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The spectra of lifted digraphs ∗

C. Dalfó†, M. A. Fiol‡, J. Širáň§

November 10, 2018

Abstract

We present a method to derive the complete spectrum of the lift Γα of a base
digraph Γ, with voltage assignments on a (finite) group G. The method is based on
assigning to Γ a quotient-like matrix whose entries are elements of the group algebra
C[G], which fully represents Γα. This allows us to derive the eigenvectors and eigen-
values of the lift in terms of those of the base digraph and the irreducible characters
of G. Thus, our main theorem generalize some previous results of Lováz and Babai
concerning the spectra of Cayley digraphs.
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1 Preliminaries

As it is well-known, the spectrum of a graph Γ (that is, the eigenvalues of its adjacency
matrix) is an important invariant that gives us interesting results about its combinatorial
properties, see e.g. the classic textbook of Cvetković, Doob, and Sachs [4]. Thus many
efforts have been devoted to derive the spectrum (totally or partially) of some interesting
families of graphs. In this framework, Lovász [9] provided a formula which expresses the
eigenvalues of Γ in terms of the characters of a transitive subgroup of its automorphism
group Aut Γ. In the particular case of Cayley graphs (when the automorphism group
contains a subgroup G acting regularly on the vertices), Babai [1] derived a more handy
formula is by different methods. In fact, this formula also holds true for digraphs and arc-
colored Cayley graphs. Following these works, here we deal with a more general family of
(di)graphs, which are obtained as a type of compounding between a ‘base digraph’ and a
Cayley digraph. Our study not only gives the complete spectrum of the obtained digraphs
(called ‘lifts’), but also shows how to compute the corresponding eigenvectors.

Through this paper, Γ = (V,E) denotes a digraph, with vertex set V and arc set
E. An arc from vertex u to vertex v is denoted by either (u, v), uv, or u → v. We
allow loops (that is, arcs from a vertex to itself), and multiple arcs. The spectrum of
Γ, denoted by sp Γ = {λm0

0 , λm1
1 , . . . , λmdd }, is constituted by the distinct eigenvalues λi

with the corresponding algebraic multiplicities mi, for i ∈ [0, 1], of its adjacency matrix
A. (Throughout the paper, for some integer n, we use the notation [1, n] for the set
{1, . . . , n}.)

The paper is organized as follows. In the rest of this section we recall the definition of a
voltage digraph and its lift. Then, we introduce a representation of the lifted digraph with
a quotient-like matrix whose size equals the order of the (much smaller) base digraph. In
particular, it is shown that such a matrix can be used to deduce combinatorial properties
of the lifted digraph. Following this approach, and as a main result, Section 2 present a
new method to completely determine the spectrum of the lift by using only the spectrum
of the quotient-like matrix and the (irreducible) characters of the group. The results are
illustrated by following some examples.

For the concepts and/or results about graphs and digraphs not presented here, we refer
the reader to some of the basic textbooks on the subject; for instance, Bang-Jensen and
Gutin [2], or Diestel [6].

1.1 Voltage and lifted digraphs

Voltage (di)graphs are, in fact, a type of compounding that consists of connecting together
several copies of a (di)graph by setting some (directed) edges between any two copies. More
precisely, let Γ be a digraph with vertex set V = V (Γ) and arc set E = E(Γ). Then, given
a group G with generating set ∆, a voltage assignment of Γ is a mapping α : E → ∆. The
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pair (Γ, α) is often called a voltage digraph. The lifted digraph (or, simply, lift) Γα is the
digraph with vertex set V (Γα) = V × G and arc set E(Γα) = E × G, where there is an
arc from vertex (u, g) to vertex (v, h) if and only if uv ∈ E and h = gα(uv). For example,
Figure 1(b) shows the lifted digraph Γα for the base digraph Γ = K∗2 with voltages shown
in Figure 1(a). More precisely, Γ is a complete graph on two vertices V (Γ) = {a, b}, with
additional arcs ab, ba, aa, bb, and voltages α(aa) = α(bb) = σ and α(ab) = α(ba) = ρ, on
the group G = S3

∼= D3 = 〈ρ, σ|ρ3 = σ2 = (ρσ)2 = ι〉. Notice that because of the group
role, the symmetry of the obtained lifts usually yields digraphs with large automorphism
groups. In particular, when Γ is a singleton with loops, the lift is the Cayley digraph
Cay(G,∆). For more information, see the authors’ paper [5], or the comprehensive survey
of Miller and Širáň [10].

1.2 A matrix representation of the lift

Let us see how we can fully represent a lifted digraph with a matrix whose size equals
the order of the base digraph. This approach was initiated by the auhtors, together with
Miller and Ryan, in [5]. Let Γ = (V,E) be a digraph with voltage assignment α on the
group G. Its associated matrix B is a square matrix indexed by the vertices of Γ, and
whose entries are elements of the group algebra C[G]. Namely,

(B)uv =
∑
g∈G

αgg

where

αi =

{
1 if uv ∈ E and α(uv) = g,
0 otherwise,

for i ∈ [1, n]. The following result was given in [5].

Lemma 1.1. Let (B`)uv =
∑

g∈G a
(`)
g g. Then, for every g, h ∈ G, the coefficient a

(`)
g

equals the number of walks of length ` in the lifted digraph Γα, from vertex (u, h) to vertex

(v, hg). In particular, if u = v and ι denotes the identity element of G, a
(`)
ι is the number

of walks of length ` rooted at every vertex (u, g), for g ∈ G, of the lift.

1.3 Some theoretical background

In our study we use representation theory of finite groups. For basics on representation
theory and character tables of a group, see for instance, Burrow [3].

We also need to recall the following known result (see e.g. Gould [8].).

Lemma 1.2. If the power sums sk =
∑d

i=1 z
k
i of some complex numbers z1, . . . , zd are

known for every k = 1, . . . , d, then such numbers are the roots of the monic polynomial

p(z) =
1

d!
detC(z),
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where C(z) is the following matrix of dimension d+ 1:

C(z) =



zd zd−1 zd−2 zd−3 · · · z2 z 1
s1 1 0 0 · · · 0 0 0
s2 s1 2 0 · · · 0 0 0
s3 s2 s1 3 · · · 0 0 0
...

...
...

...
. . .

...
...

...
sd−1 sd−2 sd−3 sd−4 · · · S1 d− 1 0
sd sd−1 sd−2 sd−3 · · · s2 s1 d


.

2 The spectrum

The following result allows us to compute the spectrum of a lifted digraphs from its
associated matrix and the irreducible representations of the group.

Theorem 2.1. Let Γ = (V,E) be a base digraph on r vertices, with a voltage assignment
α in a group G with |G| = n. Assume that G has ν conjugacy classes with dimensions
d1, . . . , dν (so,

∑ν
i=1 d

2
i = n). Let ρ1, . . . ,ρν be the irreducible representations of the

group G. Let ρi(B) the complex matrix obtained from B by replacing each g ∈ G by the
di × di matrix ρi(g), and let µu,j, u ∈ V , j ∈ [1, di] denote its eigenvalues. Then, the
rn eigenvalues of the lift Γα are the rdi eigenvalues of ρi(B), for every i ∈ [1, ν], each
repeated di times.

Proof. Let A be the adjacency matrix of the lift. First, we prove that, for every u ∈ V
and j ∈ [1, di], every eigenvalue µu,j of ρi(B) gives rise to di (equal) eigenvalue of A. To
this end, let U i the rdi × rdi matrix whose columns are the eigenvectors of ρi(B). Let
Di be the diagonal matrix having such eigenvalues as its entries. For every u ∈ V , let xu
be the di × rdi submatrix of U i having files indexed with (u, j), j ∈ [1, di]. Then, from
ρi(B)U i = U iDi we have∑

uv∈E
ρi(α(uv))xv = xuDi for u ∈ V . (1)

Now for each vertex (u, g) of Γα, consider the di × rdi matrix

φ(u,g) = ρi(g)xu.

Then,

φ(u,g)Di = ρi(g)xuDi = ρi(g)
∑
uv∈E

ρi(α(uv))xv

=
∑
uv∈E

ρi(gα(uv))xv =
∑
uv∈E

φ(v,gα(uv))).

4



But this means that, for every pair of fixed elements k ∈ [1, di] and (u, j) ∈ {V ×[1, di]}, the
vector obtained by taking the (k, (u, j))-entry of every matrix φ(v,h), for (v, h) ∈ V (Γα),
is an eigenvector of the lift Γα with eigenvalue µu,j . Since there are di possible choices for
k, the same holds for the eigenvectors of µu,j .

Moreover, by Lemma 1.1, if (B`)uu =
∑

g∈G a
(`)
(u,g)g, the total number of rooted closed

`-walks in Γα is
tr(A`) =

∑
λ∈sp Γα

λ` = n
∑
u∈V

a
(`)
(u,ι)

since, in the lift, the number of (u, g)-rooted closed `-walks does not depend on g ∈ G.
Moreover, by the ‘Great Orthogonality Theorem’ (see, e.g. [3]), we have

∑
g∈G ρi(g) = 0

for every i 6= 1 (with ρ1 being the trivial representation). Then,

a
(`)
(u,ι) =

1

n

ν∑
i=1

di(ρi(B
`))uu

and, hence, ∑
λ∈sp Γα

λ` = tr(A`) =
ν∑
i=1

di tr(ρi(B
`)) =

ν∑
i=1

∑
µ∈spρi(B

`
)

diµ
`.

(Note that, in the sum on the right, we have r
∑ν

i=1 d
2
i = rn terms, which is the number

of eigenvalues of the adjacency matrix A of the lift Γα.) As the above equality holds for
every ` = 1, 2, . . ., by Lemma 1.2 both (multi)sets of eigenvalues must coincide.

As a consequence, we have the following result in terms of the (irreducible) characters
χi(g), for g ∈ G, of the group. For stating it, let us introduce some additional notation:
Let P` be the set of closed walks of length ` ≥ 1 in Γ. If p ∈ P`, say u0 → u1 → · · · →
u`−1 → u`(= u0), let

χi(p) =
`−1∏
j=0

χi(α(ujuj+1)).

Corollary 2.2. Using the same notation as above, for each i ∈ [1, ν], the eigenvalues λu,j,
for u ∈ V and j ∈ [1, di], of the lift Γα, are the solutions (each repeated di times) of the
system ∑

u∈V,j∈[1,di]

λ`u,j =
∑
p∈P`

χi(p), ` = 1, . . . , rdi. (2)

Proof. By Theorem 2.1, the above left sum of the powers is tr(ρi(B)`), whereas the right
expression corresponds to χi(tr(B

`)) (where the `-power of B and its trace is computed
in C[G], and χi(

∑
g∈G agg) =

∑
g∈G agχi(g)). Then, the result follows from

tr(ρi(B)`) =
∑
u∈V

tr[ρi((B
`)uu)] =

∑
u∈V

χi((B
`)uu) = tr(χi(B

`)).
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Notice that, by Lemma 1.2, the equalities in (2) lead to a polynomial of degree rdi,
with roots the required eigenvalues λu,j .

As commented in Section 1.1, when Γ consists of one vertex with loops, then Γα is a
Cayley digraph and (2) gives the result of Babai [1]. Another extreme case is when di = 1
for some i. Then, we simply have λu,1 = µu,1 for every u ∈ V . For instance, when G
is Abelian, ν = n, and this holds for every i ∈ [1, n]. This case was dealt with by the
authors, Miller, and Ryan in [5].

2.1 An example

Let us consider again the lift described in Subsection 1.1 and shown Figure 1. Then, the
base graph K∗2 has voltages on the symmetric group S3

∼= D3 = 〈ρ, σ : ρ3 = σ2 = (ρσ)2 =
ι〉, with characters shown in Table 1, and associated matrix

B =

(
σ ι+ ρ

ι+ ρ σ

)
.

Note that the edge (two opposite arcs forming a digon) of the base digraph gives rise to
the entries ι’s for the voltages assigned to the corresponding arcs.

S3 \ g ι σ, σρ, σρ2 ρ, ρ2

χ1 (d1 = 1) 1 1 1

χ2 (d2 = 1) 1 −1 1

χ3 (d3 = 2) 2 0 −1

Table 1: The character table of the symmetric group S3.

The obtained lifted digraph Γα has spectrum

sp Γα = {3(1), 1(3), 0(4),−1(3),−3(1)}. (3)

Then, we get the complex matrices

χ1(B) =

(
1 2
2 1

)
, χ2(B) =

(
−1 2

2 −1

)
, χ3(B) =

(
0 1
1 0

)
.

Then, by Corollary 2.2:

• χ1: Since d1 = 1, two eigenvalues of Γα are

{3,−1} = evχ1(B).

6



2(b,sr)

(a,i)

2(a,r)
2(b,r)

(a,sr)

(b,sr)

(b,i)

(a,s)

(b,s)

(a,r)
(b,r)

2(a,sr)

a

b

s

s

rr

(b)(a)

Figure 1: The base digraph K∗2 , on the group S3, and its lift

• χ2: Since d2 = 1, two eigenvalues of Γα are

{−3, 1} = evχ2(B).

• χ3: Since d3 = 2, we consider all the possible closed walks of lengths ` = 1, 2, 3, 4 in
B, which gives the system

λu,0 + λu,1 + λv,0 + λv,1 = 0

λ2
u,0 + λ2

u,1 + λ2
v,0 + λ2

v,1 = 2

λ3
u,0 + λ3

u,1 + λ3
v,0 + λ3

v,1 = 0

λ4
u,0 + λ4

u,1 + λ4
v,0 + λ4

v,1 = 2,

with solutions 1, 0, 0,−1

Then, as these last eigenvalues have two be considered twice, this completes the eigenvalue
multiset of Γα, in agreement with (3).
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