
Open Research Online
The Open University’s repository of research publications
and other research outputs

A comparison of methods for early prediction of
anaerobic biogas potential on biologically treated
municipal solid waste
Journal Item

How to cite:
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ABSTRACT 1 

Anaerobic gas production tests, generically Biochemical Methane Potential (BMP) or 2 

Biogas Potential (BP) tests, are often used to assess biodegradability, though long 3 

duration limits their utility. This research investigated whether simple modelling 4 

approaches could provide a reliable earlier prediction of total biogas production. Data 5 

were assessed from a non-automated biogas test on a large number of both fresh 6 

and processed municipal solid waste (MSW) samples, sourced from a mechanical 7 

biological treatment (MBT) plant. Non-linear models of biogas production curves 8 

were useful in identifying a suitable test endpoint, supporting a test duration of 50 9 

days. Biogas production at 50 days (B50) was predicted using the first 14 days of test 10 

data, using (a) linear correlation, (b) a new linearisation process, and (c) non-linear 11 

kinetic models. Prediction errors were quantified as relative root mean squared error 12 

of prediction (rRMSEP), and bias. Predictions from most models were improved by 13 

removing the initial exponential increase phase. Linear correlation gave the most 14 

precise and accurate predictions at 14 days (rRMSEP = 2.8%, bias under 0.05%) 15 

and allowed acceptable prediction (rRMSEP <10%) both at 8 days, and at 6 days 16 

using separate correlations for each sample type. Of the other predictions, the new 17 

linearisation process gave the lowest rRMSEP (10.6%) at 14 days. More complex 18 

non-linear models conferred no advantage in prediction of B50. These results 19 

demonstrate that early prediction of anaerobic gas production is possible for a well-20 

optimised test, using only basic equipment and without recourse to external data 21 

sources or complex mathematical modelling.  22 

 23 

KEYWORDS: Biogas Potential; biodegradability; anaerobic; biogas; kinetic model; 24 

Mechanical biological treatment (MBT)  25 
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1. INTRODUCTION 1 

Biodegradable material in municipal solid waste (MSW) sent to landfill becomes a 2 

source of biogas, containing the greenhouse gases methane and carbon dioxide. 3 

Even where waste minimisation and source separation of recyclable materials are 4 

established, residual household waste may contain a substantial proportion of 5 

biodegradable material. The need to minimise biodegradable waste in landfill is 6 

recognised in the Council of the European Union Directive 1999/31/EC (European 7 

Union, 1999). Mechanical biological treatment (MBT) can be used to stabilise waste 8 

prior to landfilling. To assess diversion of biodegradable material from landfill, not 9 

only the quantity but also the potential biogas production, or anaerobic 10 

biodegradability, of processed material is relevant. The assessment recommended 11 

by the UK Environment Agency uses the BMc test (Turrell et al., 2009), a biogas 12 

production test run to completion under methanogenic conditions.  13 

Anaerobic biogas production tests are bioassays often referred to generically as 14 

Biochemical Methane Potential (BMP) tests (Wagland et al., 2009), though where 15 

biogas rather than methane is determined, the term Biogas Potential (BP) would be 16 

more appropriate. There are a range of test methods for specific purposes which 17 

differ in sample preparation, operational conditions and gas collection (VDI-4630, 18 

2006; Wagland et al., 2009, BSI, 2010; Walker et al., 2010). BP tests are reliable and 19 

require only simple, widely available laboratory equipment, though automated 20 

systems have also been used. For all BP tests, and BMP tests where methane is 21 

determined to assess biodegradability or energy potential, the dynamics of gas 22 

production are similar. 23 

A major disadvantage of BP and BMP tests is their long duration. A BMc test may 24 

exceed 100 days (Turrell et al., 2009), while comparable tests vary between 21 and 25 



 Page 4 of 37  

100 days duration (Wagland et al., 2009). This timescale does not allow timely 1 

feedback for operational issues at an MBT plant. Long test duration has been 2 

identified as problematic for similar tests assessing potential gas production for 3 

anaerobic digestion (Stromberg et al., 2015) and post-digestion stability (Banks et 4 

al., 2013).  5 

To overcome the long test duration, one approach has been to demonstrate 6 

correlation with shorter tests such as aerobic respirometric tests (Barrena et al., 7 

2009; Cossu and Raga, 2008; Godley et al., 2007; Ponsá et al., 2008) or near-8 

infrared spectroscopy (Ward, 2016). Data from the early stages of BMP tests have 9 

also been used to predict final values (Ponsá et al., 2011a, Stromberg et al., 2015, 10 

Da Silva et al., 2018).  11 

Various kinetic models have been used to describe the form of the gas production 12 

curve and estimate the final value and parameters such as lag period and maximum 13 

rate (e.g. Donoso-Bravo et al., 2011; Shahriari et al., 2012; Stromberg et al., 2015). 14 

The cumulative gas curve is typically described as sigmoidal, starting with a lag 15 

period, followed by a period of rapid gas production and finally a plateau where gas 16 

production approaches an asymptote value. This basic form has been also applied to 17 

microbial growth curves (Zwietering et al., 1990) and aerobic tests (Ponsá et al., 18 

2011b; Tosun et al., 2008). More complex models may describe the curve shape 19 

more accurately for instance by including terms for a lag phase or multiple rate 20 

constants.  21 

A range of models are potentially applicable to description of cumulative biogas 22 

production curves (Table 1). First order equations are among the simplest and are 23 

applicable where there is a single rate-limiting step (Shahriari et al., 2012). Variants 24 

include use of variable time dependence (Stromberg et al., 2015) and multiple terms 25 
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for rapidly and slowly available substrates (Junker et al., 2016; Ponsá et al., 2011b; 1 

Tosun et al., 2008). Additional parameters may allow a closer fit to the data, however 2 

increased complexity is only justified where it leads to significant improvement to 3 

predictions (parsimony principle). Both the Gompertz equation and the Logistic 4 

model (Junker et al., 2016) are most usefully expressed using easily interpreted 5 

parameters for lag, maximum rate, and asymptote value (Zwietering et al., 1990). 6 

Other models may be considered purely empirical with the parameters having no 7 

clear physical meaning, such as the Monod (Liu, 2007) and Levi-Minzi models.  8 

 9 

Table 1: Models used to describe cumulative gas production curves with equations 10 

and references  11 

Name  Equation References 

First order (FO) 

𝐵𝑡 = 𝐵∞(1 − exp(−𝑘𝑡)) , k>0 

(Gioannis et al., 

2009; Shahriari et 

al., 2012; 

Stromberg et al., 

2015) 

First order with 

modified time 

dependency 

(FOMT) 

𝐵𝑡 = 𝐵∞(1 − exp (−𝑘𝑡𝛾), k>0 

(Stromberg et al., 

2015) 

First order-zero 

order (FOZO) 
𝐵𝑡 = 𝐶𝑟(1 − 𝑋 exp(−𝑘1𝑡)) + 𝐶𝑠(𝑘2𝑡) 

where 0<A<100, 0<B<100, k1>0, k2>0 

(Ponsá et al., 

2011b; Tosun et 

al., 2008) 



 Page 6 of 37  

First order-first 

order (FOFO) 

𝐵𝑡 = 𝐵∞ (1 − 𝐶𝑟 exp(−𝑘1𝑡) − (1 −

𝐶𝑟) exp(−𝑘2𝑡)) 

where 0<X<1, k1>0, k2>0, k2<k1 

(Ponsá et al., 

2011b; Tosun et 

al., 2008) 

First order 

variant - inverse 

time (FOIT) 

𝐵𝑡 = 𝐵∞ exp (
−𝑘

𝑡
) 

See section 3.4.2  

Monod  

𝐵𝑡 =  𝐵∞ (
𝑘𝑡

1 + 𝑘𝑡
) 

(Junker et al., 

2016; Stromberg 

et al., 2014),  

Monod 

quadratic (MQ) 
𝐵𝑡 =  𝐵∞ (

𝑡2

𝑡2 + 𝑘1𝑡 + 𝑘2
) 

(Stromberg et al., 

2015)  

Gompertz  

𝐵𝑡 = 𝐵∞𝑒𝑥𝑝(− exp(𝑘(𝜆 − 𝑡) + 1)) 

Where k = 
µ𝑚exp (1)

𝑀∞
  

(Lay et al., 1999; 

Lay et al., 1996; 

Zwietering et al., 

1990) 

Modified 

Gompertz (GM) 
𝐵𝑡 = 𝐵∞𝑒𝑥𝑝 (−

𝜃1exp(−𝑘1𝑡)

𝑘1
−

𝜃2exp(−𝑘2𝑡)

𝑘2
) 

(Stromberg et al., 

2015) 

Levi-Minzi (LM) 

𝐵𝑡 = 𝑘𝑡𝑚 

(Ponsá et al., 

2011b; Tosun et 

al., 2008) 

Logistic 
𝐵𝑡 = 𝐵∞ (

1

(1 + exp[𝑘(𝜆 − 𝑡) + 2])
) 

Where k = 
4µ𝑚

𝑀∞
 

(Zwietering et al., 

1990) 

Where: 1 

Bt = cumulative gas production at time t,  2 
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B∞ = ultimate gas production at t = ∞,  1 

µm is maximum rate of gas production,  2 

λ is lag time in days,  3 

Cr, Cs are the rapidly and slowly degradable carbon fractions, 4 

θ1, θ2, k, k1, k2 and 𝛾 are fitted constants. 5 

 6 

A lag period is commonly observed while the microbial population adapts to the test 7 

conditions, and this is followed by an exponential growth or ’log‘ phase (Olofsson 8 

and Ma, 2011). The lag period has been assessed in various ways: fitting non-linear 9 

models which incorporate lag term, such as the Gompertz model (Behera et al., 10 

2010; Boulanger et al., 2012; Lay et al., 1999), using the second derivative, and 11 

projecting back a tangent at the maximum rate to starting value (Swinnen et al., 12 

2004). Junker et al. (2016) also refer to the lag as 10% of the total gas production 13 

when the plateau is reached, though this definition is not useful in the context of 14 

early prediction of the test endpoint. In the German fermentation test, GB21, the lag 15 

phase is defined as the period during which the rate of gas production remains under 16 

25% of the maximum rate of gas production in the first 21 days (BMU, 2001). For 17 

prediction of total gas production it may be more relevant to assess the exponential 18 

growth or log phase. This phase is unlikely to fit the simpler models that describe 19 

only the asymptote to the final value. Gioannis et al. (2009) fitted separate first order 20 

curves before and after peak gas production rate for landfill samples. For prediction 21 

of the total gas production, only the curve after the peak rate would be relevant.  22 

Gas production curves typically do not have a clear endpoint and the criteria for 23 

ending BP or BMP tests are rarely reported. The BMc test is defined as running until 24 



 Page 8 of 37  

biogas production effectively ceases (Turrell et al., 2009). Similarly, other authors 1 

report that a test is complete when gas production is negligible (Gioannis et al., 2 

2009; Ponsá et al., 2008). This introduces a degree of subjectivity in identifying a 3 

level of gas production that is considered to be negligible. Other tests use a fixed 4 

number of days; Wagland et al. (2009) reviewed published tests run for 21, 30, 45, 5 

60, 90 and 100 days. Another approach is to define the end of test as the first day on 6 

which the daily gas production is less than 1% of total gas production (Stromberg et 7 

al., 2015). A percentage of the maximum rate, or a fixed low daily rate could also be 8 

used. Since all of these approaches are arbitrary to some degree, standardised 9 

criteria would be beneficial.  10 

The primary aim of this work was to identify a reliable method of predicting total 11 

biogas production values from test data recorded in the first two weeks of testing, 12 

assessed by low random errors and low bias. The test used (BMc) was a standard, 13 

non-automated BP test using widely available materials. Prediction should ideally be 14 

simple to apply without reference to extensive details about the sample or external 15 

data sources. To achieve this, it was necessary to explore the curve shape found 16 

and identify a suitable definition of the end-point of the test.  17 

 18 

2. MATERIALS AND METHODS 19 

 20 

2.1 Sample collection 21 

Samples for BMc tests were taken between November 2013 and June 2017 from an 22 

active MBT plant. Material entering the plant was residual household waste 23 

containing between 58 and 73% organic material. In the plant, the waste was first 24 
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subjected to mechanical sorting, removing recyclable and non-compostable 1 

materials to produce a feedstock for the biological treatment, containing mean 74.5% 2 

organic material. Though imperfectly sorted, this may be considered to be organic 3 

fraction of municipal solid waste (OFMSW) and this term is used hereafter. The 4 

biological treatment was a six to seven week batch composting process. 5 

Temperature in the compost exhaust gas was monitored by the plant, typically 6 

exceeding 60°C by week 3 of the process and decreasing towards the final field. The 7 

quality of the final compost-like output (CLO) is the result of turning frequency, 8 

watering rate, and aeration regime, all of which varied over time through each batch 9 

and between batches.  10 

Samples of compost feedstock (OFMSW, n=72) were taken after the mechanical 11 

sorting process and prior to biological treatment. Samples of CLO (n=76) were taken 12 

during discharge from the composting hall. All samples were a composite sample of 13 

at least ten increments taken over the period of a batch infeed or output. The 14 

sampling included an initial period of operation during which CLO material was not 15 

well stabilised. Sampling was therefore extended to include more stable CLO from 16 

periods of improved operation.  17 

 18 

2.2 Sample preparation and characterisation 19 

Each sample was hand fractionated and residual non-biodegradable components 20 

were quantified and removed. The remaining organic fraction was dried at 70°C for 21 

two days, then stored at 4°C until analysed. Each sample was ground to 4mm, and a 22 

subsample ground to 1mm for laboratory testing.  23 
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Dry matter (DM) was analysed according to EN 13040 (BSI, 2007). Loss on ignition 1 

(LoI) was determined at 550°C (Turrell et al., 2009) and used to calculate Volatile 2 

Solids (VS) as an estimate of organic matter content. Total organic carbon content 3 

(TOC) was analysed on a Shimadzu TOC-V elemental carbon analyser with a solid 4 

sample module. Total nitrogen content (TN) was analysed using the modified 5 

Kjeldahl method EN 13654-1 (BSI, 2001). Mean values for each sample type are 6 

shown in Table 2.  7 

 8 

2.3. BMc test 9 

Anaerobic biodegradability was measured using the BMc test (Turrell et al., 2009), 10 

optimised to the available supply of inoculum following guidance in VDI 4630 (VDI-11 

4630, 2006). The inoculum was a mesophilic digestate from a local wastewater 12 

treatment plant. Each test batch included OFMSW and CLO samples, cellulose 13 

reference material (α-cellulose, Sigma), and blanks containing inoculum and 14 

nutrients only; each in triplicate. The inoculum to substrate ratio was approximately 15 

1:1 based on volatile solids (VS), incubation temperature was 35°C, and biogas was 16 

collected in tubes using a salt/acid barrier solution (Walker et al., 2009). Collected 17 

biogas volumes were recorded daily for at least the first 14 days, thereafter less 18 

frequently as the rate of biogas production reduced. Corrections for temperature, 19 

pressure and water vapour were calculated as indicated in Walker (2009). Biogas 20 

production for each sample and reference material replicate was corrected for biogas 21 

production from the blank inoculum in each batch. Results are expressed per sample 22 

volatile solids i.e. L kg-1(VS). To validate the method, dry weight and LoI of the 23 

sample-inoculum mixture were determined at the end of selected tests and used with 24 

mean carbon content (52.6%) to assess the bulk loss of carbon by weight. 25 
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Comparison to the quantity of carbon contained in the biogas indicated that biogas 1 

recovery was greater than 80%, as recommended by VDI 4630, (VDI-4630, 2006). 2 

 3 

2.4 Data processing  4 

Data processing was conducted using an R statistical environment (V. 3.3.1). A total 5 

of BMc test 484 replicates were analysed including OFMSW, CLO and cellulose 6 

reference material, with 17 replicates excluded due to gas leakage during the tests. 7 

The term Bt is used herein to refer to cumulative biogas production at day t during a 8 

test; similarly, biogas production on specific days is indicated by subscript, e.g. B14 is 9 

gas production after 14 days, B∞ is the maximum potential biogas production at time 10 

infinity. B14 was determined as the nearest recorded data point to 14.0 days since 11 

gas volumes were not always recorded at the same time each day.  12 

Linear models were produced to calculate the relationship between B14 and B50 for 13 

all samples and for the different sample types. Predictions of B50 were made using 14 

(1) the single coefficients from the linear model for all samples and (2) using the 15 

different linear model coefficients for each sample type i.e. OFMSW, CLO and 16 

cellulose.  17 

The linearisation of the data was conducted using linear modelling of log (Bt) against 18 

1/t for each of the samples, after removal of the log phase data. This was the most 19 

effective attempt at linearisation as assessed by linear correlation coefficient (R2) for 20 

a subset of OFMSW and CLO samples.  21 

The nonlinear models (Table 1) were fitted to all samples using the nlsLM function 22 

from the R package minpack.lm (V. 1.2-1) which uses the Levenberg-Marquardt 23 

fitting algorithm. Adequacy of fit was evaluated first by visual inspection of curves 24 
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and residual errors. The coefficient of determination, R2, was calculated using the 1 

residual sums of squares between the actual and modelled values at each point 2 

along the curve (Equation 1), where values close to 1 indicate a good prediction. The 3 

rRMSE (whole curve) was calculated using Equation 2. 4 

𝑅2 =  1 − (
Σ(𝑦𝑖−�̂�𝑖)2

Σ(𝑦𝑖−𝑦)2 ) (1) 5 

𝑟𝑅𝑀𝑆𝐸 =  √
Σ(𝑦𝑖−�̂�𝑖)2

𝑛
∗ 100/ 𝑦 (2) 6 

In Equations 1 and 2, yi refers to measured datapoints; ŷi to corresponding 7 

calculated points, and y̅ to mean value of yi).  8 

The lag phase was estimated using models with a specific lag term (Gompertz, 9 

Logistic), and by projecting a tangent back from the point of maximum rate (µm) to 10 

zero gas production (tangent method) (Swinnen et al., 2004). To identify the end of 11 

the exponential (log) phases from each replicate curve, the first derivative of gas 12 

production against time was calculated for each replicate using the 13 

predict.smooth.Pspline function from the R package pspline (V. 1.0-17), giving the 14 

point of fastest rate.  15 

Each model was assessed using the rRMSE of prediction (rRMSEP), expressed as a 16 

percentage using Equation 3,  17 

𝑟𝑅𝑀𝑆𝐸𝑃 =  √
Σ(𝑦𝑖−�̂�𝑖)2

𝑛
∗ 100/ 𝑦 (3) 18 

where yi refers to actual B50, ŷi to predicted B50, and y̅ to mean value of B50 over a 19 

group of samples. Values calculated for rRMSEP were compared between models 20 

using TukeyHSD multiple comparison. To test the time required to achieve rRMSEP 21 

of under 10%, incrementally increasing amounts of data from 2 days up to 30 days 22 
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were fitted to each model. The bias of each model was assessed as the mean of 1 

predicted B50 minus actual B50, as a percentage of actual B50. 2 

 3 

3. RESULTS AND DISCUSSION 4 

3.1 Sample characterisation 5 

Mean values of DM, LoI, TOC and TN for each sample type are shown in Table 2. 6 

Samples were typical of OFMSW and had a C:N ratio of around 25, expected to be 7 

suitable for composting. CLO samples were in general quite dry, with material 8 

deliberately dried towards the end of the composting process.  9 

 10 

Table 2 Basic characterisation of OFMSW and CLO samples, mean values with 11 

standard deviation (in parentheses) 12 

Sample  Dry Matter 

% as 

received 

LoI 

% DM 

Total C 

% DM 

Total N 

% DM 

B50 

L/kg VS 

OFMSW 

(n=72) 
47.1 (4.0) 72.5 (3.2) 38.9 (1.9) 1.5 (0.1) 483 (45) 

CLO (n=76) 71.2 (9.9) 66.2 (5.0) 35.9 (2.7) 1.4 (0.1) 338 (51) 

Cellulose 

(n=19) 

    697 (37) 

 13 

3.2 Modelling the full data 14 
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All models listed in Table 1 produced curves that approximate the shape of the 1 

actual cumulative gas production. Parameters for goodness of fit for each are shown 2 

in Table 3. Each model was also inspected visually using both the recorded values 3 

against fitted curves and collated residual errors, against both Bt values and time 4 

(the latter shown in Figure 1).  5 

 6 

Table 3 Goodness of fit terms for each model; correlation coefficient R2 for all 7 

samples, and rRMSE (whole curve) across the duration of each test, for all samples 8 

and subsets for OFMSW, CLO and cellulose. 9 

Model R2 

All samples 

 

rRMSE 

All samples 

(%) 

rRMSE 

OFMSW  

(%) 

rRMSE 

CLO 

(%) 

rRMSE 

Cellulose 

(%) 

GM 0.9985 1.76 1.74 1.64 1.66 

MQ 0.9976 2.22 2.03 2.14 2.34 

FOFO 0.9956 2.87 2.43 2.65 3.78 

FOMT 0.9958 2.92 2.74 2.91 2.88 

FOZO 0.9935 3.63 2.50 2.74 5.23 

FOIT 0.9930 3.77 2.78 3.07 5.16 

FO 0.9921 4.01 3.01 3.25 5.43 

Gompertz 0.9890 4.74 4.88 5.12 3.32 

Logistic 0.9828 5.91 5.98 6.38 4.41 

Monod 0.9815 6.13 4.72 4.88 8.22 

Levi-Minzi 0.9067 13.78 12.31 12.52 15.45 

 10 
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The modified Gompertz (GM) model had lowest rRMSE (whole curve) for both the 1 

whole dataset (1.76%) and separate groups of OFMSW, CLO and cellulose 2 

samples, and highest R2 value (0.9985). Visual inspection showed that the residual 3 

errors for this model were the most evenly spread across values of Bt and time. The 4 

greatest divergence from the data occurred in the first 20 days, though residuals 5 

were smaller than for other models over this period. The quadratic Monod (MQ) had 6 

the second lowest rRMSE (whole curve), at 2.22% across all samples, and showed a 7 

similar pattern of residuals though with larger errors throughout the test.  8 

The models based on first-order curves all produced a similar pattern, with high 9 

errors in the first few days of the test and modelled Bt values tending to fall below 10 

actual values between days 5 to 20. The more complex two-part models, first order-11 

first order (FOFO) and first order-zero order (FOZO), showed slightly lower residual 12 

errors throughout the test period and especially after about day 40 of the tests. 13 

These two models, and the first order with modified time dependency model (FOMT), 14 

gave relatively low rRMSE (whole curve) values and high R2. However FOMT and 15 

the simplest first order model (FO) tended to slightly underestimate Bt after about 16 

day 40. All of these models produced values of rRMSE (whole curve) of about 4% or 17 

below on the full data set. 18 

The Monod and Levi-Minzi (LM) models showed a similar but more extreme pattern 19 

of residuals, with LM overestimating the data after day 30. The Levi-Minzi model had 20 

the highest rRMSE (whole curve) (13.78%) and lowest R2 (0.9067) across all 21 

samples. In contrast, the Logistic and Gompertz models tended to produce values 22 

higher than the data between about 10 to 25 days and underestimate Bt later in the 23 

test. 24 
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A good fit to the whole curve does not necessarily imply a model will be useful for 1 

prediction, since the prediction may be sensitive to small deviations in the early part 2 

of the curve. Stromberg et al. (2015) note that the modified Gompertz model had 3 

previously been found to have the best fit over a large set of samples, though did not 4 

perform well as a predictive model from early data. It is however useful to consider 5 

the shape of the curve, especially the final plateau phase, to estimate an appropriate 6 

end-point for the test.  7 

 8 

 9 

Figure 1: Residual errors between actual and modelled data over time for each non-10 

linear model in Table 1.  11 

 12 
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3.3 End-point 1 

Despite the intention for BMc tests to run until biogas production effectively ceases, 2 

there was no clear end-point and biogas production did not decrease to zero within 3 

100 days. The cumulative curve appeared to be best described using models that 4 

tend to an asymptote at time infinity i.e. a value B∞. A reasonable definition of an 5 

endpoint would be when gas production reaches 99% of the projected endpoint i.e. 6 

the time to reach 99% of B∞ (t99). It may be assumed that B∞ is best estimated by 7 

models which fit the recorded data well for the final recorded values. Since the 8 

biogas production at the end of tests was small and reducing, it was assumed that 9 

the extrapolated curve for such models would remain close to the true values. 10 

Conversely, models which tend to diverge from the recorded final values would 11 

continue to overestimate (Monod, LM) or underestimate (Gompertz, Logistic) the true 12 

value of B∞. A close fit to recorded data throughout the curve is expected to give a 13 

better estimate of t99.  14 

For the simplest FO curve, the time to 99% completion was calculated as t99 = 15 

ln(0.01)/k, where k is the relevant first order constant. This gave an estimate of the 16 

mean time to 99% completion of 28.6 days (maximum 46.2 days). However as noted 17 

in section 3.2, this model tends to underestimate Bt after about day 40 and is likely to 18 

give a low estimate for B∞. A slightly closer fit is achieved by FOMT, which gives a 19 

mean t99 of 29.0 days, with 99.4% of samples reaching the 99% target by day 50.  20 

The two-part models FOFO and FOZO gave a close fit to the data after about day 21 

40. For tests with the longest duration, i.e. 70 to 100 days, these two models gave 22 

the closest agreement between modelled curve and recorded data at the end of test. 23 

These attempt to identify the rapidly and slowly degradable carbon fractions. An 24 

example of each type of sample is shown graphically in Figure 2. The values found 25 



 Page 18 of 37  

for kinetic constants k1 (for the rapidly degradable fraction) and k2 (for the slowly 1 

degradable fraction) were comparable to those found by other authors for OFMSW in 2 

aerobic laboratory tests (Ponsá et al., 2011b; Tosun et al., 2008).  3 

 4 

 5 

Figure 2: Graph of a) FOZO, first order-zero order model and b) FOFO first order-6 

first order model, fit to data on typical samples of OFMSW material (black), CLO 7 

(dark grey) and cellulose (light grey), demonstrating rapidly degradable (dashed line) 8 

and slowly degradable (dotted line) fractions.  9 

 10 

Based on the FOZO model, the slowly degradable fraction is represented as 11 

producing biogas linearly over time, with no asymptote value. If it is assumed that all 12 

carbon that is not rapidly degradable belongs to the slowly degradable fraction (‘Cs’ 13 

in Table 1, FOZO equation), the median linear rate constant k2 of 0.00085 d-1 14 

corresponds to 3.2 years to completion. This may be considered unrealistically long 15 

to wait for completion of a test and slow enough to safely be ignored. This is an 16 

overestimate of Cs since there is likely to be some non-available carbon and 17 

therefore this value for k2 is an underestimate. The rate is expected to decrease 18 
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towards completion, further extending the test. If the slowly degradable fraction is 1 

ignored and the rate of rapidly degradable fraction k1 alone used to estimate the time 2 

to 99% completion, the calculated time to 99% of B∞ is very similar to the FO model. 3 

The FOFO model failed to converge on parameter estimates for all the samples and 4 

in some cases produced simple first-order (FO) curves. However for samples that 5 

could be calculated, this model repeated the pattern found for the FOZO model.  6 

Biogas production at 50 days has been used to provide a standardised endpoint 7 

throughout this paper. This gave a robust and practical estimate of B∞ for these tests. 8 

To verify the choice of endpoint at 50 days, values of actual B50 were compared to 9 

fitted values for B∞ for other models that give the most realistic estimates for B∞ 10 

based on the discussion in section 3.2. For the GM model, which gave the lowest 11 

rRMSE (whole curve), B50 was lower than modelled B∞ by 0.58% (mean), with over 12 

95% of the samples within 2.7% of this value. Using FO, B50 differs from modelled B∞ 13 

by mean 1.6% (standard deviation 1.5%); using FOMT, mean 1.7% (standard 14 

deviation 1.3%). As expected, Monod and MQ gave higher estimates for B∞, and 15 

Gompertz and Logistic gave lower estimates.  16 

This approach to establishing a fixed test duration seems appropriate for these well-17 

optimised tests on samples from MBT. The same approach could be used in other 18 

situations provided it is possible to adequately model the curve shape. The mean 19 

rate of biogas production was 4.5 (standard deviation 1.8) ml g-1(VS) d-1 at 14 days, 20 

1.6 (standard deviation 0.9) ml g-1(VS) d-1 at t99 as estimated from the FO curve, and 21 

0.4 (standard deviation 0.4) ml g-1(VS) d-1 at 50 days. A gas production rate 22 

threshold could be used to specify the end of a test, for instance a threshold of 1 ml 23 

g-1(VS) d-1. 24 
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For comparison with the endpoint definition used by Stromberg et al. (2015), the time 1 

at which daily gas production fell below 1% of total gas volume to that point was 2 

calculated. To avoid spurious variability, the first day when 4 consecutive days were 3 

recorded below this rate was used. The mean was 17.5 days (standard deviation 3.4 4 

days). The proportion of B∞ at this point was mean 91.1% (standard deviation 3.1%).  5 

 6 

3.4 Lag/log phase removal  7 

Cumulative curves were inspected for the length of the lag and exponential increase 8 

(log) phase. The lag phase for all these tests was found to be less than 2 days and 9 

the majority were close to zero. The effect of cutting the lag period on the rRMSE 10 

(whole curve) and R2 for each model is small. The results of other methods of lag 11 

estimation were all similar. The short lag period confirms that there was no inhibition 12 

or retarded degradation in these tests, by the definitions in VDI 4630 (VDI-4630, 13 

2006). This may be due in part to the use of dried, ground material, which may have 14 

removed volatile inhibiting substances.  15 

A precise definition of the end of the log phase can be made using the first derivative 16 

of the cumulative curve, or daily rate of biogas production (Figure 3). Time to the end 17 

of the log phase ranged from 0 to 6.7 days, with 96% of the samples achieving 18 

maximum daily rate of biogas production by 3 days. The mean was 1.65 days for 19 

OFMSW samples, 1.72 days for CLO samples, and 1.96 days for cellulose. Cutting 20 

the log phase gave a lower rRMSE (whole curve), and higher R2, for the remaining 21 

data for most models. This was not true however for the Gompertz and Logistic 22 

models. These two models include a specific parameter for the lag and so may 23 

better describe the sigmoidal nature of the curves, so that removing the lag and log 24 
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phase conferred no advantage. The effect of cutting the log phase, and lag phase 1 

using the tangent method of lag removal, is shown in Figure 4. 2 

 3 

 4 

Figure 3: Example of lag identification, a) shows the cumulative curve and b) the first 5 

derivative, daily rate of biogas production. The vertical dashed line indicates the 6 

defined end of the lag period.  7 

 8 



 Page 22 of 37  

 1 

Figure 4 Error terms as rRMSE (whole curve) for a range of models with a) all data 2 

(dark grey), b) lag phase data as estimated from the tangent at maximum rate 3 

removed (light grey), c) log phase data calculated by first derivative removed (white). 4 

 5 

Up to the end of the log phase, biogas production is assumed to be limited by the 6 

increasing population of biogas-producing microbes. After this point, biogas 7 

production is expected to be controlled by the available substrate, or more precisely, 8 

hydrolysis of the suspended reactants as the rate limiting step (Shahriari et al., 2012; 9 

Stromberg et al., 2014). This would suggest a simple first order (FO) curve would be 10 

appropriate after the log phase. This is consistent with the approach taken by 11 

Gioannis et al. (2009), who fitted separate first order curves before and after the 12 

point of maximum rate.  13 

 14 
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3.5 Methods of prediction of total gas production 1 

3.5.1 Simple linear correlation to 50 days 2 

At day 14 an rRMSEP of 2.8% was achieved with the single linear model (Equation 3 

4). No correction was made for the lag or log phase.  4 

𝐵50 = a +  (b ∗  𝐵14),  (4) 5 

where a = 44.816, b = 1.019.  6 

It would be expected that the shape of curve will affect the relationship. In this case 7 

the BMc test is well optimised within one laboratory and it is possible that a different 8 

relationship would be found with a different physical setup or inoculum. The work by 9 

Ponsá et al. (2011a), however, supports the result, also showing good correlation 10 

between gas production from day 3 onwards to 50 and 100 days for OFMSW. Their 11 

reported correlation between 14 and 50 days produced R2 = 0.939 (n = 20), and the 12 

equation was B50 = -24.6 + 1.49*B14. The higher gradient suggests their test was 13 

less advanced at 14 days. As noted in section 3.4, these tests were free of inhibition 14 

affects, which if present could change the shape of the curve and invalidate the 15 

prediction. 16 

 17 

3.5.2 Modelling by linearisation 18 

If a cumulative curve follows a simple shape it is likely that a transformation of the 19 

data can produce a linear relationship. This allows a linear correlation to be used in a 20 

readily available program such as Microsoft Excel, without knowledge of more 21 

specialised statistical programs. Various simple transformations were tested using 22 

linear correlation (R2) and visual inspection of both the transformed data and plots of 23 

the resulting theoretical models as shown in Figure 5 for the most successful model. 24 
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The best linear fit was found by plotting a log of the biogas production, ln(Bt), against 1 

the reciprocal of time t as demonstrated in Figure 5, giving the relationship (Equation 2 

5): 3 

ln(𝐵𝑡) = a +  b (
1

t
), (5) 4 

where a and b are the intercept and slope obtained by linear regression. This allows 5 

estimation of B∞ from the intercept, based on a limited number of points. Removal of 6 

the early log phase data up to the maximum rate was found to improve the linear 7 

correlation and this has been used throughout.  8 

Equation 5 can be rewritten as: 9 

𝐵𝑡 = 𝐵∞ exp (
𝑏

𝑡
), (6) 10 

where Bt is the cumulative biogas production at time t, B∞ is the maximum BMP 11 

value and equal to exp(a). This relationship can also be used as a non-linear model 12 

in the same way as other non-linear models. It is referred to in Table 1 and hereafter 13 

as a first order variant, First Order Inverse Time (FOIT).  14 

Linearising the BMP curves and estimating B50 with the coefficients from the linear 15 

models produces an rRMSEP of <10% by day 19. The rRMSEP at day 14 was 16 

12.7% for the combined data, 7.8% for the OFMSW samples, 12.1% for the CLO 17 

samples and 18.5% for the cellulose.  18 

 19 
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 1 

Figure 5. Typical BMc data for OFMSW and CLO sample showing (a) linearised data 2 

and (b) model prediction based on data from the first 5 days runoff the test.  3 

 4 

3.5.3 Nonlinear model predictions of BMc 5 

The non-linear model with the lowest rRMSEP for prediction of B50 after 14 days was 6 

the linearisation-derived FOIT model for the combined data (10.6%), the OFMSW 7 

samples (5.3%) and the CLO samples (5.8%), and the Logistic model for the 8 

cellulose (8.2%). A TukeyHSD multiple comparison of rRMSEP between models 9 

indicated no significant difference (p > 0.05) between most models. The exceptions 10 

were LM, FOFO, and FOZO. The LM model did not describe the curve shape well 11 

and may be expected to give poor predictions. In addition, some more promising 12 

models gave poor predictions, including FOZO and MQ. The FOFO model gave a 13 

high rRMSEP of almost 61% across all the data subsets. These models have been 14 

omitted. All final predictions were made with the log phase cut from the data, which 15 

improved predictions for all models except Logistic and Gompertz.  16 

 17 

3.6 Comparison of predictions  18 
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Predictions of B50 from the initial 14 days of data, plotted against actual B50, are 1 

shown in Figure 6 for linear correlation, linearisation (as FOIT model) and the more 2 

successful non-linear models. Parameters indicating variability and bias are shown in 3 

Table 4. Bias is reported separately for OFMSW and CLO samples. If the 4 

biodegradability of OFMSW and CLO is being compared, bias in opposite directions 5 

will accumulate. This is relevant for instance when calculating reduction in 6 

biodegradability across a process (Turrell et al., 2009).  7 

 8 

Table 4 Statistical parameters for predictions of B50 from the first 14 days of test 9 

against actual B50  10 

Model 
rRMSEP 

(%) 

R2 

(predictio

n) 

days to 

rRMSEP 

<10% 

Bias to 

OFMSW 

samples 

(%) 

Bias to 

CLO 

samples 

(%) 

Simple linear correlation 2.8 0.990 7.8 -0.34 -0.01 

Linear correlation by 

sample type 
2.5 0.992 5.8 -0.03 0.00 

FOIT (linearisation) 10.6 0.857 15 3.40 1.12 

FO 28.6 -0.043 19 -0.57 2.75 

FOMT 24.8 0.215 17 0.10 0.65 

Gompertz 11.5 0.833 18 -9.19 -12.09 

GM 30.3 -0.266 18 3.25 0.81 

Logistic 13.0 0.786 21 -12.15 -15.19 

Monod 39.4 -0.979 28 20.99 24.41 
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 1 

 2 

Figure 6 Predicted B50 from data at 14 days against actual B50 for each of the models 3 

assessed. The diagonal line on each graph indicates 1:1 correspondence. OFMSW 4 

samples (o), CLO samples (×) and cellulose (+). 5 

 6 

The lowest bias as well as the lowest rRMSEP was achieved using simple linear 7 

correlation. This was further improved using separate correlations by sample type 8 

(i.e. for OFMSW, CLO and cellulose samples). Of the non-linear models, the first-9 

order group plus GM gave the lowest bias on OFMSW and CLO samples. Of these, 10 

the linearisation-derived FOIT gave the lowest variability (low rRMSEP and high R2), 11 

though was less successful for the cellulose reference material. This compared 12 

favourably with predictions from respirometric activity (Scaglia et al., 2010) and with 13 

improved predictions made by using additional parameters such as volatile solids 14 
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(Schievano et al., 2008; Schievano et al., 2009) , which achieved rRMSEP of 27.4% 1 

for the most reliable model. While it did not achieve the 10% target used by 2 

Stomberg et al. (2015) within 14 days, it does provide a simple and potentially useful 3 

prediction and can be carried out easily in a spreadsheet using linear correlation, 4 

with no requirement for additional reference data. The FO and FOMT models gave 5 

similar predictions though with a proportion of samples giving unusual high values. 6 

The GM model produced very high rRMSEP and low R2. Predictions using the 7 

Gompertz and Logistic models were tightly clustered but showed negative bias i.e. 8 

consistently low estimates. Predictions using the Monod model were both biased and 9 

variable.  10 

 11 

3.7 Earliest adequate prediction 12 

For each of the prediction methods in Table 4, predictions were made using test data 13 

as recorded from day 2 to day 30 of each test, in order to assess how early in the 14 

test a reasonable prediction of B50 could be made. A target value of rRMSEP = 10% 15 

was chosen, an arbitrary value that has also been used by other authors (Stromberg 16 

et al., 2015). It can be seen that errors increase rapidly when using less than 14 17 

days of data for most methods (Figure 7).  18 

 19 
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 1 

Figure 7 Error term rRMSEP for each prediction using data for increasing time 2 

periods of test. The dashed line indicates 10% rRMSEP, chosen as the threshold for 3 

adequate prediction.  4 

 5 

Again, the most successful prediction was the simple linear correlation. Using this 6 

method, a prediction could be made earlier, achieving an rRMSEP between actual 7 

B50 and predicted B50 of <10% for all the samples from day 8. Furthermore, an 8 

rRMSEP of <10% could be achieved from 6 days by using multiple linear models 9 

with parameters in Equation 4 specific to sample types: for OFMSW a = 48.902, b = 10 

1.014; for CLO a = -3.166, b = 1.185; and for cellulose samples a = -20.674, b = 11 

1.047. 12 

It is possibly surprising that the simplest correlation gives the lowest error and bias 13 

as it does not account for shape of curve. However, the curve shape is in general 14 
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very similar in each test, with all tests run on the same optimised protocol. It appears 1 

that predictions using early data and non-linear models add more uncertainty from 2 

random variation in the data than they gain from accounting for the curve shape. In 3 

addition, bias can be increased if the curve shape changes over time, with even 4 

small changes having a strong effect on predicted values. It is known that the 5 

OFMSW samples contain a combination of slowly to rapidly available material, 6 

making such variation likely. A much more sophisticated model than those used here 7 

may overcome this, but additional complexity would be likely to lose the advantage 8 

of quick response. 9 

The FO model achieved an rRMSEP of <10% after 19 days. Da Silva et al (2018) 10 

based predictions of BMP test parameters on an FO model and related the kinetic 11 

constant to predict a threshold time when final methane production and kinetic 12 

constant would be adequately independent. This indicates adequate prediction could 13 

be achieved in 13.2 days for the OFMSW with the lowest kinetic constant, and 15.3 14 

days for the CLO with the lowest kinetic constant. This is broadly consistent given 15 

the different criteria for adequate prediction. The relationship between kinetic 16 

constant and threshold time identified by Da Silva et al. (2018) explains the shorter 17 

times required to predict the maximum methane yield for more rapidly biodegradable 18 

substrates found by both Ponsá et al. (2011) and Strömberg et al. (2015).  19 

Stromberg et al. (2015) achieved predictions with rRMSEP of 10% after only 6 days 20 

for household waste, using the best of a collection of models and reference to a 21 

database of known tests. As noted in section 3.3, the target endpoint of daily gas 22 

production below 1% of total used by Stromberg et al. was an earlier end-point than 23 

B50 and perhaps less challenging to predict. The instruments used for this record 24 

data at equal increments of gas volume, providing more detail during the period of 25 
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rapid gas accumulation, whereas the BMc tests reported here were monitored daily. 1 

It is possible that increased data density in the early part of the test could improve 2 

predictive power. However, it is also possible that the changing shape of the curve 3 

due to biochemical changes over time are a more important limitation to prediction.  4 

 5 

5. CONCLUSIONS 6 

This study demonstrates that total biogas production in a non-automated and well 7 

optimised BMc test can be reliably predicted mathematically from data in the first 14 8 

days of the test with reasonable variability and low bias. The most effective method 9 

was simple linear correlation which gave predictions of B50 (rRMSEP < 10%, 10 

absolute bias < 0.02%) after only 8 days, or from 6 days using separate correlations 11 

for MBT OFMSW and CLO samples. Early reporting without recourse to additional 12 

tests can reduce costs and provide timely feedback for processing plants. These 13 

results are based primarily on MBT samples subjected to a single test methodology; 14 

further work would be required to apply these results to other sample types. However 15 

the dynamics of gas production may be expected to be similar in other tests of this 16 

type.  17 

Gas production at 50 days was found to be a robust and practical endpoint for these 18 

tests, with over 99% of the estimated ultimate gas volume achieved for all samples. 19 

A useful alternative definition of endpoint as the point at which the rate of gas 20 

production drops below 1 ml g-1(VS) d-1 is suggested.  21 

Predictions could also be made by fitting non-linear models. The most successful of 22 

these was a new model based on linearisation of the data (FOIT), which may be 23 

worth exploring further for sample types or tests where linear correlation fails. More 24 
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complex models, especially GM, FOZO and FOFO, most closely described the 1 

shape of the whole cumulative gas curve and provided useful insights, but conferred 2 

no advantage in early prediction of total gas production, Simpler models such as 3 

FOIT and FO were improved by first removing the initial exponential growth (log) 4 

phase.  5 

 6 
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