string theory as the contraction of two C' integrals.

5.1.2 String theory

With this result we can begin to catalogue the expectations of all possible combina-
tions of ¢ and 0¢ when the two dimensional surface upon which the gauge theory
is supported upon is the worldsheet of the string theory with contact interaction
described in chapter 2. Wherever we have a factor of B in the string theory we will
have a factor of ¢ on the boundary and so we can immediately replace this with
the path-ordered product of Lie algebra generators described by (5.1.24). This can
be seen from including insertions of ¢ and d¢ in the interior of the worldsheet into
(5.1.18). Variations of the gauge field on the boundary won'’t affect these insertions
and so we will obtain (5.1.24) with additional insertions. With this result and the
contraction of derivative terms (5.1.49) we can completely determine the expectation

of the contact interaction. To first order we have

Y nsns = ([ G (V4 8-0)) - (ves-0))
(5.1.50)

where A - B = AZ”A . nyfk. Then, as explained earlier, any terms with the pro-
jected vertex vanish because of suppression coming from the self contractions of
the exponential. Also, (5.1.49) means that C' - C' = 0 because of repeated in-
dices in the structure constant. Terms of the form B - C require the calculation
of <¢A|8G¢A>A,¢ which is equal to — (¢?|[A,, ¢]A>A’¢. One can use functional meth-
ods similar to those above to determine that this term will be zero since one will
find fABCSqB /5¢C = fFABE =0,

We are then left with

d*k
Y M . ARk
<SI >X,A,¢,¢T7¢ - </ (27T)4B B>XA¢¢T¢ (5151)
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which is the only term arising in the expectation of P Tr([ d¢ - A)®. In fact, at

higher orders, we can associate the following diagram with each factor of B - B
BB~ NV (5.1.52)

joining two points on the boundary. This is the first step to obtaining the diagrams
found in the introduction. The three gluon vertex arises from the contraction of two

C integrals belonging to different factors of the contact interaction as

B-CC-B ~ (5.1.53)
Ll

At order ¢*, the expectation of the contact interaction squared is

<(S}/M)2>X’A7¢’¢Ty¢ ~

g </ (Zj:; / (C;k);(B —C)-(B—C)(B-C)-(B— c>> L (5.150)

X, A9ty

We immediately identify the diagram with two independent propagators, (B - B)?,
and the four diagrams with the three gluon vertex with external legs attached to
the boundary, (B-C)?. From our discussion on the ¢* calculation we find that these
are the only non-zero contributions to {(S¥*)?). We must mention that the ghost
diagram, Fig. 1.3, fails to appear at this order. The model at this stage is therefore
incomplete as a possible reformulation of Yang-Mills theory. As mentioned before,
though, this missing feature may be found in the model after all if we change the
regularisation scheme (see conclusion).

We can build more complicated diagrams at higher order ¢ with these basic diagrams,

such as

<(S}/M)3>X,A,¢,¢T,¢ > B- C|'_,C : CE -B (5.1.55)

which corresponds to the diagram shown in Figure 5.1. This amplitude will be cal-
culated in the more realistic supersymmetric model.
We can continue to build the full catalogue of diagrams equivalent to those pro-

July 11, 2018



5.2. Loop dynamics 132

Figure 5.1: An example of a more complicated diagram produced by multiple con-
tractions of C's. In this case the string theory calculation is far simpler than the
field theory calculation.

duced by computing the expectation of the non-abelian Wilson loop. To verify this

equivalence to all orders, one can study the loop dynamics, which we do now.

5.2 Loop dynamics

The expectation of the non-abelian Wilson loop has been computed using a string
theory with contact interaction and an additional gauge field on the worldsheet. This
result is similarly obtainable from the loop variable (after carrying out the 1 and

YT integrals to replace ¢! with the path-ordered product of Lie algebra generators)
W, = exp( — q?{ dt ¢ X - AA) = eXp( — q% dt (bAf“aaX“Af) (5.2.56)
B B

where X is the target space coordinate and A is the 4 dimensional Yang-Mills field.
On the right hand side we have written X* = X*({), where £ are the worldsheet
boundary coordinates, as we need to compare this exponent with the action of the
2 dimensional gauge theory. This result follows naturally from our discussion of
the 1 theory loop dynamics. From the above results, we are lead to the following

functional integral that describes the quantum dynamics of the loop variable

W= </D[¢’ d] e—fdga(qﬁAaaX“AﬁJraf(l@A*(ﬁA)) e~ Sbulk > (5.2.57)
ATy

July 11, 2018



5.2. Loop dynamics 133

where we are now using a to denote the worldsheet gauge field to avoid confusion
with the spacetime gauge field. We have separated (5.1.5) into a boundary integral,
99 dé?a?¢”, and a bulk integral given by Sy, via an integration by parts so that the
total action is linear in the worldsheet gauge field as is done in (5.3.84).

Now consider varying the loop in spacetime
Sx VU = < f{ dE* S X" (Da0™ Al — 70, X7 (0, A — 8VA;‘))...> . (5.2.58)
AT

We would like to be able to replace the first term with

<— 7{ de® 5 X" A,, A,,]A(?GX”> (5.2.59)

so as to produce a similar result to that of Mandelstam. Note that using the prop-

erties of the Lie commutator, we can rewrite this as

< f{ de* 5X"[o, AV]AA;‘aaXV> = — < ]{ de* 5 X" (o, AM]AA;“&ZX”> (5.2.60)

and so we need to essentially replace 9,¢* by [¢, A,]10, X in the boundary integral.
Firstly, we vary (5.2.57) with respect to ¢ so that

0=0,0 = < fdga 59" (0 X" Al — ag‘)...> (5.2.61)
A,p,a

which gives a relation between the spacetime gauge field and the worldsheet gauge
field. The dots here represent the factors of e=°. Since the variation is arbitrary, we

can choose d¢ = §X*[¢, A,]* so that we have the relation

< 7{ dge 5X“[¢,AM]A8QX”A3...> = < 74 de® X o, Au]Aaf...> :
A,p,a A,p,a
(5.2.62)

The left hand side is what we need and the right hand side can be shown to be the

first term of (5.2.58). Again we can use the properties of the commutator:

(¢, A alt = ¢BA§agj e —¢Bag‘A§ fBAC = g, aa]AAZ‘. (5.2.63)
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Now we need

< jf d505Xﬂaa¢AA3...> = < ]{ de® 6 X g, aa]AA;j‘...> (5.2.64)

(first term of (5.2.58) equal to RHS of (5.2.62)) or

<fd§%XﬂDa¢AA;‘...> =0 (5.2.65)

where D,¢? = 0,04 — [0, a,]* is the worldsheet gauge covariant derivative. Well,
we have already shown that <DG¢A>G 6= 0, and so this condition appears naturally
from the quantum dynamics of the system.

We can then write, going back up the steps,

<%d§“5X“6a¢AAf}...> = < fdga 6X“[¢,aa]AA;‘...> = < fdg“ SXHg, A#]Aaf...>

=— < 7{ de® 5X“[¢,AM]AOQX”A3...> = — < }[ d¢e 5X“¢A[AM,AV]A8GX”...>
(5.2.66)

which is our original requirement. Finally, then we can say

SxVU = — <( 7{ dee 5X“¢AaaX”F;‘,,) > : (5.2.67)
A’¢7a‘7wT7w

A second variation yields

520, = — <( 7{ de® 51X”¢A8a62X”F/j‘V) >—<( f de® 51X“¢A6GX”52XQE)QF£,> >

— < ( j[ dee 51X“¢A8CLX”F:‘V> ( j[ ey 5, X (0P AY + ¢ 0, X7 (9, A — 0AAUB))) > .
(5.2.68)
Now consider varying (5.2.67) with respect to ¢, we find

< jf de® 5X“5¢A8¢ZX”F£...> =

<( f dee 5X“¢AaaX”F;‘V) ( f{ des 5P (9, X AP — abB)) > . (5.2.69)
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Choosing again, §¢4 = 5, X[¢, A,]* we find, after permuting the positions of the

fields in the commutators

< j[ de® §X15, X[, Aa]AaaXVF,j‘V...> =

<( 7{ des 5X“¢AaaXVij> ( 7{ de 5, X (9P 0, X [Aq, ANE + [0, ab]BAf)) > :
(5.2.70)

Now, note that the first line can be written as
< ]{ de® X 5, X p* Ay, FW]AaaXV...> : (5.2.71)
The second term of the bottom line can also be replaced by

<< j[ dee 5XM¢AaaX”F,j‘V) ( 7{ des 62X°‘8b¢BAf) > (5.2.72)

as we did for the first variation. This is simply obtained by varying (5.2.67) with
respect to a and using (5.1.25). With this we can write

— < ( }’{ des 5X“¢A8aX”F/f},) ( 7{ des 52X“8b¢BAaB> > =

— < 7{ de® 6, X 6, X[ Ag, FW]AaaX”...>

+ <( f{ des 5X“¢A8QX”F;“V> ( }'{ deb 5, X B[ A, AU]BabX”) > . (5.2.73)

We can now substitute this result into (5.2.68) to find

520, 0 = — << jqf dee 51X#¢Aaa52X”ij> >
— << 7{ de® 61X“62X"¢A8QX”DQF;‘V)>

— <( ]{ des 51X~¢AaaX”F;‘V) ( f{ deb 52XA¢BabXUF£> > : (5.2.74)
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With this result we can calculate the area derivative, A, of the loop and so we find

AT = — <( gbAdX”D“F/ﬁj) > : (5.2.75)
A,papty

This is the Mandelstam formula for the gauge theory. We can now integrate out the

spacetime gauge field, A. Varying ¥ with respect to A we find

1
0=10640 = < p / d*X DMF;0A" — j'{ de* ¢AaaXN5A;j> :

Choosing 04" = ¢?¢Ad X754 (X () — X (¢')) we find the relation

(((saxprs).) = (fa saxotenun s - xen)
(5.2.76)

and so we have

AV = /D[Qﬁ,aﬂ/ﬁ,df] 7{¢AdX“|s54(X(§) = X(€)gdXyle e (5.2.77)

This is the ¢ gauge field analogy of the Migdal-Makeenko equation for standard
Yang-Mills theory. We can now use (5.1.21) to replace the factors of ¢ with the
corresponding x£“ and carry out the ¥ and 9" integrations to obtain the path-ordered
product of Lie algebra generators.

With these results, the theory presented here may then be considered as a first step
to generalising the string theory of [26] to incorporate non-abelian gauge theories.
It reproduces the path-ordering of the Lie algebra generators in the expectation of
the Wilson loop and contains the three gluon vertex. This can be made the basis of

further study, i.e. studying the partition function
250 = [ DX, 9,4, 0,01y e Srat oSS0 (507

We know, however, from the abelian model that divergences arise at higher orders
when vertices approach each other near the boundary, which will prevent us from
identifying

Z359 s (W, (5.2.79)
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We expect the supersymmetric string theory to be free of these extra unwanted
divergences and so we now look at generalising this gauge theory to incorporate the

supersymmetry of the superstring worldsheet.

5.3 Supersymmetric gauge theory

We have managed to show that introducing a gauge theory onto the worldsheet of
the string theory can reproduce some features of the expectation of the non-abelian
Wilson loop. It, therefore, seems that it may be possible to generalise the fermionic
string theory to reproduce the expectation of the non-abelian super-Wilson loop by
finding a suitable supersymmetric analogue of the gauge theory just described. In
this section we will formulate such a generalisation.

To motivate the supersymmetric model we start with the bosonic action

S = / d*¢ € Tr(¢pFyp). (5.3.80)

In 2 dimensions F;, has one independent component. In complex coordinates the

action can be written as

S = /dgz (ezz Tr(ngzg) + €% Tr(ngzz)) = 2/d2z Tr(ngZ;). (5.3.81)

Now, writing the covariant components of the gauge field as A, = A and A; = A,

we have

F..=0A—-0A+AA - AA=dA—dA (5.3.82)

where we have defined the derivative d = 0 + A and used a lower case d to avoid
confusion with the non-abelian gauge covariant derivative. The action can then be

written as
S = 2/(12,2 Tr (qs(dfl — dA)). (5.3.83)

Note, it can also be written as

S—2 ]( duw® Te(6A,) — 2 / = Tr((dé)A — (d6)A) (5.3.84)
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where we have used the cyclic property of the trace. Written in this way it is easier to
see the effect of separate boundary and interior gauge field variations, something we
used in the loop equation derivation. This will also be useful for the supersymmetric
model. As a first extension to (5.3.83) we can consider replacing the partial derivates

by super derivatives such that d becomes

d,=D+ A (5.3.85)

which suggests that the gauge superfield, A, is Grassmann-odd. This then suggests
that the gauge field, A, is the coefficient of the # term in the expansion of A. If we

expand the superfields as

A=n+0A+0\+ 000 (5.3.86)
A=17+0)+0A— 005 (5.3.87)

then we can propose the action
S = —2/d22d29 Tr (q”s(dSAJr dsA)) (5.3.89)

which contains the bosonic action above. The integrand then defines the superfield
strength:
F=diA+d, A= DA+ DA+ {A A} (5.3.90)

with the anti-commutator appearing this time. This is all conjecture at this point
as we have merely promoted the partial derivative to the superderivative and the
fields to superfields, only making sure that the bosonic result is contained within.
To see that this supersymmetric field theory satisfies our requirements we first need
to make sure that it is actually supersymmetric. From (2.2.53) we know that to

make this action supersymmetric we must add the boundary integral

Ssusy = /d22d29 005(y)Tr(pF) = Z/dx Tr(poFo)
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= 2/dx Tr(go(A+ X+ {n,7})) (5.3.91)

to the action in order for it to be invariant with respect to the worldsheet super-
symmetry (2.2.41).
We can write the supersymmetric gauge theory action in a similar way to the bosonic

action (5.3.84), i.e. as a boundary piece plus a bulk term
S =2 / d*2d*0 Tr(dyp A + dyp A) + / dzd®0 <6_Tr(<5,4) — 9Tr(¢3fl)>. (5.3.92)
Note, as A is Grassmann-odd we have the general cyclic property
Tr(ABC) = (=) @B Ty (CAB) (5.3.93)

where (C, AB) is 0 if C' and AB commute or 1 if they anti-commute. This can be
seen by expanding each field as A = A%74. The fields can be taken outside of the
trace and permuted into the desired combination picking up minus signs if the fields
anti-commute while the generators can be cyclically permuted within the trace. We

can then add to the boundary integral Sy, so that the supersymmetric action is

St = 2 / d?zd?0 Tr(d,p A + dypA)

+ / dx Tr (¢0(A + A+ X+ A+ {n,7}) + (d1n + 95177)) . (5.3.94)

We can, in fact, use the supersymmetry to fix some of the component gauge super-
fields and thus simplify the boundary piece. A pure supersymmetry transformation

of the gauge superfield is
IA=€¢Q+Q)A (5.3.95)

which gives in terms of components gives

n=e(A+)) 6A=¢€0n+o) SN\=¢edn—0) Jdo=—e(ON—0A). (5.3.96)
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Similarly, we find that 4 under this transformation gives in terms of component

fields
f=e(A+)) dA=edn+05) N=¢0nh—0a) 66=eOA—0N). (5.3.97)

On the boundary we take the superfield A to be real’ in the sense that A| = A| so
that
=7l (A+N)|=(A+2) (5.3.98)

and add to this o| = 7| which is not determined by the reality condition. The reality
condition is useful as (5.3.98) are invariant under the supersymmetry transforma-
tions. Using these boundary conditions we find that the boundary part of the action
is

2 / dz Tr(2¢0(A+ X +1n) + n(d1 + 61)). (5.3.99)
Setting ¢; = ¢; = 0 on the boundary means that q3| = ¢o| which makes sense if we

want the bosonic condition. The total supersymmetric action is then
Spot = 2 / d*2d*0 Tr(dp A + dypA) + 4 / dz Tr(¢o(A+X+mm)).  (5.3.100)

Under a supersymmetry transformation the combination A+ A+nn on the boundary

changes as
S(A+X+mm) = €(0n + [(A+ \),7]) = eDS My, (5.3.101)

The right hand side is the covariant derivative for the gauge field (A + \) along the

boundary. Thus, we can define a boundary gauge field as
A=A+ +m. (5.3.102)

A boundary gauge field related by a supersymmetry transformation is equivalent to
boundary gauge field related by a gauge transformation. It is, therefore, supersym-

metric and gauge invariant. This naturally leads to a source term for the gauge field
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on the boundary
Seource = 2 / dz (A+ X+t =2 / drdd O(DA| + AA|)*x*  (5.3.103)

where on the right hand side we have written it as a boundary superspace integral.
From the above, we know that this choice of source term is supersymmetric and
gauge invariant and because it matches the boundary part of the action it will give
us the path-ordering condition upon a variation of the boundary field A" = A4+A+nn.
Note, here we don’t require the superpartners of ¢ and ' as we did in chapter 3 to
give the path-ordering condition.

With this, we now have a supersymmetric analogue of the bosonic field theory
described in the last section. We can again use the Schwinger-Dyson equations to
evaluate quantum expectations in this theory. We will again consider varying the
interior and boundary fields separately only this time varying A in the interior and

A’| on the boundary. Beginning with a variation of A’| we find

/ DIA, ¢] (— 4 / dx Tr(¢ed A')| — 2 / dx A/ARA|>6_S“ (5.3.104)

where

SH = Stot + Ssource (53105)

which leads to
(D01) 40y = (K1) 4y = WIT401) (5.3.106)
7¢ 7¢ 7¢

analogously to the bosonic result. To implement path-ordering into the supersym-
metric string theory we need to consider products of ¢g| and so we define the integral

analogously to the bosonic integral (5.1.18)

Zjh...ArBl...Bn (7717 vy My ’517 sy 571)

= / DIA, @] e (k™M (m)..w™ () (6" (€1) 057 (6n)) (5.3.107)
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Repeating the bosonic calculation using the above results leads to

/D[A, o e (K™ (). (0,) (6'(€) 66" 1(&1) 057 |(60))

- / DIA, ¢] e (s ()™ ().t (0:)) (66" (€1)---05 [ (€n)) (5.3.108)

so that

Zfﬁl_._ArABl_,_Bn(nla ooy My 57 617 cey fn) = ZZAl...A,.Bl...Bn(§7 My ooy Ny 517 cey gn)
(5.3.109)

This relation can be used to replace each factor of ¢{'(¢) on the boundary by a
corresponding factor of k*(¢). By starting with no factors of ¢y or x we can apply

this relation n times to obtain

/ DIA &) e g1 (6)... 607 (€) = / DIA G e k(6. k™ (6,).  (5.3.110)

Now, inserting k4 = ¢T74¢ and integrating over ¢ and ¥ we find

/D[W,w] eIV I (Gt (€0). 00 (6n)) 45 =

/DW’M eIV A (e e (T ), (5.3.111)

where
Q) - [DIA, ¢] e Q
A [ DIA G e

The second line of (5.3.111) is the trace of the path-ordered product of Lie algebra

(5.3.112)

generators, and so we can write

(90" (€0)--07"(6n)) 45 = T (73 (TAl...rAr)) (5.3.113)

This is the bosonic result from the previous section, achieved with the supersymmet-
ric analogue of the bosonic gauge theory, and so at least for the boundary variation
this model reproduces the required result for path-ordering the Lie algebra genera-
tors on the boundary.
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5.3.1 Three gluon vertex generation

Before we show how the three point function arises from this model we write the
action in a more covariant form. To do this we introduce the metric tensor ¢® with
elements 0** = 0** = 1 and 0** = ¢** = (. The action (5.3.89) can then be written

in a similar form to the bosonic action as
S = / d?2d%0 o Tr(p F) (5.3.114)

where the superfield strength is Fop = 2(D o Ap) + A Ap)). Now, a variation of the

gauge superfield in the interior gives
68" = 2/d2zd29 Tr(Daé dAp) (5.3.115)

where Daé = Daé + [Aa,é] is the super gauge covariant derivative acting on a

Grassmann-even field. Therefore, we have

05

A = —0%(Dyo) . (5.3.116)

In the interior of the worldsheet a variation of the gauge field then yields

67 69" . -
0= SAL <_W> = g% <(Db¢)A> (5.3.117)

or

(D)) =0. (5.3.118)

A variation of the average <(Dag5)A> must again vanish leading to

<(Da95)A(Dbc5)B> = 0. (5.3.119)

This is the relation that will lead to the result needed to produce the three gluon ver-

tex in the string theory. We therefore repeat the calculation for the supersymmetric
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case. Expanding this gives the correlation function relation

(DD (Ded)?) = = ((Dud) |45, 317 (5:3.120)

We can evaluate the right hand side by considering varying the average <[Ab, gz;]B>

0= (A4 d17) = (104,917 ) -2 <[Ab,qB]B [ a0 oD 5Ad>> .
(5.3.121)
Dividing through by 5 A2 gives

<5ab[TA, GP8% (2 — 2')5%(0 — e’)> _ <aca(pcq3)A[Ab, qE]B> (5.3.122)

where we have computed the trace from the previous equation and swapped the

position of the (D(,B)A picking up a minus sign. Multiplying across by .4 gives
A 1B 2 N 52 N A B
Uab<[7' LO)P6% (2 — 2)6%(0 — 9)> = <(Da¢) [As, 8] > (5.3.123)

Expanding the commutator and using the cyclicity and anti-commutativity of the

structure constants we have

(D) 0, 817 = 0w ( F4296°0% (= = )00 = 0) ) = ([Aar 6 [ AL 67 )
(5.3.124)
Then finally substituting this back into (5.3.120) gives

(DB (DiB)? ) = aup (FAPCF6 (= = 21020 = 0) ) + [ Aas 9] [As, 6]
(5.3.125)
giving us the supersymmetric analogue of (5.1.33) with again an additional term.
For this relation to be of use in generating the three gluon vertex we require the

extra term of the form

<[Aa,<23]A[Ab,q§]B GSA!&BI...> (5.3.126)

to vanish in the string theory. The ... denote additional insertions of & placed at

points non-coincident with any other insertions. We therefore repeat the bosonic
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calculation for the supersymmetric gauge theory constructed above. We begin by

expanding the commutators

(1 RS peSaB AT (o) A2 (29)05 (1)0% (20) $1()0P (). ). (33.127)

We can replace all factors of ¢ by their corresponding generators on the boundary
and so we can leave them out of the computation for simplicity. The other two

factors of ¢ can be generated by the derivatives

o 0

R1S1A pR2S2B AR1 AR2 QP +q29?
o (RS B e
0q7" 04¢5° “

(5.3.128)

q=0

This exponential can again be used to define a modified action in the functional

integral of the form

" =8 — (1! + @20°). (5.3.129)

Integrating out ¢ gives a delta function insertion of the form
5(F — Q152(2 — 21)52(0 — 91) — QQ52(2 — 22)62(9 — 02)) (53130)

into the functional integral. The dynamics of the super gauge field are no longer
pure gauge due to the sources generated by the insertions of é We then solve for

the super gauge field associated with this field strength. We must, therefore, solve
F=DA+DA+AA+AA=" g 8*(z — z)5°(0 — 0;) (5.3.131)

subject to the boundary condition A| = A|. We can use the Green’s function for

the supersymmetric Laplacian to solve this. As
—2DDGp(2,0;7,0") = 6*(z — 2)0%(0 — ) (5.3.132)

or

D(—DGp)+ D(DGr) = 6*(z — 2)6*(0 — ) (5.3.133)
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we can therefore identify
A = —QDGF +a= %D 10g<212212 + 6) +a (53134)
s

./Zl = QDGF +a= 4iD log(212212 + 6) +a (53135)
7

where a and a are the higher order correction terms and z19 = z; — 2o — 61605. Note,

we have added the regulator € as naively
1 -
—%DDlog(zlgélg) 7é 52<21 — 22)(52(01 — 02) (53136)

This behaviour is detailed further in appendix A. Calculating the derivatives, taking

the e — 0 limit and adding appropriate terms to satisfy the boundary condition gives

A (2,0) = i i (l <9 —0: _0- ?) — %eei(e —0;,)0%(z — zi)) +a (5.3.137)

: dn\z—2z 2z2—2%
=1

AP (2,60) = 22: g (i (9_ —0 0 Hi) —%Qei(é—ﬁ_i)62(z—zi)> 1. (5.3.138)

- dr \ z — Zi zZ— Zi

=1
One can obtain the explicit form of @ and @ by computing the field strength. As
these are higher order in ¢ they will have no effect in the computation of (5.3.128).

In analogy with the bosonic calculation we need to determine the 3 combinations

AA, AA and AA. Focussing on the first of these we have

1 /0,0, 6,—0 1. -
A el ) = oft (5 (22 - D22 201 - )~ )

dm \ 21 — 2 21 — Z9
1 [/6,—6 0y — 0 1- -
Ry ~ (V2 1 b2 1y & B 9 B
X g (47T (22 — 2y — 21) 20291(92 91)(5 (ZQ Zl)> (53139)

This is the only term that will contribute to the differentiation of the sources due

to repeated indices in the structure constants. Differentiating we find

o 0
aq51 aqSQ

1 — — 0 1. -
A AR = 912 5821 (—(91 b b 92) —59192(91—92)52(zl—22>>

47 Z1 — 29 21 — Zo
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1 /60,—40 6, — 0 1- -
X( ( 2 ! — 2 1) — 59291(02 —01)52(21 —2’2))

dn\zg— 21 29— 21

SRS (91 — 6, 4 92) (91 — 6, G- 92>

1671'2 21 — 29 Z1 — 22 21 — %9 21— 29

551R2652R1 o 1 1 551R2552R1
———————0,050,056% (2, — - = .. (5.3.140
87T 17212 (Zl 22) (21 — 29 22 — 21) 167’(’2 f ( )

Note, the delta function causes this extra term to vanish. Similarly, for AA we find

0 0 ARl(Zl)ARQ(z2) _ §S1R2 §52R1 ?1 — 9:2 B 0:1 — 0, 9:1 — (?2 B 0, — 0:2
0q°r 0g>2 1672 Zi—29 Z1—20) \Z1— 20 21— 2o
1 - - 1 1 §51R2 5521
——0,050,055°(z — — = f... 3.141
87T 1v2rire (21 22)(21—2’2 22—21> 1671'2 f (53 )
and, finally, for AA
o 0 -
8q51 0q52 ARI (Zl)‘AR2 (ZQ) =
§S1RegS2 B (G Gy Gy —0y\7 §RS25ReS1 §2(5y — 2) (S R2§S R
B ]_677'2 <Zl — 29 B 21— ZQ) B 41 21 — 29 - ]_67'('2 sz-
(5.3.142)

In this case, the delta function term survives. In the functional integral we will see
that this term does not contribute to the overall result as it cancels with the 4.4
term.

All of these terms will then arise in the string theory when we consider the contrac-
tions of two factors of C' coming from different vertex operators. The relevant terms

will all be of the form

ik ikl

2. 129 12 12
<CO> > _/{j_%k‘_g d Zld Qld ng 62 @(fzz + fz;z + fzz + fzz)

(D + D)Py, (X1)"/(D + D)Py, (Xy)?) gtk XutikzXa (5.3.143)

As one can see from above, in the functional integral we will find f.- = —f;, and

so the singular piece of (5.3.142) does not contribute. As in the bosonic case, fu
diverges as z; &~ 29. But, once again, these terms are multiplied by the exponential
ik

ek Xitik2 X2 which when contracted has an analogous form to the bosonic case. In

the tensionless limit, then, these terms are suppressed and so will not contribute to
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the string functional integral. We can then conclude that
<(Da<z3)A(Db<z3)B> ~ Oa <fABC<;3052(z — 5% — 0’)> . (5.3.144)

This means we will obtain the correct form of the three gluon vertex appearing in

the perturbative expansion of the super-Wilson loop as this is precisely (2.4.114).

5.3.2 Higher order terms

We can play the same game with higher order correlation functions, i.e. expectations
of the form <(Dq5)”> with n > 2 with each insertion carrying a distinct colour label
correpsonding to distinct vertex operator insertions. The next order that satisfies

this is S which is of the form

d'ky [ d*%ky [ d'k )
S* g v - (B0 (B =C)py (B=OWRP(B= Oy,
(2m) (2m) (2m)
x (B—0)°B - )4, (5.3.145)

of which there are 6 terms like

g3 6 d4k1 d4k2 d4]€3 C,uuABA CpABBB OaﬁcBC 14
=4 (2’/T)4 (27()4 (271')4 k1 pv—ki~ ko pA—ko k3 af—ks- (53 6)

Evaluating these terms requires the computation of expectations of the form
(- Dudt DGEDIT G 555...) (5.3.147)

Now, carrying out a similar calculation as we did for the two point correlation

function we find
(Dbt DiOEDS ) = 0w {7, GalP [ Acs, 5] 0% (21 — 22)0%(01 — 02) )

—0Oac <[~Ab27 éz]B[TA, &3]052(21 - 23)52(91 - 93)> -

—Obc <[Aa1> él]A[TB> (;53]052@2 - 23)52(92 - 93)>
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— ([Aar: 1) [Asz, 2] [ Aca, 4] ) (5.3.148)
where A,; = A,(2;,0;). Focussing on the first term and expanding the commutators,
we have

0. [ADB FEFC <.,,$2D.Af;, B 5221 — 29)82(6) — 02)% ¢§’¢§> . (5.3.149)

We can replace the factors %D ~f‘, &gég by the corresponding generators on the

boundary using (5.3.113), leaving us to consider
<...A53 5 5%(21 — 22)02(6; — 92)...> . (5.3.150)

Replacing this factor of ¢ with a differentiation as before leads to a solution for the

gauge field, A(z3)

e
AP () = -8 (93 93) +a (5.3.151)

E 23 — 23
and so (5.3.149) becomes

5EF

~ _O-QbfADBfEFC <E<

93-@3

Z3 — Z3

) 6%(21 — 22)0% (61 — 605) Tr(P TDTATBTC)...>

~ o fAPBFEEC = 0. (5.3.152)

The next two terms of (5.3.148) are similarly zero. The final term with three com-
mutators will require the functional differentiation of three factors of the super gauge
field. We can use the solutions (5.3.137) and (5.3.138) to determine that this term
will be suppressed by self contractions of the exponential. We, therefore, determine
that

<Da¢3{‘ qu?chc%@ ~ 0. (5.3.153)

In fact, the three point correlation function can be found by performing Wick con-

tractions:

Dot DydB D3 ~ Dyd? DydE D35 + Dyt DydE D6 + ... . (5.3.154)

July 11, 2018



5.3. Supersymmetric gauge theory 150

The first term is
Oap0? (21 — 22)0%(01 — 62) fABPHP D oS (5.3.155)

but, using
6(37) =0 = (3"Dd) = - (414 9°) (5.3.156)

allows us to replace this with

—Uab52(21 - 22)52(91 - 92) fABD QgD[-Ac» ¢]C

= o f PP FEFC 6% (21 — 20)6° (01 — 02) $P A" (5.3.157)

which coincides with the first term of (5.3.148). This goes for the rest of the possi-
ble contractions. This means that the cascade of possible expectations of the form
<(Dq~5)”> terminates at the three point function. At higher orders, the expectation
of factors of D¢ can be obtained by applying Wick’s theorem with the “propagator”
(5.3.144). With this, we now look at the expectation of the exponential of the con-

tact interaction.

5.3.3 Superstring theory

As in the bosonic theory, we can use these results to draw Feynman graphs with
which we can associate expectations to all orders in ¢?. The contact interaction, at

n’th order, is

- lj/% (Vi.ViJF(B_C).(B_C)) (5.3.158)

where here A - B = A‘,;”AB;‘% - Firstly, we note that there is always one such term
of
a d*k;
n ——- B-B. 5.3.159
11/ Gy (5.3.159)
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We have already evaluated this, it is simply

e dYky o _
n ! Ai 1'A; gplmi g V] ’
! 1}/ (2m)1 7{ e bk K by b v (5.3.160)

BJB

f; a Fhg™ v —m (5.3.161)

S EL

o2 ) (2m)t
Functionally integrating over worldsheets spanned by B has no effect on this term,
and integrating over gz~5 replaces each factor of QBA on the boundary with the associated
generator, 74. This term, then, describes the interaction between n pairs of points on
the boundary joined by a propagator carrying momentum k; which can be compared
with (1.4.136).

Other terms which can easily be evaluated at any order are

(5™ > qQ"H / % (V-V) =0 (5.3.162)
and .
S 3 g H/ (‘;Wﬁa (C-C)=0. (5.3.163)

The first of these is zero in the tensionless limit as self-contractions of the expo-

nentials are suppressed as explained earlier. The second term is zero because of

(5.3.144):

uvA
k w = py —k

omACA = / d*2d?0 d*2'd*0' D, T Dy AT 0
I

~ — / d*2d?0 oo fAPGP TV TL =0 (5.3.164)

Note, any term in the expansion of S™ with an odd number of C' insertions will
vanish as there will also be an extra C' left over after contractions. This extra C will
live in the interior of the worldsheet and there are no contractions left to do that
can bring this to the boundary. Integration over the worldsheets spanning B will
then lead to a suppression of this term due to self contractions of the exponential.

The next non-trivial results are obtained by separating off 2 factors of (B — C) -
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(B—C) as

n o [ Ak d'ky  d'K, A A As As
it / (2m)* (2m)* " (2m)* (B-=0C)) - (B-C)5,(B=C)2-(B-0)7,

« ((B _0).(B- c>>n_2. (5.3.165)

There are n!/2!(n — 2)! ways of doing this. We can now contract the Bs with the C's
in the first line producing the three point function. Additional factors of B - C in
the second line will be distinct and will give rise to additional three point functions.
For now just consider the unique term (B - B)"~2. This term will then give rise to a
diagram with three points on the boundary linked by a three gluon vertex, and n—2
pairs of points on the boundary each joined by a single propagator. The amplitude

for each 7, 7 is then

" [ d'ki d'ky a4 Ai | pA(pAT | A A; | pA
on—2 (2m)% (27)4 (Bki ) C—ki + Cki ) B_ki)(Bkj ’ C—kj + ij ) B_kj)

n—2 iky-(wg—w)
<[] / f 7{ A A dbt! Mdb'k . (5.3.166)
i, JB B & k; TR

k#i,j

There are 4 ways to combine B - C' and so we find that there are

|
9 n!
—— =2n(n—1 5.3.167
2!(n — 2)! ( ) ( )
diagrams with one three point function and n— 2 propagators joining 2(n —2) points
on the boundary.
We can use Wick contractions to evaluate more complex products of vertex opera-

tors. At higher orders, there exists terms of the form

/(17514/(27224/(6;234 (B-C)(B-C)(C-C) (5.3.168)

that first appear in S3. Averaging over ¢ leads to contractions of the form

[y | e | e ® 16 QB (53169
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Carrying out these contractions results in

1 Ays milki—ka)
k:2 vy = B / d22d*0 fAPP JP(D + D)X, (D + D)X ek -h)X

— / ’ —i ’ Z
/ d?2'd*0" fBCE(D + D)X'*(D + D)X e ikahs)-X 2 7{ dbf, . (5.3.170)
We can project each X along the associated momentum to obtain two new boundary

integrals. The result is

Iz
adbe, (wi) o 1 [ A0 ( 2) _
__ tABD BCE A%k p\W1) gy n D~ —(k1—k2) i(k1—k2)-wa
= —_— — ——— (k1 — k

db_ y v '
% %Qﬁ (k2—k3) | (1113) (k2 kg)p]e i(ka—k3)-ws %ch Lz(we*lk&w‘l. (53171)
(k2 — k3)? ks

This gives the amplitude for the diagram in Fig. 5.1. The diagram is fairly easily
computed, up to a symmetry factor, since each external leg contributes a factor of
eki(Xi=X) /|;2 We also have an internal propagator, along with two integrals over
the two positions of the three gluon vertices. These integrals produce momentum
conserving delta functions that relate the momentum going into the diagram from
each external leg. This explains the extra factor of 1/k3 in the amplitude computed
in the string theory.

This is the only additional set of contractions that one can perform on the product
of vertex operators, and it does not lead to the four gluon vertex. This exhausts the
possibilities of finding the four gluon vertex in (S™) from the quantum dynamics of
¢4, Again, we should mention that it is believed that the four gluon vertex, along
with the ghost interaction, is indeed present in the string theory. It is obtained
from contractions involving the projected vertex operators using dimensional reg-
ularisation to regulate the Green’s function for the Laplacian at coincident points.

These have been studied separately by Prof. Mansfield and will be presented in an

upcoming paper.
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5.3.4 Loop dynamics of the supersymmetric theory

The supersymmetric gauge model has so far resisted a similar treatment to that given
in chapter 4 for the loop dynamics of the supersymmetric 1) theory. The reasons are
that the super-Wilson line is non-linear in the gauge field leading to complications
with the calculation. This was dealt with in the ¢ theory by introducing two addi-
tional fields into the loop variable, Z and z respectively, that produced the quadratic
terms upon integration. These extra fields naturally entered as the superpartners of
the fields 1! and 1 and so we were able to use the superfield formalism to write the
super-Wilson loop as linear in the gauge field A(X).

In the present case we can introduce the extra terms linear in z and A as before
except now we are unable to identify Z and z as superpartners of the Lie algebra
valued field, . There are two reasons for this: firstly, we would need two ¢ fields
to incorporate Z and z as superpartners and secondly we have shown that the su-
perpartner of ¢ on the boundary vanishes, so that ¢*| = ¢;.

We also cannot use the standard super-Wilson loop (4.3.73) because the superspace
representation specifically requires the use of path-ordering to generate the commu-
tator terms. Trying a similar thing with this model will lead to the results lacking
this extra structure. This needs resolving if we are to represent the expectation of
the super-Wilson loop as a supersymmetric string theory with an additional gauge

field on the worldsheet.
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Chapter 6

Conclusions and further work

We have seen that introducing an additional Lie algebra valued field, J4, onto the
worldsheet of the string theory described in [26], generalising the boundary field
theory of [35], allows a way of reproducing some of the features of the expectation of
the non-abelian Wilson loop. Particularly, we used the boundary field theory model
to introduce our field theory on the worldsheet in such a way that the path-ordering
of Lie algebra generators was achieved in the same way. This lead to a study of the
possible field theories that may be used to describe the dynamics of J4. We began
with a study of 2 dimensional electrostatics in curved space. An underlying Weyl
invariance simplified the calculation of the average over the line of force solution
to Gauss’ law and generalised the two dimensional result found in [21]. This result
lead to the study of the number of intersections of curves on a curved 2 dimensional
surface. We found that this produces a generalisation of the boundary field theory
by extending the path-ordering of Lie algebra generators into the interior of the
worldsheet. Using the intersection number of curves as the field theory describing
the dynamics of J4 allows an implementation of path-ordering of the Wilson loop.
This result was extended to incorporate supersymmetry into the underlying surface,
allowing one to obtain path ordering of the super-Wilson loop. This case is of most
importance as it was shown in the abelian theory that it is free of extra divergences
that would prevent one from making a formal equivalence between the string theory
and the expectation of the Wilson loop.

Introducing J4 onto the worldsheet naturally leads to extra terms in the vertex op-
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erator obtained by an integration by parts so that one obtains a boundary integral,
analogous to the abelian vertex operator, plus a term containing the derivatives of
JA. We determined that this additional term gives rise to the three gluon self inter-
action of non-abelian gauge theory when satisfying a specific relation. We, therefore,
tried to find such a relation in the field theory described by the average of the num-
ber of intersections of curves but were ultimately unable to find one, though we did
see some hints of where it may arise. Because of this, we investigated an alternative
method for obtaining the dynamics for J4, this time using an inherent gauge sym-
metry of the contact interaction to introduce a 2 dimensional Yang-Mills field onto
the worldsheet. We calculated correlation functions of the gauge field finding the
path-ordering condition plus the relation required for the three gluon interaction.
Again, we were able to extend this result to incorporate supersymmtery by studying
2 dimensional supersymmteric Yang-Mills theory. Unfortunately, we were unable to
find the four gluon vertex and ghost-ghost-gluon vertex as arising from the dynamics
of the Lie algebra valued field, J4. This, then, requires further work to see if these
interactions do actually exist in the string theory described in this work.

Independent work by Prof. Mansfield has shown that these may arise from contrac-
tions of the projected vertex operator, V. In the work presented here, we used heat
kernel regularisation to regulate the divergence produced in the Green’s function of
the Laplacian when vertex operators were placed at coincident points on the world-
sheet. With this, we found that these particular contractions are suppressed in the
tensionless limit of the string theory. However, using dimensional regularisation,
one finds that this contraction is not suppressed and does indeed contribute to the

expectation of the contact interaction. The idea is to replace (2.1.34) with

d2+6k 6ik:~(a;1—x2)

GE($1,$2):/<27T>2+6 12 (6.0.1)

and do the various contractions in 2 + € dimensions, letting e — 0 at the end.
If this prescription is shown to reproduce the four gluon vertex and ghost-ghost-gluon
vertex (and nothing more!), then we will be one step closer to proposing this string

theory as the true non-abelian generalisation of [45] that reproduces the expectation
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of the super-Wilson loop. By quantising the particles that make up the boundary
using Strassler’s worldline formulation we may obtain Yang-Mills theory coupled to
spinors and so obtain a reformulation of QCD. This would be the next step in the
research of this subject, followed by a study of the phenomenology predicted by this

model.
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Appendix A

It was believed that we required a spectral decomposition of the supersymmetric heat
kernel when investigating the number of intersections of curves on a supersurface.
We, ultimately, found that one can do the calculation by gauge fixing the kappa
symmetry and using the bosonic results. However, we did in fact obtain a spectral
decomposition for the heat kernel, Green’s function and identity operator of the

super-Laplacian.

A.1 The Super-Laplacian

Consider a variation of the gauge fixed superstring action (neglecting boundary

terms)

0Sspin = / d*zd*0 (DéX“DXH + DX“D(SXM>

4o

4o’

/d2zd29 X" (=2DD)X,, + ... . (A.1.1)

The equations of motion for the superfield, X, are then
DDX, = 0. (A.1.2)

The operator DD is the supersymmetric analogue of the bosonic Laplacian. It is

useful to define

Ap=4DD (A.1.3)

where the factor of 4 is included to match the bosonic Laplacian in complex coordi-
nates which is 92 + 0 = 400. Tt is like the square root of the bosonic Laplacian in
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A.1. The Super-Laplacian 164

the sense that
—A} = —(4)’DDDD = (4)’D*D?* = (4)%00 = 4Ap (A.1.4)
where we have used the relation
D? = (0p + 00)(0p + 00) = 0. (A.1.5)

We are interested in the eigenfunctions and corresponding eigenvalues of Ag. Their

defining equation is as usual

Applying the super-Laplacian once more and using (A.1.4) we find

)\2

This is actually four equations that tell us that each component eigenfunction of
the super-Laplacian with eigenvalue \; is therefore an eigenvalue of the bosonic

Laplacian with eigenvalue A\?/4. The decomposition of ¥ can be written as
U= f+0g+0h+ 00k (A.1.8)

where f(z, z) and k(z, Z) are commuting and g(z, Z) and h(z, z) are anti-commuting

fields. Each component satisfies

f:—(%)k; g= (%)% h:—<§>5g (A.1.9)

dg. (A.1.10)
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A knowledge of W allows us to build the Green’s function associated with Ag from

the qualitative relation

Gszw. (A.1.11)
A#£0

Applying —Ap to this gives the associated identity operator

—ApGp =Y |0) (U] = 262(21 — 2)82(61 — b2) — Y _ W) (U], (A.1.12)

A0 A=0
Ignoring the zero modes, which will only be normalisable when a boundary is present,
we know the functional form of the Green’s function as the extension of the Laplacian

Green’s function

1 _
GF(ZI, 91, 29, 92) = —ElOg(Z’l — 29 — 9192)(21 — 22 — 9102) (A113)

neglecting any boundary effects. Applying the super-Laplacian we find that this
doesn’t actually satisfy (A.1.12), as applying it at z71,60; we find

AF,IGF == 2@1(91 — 02)52(2’1 — ZQ) (A114)

i.e. it is missing some terms. We need to regulate the logarithm. The simplest way

to do this is to add a small parameter, €, we set to 0 as

1
GF = ——lim log(zlgélz + E) (A115)

47 e—0
where z19 = 21 — 29 — 0105. With this we can Taylor expand to find

1 9. 6. _
GF = —— (log(zl — 2’2)(51 — 22) — 9162 — 01927 + 91920192 lim ;) .

47 21 — %2 21— 29 H0‘21—22’2+6

(A.1.16)

Taking the € — 0 limit this final term becomes a delta function and so we have

_i (10g<21 - ZQ)(Zl - 52) - 01 — 02 — 01 — ?2 + 27'('519_2‘9182562(21 — 22)>. (A117)

47 21 — 29 21 — 29

This now satisfies ApGp = 262(0; — 05)0%(21 — 29).
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A.2 Properties

As with any differential operator whose eigenfunctions we seek, we should test Her-
miticity and therefore if the eigenvalues are real. To test the Hermiticity of the
super-Laplacian we study the inner product, in direct analogy with the bosonic

case,

(U, |ApT,,) = 4 / d2> d0dd T, DDV,,

—4 / &2 d9df (D(\I/nmzm) + D(DT,W,,) + (DD\I/n)\I/m). (A.2.18)

The last term is

4 / d*z d9df (DD ,)V,, = 4 / d*z d9df (DDV,)V,, = —4 / d*z d9df (DD ,)V,,
(A.2.19)

and so we find

(U AR, = — (ApW, |0, + 4/0[2,2 dodo (D(\Ian\pm) + D(D\Tln\Dm)>.
(A.2.20)

Now assuming the boundary terms vanish, a point we will return to, we find

meaning the super-Laplacian is anti-hermitian. The anti-hermicity comes from the
anti-commutativity of the superderivatives. Usually this would give a purely imag-
inary eigenvalue, but we will show that A\ > 0. We can also write the right hand

side of (A.2.19) as

—4 / d*z d9df (DDV,)V,, = 4 / d?z d9dd ,,(DDV,,) (A.2.22)

so that
(VL |ARpY,,) = (U, |ApT,,). (A.2.23)
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This odd behaviour is due to the fact that our measure is anti-commutative. This

leads to the conclusion

A (T[T} — A (0, [T, = 0. (A.2.24)

We can relate (V,,|U,,) to (¥, |V,,) as follows

(U,,|¥,) = /d22d29 U, ¥, = —/d?zdze U0, = — (U, |¥,,) (A.2.25)

and so (A.2.24) becomes
(A + X)) (U, 0,,) = 0. (A.2.26)

This would usually lead to the conclusion that A = —X or A = i\ with A\ € R. This
tells us that we are doing something wrong. We will remedy this after looking at

the boundary terms and the bosonic Laplacian.

A.2.1 Boundary terms

Now we turn to the boundary terms on the right hand side of (A.2.20). We can use

Stoke’s theorem to write them as

/ &2z dodd (D(\Tan\Ilm) + D(D\Ifn\pm))

=— f dz d0dd 09, DT, + ]{ dz d0df 0DV, T,,,. (A.2.27)

These boundary integrals in terms of the component fields are then

— 7{ dz (fuOfm + hngm) — j{dz (Ofufm — Gnhum)- (A.2.28)

To see what these are we can consider the analogous bosonic Laplacian case
/ &z FAOf = / &z <5aff +A(fof) — 8(5ff))

_ / 22 OFf — 74 (d=fof + dz0ff). (A.2.29)
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The extra term is the exactly the f terms in (A.2.27). The remaining terms are

j{ (dZ Gnhm — dz hpgm) (A.2.30)

which we will return to. We see that f satisfies exactly the same boundary conditions
as the eigenfunctions of the bosonic Laplacian. What’s more the expansion of the

Green’s function of the super-Laplacian, G, is

1 _
Gp = —%log(\zl — 2y — 010s]|21 — Zp — 0105]) = Gp + 010s... . (A.2.31)

Expanding both sides in terms of their respective spectral decompositions gives a

relation between f and the bosonic eigenfunctions as

Z%wle% = Zgi—?wl%... (A.2.32)

A0 MN£0

where ¢ are the eigenfunctions of Ag with eigenvalue \'.

A.2.2 Bosonic Laplacian

We have seen that the eigenfunctions of the super-Laplacian are also eigenfunctions
of the bosonic Laplacian. We, therefore, take a brief look at the properties of the

bosonic Laplacian. We begin with the eigenvalue equation
—400¢,, = Y. (A.2.33)

We can write the Green’s function as a spectral decomposition of the eigenfunctions

as

nin 1 —
Gp = / d*pn Pndn _ ——1log(|z1 — 22|21 — Za])- (A.2.34)
Yn#0

Tn 27

Then we have

—ABGB = / d2pn qanEn = 252(21 - 22). (A235)
M #0
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We can define an inner product on states

(nldm) = /d2z PnPrm- (A.2.36)

The bosonic Laplacian is Hermitian and so we can use this to prove 7 is real

(DnlApdm) = (Apdn|dm) (A.2.37)

which leads to
(Y = Ym) (Pnldm) =0 (A.2.38)

hence %, = v, and the eigenfunctions are orthogonal. The usual convention is to

choose orthonormal eigenfunctions such that

(Pnldm) = Onm- (A.2.39)

We can also prove that v > 0:
—47/d2z op = /d% $00P = —/8¢8¢ = —/d% 106> < 0 (A.2.40)
and therefore v > 0. The heat kernel has spectral decomposition

KB(t,Z]_,ZQ) = /dzpn e_AntQSn&n (A241)

and solves the heat equation
(0, — Ap)Kp = 0. (A.2.42)

It also satisfies

KB(O,ZI, 22) = /d2pn ¢n(z_5n = HB. (A243)

Expanding the exponential in powers of ¢ we find the relation

KB<t7 21>Z2) = /d2pn e_Ant¢nQ;n - /dzpn Z ﬂ¢n¢n (A244)

m
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then we can use the relation \"¢ = (—1)" AL ¢ to write
Kp(t,z1,2) = Y —‘Ag/den Ony = e2F 1. (A.2.45)
m!

A.2.3 Super-Laplacian

Each component eigenfunction of ¥ satisfies the bosonic Laplacian eigenvalue equa-
tion from (A.1.4), and so we can use the above information to determine that A is

real. First of all, the commuting components, f and k, satisfy

with A2 > 0 — A > 0 and real. The anti-commuting components, g and h, satisfy

<gn|gm>B = Qlpm (A.2.47)

with o = 1 = —a. In this case we have \*> = \? so that either A\ € I, 3(\) < 0 or
A€ R, A > 0. But g and f share eigenvalues and so we should choose A € R. Going
back to (A.2.26) we have

(A 4+ ) (W, | 0,,) =0 (A.2.48)

which suggests that
(U | W) ~ 0(Ap + An). (A.2.49)

This means that (¥,|¥,) = 0 and (V_,|¥,) # 0. This suggests that we should
consider the two sets of eigenfunctions W, with corresponding eigenvalues \.. The

final piece we need is the fact that ¢ is Grassmann-odd so it must go like g ~ ne'k>

where ni1z = =121
We now have enough information to determine (A.2.49). We know that the right

hand side is only non-zero when \,, = —\,, hence we shall consider the inner product

(V_p|V.p,). We will define it to be equal to
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where ¢, = ¢(7jn, ) 1s a function to be determined. Writing this out in terms of

its component fields gives

An+ A - Ao+ A _
(U0 = (Z—)/dQZ Fofn — %/d% Gogm. (A251)

Now we can take out the factors of 7, and 7,, and rescale the fields to f = \/gF

and g = \%G so that the above becomes

(U _,|Wyp) = /dzz F,F,, — nnnm/d2z GG, (A.2.52)

F and G are still eigenfunctions of the bosonic Laplacian with the same eigenvalues

and so choosing them to be orthonormal we have
(O ) = (1 = 701) 02 (D — Prm) (A.2.53)
so that ¢, = 1 — 7,nm. We can also write
(Usn| Vi) = Com0Z (P — Pn)- (A.2.54)
We can determine ¢ from (A.2.25). We find
(Oin]Toin) = =L+ 00 ) 02 (P — D) (A.2.55)

and so Gpm = —(1 + 7,m). We can now write down the identity operator on the

space of super-Laplacian eigenfunctions in terms of ¢ and ¢ as

\If Z'\I/_Z‘ ‘Ij_z\i[ i
I= /deid% ( o as ) (A.2.56)

ii Cij

Which on the face of it looks like a non-trivial combination of the fields and ¢’s.

Note that this can be written as
I= /dQPidQUi (‘I’H‘I’—i(l + 7mi) + VW (1 — W%))
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— / d*pid*n; ((IIIH\TI_Z- + WU y) + g (VP — \If_i\I/H)). (A.2.57)

Now due to the n integration the first term in parenthesis is only a function of
G and the second term is only a function F. Applying this to a general state
U= [d®pj (a;Vy;+b;P_;) gives

I.U= /deidZmCij (\I]Jr@(l + ﬁﬂh)a] /d22d29 ‘I/,i\lf+j

+W_i(1 — 7im;)b; /d22d20 \IJH\I/_j)

= /dgpidzmdzpj (%"I’ﬂ'(l +17m:) (1 = 7im;)02 (pi — ;)
= —by Wi (1 = 7m;) (1 + 7775) 82 (pi — ;)
= /d2pjd27h' (az“lf+z'77z'(7h — i) + bV 7 (ni — 773’))‘ (A.2.58)
It’s straightforward to show that [ d®n; U (n;)7;(n;—n) = ¥(n) since ¥ is holomorphic
in 7 so that 7;(n; —n;) acts as the delta function. Then we are left with our general
state that we started with confirming to us that I is indeed the identity operator.
From this we obtain the Green’s function

U, U .U,
Gr = Ep, Py, | = Lo A.2.59
" /\>0 Pt ( AiCii * AiCii ( )

which can be written as

1 _ _ _ _
GF = / d2pid2m /\— ((\I/_H\I/_Z - \If_i\I/_H') + 771771((\11_“\11_1 + \11_1\114_2)) (AQGO)
A>0 %

A.2.4 The heat kernel

The heat kernel in flat 2 dimensional space is

1 _ (#1—29)(21—%9)

Kp=-—¢ = a -, (A.2.61)
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It satisfies the bosonic heat equation
(0, — Ap)Kp = 0. (A.2.62)

The straightforward generalisation to superspace is found by replacing the bosonic
displacement z; — 2o with the fermionic displacement z15 = 21 — 29 — 016,. This gives
the fermionic heat kernel

1 _Z12712

KF = Ee 4t (A263)

and satisfies a generalisation of the bosonic heat equation
(6%(0; — 05)0, — Ap)Kp = 0. (A.2.64)

It is related to the Green’s function by

e—0 e
We can expand K in powers of 6:
KF = KB + 6192 82KB -+ 0_16_2 52KB - 91929_152 5282KB. (A266)

Now we turn to the spectral decomposition of the heat kernel. The bosonic case is

simply:

Kp = /dZPi T 9ih (A.2.67)
where —Apg; = %2(25@'- From (A.2.59), we can straight forwardly write the heat
kernel as

KF(t721722701702) — /

A>0

1\ iq]—i ) \D_Z\I] i
d*p;d®n; (e_’\itJr— - e’\1t~—+) (A.2.68)

Cii Cii

and satisfies
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Then

o — \I/ i\TJ_i \I/_l\ij i
/0 dt (Kp(t)+ToW,) :/A Od2pid2m< P )—\IIF:GF. (A.2.70)
> 117 117

Inserting ¢ and ¢ allows us to write the fermionic heat kernel as
Kp = /deidQn e M (WU — W W) + (VoW + W 0] (A.2.71)

In this form it is not easy to see that K is equivalent to (A.2.63). To see that they

are equivalent we consider the integral over ¢
/KF dt = /dt Ppid®n e M [(Vp W — U W) +an(U 0 + U U, )]. (A2.72)
Now make the transformation t — % so that this becomes
/ Kp di = / dt psd?n %e (VT W0 ) 4 (U, T+ 0 0,)]. (A2.73)
If we take K to be understood under the t integral then we can take it to be
Kp = / Ppid?n %e (Wl — W0 )+ (el + U ,)].  (A2.74)

We now prove that (A.2.74) is equal to (A.2.63). We can show this by expanding
in powers of # and showing they are equal to each term of (A.2.66). Firstly, we can

write the eigenfunctions as

2 A= On 40n -
U, = \/jF 1F7-60 ) +—=G —0G,. A275
+ h\ :I:( + 1 ) \/§ ++ \/5)\ + ( )

Then consider firstly the purely bosonic term of (A.2.74)

A 2, AFF 2 =
Kp > /d2pid217 Ze_%ﬁnT = /dgpi e T FF = K. (A.2.76)
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So our purely bosonic terms match. Now consider the #,65 term

A 24 4 -
Kr> /d2pid277 ZS_AT 6,65 mn XGaQG

= 016282/(12]% 67% GG = 916282[(3

which matches the 6,6, term of (A.2.66). Finally the 0,0,0,0, term

2t 3 — — —
Kp 3 / d*p;d®n ge—ﬁ 2(2) 0,0,0,0, ff

= —015182525282/d2pid277 6_%FF = —010_1029_25282.}(3 (A277)

as expected. K satisfies
/Ooo Kpdt = /deid% i[(\pm_ — VUL ) + (UL V_ + U _Wy)]  (A2.78)
which is the Green’s function, G, that we found earlier. Note that
Ki(t=0) = [ dpy (0,0 = 0_T0) + (0,0 + - 0,)]

Ap

= —T]I = (52(21 — 29 — 6‘192). (A279)
Then
(52((91 — GQ)KF(O) = 62(01 — (92)52(21 — 22). (A280)
So that
AF / KF dt = 52(01 - GQ)KF(O) = 52(01 — 02)52(21 - 2’2). (A281)

We can expand (A.2.68) as we did in the bosonic case

<(_/\it)m U0, B (Ait)™ ‘I’—iqjﬂ') (A.2.82)

Kp :/ d2pid2771' Z
A>0

m
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then using NV, = (F1)™ ARV, we get
Kp = e!Flp (A.2.83)

in analogy with the bosonic case. We can write the operator as e/A¥

A = f: (m?“). (A.2.84)

|
e n:

Now A% = (—1)"A% and AZ = (—1)"ApA7% and so we can split the sum into

odd and even powered terms

e e ((EDmeEAY (=) ARATY
ets _Z<( ()zn)! L ><2n+1>! ) (A.2.85)

n=0

which gives the rather nice form

Ap .
\/A_Bsm(t Apg). (A.2.86)

A = cos(t\/Ag) +
One could also write

27 = cos(t\/Ap) + tAp sinc(ty/Ap). (A.2.87)

A.2.5 Boundary terms, again

We can go back to (A.2.30) and complete our analysis of the boundary terms. If
instead of looking at (¥,|V,) we look at (¥_,|W¥,,), then (A.2.30) becomes

7{ (dZ Gonhm — dz h_pgin). (A.2.88)

The relations (A.1.9) allow us to write this as

4 _
—Xj{ (dz G,0gn + dz Ogngn). (A.2.89)
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After an integration by parts we find that this is

4 _

which now has the same form as the bosonic eigenfunction boundary conditions
(A.2.29), as we would expect as both f and g are eigenfunctions of the bosonic

Laplacian.

A.2.6 Useful formulae

D1 (53(21 — 22)52(01 — 92) = —(él — @_2) (53(21 — 22) — 91928153(21 — 22)> (A291)

Dléz(zl — 22)52(91 — 92) == (91 - 02) ((53(21 - ZQ) - 9_1925163(21 - ZQ)) (A292)
—DD 502(21 - 22)52<91 — 92) = 62(21 — Z9 — 9192). (A293)

Then from the equation
we find

—DD(—4DDGF) = —4D2D2GF = _ABGF = 2(52<21 — Z9 — 9102) (A295)

July 11, 2018



