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Abstract. The problem of “1/f” noise has been with us for about a century. Because it is so often framed in
Fourier spectral language, the most famous solutions have tended to be the stationary long range dependent
(LRD) models such as Mandelbrot’s fractional Gaussian noise. In view of the increasing importance to
physics of non-ergodic fractional renewal models, and their links to the CTRW, I present preliminary
results of my research into the history of Mandelbrot’s very little known work in that area from 1963 to
1967. I speculate about how the lack of awareness of this work in the physics and statistics communities
may have affected the development of complexity science, and I discuss the differences between the Hurst
effect, “1/f” noise and LRD, concepts which are often treated as equivalent.

1 Introduction: ergodic and non-ergodic
solutions to the problem of 1/f noise

The pioneering, and highly influential, work of Montroll
and Weiss [1,2] on the continuous time random walk
(CTRW) from 1965 onwards is commemorated in this spe-
cial issue of EPJB. My contribution is about historical and
conceptual aspects of one of the many problems to which
the CTRW and its close relatives have been applied-the
“1/f” paradox. This is “the infrared catastrophe” in sam-
ple periodograms- studied both as long range dependence
(LRD) and 1/f noise-which has long been seen as a the-
oretical puzzle by time series analysts, statisticians, and
physicists. There is also a closely related theoretical ques-
tion of how many different classes of model can share the
common property of the 1/f spectral shape, e.g. [3,4]).

Since the late 1960s, a highly visible (and still contro-
versial) line of investigation has centred on a model, Man-
delbrot’s fractional Gaussian noise, which is now widely
understood to differ fundamentally from the CTRW, as
I shall recap below. However, relatively recently, frac-
tional renewal models that are in the CTRW family have
attracted physical interest in physics as examplars of the
weak ergodicity breaking [5] seen in, for example, blinking
quantum dots [6–9]). This new focus has led to a recent
proposal [7] that they can solve the “1/f paradox”.

? Contribution to the Topical Issue “Continuous Time Ran-
dom Walk Still Trendy: Fifty-year History, Current State and
Outlook”, edited by Ryszard Kutner and Jaume Masoliver.
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Fractional renewal processes are closely related to the
CTRW’s with waiting time distributions that decay so
slowly as to have infinite variance (and sometimes even
infinite mean) introduced by Scher, Montroll, Lax, Kenkre
and Shlesinger in the early 1970s (see the historical
account of [2]), and characterised by Mandelbrot as “frac-
tal time” processes [10]. My own paper’s intent is twofold,
to expand on my historical research into Mandelbrot’s
own still very little-known work on such fractional renewal
processes [11], and the “1/f paradox”, in the mid 1960s,
and to use these findings to better classify and clarify the
current approaches to 1/f noise and LRD.

The physicist’s “problem of 1/f noise” has been with
us since the pioneering work of Schottky and Johnson in
the early 20th century on fluctuating currents in vacuum
tubes [11–13]. The paradox is usually framed in power
spectral terms, i.e. “how can the Fourier power spec-
tral density S′(f) of a stationary process take the form
S′(f) ∼ 1/f and thus be singular at the lowest frequency”,
or equivalently “how can the autocorrelation function
“blow up” at large lags and thus not be summable?”. This
framing of the problem in spectral terms has, as we will
see below, subtly conditioned the type of solutions sought.

In the 1950s an analogous time domain effect (the
Hurst phenomenon) was seen in the statistical growth
with the observation time scale τ of Hurst’s rescaled range
R/S(τ) calculated on the minima of levels of the Nile
river [12]. Rather than the expected dependence ∼τ1/2
many time series including the Nile data showed a depen-
dance ∼τJ where J , the “Hurst exponent” was typically
greater than 0.5. This rapidly presented a conceptual
problem because Feller soon proved that an iid sequence
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must asymptotically have J = 1/2. Although in fact many
observed instances of the Hurst effect may indeed arise
from pre-asymptotic effects, gross non-stationarity, or one
of several other possibilities, the desire for a stationary
solution to the problem with a satisfying level of generality
remained.

It was thus an important step forward when, in 1965–
67, Mandelbrot presented a stationary process, fractional
Gaussian noise (fGn), which could be used as a time series
model which exhibits both the Hurst effect and 1/f noise.
The LRD fGn process is the formal differential of H-self
similar fractional Brownian motion (fBm), and was sub-
sequently developed by him with Van Ness and Wallis,
particularly in a hydrological context [12,14]. fGn is a sta-
tionary ergodic process, for which a power spectral density
is a natural, well-defined concept, the paradox here resid-
ing in the singular behaviour of S′(f) at zero frequency
(in the H > 1/2 case).

Skepticism about fGn-and another related LRD pro-
cess, Granger and Hosking’s autoregressive fractionally
integrated moving average (ARFIMA, [12]) as a univer-
sal explanation for observed Hurst effects remained (and
remains) considerable, though, because of the highly non-
Markovian properties of these processes. Many authors,
particularly in statistics and econometrics, have found
models based on change points to be better motivated, not
least because many datasets are unambiguously known to
have change points that need to be handled. If such change
points occur at random intervals, and the time series occu-
pies discrete levels, such a model is already of CTRW form
(see for example, the right hand panel of fig. 1 of [15]).

Meanwhile, in the physics literature, in the last two
decades, it has increasingly been realised [16] that a
CTRW-class model, the nonstationary but bounded frac-
tional renewal process (FRP), gives rise to 1/f spectra.
These power spectra have been recognised to be non-
ergodic, possessing a dependence on the observation time
which has been proposed as a resolution of the “1/f” para-
dox. To facilitate comparison, in Section 2, I will briefly
recap the key properties of the FRP and fGn and the
differences between them.

In view of the increased interest in physics of non-
ergodic FRPs, this paper aims first to offer a brief review
of Mandelbrot’s second main contribution to the “1/f”
problem, in parallel with the above work on fBms, his still
very little known work on fractional renewal processes in
1963–67. To my great surprise I have found that the still
topical dichotomy between ergodic and non-ergodic ori-
gins for 1/f periodograms was not only recognised but
published on by Mandelbrot about 50 years ago, and
that he proposed both mechanisms as solutions for “1/f”
signals in different contexts. He developed his FRPs in
parallel with his seminal and much more visible work on
ergodic, stationary fGn which is thus today very much
better known to physicists, geoscientists and many other
time series analysts (e.g. [17,18]).

The preprint [11] in which I first reported this work has
drawn some attention, and in consequence Mandelbrot’s
pioneering insights are now being more widely acknowl-
edged (e.g. [19]). This paper thus expands on it to offer

more technical detail in order to facilitate the integration
of his work into current investigations. I will describe 5 key
papers [20–24], and the bridging essays he wrote when he
revisited them late in life for (edited) republication in his
Selecta volumes [14,25]. In these papers he:

– proposed the use of time series models with heavy-
tailed (Pareto) waiting time distributions of the form
Pr(U ≥ u) = u−α, with α in the stable range, to
capture hierarchical clustering effects;

– recognised that these were self-similar stochastic
point processes;

– noted that such models were not stationary processes
with a conventional Wiener–Khinchine interpreta-
tion for their power spectrum;

– introduced the concept of a conditionally stationary
random variable;

– used conditional stationarity to define a conditional
covariance CW ;

– using CW , showed that their conditional spectral
density had an explicit dependence on observation
time: S′(f) ∼ T 1−αfα−2;

– explained in detail why this was a resolution of the
“infrared paradox” in cases where no intrinsic low
end cutoff is seen;

– discussed the nonergodicity of self-similar stochastic
point processes.

Mandelbrot’s work at IBM was not the only contempo-
rary paper on point processes with heavy tailed waiting
times, at least one other example being the work of Mertz
[26,27] at RAND on modelling telephone errors, so this
article does not attempt to assign priority. Additionally, as
noted by Shlesinger [2], one should realise that the idea of
introducing waiting times between the transitions between
states of a Markov processes had been around for about
10 years when Mandelbrot used it in 1963, having been
introduced in work by Paul Lévy in 1954.

The second main purpose of this contribution, in
Section 4, aided by this historical perspective, is to clarify
the subtle differences between 3 phenomena: the empirical
Hurst effect, the appearance of 1/f noise in periodograms,
and the concept of LRD as embodied by the station-
ary ergodic fGn model, and to set out their hierarchy
with respect to each other. This relatively short paper
does not deal directly with multiplicative models (e.g.
[3,25]), although they remain a very important alternative
source of 1/f spectra, particularly those which arise from
turbulent cascades. I also do not consider 1/f -type peri-
odograms arising from nonstationary self-similar walks
such as fBm. Such walks are intrinsically unbounded and
so the periodogram must already a priori be different from
a stationary power spectrum.

I conclude by arguing that the relative neglect of [20–
23] at the time of their publication must have had long-
term effects, particularly on the nascent field of complexity
science as it developed in the 70s and 80s.

https://epjb.epj.org/
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2 Fractional Gaussian noise and fractional
renewal processes compared

2.1 Fractional Gaussian noise

fGn [18] is effectively a derivative of fractional Brownian
motion YH,2(t):

YH,2(t) =
1

CH,2

∫
R

dL2(s) KH,2(t− s), (1)

which in turn extends the Wiener process to include a
self-similar memory kernel KH,2(t− s), such that

KH,2(t− s) = [(t− s)
H−1/2
+ − (−s)H−1/2

+ ], (2)

thus giving a decaying, non-zero weight to all of the val-
ues in the time integral over the Gaussian white noise
dL2. In consequence fGn shows long range dependence
by construction, and it became the original paradigmatic
model for LRD. The attention paid to its 1/f spectrum
and long-tailed autocorrelation function as diagnostics of
LRD has often led to it being forgotten that stationar-
ity is the other essential ingredient for LRD in this sense.
Intuitively one can see that without stationarity there can
be no LRD because there is no infinitely long past history
over which sample values of the process can be dependent.
Models like fGn, and also fractionally integrated noise
(FIN) and the ARFIMA process, which have been widely
studied in the statistics community (e.g. [17,18]) exhibit
LRD by construction, i.e. stationarity is assumed at the
outset in defining them. More subtly, this notion of LRD
also appears to require the stronger property of ergodic-
ity, in order that their conventional interpretations can
be ascribed to the power spectrum and autocorrelation
function.

While undeniably important to time series analysis and
the development of complexity science, it is obvious from
the restriction to stationary processes, that the LRD
concept when embodied by fGn might be insufficient to
describe the full range of 1/f or Hurst behaviour that
observations might present us with. Full awareness of this
fundamental limitation seems to have been slow, however.
I think this has been due to three widespread, deeply-
ingrained, but unfortunately erroneous “folk beliefs” (to
which I have not been immune): (i) that an observed
Fourier periodogram can always be taken to estimate a
meaningful power spectrum, (ii) that the Fourier trans-
form of an empirically obtained periodogram is always a
meaningful estimator of an autocorrelation function, and
(iii) that the observation of a 1/f Fourier periodogram in
a time series must imply the kind of long range depen-
dence that is embodied in the ergodic fractional Gaussian
noise model. The first two beliefs are of course routinely
cautioned against in any good course or book on time
series analysis, including classics like Bendat’s [28]. The
third belief remains highly topical, however, because it
is only relatively recently being appreciated in the the-
oretical physics literature just how distinct two of the
paradigmatic classes of 1/f noise model are, and how these

differences relate not only to LRD but also to the funda-
mental physical question of weak ergodicity breaking (e.g.
[5,7,16]).

2.2 Fractional renewal models: the AFRP and CTRW

The second paradigm for 1/f noise mentioned above is the
fractional renewal class, which is a descendent of the clas-
sic random telegraph model [28]. Its structure is stationary
and Markovian, but it has switching times at power law
distributed intervals, which in consequence may lack a
variance or even a mean. A particularly well studied vari-
ant is the alternating fractal renewal process (AFRP, e.g.
[29,30]), which is closely connected to the renewal reward
process in mathematics. When studied in the telecom-
munications or other engineering contexts, however, the
AFRP has often had a cutoff applied at large values of
time to its switching time distribution to allow analyti-
cal tractability. The use of an upper cutoff masks some of
its most physically interesting behaviour, because when
the cutoffs are not used the periodogram, the empirical
acf, and observed waiting time distributions, all grow with
the length of time over which they are measured, ren-
dering the process both non-ergodic and non-stationary
in a fundamental sense (Mandelbrot preferred his own
term “conditionally stationary”). In particular, Mandel-
brot stressed that the process no longer obeys the neces-
sary conditions on the Wiener–Khinchine theorem for its
empirical periodogram to be straightforwardly interpreted
as an estimate of the power spectrum.

The existence of this alternative, nonstationary, noner-
godic fractional renewal model makes it clear that there
is a difference between the observation of an empirical
1/f noise alone, and the presence of the type of LRD
that is embodied in the stationary ergodic fGn model. We
will develop this point further in Section 4, but will first
go back to the 1960s to survey the less well known of
Mandelbrot’s twin tracks to 1/f .

3 Mandelbrot’s fractional renewal route to
1/f

Mandelbrot was not only aware of the distinction between
fGn and fractional renewal models [14,25], but also pub-
lished a nonstationary model of the AFRP type in 1965
[21,22] and had explicitly discussed the time dependence
of its power spectrum as a symptom of non-ergodicity by
1967 [23].

There are 5 key papers in the development of Man-
delbrot’s consideration of fractional renewal models and
ageing:

3.1 A fractional renewal model: Berger and
Mandelbrot [20]

The first, cowritten with his IBM colleague, the physicist
Berger [20], appeared in the IBM Journal of Research and
Development. Concerned with errors in telephone circuits,
its main focus was on the power law distribution of times
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u between errors, of the form:

Pr(U ≥ u) = u−θ, (3)

where θ refers to an exponent more usually denoted as α
when it falls in the stable range of 0–2.

The errors were themselves assumed to have discrete
states. Switching models, particularly the state dependent
ones, were already being considered in order to model the
clustering of errors, and the main point of the paper was
to demonstrate how apparent clustering could originate
in the hierarchy created by a fractal waiting time dis-
tribution, without the need to assume state dependence.
Berger and Mandelbrot acknowledged that Pierre Mertz of
RAND had already studied a power law switching model
[26], but Mandelbrot’s early exposure to the extended
central limit theorem via the lectures of Paul Lévy, and
the fact that he was contemporaneously studying heavy
tailed models in economics and neuroscience, among other
applications, seem to have enabled him to see a broader
significance for the FRP class than his peers did.

3.2 Conditional stationarity of self-similar stochastic
point processes: Mandelbrot [21]

The second, a sole author paper [21], was in the IEEE
Transactions on Communication Technology, and essen-
tially also used the model published with Berger, although
it employed a technique reminiscent of the renormalisation
group to study how the waiting time distribution would
change with the introduction of a coarse-graining time
scale ε. It assumed that P (u) = 1 for U < ε while the
above form is retained for u > ε, resulting in a distribution
of times between observed “boxes” of:

Pr(U ≥ u) = u1−θ − (u− 1)1−θ. (4)

The abstract notes that it describes:

... a model of certain random perturbations
that appear to come in clusters, or bursts. This
will be achieved by introducing the concept of
“self-similar stochastic point process in contin-
uous time.” The resulting mechanism presents
fascinating peculiarities from the mathematical
viewpoint. In order to make them more palat-
able as well as to help in the search for further
developments, the basic concept of “conditional
stationarity” will be discussed in greater detail
than would be strictly necessary from the view-
point of the immediate engineering problem of
errors of transmission.

The idea of “conditional stationarity” was introduced
in this paper to handle the peculiarities of waiting times
in the case 0 < θ < 1, when not only the variance but the
mean of the inter-event intervals are infinite, with expec-
tation value E(U) =∞. Mandelbrot drew a contrast with
the conventional definition of stochastic point processes in
terms of an indicator function V (t′h, t

′′
h) which is 1 if the

time interval (t′h, t
′′
h) contains a switching event. Such a

process is stationary if all the joint probabilities of form

Pr{V (t′h, t
′′
h)} = vh are unchanged when δ 6= 0 is added

to t′h and t′′h. In the infinite mean case, the probability of
t′1, t

′′
1 containing a switching event is |t′′1 − t′1|/E(U) and

thus zero. He thus argued for the use of conditional indi-
cator functions, the subset where V was already known to
take the value of 1. Conditional stationarity would thus
only refer to time translation of this subset.

3.3 Conditional spectra in fractional renewal
processes as a solution to the infrared catastrophe:
Mandelbrot [22]

It is clear that by 1965 Mandelbrot had come to appre-
ciate that the application of the Fourier periodogram
to conditional stationary processes would give counter-
intuitive results if naively treated as an estimate of a
Wiener–Khinchine spectrum, noting in [21] that:

The now classical technique of spectral anal-
ysis is inapplicable to the processes examined
in this paper but it is sometimes unavoidable
that otherwise excellent spectral estimates be
applied in this context. Another publication of
the author [i.e. Ref 18 in [21]] is devoted to
an examination of the expected outcomes of
such operations. This will lead to fresh concepts
that appear most promising indeed in the con-
text of a statistical study of turbulence, excess
noise [i.e. “1/f”], and other phenomena when
interesting events are intermittent and bunched
together (see also [Ref 19 in [21]]).

The “[other] publication ... Ref 18”, became the third
key paper [22] in the sequence. It resulted from Mandel-
brot’s talk at the IEEE Communications Convention in
Boulder 1965, and is now available in the post hoc edited
form that all papers take in his Selecta volumes [14,25].
The editing has attracted controversy [31], but with the
proviso that the Selecta version may not fully reflect the
original content, it nonetheless seems clear that in [22]
Mandelbrot discussed a three state, explicitly nonstation-
ary, renewal model. This stochastic process was intended
as a “cartoon” to model intermittent turbulence, in which
“off” periods (of no activity) were interrupted by jumps to
a negative (or positive) “on” (active) state. His key find-
ing was that the traditional Wiener–Khinchine spectral
diagnostics would return a 1/f periodogram and thus a
spectral “infrared catastrophe” when viewed with tradi-
tional methods, but, building on the notion of conditional
stationarity proposed in [21], a conditional power spec-
trum S(f, T ) could be defined that was decomposable into
a stationary part in which no catastrophe was seen, and
one that depended on the length of the time series T ,
multiplying a slowly varying function L(f).

3.4 Explicit calculation of the spectrum of the FRP,
and ergodicity breaking: Mandelbrot [23]

The “Reference 19” anticipated in [21] seems likely, from
the above description of its subject matter, to have been
intended to be a paper in the applied mathematics or
physics literature. I have not yet been able to determine
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Fig. 1. “The positive portions of Paul Lévy’s symmetric stable
distributions” in the finite mean 1 < α ≤ 2 case, after figure 3
of [23], with the more usual notation α for the stability expo-
nent, rather than Mandelbrot’s θ. Note that the paper also
considered the infinite mean 0 < α < 1 range of the stable
distributions, not plotted here.

that original version’s fate but its role was effectively taken
over by the fourth key paper [23]. This instead appeared in
an electrical engineering and communications journal and
contained a very detailed examination of the fractional
renewal process and its implications for Fourier spectra.

In it Mandelbrot generalised his earlier 3-state FRP
model to one with an arbitrary number of discrete lev-
els. Although he devoted considerable space to considering
slowly varying waiting times, for concreteness he spe-
cialised to waiting times drawn from a stable distribution,
specifying it by its characteristic function. The resulting
probability density decayed for large t as a power law
p(t) ∼ t−(1+θ), when θ was chosen in the stable range
0 < θ < 2, while θ = 2 was the Gaussian case. The paper
distinguished between the region 1 < θ < 2, with finite
mean waiting times, and the region with infinite mean,
0 < θ < 1 , which has also been the focus of much recent
research (e.g. [7]). He illustrated in the former case in one
of the paper’s three figures, replotted as my Figure 1. In
the former (stationary) case he argued that some but not
all of Wiener–Khinchine theory was still applicable, but
contended that for the latter a “non-Wieneran” spectral
theory would be needed, remarking that:

[...] the existence of fθ−2 noises challenges the
mathematician to reinterpret spectral measure-
ments otherwise than in “Wiener–Khinchin”
terms ... [because] operations meant to measure
the Wiener–Khinchine spectrum may unvolun-
tarily measure something else, to be referred to
as the “conditional spectrum” of a “condition-
ally covariance stationary” random function.

He first discussed the θ = 0 case, which corresponds to
a situation where a time interval will contain at most one
switching event, illustrated in his figure 1 (my Fig. 2). He

Fig. 2. After figure 1 of [23], the simplest case of a switching
model considered by Mandelbrot in which only one transition
occurs in the observation interval.

referred to this as the “DC” case because it represented
a switch at time T0 between the two constant values W

′′

and W
′

.
The simplicity of this case enabled him to explicitly

calculate the conditional convariance function, and thus
point out that the conditional spectral density S′(f, T )
obeyed

S′(f, T ) =
d

df
S(f, T ) ∼ f−2T−1, (5)

and had an explicit dependence on the length of time T
over which the series was observed. He also drew atten-
tion to the difference between time averages and ensemble
averages even in this simplest case.

He then generalised to the 0 < θ < 1 case, and illus-
trated this in his figure 2 (my Fig. 3), finding that:

S(f, T ) ∼ fθ−1L(f)Q(T ), (6)

where Q(T )T 1−θ was slowly varying, so that the condi-
tional spectral density S′(f, T ) now obeyed

S′(f, T ) ∼ fθ−2T θ−1L(f). (7)

In the same paper, anticipating [7] by nearly 50 years,
he argued that this effect resolved the “1/f” paradox. In
one of the Selecta essays [25] he described the apparent
infrared catastrophe in the power spectral density in the
FRP as a “mirage”, rather than representing a true sin-
gularity in power at the lowest frequencies as is seen in
fGn.

Direct experimental evidence for the predicted time
dependent prefactor in the power spectrum has only
recently been available from experiments on blinking
quantum dots [8]. Another pioneering measurement [32]

https://epjb.epj.org/
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Fig. 3. After figure 2 of [23], the multilevel switching process
studied by Mandelbrot where the switching times are drawn
from a probability distribution. The paper considered both the
finite-mean stable distributions as shown in Figure 1 and their
infinite-mean counterpart.

has been that of interface fluctuations in the KPZ univer-
sality class (both experiment and simulations). Interest-
ingly, in view of Mandelbrot’s original intended applica-
tion of the fractional renewal process as a caricature of
intermittent turbulence, such an approach to 1/f has also
recently been used in this context by Herault et al. [33].
In their case the mean sojourn time is finite (c.f. Fig. 1)
but the variance diverges.

3.5 A mathematical theory for conditional spectra
and their fluctuations: Mandelbrot [24]

In [23] Mandelbrot emphasised the clear contrast between
his conditionally stationary, non-Gaussian fractional
renewal 1/f model and his stationary Gaussian fGn model
(the 1968 paper about which, with Van Ness, was then in
press at SIAM Review):

Section VI [... of [23] ... ] showed that some
fθ−2L(f) noises have a very erratic sampling
behavior. Some other fθ−2 noises are Gaus-
sian and, therefore, perfectly “well-behaved;”
an example is provided by the “fractional white
noise” [i.e. fGn] which is the formal derivative
of the process of Mandelbrot and Van Ness 1968
[i.e. fBm]

He was referring here to the behaviour of several quan-
titities calculated from a given realisation of a fractional
time process, including N(t), the number of switching
events observed in the time interval, and time averages
(taken over the interval 0 to t) of his “indicator” and
“core” functions V and W . He related these to the skewed
Lévy-stable distributions. The calculations were only per-
formed in the finite mean waiting time case, however,
and discussion of the infinite mean waiting time case
was advertised as being in [24]. This latter is a much

more mathematical contribution, the fruit of what seems
to have been a rather bruising (invited) encounter with
Berkeley mathematicians in 1965 at the Fifth Symposium
on Mathematical Statistics and Probability.

I have been unable so far to fully elucidate its content,
but in any event, Niemann et al. [7] have recently given
a very precise analysis of the behaviour of the frequency
averaged spectra in this infinite mean case, first obtaining
its Mittag-Leffler distribution analytically and checking
this by simulations (see e.g. their fig. 2).

4 The Hurst effect vs. 1/f vs. LRD

Informed in part by the above historical investigations, the
purpose of this section is now to distinguish conceptually
between 3 things which are still frequently, and mistak-
enly, regarded as the same. To recap, the phenomena
are:

– the Hurst effect: the observation of “anomalous”
growth of range in a time series using a diagnostic
such as Hurst and Mandelbrot’s R/S or detrended
fluctuation analysis (DFA)(e.g. [12,18]);

– 1/f noise: the observation of singular low frequency
behaviour in the empirical periodogram of a time
series;

– long range dependence (LRD): a property of a sta-
tionary model by construction. This can only be
inferred to be a property of an empirical time series
if certain additional conditions are known to be met,
including the important one of stationarity.

The reason why it is necessary to unpick the relationship
between these ideas is that there are three commonly held
misconceptions about them.

The first misconception is that observation of the Hurst
effect in a time series necessarily implies stationary LRD.
This is “well known” to be erroneous, see e.g. the work of
[34] who showed the Hurst effect arising from an imposed
trend rather than from stationary LRD, but is nonetheless
in practice still not very widely appreciated.

The second misconception is that observation of the
Hurst effect in a time series necessarily implies a peri-
odogram of power law form. Although less “well known”
[35], for example, have shown an example where the Hurst
effect arose in the Lorenz model which has an exponential
power spectrum rather than 1/f .

The third misconception is the idea that observation of
a 1/f periodogram necessarily implies stationary LRD. As
noted above, this is a more subtle issue, and although little
appreciated since the pioneering work of [21–23] it has
now become central to the investigation of weak ergodicity
breaking in physics.

4.1 The Hurst effect

The Hurst effect was originally observed as the growth of
range in a time series, at first the Nile. The original diag-
nostic for this effect was rescaled range, or R/S. Using the
notation J (not H) for the Joseph (i.e. Hurst) exponent
that Mandelbrot latterly advocated [14], the Hurst effect
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is seen when the R/S [12,18] grows with time as

R

S
∼ τJ , (8)

in the case that J 6= 1/2. During the period between
Feller’s proof that an iid stationary process had J =
1/2, and Mandelbrot’s papers of 1965–68 on long range
dependence in fGn, there was a controversy [12] about
whether the Hurst effect was a consequence of nonsta-
tionarity and/or a pre-asymptotic effect. The controversy
has never fully subsided [12] because Occam’s Razor fre-
quently favours at least the possibility of change points
in an empirically measured time series (e.g. [36]), and
because of the (at first sight surprising) non-Markovian
property of fGn.

The latter objection was addressed by Mandelbrot when
he was interviewed by physicist Bernard Sapoval for the
Web of Stories project in the 1990s. Showing the influ-
ence of subsequent developments in the physics on critical
phenomena on his worldview, he explained how he had by
then come to view LRD models like fGn:

The consequences of this fundamental idea are
hard to accept ... [a]nd many people in many
contexts have been arguing strongly against it,
... If infinite dependence is necessary it does
not mean that IBM’s details of ten years ago
influence IBM today, because there’s no mecha-
nism within IBM for this dependence. However,
IBM is not alone. The River Nile is [not]
alone. They’re just one-dimensional corners
of immensely big systems. The behaviour of
IBM stock ten years ago does not influence its
stock today through IBM, but IBM the enor-
mous corporation has changed the environment
very strongly. The way its price varied, went
up, or went up and fluctuated, had discon-
tinuities, had effects upon all kinds of other
quantities, and they in turn affect us. And so
my argument has always [sic] been that each of
these causal chains is totally incomprehensible
in detail, [and] probably exponentially decaying.
There are so many of them that a very strong
dependence may be perfectly compatible.

A key point to appreciate is that it is easier to generate
the Hurst effect over a finite scaling range, as measured
for example by R/S, than it is to generate a true 1/f
spectrum over many decades [35], for example shows how
a Hurst effect can appear over a finite range even when the
power spectrum is known a priori to not be 1/f , e.g. in the
Lorenz attractor case where the low frequency spectrum
is in fact exponential.

4.2 1/f spectra

The term 1/f spectrum is usually used to denote peri-
odograms where the spectral density S′(f) has an inverse
power law form, e.g. the definition used in [22,23]

S′(f) ∼ fθ−2, (9)

where θ runs between 0 and 2.
One needs to distinguish here between bounded and

unbounded processes. Brownian, and fractional Brownian,
motions are unbounded, nonstationary random walks and
one can view their 1/f1+2J spectral densities as a direct
consequence of nonstationarity, as Mandelbrot did (see pp.
78–79 of [25]). In many physical contexts however, such
as the on-off blinking quantum dot process [7] or the river
Nile minima studied by Hurst [12] the signal amplitude is
always bounded and does not grow in time, requiring a
different explanation that is either stationary like fGn or
“conditionally stationary” like the FRP.

Mandelbrot’s best known model for 1/f noise remains
the stationary, ergodic, fractional Gaussian noise (fGn)
that he advocated so energetically in the 1960s. But,
evidently aware that this had had received a dispropor-
tionate amount of attention, he was at pains late in his
life (e.g. page 207 of Selecta Volume N [25], introducing
the reprinted [22,23]) to stress that:

Self-affinity and an 1/f spectrum can reveal
themselves in several quite distinct fashions ...
forms of 1/f behaviour that are predominantly
due to the fact that a process does not vary in
“clock time” but in an “intrinsic time” that is
fractal. Those 1/f noises are called “sporadic”
or “absolutely intermittent”, and can also be
said to be “dustborne” and “acting in fractal
time”.

He thus clearly distinguished LRD stationary ergodic
Gaussian models like fGn from his “conditionally station-
ary” FRP, noting also that:

There is a sharp contrast between a highly
anomalous (“non-white”) noise that proceeds
in ordinary clock time and a noise whose prin-
cipal anomaly is that it is restricted to fractal
time.

In practise the main importance of this is to caution
that, used on its own, even a sophisticated approach to
the periodogram like the GPH method [18] cannot tell
the difference between a time series being stationary LRD
and “just” a 1/f noise, unless independent information
about stationarity is also available.

One route to reducing the ambiguity in future stud-
ies of 1/f is to develop non-stationary extensions to the
Wiener–Khinchine theorem. An important step [37] has
been to distinguish between one which relates the spec-
trum and the ensemble averaged correlation function, and
a second relating the spectrum to the time averaged cor-
relation function. The importance of this distinction can
be seen by considering Fourier inverting the power spec-
trum, i.e. does inversion yield the time or the ensemble
average? [E. Barkai, personal communication]. Another is
to increase the emphasis on statistical hypothesis testing,
where the degree of support between models like ARFIMA
and its seasonal or heavy tailed variants is compared (e.g.
[38]).
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4.3 LRD

Readers will, I hope, now be able to see why I believe
that the commonly used spectral definition of LRD has
caused misunderstandings. The problem has been that on
its own a 1/f behaviour is necessary but not sufficient, and
stationarity is also essential for LRD in the sense so widely
studied in statistics community (e.g. in [17,18]). One may
in fact argue that the more crucial aspect of LRD is thus
the “loose” one embodied in its name, rather than the
formal one embodied in the spectral definition, because
a 1/f spectrum can only be synonymous with LRD when
there is an infinitely long past. The fact that fGn exhibits
LRD by construction because the stationarity property is
assumed, and also shows 1/f noise, and the Hurst effect
has led to the widespread misconception that the converse
is true, and that observing 1/f spectra and/or the Hurst
effect must imply LRD.

5 Conclusion: beyond Mandelbrot’s
fractional renewal models

Unfortunately [23] and its predecessors received far less
contemporary attention than did Mandelbrot’s papers on
heavy tails in finance in the early 1960s or the series with
van Ness and Wallis in 1968–69 on stationary fractional
Gaussian models for LRD, gaining only about 20 cita-
tions in its first 20 years. The fact that his work on the
AFRP was communicated primarily in the (IEEE) jour-
nals and conferences of telecommunications and computer
science concealed it from the contemporary audience that
encountered fGn and fBm first in SIAM Review and Water
Resources Research. Whatever the explanation, it was so
invisible that one of his most articulate critics, hydrologist
Vit Klemeš, actually proposed [39] an AFRP model as a
paradigm for the absence of the type of LRD seen in the
stationary fGn model, clearly unaware of Mandelbrot’s
work. Sadly Klemeš and Mandelbrot seem not to have
subsequently debated FRP and fGn approaches either, as
with the advantage of historical distance, and new the-
ory [19] one can see the importance of both non-ergodic
and ergodic models to the 1/f question. Leibovich and
Barkai [19] have pointed out that there is a fundamen-
tal difference between measurement of 1/f noise on the
single molecule level and measurements of a large ensem-
ble of fluctuating units, in that the former exhibit a time
dependent spectrum, and the latter do not. In their view
this partially explains why it took 50 years to confirm
Mandelbrot’s prediction of the form of the time depen-
dent spectrum. The experiments on blinking dots are
single molecule experiments, where ensemble averaging is
removed.

Although he revisited the 1963–67 fractional renewal
papers with new commentaries in the volume of his Selecta
[25] that dealt with multifractals and 1/f noise, Mandel-
brot himself did not mention them explicitly in his popular
historical account of the genesis of LRD [40]. It is clear
that he saw the FRP and FGn as a representing two dif-
ferent strands from the way each was allocated a separate
Selecta volume [14,25]. Despite the Selecta, the relatively

low visibility seems to have remained to the recent past.
Mandelbrot’s fractional renewal papers are for example
not cited or discussed in Beran et al.’s encyclopaedic book
on LRD [18]. Even when cited the FRP papers’ actual con-
tent seems not always to be known, and I can personally
attest to their low visibility in physics, having not come
across them until 2014. A notable recent exception to this
was a paper by Lenoir [41] which has picked up on the
“conditional stationarity” idea.

The relative invisibility of the 1963–67 papers has, how-
ever, allowed a fruitful period of independent confirmation
by rediscovery which has also seen several key new results
not obtained by Mandelbrot, which are developing the
field well beyond its origins. These have included:

– experimental confirmation of the time-dependent
spectrum [8,32], the absence of which may have con-
tributed to Mandelbrot’s relative lack of subsequent
emphasis on his fractional renewal models;

– a modern theory [37,42] using scale invariant auto-
correlation functions of the form < I(t)I(t + τ >=
tgφ(τ/t), implying a wider range of models and
systems beyond renewal theory;

– extension of the Wiener–Khinchine theorem to this
class of processes [37,42];

– explicit calculation of the effect of conditional sta-
tionarity on non-ergodicity [7];

– the emphasisis of Bouchaud et al. [43] on the effect on
the power spectrum of the waiting time tw between
the onset of a nonstationary process and the begin-
ning of a measurement of duration T in the interval
tw, tw + T , as distinct from the previously noted
dependence of the spectrum on the measurement
interval T . While Mandelbrot considered the case
tw = 0, the opposite case tw � T can be physically
important.

One long term consequence of the low visibility of
non-ergodic solutions to the 1/f problem in the physics
and statistics literatures may have been to emphasise
ergodic mechanisms at their expense. I believe this to
have been important, because, for example, Per Bak et
al.’s paradigm of Self-Organised Criticality, in which sta-
tionary spectra and correlation functions play an essential
role, could surely not have been positioned as the unique
solution to the 1/f problem [44] if it had been widely
recognised just how different Mandelbrot’s two existing
routes to 1/f already were. In addition, I think that the
route that Mandelbrot took from the fractional renewal
models to multifractality (see e.g. pp. 243–246 of [25])
will repay further historical investigation, and may even
yield a better physical appreciation for models which are
still frequently seen as dauntingly abstract. I also hope to
further investigate the idea of conditional stationarity, in
order to clarify whether it was an intellectual dead-end
or whether it may still have relevance to current work on
weak ergodicity breaking and ageing. The adoption of the
conditional language by [19] is an encouraging sign in this
respect. I thus plan to return to the history of this period
(see also [12]) in future articles.

https://epjb.epj.org/


Eur. Phys. J. B (2017) 90: 241 Page 9 of 9

I am very grateful to Holger Kantz of the Max Planck Insti-
tute for the Physics of Complex Systems in Dresden, and
Ralf Metzler of the Physics Department at the University of
Potsdam, and their research groups, for their hospitality and
interest during various stages of this research, and for many
valuable discussions. The former visit was supported by a vis-
iting senior scientist position at MPIKS funded by the Max
Planck Society, and the latter was supported by ONR NICOP
Grant N62909-15-1-N143 to the University of Warwick. It is
also a pleasure to thank Eli Barkai for comments on a draft
of [11], the referee for their helpful suggestions, and numerous
other members of the anomalous diffusion research community,
including Mike Shlesinger, Rainer Klages, Daniela Froemberg,
Igor Sokolov, Igor Goychuk and Aleksei Chechkin, for valuable
interactions.

Open Access This is an open access article distributed
under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/4.0), which
permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

References

1. E. Montroll, G.H. Weiss, J. Math. Phys. 6, 167 (1965)
2. M. Shlesinger, Eur. Phys. J. B 90, 93 (2017)
3. M.A. Rodriguez, Phys. Rev. E 90, 042122 (2014)
4. M.A. Rodriguez, Phys. Rev. E 92, 012112 (2015)
5. J.-P. Bouchaud, J. Phys. I France 2, 1705 (1992)
6. I. Goychuk, Commun. Theor. Phys. 62, 497 (2014)
7. M. Niemann, E. Barkai, H. Kantz, Phys. Rev. Lett. 110,

140603 (2013)
8. S. Sadegh, E. Barkai, D. Krapf, New J. Phys. 16, 113054

(2015)
9. F.D. Stefani, J.P. Hoogenboom, E. Barkai, Phys. Today

62, 34 (2009)
10. M. Shlesinger, Math and physics: Lévy flights and drives,
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