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Abstract 

For almost as long as the electricity distribution industry itself has existed, so also 

has the idea of utilising the transmission grid, be it over a wide area or on a local basis, for 

the transmission of 'intelligence'. This might be in the form of voice transmissions, or for 

the purposes of monitoring or controlling electrical devices attached to the network. 

This thesis specifically concerns itself with the potential applications of power-line- 

carrier (PLC) communications technology within the field of industrial plant/equipment 

control, as it is within this field that the author works. 

We look at the entire subject area of industrial control, starting from a historical 

viewpoint, and consider the special needs and requirements that a proposed PLC solution 

must offer for this application, especially based on the noise conditions likely to be 

experienced on a `real' power line. 

A proposal is made for a `Power Bus', intended for use within certain areas of 

industrial control, and decisions are made based on the projected link response times for 

such applications. 

The experimental phase of the research is practical in nature and consists of a raft 

of tests and evaluations of the performance of power line modem technologies, under 

controlled and repeatable noise conditions. To complement these results, further tests are 

carried out under `real world' conditions, within an actual factory environment. 

Based on the results of all of these tests, the suitability of a PLC solution for this 

type of industrial control application is considered. 

The Thesis concludes with a look at recent developments in, as well as the future 

of, Power Line Communication techniques. 

xi 



Summar y 

The work contained within this Thesis commences with a discussion of the 

historical perspectives of the subject area - the origins of electricity generation and the 

electrical distribution industry, before moving on to consider the modern Electricity 

Distribution Network. 

We next look at some early developments in power line communications, then at 

uses of PLC in the electrical distribution industry, including techniques such as 

Cyclocontrol, Ripple Control, and TWACS. 

We conclude Chapter 1 with a look at the development of meter reading 

techniques, and the de-regulation of the utilities industry which has prompted the need for 

real-time automatic meter reading technologies, such as those utilising PLC. Finally, the 

context is outlined for the rest of the Thesis and the experimental work. 

Chapter 2 considers the development of industrial and home automation, beginning 

with a look at the history of industrial automation and a description of the increasing 

adoption of modern technologies as we move towards the present day. The evolutionary 

path of relay-based controllers, to electronic control, to programmable logic controllers, to 

industrial computers is described. 

Home and building automation is introduced, before we describe some of the 

transmission media applicable to such applications. Chapter 2 concludes with a discussion 

of some current home and building automation systems. 

XII 



In Chapter 3 we look at the history of computer networking, up to the present day, 

and discuss typical networking systems and topologies. We then look at the OSI model for 

general networking systems, before considering how this model might be simplified in an 

industrial networking context. Chapter 3 concludes with a look at the well-known high- 

level industrial networks, MAP and TOP. 

In Chapter 4, we introduce the idea of lower-level industrial networking, local 

control networks, and the emerging Fieldbus concept. Several current Fieldbus systems are 

described, and the Chapter concludes with a look at moves towards Fieldbus 

interoperability. 

In Chapter 5 the characteristics of the power line from a communications viewpoint 

are discussed. We begin with a discussion of the many and varied sources of signal 

degradation and noise to be found on the power line, then discuss the relevant aspects of 

the EMC testing standards that are applicable. We conclude Chapter 5 with a look at 

filtering techniques that have the potential to simplify the task of power line 

communication. 

In Chapter 6, we look at some power line communication techniques, before 

considering the family of standards that are evolving to cover the subject area. 

The need for protocols is discussed, and we describe the different techniques for 

transmission error detection and correction. After considering the structure of a ̀ typical' 

data packet, we look at the data rates required for industrial control, and then introduce the 

`Power Bus' concept, and its potential applications. 

XIII 



Chapter 7 describes the experimental work in detail, the nature of the tests carried 

out, the development of the specialised `BERT' test equipment, detailed information 

regarding the two specific power line modems used, and the subsequent processing of the 

experimental data. 

In Chapter 8, the experimental results are described, analysed, and conclusions are 

drawn. 

Chapter 9 considers the future directions in which the research effort could be 

pursued, and proposes further lines of experimentation, and developments to the BERT 

equipment. To conclude the chapter, we have an overview of the advantages and 

disadvantages of more recent developments in PLC - high speed systems operating at high 

frequencies, before finally looking at the emerging concept of a ̀ Web Connected 

Appliance'. 
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CEPT European Conference of Postal and Telecommunications 
Administrations 

CISPR `Comite International Special des Perterbations Radioelectriques' 
(International Special Committee on Radio Interference) 

CPU Central Processing Unit 
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CSMA/CA Carrier Sense Multiple Access with Collision Avoidance 

CSMA/CD Carrier Sense Multiple Access with Collision Detect 
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EDT Electronic Data Transfer 
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LON Local Operating Network 
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MAP Manufacturing Automation Protocol 

MF Medium Frequency 
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TCP/IP Transmission Control Protocol/ Internet Protocol 

TOP Technical and Office Protocol 

TP Twisted Pair 

TWACS Two Way Automatic Communication System 

Tx Transmit, Transmitter 

UART Universal Asynchronous Receiver / Transmitter 

UTP Unshielded Twisted Pair 

WAN Wide Area Network 

WWW World Wide Web 
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Other Terminology in Power Line Communications 

Term Definition 
Power Line Carrier: A generic term for the technology encompassing 

data communications using the power line as the 
medium. 

Mainsborne Signalling: 

Distribution Line Carrier: 

Two-way data transmission on the power line 
medium, over the part of the circuit on the secondary 
side of the distribution transformer. 

Two-way data transmission over the electricity 
distribution network from, and including, the 
customers' premises up to the Grid Supply Point. 

Transmission Line Two-way data transmission over the electricity 
Carrier: transmission network. 

Domestic Bus: Network within domestic premises for the 
transmission of data and control signals between 
intelligent devices and appliances. 

Telecontrol: Literally, remote control. 

Telemetry: Literally, remote metering. 

Automation: The concept of making certain tasks automatic. 
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Chapter 1: Introduction 

To begin this Thesis, we will look at some of the historical background surrounding 

the subject area of this research - Power Line Communications. 

There have been attempts to utilise the power line for telecontrol functions for 

almost as long as there has been an electricity industry. We will mention these early efforts 

later, but first let us consider the phenomenon on which it all relies - electricity, and the 

technologies which evolved to make practical use of the phenomenon - those of electrical 

generation and distribution. 

1_I A Historical Perspective and Earl Electrical Discoveries 

Without knowing exactly what it was, the effects of electricity (for example, 

lightning) have been observed by man for thousands of years. The word electricity itself 

comes from the Latin term electricus, meaning to 'produce from amber by friction'. This is 

a reference to early experiments by the Greeks, whereby static electricity was generated, 

and its effects observed, using the technique of rubbing amber rods with cloth. 

After these very early discoveries, we must wait until the 18th Century before any 

significant further progress in electrical research is made. Here are some milestones 

leading to the harnessing of electricity in the service of man: 

0 1729 Gray discovers that electricity can be conducted. 

" 1745 Von Kleist invents the 'Leyden Jar', an early form of electrical capacitor, 

capable of holding an electrical charge. 
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" 1747 on Franklin starts work with static charges and postulates the existence of an 

electrical fluid that might be composed of particles. In 1750 he discovers 

that lightning is the same as an electrical discharge, and proposes lightning 

rods that would draw this charge away from homes, making them safer and 

less prone to fires. 

" 1799 Volta proves the principle of the electric cell and battery - the first 

continuous and controlled source of electricity. 

" 1820 Oersted and Ampere independently discover the relationship between 

electricity and magnetism by observing that electrical currents effected the 

needle on a compass. 

0 1827 Henry discovers the concept of electrical inductance and builds one of the 

first electric motors. 

" 1827 Ohm discovers the law relating potential, current, and circuit resistance. 

" 1831 Faraday discovers electromagnetic induction - the principle upon which 

electrical generators rely. 

1.2 The BegainninQs (the Electrical Distribution Industry 

After Faraday had discovered the principle of electromagnetic induction, it soon 

became feasible to construct practical and powerful electrical generators. By the mid-19th 

century, the potential of electricity as a source of power and illumination had begun to be 

recognized, and early, small-scale electricity generation facilities had appeared. The 

concept of a public electricity utility did not appear until some twenty years later, 

prompted by other developments such as the incandescent lamp. 
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In 1878 St George Lane-Fox in the UK and Edison in the USA proposed systems to 

supply electrical energy for lighting to customers, and in 1882 the first power-stations 

began operation in both London and New York. In these early years, there was a 

proliferation of independent electricity suppliers, often resulting in technical 

incompatibilities between their generating systems. 

A major question was whether to use direct current (DC) or alternating current 

(AC) transmission. Low-voltage DC systems were inefficient, since substantial amounts of 

power were lost in the cabling. Alternating current, by contrast, could be easily 

transformed to higher voltages for transmission, resulting in far less power loss and 

permitting the electricity to be sent over long distances with relative ease. 

The first practical AC transmission system was designed by a German engineer, 

von Miller, and it began operation in 1891. DC supply and transmission systems persisted 

well into the 20th Century, but were eventually ousted by AC for general consumer use. 

The economies of scale brought about by high-voltage AC transmission would eventually 

lead to low-cost electricity supplies in most industrialized countries. 

In the UK, the Central Electricity Board was created in 1925, to act as a 

coordinating and controlling body for the supply of electricity, and in 1927 work was 

begun on the national grid network that adapts electricity supply to suit demand. The grid 

consists of a common, shared, network of transmission lines connecting all electricity 

producers and consumers, allowing peak loads in one area to be met by electricity 

generated in another. All the power stations on the grid share the load. The grid system will 

be discussed further in the next section, when we consider the structure of the modern 

electricity distribution network. 
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1.3 The Modern Electricity Distribution Network 

The whole basis of the distribution network is optimising the efficiency of 

electricity supply and transfer. We have already mentioned the fact that the adoption of AC 

transmission was a key factor in the development of efficient electricity transmission, since 

it permitted electricity to be transmitted over long distances with minimal losses. 

Ohms' law tells us that for a given resistance of transmission line, the loss is 

proportional to the current flowing (P = I2 x R). Therefore, for a given amount of power 

being transmitted (P =Vx I), the higher the voltage, the lower the current, and the lower 

the transmission losses. Against these benefits must be weighed the increased difficulty 

(and costs) of transmission at higher voltages, and the hazards of taking such voltages into 

populated areas. Therefore, in practice, a stepped system is implemented, where voltages 

are stepped up for wide-scale distribution, then stepped down (progressively) to the final 

voltage levels used by consumers. 

In the UK (see Figure 1), the output voltage from Power Stations lies in the range 

11 kV - 33 kV. For distribution nationally, over the'Supergrid', this is stepped up to 

275 kV or 400 kV, or, for more local distribution, to 132 kV. Likewise, power from the 

'Supergrid' is stepped down to 132 kV, then to 33 kV, with a further drop, to 11 kV, as we 

move towards the final end user. Large users may take this voltage (33 kV or 11 kV) 

directly, into their own substations, or, more generally, the voltage is stepped down at local 

sub-stations to the familiar 230 V (phase to neutral), or 415 V (phase to phase), for final 

distribution to users. Note also, that in some industrial applications a further voltage 

standard of 110 V is encountered. This is usually derived locally from one of the standard 

LV supplies using transformers. 

4 



' Supergrid ' 

A T-1 
m 

275kV - 400kV 
5R 
19 
im 

n88 11kV-33kV 

t LOOI l 1kV - 33kV 

19 
ý 0 
m 

Power Station 

Distribution 

R\ fl 

11kV 11kV 11kV 

1 1111 1 1111 ý 
130 1313 013 
0 

Hospital 

240V 

Houses 

Qo on QQ 

240V 

ý 
FI-Elj]Ell-l= 

:o 

1901 
T- 

275kV - 400kV 

I 

Houses 240V 

1111111111 
11111111 II 

1111111111 I 
[liii!! It IT 

Transmission 

33kV ýý 

f 
25kV Railways 

jlllt 

tV 11kV 

3O1 

'I HH 1111101 Ll 

ri i I 111111 I II 

Heavy Industry 

rrT-rmrrrrrrm 

Light Industry 

240V 
Qo 00 

240V 

0 11301 

DO 

DO 00 

PR] 0 

Houses 

C3 OO 

T111 
ný 

Houses 

Shops & Offices 

Figure 1: The Electricity Distribution Network 

5 

00 
on 



Having described the structure of the power distribution network, We will next 

consider early developments in PLC, and also some of the uses to which it is put in the 

present day by the electrical utility companies. 

1.4 Early Developments in Power Line Communications 

It is interesting to consider the fact that, within less than twenty years of the first 

electricity supply network being created, Swiss inventors Routin and Brown had submitted 

a patent (in 1896) proposing utilising a form of power line communication as a means of 

controlling street lighting [1]. 

After this early start, the next milestone in the PLC field occurred once national 

grid systems had started to be introduced. By the 1930s, telephone signals were routinely 

being transmitted along the HV power distribution network between sub-stations, 

providing communications facilities for the electricity companies [2]. The technique was 

even proposed as a means of providing a commercial telephone service in rural areas in the 

USA [3]. These techniques utilised a modulated HF carrier frequency to carry the speech 

signal, and indeed, similar techniques are still used today by electricity companies for in- 

house communications purposes. 

On a more local level, i. e. over the low and medium voltage distribution network, 

PLC techniques have been utilised by utility companies for various purposes. These 

include remote switching (for example, to activate equipment running on an ̀ off-peak' 

electricity tariff), load shedding (turning off certain equipment when the network loading is 

excessive), and automatic meter reading. These applications will be discussed in greater 

detail in subsequent sections. 
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At the level of the consumer (i. e. over the 230/415 V network) perhaps the 

commonest early use of PLC was to provide voice intercom facilities within the home, 

without the need to run additional wiring. These tended to utilise a frequency modulated 

(FM) high frequency carrier, or perhaps several discrete carrier frequencies, giving the 

option of channelisation, i. e. allowing several simultaneous conversations, or for more than 

one system to co-exist on the same power circuit. 

It is notable that the transmission of speech over the power lines represents a fairly 

noise-tolerant technique, since it is essentially `person-to-person'. The human brain is 

capable of `decoding' and understanding the `intelligence' in such a signal, even in the 

presence of high noise levels. Such advantages do not apply when we wish to use the 

power line for sending digital signals that will be acted upon automatically, without any 

human intervention. 

1.4.1 PLC in the Electricity Distribution Network 

We have already mentioned some applications of PLC in the electricity distribution 

industry, such as remote switching and load shedding. We will now look at some 

techniques utilised for these purposes - specifically, Cyclocontrol, Ripple Control, and a 

more modern solution TWACS. 

1.4.2 Cyclocontrol 

Cyclocontrol was originally developed by the London Electricity Board [4]. It can 

be considered as a'base-band' technique insofar as no modulation of a carrier frequency is 

involved. Cyclocontrol operates by using controlled short circuits applied to the low 

voltage power line, within 1.4ms of the zero-crossing points of the mains cycle. 
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The presence of the short circuit indicates a logic state of 'I' and the absence, a 

logic state of'0'. Since there are two zero-crossings per mains cycle, this implies a 

signalling rate of 100 bits-per-second (bps) maximum (for a 50 Hz mains frequency). 

The nature of the technique (requiring high power switching devices to apply the 

controlled short circuits) makes it impractical for use, except in a one-way 'broadcast' 

scenario, with messages originating from the electricity supplier and received by suitably 

equipped users. 

Therefore, the typical uses for Cyclocontrol are those that lend themselves to a one- 

way communications link such as load shedding and off-peak switching. The nature of the 

Cyclocontrol signal means that it is able to pass through distribution transformers. It can 

therefore be injected into the grid at the 230 / 415 V level and will propagate through the 

11 kV network, then back down to the consumer at the 230 / 415 V level. 

We will next look in more detail at the Cyclocontrol switching waveform, both how 

it is generated, and how it is detected. 
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Figure 2: Cyclocontrol Transmit Voltage Waveform 
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The previous figure shows details of the Cyclocontrol transmit waveform, around 

the mains voltage zero-crossing point. The controlled short circuit is typically applied 

using a Thyristor (a semiconductor solid-state switch). This will cause the sudden voltage 

drop shown in the above figure at 1.4 ms before the zero voltage crossing point. Note that 

the waveform can equally be represented as mirrored about the time axis, depending upon 

the polarity of the mains half-cycle as it approaches the zero voltage point. 

Transm'sttsr 
currsnt tirns 

Figure 3: Cyclocontrol Transmit Current Waveform 

When it fires, the current through the Thyristor will rise initially, as shown above, 

then begin to tail off as the mains voltage passes through the zero crossing point. The 

Thyristor will remain in the conductive state until the current flow through it drops below a 

certain low threshold value. This point is reached approximately 1 ms after the zero 

voltage crossing point due to inductive lag in the system. 

We have already mentioned that the Cyclocontrol signal can pass through 

distribution transformers. In doing so, a great deal of the HF components of the waveform 

are lost, leaving a signal having a relatively small perturbation in the voltage waveform 

around the zero crossing point. This situation is illustrated in the next figure. 
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Figure 4: Attenuated Cyclocontrol Signal at Receiver 

Detecting the Cyclocontrol signal, especially when it is so attenuated, presents a 

challenge, but can be achieved by a process of integration. This concept is shown in the 

next figure. 

supply 
voltage 

Figure 5: Detecting the Cyclocontrol Signal 

The receiver monitors the voltage waveform from 1.4 ms before, and up to the zero 

crossing point, and calculates the integral function (shown as the shaded area in the 

diagram). These values are processed as follows: Should the latest integral value be less 

than the one measured during the previous half cycle, then the latest value must be a logic 

`1'. If the latest integral value is greater than the previous value, then the latest value must 

be a logic `0'. If the value is unchanged then the latest value must be the same as the 

previous value. 

Next, we will look at a more sophisticated PLC technique - Ripple Control. 
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1.4.3 Ripple Control 

Ripple control is another long established PLC technique. Here, low frequency 

signals, in the range 110 Hz - 750 Hz (at spot carrier frequencies chosen, with some 

exceptions at higher frequencies, to avoid interference from harmonics of the mains 

frequency) are superimposed on the mains cycle. 

Again, this may be done at various voltage levels in the grid system appropriate to 

the application, as the signal will propagate through the distribution transformers. The 

signals are modulated using a pulse-coding scheme, with logic ' 1' being represented by a 

few cycles of the carrier frequency. 

HARMONIC (Hz) 
(for 50Hz mains) 

100 150 200 

ALLOWABLE 
HARMONIC LEVEL 1.5 4 0.76 

(%) 
CONTROL 

FREQUENCY (Hz) 
110 168 183 194 206 217 

RECOMMENDABLE 
RIPPLE LEVEL 1.7 1.7 3 2 2 3 

o 

HARMONIC (Hz) 250 300 350 400 
ALLOWABLE 

HARMONIC LEVEL 5 0.51 4 0.39 
0 

CONTROL 
FREQUENCY (Hz) 228 270 283 317 383 

RECOMMENDED 
RIPPLE LEVEL o 

2 3 3 3 3 

HARMONIC (Hz) 450 500 550 600 650 700 750 
ALLOWABLE 

HARMONIC LEVEL 0.67 0.32 3 0.27 2.1 0.23 0.30 

0 
CONTROL 425 485 600 750 

FREQUENCY (Hz) 
RECOMMENDED 3 4 4 4 

RIPPLE LEVEL o 
Figure 6: Ripple Control Frequencies and Amplitudes vs. Mains Harmonics 
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The previous table shows the various mains harmonic frequencies (for a 50 Hz 

mains frequency), with the recommended maximum level for each harmonic, and also the 

ripple control frequencies, with their recommended levels. It can be seen that where the 

ripple frequencies and harmonic frequencies coincide (600 & 750 Hz) the permissible 

mains harmonic level is significantly lower than the ripple level, permitting detection to 

occur. 

Figure 7: Example of a Ripple Control Transmission 

The above diagram shows an example of a ripple control transmission pulse train, 

with each pulse consisting of several cycles of the carrier frequency. It can be seen that, 

like Cyclocontrol, this technique also suffers from a low data rate, since the entire 

transmission takes almost 30 seconds. It is again only a one way technique, as the ripple 

carrier signals must be generated at relatively high power levels. 

Lastly in this section, we will look at one more example of PLC techniques used 

over the power distribution network - TWACS. 
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1.4.4 TWACS 

A more modern example of a PLC system used by electricity suppliers is TWACS, 

standing for'Two Way Automatic Communication System' [5]. TWACS is similar in some 

respects to Cyclocontrol, insofar as it utilises the injection of a signal at the mains voltage 

zero crossing point. Unlike Cyclocontrol, however, TWACs has the capability of passing 

data in both directions. 

The outbound signalling technology is very similar to Cyclocontrol, based upon the 

modulation of the mains voltage waveform, at a precisely controlled region near the zero 

voltage crossings. The modulation is obtained by drawing a short, pulsed, single-phase 

load at the bus of a distribution substation transformer. This signal can propagate down 

through the distribution network to receivers located at remote sites, at the consumer 

voltage level of 240 / 415V. 

The remote receivers are able to generate a return signal by drawing an impedance 

limited load current starting at a phase angle of 25° before the voltage zero crossing. This 

imposes a single current pulse on the overall load current, which can be detected at the 

distribution substation. 

TWACS signals may be injected into the distribution network at the 33 kV voltage 

levels, or lower, and propagation distances of up to 90 km can be achieved with this 

technique. 

Finally, in considering the applications of PLC over the power distribution 

network, we must look at one last major driving force in its introduction - automatic meter 

reading. In the next section, we will introduce the subject by considering the history of 

utility meter reading. 
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1_5 The Oriiin and Needy Utili Meter Readies 

Ever since public utility providers (gas, water and electricity) came into existence 

during the mid-to-late 19°i century, there has been a need for them to record the usage, by 

their customers, of the commodities that they provide. This implies the use of metering 

technology. Suitable devices were designed at an early stage in the development of the 

utilities, and indeed, the basic designs of electricity, gas, and water meters remain virtually 

unchanged to this day. To be useful to the utility company, of course, it is necessary for 

these figures to be gathered, hence the need for meter reading. 

This task has traditionally been a labour intensive one, requiring operatives to 

attend the customers' premises, gain access, and to read and manually record the meter 

readings. In recent years, there have been steps taken to automate the process to a greater 

or lesser extent and we will describe these in the next section. 

I_6 Modern Meter Reading Techniques 

Modern meter reading techniques can be broadly split into the following categories, 

in order of their level of automation: 

1.6.1 Manual Meter Reading: 

This is the oldest method of meter reading. An operative follows a route around 

various customers and records their meter readings manually on paper. At the utility 

company, a clerk manually calculates consumption and prepares a bill. In recent times, 

computers have been introduced at the utility companies to accelerate the billing process 

and reduce clerical errors, but the basic process has not changed in over a hundred years. 
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1.6.2 Manual Reading With Handheld Devices: 

This is an enhancement of the manual technique described above. Rather than 

recording readings on paper, meter readers enter the reading directly into a handheld 

electronic device, usually computer-based. Although the handheld device does not obtain 

the reading automatically, this technique dramatically improves clerical accuracy, since at 

all subsequent stages in the billing process, the data may be transferred electronically. 

Some handheld devices are smart enough to display the meter reading route and other 

special meter information (e. g. location of meter etc. ) and also notify the meter reader if 

the new reading is out of range, indicating a possible reading error. 

1.6.3 Remote Meter Reading: 

A major disadvantage in the techniques described above is the need to gain access 

to the interior of the customer premises, since this is traditionally where the meters are 

located. One way of alleviating this is by locating the meter outside, although this poses 

additional criteria with regard to safety and security. 

Alternatively, if a remote indication of the meter reading can be provided, usually 

by electronic means, then this indicator may be located in a readily accessible position, 

perhaps some distance from the meter itself. This technique is referred to as Remote Meter 

Reading (RMR). 
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1.6.4 TheM-Bus 

A practical realisation of RMR is the M-Bus [6], which was originally proposed in 

1993 as a means of networking utility meters. M-bus relies on a twisted pair physical 

medium and is a master-slave type of network. The M-bus itself is permanently energised 

with a DC voltage (which itself offers the potential to power the electronics in each meter 

on the bus). Signalling from the M-Bus master to the slave is accomplished by the master 

altering this DC voltage between 36 V (representing a logic '1') and 24 V (representing a 

logic '0'). Signalling back from a slave to the master is accomplished by the slave 

modulating its own supply current by 20 mA. 

M-Bus offers a notable refinement to simple RMR - because it is a network, data 

from a number of meters (up to 255 on any one segment of cabling) can be gathered to one 

point for centralised reading (useful in locations such as blocks of flats). The fact that the 

meter reading is in an electronic form also paves the way for the next level of automation 

in meter reading, described below. 

1.6.5 Remote Electronic Meter Reading: 

When RMR is combined with electronic data transfer (EDT) technology, the meter 

reading can be automatically read by the handheld device. Remote electronic meter reading 

still requires close physical contact between the handheld device and the meter or remote 

indicator, but it completely eliminates the errors associated with visual reading and manual 

data entry. 

16 



1.6.6 Mobile Radio Meter Reading: 

With this technique, the meter reader need only come within close proximity of the 

customer premises. Radio frequency communication is used to send a signal to wake-up a 

radio transmitter located at the meter, which will then send its reading to the receiver. The 

receiver can be either vehicle based ('drive-by') or within a handheld device carried by the 

meter reader ('walk-by'). Combined with RMR techniques such as M-Bus, the readings 

from many meters may be acquired at one time. 

1.6.7 Automatic Meter Reading (AMR): 

This is the highest level of meter reading automation. With AMR the readings pass 

from the customer premises to the utility company over a communications network, with 

no human intervention required. The initial `local' stages of the network (from the 

consumer to a nearby data gathering point) might utilise telephone lines, radio frequencies, 

power line carrier, or cable TV systems. From the local gathering point onwards, other 

wide-area networking techniques would probably be employed. 

We will discuss the technologies used over the `local' stage in greater detail later 

section, but next we will discuss the emerging factors in the utility industries that make the 

adoption of full AMR techniques highly desirable. 

1_7 De-Regulation In the Utili Industries 

In recent years, the various utility companies (gas, water, and electricity) have been 

de-regulated, with a view to increasing competitiveness and consumer choice. In other 

words, their markets have been opened up to outside competition. As a result, there are 

now a number of competing suppliers each of which have their own customer bases. 
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Such an arrangement would be impractical at a national level unless there were a 

shared distribution network. We have already discussed the National Grid in an electricity 

context, but similar systems also exist for the distribution of both gas and water. In other 

words, the customers of each utility company take their product off of the grid and the 

suppliers, wherever they are physically located, supply the appropriate amount into the grid 

to meet the needs of their customers. 

In pre-deregulation days, it was sufficient to take meter readings from the consumer 

every three months or so. Such an arrangement could be used nowadays, but it would be 

very inefficient, since it would not be possible to accurately predict the contribution that 

each supplier would need to make at any moment, requiring adjustments at each billing 

period. 

With a grid system, shared by many different suppliers, it is highly desirable that 

the exact share of the commodity that each supplier must satisfy should be monitored in 

(close to) real-time. In other words, much more frequent meter readings are required. 

Electricity is perhaps the worst-case example, since, in order that the split of 

generating capacity between all of the individual electricity suppliers can be adjusted in 

(virtually) real-time, it will be necessary to monitor electricity consumption at, typically, 

30 minute intervals. It is evident that automatic meter reading, as previously described, is 

the only realistic solution to achieve this. 

1.8 Techuiguesj Automatic Meter Rem 

It has already been noted that AMR systems are typically 'multi-level' - one 

communication technique may be used from the customer premises to a collection point, 

possibly the local sub-station, then one (or more) other techniques used to cover the longer 

distances to the utility company headquarters. 
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In our context of this thesis, it is this first stage of the route that interests us most 

and we will now discuss some techniques that may be employed. 

1.8.1 The Public Switched Telephone Network 

It is possible to employ an existing telephone line - sometimes called the `Plain Old 

Telephone System' (POTS), for the purposes of AMR. This is attractive since a large 

proportion of the population has a telephone. Aside from the meter seizing the telephone 

line, in the usual fashion, in order to make an outward call, and so pass on the reading, it is 

also possible to send the data over the idle telephone line, at times when normal calls are 

not being made. 

In future, techniques such as ADSL (Asymmetric Digital Subscriber Line), a 

broadband, permanently on, digital communications link over existing telephone lines, 

may prove to be another solution for telephone line based AMR. 

1.8.2 The Cellular Telephone Network 

Perhaps an even wider infrastructure is available with the radio-based cellular 

telephone network, since it does not rely on the physical telephone network connections 

into each property. It is possible to manufacture 'stand-alone' cellular transceiver which can 

be fitted into a utility meter and which can then be interrogated at will by the utility 

company via the cellular network. 
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1.8.3 Radio Networking 

The cellular telephone solution already outlined is a special form of radio link, 

however the use of dedicated radio channels for AMR applications has been endorsed by 

the adoption of approved frequency bands for the purpose. In the UK, the frequency range 

of 183.5 MHz to 184.5 MHz has been allocated for this purpose. However, these are 

restricted to low-power transmissions and would realistically only be suited to short range 

REMR applications (walk-by or drive-by) as outlined in a previous section. 

1.8.4 Power Line Communications 

PLC is an obvious contender for AMR purposes, since the infrastructure (i. e. the 

power distribution network) will already be in place. 

In a practical meter-reading scenario, it is likely that the PLC techniques will 

operate only over the 110/230/415V network - between the appropriate sub-stations and 

the consumers served by them. Beyond this, as has already been mentioned, some 

alternative form of wide-area network would be used. One PLC technique that has already 

been discussed and which can potentially be used for AMR is TWACS. 

To conclude chapter one, we will summarise the background to the experimental 

effort in this research. 
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1.9 Backzroiind to the Research 

In this first chapter we have introduced the broad subject area of Power Line 

Communications and its established application in the present day. As background, we 

began with a discussion of early discoveries regarding electricity, the development of the 

science of electrical engineering, and the practical application of these discoveries to the 

creation of the power generation industry. We then described the structure of the modern 

power distribution network. 

We considered the PLC techniques that are used in the present day by electricity 

supply and distribution companies, namely Cyclocontrol, Ripple Control, and TWACS. 

We then moved on to the subject of meter reading, emphasising the developing use of 

automation in that area, and the driving forces behind the growing adoption of automatic 

meter reading, including power line communication techniques. 

However, all of the power line communication techniques described so far are 

essentially 'wide-area', operating over the low, medium and high voltage distribution 

network, predominantly between consumers and electricity suppliers. 

There also exists an entirely different arena of power line communication 

applications. In contrast, these can be described as 'local area', as they exist within single or 

small groups of buildings, homes, or within the extents of an industrial plant, and operate 

almost exclusively over the low voltage 230 / 415 V distribution network. 

It is specifically the potential of power line communications in the industrial 

scenario that we will be considering in this Thesis, as the author works within the field of 

industrial control, In a previous paper, the author has described the concept of a ̀ Power 

Bus' -a localised power line based network for machine or plant monitoring and 

control [7]. 
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In subsequent chapters, and before dealing with the experimental work proper, we 

will be discussing the relevant aspects of automation, control, and networking technology 

that have a bearing on the subject area of power line communications. These will include 

industrial and home automation, computer networking, and the growth of the industrial 

Fieldbus concept. 

We will consider the power line as a communications medium, and discuss the 

various sources of signal degradation and noise that are prevalent on the power line. We 

will then go on to look at actual PLC techniques, modulation schemes, and the desirability 

for protocols and error detection/correction techniques. We also look at the international 

standards that are evolving to cover the subject of power line communications. 

Moving onto the experimental side of the thesis, this will be concerned with the 

evaluation of actual PLC modem solutions in noisy electrical environments. 

It is stated in the international standards for Electromagnetic Compatibility (EMC) 

that electronic equipment should not generate excessive electromagnetic interference, nor 

be excessively susceptible to such interference. Such interference might be emitted from, 

or accepted into, the equipment by various routes such as by RF radiation or via control or 

power ports i. e. power lines. 

The power line communication scenario presents an interesting variation of this 

concept, since it will purposely generate conducted emissions on the power line as a part of 

its normal transmission operation, and will have to accept signals (and potentially noise) 

from the power line in order to receive data. 

In the experiments, impulsive noise (at levels as specified in the EMC immunity 

standards, and generated by an actual item of EMC test equipment), and spot frequency 

noise at and around the PLC carrier frequencies, will be applied to a simulated power line 

communications link. Link and modem performance will be evaluated by recording the bit- 

error-rate of the link under the varying noise conditions. 
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To carry out these measurements, equipment to measure bit-error-rate is required. 

Suitable equipment was not available to the author, and so the initial part of the practical 

work covers the design and development of a purpose built item of equipment, which was 

subsequently called BERT for'Bit Error Rate Tester'. 

Once the BERT equipment was available, experimental tests were performed on 

two types of PL modem suitable for industrial control use in the CENELEC 'C' band. 

Finally, some'real world' tests were performed by setting up the PLC link within a 

small industrial company (where the author is employed), and monitoring the performance 

of the link under these conditions. The results are then presented and analysed, with 

appropriate conclusions being drawn. 

To conclude the thesis, ongoing developments in PLC, especially HF techniques 

suitable for high-speed communications, are introduced and discussed. 
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Chapter 2: The Development of Industrial & Home Automation 

In this chapter we will look at the field of automation, as it is within this context 

that we will be investigating the application of PLC techniques. We will consider the 

history of automation, both industrial and in the home. 

2_1 The History (Industrial Automation 

Automation, within the industrial context, can be defined as the use of systems to 

control industrial plant or processes without the need for constant manual intervention. 

Although fully automated industrial systems were not developed until the 20th 

Century, many simple, semi-automated devices had been in use for hundreds of years 

before. During the 1700s there appeared in England and Scotland a number of inventions 

that helped to bring about the first Industrial Revolution. These inventions included 

feedback systems for controlling the temperature of industrial furnaces and the action of 

water mills. 

One of the most notable of the early feedback control mechanisms was the fly-ball 

governor, developed in 1788 by the Scottish inventor James Watt to regulate automatically 

the output of the steam engines he had invented. This used the principle of negative 

feedback - the mechanism senses the speed of rotation of the engine and as it rises above a 

certain set point, regulates the steam supply to maintain the desired speed, all by 

mechanical means. 

As the Industrial Revolution progressed, other inventors applied the principle of 

negative feedback, designing equipment that could regulate the operation of machines or 

control the progress of an industrial process by adjusting the input parameters on the basis 

of measured outputs. As such feedback loops are still integral to many modern industrial 

processes, we will briefly describe the components that go to make one up. 
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2.1.1 Negative Feedback Control Loops in Industrial Automation 

A negative feedback control loop consists of five basic components - an Action 

element, a Sensing mechanism, a Control element, a Decision element and a Program (or 

Algorithm). 

The Action Element 

" This is the prime energy source for the control loop. Examples may be 

electricity, steam, compressed air, or fluids (pneumatics and hydraulics). 

The Sensing Mechanism 

" This is the device that measures the particular parameter involved in the control 

loop. Examples might include pressure sensors, speed sensors or temperature 

sensors. 

The Control Element 

" This is the device that acts upon the parameter to modify it. Examples might 

include valves regulating fluid or air pressure, or electrical speed controllers. 

The Decision Element 

9 This is the element which controls the overall loop and makes the decision as to 

what is required to bring the loop back under control. 

It is this element that differentiates a manual control system from an automatic one. 

In a manual system, the decision element is a human being, acting on the data from the 

sensing mechanism(s), who then makes appropriate adjustments to the control elements. In 

an automatic system, this is an autonomous system, which might be mechanical or 

electrical/electronic in nature. 
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The Program (or Algorithm) 

" This represents the formula required within the decision element to implement 

the control function required. This may be very simple -a thermostat for 

example may have a simple set point value and simply switch `On' or 'Off' in 

response to the sensed temperature parameter. Alternatively, the algorithm may 

be a lot more complex. For example, a Proportional-Integral-Derivative (PID) 

loop applies complex mathematical functions to the input parameters, based on 

factors such as the rate of change of the sensed parameter, and the difference 

between the current value of the sensed parameter and the set point. 

Such algorithms may be implemented by mechanical or analogue electronic means, 

but increasingly these days are implemented in the form of a stored program within a 

digital computer system, or a programmable logic controller. These devices will be 

introduced and described in greater detail in a later section. 

2.1.2 Other Components in Industrial Automation 

Of course, feedback loops do not represent the only elements to be found in a 

typical industrial automation scenario. There will also be requirements to provide 

sequencing, counting, and timing functions for controlling the progress of a process or 

action of a machine, as well as requirements for monitoring and displaying set points and 

alarms. 

All of these functions lend themselves to automation, and in the next section we 

will be looking at how, over the years, differing technologies have been adopted for these 

uses. 
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2.1.3 Technology Trends in Industrial Automation 

As we have already mentioned, the earliest industrial automation systems were 

purely mechanical in nature, in keeping with the technology available at the time. 

However, once electricity had become readily available, in the late 19P Century, it soon 

became the preferred choice as the driving force (the action element) for industrial 

automation. 

As an aside, though, it should be noted that during the 1930s pneumatic and 

hydraulic systems were developed [8] where air or fluid under pressure is employed as the 

action element. Despite the inherently mechanical nature of these systems, quite 

sophisticated control functions can be attained, with the added advantage of reduced 

explosion risk in flammable atmospheres such as refineries, since there is no risk of 

electrical sparking. Indeed, such control systems can still be found in use today. 

Negative feedback control loops may be realised using electrical sensing elements 

i. e. sensors which output an electrical signal representing the parameter being measured, 

feeding decision elements consisting analogue electronic amplifiers, processing the signal 

in a defined manner, which in turn drive electrically operated control elements. 

Such equipment became feasible by around the 1920s, once the science of 

electronics had reached an appropriate level of sophistication, and even before this time, 

sequencing and timing operations were possible by making use of electrical timers and 

relays. 

Indeed, relays have an important place in automation systems, and we will discuss 

them in the next section. 
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2.1.4 Relays in Industrial Automation. 

Relays are electromechanical switches. In their simplest form, they consist of an 

electromagnet which, when energised with an electrical supply, moves an armature and 

causes a switch contact to operate. This may simply serve to permit a low level control 

voltage to switch a much higher voltage or current, a useful form of'amplification' or 

power switching. However, considerably more sophistication is possible with relays. 

Consider the following: 

Relays may be fitted with several contacts, all operating simultaneously from the 

single input to the coil. These contacts may be normally open (closing when power is 

applied to the coil), normally closed (opening when power is applied to the coil), 

changeover (a combination of both previous types, with a common connection), or indeed 

any combination of these types. By appropriate mechanical design, certain contacts may be 

forced to close before others, or in a set sequence. Longer or more complex sequencing 

functions may be provided by the use of motor driven cams operating banks of switches. 

By interconnecting the relay contacts in an appropriate manner, it permits the 

creation of logic functions. For example, if three relays are taken and a single normally 

open contact from each is wired in series then, if we treat the relay coils as inputs and the 

circuit formed by the combined contacts as the output, we have a logical `AND' gate, since 

ALL of the inputs have to be energised before the output circuit is made. Conversely, if the 

contacts are wired in parallel, we have an `OR' gate, since energising ANY of the inputs 

will make the output circuit. 
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The above are simple examples, but in practice extremely complex combinational 

or sequential logic schemes can be realised using relays and associated components such as 

cam timers. With combinational logic, the state of the outputs depends purely on the 

current state of the inputs. With sequential logic, the state of the outputs depends both on 

the current state of the inputs, and on the previous input states. To achieve this, some form 

of memory element is involved, and in fact relays may easily be configured to provide such 

a feature. Overall, these techniques are referred to as ̀ Relay Logic'. 

To emphasise the sophistication that may be achieved with relay logic, consider the 

fact that a lot of early work in the computing field [9] relied on relays to create the 

computing elements. 

`Relay Logic' was the mainstay of industrial control until at least the 1960s. 

Indeed, in some smaller applications, relay logic is still used today, for its simplicity, 

ruggedness, relative reliability, at least with simpler logic schemes, and its ability to switch 

high power loads directly. 

The main disadvantages of relay logic, especially in very complex schemes, are the 

size and complexity of the control equipment, the relatively high power consumption, and 

the corresponding low reliability due to the sheer number of mechanical elements 

involved. 

The scene was therefore set for a more efficient solution. Since relays are 

essentially digital devices, the rise of digital electronics and computing in the 1950s and 

onwards would provide the necessary technology. 

2.1.5 The Move towards Digital Electronics in Industrial Control 

With the rise of computer technology in the 1950s there would seem to be a good 

incentive for this technology to be used in industrial control. However, the very high cost 

and relatively poor reliability of early computers made this initially impractical. 
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By the 1960s, smaller, more reliable, ̀ mini-computers' had come onto the scene, 

but these were still relatively high cost, although they did start to be utilised in some large- 

scale ̀plant control' scenarios. 

What was required was a small, relatively inexpensive, programmable device that 

could replace the bulky and complex relay logic systems. In 1968 [10] this was realised 

with the development of the Programmable Logic Controller (PLC). 

NB. This abbreviation might be confused with the other definition of PLC within 

the context of this thesis - power line communications - however the correct usage should 

be obvious from the context in which the term is used. 

We will next look at what makes up a PLC. 

2.1.6 Programmable Logic Controllers 

We have already mentioned that a relay logic system can be considered as having 

distinct `inputs' and `outputs'. According to the manner in which the relay elements are 

hard-wired (interconnected), the relay logic system 'processes' the inputs and then operates 

the 'outputs' according to their current (and, possibly, also previous) states. 

A PLC is a solid-state device with digital processing capabilities designed, initially 

at least, to replace relay logic designs. The most striking feature of a PLC, as opposed to a 

hard-wired relay logic solution, is the fact that it can be programmed to perform a specific 

logical function. To perform an alternative function, all that is required is to reprogram the 

device. We will next look at the structure of a ̀ typical' PLC. 
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Figure 8: Programmable Logic Controller Block Diagram 

A typical PLC comprises inputs and outputs (I/O), and a central processing unit 

(CPU). The input and output components are often built into the same physical box with 

the CPl1, but may be modular in nature to facilitate expansion to provide a greater number 

of I/O points as required. Such a package provides a small, lightweight, low-cost, and self- 

contained solution for a wide range of control applications. 

The figure below shows a typical small PLC. The physical input and output 

connections can be seen at the top and bottom of the housing. 
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Figure 9: An Example of a Programmable Logic Controller 

We will next consider the function of the different component blocks. 
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" Input and Output Units (I/O) 

In the simplest PLC's, all inputs and outputs are digital (i. e. simply `on' or `off ). 

Inputs are wired to sensing devices or user controls. When an input detects that a sensor or 

user control is closed, it generates a logic signal understood by the CPU. The PLC outputs 

are wired to switching elements that operate output devices or user indicators. These 

switching elements may be solid-state devices, such as transistors, but are frequently 

simple, single contact, relays. 

9 Central Processing Unit (CPU) 

Within the CPU lie the digital processor, memory, and power supply. These 

components interact to solve the application logic. The CPU reads the converted input 

signals, executes the user logic program stored in its memory, then writes the appropriate 

output signals to the output switching devices. 

2.1.7 Programming the Programmable Logic Controller 

By very definition, a PLC is programmable. The user must store a representation of 

the logic scheme required for the particular application within the controller. Because they 

were originally designed to replace discrete relay logic, and the control engineers were 

familiar with relay logic circuit diagrams, it was convenient to use a means of 

programming that mimicked the physical relay arrangement. 

This resulted in a ̀ language' called ladder logic, a simple example of which is 

shown in the next figure. 
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Figure 10: Example of Ladder Logic Programming 

It can be seen that the above diagram looks very similar to an electrical circuit 

diagram, and as such would be familiar to a process engineer. The elements designated 

Ixxx are inputs, analogous to relay contacts, and those designated Oxxx are outputs, 

analogous to relay coils. Not all inputs and outputs map to actual physical I/O ports on the 

PLC, some may be purely internal, and used to facilitate the building of complex logic 

schemes. 

Entry of the ladder logic program into the PLC is achieved using a programming 

interface. This may be a simple keypad and display, allowing each I/O device in the logic 

scheme to be entered in sequence for each 'rung' of the ladder, or may be a more 

sophisticated graphical interface, displaying the actual logic scheme, as it is created. The 

programming interface may be built into the PLC itself, or more commonly be a separate, 

hand-held item, removable after programming and debugging is complete. Increasingly, 

these days, PCs are used to provide a convenient programming interface for PLCs. 

As well as simulating the action of simple relays and contacts, the PLC can also 

provide other necessary functions encountered in relay logic systems, such as timers, 

counters, or sequencers. 

From these relatively simple beginnings, as'relay substitutes', the technology soon 

advanced and PLC's increased in sophistication. We will look at this evolution in the next 

section. 
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2.1.8 The Further Evolution ofProQrammable Lo'ic Controllers 

Whilst the earliest PLC's were based on discrete electronic logic circuits, within a 

few years another evolving technology permitted much greater sophistication - this 

technology was the microprocessor. Indeed as computing power has decreased in cost, the 

stage has been reached when PLC's can often be considered as powerful microcomputers 

in their own right. 

As already discussed, early controllers used digital inputs and outputs only. A 

natural progression was to provide the facility for analogue I/O. This offers the facility for 

the PLC to provide sophisticated feedback control functions. 

Such additional facilities imply the need for a more sophisticated programming 

language than simple ladder logic. High level languages (HLLs) may be used in PLC's to 

implement these sophisticated control programs, often with ladder logic still available for 

those aspects of the application to which it is best suited. 

As plant control schemes become more complex and sophisticated, there is a point 

at which individual PLC's cannot realistically accommodate the number of I/O points 

required. Using multiple PLC's implies that communication between them is necessary. 

This represents the final stage in the evolution of programmable controllers that we will 

discuss at this stage. In the next chapter, we will introduce computer networking, the 

evolution of industrial networking, and the rise of the Industrial Fieldbus concept. 

Before finishing this discussion of PLC's, however, we will mention the associated 

technology of industrial computers. 
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2.1.9 Industrial Computers 

For tasks requiring greater sophistication or a more elaborate user interface, and 

with the ever-decreasing cost of powerful microcomputer computer hardware, there are 

instances where it might be preferable to employ a general-purpose computer for industrial 

control. This may be a desktop PC, so long as it is used in an appropriate environment, or a 

more ruggedised device capable of operating in a harsh industrial environment. Such PCs 

may be equipped with appropriate digital or analogue Input / Output cards in order to 

interact with the process or plant being controlled, in much the same manner as a PLC. 

In fact, there may be little to choose between Industrial PCs and Programmable 

Logic Controllers, as regards processing power and input/output capabilities, although 

industrial computers generally offer more sophisticated user interfaces such as visual 

display units and conventional keyboards. 

We have already mentioned that PLC's have evolved towards a networking 

capability, similar to that of computers proper. In many modern applications, industrial 

PCs may be networked with PLC's to provide both a means of programming the PLC 

function or a versatile user interface overseeing the process being controlled by the PLC. 

As already stated, we will be discussing such networking in greater detail in a later 

chapter. Next, though, we will move on to the subject of home automation. 

2.2 The Rise pf Home & Building Automation 

The term home or building automation can be applied to any use of autonomous 

systems in the home or working environment. Indeed, on the basis of the above definition, 

automation can be said to have entered homes and buildings when such facilities as 

thermostatic control of heating and the use of time-switches to operate appliances such as 

heating or lighting was first developed, essentially during the early 20"' Century. 
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In recent years, though, the term home automation has specifically come to mean 

the systematic use of automation, and furthermore, the trend towards the integration of all 

automated systems within the home together, i. e. in the form of a home automation 

network. Needless to say, the electronics and computing revolution of recent years has 

played a major role in this development. 

The subject of power line communications is closely linked to the concept of Home 

Automation, not unreasonably, since the electricity main within a dwelling offers a ready- 

made network, interconnecting the majority of the devices which would need to be 

controlled or monitored in a HA scenario. 

Figure 11: Typical Home Automation Scenario 

The above figure shows a typical HA scenario. Appliances within the building are 

linked by a network to a central home automation controller. The figure also shows a 

utility remote meter reading network. 

Unfortunately, the convenience offered by using the power line in a HA application 

comes with several disadvantages, since it represents a far from perfect transmission 

medium. 
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These characteristics will be described in a later chapter. Meanwhile, it should be 

noted that there are other potential communications media suitable for use in home or 

building (or indeed industrial) automation, and it we will discuss these in the next section. 

2_3 Transmission Mediate Industrial and Home Automation 

Whilst PLC is the primary concern of this research thesis it is, of course, not the 

only medium suitable for home, building or industrial automation applications. We will 

therefore take the opportunity now to describe some of these other media. 

2.3.1 Co Axial Cable 

The structure of a typical co-axial cable is shown below. 
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Figure 12: Co-Axial Cable Structure 

Co-axial cable, so called because each of the layers (centre conductor, dielectric, 

braid, and outer jacket) lie on a common axis, is commonly encountered in radio frequency 

(RF) applications such as television down-leads, or for carrying digital signals over a base- 

band computer communications network, such as Ethernet. 

Because of its construction, co-axial cable offers a consistent characteristic 

impedance, an important factor when high frequency signals are being carried. 

From a practical point of view, due to its physical construction, it is perhaps not as 

convenient to terminate as other solutions. 
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2.3.2 Twisted Pair 

The structure of Twisted Pair (TP) cable is typically as shown below. Like co-axial 

cable, it is also commonly found in computer networking and telecommunications systems. 
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Figure 13: Twisted Pair Cable Structure 

The primary reason for using twisted pair is that the arrangement offers good 

immunity to external electromagnetic interference. The twisting of the signal conductors 

means that any such interference will be induced equally in each core ('common-mode') 

and with the use of appropriate circuitry can be easily suppressed. Shielding can provide 

additional immunity, although it should be noted that the not all twisted pair cable is 

shielded (shielded twisted pair cable is often abbreviated as ̀ STP', and unshielded twisted 

pair as `UTP'). 

Often, several twisted pair cables may be contained within a common outer 

covering (as shown in the above diagram), with each pair offering good immunity from 

both outside and mutual interference. This offers the potential for a multi-pair cable to be 

run around a property and used for diverse purposes such as telephony, home computer 

networking, and as a home automation network. Indeed, an organisation called the 

'Phoneline Networking Alliance' (PNA), has proposed just such a system. 

Like co-axial, twisted pair cable also offers a consistent characteristic impedance, 

but unlike it, is considerably easier to terminate. 
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2.3.3 Radio Frequency 

The use of Radio Frequency (RF) as a communications media offers the 

convenience of requiring no physical connection between the nodes in the network (i. e. it 

is 'wireless'). 

On the minus side, to achieve good RF performance involves more costly 

electronics. The system must cater for interference, much as PLC techniques have to, and 

there is a very real risk of mutual interference between nearby systems operating on similar 

frequencies. Nevertheless, RF systems have a place in home and industrial automation. 

In recent years efforts have been made to develop high performance RF networks, 

working in those microwave parts of the RF spectrum designated for Industrial Scientific 

and Medical (ISM) use. 

There are several such systems in use, but a good example is the system known as 

`Bluetooth' [11]. Bluetooth was developed by a consortium of international companies and 

is intended to eliminate the need for connecting wires between consumer and computer 

equipment, and to allow easy connectivity. Some typical characteristics of Bluetooth are as 

follows: 

" Uses a Frequency Hopping Spread Spectrum (FH-SS) modulation scheme 

(this technique is explained in a later chapter). 

" Operates in the 2.4 GHz ISM band. 

" Operates at low RF power levels. 

" Short range (Up to 10 metres typically). 

" Supports voice and data communications. 

Bluetooth is still at an early stage in its development, but may turn out to be useful 

in industrial automation applications. 
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2.3.4 Infra-Red 

Another 'wireless' technology, Infra Red (IR) relies on a modulated beam of 

invisible light to send commands and data. Unlike RF, it is essentially 'line of sight', as 

transmitter and receiver must be visible to each other. Commonly encountered in a home 

automation context, for such uses as 'same room' appliance control (e. g. Television remote 

controls), it is likely to have few applications in an industrial environment. However, we 

will include it here as some home and building automation systems offer it as a media 

option. 

2.3.5 Fibre-Optic 

The functioning of an optical fibre relies on the principle of total internal reflection. 

When a ray of light passing through a material meets an interface with a material of a 

different refractive index, the ray may be refracted, i. e. bent at a certain angle as it passes 

from one material to the other. However, if the incident angle of the ray is below a certain 

value, called the critical angle, the ray will be reflected back into the first material. 

This effect is termed total internal reflection. In a practical fibre optic, a narrow 

strand of glass or polymer is used. This ensures that incident light will easily exceed the 

critical angle and will pass along the fibre, even if it is bent, so long as the bend radius 

maintains the critical angle at all points. The inner core of the fibre will be coated with a 

layer of different refractive index. This may create a distinct interface, as shown in the 

diagram (referred to as a 'step index' fibre) or may be diffused to give a gradual change in 

refractive index (referred to as 'graduated index'). This has the effect of bending the beam 

back into the body of the fibre, rather than causing a sudden reflection, and can tend to 

reduce 'multi-path' effects, where a ray of light follows several routes through the fibre. 

This can be a benefit at high data rates, since multi-path beams can tend to mutually 

attenuate by interference effects. 
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Figure 14: Total Internal Reflection in a Fibre-Optic Cable 

In a communications scenario, fibre optic cable offers the benefits of absolute 

electrical isolation and very high immunity from external electromagnetic noise. On the 

minus side, it is relatively expensive, difficult to terminate, and is essentially a 'point-to- 

point' system. It is technically difficult (but not impossible) to tap into a fibre optic cable, 

or to send data bi-directionally. Consequently, sending a signal to multiple nodes would 

involve either a complex star arrangement, with hubs, or a chain of nodes in a ring 

arrangement (these networking topology terms will be explained in a later chapter). 

To conclude this chapter, we will briefly look at some actual home and building 

automation solutions and the different communications techniques that they employ. 

2.4 An Overview pf some Commercial Home and BuildinL' Automation 
S s'ýtems 

In this section we will introduce and briefly discuss some of the more common 

commercial home and building automation solutions. 

2.4.1 The X-1O System 

X-10 is perhaps one of the most widespread and popular home automation 

technologies at present in use. The origins of the X-10 system lie more than 20 years ago 

with a company called Pico Electronics of Glenrothes, Scotland. This was founded in the 

early 1970's and undertook diversified projects in the advanced electronics field. 
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One of these was for a `wire-less' (but not necessarily radio based! ) remote control 

system. This was based around power line communication and in keeping with their 

naming convention, this was referred to as 'Experiment no. 10', shortened to 'X-10'! 

The system first became available in 1978 and its uses soon extended beyond the 

home audio applications envisaged by the original customer. Modules became available 

capable of controlling appliances or lighting. Many manufacturers now produce equipment 

compatible with the X-10 protocol. Originally just a power-line based system, X-10 now 

has the option of radio and infra-red based equipment for greater versatility. 

The X-10 Physical Laver 

X-10 is an OOK (on-off keying) system, utilising a carrier frequency of 120 kHz 

superimposed on the 50 Hz or 60 Hz mains frequency [ 12]. This carrier is transmitted in 

short (<1 ms) bursts starting just after the zero crossing point of the mains waveform. This 

point is chosen under the premise that there is likely to be less noise at this point. It also 

makes synchronisation simple, since a receiver can also detect this transition and need only 

'listen' for a fixed periods at this point. Three-phase distribution systems are accommodated 

by repeating each burst of carrier at 120° intervals into the waveform after the initial zero 

crossing, since these represent the zero-crossing of subsequent phases. In a practical 

situation, X-10 signals on different phases are coupled together at the distribution panel 

using a simple capacitor across the phases. 

Figure 15: X-10 Signalling in a 3-Phase System 
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Since there are two zero-crossings for each mains cycle, this means that in a 50 Hz 

mains frequency situation there are 100 possible pulse windows per second, and in a 60 Hz 

situation, 120. 

A logic '1' in X-10 is indicated by pulse, followed on the next zero-crossing, by no 

pulse, and logic '0' by no pulse, followed by a pulse. 

.. 
followed by the 

ab. Wace of a pulse. 

And a binary 
"0" is the 
abarnrp 
a pulst... 

... 
followed by 

a pulw. 

Figure 16: X-10 Logic '1' and Logic '0' Signals 

It is evident that some means of synchronisation is necessary to determine the start 

of an X-10 transmission. This is because, for example, a string of logic '0's might be 

interpreted as a string of 'I's, since the initial 'no pulse' would not be obvious. The start of a 

transmission is therefore indicated by a string of three pulses followed by a no pulse, since 

such a combination will not occur in normal data. 

The remainder of the X-10 command includes 'address' and 'house code' (a form of 

extended address) information, plus the associated commands and data to be executed. 
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It was originally intended for X-10 to perform functions such as the turning on, and 

off, of lighting, appliances, etc. under the control of a human operator using, for example, a 

hand-held switching box. In such a simple arrangement, feedback is provided by the 

operator observing that the operation has completed successfully. Consequently, the basic 

X-10 system does not need to incorporate any integrity checking or message 

acknowledgement. It is purely a one-way system. The only concession to the possibility of 

a message being corrupted is in that it is repeated more than once. 

In recent times, the use of personal computers, or at least stand-alone timer- 

controllers, to control X-10 operations has increased. Here, the controlling system has no 

way of knowing if any particular operation has completed successfully. As a result, there 

have been moves towards an enhancement of X-10 providing two-way communications, 

with command codes defined for this purpose. 

2.4.2 Echelon (Lon Works) 

The Echelon Corporation of Palo Alto, California was formed in 1988 specifically 

to develop communications technology and a protocol for interconnecting sensors, 

actuators, and controllers. 

Echelon calls its technology LON, for Local Operating Network, to distinguish the 

network from a LAN, or Local Area Network, developed for computer networks and office 

automation. Their protocol is called LonTalk, and a complete Echelon network with 

supporting hardware and software is collectively called LonWorks. 

Central to LON is a common interface for all devices attached to the network. This 

interface is called the `Neuron Chip', an integrated circuit manufactured to Echelon 

specifications and sold by Motorola and Toshiba. In 1996 Echelon introduced licensing 

arrangements for companies to design and manufacturer interface devices that substitute 

for the Neuron Chip. 
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LonWorks networks are intended for applications spanning home and building 

automation, plus factory automation and aircraft. Originally a proprietary system, details of 

the protocol have been released and the EIA (Electronic Industries Association) HCS-1 

Committee is writing a three-part standard based on LonTalk and designated EIA-709. 

2.4.3 CE-Bus and Intellon 

The CE-Bus'Consumer Electronic Bus' standard was originally designed to 

perform Home Automation functions, but is also increasingly being used in the 

commercial and industrial sectors. 

Development of the CE-Bus began in 1984 under the direction of the Electronic 

Industry Alliance (EIA), CE-Bus Technical Steering Committee (TSC). 

Their goal was to develop an open protocol that would suit most consumer 

electronic manufacturers' requirements, and it was eventually ratified as standard EIA-600 

in 1997. 

CE-Bus offers seven different Physical Layers: Power Line, Radio Frequency, 

Twisted Pair, Infra-Red, Coaxial, Fibre-Optic and the Audio-Video Bus. 

The PL layer utilises spread spectrum techniques, in the form of a'chirp'. 

Intellon [13] have developed a PLC solution for home automation based around a ̀ chirp' 

system of spread spectrum PLC which complies with CE-Bus requirements. However, this 

solution does not comply with the CENELEC band requirements for PLC systems, which 

we will discuss in a later section. 
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2 4.4 EHS 

The'European Home System' (EHS) is an initiative sponsored by the European 

Community intended to encourage a standardised and interoperable system for home 

automation applications [14,15]. EHS involves several physical mediums as well as PLC. 

The PLC technology utilises narrow-band FSK signalling, based around the SGS-Thomson 

ST7537HS1 modem device [16]. The protocol used is interesting as it incorporates a high 

level of error correction. 

2 4.5 EIB 

The `European Installation Bus' (EIB) system for home & building electronics is 

touted as both a home automation and Fieldbus solution. Originally based around a 

twisted-pair physical layer, it now supports a range of other media, including power line, 

RF, IR, and a high-speed Ethernet-based backbone. 

In a move to standardise automation systems, EHS, EIB, and BatiBUS (discussed 

later under industrial Fieldbus systems) are merging towards a common standard. 

2.4.6 BA Chet 

BACNet stands for The Building Automation and Control network [17]. 

In the field of building automation, the BACNet standard has been developed by a 

committee of ASHRAE, the American Society of Heating, Refrigerating, and Air- 

Conditioning Engineers. BACNet is intended to interconnect sensors, actuators, and 

controllers for HVAC (Heating, Ventilating, and Air-Conditioning) equipment in 

buildings. BACNet includes a common message set and provisions to accommodate 

various local area network standards for transporting messages from one device to another. 
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BACNet transmits these messages over a variety of specified networks. Some are 

commonly used in office automation, such as Ethernet. The lower two OSI (Open Systems 

Interconnect) layers of the seven-layer LonTalk protocol are referenced as one of five 

options for transporting BACNet commands. 

Having discussed home, building and industrial automation, and introduced some 

of the technologies used to implement it, we will next move on and consider the evolution 

of another major facet in our chosen subject area, namely computer and industrial 

networking. 

47 



Chapter 3: Computer and Industrial Networking 

In this chapter we will consider the development of computer networking 

technology and consider how it led to the kind of industrial networking that we are 

concerned with in this thesis. 

To begin, we will introduce two generic terms commonly encountered in the 

context of networking - LAN and WAN. 

LAN stands for'Local Area Network' and describes a system that extends over an 

area no wider than (typically) an individual building or commercial/industrial site. LANs 

may consist of component networks using different technologies, linked together using 

bridges and routers. In this thesis, we are dealing with industrial automation, and industrial 

networks can be considered a special form of LAN. We will go on to describe some typical 

LAN technologies in a later section. 

WAN stands for'Wide Area Network' and, as the name suggests, covers a 

somewhat larger geographical area. This might be, for example, an entire town or city. In 

practice, a WAN may consist of a network of individual LANs, for example linking a 

number of industrial sites. The most well known (and extreme) example of a WAN is 

undoubtedly the Internet, whose extent is world-wide. 

In the next section, we will look at how computer networking developed. We will 

begin with WANs, as these actually pre-date LANs. 
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3.1 Early Wide Area Networks 

The impetus behind the development of computer networking [ 18] can be traced to 

the start of another technological revolution - the Space Race. Following Russia's 

successful launch of the first artificial satellite 'Sputnik' in 1957, pressure was on the 

Americans to match the achievement. As a result of this, in 1958, an organisation called 

'ARPA', for'Advanced Research Projects Agency', was formed within the American 

Department of Defence ('DoD'), with the aim of regaining the lead in science and 

technology. 

Within a few years, ARPA had begun to focus on computer networking and 

communications technology. In 1962, Dr. J. C. R. Licklider became head of ARPA's 

research concerned with improving the military's use of computer technology. Of particular 

interest to the military was the concept of a'blast-proof decentralised computer network. 

Dr Licklider also wanted to make the government's use of computers more 

interactive, and was behind a move to place ARPA's research contracts with universities, 

rather than in the commercial, private sector. These factors gave an impetus to the concept 

of computer systems at different universities being interconnected, for reasons of economy 

and the sharing of resources [19]. Work in this area throughout the 1960's led to the 

formation of what was to become known as the ARPANET. 

3.1.1 The ARPANET 

In the late 1960's initial proposals were made to create such a decentralised 

computer network. The National Physical Laboratory in Great Britain set up the first 

experimental network on these principles in 1968. Shortly afterwards, ARPA decided to 

fund a larger, more ambitious project in the USA. The nodes of the network were to made 

up of the high-speed supercomputers of the time. 
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In the autumn of 1969, the first node was installed at the University College of 

Los Angeles (UCLA). By December 1969, there were four nodes set up on the network, 

which was named ARPANET, after its Pentagon sponsor. The four computers could 

transfer data to each other on dedicated high-speed (50 kbps) transmission lines. They 

could even be programmed remotely from the other nodes. Thanks to ARPANET, 

scientists and researchers could share one another's computer facilities by long-distance. 

During 1971, the network expanded to fifteen nodes, and during 1972, to thirty-seven 

nodes. 

Throughout the 1970s, ARPA's network continued to grow. Its decentralised 

structure made expansion easy and it is important to note that it could accommodate many 

different kinds of machine as nodes, so long as individual machines each communicated 

using the common protocol. With ARPANET, the foundation was laid for what would, in 

later years, become the Internet. 

Before going on to consider the development of local area networks, which would 

lead to industrial networks, we will look at another important early milestone in wide area 

networks. 

3.1.2 Aloha 

Aloha is another example of an early WAN (1971), and was created in order to 

permit the sharing of computers amongst facilities around the Hawaiian Islands in the 

USA [20]. For these geographical reasons, it was radio-based, as any other medium would 

have proved too expensive to implement. Basically, outstations transmitted packets of data 

to the central computer, which sent an acknowledgement if the data was received correctly. 
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A disadvantage of the system lay in the fact that any station could begin 

transmission at any time. This meant that collisions were likely to occur if more than one 

station attempted to transmit and their transmissions overlapped. The only response to this 

was for the originating stations, in the absence of an acknowledgement signal from the 

central computer, to attempt retransmission. Even here, there was still the risk of overlap, 

and if the message failed to be delivered after a certain number of attempts, the originating 

stations would give up, and flag an error. 

To try and improve this situation, an enhancement to the standard Aloha system 

(called 'Slotted Aloha') was made. In slotted Aloha the central computer transmitted a 

synchronisation signal spaced at intervals sufficient to allow an entire data packet to be 

sent and acknowledged. Stations wishing to transmit would only do so after a 

synchronisation pulse. This made collisions somewhat less likely (although they were not 

entirely eliminated) and improved the throughput of the system. 

The Aloha system highlighted the need for arbitration schemes to facilitate multiple 

users accessing a network without excessive problems due to collision. We will be 

discussing these arbitration schemes in greater detail in a later section, but next will 

consider the development of the other classification of network - the LAN. 

3.2 Local Area Networks 

WANs came into existence because of the need to network expensive mainframe 

computers located large distances apart. As the 1960s progressed, and technology 

improved, manufacturers developed smaller, lower cost, computers (referred to as 

minicomputers). With such technology, it was economically feasible for a particular 

location to have many such computer systems in place. 
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As a result of this, it became desirable to share the resources of these machines, and 

this need drove the development of local area networks. We will begin with a discussion of 

the most popular LAN technologies - Ethernet. 

3.2.1 Ethernet 

Ethernet has arguably become the most pervasive technology for local area 

networking. Originally developed in the early 1970's [21 ] it continues to develop to the 

present day. The original concept utilised a physical medium consisting of a'bus', or 

'backbone', of heavy-duty co-axial cable, fitted with terminating resistors, and referred to 

as the'Ether'. Into this were tapped transceivers that injected signals into the bus. 

Computers ('nodes') were then connected to this via cabling and an associated controller. It 

can be seen that in this arrangement, any nodes' transmission will be received by all of the 

other nodes on the network, termed a broadcast' scenario. 

A sketch showing this original arrangement (drawn by one of the creators of 

Ethernet) is reproduced below. Data passed over this network at a basic 'raw' data rate of 

10 Mbps (10 million bits per second). 

Figure 17: The Original Ethernet Concept 
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It can be seen from the previous diagram that transceivers could be introduced at 

any convenient point along the length ofthe'Ether'. This original arrangement (referred to 

technically as 10-base 5) was nevertheless somewhat cumbersome. It was later refined 

with the introduction of a trunked arrangement, whereby a (thinner) co-axial cable passes 

directly to each computer on the network, rather than via a transceiver/controller 

arrangement (referred to technically as 10-base 2). 

A further refinement utilises twisted pair cabling, this time in a star configuration, 

utilising a'hub' or'data concentrator' to receive data from one node and distribute it to all 

of the other nodes connected to the hub. This last variant of Ethernet is referred to 

technically as 10-base T. We will discuss the network topologies mentioned in a later 

section. 

All three configurations are still to be found in use today, and indeed Ethernet 

networks can be created having a complex topology consisting of a combination of all 

these types. Typically, 10-base 5 might be used to form a'backbone', passing the length of 

a building or site. Into this would be connected a number of hubs, servicing many 

individual PCs using twisted pair cabling (10-base T). 10-base 2 might be a choice for 

smaller installations, or be used as a means of linking hubs over shorter distances. 

There have been further enhancements to the basic Ethernet system that have 

ensured its continued use in the future. The alternative medium of fibre optic cable is an 

option at 10 Mbps, and in addition, higher transmission speeds are possible. 100 Mbps is 

now commonplace even in low-end installations, using twisted pair or fibre optic media, 

and there are new transmission rates of 1000 Mbps ('Gigabit'), and even 10,000 Mbps, 

primarily using fibre optic media. 

We have already mentioned arbitration schemes in the context of the 'Aloha' WAN. 

We will next discuss them in greater detail, before introducing some other LAN systems. 
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3.2.2 Arbitration Schemes and Other LAN Technoloj'ies 

A desirable feature of any networking system where two or more nodes are sharing 

the medium is an arbitration scheme. This is necessary to avoid collisions between packets 

of data should more than one computer wish to transmit on the network at the same time. 

We have already mentioned Aloha, where the original, simple, scheme was inefficient 

under loads due to the lack of such an arbitration system. 

We will next look at ways of achieving this situation. Aloha was improved by the 

introduction of 'Slotted Aloha', where distinct timeslots were allocated for transmission by 

the remote systems, scheduled by the central computer. 

The type of network where a single system specifically provides some overall 

supervisory function is referred to as 'Master-Slave', where there is a single node 

designated the'Master', with all of the others being'Slaves'. 

The allocation of timeslots by the master, as in slotted Aloha, is not the only means 

of achieving arbitration. Alternatively, all communication may be initiated by the Master, 

which requests each Slave in turn to send any data that it may have. This process is known 

as 'Polling'. Therefore, only one node will ever be transmitting at any one time, and 

contention is avoided. Unfortunately, such a scheme is inflexible in so far as 

communication between Slaves is not possible except via the Master. Nevertheless, this 

arrangement can often be found in industrial control applications where relatively simple 

'Slave' processors need to communicate with a central 'Master' controller. 

More commonly found, as an alternative to'Master-Slave' systems in computing 

networks, is the 'Peer-to-Peer' scheme. Here, all of the nodes have equal status on the 

network, and can make a transmission intended for any (or all) of the other nodes. In such 

systems it is imperative that there be a means of avoiding collisions should more than one 

node wish to transmit at the same time. 
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The arbitration system used with Ethernet is called CSMA/CD (Carrier Sense 

Multiple Access with Collision Detect). We will now explain the derivation of this term. 

In an un-arbitrated network system with many users - termed 'Multiple Access' or 

'MA', such as the original 'Aloha' system already described, users were able to transmit at 

any time. As long as no other user transmitted whilst another was already transmitting, 

there was no problem. However, if two users transmissions overlapped, the transmissions 

would be corrupted. The only manner in which this could be detected would be when the 

receiving user did not acknowledge the transmission, or reported that the transmission was 

received but corrupted (depending on the extent of the corruption). This acknowledgement 

and error detection is a function of the transmission protocols used, and these will be 

discussed in a later chapter. 

One way of avoiding collisions is for a node intending to transmit to first listen to 

the line to detect is another user is already transmitting, and not transmitting if this is the 

case. This is referred to as'Carrier Sense', or'CS', giving the combined term'CSMA'. A 

limitation of CSMA is that it will not detect the instance of two users starting to transmit 

simultaneously. 

A way around this limitation is for users to monitor the line whilst they are 

transmitting. Should another user start transmitting, there will eventually be a mismatch in 

the data which will be detected by both users, who will then both cease transmission. After 

a delay, incorporating a random element so that neither start again simultaneously, one of 

the users will begin retransmission, hopefully without contention this time. This is termed 

'Collision Detection', or'CD', and gives us the overall term CSMA/CD, as applicable to 

Ethernet. It should be noted that collision detection only works when the action of a 

conflicting signal can be detected at the sending node. It is not applicable, for example, to a 

radio based system. 
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A variation of CSMA/CD is CSMA/CA. The 'CA' in this instance stands for 

'Collision Avoidance'. This technique is only possible where a collision between data 

packets is non-destructive, usually implying 'dominant' and 'recessive' signalling states in 

the transmission medium, and a protocol in which nodes have a clearly defined order of 

priority. These factors permit collisions to be detected without compromising data from the 

'superior' node. This allows the 'subordinate' node to relinquish transmission in an orderly 

manner, avoiding the need for both nodes to retransmit. An example of CSMA/CA is the 

CAN system, which will be discussed in a later section. 

CSMA techniques are not the only means of avoiding contention in a multiple 

access peer-to-peer network. An alternative is known as 'Token Passing'. Here, a user may 

only transmit when they have permission. This is somewhat similar to the master-slave 

system already described, except that permission to transmit is not granted by a master 

node, rather it is imparted by the possession of the 'token', a special form of message 

passed in turn to each node on the network. Once the node in possession of the token has 

finished any transmission which it may need to carry out, it re-transmits ('passes') the token 

to the next node in sequence. 

Token passing schemes offer greater efficiency than CSMA techniques, since 

collisions, and their subsequent need for retransmission, are avoided. Another important 

factor is determinism - it is easy to predict with a token passing scheme the maximum 

delay before a node is able to pass a message. With CSMA, this delay is very variable, 

according to the network loading, and in extreme instances may be unacceptably long. 
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These arbitration schemes have been formalised as standards by the American 

Institution of Electrical and Electronic Engineers (IEEE). These standards also deal with 

other factors such as the physical layer for the network, and the network topology. We will 

describe these standards in a later section. However, as we have already mentioned 

topologies whilst discussing Ethernet, we will next describe in more detail the different 

terminology used. 

3.3 Physical and Logical Network Topologies 

We will next present examples of the common topologies in use in networking 

systems. The diagrams are essentially self-explanatory. 

Figure 18: A Point to Point Network Configuration 

Where only two computers are to be networked, this represents the simplest 

possible arrangement. 

Figure 19: A Bus Network Configuration 

In this arrangement, all the systems are 'hung' off a central 'bus' line. 
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Figure 20: A Star Network Configuration 

In this scheme, all of the systems connect to a central 'hub' over individual lines. 

In 
er_- 

Figure 21: A Ring Network Configuration 

In this scheme, each system connects to two adjacent ones to form a physical ring 

arrangement. Data is passed around the ring from one node to the next. 
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3.3.1 Logical Networks versus Physical Networks 

The physical topology, as shown in the diagrams above, shows how the network 

has been cabled. The logical topology describes how the network operates from a 

communications point of view. It is thus possible, for example, to have a physical star 

topology, operating as a logical bus. In other words, a transmission from any branch of the 

star is broadcast to all other nodes. Other variations are possible, and these will be 

discussed next, when we deal with the IEEE networking standards. 

3.4 Networking Standards 

We have already mentioned that IEEE standards have been raised to cover 

networking. These have also been adopted as ISO standards. We will describe the common 

standards below. 

3.4.1 IEEE 802.3 (ISO 8802-3) 

This defines the original Ethernet system - transmitting data at 10 Mbps, and using 

a logical bus topology (physically, however, as already described, the network can be 

configured as a bus or a star). Data is broadcast throughout the network in no particular 

physical direction. All machines receive every broadcast, but only those meant to receive 

the data respond with an acknowledgement. The network arbitration scheme is CSMA/CD. 

3.4.2 IEEE 802.4 (ISO 8802-4) 

This also defines a physical network that has a bus topology, and is a broadcast 

network. Unlike 802.3, this network utilises a token passing arbitration scheme. This 

system is called ̀ Token Bus'. The Manufacturing Automation Protocol (MAP) standard, 

discussed later, uses an 802.4 physical layer. 
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3.4.3 IEEE 802.5 (ISO 8802-5) 

This defines a network that transmits data at 4 Mbps or 16 Mbps and uses a logical 

ring layout, but is physically configured as a star. This system is called ̀ Token Ring', and 

was originally developed by IBM. Data moves around the ring from station to station, and 

each station regenerates the signal. For this reason, it is not a broadcast network. 

There are other network systems in use. `Arcnet' is a well-known one that does not 

conform to a standard. It uses a token-passing bus access method, but not the same one as 

IEEE 802.4, and `Fibre Distributed Data Interface' (FDDI) is a new ANSI standard for a 

fiber-optic LAN that uses a token-passing protocol to transmit data at 100Mbps on a ring. 

The purpose of the above standards is to define the network's physical 

characteristics and how to get raw data from one place to another. They also define how 

multiple computers can simultaneously use the network without interfering with each 

other. These are functions of what is called the Physical (dealing with the transmission 

medium and topology) and Data Link (dealing with the arbitration scheme) layers of what 

is called the'OSI model'. 

We will next describe what is meant by the term'OSI model'. 

IS The OSI 7-Laver Model 

The term OSI is an acronym for'Open System Interconnection' [22]. Broadly 

speaking, it is an effort by the ISO (International Standards Organisation), representing 

national standards organisations from around the world, to provide international 

standardisation of many aspects of computer-to-computer communication, extending from 

the lowest level of signalling techniques to high-level interactions in support of specific 

types of application. 
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The work on OSI was initiated in the late 1970s, and completed in the late 1980s 

and early 1990s. There are many OSI standards that have been created as a result of this 

work, but fundamental to the entire scheme is the OSI reference model. 

The OSI reference model is the structure of an'ideal' network architecture. This 

Model outlines seven areas, or layers, for a typical networking system. The different layers 

are intended to split the various functional requirements of the network into discrete and 

defined areas of abstraction, in order to provide maximum flexibility. 

The reason that such an abstraction is desirable is that, should a single piece of 

software be written to encompass an entire application scenario, including communications 

functions, the end result is extremely inflexible. An attempt to change a single aspect of the 

communications system might involve complicated changes within the entire body of the 

software. 

With a layered system, and one with an orderly communication between layers, 

only software covering the affected layer will need changing, a much more manageable 

prospect if the overall software is large in size. 

The criteria used to define the layers in the OSI model are as follows: 
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"A layer should define the need for a different level of abstraction, without 

creating an unrealistic number of layers. 

" The equivalent layers in different networking systems should contain similar 

functions. 

" Changes to individual layers should not necessitate changes to other layers. 

" Layers should be structured so that necessary information exchanges between 

layers should be at a minimum. 

" Layers should exchange information only with those layers immediately above 

and below. 

Applying these requirements, the following layers were defined and named (from 

highest level to lowest): 

" Layer 7- APPLICATION 

" Layer 6- PRESENTATION 

" Layer 5- SESSION 

" Layer 4- TRANSPORT 

" Layer 3- NETWORK 

" Layer 2- DATA LINK 

" Layer 1- PHYSICAL 

Figure 22: The Seven Layers of the OSI Model 

Typically, data passes upwards and downwards (depending on the data direction) 

through each layer in turn. This is illustrated in the next figure. There are exceptions to this 

arrangement, which will be described later. 
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Figure 23: Data Flow through the OSI Model 

We will next look at each of the layers in more detail: 

3.5.1 Layer 1, The Physical Layer 

This layer defines the physical means by which data is moved around the network. 

For example, this may involve electrical currents, physical pulses or optical pulses. 

This layer also defines the means of connection to the communications system 

(cabling types etc. ). The requirements and characteristics for transmission generally are 

documented in separate standards such as V. 35 or RS-232. The Ethernet standards (IEEE 

802 series) that we have already mentioned define the details of the physical layer (as well 

as the MAC functionality of the data link layer - this will be explained in the next section). 

The Physical Layer is responsible for transmitting bits from one network node to another. 
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3.5.2 Laver 2, The Data Link Laver 

The function of this layer is to reliably pass packets of information directly from 

one node to another. Data coming down from layer three (the Network layer) is 

encapsulated in a packet containing various items of additional data (the structure of layer 

two packets) will be discussed in greater detail in a later section. The packets are then 

passed to the physical layer for actual transmission. In the opposite direction, received 

packets from the physical layer are checked for their integrity, and the 'stripped' data 

passed up to the network layer. 

The Data Link Layer is typically subdivided into two layers - the Logical Link 

Control (LLC) and the Media Access Control (MAC) sub-layers. The LLC sub-layer 

provides error control and works primarily with the Network Layer to support 

connectionless or connection-oriented services. The MAC sub-layer defines the arbitration 

and access protocols for the actual physical medium. 

3.5.3 Laver 3, The Network Laver 

This layer sets up connections and routes data from one node to another. It manages 

the addressing of messages and the translation of logical addresses (such as IP addresses) 

to physical addresses (MAC addresses). The Network Layer also determines the route data 

traverses between source and destination host, which may not be a direct connection. If the 

packets being transmitted are too large for the destination host's topology, the Network 

Layer compensates by breaking the data into smaller packets. These packets are then 

reassembled at the destination. 
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3.5.4 Laver 4, The Transport Laver 

This layer segments and reassembles data into a data stream. It provides an end-to- 

end connection between source and destination hosts. When data is transmitted from a 

source to a destination host, the data is segmented into smaller collections of information. 

The segments are numbered sequentially and are sent to the destination host. When the 

destination host receives the segments, it sends an acknowledgement of their receipt. If a 

segment is not received, the destination host can request that a specific segment be re-sent. 

This provides error control for data transport. Additionally, this layer can set up alternative 

routes for data, as appropriate. 

3.5.5 Layer 5, The Session Layer 

This layer enables two applications on separate hosts to establish a communication 

connection called a session. These sessions ensure that messages are sent and received with 

a high degree of reliability. The Session Layer performs security functions to make sure 

two hosts are allowed to communicate across a network. The Session Layer co-ordinates 

the service requests and responses that occur when applications communicate between 

hosts. 

3.5.6 Laver 6, The Presentation Laver 

This layer determines how data is formatted when exchanged between network 

computers. The data received from the application layer is translated into a commonly 

recognised, intermediary format. The Presentation Layer is also responsible for all 

translation of data, encryption of data, character set conversions and protocol conversions. 
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3.5.7 Laver 7, The Application Laver 

This layer enables programs to access network services. It does not deal with 

programs that require only local resources. To use the Application Layer, a program must 

have a communications component that requires network resources - e. g. Electronic Mail, 

or the World Wide Web. 

It can be seen that the full seven-layer model is quite involved and complex in 

structure. This belies its origins in a purely computer-based communications context, 

where all of these levels of abstraction are necessary. In home or industrial networking, 

including PLC systems, the full model presented above may not be necessary, and can in 

fact be simplified considerably. We will look at this idea next. 

3.6 Home/Industrial Automation and the Reduced OSI Stack 

Within the context of a home or industrial automation system, the seven layers of 

the OSI model may be reduced to typically just three - the Application, Data and Physical 

layers. 

There are simple reasons for this, apart from the fact that there is less need for the 

complexity of the different layers. The remote nodes likely to be found in typical home and 

industrial control networks will most likely be based around discrete micro-controllers, 

often low-cost types. To implement a full seven-layer stack would involve an unnecessary 

amount of system resources. Consequently, the reduced scheme would be preferred. 
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A notable exception to this reduced stack is found in the Echelon LonWorks 

system, already introduced in a previous section, where the entire seven layers are 

implemented. It should be noted though, that in order to achieve this, a custom 

microcontroller - the `Neuron Chip', was originally utilised to implement a LonWorks 

node, and this device contains three separate microprocessors internally, to handle the 

processing overhead. As technology has progressed, and increasingly powerful 

microcontrollers have become available, it has become feasible to implement the 

LonWorks protocol on single devices. Indeed, as a move towards having LonWorks 

adopted as an international standard, rather than as a proprietary system, Echelon have 

made their protocol available in the public domain. 

Having discussed the history of general computer networking, we will now move 

on to the subject area of networking specifically within an industrial environment. As a 

parallel to computer networking, early industrial networks tended to encompass a wide 

geographical area, i. e. they can be considered as a form of WAN. 

3.7 MAP, TOP and Industrial Networking 

MAP [23] stands for 'Manufacturing Automation Protocol'. Development was 

started in 1980, by General Motors, as a specification for a real-time protocol for use in 

manufacturing. This would operate at 10 Mbps over a broadband cable within a factory 

environment and utilised a token passing protocol. 
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The protocol was eventually expanded to include a5 Mbps network capable of 

interfacing with manufacturing robots, and other automated tools. The overall concept of 

MAP was intended to permit all aspects of the design and manufacturing process to be 

integrated and connected over the MAP network. For example, a part could be created 

using computer aided design (CAD) and the information for the manufacture of the part 

passed via the MAP network direct to the machine tools which would perform the 

manufacturing operation. 

TOP stands for'Technical and Office Protocol'. It is a very similar in concept to 

MAP, and was originally devised by the Boeing Company. However, it relies on an 

Ethernet CSMA/CD network rather than a token ring. 

The overall concept of a MAP or TOP network is shown in the following diagram. 
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The previous diagram contains many abbreviations pertinent to the overall 

manufacturing task being performed by the MAP network. For completeness, we will 
4 

briefly describe some of them. 

" MRP stands for 'Manufacturing Resource Planning'. It is a method for the 

effective planning of all resources within a manufacturing company. 

" CAD has already been mentioned, standing for'Computer Aided Design'. 

" APT is a language for numerically controlled machine tools, and likely to be 

generated by CAD applications to control the actual manufacturing operation. 

" MHS stands for'Message Handling System'. 

" PLC has also already been mentioned, standing for 'Programmable Logic 

Controller'. 

" CNC stands for'Computer Numeric Control', and describes a type of machine 

tool that may be automatically operated. 

" AGV stands for 'Automatically Guided Vehicle', under the control of other 

devices on the MAP network. 

Summing up, it can be seen that MAP and TOP are essentially 'high level' 

networks, with all of the nodes on these networks being sophisticated devices in their own 

right. 

The concept of an Industrial Fieldbus expands the industrial network concept down 

to the lowest level of sensors and actuators (indeed, some Fieldbus solutions are referred to 

as sensor/actuator busses). For example, a conventional Programmable Logic Controller 

(as already discussed in a previous chapter) will have a number of inputs and outputs all 

discretely wired to the PLC. A Fieldbus will integrate them all into a network in their own 

right. In the next chapter we will look at the evolution of the Fieldbus concept. 
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Chapter 4: Towards an Industrial Fieldbus 

What is the definition of a Fieldbus? The U. S. based Fieldbus Foundation describes 

it as follows: 'Fieldbus is an all-digital, serial, two-way communications system that 

interconnects measurement and control equipment such as sensors, actuators and 

controllers. At the base level in the hierarchy of plant networks, it serves as a Local Area 

Network (LAN) for instruments used in process control and manufacturing automation 

applications and has a built-in capability to distribute the control application across the 

network'. 

They also state that a Fieldbus must be an open system that is supported by several 

vendors, and not tied to a single technology. The various commercial Fieldbusses 

available, however, are not interchangeable. The differences between them are so profound 

that they cannot be easily connected to each other, even though they may have certain 

characteristics in common, such as the physical layer. 

Before moving on to discuss Fieldbusses proper, it is worth considering that there 

are some more localised forms of bus, intended for short range communications within an 

item of equipment. We will next take a look at these. 

4.1 Local Control Networks 

There has long been an incentive to use some form of serial communication 

between devices within an item of electronic equipment. This is primarily due to the 

potentially high number of interconnections between different devices (and in many ways 

this is a parallel to the situation found, on a wider scale, within the industrial scenario that 

we have already described in earlier chapters). 
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Consider the following scenario -a microprocessor interfaces to a number of 

peripheral and support devices such as ROM, RAM, and I/O devices. If discrete 

connections between all these devices were the only option, there would need to be dozens 

of lines in total. In reality, of course, a parallel bus arrangement is used, carrying address 

and data in parallel to all of the devices. Even so, this still requires a significant number of 

lines, which must be routed to all the devices connected to the central controller. 

Of course, sophisticated modern microcontrollers have many of the required 

peripherals 'on-chip', but even so, there is always likely to be a requirement for additional 

specialised peripheral devices. 

Should some of these be located physically remote, then the added complication of 

bus buffering is required. It is so much simpler if a serial link is used, requiring only two 

(or even just one) line to pass to each peripheral device. 

If the serial bus also carried address information, decoded by each peripheral as 

appropriate, then the bus may be run to each device in turn, further reducing the number of 

I/O lines required on the central processor, and effectively forming a small localised 

network. 

Several variations of such a serial link exist, but we will look specifically at two, 

which are notable for having, if not by design, but by subsequent enhancement, the ability 

to operate over somewhat greater distances. Indeed, one of them, CAN, may be considered 

as simple forms of Fieldbus in its own right, as we will discuss later. 

We will begin, though with a look at the well established 12 C bus. 
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4.1.1 The I1C Bus 

The term I2C is short for IIC, standing for'Inter Integrated-Circuit Communication', 

which succinctly describes the purpose for which it was developed. The 12 C bus [24] was 

created by Phillips Semiconductors some 20 years ago. It is a synchronous 

communications system, and requires two signal lines. These are called SDA (Serial Data) 

and SCL (Serial Clock). As their names suggest, SDA carries data, and SCL is a clock 

signal used for synchronising the data transfer. 

D 

Slaves 

Figure 25: 12 C Bus Arrangement 

These are open collector inputs/outputs, equipped with (typically) a 4k7 pull-up 

resistor (not shown on the above figure). At rest, both SDA and SCL are pulled HIGH (at 

the positive supply voltage, designating a logic 'I') by these resistors. The basic 12C scheme 

is a master-slave set-up, and all commands originate from the master. This is usually the 

central microprocessor/microcontroller in the system. 

The original version of 12C operates at a signalling rate of 100 kbps. This has been 

enhanced to provide an option of 400 kbps, and still further to give an option of 3.4 Mbps. 

These different speeds may be mixed on the same 12 C bus. Typically, 12 C devices are 

stand-alone, or integrated within a microcontroller. 
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Interestingly, 12C supports a multi-master option, permitting more than one master 

to share a single bus. Here, of course, it is necessary to have a scheme to avoid contention 

should more than one master wish to use the bus at the same time. This aim is achieved by 

the master node listening before transmitting, and holding back if another transmission is 

heard. Should two masters start to transmit simultaneously, this is handled gracefully 

thanks to the 'dominant'Precessive' transmission scheme that arises because open collector 

outputs and pull-up resistors are used (the 'low' state is dominant). All masters transmitting 

monitor the bus as they do so. As soon as a difference in the bit stream is detected the 

'recessive' master (the one attempting to transmit a '1' when the other is transmitting a'0') 

ceases transmission. A similar scheme is employed in CAN, which we will discuss in the 

next section. 

4.1.2 The CANBus 

CAN stands for'Controller Area Network' [25], and has its origins in the 

automotive industry, where it was intended for simplifying vehicle wiring looms (for this 

reason it has also been known as the'Controller Automotive Network'). CAN is a serial 

bus, having robust error-handling, and operates at speeds of up to 1 Mbps. Distances of up 

to 40 m may be covered at 1 Mbps, increasing to 1 km at a lower speed of 20 kbps. 

Typical physical layers found in can are a Single-wire (plus ground) or a Two- wire 

differential signalling system, based on the RS-485 standard, using twisted pair cabling. . 

The number of nodes in a simple CAN installation is limited only by electrical 

characteristics of the physical layer, whilst RS-485 CAN is limited to 30 nodes per 

network segment. 
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Like 12C, the CAN physical medium supports 'dominant' and 'recessive' states, and 

this is employed in the arbitration scheme which we will discuss later. In addition, 

especially in automotive applications, there may be DC power supplied along with the 

CAN signal. 

The logical structure of a CAN network is as follows: All nodes are peers and every 

node receives every message. Physically, the network topology can encompass any of the 

variations applicable to twisted pair media, e. g. Trunk, Star, Ring, or combinations of 

these. 

An important concept within CAN signalling is the'message id'. Message ids are 

used to identify every type of event or command in the system and, also, to assign a level 

of priority to the message itself. Specific message ids tend to be assigned to single nodes 

only, and serve as a means of a node identifying that a particular message is meant for it. 

The priority assigned to a message id is utilised in the CAN arbitration system. 

In the event of two or more nodes starting to transmit simultaneously, the first 

variable part of the data packet will be the message id. As with 12 C, all nodes monitor the 

transmission line and when a dissimilar state is detected, the 'recessive' nodes stop their 

transmissions, allowing the 'dominant' node to continue. Since, in CAN, the low state is 

dominant, then the lowest message id numbers have highest priority. Message id's can be 

11 bits in length, or 29 bits in what is referred to as 'extended' CAN format. 

As with 12C, CAN is typically implemented using a CAN controller which may be 

standalone or a part of the system microcontroller. 

The overall ruggedness of CAN means that it is often applied as a Fieldbus in its 

own right (termed CAN-Open). In addition, there are other commercial Fieldbus offerings 

utilising a physical layer based on CAN and RS-485 techniques. 

We will discuss these in the next section, along with some other current Industrial 

Fieldbus solutions. 
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4.2 Some Other Industrial Fieldbus Solutions 

This is by no means a definitive list of Fieldbus systems, rather it intended to give a 

'flavour' of the types of the technologies available. We will start with some basic 'sensor- 

bus' type systems before moving on to more sophisticated Fieldbus networking schemes. 

4.2.1 HART 

HART is an acronym for'Highway Addressable Remote Transducer'. The HART 

system [26] was initially developed by the Rosemount Company to provide enhanced 

signalling facilities for existing 4-20 mA systems. It could even be considered as a form of 

DC power line carrier' in so far as the 4-20 mA loop constitutes the power line and the 

HART signal is sent as a modulated carrier frequency superimposed on the current flow. 

0 1 
Time (sec) 

2 

Figure 26: HART Waveform Super-imposed on 4-20 mA Loop 
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The digital signalling in HART is based upon the Bell 202 standard for telephone 

modems, and utilises an FSK signal at carrier frequencies of 1200 Hz (representing logic 

'I') and 2200 Hz (representing logic '0'). The basic signalling rate of the HART system is 

1200. 

When utilised with a 4-20 mA loop, the tones modulate the current flow in the loop 

by a maximum of +/- 0.5 mA. Because this modulation has an average amplitude of zero, 

there is no overall effect on the operation of the existing analogue 4-20 mA loop, and any 

devices connected to it. 

HART is a flexible system, and we will now describe some typical connection 

scenarios for it: 

"A single 4-20 mA loop runs from a single field device, with a HART transducer 

offering two way communications. The HART transducer might be associated 

with the field device (for example, as a remote calibration or diagnostic tool), or 

could be a completely independent instrument. 

" As above, but with a chain of HART devices on a single 4-20 mA loop. This is 

known as a multi-drop configuration. The protocol used in HART is a 

Master/Slave type - responses are requested by the 'master', to which the 

specified 'slave' responds. There may be more than one master in use on a 

single loop, for example a handheld device may be used for initial setting up in 

addition to the control system master. 

" There is also a technique known as 'burst mode', applicable to single drop 

HART arrangements only. Here, the HART field device continuously sends 

data to the host, which simply accepts and processes it. 
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" Whilst originally used with 4-20 mA loops, HART can also operate over a 

conventional physical communications medium, capable of carrying the audio 

tones. 

Messages in HART are formed from 8-bit data bytes, encapsulated using the 

standard start, stop, and parity bits found in the RS232 specification (this permits the use of 

standard communications circuits, for simplicity). A series of data bytes are 

(asynchronously) formed into packets containing identification, address, and checksum 

information. 

We will discuss all of these aspects of communications in a later chapter and, as it 

is a typical example of such, will also discuss the HART packet structure in more detail. 

4.2.2 BatiB US 

BatiBUS was developed by the Merlin Gerin, Airelec, EDF and Landis & Gyr 

Companies. The physical layer of BatiBUS consists of a twisted pair cable, carrying a 15V 

DC power supply. Signalling is at a rate of 4800 bps, and is achieved by'shorting' 

(logic `1') or 'opening' (logic `0') the circuit. The 15V supply may be used to power a 

number of simple nodes on the network - typically up to 75, based on each consuming a 

maximum of 2 mA. 

The maximum distances achievable in BatiBUS depend on factors such as the cable 

capacitance and resistance. There are no restrictions on the topology of the network - bus, 

tree, ring, or star may be used, or indeed a combination of these. 

At the data link level, the network is a peer-to-peer scheme, based around a 

CSMA/CA protocol, with each node having a pre-set address. 

BatiBUS has been documented in European and International standards. 
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4.2.3 BitBus 

BitBus was developed by the Intel Company in 1984 as a means of adding remote 

I/O capability to its Multibus logic controllers. It uses a physical layer based on the RS485 

standard, with a differential voltage signal sent over a screened twisted pair cable, arranged 

in a bus topology. BitBus operates at signalling rates of 62.5 Kbps or 375 Kbps and is 

another example of a Master - Slave system. 

Distances of up to 13.2 km at 62.5 kbps may be achieved with the use of multiple 

repeaters. Single segments may be up to 1200 m long for 62.5 kbps signalling, or 300 m 

for 375 kbps. Up to 32 nodes may exist on one segment, up to a maximum of 250 in total. 

BITBUS is an industrial network optimised for the transfer of small messages 

(typically 10 to 250 bytes) at workshop or factory level. Since 1991 BITBUS has been 

adopted as international standard IEEE 1118. 

4.2.4 DeviceNet 

DeviceNet was developed by the Allen-Bradley Company in 1984, and is based on 

CAN technology, used with the RS485 specification for electrical signalling. 

DeviceNet offers a maximum of 64 nodes on a network, over a distance 100 to 

500 m, at signalling rates of 125,250 and 500 kbps. DeviceNet is fundamentally a 

Master/Slave system, but for increased flexibility, various types of messaging are 

supported, and it also utilises a producer/consumer based model (this term is described 

later when considering the FIP Fieldbus). We will now describe these different messaging 

types. 
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Polling: The master node individually asks each device to send or receive an 

update of its status. This requires an outgoing message and incoming message for each 

node on the network. This is the most precise but least time efficient way to request 

information from devices. 

Strobing: The master node broadcasts a request to all devices for a status update. 

Each device responds in turn, with node 1 answering first, then 2,3,4 etc. Node numbers 

are assigned to prioritise messages. Polling and Strobing are the most common messaging 

formats used in DeviceNet. 

Cyclic: Nodes are configured to automatically send messages at scheduled 

intervals. This can be used in conjunction with Change of State messaging (see below) to 

indicate that a node is still functional. 

Change of State: Nodes only send messages to the scanner when their status 

changes. This occupies an absolute minimum of time on the network, and a large network 

using Change of State messaging can often outperform a faster polling network. This is the 

most time efficient but least precise way to obtain information from devices because there 

is no longer any deterministic indication of when a particular node will next send data 

Explicit Messaging: Commonly used on complex devices to download parameters 

that change from time to time but do not change as often as the process data itself. An 

explicit message provides a multipurpose communication path between two nodes and 

provides a means for performing two-way functions such as device configuration. 

Fragmented Messaging: For longer messages that require more than the 

DeviceNet maximum of 8 bytes of data per node per scan, the data can be broken up into a 

number of 8 bytes segments and re-assembled at the other end. This requires multiple 

messages to send or receive one complete message. 
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UCMM (Unconnected Message Manager): DeviceNet UCMM nodes are capable 

of peer-to-peer communication. Unlike the standard Master/Slave configuration, each 

UCMM node can communicate with another directly, without having to go through a 

master first. This ability requires more resources within the nodes than simple 

Master/Slave messaging. 

These multiple messaging formats, which can be mixed on a single DeviceNet 

network, enable the most efficient solution to be realised for a given for a given control 

application. 

4.2.5 SDS (Smart Distributed System) 

SDS was developed by the Honeywell Company, in 1989, and is also based on 

CAN technology, used with RS485 electrical signalling. The maximum number of nodes 

on a network segment is 64. SDS works over distances of 100 to 500 m at signalling rates 

of 125,250,500 and 1000 kbps. 

SDS is another Master/Slave system, but is notable, compared to the other CAN- 

based solutions, in that it is event-orientated. Messaging is primarily by change of state and 

cyclic means - status changes on the network are reported only when they occur, with the 

cyclic messaging ensuring the integrity of the nodes. This drastically reduces traffic on the 

network compared to polling schemes. Successful message transmission is verified by the 

master, which sends a confirmation signal back to the slave node. Message prioritisation 

and the use of cyclic messaging serve to ensure that important data can be relied on to get 

through when needed, and a worst-case response time can still be guaranteed. 

SDS is primarily intended for use in simple sensor bus applications, where the 

simplicity of the node hardware means that it can be made physically very small. 
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4.2.6 Interbus-S 

The Interbus-S system was developed in the mid-1980s by the Phoenix Contact 

Company and several German technical institutions. The aim of the Interbus project was to 

simplify signal wiring in industrial applications. Interbus was first marketed in 1987 and 

subsequently made an open standard in 1990. It has been defined in European standard 

EN 50254. 

Interbus is a serial bus system for transmitting data between different types of 

control systems and distributed input/output units. The serial transmission of data is carried 

out via a bus cable, which connects the controller board to the installed modules (slaves) in 

the system. 

The physical layer used by Interbus depends on the distance between the particular 

nodes on the network. Remote nodes use RS-485 or fibre optical cabling, allowing long 

distances to be covered. More local nodes can use simpler CMOS signal levels. All 

Interbus communications take place at a rate of 500 kbps. 

Interbus is a master - slave network that is designed as a data ring. The Interbus 

master (and there can be only one) is the central device for controlling the data ring. It 

exchanges data across the Fieldbus with the slave devices on the network. 

The network has the structure of a distributed shift register. Every node in the 

network exchanges data with the master through internal data registers, which form part of 

the shift register that makes up the network. Although logically the network topology is 

that of a ring, the go and return lines of the ring are implemented within the one cable so 

that the network appears to have a star or tree structure. 
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4.2.7 FIP 

FIP stands for 'Factory Instrumentation Protocol'. It utilises a bus topology, with 

shielded twisted pair cabling, at data rates of 31.25 kbps, 1 Mbps or 2.5 Mbps, or fibre 

optic cabling at 5 Mbps. There may be up to 64 nodes per bus cable segment (which may 

have a length of 1 Km or more, depending on the data rate, cable type and number of 

nodes), and up to 4 segments may be connected together through repeaters. 

At the Data Link level, FIP utilises what is referred to as a'Producer-Consumer 

Model'. Basically, this is a special form of Master - Slave system, as previously described. 

In FIP, the master is referred to as a 'Bus Arbiter' (BA). 

0 P C BA 

Figure 27: The FIP'Prod ucer/Consumer' Mechanism 

The Bus Arbiter ('BA' in the above diagram) periodically requests certain 

parameters (or 'variables') over the network. The node responsible for the particular 

variable - the 'Producer' ('P' in the above diagram), then sends the value of the variable 

over the bus (this is similar to the system used with CAN). Any other nodes requiring this 

data - the 'Consumers' ('C' in the above diagram), simply read it from the bus at this time. 

Neither the Bus Arbiter nor the Producer node needs to know which nodes are consuming 

the data. The Bus Arbiter polls all the required variables within a defined time scale, 

ensuring determinism, and consequently, the 'Producer-Consumer' mechanism is very 

effective for time-critical data. 
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FIP is one of the Fieldbusses incorporated in standard EN 50170 (General Purpose 

Field Communication System). 

4.2.8 P-Net 

In 1983, the Swedish Process-Data Company developed P-Net as a standard for 

data communication in process control. P-Net [27] is based on an RS-423 physical layer, 

utilising shielded twisted-pair cabling. This allows a cable length of up to 1200 m without 

repeaters. Data is sent as an asynchronous transmission in `Non-Return to Zero' (NRZ) 

code. 

By way of explanation, NRZ coding is the simple technique whereby a logic `0' is 

represented by one signalling state, and logic `1' by another. By contrast, for example, in 

`Non-Return to Zero Inverted' (NRZI) coding, a logic `0' might be represented by a 

change of signalling state, and a logic `1' by the signalling state remaining unchanged (the 

opposite coding situation could equally be applied). This is illustrated in the figure below. 

NRZ 

N RZ I 

0 1 0 0 0 1 0 

Figure 28: Example of NRZ and NRZI Coding 
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P-Net interfaces are electrically isolated, and up to 125 nodes can be connected to 

each cable segment. P-Net is a multi-master/slave system and utilises a protocol based on 

the reduced 3-layer OSI model already described. 

Since P-Net is multi-master, an arbitration scheme is required, and P-Net uses a 

special form of token passing called 'virtual token passing'. This does not involve any 

actual message being sent over the bus, rather a time delay mechanism is used. 

Each P-NET master is given a unique node address, between 1 and the number of 

masters expected within a system. Whenever the bus is idle, a counter in each master is 

incremented. After a delay, related to its node address has passed, a particular master is 

permitted to take control of the bus. It if does not need the bus it takes no action and the 

count increments until another master is enabled. As soon as any master uses the bus, the 

counters are reset and the sequence repeats. This arrangement also covers the instance of 

missing or non-contiguously numbered masters. The system can accommodate up to 32 

masters on the bus in this fashion. 

In July 1996, P-NET became part of the European Fieldbus Standard - EN 50170, 

and since December 1999, part of the new International Fieldbus Standard - IEC 61158. 
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4.2.9 Profibus 

Profibus is a contraction of `Process Field Bus' [28]. It is also based on an RS-423 

physical layer, although in addition it can utilise fibre-optic and intrinsically safe (IS) links. 

The term `Intrinsically Safe' refers to a technique employed in `hazardous areas', areas 

where potentially explosive atmospheres may exist (examples of such areas might be 

refineries and similar plants, hence it is a concept very important in industrial automation). 

Put simply, IS techniques aim to limit the level of electrical energy present in equipment in 

the hazardous area, to a level too low to ignite an explosive atmosphere should a spark 

occur [29]. This is typically achieved by utilising special circuits to limit the electrical 

energy passed into the hazardous area, and to ensure (by their design) that equipment 

located in the hazardous area does not store excessive energy in operation. 

The signalling rates in Profibus can vary between 9600 bps and 500 kbps. 

Profibus is a broadcast bus protocol that operates as a multi-master/slave system. 

Its physical topology is that of a bus. Nodes are connected either directly to the bus cable, 

or can be connected via stub lines, but only at signalling rates below 1.5 Mbps. 

It is possible to have up to 32 nodes per bus segment, or if repeaters are used, up to 

127 nodes per segment. For flexibility in a control scenario, the system permits ̀ live' 

installation / removal of devices without affecting other nodes on the network. 

There are three distinct versions of Profibus that have been tailored for different 

applications. The three versions of Profibus are: 
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" Profibus DP is optimised for speed and low cost. This version of Profibus is 

for communication between automation and control systems and distributed I/O 

at the device level and utilises an RS-485 or fibre optic physical layer. 

" Profibus PA is designed for process automation. It can easily used in 

intrinsically safe areas because both communication and power is supplied over 

the same 2 wires. 

9 Profibus FMS is a general-purpose version for all applications. It uses an 

RS-485 or fibre optic physical layer and allows multi-master communication. 

All three versions of Profibus share a common underlying bus access protocol. As 

we have already stated, the Profibus is a Master - Slave system, with a Multiple master 

option. Single master operation is conventional in form, but in multiple master mode it is 

necessary to arbitrate which master has access to the bus. This is achieved by additionally 

incorporating a token passing protocol between the masters. 

Profibus is also one of the Fieldbusses incorporated in standard EN 50170 (General 

Purpose Field Communication System). 

4.2.10 Foundation Fieldbus 

The Foundation Fieldbus was developed by an organisation called the Fieldbus 

Foundation. The Fieldbus Foundation was formed by a group of automation companies 

with the goal of completing the development of a single, open, international and 

interoperable Fieldbus standard. It was based on the work of the International 

Electrotechnical Commission (IEC) and the Instrumentation Society of America (ISA) 

(now called the International Society for Measurement and Control). 
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Foundation Fieldbus is a broadcast system, like Ethernet, where each node must be 

able to `hear' the messages broadcast by any other node on the network. The bus cable 

consists of only two wires, which serve the dual purpose of supplying power to all nodes as 

well as transmitting the data over the network. The physical topology, as for other 

Fieldbusses already described, is a bus structure with the option of spur lines. 

The maximum number of devices on the network is determined by factors such as 

the power consumption of individual nodes and the length of the trunk line. The length of 

the trunk line can be extended using bus repeaters. 

The maximum number of devices is 240 per link with the number of devices per 

spur line depending on the length of the spur line. 

As already mentioned the FF cable carries DC power as well as the signal. The 

signal is in the form of a Manchester Bi-phase waveform, at a level of +/- 10 mA into a 50- 

Ohm load, creating a1V peak-to-peak signal on top of the DC supply voltage line. The bit 

rate is 31.25 Kbps and the DC supply voltage can be in the range 9V DC to 32 V DC. 

Foundation Fieldbus has a sophisticated set of data-link access controls. There is a 

centralised scheduler on the network called the Link Active Scheduler (LAS). This 

operates a'Producer-Consumer Model' as already described, requesting nodes to return 

data at predetermined times. This data is then available to any other nodes that require it. 

This permits the network to behave in a deterministic manner with respect to time critical 

data. 

Additionally, during any free time slots when no deterministic data transfer is 

scheduled, the LAS operates a token passing scheme, giving other nodes an opportunity to 

pass other (non time-critical) data. 

The LAS function is carried out by a device known as a Link Master Device. There 

may be more than one of these on the bus, and it is therefore feasible for the bus to operate 

in a multi-master mode. 
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The Fieldbus solutions that we have described are not the only ones in existence - 

there are many more, some proprietary, some open. Whilst there are certain similarities 

between particular systems, for example, they may share a physical layer, they are 

nevertheless essentially incompatible. In the next section, we will discuss the moves 

underway to achieve interoperability within Fieldbus technologies. 

4.3 The Move Towards Fieldbus Interoperability 

With the proliferation of different Fieldbus technologies that began to develop 

during the 1980's, it became a goal of the International Standards Organisations to steer 

users towards a simplified framework of a standard Fieldbus solution. 

As has already been mentioned, many Fieldbus solutions became National 

Standards in their own right. This in itself was an impetus for National Standards bodies 

involved to push for that particular standard to be included in any proposed International 

Standard. 
ti 

Manufacturers with proprietary Fieldbus solutions would also tend to press for their 

technology to be adopted as a part of the proposed standard. Likewise, existing users of 

these technologies were less willing to change. 

Because of these factors, the standards that have evolved have tended to be very 

much a compromise, and in fact incorporate elements of existing commercial technologies. 

There are two main Fieldbus standards that we must look at, EN 50170 and IEC 61158. 

4.3.1 EN 50170 and IEC 61158 

European standard EN 50170 ('General Purpose Field Communication System'), 

first published in 1996, is really only a formalisation of three existing, and non- 

interoperable Fieldbus specifications - Profibus (the DP and FMS variants), P-NET and 

WorldFIP. 
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However, supporters of EN 50170, who wish it to be accepted world-wide, state 

that this is justified because these technologies are proven and well established, whilst 

opponents suggest that they are all out of date! It is proposed that other technologies may 

be added to EN 50170 in future, for example, Foundation Fieldbus and Profibus PA. 

As early as in 1985 the IEC (International Electrotechnical Committee), in 

association with the ISA (Instrumentation Society of America) started its efforts to develop 

one uniform international standard for Fieldbusses. This standard came to be designated as 

IEC 61158 (Fieldbus Standard for use in Industrial Control Systems). 

The standard consists of eight parts, covering the definition of all aspects of the 

proposed new Fieldbus. The standard contains 'profiles' that permit the Fieldbus to be 

tailored for particular application areas. 

The supporters of IEC Fieldbus cite its flexibility and sophistication, whilst 

opponents claim that it is overcomplicated and unproven. 

It can be seen that despite the best efforts of the standardisation bodies, there is still 

some way to go before there is any semblance of a `universal' Fieldbus. 

That concludes our discussion of modern Fieldbus technologies. It can be seen that 

these tend to utilise discrete signalling media, most frequently twisted pair. Using the 

power line as a medium does not yet feature significantly in the Industrial scenario, 

although it is more common in home and building automation systems. 

It is the belief of the author that PLC techniques can offer a useful additional facet 

to Fieldbus and local control networks, where the application suits the limitations of PLC 

technology. 

We will go on to discuss these potential applications in a later section. Next, though 

we will begin to look at the power line itself, and its suitability (or otherwise) for data 

transmission. 
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Chapter 5: The Power Line as a Transmission Medium 

Transmission lines, as encountered in normal communication systems, have 

well defined, uniform, electrical characteristics. For example, we have already discussed 

twisted pair and co-axial cabling when discussing networking systems. The purpose of 

such transmission lines is essentially to permit the passage of the high frequency signals 

without undue attenuation or distortion. Transmission line theory dictates that, for this to 

occur, the transmission line must present a unified characteristic impedance to the signals 

being transmitted. The physical construction of the cabling is a major factor in providing 

this. 

The power line, on the other hand, is quite different. It is optimised for the 

transmission of high energy 50 Hz or 60 Hz mains power. At such low frequencies, the 

nature of the mains cabling will have no significant effect on the propagation of the mains 

energy, so consequently, mains wiring within a building or plant can be extremely complex 

and undisciplined in structure. Its topology might consist of a complex mass of rings, stars, 

busses, or spurs, with no thought for correct termination for high frequency signals. 

Any other type of transmission over the power network is inevitably going to be a 

serious compromise. Furthermore, since the power line is shared in this fashion, by- 

products of its primary function, in the shape of noise and other effects are inevitably 

present. Other transmissions sharing the medium will pick up such noise as a side effect. 

Many studies have been carried out to attempt to quantify the characteristics of the 

MV and LV power distribution network from the point of view of PLC applications, the 

following references being an example: [30,31,32,33,34,35,36,37]. 
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If it is possible to sum up these findings in a few words, it is to state that the power 

line represents a highly variable and unpredictable medium for the transmission of data. 

Impedance's at our communications carrier frequencies are both variable and of a low 

order - often below 10 ohms, there are other phenomena which may further alter the 

impedance or cause spurious resonance effects, and also many varied noise sources. 

In the next section, we will look at the commonest of these, beginning with external 

sources of signal degradation. 

5.1 Sources f Signq De'radatio: i Encountered on the Power Line: 

5.1.1 Shunt Capacitance 

This is commonly encountered as a means of'Power Factor Correction' (PFC). The 

term'Power Factor' recognises that in the real world, few electrical loads are purely 

resistive in nature, and in fact most have a notable inductive component (e. g. motors, 

relays or solenoids). This means that the electrical energy is not being utilised at maximum 

efficiency, due to the differing phases of the V/I waveforms feeding into the load. A power 

factor of `1' represents a purely resistive load, and a PF of `0', a purely inductive or 

reactive load. 

This inductive component can be nullified by the judicious use of capacitance 

placed, in the case of shunt connection, across the power line. 

Unfortunately, these capacitors will tend to also shunt our PLC signals and in 

addition can introduce resonance effects, in combination with the impedance of the 

transmission line, further inhibiting our signals. 
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5.1.2 Series Capacitance 

This is a technique also encountered as a means of correcting power factor. As the 

name suggests, the correcting capacitance is introduced in series with the power line. 

Unlike shunt capacitance, this will have little attenuation effect on the PLC signal, 

although there is still a risk of resonance effects. It is a less common technique on LV 

distribution networks. 

5.1.3 Li, -htning and Transient Arrestors 

These typically consist of an air gap and/or a non-linear resistance (varistor), 

intended to absorb lightning surges by virtue of the air gap sparking or the varistor starting 

to conduct when excessive voltages are present on the power line. Any effects on PLC 

systems are likely to occur as a result of any capacitance of the air gap or the varistor 

device, which may be a significant factor at the frequencies of our PLC signals. 

5 .2 Typical Types ofLoad Encountered oii the Power Lifte: 

Having dealt with the characteristics of the power line itself, and some associated 

ancillary devices, we will now consider the various types of load that will be connected to 

it and which also affect power line signal propagation. 

5.2.1 Resistive Loads 

Simple loads such as heating elements fall into this class, and in principle, it is 

relatively easy to calculate their effect on PLC. It must be remembered that there may be 

some associated L&C effects to be taken into consideration as well. 
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5.2.2 Capacitive Loads 

Many loads exhibit a capacitive effect, due to their internal wiring capacitance or 

the use of suppression capacitors across the power lines. These will have a shunting effect 

on PLC signals and may, in addition, induce resonance's (see below). Equipment utilising 

switched mode power supplies, which simply rectify the incoming mains voltage, also 

effectively present a shunt capacitance to PLC signals, as well as introducing impedance 

modulation effects (discussed below). 

5.2.3 Resonant Loads 

As mentioned above, the interaction between capacitive loads and cable inductance 

can cause resonance's that may prejudice PLC transmissions by shunting or blocking the 

wanted signal. Such effects are inevitably unpredictable due to the nature of the power line 

itself. 

5.2.4 Impedance Modulating Loads 

'Impedance modulation' effects can occur in equipment such as that incorporating 

switch-mode power supplies, where large values of capacitance are effectively placed 

across the mains supply via rectifiers. These capacitors are effectively only in-circuit for 

that part of the mains cycle whilst they are being charged (i. e. whilst the mains voltage 

exceeds the current voltage across the capacitor). This `topping up' effect results in 

periodic changes in the effective impedance presented to the power line by the equipment. 

Next, we will move on to consider some of the types of noise which will be 

encountered on the power line. 
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5_3 Sources Q[Noise Encountered on the Power Line: 

5.3.1 Background Noise 

This is typically a low-level noise originating from a range of sources, possibly 

external to the power line itself, and impinging onto it by such means as inductive pick-up. 

5.3.2 White (Smooth Spectrum) noise 

This is broad band noise caused by such devices as non-synchronous, brushed, 

electric motors. It is typified by the fact that it covers a wide bandwidth with no significant 

dominant frequencies. 

5.3.3 Synchronous noise 

This is noise generated at multiples of the mains supply frequency (50 or 60 Hz) 

typically caused by devices that operate in synchronisation with the mains cycle, such as 

Thyristor (SCR) dimmers. 

5.3.4 Non-Synchronous noise 

This type of noise is periodic, but not based on the mains frequency. Examples 

include television sets or switching power supply circuits. 

5.3.5 Impulse noise 

This is non-periodic, irregular pulses or spikes, often of high amplitude, caused by 

such functions as remote lightning strikes, the switching of heavy loads, capacitor banks 

etc. 
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Having now mentioned sources of noise on the power line, we will go on to discuss 

the standards that govern the subject area of electromagnetic interference. 

5 .4 EMC Standards 

A major part of the research contained within this thesis concerns the performance 

of PL communications links under the influence of external noise and interference. As has 

already been noted, the power line is extremely unpredictable with regard to such factors. 

It would be useful, therefore, to have some defined benchmarks when considering the 

operation of PLC links under such conditions. 

Luckily, such benchmarks do exist, in the form of international standards covering 

the area of Electromagnetic Compatibility (EMC). 

The definition of the term EMC (Electromagnetic Compatibility) refers to the 

performance of an item of equipment within the realm of electromagnetic energy, both in 

the context of that items' immunity from, and emissions of, such energies [38]. As such 

there are two fundamental classes of EMC standard -'Emission' standards, and 'Immunity' 

standards. In this research, we are interested in the immunity standards as they apply to the 

effects of such interference on the performance of our power line communications system. 

It must be noted, however, that by their very principle of operation, PLC systems 

can be classed as 'Emission' sources under the terms of the EMC standards. Consequently, 

it may be necessary to limit the level of their carrier signals. 

Before looking at the specific EMC standards, we will consider the structure of the 

various international standards organisations. 
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5.4.1 The IEC, ISO, CENELEC and EMC Standards 

Work on the many international standards in existence is carried out by the various 

standards organisations and their internal 'Technical Committees' (TCs). The IEC is the 

'International Electrotechnical Commission', which works in co-operation with the ISO 

('International Standards Organisation') to promote international standardisation. 

Within the IEC there are two technical committees primarily working on EMC 

matters, and many more with some involvement. Technical Committee 77 (TC77) 

`Electromagnetic compatibility between equipment including networks' is primarily 

responsible for IEC 1000 ̀Electromagnetic Compatibility' family of standards. 

These IEC standards have no legal standing, but are the basis of national or 

European standards, which we will discuss in a later section. The other technical 

committee is CISPR, a French acronym for the `International Special Committee on Radio 

Interference', who generate their own publications dealing with limits and measurement of 

radio interference characteristics. The body in charge of overall co-ordination of EMC 

activities at the IEC is the Advisory Committee on EMC (ACEC). 
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Figure 29: EMC Standards Committee Structure 

At a European level CENELEC, another French acronym standing for the 

`European Committee for Electrotechnical Standardisation' is responsible for generating 

European standards. 

It is primarily the generic European standards that we will be using within this 

research, and we will introduce them next. 
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5.4.2 Emissions Standards 

The original purpose of the EMC emission standards was to ensure that equipment 

did not cause problems to other equipment by virtue of the extent of emitted interference 

from the equipment. Obviously, there are several mechanisms by which such interference 

may be propagated: 

" As electromagnetic (radio) radiation. 

" As conducted interference, over power or data lines. 

The primary EMC emissions standards are EN 50081, Part 1 [39], and 

EN 50081, Part 2 [40]. Part 1 of the standard provides the requirements for emission of 

electromagnetic disturbances from electrical and electronic apparatus intended for use in 

the residential, commercial and light industrial environments and for which no dedicated 

product or product-family emission standards exist. Part 2 is similar in scope, but covers 

the industrial environment. 

5.4.3 Immunity Standards 

The original purpose of the EMC immunity standards was to define the limits to 

which equipment would remain unaffected by interference from external sources of EM 

energy. These sources can be categorised as follows: 

" Electromagnetic (radio) radiation. 

" Conducted interference, over power or data lines. 

" Electrostatic discharge (ESD) into the equipment. 

The primary EMC immunity standards are EN 50082, Part 1 [41], and 

EN 50082, Part 2 [42]. The scope of the EN 50082 standards is similar to that for 50081, 

but concerning an immunity scenario. 
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As already noted, these are not the only standards in existence, there are others that 

cover specific types or families of equipment, and the already mentioned, extensive, 

IEC 1000 family of standards. 

Having discussed the EMC standards for emission and immunity, within the 

context of conducted interference, a common technique for minimising the effects of this is 

to utilise a filter in the power line. Since these also have implications for PLC, we will 

discuss their use in the next section. 

5.5 The Use of Filters in PLCApplications 

Although the previous sections tend to paint the power line in a most unfavourable 

light as a communications medium, steps can be taken to improve matters. Perhaps the 

most important of these involves the use of filters. 

In the context of electronic systems, the purpose of filters can simply be defined as 

to select, pass, or block certain frequencies or frequency bands. 

From an EMC viewpoint, we need to pass the 50 / 60 Hz mains power, whilst 

attenuating the effects of higher frequency noise signals, hence a low pass filter 

arrangement is commonly used, similar to that shown below. 
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Figure 30: Typical Power Line EMC Filter 
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It can be seen that the combination of series inductance and shunt capacitance 

essentially forms a low pass filter intended to attenuate power line noise, both common 

mode (between Live-Neutral, and Earth), and differential (between Live and Neutral). It is 

not, however, ideal from the PLC point of view, as the capacitance across the Live and 

Neutral terminals will (as has been already described) tend to attenuate PLC signals. 

A similar arrangement, in `reverse' order, can be utilised to prevent `noisy' items of 

equipment from passing generated noise onto the power line, but again there are penalties 

from the PLC viewpoint due to the presence of the shunt capacitance. 

Modern equipment and appliances will already have appropriate filtering and 

suppression built in to meet the requirements of the various EMC standards. For our 

purposes though, such filters would also have to be carefully designed so as not to inhibit 

the PLC signals. The use of such a filter will give a further advantage from the PLC 

viewpoint, as it will tend to mask the impedance of the load to which it is connected. This 

is because the series inductance's in the circuit will present a high impedance at the 

frequencies of our PLC signals. 

However, since, in a real world application we cannot guarantee that all loads 

would have appropriate filters, we must consider in our experimentation the ̀ worst case' 

scenario, with a noisy and low impedance power line. 

Another important use for filters in PLC systems is for isolating a PLC system 

within a particular building, part of a building, or item of plant. This will prevent PLC 

signals from passing to an area for which they are not intended, and vice-versa. 

These ideas are among those embodied in the ̀ Power Bus' concept that the author 

has outlined in an existing paper [7]. They will be discussed in more detail in a later 

chapter. 
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The need for filters in practical PLC systems has already been recognised by the 

standards bodies and has resulted in draft standard prEN 50065-4-1 [43]. They define the 

use of PLC filters (called 'de-coupling' filters) as follows: 

9 To limit the transmission area of wanted signals to the area in which the mains 

communications system operates. 

" To reduce unwanted signals from the other side of the mains port. 

" To allow simultaneous communication on both sides of the filter. 

" To set a suitable impedance to the mains power ports at the signalling 

frequency. 

" To provide a return path for the (PLC) signal when needed. 

It can be seen that the above points address the issues previously raised in this 

section concerning the desirability of utilising filters in PLC applications. 

That concludes our discussion of the power line as a transmission medium. In our 

experimental work, described in a later chapter, we will be subjecting PLC modems to 

conducted interference sources, at the levels laid down in the immunity standards already 

mentioned, and evaluating their performance under these conditions. 

In the next chapter, we will start considering the techniques available for practical 

power line communication. We will begin by discussing the various modulation schemes 

that may be applied. 
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Cliapter 6: Power Line Communication Techniques 

6.1 Modulation Techniques PLC: 

In the field of PLC, we are concerned with the concept of transmitting digital 

information over the power line medium. We have already described base band techniques 

such as Cyclocontrol and TWACS, but in this research, we are primarily interested in 

modulated carrier schemes. These permit PLC operation within defined frequency bands, 

as outlined by CENELEC in standard EN 50065, which will be described in a later section. 

There are many means of digitally modulating a carrier frequency, and we will 

describe the common ones in the following sections. We will concern ourselves only with 

techniques applicable to PLC, and will disregard other transmission systems that may be 

encountered in other communications areas (e. g. radio), unless relevant. 

6.1.1 Amplitude Shift Keying (ASK) 

In ASK, a change of signalling state is represented by a change of amplitude in the 

carrier frequency. Signalling state may be represented by two (or more) different 

amplitudes of the carrier (although the greater the number of states, the poorer the noise 

performance, since it becomes less easy to discriminate between the various amplitudes). 

Figure 31: Amplitude Shift Keying (ASK) Waveform 
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Two states is the more usual arrangement (called Binary-ASK), with one state often 

being no carrier at all, referred to as On-Off-Keying (OOK). 
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Figure 32: On-Off Keying (OOK) Waveform 

The X-10 system already described utilises an OOK technique, based around a 

carrier frequency of 120 kHz. The Philips TDA5051 power line modem device [44] is an 

integrated power-line modem which provides OOK facilities. It can be tuned to operate 

over a range of frequencies, but would be most appropriate for use in at a 132.5 kHz centre 

frequency, in conformance with EN 50065 requirements. 

6.1 .2 Frequency Shift Keying (FSK) 

In FSK, a change of signalling state is represented by a frequency shift in the 

carrier frequency. This is illustrated in the diagram below. Notice the irregularities that 

occur as the frequencies change. These are undesirable in a real works FSK application, as 

they will result in out of band frequency components being generated. 

Figure 33: Frequency Shift Keying (FSK) Waveform 
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It is preferable for the transition from one frequency to another to be smooth, and 

this is referred to as continuous phase FSK. This lack of sharp edges in the waveform 

results in a lower bandwidth requirement. This is illustrated in the diagram below. 

Figure 34: Continuous Phase FSK (CPFSK) Waveform 

The frequency shifts involved in FSK may be quite large, called'Spread FSK' 

(SFSK), which can have advantages when noise obliterates one or other frequency, since 

the other may still be detectable as a simple ASK signal. However, in practice, bandwidth 

limitations may not permit this technique to be employed. 

More usually, the frequency shift is relatively small. For compliance with the 

EN 50065 access protocol (to be described later), this shift should be centred around 

132.5 kHz. An example of this technique is the Thomson ST7537HS1 device [16]. The 

device utilises two signalling frequencies of 133.05 kHz and 131.85 kHz (in fact, not quite 

symmetrical about 132.5 kHz, but close enough! ). This device is specifically intended for 

compliance with the'European Home System' (EHS) initiative, which has already been 

discussed. 

6.1.3 Phase Shift Keying (PSK) 

In PSK, a change of signalling state is represented by a phase shift in the carrier 

frequency. For digital systems, this shift is usually a discrete jump of a fixed phase angle. 

The following diagram shows a phase shift of 180 degrees between states, giving a total of 

two possible signalling states. 
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Figure 35: Digital Phase Shift Keying (DPSK) Waveform 

Other values of phase shift are possible. For example, four discrete phase shift 

values (called quadrature PSK, or QPSK) offers the possibility of increased data rates, 

since each signalling state can represent two binary digits. Further increases in the number 

of signalling states, and therefore data rate, can be achieved by combining PSK with other 

techniques such as ASK, but with the increased disadvantage of increased receiver 

complexity and reduced immunity to noise sources. 

An EN 50065 compliant example of PSK techniques is the Echelon LonWorks 

PLT-22 'C' band power line modem [45]. 

6.1.4 Spread Spectrum (SS) 

Very much a current technique, spread spectrum can be simply defined, as the act 

of deliberately causing a communications signal to occupy greater bandwidth than simple 

signalling theory states is required. The reasons for doing this are generally either for data 

security, or to overcome noise problems on the communications channel. It is the latter 

which is most applicable to PLC applications because, by spreading the bandwidth, the 

carrier is less likely to be affected by noise occupying only parts of the available 

bandwidth. A disadvantage, however, where compliance with EN 50065 is required, is that 

the available bandwidth is not usually high enough to support SS. This is particularly true 

for `consumer' use within the relatively narrow CENELEC 'C' band which we will be 

using (we will discuss these bands in a subsequent section). 
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There are actually several modulation techniques that produce a spread spectrum 

signal. We will introduce the commonest ones here. 

6.1.5 Direct Sequence Spread Spectrum (DS-SS) 

This is probably the most sophisticated spread spectrum technique. In Direct 

Sequence, the wanted data stream is modulated (by phase modulation) with a pseudo- 

random bit-stream, at a significantly higher bit-rate, to cause the spread in the bandwidth. 

A carrier signal is then modulated with this combined bit stream to give the final spread 

spectrum signal. 

Demodulation involves correlating the incoming bit stream with the original 

pseudo-random spreading signal, re-generated at the receiving end in synchronisation with 

that at the transmitter. DS is a technique often used for secure radio links as the signal 

(when monitored with a normal radio receiver) typically does not rise above the 

background noise floor. In any case, without knowledge of the exact de-spreading bit 

stream, decoding the signal is almost impossible. 
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Figure 36: Example of Spreading in DS-SS 

The above diagram illustrates the basic principle of direct sequence spread 

spectrum. The original data signal, shown at the top left of the diagram, has a relatively 

narrow spectral characteristic, shown top right. The pseudo-noise (PN) spreading signal, 

shown at the mid-left of the diagram, has a higher bit rate, and a correspondingly wider 

spectral characteristic (mid-right). When the two signals are combined, by a simple phase 

modulation, (bottom left), the resultant signal retains the wide bandwidth of the spreading 

signal (bottom right). 

Direct sequence spread spectrum is not generally used in PLC applications but, as 

has previously been mentioned, is frequently chosen for tasks such as wireless networking. 

We will next look at another SS technique, variations of which are utilised in both radio 

and PLC applications. 
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6.1.6 Frequency Hopping Spread Spectrum (FH-SS) 

Another SS technique is'Frequency Hopping'. Here the carrier frequency (or 

frequencies) deliberately change, either at set time intervals, or in response to other 

conditions. 

Frequency changes in the time domain, may occur in a controlled, pseudo-random, 

fashion in order to provide security from interception. Alternatively, the frequencies may 

change in response to conditions on the transmission medium (i. e. power line noise within 

a certain frequency band causes the carrier to change to a frequency outside of that band). 
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Figure 37: Example of Time Domain FII-SS 
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The above diagram shows a simple example of a time domain based frequency 

hopping spread spectrum system. It can be seen that for the initial time interval t1, the 

system uses carrier frequency f1. Between t1 and 2t1, the carrier frequency changes to fa, 

and then, at subsequent intervals of t1, to f3, then f2 and so on. The sequence of frequency 

changes will follow a defined sequence and as long as the receiver knows that sequence it 

will be able to track the transmitted signal. 
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FH-SS is used in the Cyplex IC/SS PLC system [46,47]. This system may be 

viewed as a frequency-hopping spread-FSK system, with a choice of frequency pairs 

falling within the CENELEC 'A' band of 9 kHz to 95 kHz, for use by the utility companies. 

Four frequency pairs are available (called ̀ tunes'). These are 76.190 kHz and 

61.905 kHz, 66.667 kHz and 52.381 kHz, 42.857 kHz and 23.810 kHz, and finally 

33.333 kHz and 14.286 kHz. As can be seen, the various combinations occupy a wide part 

of the available bandwidth. 

A complex control scheme is employed within the IC/SS chip set to govern the use 

of these tunes. The controller continuously monitors the power line and if conditions are 

found to be degenerating using a particular tune, then the master node (IC/SS is a master- 

slave system) initiates a change to another `tune'. 

This technique is not suited to some of the lower bandwidth sections of the 

frequency spectrum and is not appropriate to our work in the CENELEC `C' band. 

6.1.7 'Chirp' Spread Spectrum 

Lastly, we will consider the 'Chirp' technique for spread spectrum. Here, the 

signalling state is represented by a carrier frequency, which sweeps over a particular 

frequency range for each bit transmitted. The idea is that noise occupying a small part of 

the chirp bandwidth should not defeat the reception of the rest of the chirp. This technique 

is most commonly found in PLC applications, but can also be applied to radio, and the 

sweep pattern may be quite complicated. Again, the relatively high bandwidths required 

make chirp less favourable to EN 50065 compliant solutions. 

An example of a'chirp' SS device for PLC applications is manufactured by the 

Intellon Corporation [13]. The waveform employed is shown in the next figure: 
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Figure 38: The Intellon `Chirp' Waveform 

It can be seen that the chirp waveform extends in frequency from 100 kHz to 

>1 

400 kHz. This is well outside of the CENELEC band-plan, but is permissible for use in the 

USA, where it is used for the PLC medium in the CE-Bus automation system. 

We have already mentioned the CENELEC band plan for power line 

communications systems several times. It would be prudent, therefore, to now discuss the 

family of standards in which these bands (and indeed many other aspects of PLC) are 

defined. 

6.2 EN 50065 _ The PLC Standard 

The EN 50065 series is the family of standards that attempt to regulate the 

development of PLC applications within Europe, at least at the lower end of the frequency 

spectrum. There are also moves afoot to develop high frequency (HF), high speed, PLC 

systems, and we will be discussing these at the end of this Thesis. 

We will begin by looking at the various parts of standard EN 50065. 
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6.2.1 EN 50065 : Part 1 

To date, only one part of EN 50065 has been formally adopted as a standard, rather 

than as a draft - EN 50065 : Part 1 [48]. We will look at this standard in more detail 

shortly, but meanwhile will briefly introduce the other, draft, standards that currently go to 

make up the EN 50065 series: 

6.2.2 EN 50065: Part 2 

This part of the standard deals with the immunity requirements for PLC equipment, 

within residential, commercial and light industrial environments [49,50,51]. Its 

recommendations are essentially in line with those of the full EMC standard EN 50082, 

upon which we will be basing our experimental work. 

6.2.3 EN 50065: Part 4 

This part of the standard deals with the use of filters as a component of PLC 

systems [43]. We have already discussed this subject in an earlier chapter. 

6.2.4 EN 50065: Part 7 

This part of the standard deals with the subject of the impedance that equipment 

connected to a PLC system should exhibit so as not to unduly compromise 

communications [52]. 
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As already noted, only part 1 of EN 50065 is currently a full standard. Its title is: 

Specification for Signalling on low-voltage electrical installations in the frequency 

range 3 kHz to 148.5 kHz. Part 1. General requirements, frequency bands and 

electromagnetic disturbances. 

Several issues relevant to this research are covered in this standard, and we will 

now describe them in turn: 

6.2.5 The EN 50065-1 Frequency Bands 

The frequency bands allocated to different PLC applications are outlined in the 

table below. 

Frequency Band Sub-Band A lication 

3 kHz -9 kHz The use of Use restricted to 
frequencies in this electricity suppliers 

3 kHz - 95 kHz band shall be Use restricted to 
9 kHz - 95 kHz restricted to electricity suppliers 

electricity and their licensees 
suppliers. 

The use of this band 
95 kHz - 125 kHz does not require an The use of access protocol frequencies in this Signalling in this 

95 kHz - 148.5 kHz 
125 kHz - 140 kHz 

band shall be band requires the use 
restricted to of the access protocol 
consumers. described in clause 5 

of the standard 
The use of this band 

140 kHz - 148.5 kHz does not require an 
access protocol 

Figure 39: CENELEC EN 50065 PLC Signalling Bands 

It can be seen that within the context of this research, we are considered a 

'consumer' and thus are limited to the frequency band of 95 kHz to 148.5 kHz. More 

specifically, we will limit ourselves to the sub-band of 125 kHz - 140 kHz, as this is 

specified as requiring an access protocol to be in place. 
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6.2.6 The EN 50065-1 Access Protocol 

The purpose of the access protocol mentioned above, within the sub-band 125 kHz 

to 140 kHz, is to enable several PLC systems to operate over the same section of power 

line even systems utilising differing signalling techniques or protocols. The access protocol 

laid down in EN 50065-1 can be summarised as follows. 

" All systems shall use the frequency 132.5 kHz (band centre) to indicate that a 

transmission is in progress. In other words, whatever the signalling technique 

employed, it shall generate a significant spectral component at this frequency that 

can be detected by other (not necessarily compatible) systems. 

" No transmitter or group of transmitters shall transmit continuously (defined as 

having no gaps greater than 80 ms) for a period exceeding 1 second. After each 

transmission, they shall not transmit again for at least 125 ms. 

The Is limit prevents a single system 'hogging' the PLC channel. The 125 ms gap 

gives other systems the chance to gain access to the channel once the currently 

transmitting system has finished 

" All PLC devices connected to the channel shall have a signal detector capable of 

sensing a signal of 80 dB (µV) (equivalent to 10 mV) within the frequency band 

131.5 kHz - 133.5 kHz (i. e. covering the access frequency defined above). Devices 

shall only transmit when they have sensed the band to be out of use for a set period. 

This period is randomly chosen, with at least seven different values, between 85 ms 

and 115 ms. This random waiting period lessens the likelihood of two nodes 

attempting to transmit simultaneously. 
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6.2.7 The EN 50065-1 Output Levels 

Finally, EN 50065 concerns itself with specifying signal levels for PLC 

transmitters, and also, in consideration of EMC requirements, limits for out of band 

emissions. Summarising, these output levels are as follows: 

Within the band 3 kHz -9 kHz 

" An output level of 134 dB (µV) (5 with respect to earth. 

" An output level of 89 dB (µV) (28 min) differential. 

Within the band 9 kHz - 95 kHz 

" An output level (for narrow band transmissions) of 134 dB (AV) (5 0 at a 

frequency of 9 kHz, falling to a level of 120 dB (gV) (1 i9 at a frequency of 

95 kHz. 

" For wide band transmissions, an output level of 134 dB (µV) (5 I9 

Within the band 95 kHz - 148.5 kHz 

" 116 dB (pV) (630 min) for general use. 

" 134 dB (µV) (5 J9 for special use (e. g. Industrial). 

In addition, the standard defines limits for conducted and radiated interference 

generated outside of the normal operating band. 

That concludes our look at EN 50065. Next, we will consider the requirements of 

protocols for use in PLC applications. We will concentrate on the low levels of the OSI 

stack (levels 1& 2), directly involved in the transport of the data between nodes. 
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6 .3 The Need for Protocols in PLC Applications: 

We have now looked at some modulation techniques applicable to a PLC 

environment. These form an important part of the Physical Layer (Layer 1) of the OSI 

model, as already introduced. 

Moving up a level in the OSI stack, in a real-life communication situation, we must 

ensure that the 'intelligence' passes through the medium (the Power Line in this case) 

without corruption. There will be several influences that will prevent this. 

" Imperfect characteristics of the transmission medium which will corrupt the data 

being sent. The power line, is a particularly bad example of this, as has already 

been discussed. 

" The necessity for many nodes to exist on the medium at the same time, and to 

communicate amongst each other in an orderly manner. This implies either some 

form of arbitration scheme, or collision detection/avoidance mechanism. 

It is these points which are addressed by the use of a communications protocol. 

6.3.1 What is a Protocol? 

In 1948, Claude Shannon, the digital communications pioneer, made the following 

comment: 'The fundamental problem of communication is that of reproducing at one point 

either exactly or approximately a message selected at another point. ' 

This rather succinctly defines the purpose of a communications protocol. A 

protocol is a set of rules for communicating between systems. Protocols govern format, 

timing, sequencing, and error control. Without these rules, the receiving node will not be 

able to make sense of the stream of incoming bits. 

In the following sections, we will be looking at all of these aspects of a 

communications protocol, beginning with timing, or synchronisation. 
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6.4 Synchronous and Asynchronous Transmission 

Fundamental to a serial communication system is the requirement for a receiving 

node to tell when items of data are being presented to it. This implies that some form of 

synchronisation must exist between transmitter and receiver. 

There are two types of digital serial transmission commonly encountered: 

'Synchronous' and 'Asynchronous'. Their names are indicative of how they achieve the 

synchronisation function. 

6.4.1 Synchronous Transmission 

When a serial bit stream is received, it is necessary for the receiver to know exactly 

when a particular bit position occurs, in order that its state is correctly registered. The term 

synchronous implies that this information is inherent in the transmitted signal. This can be 

achieved in several ways. 

Perhaps the simplest, and used on some base band systems (such as 12C, which we 

have already described), is to have a separate line carrying this 'clock' information, as 

shown in the figure below. 

DATA 

CLOCK 

0 1 1 0 I I 

Figure 40: Example of a Synchronous Transmission 
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In this example, the receiver will sample the data on a high-low transition of the 

clock line, since this corresponds to the centre of each data bit. However, a penalty of this 

technique is that an extra signal wire is required. 

A better technique is to have a local clock signal, at the receiver, at roughly the 

correct frequency, and to 'lock' this to the incoming data stream. The technique utilises a 

type of circuit referred to as a phase locked loop (PLL), commonly encountered in 

communications system performing such tasks as frequency synthesis. Once the clock is 

locked, the receiver can safely check the transitions of the received data based on this local 

clock. 

Obviously, it is necessary for the clock to remain 'in-lock' for the duration of the 

data packet being received. This is not too difficult to achieve, so long as there are 

sufficient bit transitions within the data stream. 

Commonly, synchronous data protocol packets will start with a'preamble' sequence 

of bits. Amongst other purposes (such as adjusting the gain of any amplification stages), 

this can help provide the initial synchronisation of the local clock. Once initial lock is 

achieved, a transition every cycle is not required to maintain lock. 

Long `trains' of data 'I's or Vs, which might run the risk of the PLL losing lock, 

can be avoided by techniques such as 'bit stuffing' or other coding schemes which 

guarantee regular transitions in the data stream. 

6.4.2 Asynchronous Transmission 

In asynchronous transmission, there is no need for a local clock to lock onto the bit 

rate of the incoming data stream. In this technique, the data is split into small blocks 

(typically 8 bits in length). Each block is then framed by additional bits, whose purpose 

will now be described. 
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The start of each block is defined by a 'start' bit, which is, by definition, the inverse 

of the 'idle' state of the transmission line. When this start bit is detected by the receiver, a 

time delay is initiated, sufficient to take the receiver into the middle of the next bit (i. e. 1.5 

bit periods), which is the first data bit. The data is sampled at this point, then a further 

delay of one bit period is initiated, and the second data bit sampled, and so on, until all data 

has been sampled. There next follows an (optional) parity bit, the function of which is 

described below, and finally 1 or 2 'stop' bits, defined as being at the idle state for the line. 

Immediately the stop bit period is over, a new transmission may begin immediately, or the 

line may carry on in the idle state. It can be seen that, should the accuracy of the local 

clock/timer differ from that of the transmitter, there will arise a cumulative error. As long 

as this error does not exceed 0.5 bit periods in either direction, then the received data will 

be sampled correctly. Over the relatively small frames involved (typically no more than ten 

bits) there is no problem achieving this accuracy. 

Space (0) +VDC 

IDLE 
STATE 

Start 
Bit 0 I 

Mark (1) -VDC 

1 0 0 0 1 1 Stop 
Bit 

Figure 41: Example of an Asynchronous Transmission 

The major disadvantage of asynchronous transmission is the relatively high 

overhead. It can be seen that to transmit eight bits of data, at least ten bits are required 

(eight data bits, 1 start bit and 1 stop bit). In reality, the overhead can be even greater if 

error detection techniques such as parity are utilised. 

Protocols using data packets can be constructed from a stream of asynchronous 

characters, thus permitting the use of standards communications circuits. An example of 

this if the HART system already described. 
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Having synchronised our receiving and transmitting nodes, we must next make sure 

that our data has been received correctly. We will discuss techniques for this in the next 

section. 

6 .5 Techniques) Error Detection and Correction 

6.5.1 Parity. 

This is perhaps the simplest technique for detecting an error within digital data. The 

principle is simple -a given block of data, of fixed length, is analysed in terms of the 

number of high (logic T) bits. Depending on the parity chosen ('odd' or 'even') the parity 

bit is set or reset so that the total bit count (including the parity bit) is odd or even as 

appropriate. This technique is commonly used in asynchronous transmission techniques 

such as RS-232. 

At the receive end, the data block is analysed and the result compared against the 

state of the received parity bit, taking into account the parity scheme in force. As a 

technique, it is capable of detecting an odd number of bit errors within the data block -a 

single altered bit (data or parity) will result in the parity rule being violated. It can be seen 

however, that if two bits are corrupted, then the parity bit will again agree, and the error 

will not be detected. In general, an odd number of bit errors will be detected, but an even 

number not so. 
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6.5.2 Checksum 

This is applicable to data contained within packets. Here, the entire packet is 

'summed' according to a predefined formula. The resulting data is the checksum value, 

which is sent along with the rest of the packet. At the receiving end, the summing process 

is repeated and the result compared with the received checksum. If the two values differ, 

then the data has been corrupted. The receiving station will signal this to the receiver by 

either making no response (where an `acknowledge' (ACK) response is the normal 

response), or a `negative acknowledge' (NAK) response. The transmitting station will then 

know that it should re-transmit the data. 

6.5.3 Error Correction Techniques 

One stage further from the concept of detecting an error is that of being able to 

correct it 'on the fly' without the need to retransmit the data. Many techniques can be used 

for this purpose. One of the simpler of these is the 'Hamming Code'. 

Hamming coding, is really an enhancement of the parity technique already 

discussed [53]. Consider the following diagram: 

(a) (b) 
Figure 42: Example of Hamming Coding 
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In part (a) of the above diagram, d1, d2, d3 & d4 represent a four-bit data word, and 

p1, P2 & p3 represent parity bits corresponding to the data bits enclosed within the 

corresponding circle. In other words, p1 is the parity bit for d1, d2 & d3, P2 is the parity bit 

for d2, d3 & d4 and p3 is the parity bit for d1, d3 & d4. 

Part (b) of the diagram represents the coding for the data word '1000'. It can be seen 

that even parity has been applied as each circle ends up with an even number of bits. The 

calculated parity bits are sent along with the data giving the overall transmitted data 

'1000110'. This is referred to as a 7: 4 Hamming code, as it requires a total of seven bits to 

convey four data bits. 

Decoding and checking the received data is carried out as follows: The received 

parity bits are checked against their corresponding data in the same manner as shown 

above and any errors noted. According to which of the three parity checks fail, it is 

possible to detect, and correct, a single bit error within the data. 

For example, if data bit d1 is corrupted, it will cause both the parity check including 

pl, and that including p3 to fail. Most importantly, it is the only single-bit failure that will 

have this precise effect. Data bits d2 & d4 will have a similar effect on the parity checks 

involving pi & P2, and p2 & p3 respectively. A corruption of data bit d3 will cause all three 

parity checks, p1, p2 & p3 to fail. Finally, should any of the three parity bits become 

corrupted, they will only affect their associated parity check group. 

Therefore, having detected the single bit failure, it can be corrected and the data 

passed on without the need for retransmission. The scheme also offers the potential to 

detect (but not correct), any number of errors within the data word. 
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That was an example of a 7: 4 Hamming code, suitable for a medium where no 

more than one error is to be expected within a single group of seven bits. There are other 

Hamming schemes available that offer a greater error recovery potential, as well as other 

more sophisticated forms of error correction scheme such as Trellis coding or Reed- 

Soloman coding. 

We will not be considering them further in this Thesis. This is because a notable 

downside of all such techniques is that they require a considerable overhead in terms of 

additional data quantity (for example, a 75% increase in the data word size, for the 7: 4 

Hamming example. 

Such techniques are useful in applications where retransmission is not a viable 

option. For example, when a real-time response is essential, such as in the playback of 

Compact Discs, or where long time-scales and persistently noisy channels are the norm, 

such as the transmission of images from space probes. 

In practical communication applications, the overhead required for forward error 

correction schemes is too great, it is simpler to have an error detection/retransmission 

scheme such as parity, checksums or CRC. 

We have already mentioned that many protocols require data to be in the form of a 

'packet'. We will next consider the structure of a'typical' data packet used within a 

communications protocol. 

6.6 The Structure Q(a 'Typical' Data Packet 

In many communications protocols utilising data packets, the packets all have a 

broadly similar structure. In this section, we will outline the various elements that go to 

make up a `typical' data packet, in this case, from the HART Fieldbus protocol already 

discussed in an earlier chapter. 
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The structure of a typical HART packet is shown in the diagram below: 

C PREAMBLE START ADDR COMM BCNT (STATUS] [DATA] CHK 

Preamble: 5 to 20 bytes, hex FF 

Start character: I byte 

Addresses: source and destination, 1 or 5 bytes 

Command: 1 byte 

We count (of status and data): 1 byte 

Status: 2 bytes, only In slave response 

Data: 0 to 25 bytes* 

Checksum: 1 byte 

* 25 bytes is a recommended maximum data length 

Figure 43: HART Packet Structure 

As has already been mentioned, HART uses a modulated audio frequency carrier 

signal superimposed upon a 4-20 mA current signalling line. We will now look at the 

function of the component parts of the data packet, shown above. 

" The 'Preamble' part of the HART packet consists of five to twenty hexadecimal 

'FF characters (binary, all logic T). Its purpose is to permit the analogue 

modem receiver circuitry to adapt itself to the incoming signal (for example, 

through automatic gain setting). We have already noted that, for simplicity, 

HART uses an asynchronous scheme to transmit its data. In other, base-band, 

synchronous, transmission schemes, the preamble would be used to permit the 

receiver clock to become synchronised to the coming transmission. 
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" The'Start' character (one byte long) in a HART transmission can have several 

values according to the type of transmission (for example: Master-to-Slave, 

Slave-to-Master, or Burst Mode). In synchronous schemes, the start character is 

usually a unique bit pattern that indicates the start of the packet proper to the 

receiver. 

" The 'Address' field in the HART data packet can be one or five data bytes long 

(according to the particular variant of HART). It contains both the Master and 

Slave addresses (HART permits up to two masters on a single loop). 

" Next comes the 'Command' byte. This defines the action required of the slave 

by the master node. It is commonly one byte long (giving potentially up to 256 

commands), but the use of a special code '254' indicates that a further byte will 

follow, giving the option of additional commands being defined. 

" Next is the'Byte Count', a single byte value indicating the length of the rest of 

the packet. 

" Slave HART nodes replying to masters will next send two 'Status' bytes which 

include such information as any communications errors that may have occurred, 

and status information (for example, 'busy' or'command not understood') from 

the slave. 

" The next section of the packet is the 'Data' field. This is used to convey data to 

and from master and slave nodes, and the data may be in any appropriate 

format. Data can be variable in length from zero (no data required by that 

particular command) or up to 24 bytes. 
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" Finally, in the HART packet we have the'Checksum'. As already noted in this 

chapter, this is a calculated value based on, the contents of the rest of the packet. 

In HART it is a single byte value resulting from logically 'exclusive-or'-ing all 

of the rest of the bytes making up the packet together, beginning with the 'Start' 

character. The receiver will recalculate the checksum and compare it with the 

received value. If a difference is found, then there must be a corruption of the 

packet, and a retransmission will be requested. Up to three corrupted bits within 

a single message may be detected reliably in this fashion, with some chance of 

detecting additional errors. It must also be remembered that, in the case of 

HART, there is also the individual parity bit check that applies to each 

individual byte making up the packet). 

That concludes our look at data packet structure. We will not dwell on protocols 

any further in this Thesis, as we are concentrating in our experimental work on the 

performance of the physical layers. However, protocols will form an important part of the 

follow-up work that will lead on from this initial study. We will look at exactly how, and 

consider the future direction of this research, at the end of the Thesis. 

Next, though, we will look at the typical data rates required for the kind of 

industrial control applications envisaged. 

6.7 Data Rate Requirements-for Industrial Control 

If PLC is to be suitable for industrial control, we must ensure that the system is 

capable of responding sufficiently fast to meet the need of the process. The author has 

already published a joint paper [7] that addresses some of these issues. 

If we again use the HART system as a typical example, we can calculate the length 

of typical' message packets. To start with, we will consider a'worst case' scenario, 

assuming maximum field lengths. 
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The packet will then consist of. 

" 20 preamble bytes + 

"1 start byte + 

"5 address bytes + 

"1 command byte + 

"1 count byte + 

"2 status bytes + (NB. In slave response mode only) 

" 25 data bytes + 

"1 checksum byte = 56 bytes in total 

We already know that HART utilises an asynchronous framing scheme for each 

byte consisting of 

"1 start bit + 

"8 data bits + 

"1 parity bit + 

"1 stop bit = 11 bits in total 

Therefore, we can determine that the packet length for the worst case example 

above will be 616 bits (11 x 56). 

If we consider a'best case' scenario, with minimum field lengths we come up with: 

"5 preamble bytes + 

"1 start byte + 

"1 address byte + 

"1 command byte + 

"1 count byte + 

" (0 data bytes) + 

"1 checksum byte = 10 bytes in total 

Which gives a total packet length of 110 bits. We already know that HART 

operates at a rate of 1200 baud (signalling states per second). Therefore, we can state that 

the worst case packet will take just over 0.5 seconds to transmit, and the best case packet 

just under 0.1 seconds. 
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Of course, in reality, the passing of a message will consist of two packets - one 

sent, and an acknowledgement returned, so in a worst case scenario we are looking at 

around one second, or around 0.2 seconds best case. 

A signalling rate of 1200 baud is a typical value for the power line modems that we 

will be looking at so these figures represent good'ball-park' figures. 

Within industrial control, there are many functions that require a very rapid 

response time (of the order of milliseconds). An example might be the control of fast 

moving machinery. High speed Fieldbus networks may be able to achieve such rates, but 

Fieldbusses such as HART, and our proposed PLC system, will not be suitable for such 

use. However, there are a great many other applications where responses of a second (or 

even longer), are quite acceptable, and it is on these that we hope to apply our system. 

It is worth noting that manufacturers are beginning to propose high-speed PLC 

solutions, based on sophisticated electronics and transmission schemes. These are 

primarily aimed at home networking or internet access, but (if reliable) could offer a future 

potential for PLC technology to move into the realm of high-speed Fieldbus. 

Such systems are beyond the scope of this Thesis, but we will discuss them briefly 

in our conclusions section. 

Before moving on to a detailed description of the experimental work, in the next 

chapter, we will conclude this chapter by expanding on the 'Power Bus' concept, proposed 

by the author for industrial control applications. 
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6.8 The `Power Bus' Con cep 

The term'Power Bus' was coined to convey the idea of the power line forming a 

'backbone', connecting all of the sensors, actuators, and controllers to be found within a 

typical industrial control application. 

6.8.1 The Basic Application of the 'Power Bus' 

Referring back to the discussion of MAP in a previous chapter, the area in which 

we propose that 'Power Bus' would operate represents the bottom level of the MAP 

hierarchy. Controllers utilising power bus would communicate with higher levels in the 

automation scheme (if required) using (perhaps) PLC or other Fieldbus techniques. 

As we have already discussed, response times for our PLC system are likely to be 

of the order of a second or so, and this is perfectly adequate for many industrial control 

scenarios. We will now give an example, from an area in which the author is experienced. 

6 . 8.2 A Burner Control Example Suitable for `Power Bus' 

The lighting-up of a large industrial burner plant must follow a set sequence of 

operations to ensure safety - there are going to be (potentially) large quantities of explosive 

fuel/air mixture present. Typically, such plant is operated by a discrete `controller' which 

might be electromechanical in nature, utilising relay logic (as described in an earlier 

chapter), or increasingly, might be solid state, or incorporated into a distributed control 

system (DCS). Whatever technology is used, great care must be taken to avoid the 

possibility of a failure of the controller producing a hazardous condition. 
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A typical (simplified) sequence of operation would be as follows. 

" The controller is requested to light burner by an external signal (for example, a 

thermostat, or maybe a signal from a DCS). 

" The controller starts an electrical fan, passing air into the burner. 

" Within (say) five seconds, an airflow sensor must indicate to the controller that 

air is in fact flowing (i. e. the fan is operating correctly). 

" The controller the drives the fan to its maximum airflow rate, and the 

achievement of this state is signalled to the controller by a sensor. 

" This maximum f low is maintained by the controller for, typically, 30 seconds to 

expel residual fuel/air mixture from within the burner. 

" The controller then drives the fan to a lower airflow rate prior to lighting the 

burner, and the achievement of this state is signalled to the controller by a 

sensor. 

. The controller then operates a valve, supplying fuel to a small 'pilot' burner, 

and operates an electrical ignition spark to ignite the fuel. 

"A flame sensor signals to the controller that the pilot flame has lit. 

" After allowing a few seconds for the pilot flame to establish itself, the controller 

opens another valve, initially at a low flow rate, permitting fuel to reach the 

'main' burner, which is lit by the pilot burner. 

" When the flame detector indicates to the controller that the main burner has lit, 

it turns off the pilot burner and permits the main burner to establish. 
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" Once the main burner has been allowed to establish itself for a few seconds, the 

controller permits the main fuel valve to be controlled by a 'modulator' system. 

This varies the heat output of the burner to meet the heat demands of the 

system. 

" Throughout the operation of the burner, the flame and airflow condition are 

monitored by the controller, and in the event of a loss of either, the controller 

causes the system to go to an alarm state. 

" When the demand for heat is satisfied, signalled to the controller from external 

sources (e. g. a thermostat), the controller shuts down the burner in an orderly 

and safe fashion. 

As can be seen from this description, there are a number of'sensors' and 'actuators' 

involved in this process, all of which must be connected to the controller by a mass of 

discrete wiring. (NB. A diagram showing the typical wiring arrangement for a burner 

control application is given in the transcript of the authors' joint paper, reproduced as an 

appendix of this thesis). 

The time interval from start to 'running' is typically some 90 seconds, with 

individual timings rarely less than a second or so. Therefore, the time-scales involved are 

within the capabilities of our PLC application and the existing complicated wiring scheme 

could be replaced by a single 'Power Bus' supplying both power and switching instructions 

to the system. 

It is also worth noting that applications such as the above are, in effect, isolated 

systems - they are practically self-contained, and separated from the main plant power 

distribution network via the controller itself. 
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By the judicious use of power line filtering techniques (as already discussed in a 

previous chapter) we can potentially overcome many of the noise and attenuation problems 

associated with PLC. 

Finally, it must be noted that applications such as burner control are ̀ safety 

critical'. Even with a tradition hard-wired arrangement, it must be ensured that any 

potential fault conditions in the controller must not result in a dangerous state on the plant 

being controlled. 

Such precautions would equally have to extend to the power bus itself, if used. This 

is beyond the scope of this Thesis, but would form an important separate line of research in 

its own right. 

Having looked at using the power bus to replace existing wiring schemes, it must 

be remembered that it also has the potential to offer `value added' benefits. 

6.8.3 The Power Bus and 'Value-Added' Services 

The `Power Bus' concept may be applied at several levels. The most complex, as 

described above would involve the complete replacement of a traditional field wiring 

scheme with the power bus, whereby the only interconnections between the various 

sensors/actuators and the control elements is the mains power supply line. 

This concept would of course need to be implemented at the design stage in the 

construction of plant, or at least retrofitted during a plant refurbishment. 

An alternative power bus application would provide `value added' services to an 

existing plant control system. Here, with the addition of PLC nodes, extra features could be 

added without the need for additional wiring to be installed hence the description `value- 

added'. 

131 



Consider our previous burner control example, utilising the standard wiring: 

" As already noted, the fan is simply switched on and off by the controller. Add a 

PLC node at the controller and another at the fan motor itself. It would now be 

possible for the fan node to report back to the controller parameters such as the 

fan running speed, or the fan motor operating temperature, both of which could 

give early warning of upcoming problems. 

" The flame sensor is traditionally an on/off device, simply signalling if the flame 

is lit by way of a relay contact. By adding a PLC node, the flame sensor could 

report actual values of flame signal, providing useful information to an 

operator, or again warning of upcoming problems. 

There would be numerous other such potential ̀ value-added' services possible 

within an industrial control scenario. 

That concludes our look at the `Power Bus', and indeed of the entire background 

sections of this Thesis. We will discuss the future directions in which this research (and the 

entire power bus concept) might be continued in our conclusions section at the end of the 

Thesis. 

Meanwhile we will move on to the experimental work proper, starting with 

background information and the decision to create a specialised item of test equipment for 

the experiments. 
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Chapter 7: Introduction to the Experimental Work 

The author considers himself, primarily, a `hands-on' engineer and it was intended 

that this would be reflected in the experimental work for this Thesis. We have already 

discussed the extremely variable nature of the power line medium in a previous chapter, 

and this could pose problems if we wish to make meaningful comparisons between 

different PLC solutions. What is required are some quantitative and repeatable 'standards' 

for noise and interference. 

It was decided, therefore, that artificially generated noise and interference, meeting 

the requirements laid down in the EMC immunity standards, would be used to provide 

such a comparison. 

In order to gauge the performance of the PLC systems under test, we will measure 

the bit-error-rate (BER) of the communications link. BER is defined as the ratio of bits 

corrupted over a communications link, to the total number of bits received. BER can be 

expressed as a percentage or as a power of 10 i. e. 1 in 10+9. In the latter example, for 

instance, one bit in 1,000,000,000 is corrupted. This in fact represents an extremely low 

figure, as will be seen as the experiments proceed. 

The authors' working situation precluded the availability of commercial test 

instrumentation to perform this task. It was therefore decided that a bit error rate test set 

would be designed and built from scratch, specifically for this application. 

This development will be described in a later section, but next we will look at 

details of the actual experimental work undertaken. 
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71 A Brie Outline of the Experiments 

It was the aim of the experimental work in this research to provide practical 

comparisons of the performance of PLC systems suitable for industrial use. The 

experimental strategy was to test the systems under conditions of simulated (and 

repeatable) interference. The nature and characteristics of this interference was based on 

the immunity requirements laid down in international standard EN 50082. 

As has already been discussed, power line noise can be of a number of types, 

including Background, White, Synchronous, Non-Synchronous, or Impulse. From the point 

of view of EMC testing, however, the standards bodies have defined a 'generic' noise 

waveform. This waveform is referred to as a'Fast Transient Burst' (FTB). 

7.1.1 The Fast Transient Burst (FTB) Tests 

The structure of the FTB waveform is shown in the diagram below. 
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Figure 44: Fast Transient Burst Waveform 
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It can be seen that the individual pulses that go to make up the FTB waveform, 

shown in the top part of the diagram, have a fast rising edge (5 ns) and a narrow width 

(50 ns). The pulses are spaced at either 0.2 ms or 0.4 ms (giving a pulse repetition rate of 

either 5 kHz or 2.5 kHz). The commonest repetition rate is 5 kHz, with 2.5 kHz only being 

used for the most stringent (4 kV) test. 

The pulses are generated in 15 ms bursts, at intervals of 300 ms (as shown in the 

lower part of the diagram). The amplitude of the FTB pulses may be 500 V, 1 kV, 2 kV, or 

4 kV, depending on the stringency level of the test applied. The pulse stream in our 

experiments will be supplied by a commercial FTB generator, intended for EMC immunity 

tests. 

7.1.2 The Spot Frequency and Swept Frequency Noise Tests 

In addition to the FTB tests, tests were carried out to evaluate the performance of 

the PL modems in response to spot and swept frequency noise. 

These tests are not actually a part of the relevant immunity standards. In some 

respects, they are akin to the RF common mode immunity tests, however these operate 

over a frequency range of 0.15 to 80 MHz, outside of the PL communication bands. They 

were included because the equipment was available, and the author felt that some 

knowledge was to be gained. 

A signal generator was used to generate this sine-wave interference at various 

frequencies around the operational frequencies of the PL modems. Additionally, the sine 

wave frequency was also swept across the operational frequency of the PL modems, and 

the performance under these conditions logged. 

As a finale to the above ̀ laboratory' experiments, a series of'real world' tests were 

performed. Here the PLC modems and BERT equipment were set up in a'typical' light 

industrial environment (the authors workplace), and left running continuously. 
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We will describe these 'real world' experiments in greater detail at the end of this 

chapter. Meanwhile, before describing the development of the bit error rate test equipment, 

we will look at the choice of power line modems suitable for our experiments, then 

describe the operation and physical circuitry of those chosen. 

7 .2 The Choice of Power Line Modems the Experiments 

The nature of the proposed experiments, as outlined in the previous section, means 

that it is necessary to have modems where we can access the 'pure' bit streams at the 

receive and transmit ends of the communications link. 

Unfortunately, many PLC modems integrate an actual communications protocol 

into a single integrated circuit (IC) or set of integrated circuits (a'Chip Set'). Consequently, 

such modems are unsuitable for our experiments. However, in later experimental work, 

where we will be considering the effectiveness of the communications protocol used, we 

will be able to make use of such modems. 

However, for these experiments, simplicity is a virtue, and we have available 

examples of modems for two of the more straightforward modulation schemes, ASK and 

FSK. 

We will discuss these modems, their principle of operation, and their circuitry, in 

detail in the next section. 
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Z3 A Description of the ST7537 FSK Modem 

The first modem to be evaluated is based around the ST7537 IC [16]. This device is 

an FSK modem, manufactured by the SGS-Thomson Company. It is designed to comply 

with EN 50065, working at carrier frequencies of 133.05 kHz (representing logic '0') and 

131.85 kHz (representing logic '1'). This arrangement neatly complies with the EN 50065 

access protocol arrangement, since it is (roughly) symmetrical about the centre frequency 

of 132.5 kHz, and both frequencies fall within the pass-band required (131.5 - 133.5 kHz). 

The ST7537 is rated by the manufacturer for operation at a nominal signalling rate of 

2400 baud. 

A block diagram of the device is shown below. 
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Figure 45: Block Diagram of the ST7537 PL Modem IC 
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7.3.1 The ST7537 Transmit Path 

The carrier frequencies in the ST7537 are derived from a master clock of 

11.0592 MHz, by a process of division and sine wave table synthesis. The appropriate 

frequency is selected and filtered in a switched-capacitor digital filter, before being applied 

to the output amplifier driver stage. The ST7537 requires an external power amplifier 

stage, which will be discussed later. The device also provides enable outputs for the 

purpose of de-activating this PA stage when the device is in the receive mode. In addition, 

there is a watchdog system, which will disable the transmitter after an interval of one 

second, to prevent a faulty network node from blocking the network (again, in keeping 

with the requirements of EN 50065). 

7.3.2 The ST7537 Receive Path 

On the receive side, the input signal from the power line firstly passes through a 

band-pass filter with a bandwidth of about 12 kHz. After subsequent amplification, the 

signal is mixed with another locally derived signal and passed to an intermediate frequency 

(IF) band-pass stage with a centre frequency of 5.4 kHz. The output from this stage is 

passed (via an external capacitor) to a correlator stage that discriminates between the two 

resultant intermediate frequencies. 

Switching between transmit and receive mode is achieved by setting the logic level 

on pin 20 of the ST7537 device. A logic `0' is transmit mode and a logic `1' receive. 
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7.3.3 The ST7537 Support Circuitry 

In order to create a working PL Modem, certain support circuitry outside of the 

modem IC itself is required. The modem design utilised in these experiments was based 

upon the manufacturers recommended application circuit, and is shown in the following 

diagram. It was supplied as a kit by a Swedish Company, High-Tech Horizons, who have 

also developed a communications protocol called SNAP [54], proposed for use in PLC 

applications. 
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Figure 46: Circuit of the ST7537-based Modem 
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It can be seen that there is a significant amount of support circuitry required for this 

device. Most noticeable is the power amplifier stages, consisting of transistors QI - Q6 and 

associated resistors R1 - R8 and RI 1. The transmit output from pin ATO operates a push- 

pull driver stage consisting of Q1 and Q3, which in turn drives the output stage Q2 and Q4. 

Transistors Q5 and Q6 serve to disable the output stages when the device is in receive 

mode, preventing them from loading the receive signal input, which is taken from the 

junction of R2 and R5, via R9, to the receive input RAI (and also to PAFB, which is the 

power amplifier feedback input). The device is coupled to the power line via Cl and L1 

(forming a simple band-pass filter) to the tuned isolating transformer, from whence it is 

coupled to the power line via the transformer secondary, and C2. TRL1 is a transient 

voltage suppressor, designed to protect the device from high voltage noise spikes on the 

power line. The master clock frequency is derived from quartz crystal QTZ 1 and capacitor 

C3 and C4. 

i. ý 

Figure 47: The ST7537 Power Line Modem PCB 
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The completed modem PCB is shown in the previous image. The modem IC can 

clearly be seen (on the left-hand side), along with the master clock crystal above it. The 

power amplifier stage transistors and associated components can be seen on the right. 

Figure 48: The ST7537 Assembly 

The above image shows the modem PCB on its 'motherboard'. This board carries 

the power line isolation transformer and coupling capacitors (visible top right) and also 

voltage regulators and associated capacitors to provide the +10 V and +5 V supplies 

required by the modem circuit (these are visible to the right of, and underneath, the modem 

PCB). 

Two of these motherboard assemblies were built, one configured as a transmitter, 

the other a receiver. 
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7.4 A Description ofthe TDA5051 ASK Modem 

The second modem to be evaluated is based on the Philips TDA5051 IC [44]. This 

device is an ASK modem, manufactured by the Philips company. It too is designed to 

comply with EN 50065, and when working at a carrier frequency of 132.5 kHz would 

comply with the EN 50065 access band arrangement. 

The evaluation boards used for this PL modem were supplied by 

Michat Electronique, in France [55]. It should be noted, however, that the boards utilised in 

these experiments operate, as supplied, at a carrier frequency of 115 kHz. It would have 

been possible to shift the frequency to 132.5 kHz by utilising a different master oscillator 

frequency (8.48 MHz instead of 7.37 MHz). However, it was decided by the author that the 

results obtained would not be likely to vary significantly, and so the modems were left 

unaltered. 

The TDA5051 is rated by the manufacturer for operation at nominal signalling rates 

of 600 and 1200 baud. A block diagram of the TDA5051 device is shown in the following 

figure. 
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Figure 49: Block Diagram of the TDA5051 PL Modem IC 

7.4.1 The TDA5051 Transmit Path 
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The carrier frequency in the TDA5051 is derived from a master clock of 7.37 MHz, 

by a process of sine wave table synthesis, to produce a carrier frequency of 115.16 kHz. 

The output from the sine-wave look-up table passes to a D-A converter and is then 

amplified by the on-board PA stage. Keying of the transmit carrier is carried out at the 

wave table synthesis stage, and permits precise control of the waveform attack and decay 
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VDDAP 

I 

POWER 
DRIVE 
WITH 

PROTECTION 

10 TXOUT 

TDAS051 

ND 

U/D COUNT 

143 



7.4.2 The TDA5051 Receive Path 

The receive path of the TDA5051 is also largely based upon digital techniques. 

After passing through a variable gain pre-amplifier stage, the signal is digitised in an A-D 

converter. This is filtered in a digital band-pass filter and detected by a digital 

demodulator. There is also a peak detector driven off the A-D output, which is used to set 

the gain of the pre-amplifier stage, termed `automatic gain control' (AGC). 

The receive stage is active, even when the device is transmitting. Therefore, in 

order to prevent the pre-amplifier AGC system from responding to the high level transmit 

signal, the TDA5051 stores the last set gain value before transmission starts, and restores it 

after transmission is finished. 

Since this is an ASK device, switching between transmit and receive mode is 

achieved by setting the DATA;,, pin (pin 1) to a logic 'I' (representing the `no carrier' state 

for the transmitter). 
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7.4.3 The TDA5051 Support Circuitry 

The modem design utilised in these experiments is also based on the manufacturers 

recommended application circuit, and is shown in the following diagram. 
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It can be seen that this design requires somewhat fewer support components than 

the ST7537, largely due to the integrated power amplifier stage. The crystal master 

oscillator can be seen, as can the power line isolation circuitry. Where mains voltage 

isolation is not a requirement, the TDA5051 can be directly connected to the power line 

using a simple combination of L and C coupling components. 

This design is also provided with an optional external pre-amplifier stage, 

consisting of T1 and its associated components. 
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Figure 51: The TDA5051 Power Line Modem PCB (front view) 

The above photograph shows the complete PL modem assembly. Clearly visible is 

the isolation transformer (TR1) and associated power line coupling components, the master 

clock crystal (XTAL), and the links ('A'-'B') which permit the external pre-amplifier to be 

selected. 
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Figure 52: The TDA5051 Power Line Modem PCB (rear view) 

Here we have the rear view of the same modem PCB. This time the surface- 

mounted TDA5051 IC itself can be seen, as well as various surface mounted support 

devices. The external pre-amplifier transistor (Ti) can just be seen as the small three-pin 

device to the lower left side of the TDA5051. 
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Figure 53: The TDA5051 Assembly 

The above image shows the modem PCB on its'motherboard'. It can immediately 

be seen that this is much simpler than the assembly for the ST7537. The only external 

components are a voltage regulator and associated capacitors, to provide the single +5 V 

supply required by the modem circuit. Again, two of these were built, one configured as a 

transmitter, the other a receiver. 

Having introduced the PL modems that we will be evaluating in these experiments, 

we will next describe the development of the bit-error-rate test equipment itself. 

7.5 Development of the Bit-Error-Rate Test (BERT) Equipment 

Whilst BER test equipment is available in commercial form, such equipment was 

not available to the author. It was therefore decided to generate a custom-built item 

specifically geared up to performing the experiments in this thesis. 
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The author is familiar with the use and programming of microcontroller 

components, and the BER test equipment will be based around this technology, with a 

laptop PC used to collect and store the data generated. 

The principle of operation and hardware development of this test equipment will be 

described in the following sections: 

7.5.1 Principle of Operation of the BERT 

The principle of a bit error rate tester (BERT) is to generate a test bit stream, pass 

this stream over the communications medium (whatever form it may take) and monitor the 

received bit-stream at the other end. Any incorrectly received bits will be noted and use to 

calculate the overall BER, as previously described. 

Commercial BERT equipment usually offers a number of options as regards the 

structure of the test data stream. These, for example, might simulate data packets for a 

particular protocol. Another common option is a random bit stream (or more usually 

'pseudo random' - this distinction will be described shortly). This will simulate the 

operation of a generalised communications link with its unpredictable data. 

To generate genuinely random data in an electronic circuit is not always simple. 

Such effects as electrical noise or radioactive decay are natural random events, but 

additional (and unnecessary) complexity is involved in using them in this context. In 

practice, what are called 'pseudo-random' data streams are usually acceptable. 

ý 
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The definition of pseudo-random can be stated as 'random, when sampled over a 

small to medium-sized interval, but ultimately repeatable'. A common means for the 

generation of pseudo-random data electronically is the 'shift-register with feedback' 

approach. Essentially, a serial digital shift-register of a certain length has 'taps' at several 

points along its length. The data present at these taps is combined in a gate arrangement to 

provide the source data for the shift register input. The pseudo-random data is read from 

the shift register contents. It is a simple task to implement such a generator as an algorithm 

within a microcontroller [56], and this is the approach which we have employed here. 

A test bit-stream, as we require, can be obtained from the above arrangement by 

sampling one bit from any point within the shift register. A data stream at a particular 

signalling rate is simply derived by clocking the shift register at that rate. 

Having generated our bit stream, we must feed it to one of the PL modems under 

test, configured as a transmitter. A simple 5V logic level is all that is required, and this 

can be achieved simply from an output pin on the microcontroller. 

The output from a second PL modem, this time configured as a receiver, feeds into 

an input pin on the microcontroller. The microcontroller firmware is then able to compare 

the transmitted and received bit-streams and ascertain if an error has occurred. The 

resultant data can be appropriately processed by the microcontroller, and then output to a 

laptop PC for storage. 

We will now describe the actual hardware used in the BERT equipment. 
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7.5.2 The BERT Hardware 

The BERT has two main components: 

a) A microcontroller-based data generation/recovery unit, the function of which has 

already been described. 

b) A laptop PC, running a specially written logging program, used for storage of the 

BERT data, prior to subsequent processing. 

The first item is based around a member of the Arizona Microchip 'PIC' family of 

single chip microcontrollers, specifically the PIC16F84-04 [57]. 

This is a reduced instruction set computer ('RISC'), which means that it has a small, 

but fast set of internal operations. The 16F84 has 1024 14-bit words of flash program 

memory, in which our operating software is stored, 36 bytes of general-purpose registers, 

and 64 bytes of EEPROM data memory (not used in our application). The -04 version of 

the device operates at a maximum clock frequency of 4 MHz [57]. This particular part was 

chosen as the author has had previous experience in its programming and application. 

The circuit of the data generation / recovery unit is shown in the next figure, and it 

can be seen that the final design is comparatively simple. 
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Figure 54: BERT Main Assembly Circuit Diagram 
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The PIC 16F84 interfaces to two rotary BCD switches (SW! & SW2) connected to 

I/O ports on the device. These are used to input two parameters pertinent to the BER test - 

the signalling rate for the test bit-stream, and the receiver delay (the purpose of this last 

parameter will be discussed in detail later). 

The PIC 16F84 outputs a bit-stream of pseudo-random data on pin 8. This is used to 

drive the power line modem transmitter under test via an opto-isolated interface (again, the 

reason for, and purpose of this extra circuit element will be described in detail later). 

After the signal has passed through the transmission line, the corresponding power 

line modem receiver inputs data to pin 9 of the PIC 16F84, again via an opto-isolated 

interface. 

Figure 55: The BERT Hardware 
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The previous figure shows the actual BERT hardware, as built by the author. At the 

top of the circuit board can be seen the power supply components. The PIC16F84 

microcontroller is in the lower right-hand side of the circuit board and the two BCD 

switches can be seen, one above, and one to the left of the PIC. The nine-way plug at the 

bottom left of the board, and the associated components to the right of it, is the RS-232 

interface to the logging computer. The set of terminal blocks on the right hand side are the 

power and data connections to the opto-isolator circuits, which proved to be needed in 

practice, and the which will be described in the next section. 

The rest of the circuit simply consists of ancillary components such the power 

supplies and interference suppression circuitry. The main circuit requires 5V DC, plus 

additional isolated 5V supplies are required for the isolation circuits and PL modems 

themselves. 

7.5.3 The Need for Signal Isolation 

Early proving tests with the BERT showed that the main control circuitry was 

prone to be itself affected by the FTB pulse train, causing the front-end circuit to 'lock-up' 

and cease to send its data. This behaviour is ironic and in itself emphasises the importance 

of EMC immunity in modern electronic equipment. 

Because of this, it was found necessary to electrically isolate the digital signal paths 

to and from the BERT device and the PL Modems under test, and circuits were developed 

to achieve this. The use of these isolators greatly decreased the effect. The circuits of the 

isolators, and their operation, will now be described. 
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The receiver isolator is simply based around a solid-state opto-isolator device 

(designated 'OPTO' in the circuit above). The output from the PL modem receiver operates 

the ZVN3306 transistor and switches current to the light emitting diode (LED) in the 

isolator. Power for this side of the circuit, including the receive PL modem, is provided by 

the voltage regulator and associated components at the top of the figure. The output of the 

isolator, in this case a phototransistor, switches an isolated 5V supply, provided from the 

main BERT equipment, across a1K resistor, to provide a matching output logic bit-stream 

which is fed to the BERT. 
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Figure 57: Transmitter Isolator Circuit 

The transmitter isolator is virtually identical to the receiver, except that this time 

the transmit bit stream from the BERT operates the isolator LED, and the output from the 

phototransistor feeds the transmit PL modem 

The processed data from the tester is output as a serial data stream, in RS-232 

format, from pin 13 of the PIC16F84. This data is passed to a MAX232 voltage converter, 

which translates it to the standard RS-232 voltage levels of +12 V and -12 V. 

This data is passed to the data-logging laptop PC over a serial cable, for storage and 

subsequent processing. 

That ends our description of the front-end hardware. However, the heart of the 

front-end functionality is the internal firmware of the PIC 16F84, the structure of which we 

will now describe. 
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7 .6 The Structure Q(the BERT Front-End Software 

The front-end software (listed in appendix 2) is split into two sections - the main 

body and the interrupt service routine. The interrupt service routine is driven off of the 

PIC16F84 internal hardware timer, set up to be clocked by the system clock. The timer is 

programmed to generate an interrupt signal at an interval of 208 µs. This period 

corresponds to a signalling rate of 4800 baud, and is the fundamental timing interval used 

within the entire controller. 

7.6.1 The Interrupt Service Routine (ISR) 

One of the tasks of the ISR is to handle the transmission of test results from the 

BERT equipment to the logging PC. There are hardware solutions to sending RS-232 

asynchronous serial data, generally called `Universal Asynchronous Receiver / 

Transmitters' (UARTs). Many micro controllers integrate UART hardware onto the chip 

itself, however the PIC 16F84 is not one of them. 

Therefore, it was decided to utilise a `software UART' to perform the transmission 

function. When the main routine (described later) wishes to transmit a data byte over the 

RS-232 link, it signals the fact to the ISR and passes the data by storing it in a register. The 

ISR processes this data, adding start and stop bits, at a rate of one bit per interrupt call, 

giving the overall transmission signalling rate of 4800 baud. 

In addition, the BER test data is generated and processed by the ISR. By the use of 

a software prescaler, effectively dividing the interrupt rate still further, lower signalling 

rates than the fundamental 4800 baud can be easily obtained. In this instance we have the 

option of generating signalling rates of 4800,2400,1200,600 and 300 baud, easily 

encompassing the specifications of the particular PLC modems under evaluation. 
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When the prescaler indicates that it is time for a new bit to be generated, a pseudo- 

random number generator routine is called. The least significant bit of the output word of 

this routine is used to determine the new state of the BER test output. The reasons for using 

a pseudo-random bit stream have been discussed earlier in this chapter. 

Next, it is necessary to save the current BER test state for subsequent comparison 

with the received data. It was originally the intention to simply compare the input data with 

the output just prior to the output data being updated, however, after some early evaluation 

checks, a problem was noted. 

7.6.2 Problems caused by Receiver 'Laj" 

During early proving tests the ST7537 modem was observed to give high error 

rates above a certain signalling rate (600 baud), even under ideal link conditions. After 

some investigation, it was observed that there was a finite delay after a signal was 

received, before the receiver output changed state to reflect this. This delay was found by 

experiment to be about 800 µs. Only signalling rates of 600 baud or lower gave the 

receiver time to change state before the BER tester was sampling the output. 

The cure for the problem was to introduce a delay function within the PIC 16F84 

software, storing the test output, waiting for the set time, then sampling the input state and 

comparing it against the stored state. 

In practice, this was achieved by allocating a series of counters and bit stores within 

the PICs internal registers. Whenever the BER test routine was invoked, and the output bit 

changed, the software would look for a free counter. The selected delay value (read from 

input switches) would then be stored in the counter register, and the value of the output bit 

saved in the corresponding bit store. 
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7.6.3 Bit Error Rate LopXin 

At every pass through the interrupt routine, each counter in use would be 

decremented. When a counter reached zero, the stored output state (effectively delayed by 

208 µs times the set delay value) would be compared with the current input state from the 

PLC receiver. 

If the bit originally sent was a logic T, but was incorrectly received as a'0', a 'high 

error' counter was incremented. If the bit originally sent was a logic V, but was incorrectly 

received as T, a'low error' counter was incremented. In addition, counts were maintained 

of the total number of logic 'I's and logic '0's sent. 

NB. It should be noted that the delay routine as described is not ideal. The 

relatively large (208 µs) timing increments may mean that there is a risk of not sampling 

the input signal from the PLC receiver at the optimum point. This is especially true when 

the test signalling rate is set to its maximum value of 4800 baud. This could have been 

improved by increasing the interrupt rate, or by using an additional timer for this function. 

However, PIC16F84 only has a single timer available, and the speed of the processor used 

(4 MHz) does not allow accurate timing to be achieved at a higher rate. However the fact 

that, in practice, the particular PLC modems evaluated did not operate at rates above 2400 

baud lessened the extent of this problem, so it was considered to be a reasonable 

compromise. 

That ends our description of the operation of the interrupt routine. We will now 

describe the action of the main routine. 
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Z6.4 The Main Software Routine 

After performing housekeeping jobs, such as initialising variables, hardware etc. 

the main program loop waits until one thousand BER test bits have been sent by the 

interrupt routine. It then saves the current value of the bit counts and error counts, before 

re-initialising the counters for another run (this means that a test bit stream is continuously 

generated, with no gaps). The main routine then proceeds to transmit the test data, at a 

signalling rate of 4800 baud, over the RS-232 link, to the host PC, whilst the generation of 

test data continues. 

The data is transmitted as a stream of 16-bit binary values in the following format: 

Data word #1 MSB The binary word value representing the total 
LSB number of low (0) bits sent in the last run. 

Data word #2 MSB The binary word value representing the total 
LSB number of high (1) bits sent in the last run. 

Data word #3 MSB The binary word value representing the total number 
LSB of low (0) bit errors detected in the last run. 

Data word #4 MSB The binary word value representing the total number 
LSB of high (1) bit errors detected in the last run 

Delimiter bytes 13 (decimal) (see text for a description of the 
10 (decimal) function of the delimiter bytes) 

Figure 58: Structure of a Data Packet sent from the BERT 

The two byte 'delimiter' values of 13 and 10 (decimal) are equivalent to the 

'carriage return' /'line feed' (CR/LF) pair of ASCII control characters. The purpose of these 

delimiter characters is to indicate the gap between two sets of data. The use of CR/LF is 

arbitrary - the only requirement should be that the characters chosen should not normally 

appear in the experimental data. The maximum value of any of the four data items being 

sent is going to be around 500 (decimal). The binary MSB values should therefore not 

exceed one, so CR/LF (with both values significantly greater than one, fits this bill (but 

equally there are many other suitable pairs! ). 
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When the task of sending the data packet is complete, the main software routine 

then waits for the end of the next 1000 bits of test data, before repeating the above actions. 

That concludes our description of the PIC16F84 firmware used in the BERT 

equipment. We will next describe the logging software used to collect the data. 

77 The PC Lopgin, ý Software 

The software used to process and save the output from the BERT equipment was 

written in the High Level Language 'PASCAL', using the Borland Turbo PASCAL 5.0 

Compiler. This language was chosen because the author already had some experience with 

it over the years. 

The primary function of the logging software is to receive the data packets sent 

from the BERT equipment, as described above, and to store them onto a floppy disk. 

At the same time, it was decided that the software should perform a certain amount 

of'pre-processing' of the data, to facilitate later analysis of the data. This pre-processing 

was as follows: 

" The binary data words sent from the BERT would be converted to their decimal 

equivalents, and sent in this form as ASCII numbers. 

" Individual numeric values would be delimited by commas. 

" Complete sets of four data words would be delimited by a CR/LF pair. 

" Every ten sets of data, a time stamp would be added, to facilitate the 

identification of the extent of individual experimental runs within a single large 

block of results data. 

The above formatted data is then in a suitable form for easy integration into word 

processing or spreadsheet programs for subsequent analysis. 
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In order to accept the data from the BERT equipment, the logging software must 

capture the data as it is received by the asynchronous serial port on the PC and write it to 

the floppy disk. This action must occur in real time, and concurrently. Therefore, whilst the 

action of writing a block of received data to the floppy disk is taking place, the software 

must continue to accept the serial data, saving it in a'buffer' store until the previous disk 

write operation has finished. 

In order to simplify the programming, and prevent 're-inventing the wheel! ', the 

author made use of a ready made Turbo Pascal 'unit' (a collection of software routines 

which can be called by a user program) called'Async4' [58]. This set of routines is 

'freeware' and made available to users at no cost. 

'Async4' provided all of the facilities required to handle the reception and buffering 

of data from the serial port. The rest of the logging program was mainly concerned with 

reading this data from the buffer, writing it to the floppy disk, and echoing it to the PC 

screen. Finally, a basic user interface, allowing the operator to start and stop the logging of 

the data, was provided. A listing of the main body of the logging software is provided in 

Appendix 3 of this Thesis. 

In use, the BERT hardware was set up and started, then the logging software run on 

the PC. A series of experimental runs could then be carried out, with the operator noting 

the start and finish times of each using the on-screen time-stamps that form part of the 

saved data. When later analysing the results, the time stamps were used to identify the start 

and end of the data block for each experiment. 

We will discuss the subsequent analysis of the data in a later section, next, though 

we will look at the actual experimental set-up. 
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7.8 The Experimental Setup 

The experimental set-up used is shown in the following diagram. It should be noted 

that the set-up is not energised at mains voltages. This is not necessary as the 

characteristics of the mains supply are simulated by the use of a network, which we will 

describe later. Also, the need to measure our low level PLC signals against a high level 

(even if appropriate filters are used to attenuate it) 50 or 60 Hz signal are alleviated. 
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Figure 59: Block Diagram of the Experimental Set-up 

The signals to and from the BERT equipment have already been described. We will 

now look at the purpose of the various components in the PLC signal path between the 

Transmit (Tx) modem and the Receive (Rx) modem. 
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7.8.1 The Signal Attenuator 

The output bit stream from the BERT passes to the transmitter PL Modem. The 

output from this modem passes via a simple resistive attenuator, to allow the signal 

amplitude at the receiver to be varied, into the modified CISPR network (which will be 

described next). 

The attenuator acts as a series element, in line with the impedance of the network 

itself, to form a potential divider. The actual magnitude of the resultant signal across the 

network is monitored using the oscilloscope. Although the impedance of the modified 

CISPR network varies with frequency, the relatively narrow bandwidth of the PL modem 

signals means that this will not cause problems. The arrangement therefore represents a 

good compromise and a simple means of varying the effective amplitude of the transmitted 

signal for our tests. 

IN N 

=4 L-T, LT' 
10R 1OR 100R 1K 

Figure 60: Circuit of the Attenuator Assembly 

OUT 

0 
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The actual circuit of the attenuator is shown in the previous figure. By selection of 

the appropriate switch position, and adjustment of the variable resistors, resistances of 

from zero ohms up to some 1120 ohms can be achieved. 

Figure 61: The Attenuator Assembly 

The physical realisation of the attenuator is shown above. Clearly visible are the 

variable resistors and the thick film fixed resistor. Thick film resistors and linear element 

variable resistors were chosen so that the attenuator would present a pure resistive load 

with a minimum of inductive or capacitive effects, in deference to the frequencies of the 

PL modem signals. 

The attenuator then feeds the mains simulation network, the structure of which we 

will describe next. 
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7.8.2 The Mains Simulation Network 

This network is intended to simulate the actual impedance conditions found on a 

power line. We have already commented in a previous chapter on the fact that the power 

line presents a low impedance, especially at the carrier frequencies in which we are 

interested. CISPR have proposed a standards line impedance network for use when making 

measurements of mains signalling systems, which is shown below. 

50R 

Figure 62: The CISPR Network 

It can be seen that the above network is purely resistive/inductive in nature. Having 

an impedance at DC of a little below 5 ohms, the impedance will progressively rise as the 

frequency increases. At the frequencies that we are interested in, the network will have a 

relatively high impedance (approx. 32 ohms at 132.5 kHz), which will therefore not closely 

mimic 'real life'. 

The French Company Moulinex have carried out work evaluating the potential of 

PLC applications [59], and CENELEC standard EN 50065, and have proposed a 

modification to the basic CISPR network to more closely approximate to a real mains 

power line. This modification is shown in the next diagram. 
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Figure 63: The Adaptive Network 

The inclusion of L, C, and R elements in this adaptive network result in both a 

resonant peak, and a progressively lowering impedance as the frequency increases. 
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Figure 64: The Combined Network 
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The combined network, shown in the previous figure has an impedance curve that 

quite closely matches the results of the practical experiments carried out by Moulinex. The 

effective impedance of the network at 132.5 kHz is now approximately 3 ohms. Based on 

the findings of Moulinex, it was decided to use this combined network in the experimental 

work carried out in this thesis. 

The actual realisation of the network is shown in the photograph below. The CISPR 

network consists of the components towards the bottom of the photo and the adaptive 

network the components at the top (NOTE: some inductances and resistances were placed 

in series or parallel to provide the exact values required. The switches visible enabled each 

part of the network to be disconnected if required. 
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Figure 65: The Mains Impedance Simulation Network 

The receiver PL Modem is connected across this network. The demodulated bit 

stream from the receiver is then passed back to the BERT. The RS-232 output from the 

BERT carrying the test results, as already described, passes to the logging PC. 
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7.8.3 The Fast Transient Burst Generator and Signal Generator 

The FTB pulse train was provided by an item of commercial EMC test equipment - 

called a'MACE', manufactured by Seaward Electronics in the UK. This equipment 

provides for other types of EMC-related test, such as mains drop-out and electrostatic 

discharge (ESD), but it was only the FTB facility that were used in these experiments. The 

MACE provides an FTB output either onto a mains supply, used when testing equipment 

immunity through the 'mains' port, or on an isolated output. This is for use with a 

'capacitive clamp', for coupling the FTB onto signal lines from the equipment under test 

(EUT). 

In our experiments, we used the latter output to feed the FTB signal into our 

simulated mains network. 

The signal generator, used for spot frequency tests that we will describe later, was 

simply a general-purpose laboratory instrument, having a frequency range extending 

beyond the operational frequencies of the PL modems. 

Photographs of the actual experimental set-up are shown next. 
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Figure 66: The Experimental Set-up in Real Life (#1) 

On the left of the photograph the laptop PC used for initial data logging can be 

seen, next to it is the oscilloscope, used to measure waveform amplitudes, and on the right 

is the MACE Fast Transient Burst Generator. 
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Figure 67: The Experimental Set-up in Real Life (#2) 

Photograph #2 shows the rest of the experimental set-up. To the right of the MACE 

FTB generator can be seen the PL modems, the mains simulation network, and the 

attenuator unit. Behind these items are the isolator units, and at the back is the BERT 

assembly itself. 

Having described the experimental set-up, we will move on to look at how a typical 

test run was organised. 
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7.9 Collecting the FTB Experimental Data 

After connecting a PL Modem in the experimental set-up, as shown above, some 

initial tests were made without the application of an FTB signal: 

" The maximum output signal level from the transmit modem was measured, both 

unloaded and with the mains simulation network in circuit. 

" Using the attenuator, and with the BERT equipment running, the transmitter 

signal was reduced until errors started to be observed on the logging PC screen, 

giving a measure of the lowest signal capable of being reliably detected by the 

receiver. 

" Next, a series of runs were carried out with FTB interference applied to the 

system. The Mace FTB generator was programmed to the appropriate value of 

burst amplitude, polarity, and duration (a standard duration of 120 seconds was 

used for these tests). 

" Test runs were carried out at the various interference levels and signalling rates. 

" In order to keep track of the experimental runs, the start and finish time stamp 

values on the screen of the logging PC were written down, plus (especially for 

low signalling rates) a count of the number of lines after the last time-stamp, 

before the test ended. 
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Overall, FTB tests were carried out at the following amplitudes: 

" 500 V bursts, positive polarity 

" 500 V bursts, negative polarity 

"1 kV bursts, positive polarity 

"1 kV burst, negative polarity 

"2 kV bursts, positive polarity 

"2 kV burst, negative polarity 

At each amplitude value, tests were carried out at the following signalling rates: 

" 2400 baud 

" 1200 baud 

" 600 baud 

" 300 baud 

It should be noted that some of these signalling rates are outside of the 

manufacturers nominal ranges, either below (300,600 and 1200 baud for the ST7537, 

300 baud for the TDA5051), or above (2400 baud for the TDA5051). 

Nevertheless, it was decided that tests would be carried out at all of these rates, and 

due allowance made when analysing the results. In any case, it would be reasonable to 

expect that the modems will operate satisfactorily at lower than nominal rates. 

7.10 Initial Processing of the 'Raw' Data 

One a complete set of runs was finished the logging PC software was stopped. The 

'raw' data was then loaded onto another PC by the simple expedient of taking the floppy 

disk (on which the data was recorded) to the PC, and copying it over! Once on the master 

PC, the 'raw' data file was then further processed using a simple text processor. 
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With the list of start and stop times created during the experimental runs, each 

block of experimental data was identified and isolated, and surplus, unnecessary, data 

deleted. A heading line was added to the top of each block of data indicating the conditions 

for that particular test (PL modem type, FTB voltage, polarity, and signalling rate). 

The data saved by the logging software is already in what is known as comma- 

separated-value (CSV) format, which is a standard import format for most spreadsheet 

software. This permitted the processed data to easily be imported into Lotus 1-2-3, the 

spreadsheet software chosen. 

Once within the spreadsheet, the data could easily be processed further and 

informative charts or graphs produced. 

507,493,0,0 
494,506,0,0 
517,483,4,0 
490,510,6,0 
499,501,4,0 
499,501,4,0,13: 59: 4 
496,504,1,0 
489,511,7,0 
496,504,3,0 
485,515,4,0 
510,490,8,0 
515,485,2,0 
502,498,0,0 
507,493,6,0 
495,505,1,0 
551,449,4,0,13: 59: 10 
481,519,1,0 
482,518,2,0 
542,458,5,0 
499,501,1,0 
488,512,2,0 
472,528,2,0 

Figure 68: An Example of Saved Data from the BERT 
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As already described, the format of the data is as follows (with each line 

representing a single test block of 1000 bits): 

" The total number of `0' bits sent in the test block. 

" The total number of `1' bits sent in the test block. 

" The total number of `0' bit errors ('0' bit received as ̀ 1') in the test block. 

" The total number of `1' bit errors ('I' bit received as ̀ 0'), in the test block. 

" Finally, every ten blocks, there is a time stamp. 

Theoretically, the first two items should each equal 500, showing an even spread of 

'I's and ̀ 0's in the pseudo-random bit stream. In fact, there is a deviation either side of 

500, due to the nature of the pseudo-random generator and the relatively low number of 

bits sampled in each block. Over a longer time scale, the 50: 50 ratio will be more 

accurately maintained. 

Before going on to analyse the experimental results in the next chapter, we will 

conclude this chapter by taking a more detailed look at the real world tests. 

7.11 The 'Real World' Tests 

As already mentioned, as a finale to the experimental work, some practical tests 

were run utilising the PL Modems in a'real world' set-up. It was decided to pass the PL 

modem signal over the electrical distribution network, in an industrial (factory) 

environment, and monitor the performance over the course of several working days, using 

the BERT equipment to record the bit-error rates. 

A route was chosen, within the premises of Elcontrol Limited (the authors 

workplace), which was as long as was reasonably achievable. The following diagram 

shows the arrangement: 
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Figure 69: The 'Real World' Experimental Set-up 
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The transmitter PL Modem was connected via a flying lead of approximately 

6 metres length, to a standard 13 A single-phase socket located within the machine shop of 

the company. This socket was at the far end of the main 3-phase bus-bar system from 

which all of the heavy workshop machinery is powered. 

It can be seen from the diagram that this bus-bar passes around the periphery of the 

workshop. From it, a number of machine tools are powered, either directly, or via spur 

lines. The supply runs past the paint shop, where it is used to feed heating elements and 

fume extraction fans, to the main distribution panel in the switch room, a further distance 

of approximately 46 metres. 

From the distribution panel, a spur line passes down the length of the factory to a 

small distribution box, from which the main single phase power feed to the R&D Lab is 

derived. The receive PL Modem was connected to a 13 A socked located in the R&D 

Lab. This leg of the set-up was some 20 metres in length, giving a total run between 

transmitter and receiver of approximately 72 metres. The entire loop was on the same 

phase. 

Experimentally, the set-up was tried across phases, relying on intrinsic coupling 

effects, but in practice, this resulted in insufficient signal transfer. Further experiments 

would be feasible to investigate the effect of introducing purpose-built coupling networks 

to pass the PLC signal between phases, but this is considered beyond the scope of the 

present experimental work. 

The BERT equipment and associated logging PC were set up as shown in the 

previous diagram. The data logging commenced at approximately 08: 45 am each morning, 

and ceased at approximately 16: 45 pm each afternoon, over a period of five working days, 

from Monday to Friday. The procedure was carried out for each power line modem in turn. 
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Obviously, these tests are non-quantitative, as we had no means of measuring the 

actual levels of noise present in the workshop environment. Nevertheless, they were 

worthwhile as they provided an idea of the modem performance in an actual environment. 

We will discuss the results of the real world tests at the end of the next chapter, 

once we have finished analysing the results from our main experimental work. 
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Chapter 8: Experimental Results, Analysis and Conclusions 

In this chapter we will present and analyse our experimental results. We will begin 

with the Fast Transient Burst tests, as these constitute the most significant component of 

the experiments overall. 

8.1 Initial PL Modem Performance Tests 

As discussed in the previous chapter, before the FTB tests proper started, 

measurements were made to determine the amplitude of the carrier frequency waveforms 

generated by the PL modems. We will present these results first. 

8.1.1 Modem Output Waveform Amplitudes 

With the BERT equipment set up and running, simply to generate an arbitrary data 

stream, the oscilloscope was used to measure the transmitter output amplitude under 

various loading conditions viz: 

" Unloaded 

" Loaded by the CISPR 16 network solely 

" Loaded by the adaptive network solely 

" Loaded by the combined CISPR 16 and adaptive network 

These measurements were repeated with the receiver PL modem in circuit to gauge 

what additional loading effect that had. The results are presented in the following tables: 
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TDA5051 Power Line Modem: Measured Output 
unloaded : 

Measured Output 
(loaded b receiver : 

State: Pk-to-pk RMS Pk-to-pk RMS 
No line loadin : 3.4 V 1.21 V 2.8 V 0.99 V 

Loaded by CISPR 16 network: 2.8 V 0.99 V 1.8 V 0.64 V 
Loaded by adaptive network: 0.92 V 0.33 V 0.92 V 0.33 V 

Loaded by CISPR 16 
+ adaptive network: 

0.62 V 0.22 V 0.62 V 0.22 V 

Figure 70: Measured Transmit Signal Levels for TDA5051 

ST7537 Power Line Modem: Measured Output 
unloaded : 

Measured Output 
(loaded b receiver : 

State: Pk-to-pk RMS Pk-to-pk RMS 
No line loadin : 8.4 V 2.98 V 5.8 V 2.06 V 

Loaded by CISPR 16 network: 2.4 V 0.85 V 2.3 V 0.82 V 
Loaded by adaptive network: 0.96 V 0.34 V 1.0 V 0.35 V 

Loaded by CISPR 16 
+ adaptive network: 

0.64 V 0.23 V 0.64 V 0.23 V 

Figure 71: Measured Transmit Signal Levels for ST7537 

We can make the following observations from these results: 

" With the modems in an unloaded condition, they each gave notably different 

outputs, which fell significantly even when loaded only by the receive modem. 

As the mains simulation network elements are placed in circuit, the results 

begin to fall into line. With the full network (CISPR 16 + adaptive), the 

measured outputs are very close, with the receiver loading making no 

discernible difference (0.22 V RMS for the TDA5051, and 0.23 V RMS for the 

ST7537). 

Referring to EN 50065-1, we know that the maximum permitted signal level for 

general use is 630 mV, meaning both modems are well within that limit. Indeed, for 

industrial use (maximum signal level 5 V) we could in theory increase the output 

magnitude some 20-fold, although this would require a much increased drive power to 

operate into the low impedance of the mains simulation network! 
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Next, measurements were made of the minimum signal amplitude from the 

transmitter that would be reliably detected by the receiver. 

8.1.2 Modem Receiver Sensitivity 

Using the attenuator network, and observing the display on the BERT equipment, 

the transmission signal level was reduced until errors started to be observed on the BERT 

display. This signal level was measured using the oscilloscope. 

In both cases, the modems reliably operated at about 20 mV peak-to-peak input (the 

TDA5051 with the pre-amplifier out of circuit). This is equivalent to an RMS value of 

approximately 7 mV. With the TDA5051 pre-amplifier in circuit, the input requirement 

dropped to a level too low to reliably measure on the oscilloscope (well below 5 mV peak- 

to-peak). This means that both modems comply with the access band requirement of 

EN 50065 (which states that a signal level of 10 mV within the operational band must be 

detected). 

In view of this 7 mV RMS minimum signal, and in deference to EN 50056, we 

decided to use a test level of 10 mV RMS (approximately 30 mV peak-to-peak) as the 

baseline, lowest, signal value for our experiments. It was further decided to disregard the 

pre-amplifier facility on the TDA5051 modem, in order to achieve an even comparison 

between the two modems. 

We will now consider the actual results for the FTB noise experiments. The results 

presented here will be summary results for each modem and each FTB amplitude value. 
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8.2 BER Test Results-for FTB Noise 

As already mentioned, these tests were carried out at FTB amplitudes of 500 V, 

1 kV, and 2 kV, and at signalling rates of 300,600,1200, and 2400 baud. The results 

presented on the following pages are summarised from the detailed results presented in 

Appendix 1 of this thesis. Specifically, the results for the ST7537 and TDA5051 are 

combined onto a single graph and the separate results for the positive (+ve) and negative 

(-ve) FTB pulse trains are averaged. It is noticeable (referring to Appendix 1) that the BER 

levels measured for the positive pulses often differ from those for negative pulses with, 

typically, the negative pulses producing slightly lower BER values. This was more 

noticeable with the ST7537 modem compared to the TDA5051. Without further research, 

the author can at present offer no explanation for this phenomenon. 

The BER values calculated are expressed as a percentage value, i. e. bits corrupted 

per 100 sent bits. The first set of results are for a transmission signal of 30 mV 

peak-to-peak (10 mV RMS) which, as we mentioned, was chosen as our minimum 

working level. 
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8.2.1 FTB Results for 10 mV RMS Signal Amplitude 

O ST7537,300 baud 
 ST7537,600 baud 
O ST7537,1200 baud 
O ST7537,2400 baud 
OTDA5051,300 baud 
 TDA5051,600 baud 
®TDA5051,1200 baud 
  TDA 5051,2400 baud 

500V 1kV 

FTB Test Magnitude 

2kV 

Figure 72: Summary FTB Results for 10 mV RMS Signal Level 

Immediately evident from the above graph is the fact that, especially at lower FTB 

magnitudes, the BER results for the ST7537 are noticeably better than those for the 

TDA5051. At 500 V, the average BER (combining all signalling rates) is 0.23 % for the 

ST7537 and 1.8 % for the TDA5051. As the FTB amplitude increases, the difference drops 

- at l kV the BER is 1.3 % for the ST7537 and 2.3 % for the TDA5051. At 2 kV, the 

difference is much less pronounced, except at signalling rates of 300 and 2400 baud, both 

technically outside of the nominal operating range for the TDA5051. Disregarding these 

anomalies, the BER at 2 kV is around 2.4% for both modems. 

We might postulate that at such relatively low carrier signal levels, the advantage of 

the FSK modulation scheme over the ASK is tending to be masked by the sheer magnitude 

of the FTB signal compared to the PLC signal. 
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8.2.2 FTB Results for 20 mV RMS Signal Amplitude 

2.5-r 
D ST7537,300 baud 
 ST7537,600 baud 
0 ST7537,1200 baud 
0 ST7537,2400 baud 
DTDA5051,300 baud 
 TDA5051,600 baud 
O TDA5051,1200 baud 
  TDA 5051,2400 baud 

FTB Test Magnitude 

Figure 73: Summary FTB Results for 20 mV RMS Signal Level 

The transmission signal level was next doubled to 60 mV peak-to-peak 

(20 mV RMS). The most obvious trend noticeable in these results is the overall lowering of 

BER for both modems, plus the notable increase in the differential at 2 kV FTB amplitude 

between the two modems. 

At 500 V, the average BER is 0.03 % for the ST7537, a considerable drop from 

0.23 %, and 0.5 % for the TDA5051, down from 1.8 %. At I kV the BER is 0.6 % for the 

ST7537 (from 1.3 %) and 0.9 % for the TDA5051 (from 2.3 %). At 2 kV the BER is 1.0 % 

for the ST7537 (from 2.4 %) and 2.3 % for the TDA5051 (only a little less than the 2.4 % 

value achieved if we disregard the anomalous value already mentioned). 
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8.2.3 FTB Results for 40 mV RMS Signal Amplitude 

2.5 1E 

500V IkV 

FTB Test Magnitude 

2kV 

osn537,300 baud 
  ST7537,600 baud 
13ST7537,1200 baud 
13ST7537,2400 baud 
O TDA5051,300 baud 
 TDA5051,600 baud 
O TDA5051,1200 baud 
  TDA 5051,2400 baud 

Figure 74: Summary FTB Results for 40 mV RMS Signal Level 

The transmission signal level was again doubled to 120 mV peak-to-peak 

(40 mV RMS). The most obvious trend noticeable in these results is the dramatic reduction 

of BER for the ST7537. 

At 500 V, the BER is 0.02 % for the ST7537 (from 0.03 %) and 0.32 % for the 

TDA5051 (from 0.5 %). At I kV the BER is still 0.02 % for the ST7537 (from 0.6 %) and 

0.6 % for the TDA5051 (from 0.9 %). At 2 kV the BER is 0.03 % for the ST7537 (from 

1.0 %) and 2.0 % for the TDA5051 (down from 2.3 %). 

186 



8.2.4 FTB Results for 80 mV RMS Signal Amplitude 
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Figure 75: Summary FTB Results for 80 mV RMS Signal Level 

Finally, the transmission signal level was doubled to 240 mV peak-to-peak 

(80 mV RMS). Again, the most obvious trend noticeable in these results is the low BER 

for the ST7537. Since the results for the ST7537 are now so low, no higher signal 

amplitudes were tested. 

At 500 V, the average BER is 0.003 % for the ST7537 (from 0.02 %) and 0.25 O, o 

for the TDA5051 (from 0.32 %). At 1 kV the BER is still only 0.007 % for the ST7537 

(from 0.02 %) and 0.47 % for the TDA5051 (from 0.6 %). At 2 kV the BER is 0.008 % for 

the ST7537 (from 0.03 %) and 1.8 % for the TDA5051 (down from 2.0 %). 

8.2. S FTB Test Conclusions 

In order to sum up the previous findings we have amalgamated the BER values for 

all signalling rates, for a given value of signal amplitude and FTB voltage level. The next 

two graphs show these amalgamated results. 
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Figure 76: Cumulative FTB Results for ST7537 
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Figure 77: Cumulative FTB Results for TDA50S1 
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Looking at the first graph it can be seen that the ST7537 exhibits a sharp drop in 

BER as the signal amplitude increases. By the time we reach a level of 40 mV, the BER 

has dropped to below 0.1 % (less than one corrupted bit in 1000) for all FTB levels. In fact, 

if we infer that we can extrapolate the sharp initial drop between 10 mV and 20 mV right 

down to the X-axis, this point would be achieved at less than 40 mV signal level. 
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The TDA5051, on the other hand, has a significantly higher BER under all 

conditions. The BER drops off as the input amplitude increases, but never to the same 

degree as for the ST7537. The BER is always related to the FTB level, notice how the 

curves are very similar, but shifted along the Y-axis according to the FTB voltage. 

At the end of this chapter, we will look at the implications of these BER figures 

within the context of this research. Next, though, we will look at the results of the other 

tests carried out, beginning with those for spot frequency noise. 

8.3 BER Test Results-for Spot Frequency Noise 

Three distinct tests were carried out to ascertain the performance of the PL modems 

in the presence of spot frequency noise. We will describe each in turn. 

8 . 3.1 Spot Frequency Test #1 

In the first of these tests, the modems were set up with a transmit amplitude of 

approximately 30 mV peak-to-peak (10 mV RMS). The spot frequency signal generator 

was then set to a range of frequencies at and around the operating frequencies of the PL 

modems. This value was 115 kHz in the case of the TDA5051, and 131.85 kHz and 

133.05 kHz, in the case of the ST7537 (in addition, for the ST7537, the approximate 

median value of 132.5 kHz was also used). The noise output amplitude was increased until 

errors just started to appear on the BERT data readings. These results were noted and 

plotted as graphs. The results are shown on the following pages. 
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8.3.2 Results for ST7537 

The following data shows the amplitude of noise frequency required to just cause 

errors in the received bit-stream, for a modem transmit signal amplitude of 10 mV RMS. 

ST7537,10 mV RMS received signal 
Noise Frequency, kHz Noise level causing errors in 

received bit stream mV RMS 
125 150 
130 9 

131.85 2.7 
132.5 2.7 

133.05 2.7 
135 53 

160 

140 

120 

100, 

80 

60 

40 

20 ý 

0 

-+-Signal level to 
cause errors 

125 130 131.85 132.5 133.05 135 

Frequency (kHz) 

Figure 78: Results for ST7537 Spot Frequency Test #1 
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8.3.3 Results for TDA5051 

The following data shows the amplitude of noise frequency required to just cause 

errors in the received bit-stream, for a modem transmit signal amplitude of 10 mV RMS. 

TDA5051,10 mV R MS received signal 
Noise Frequency, kHz Noise level causing errors in 

received bit stream (mV RMS) 
40 320 
55 127 
75 37 
95 29 
105 32 
110 35 

112.5 32 
115 7 

117.5 27 
120 32 
125 29 
135 23 
155 19 
175 35 
195 70 

350 

300 

250 
v 

d 
,0 200 

E 150 

d N 
100 

Z 

50 

0 

-+- Signal level to 
cause errors 

O in N 
I-C in ti Ln w 

CD 0 
O 
r 

M 
ý 

N 00 
r- 

O 
N 
1 

to N 

Frequency (kHz) 

T 

ý M 
r 

Y'f 
N W N 

0) 

Figure 79: Results for TDA5051 Spot Frequency Test #1 
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8.3.4 Analysis of Results for Spot Frequency Test #1 

It can be seen that at the operating and median frequencies, the ST7537 is 

susceptible to signals of some 2.7 mV, for a 10 mV signal level. Outside of these 

frequencies, there is a very noticeable band-pass effect. By the time we drop below a 

frequency of 130 kHz or exceed a frequency of 135 kHz, more than 10 times that noise 

level is needed to cause errors. 

The TDA5051, on the other hand, is less susceptible noise at its operational 

frequency (7 mV for a 10 mV signal level). However, the band beyond which the noise 

level rises dramatically is much wider - from approximately 75 kHz to 175 kHz. Referring 

to the manufacturers data sheets for the two devices [16,44] gives us a possible 

explanation. We can see that the ST7537 is equipped with an internal band-pass filter of 

12 kHz bandwidth, early on in the receive signal path. In addition, the signal later passes 

through an intermediate frequency (IF) stage itself having a 5.4 kHz bandwidth. 

The TDA5051 has no equivalent input filter, and no bandwidth limiting is applied 

until later in the signal path, after the receive signal has passed through the input wide- 

band automatic gain stage and been digitised in an A-D converter. At low input signal 

levels the gain of the front end will necessarily be high, which may further exacerbate the 

problem. Further tests would be worthwhile to determine if the TDA5051 performance 

could be improved by the use of additional front-end filtering. 

We will next consider the second spot frequency test. 
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8.3.5 Spot Frequency Test #2 

For the second spot frequency test, the modems were set up with a transmission 

amplitude of approximately 240 mV peak-to-peak (80 mV RMS). The spot frequency 

signal generator was also set to an amplitude of 80 mV RMS at various frequencies around 

the operational frequencies of the modems. At each frequency, the measured BER value 

was recorded. These results were noted and plotted as graphs. The results are shown on the 

following pages. 
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8.3.6 Results forST7537 

The following data represents the effect on BER of a spot frequency signal of 

80 mV RMS, at various frequencies, against a PL modem signal amplitude of 80 mV 

RMS. 

Frequency: 107.5 kHz 117.5 kHz 127.5 kHz 130.0 kHz 131.9 kHz 
_ BER % 0.00000 0.00000 0.01625 0.01125 50.34125 
Frequency: 132.5 kHz 133.1 kHz 135.0 kHz 137.5 kHz 147.5 kHz 

_ BER % 42.84125 49.69875 0.05000 0.00250 0.00375 
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Figure 80: Results for ST7537 Spot Frequency Test #2 
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8.3.7 Results for TDA5O51 

The following data represents the effect on BER of a spot frequency signal of 

80 mV RMS, at various frequencies, against a PL modem signal amplitude of 80 mV 

RMS. 

Sot Frequency 
Bit Error 110 kHz 112.5 kHz 115 kHz 117.5 kHz 120 kHz 
Rate (0/0 0.00000 0.00000 59.22500 0.00000 0.00000 

so, 

50-/ 

40i' 

30/ 

20- / 

, o-ý 

0 
110 kHz 112.5 115 kHz 117.5 120 kHz 

kHz kHz 
Frequency (kHz) 

Figure 81: Results for TDA5051 Spot Frequency Test #2 
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8.3.8 Analysis of Results for Spot Frequency Test #2 

It can be seen that for the ST7537 these results broadly follow those already noted 

in test #1. The device exhibits a narrow pass-band with good immunity outside of it. 

For the TDA5051, the effects noted in test 41 seen to have been overcome, and the 

device also shows good immunity outside of a narrow band around its operating frequency. 

We can surmise that this is due to the input automatic gain stage now needing to operate at 

a much lower gain due to the larger input signal. The presence of the noise signal now has 

less spurious effect on the digital (post-ADC) band-pass filter present in this device. 

Further tests would be required to confirm this hypothesis. 

We will now consider the third spot frequency test. 

8.3.9 Spot Frequency Test #3 

For the final spot frequency test, the transmission amplitude was again set to 

approximately 240 mV peak-to-peak (80 mV RMS). This time the signal generator was set 

to the operational frequencies of the modems. The spot frequency amplitude was set to a 

range of increasing values, and the BER measured at each. These results were noted and 

plotted as graphs. The results are shown on the following pages. 
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8.3.10 Results for ST7537 

The following data represents the effect on BER of a spot frequency signal of 

variable amplitude, at certain spot frequencies at and between the modem operating 

frequencies, against a PL modem signal amplitude of 80 mV RMS. 

Spot Spot Frequency Amplitude (RMS) 
Freq. 

20 mV 30 mV 40 mV 60 mV 80 mV 120 mV 160 mV 
131.85 0.005 0.0525 1.8 13.2 44.7 49.3 49.1 

kHz 
132.50 0.0125 0.00375 0.0 4.0 25.7 35.6 39.8 

kHz 1 
133.05 0.0025 0.0025 0.015 8.5 20.7 50.0 49.7 

kHz 
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Figure 82: Results for ST7537 Spot Frequency Test #3 
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8.3.11 Results for TDA5051 

The following data represents the effect on BER of a spot frequency signal of 

variable amplitude, at the modem centre frequency of 115 kHz, against a PL modem signal 

amplitude of 80 mV RMS. 

Sot Frequency Amplitude RMS 
Bit Error 7 mV 8 mV 10 mV 20 mV 40 mV 80 mV 160 mV 
Rate % 0.0 1.6 25.3 19.0 44.3 57.5 52.3 
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Figure 83: Results for TDA5051 Spot Frequency Test #3 
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8.3.12 Analysis of Results for Spot Frequency Test #3 

The ST7537 results are broadly what one would expect. As the amplitude of the 

noise signal rises, so does the BER. Interestingly, it is evident, especially at lower 

amplitudes, that noise at the 131.85 kHz carrier frequency has a greater effect than noise at 

the other carrier frequency of 133.05 kHz. This may be a result of the demodulation 

technique utilised within the device, but would require further investigations to clarify. At 

noise amplitudes of 120 mV RMS and above, this effect disappears. At the median 

frequency (132.5 kHz) a steadily rising BER is achieved, as would be expected. 

The TDA5051 shows a broadly increasing BER with noise, although there are a 

couple of quirks noticeable at 10 mV, and at 80 mV, where the values are larger than 

would be expected. Again, further investigation would be needed to explain these 

anomalies. 

Also notable with the TDA5051 results is the fact that, at 80 mV noise level, the 

BER value is over 57 %. Since the TDA5051 is an ASK modem, we would expect that the 

noise signal would tend to swamp the 'no carrier' (logic 'V) portions of the receive 

waveform. Therefore all logic '1' bits would be received incorrectly and we would expect a 

BER of around 50 % maximum (assuming a true 50: 50logic'1'to logic '0' bit ratio from 

the BERT equipment). In fact, looking at the raw data, we see that at all noise levels above 

40 mV, there are a significant number of logic '0' errors that contribute to the high overall 

BER. 

We can surmise that this may be a function of the advanced digital demodulation 

techniques utilised in this device, but more research would needed to clarify the cause of 

these effects. 
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For the ST7537, the expected results would be that noise at one of the carrier 

frequencies would tend to cause bit errors at the logic level corresponding to the other 

carrier frequency. This was true at the highest signal levels (120 mV and above), but at 

lower levels there was again a tendency for both logic levels to be corrupted. As before, we 

would require further research to explain this anomaly. 

We will now look at the last of the noise tests, the sweep frequency test. 

8.3.13 Swept Frequency Test 

As a final test, the modems were subjected to a swept frequency test. By its very 

nature, and due to the unsophisticated equipment available to the author, this is not a 

quantitative test, but was included for completeness. 

The modem transmission amplitude was set to approximately 240 mV peak-to-peak 

(80 mV RMS) and the signal generator was set to sweep over the range of 80 kHz to 

160 kHz at a rate of approximately 30 Hz. 

The swept frequency amplitude was set to a range of increasing values, and the 

BER measured at each. These results were noted and plotted as graphs. The results are 

shown on the following pages. 
ý 
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8.3.14 Results for ST7537 

The following data represents the effect on BER of a swept frequency signal, of 

variable amplitude, against a PL modem signal amplitude of 80 mV RMS. 

Sweep Frequency Amplitude (RMS) 
Bit Error 
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Figure 84: Results for ST7537 Swept Frequency Test 
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8.3.1 5 Results for TDA5051 

The following data represents the effect on BER of a swept frequency sigmal, of 

variable amplitude, against a PL modem signal amplitude of 80 mV RMS. 

Sweep Fre uency Am litude RMS 
Bit Error 10 mV 15 mV 20 mV 30 mV 40 mV 80 mV 100 mV 

Rate 
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Figure 85: Results for TDA5051 Swept Frequency Test 
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8.3.16 Analysis of Results for Swept Frequency Test 

It would be expected that the modems would be compromised as the frequency 

passed through their operational frequencies and this is indeed what was found. 

The ST7537 showed a gradual increase in BER up to a maximum value of 

approximately 4.6 %. The TDA5051 showed a similar increase up to a maximum BER of 

around 50 %. 

We can explain this difference based on our earlier findings. The much wider pass- 

band of the TDA5051 implies that the swept signal (when of sufficient amplitude) will 

affect the final BER over a much wider part of the sweep band, hence the higher BER 

overall. 

That concludes the analysis of the spot frequency noise test results. We will finally 

look at the experimental results for the 'real world' tests. 

8.4 Results-for the `Real World' Tests 

As already described, these final tests were conducted over a period of time within 

an actual factory environment. A sample of one working week was then used as the basis 

of our analysis. 

As with the FTB tests, some initial measurement of transmit carrier amplitudes 

were made. Due to the fact that in these tests, the PL modems are energised at mains 

voltages, an isolating circuits was used to measure the signal amplitudes. The circuit used 

is shown in the next figure. 
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Figure 86: The Isolating Circuit used for Mains Signal Measurement 

Using the above arrangement, the following values were measured: 

TDA5051 Power Line Modem: Measured Input 
(at Rx rim 

Measured Output 
(at Tx rima 

State: Pk-to-pk RMS Pk-to-pk RMS 

Connected to Power Line: 0.10 V 0.04 V 5.0 V 1.77 V 

Transmitter value (unloaded): 3.0 V 1.06 V 

Figure 87: 'Real World' Signal Levels for TDA5051 

The unloaded transmitter value was measured without the transmitter being 

connected to the power line. It was intended to permit the effect of the isolating circuit to 

be gauged by comparing the values with the values already measured in the FTB tests. 

For the TDA5051, the unisolated value was 1.21 V RMS, giving a correction factor 

of 1.21 / 1.06 = 1.14. Using this figure, we can estimate the true transmit output into the 

factory power line as 1.77 x 1.14 = 2.0 V RMS. Interestingly, this exceeds the unloaded 

value. Further investigation might provide an answer to this effect, but it may conceivably 

be due to the interrelationship between the modem mains coupling network and the 

characteristics of the power line. 

Next, looking at the received signal at the Rx modem, applying the correction 

factor gives us a value of 0.04 x 1.14 = 0.046 V (46 mV) RMS. 

1 
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ST7537 Power Line Modem: Measured Input 
(at Rx rim 

Measured Output 
(at Tx primary) 

State: Pk-to-Pk RMS Pk-to-pk RMS 
Connected to Power Line: 0.15 V 0.05 V 8.0 V 2.84 V 

Transmitter value (unloaded): 8.0 V 2.84 V 

Figure 88: `Real World' Signal Levels for ST7537 

Moving on to the ST7537, the correction factor this time is 2.06 / 2.84 = 0.73. It is 

interesting to note that this correction factor is less than one, as the real world transmit 

value was greater than the value obtained on the bench tests. This different value may 

perhaps again be attributable to the interrelationship between the modem mains coupling 

network and the characteristics of the power line. 

Anyway, applying this figure us a transmit amplitude of 2.8 x 0.73 = 2.06 V RMS, 

and it is also noticeable that the figure is not affected by the loading of the factory power 

line. The receiver value is calculated at 0.05 x 0.73 = 0.037 V (37 mV) RMS. 

Referring back to our FTB tests, such receive amplitudes should result in BER 

values of 0.1 % or lower for the ST7537, equivalent to one bit in 1000 being corrupted. For 

the TDA5051 the figure is 2% or lower, equivalent to 2 bits in 100 being corrupted. These 

figure assume that the noise present on the power line is similar in nature to that produced 

by the FTB generator. 

At the end of this Chapter we will discuss what constitutes an acceptable BER 

value in a real communications scenario, but we will next look at the actual BER results 

obtained in the 'real world' tests. 

The data is presented as follows: Each table of results shows the BER values, 

averaged over 15 minute time slots, for a working day in a'typical' light industrial power 

line environment. The results are then plotted graphically. Results are shown, in turn, for 

an entire working week for each of the modems under test. 
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8.4.1 Results for ST7537, Day 1 (Monday) 

The following data shows the measured BER, averaged over 15 minute time slots, 

over a working day in a 'typical' light industrial power line environment. 

Time: BER: Time: BER: 
0900-0915 0.0074312 1300-1315 0.0022957 
0915-0930 0.0090742 1315-1330 0.0017431 
0930-0945 0.0050000 1330-1345 0.0032377 
0945-1000 0.0019266 1345-1400 0.0017431 
1000-1015 0.0032110 1400-1415 0.0014692 
1015-1030 0.0011111 1415-1430 0.0018349 
1030-1045 0.0025688 1430-1445 0.0022202 
1045-1100 0.0027548 1445-1500 0.0013774 
1100-1115 0.0024771 1500-1515 0.0016514 
1115-1130 0.0023148 1515-1530 0.0004625 
1130-1145 0.0017431 1530-1545 0.0008257 
1145-1200 0.0010092 1545-1600 0.0009183 
1200-1215 0.0007401 1600-1615 0.0013761 
1215-1230 0.0018365 1615-1630 0.0010082 
1230-1245 0.0013761 
1245-1300 0.0031452 

0.01 
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0.008 

0.007 

0.006 

0.005 
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0.002 

0.001 
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Figure 89: 'Real World' Test Results for ST7537, Day 1 (Monday) 
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8.4.2 Results for ST7537, Day 2 (Tuesday) 

The following data shows the measured BER, averaged over 15 minute time slots, 

over a working day in a'typical' light industrial power line environment. 

Time: BER: Time: BER: 
0900-0915 0.0042202 1300-1315 0.0021120 
0915-0930 0.0027752 1315-1330 0.0016514 
0930-0945 0.0034862 1330-1345 0.0019426 
0945-1000 0.0051423 1345-1400 0.0022936 
1000-1015 0.0037928 1400-1415 0.0009183 
1015-1030 0.0024771 1415-1430 0.0011101 
1030-1045 0.0033058 1430-1445 0.0016514 
1045-1100 0.0030275 1445-1500 0.0014692 
1100-1115 0.0023127 1500-1515 0.0017431 
1115-1130 0.0018365 1515-1530 0.0011101 
1130-1145 0.0021101 1530-1545 0.0012844 
1145-1200 0.0022202 1545-1600 0.0010101 
1200-1215 0.0009174 1600-1615 0.0006422 
1215-1230 0.0011938 1615-1630 0.0012026 
1230-1245 0.0038532 
1245-1300 0.0005550 

0.006 

0.005 

0.004 
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Figure 90: 'Real World' Test Results for ST7537, Day 2 (Tuesday) 

207 



8.4.3 Results for ST7537, Day 3 (Wednesday) 

The following data shows the measured BER, averaged over 15 minute time slots, 

over a working day in a'typical' light industrial power line environment. 

Time: BER: Time: BER: 
0900-0915 0.0009251 1300-1315 0.0009183 
0915-0930 0.0000000 1315-1330 0.0030527 
0930-0945 0.0006428 1330-1345 0.0006422 
0945-1000 0.0017431 1345-1400 0.0000000 
1000-1015 0.0010176 1400-1415 0.0014679 
1015-1030 0.0021120 1415-1430 0.0012026 
1030-1045 0.0015596 1430-1445 0.0002752 
1045-1100 0.0016651 1445-1500 0.0020202 
1100-1115 0.0006422 1500-1515 0.0029602 
1115-1130 0.0015611 1515-1530 0.0026606 
1130-1145 0.0022936 1530-1545 0.0055096 
1145-1200 0.0017576 1545-1600 0.0042202 
1200-1215 0.0017447 1600-1615 0.0074006 
1215-1230 0.0018349 1615-1630 0.0053211 
1230-1245 0.0032377 
1245-1300 0.0016514 
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Figure 91: 'Real World' Test Results for ST7537, Day 3 (Wednesday) 
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8.4.4 Results for ST7537, Day 4 (Thursday) 

The following data shows the measured BER, averaged over 15 minute time slots, 

over a working day in atypical' light industrial power line environment. 

Time: BER: Time: BER: 
0900-0915 0.0012026 1300-1315 0.0071625 
0915-0930 0.0022936 1315-1330 0.0071560 
0930-0945 0.0010101 1330-1345 0.0057407 
0945-1000 0.0023853 1345-1400 0.0062385 
1000-1015 0.0026827 1400-1415 0.0066055 
1015-1030 0.0020183 1415-1430 0.0076781 
1030-1045 0.0030303 1430-1445 0.0070642 
1045-1100 0.0003700 1445-1500 0.0042241 
1100-1115 0.0014679 1500-1515 0.0081651 
1115-1130 0.0018365 1515-1530 0.0085106 
1130-1145 0.0038532 1530-1545 0.0087236 
1145-1200 0.0056429 1545-1600 0.0053211 
1200-1215 0.0059688 1600-1615 0.0081406 
1215-1230 0.0052294 1615-1630 0.0076147 
1230-1245 0.0088807 
1245-1300 0.0085321 
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Figure 92: 'Real World' Test Results for ST7537, nay 4 (Thursday) 
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8.4.5 Results for ST7537. Dav 5 (Friday) 

The following data shows the measured BER, averaged over 15 minute time slots, 

over a working day in a 'typical' light industrial power line environment. 

Time: BER: Time: BER: 
0900-0915 0.0074006 1300-1315 0.0075856 
0915-0930 0.0059688 1315-1330 0.0070642 
0930-0945 0.0077982 1330-1345 0.0084404 
0945-1000 0.0054579 1345-1400 0.0100092 
1000-1015 0.0059633 1400-1415 0.0060130 
1015-1030 0.0078972 1415-1430 0.0069725 
1030-1045 0.0086239 1430-1445 0.0064279 
1045-1100 0.0035153 1445-1500 0.0024771 
1100-1115 0.0038567 1500-1515 0.0030527 
1115-1130 0.0018349 1515-1530 0.0011927 
1130-1145 0.0037003 1530-1545 0.0011938 
1145-1200 0.0021101 1545-1600 0.0027752 
1200-1215 0.0063361 1600-1615 0.0002752 
1215-1230 0.0045328 1615-1630 0.0016529 
1230-1245 0.0088073 
1245-1300 0.0091827 

0.012 

0.01 

0.008 

0.006 

0.004 

0.002 

0 
°ýh 

13 hhh 
-P'y eA`' yýy ýý eýy 

o°°ýpo°jýýpý. °ýý, 
ýº. 

°ýý^ý .' ̀ý 
ý, ýº 

.' ̀ý 
°, º"ý. 

tiý 
ý, ýº. 

tiý 
°ýý. 

ý°t, 
ýº. 

ýý 
ýý. ýýIý0 ýýý 

hý 
ýýºýýýý 

Time 

Figure 93: 'Real World' Test Results for ST7537, Day 5 (Friday) 
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8.4.6 Results for TDASOSI, Day I (Monday) 

The following data shows the measured BER, averaged over 15 minute time slots, 

over a working day in a 'typical' light industrial power line environment. 

Time: BER: Time: BER: 
0900-0915 0.0006422 1300-1315 0.0002752 
0915-0930 0.0001850 1315-1330 0.0009183 
0930-0945 0.0022936 1330-1345 0.0007339 
0945-1000 0.0005510 1345-1400 0.0006475 
1000-1015 0.0005505 1400-1415 0.0000000 
1015-1030 0.0001850 1415-1430 0.0001835 
1030-1045 0.0008264 1430-1445 0.0000000 
1045-1100 0.0004587 1445-1500 0.0001835 
1100-1115 0.0006475 1500-1515 0.0005510 
1115-1130 0.0002752 1515-1530 0.0000000 
1130-1145 0.0003673 1530-1545 0.0000000 
1145-1200 0.0003670 1545-1600 0.0000000 
1200-1215 0.0009251 1600-1615 0.0002752 
1215-1230 0.0002755 1615-1630 0.0000917 
1230-1245 0.0004587 
1245-1300 0.0002775 
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Figure 94: 'Real World' Test Results for TDA5051, Day 1 (Monday) 
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8.4.7 Results for TDA5051, Day 2 (Tuesday) 

The following data shows the measured BER, averaged over 15 minute time slots, 

over a working day in a 'typical' light industrial power line environment. 

Time: BER: Time: BER: 
0900-0915 0.0000000 1300-1315 0.0000000 
0915-0930 0.0008326 1315-1330 0.0005505 
0930-0945 0.0017447 1330-1345 0.0009251 
0945-1000 0.0000000 1345-1400 0.0027548 
1000-1015 0.0000000 1400-1415 0.0002752 
1015-1030 0.0000000 1415-1430 0.0000000 
1030-1045 0.0001837 1430-1445 0.0001850 
1045-1100 0.0105505 1445-1500 0.0002755 
1100-1115 0.0000000 1500-1515 0.0002752 
1115-1130 0.0006428 1515-1530 0.0000925 
1130-1145 0.0000000 1530-1545 0.0003673 
1145-1200 0.0000925 1545-1600 0.0001835 
1200-1215 0.0004587 1600-1615 0.0000000 
1215-1230 0.0005510 1615-1630 0.1924771 
1230-1245 0.0001835 
1245-1300 0.0000000 
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Figure 95: 'Real World' Test Results for TDA5051, Day 2 (Tuesday) 
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8.4.8 Results for TDA5051, Day 3 (Wednesday) 

The following data shows the measured BER, averaged over 15 minute time slots, 

over a working day in a 'typical' light industrial power line environment. 

Time: BER: Time: BER: 
0900-0915 0.0007346 1300-1315 0.0000000 
0915-0930 0.0010176 1315-1330 0.0011938 
0930-0945 0.0001835 1330-1345 0.0003700 
0945-1000 0.0001837 1345-1400 0.0019266 
1000-1015 0.0000000 1400-1415 0.0000918 
1015-1030 0.0004625 1415-1430 0.0037615 
1030-1045 0.0000000 1430-1445 0.0007401 
1045-1100 0.0000917 1445-1500 0.0008257 
1100-1115 0.0004625 1500-1515 0.0004591 
1115-1130 0.0001835 1515-1530 0.0008257 
1130-1145 0.0005510 1530-1545 0.0081406 
1145-1200 0.0001835 1545-1600 0.0258953 
1200-1215 0.0002775 1600-1615 0.0007339 
1215-1230 0.0003673 1615-1630 0.0001850 
1230-1245 0.0000000 
1245-1300 0.0000000 
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Figure 96: 'Real World' Test Results for TDA5051, Day 3 (Wednesday) 
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8.4.9 Results for TDA5051, Day 4 (Thursday) 

The following data shows the measured BER, averaged over 15 minute time slots, 

over a working day in a 'typical' light industrial power line environment. 

Time: BER: Time: BER: 
0900-0915 0.0014692 1300-1315 0.0005505 
0915-0930 0.0000000 1315-1330 0.0001837 
0930-0945 0.0004587 1330-1345 0.0007339 
0945-1000 0.0000000 1345-1400 0.0001850 
1000-1015 0.0000917 1400-1415 0.0000000 
1015-1030 0.0000000 1415-1430 0.0001835 
1030-1045 0.0002755 1430-1445 0.0003700 
1045-1100 0.0004587 1445-1500 0.0013774 
1100-1115 0.0005550 1500-1515 0.0002752 
1115-1130 0.0001835 1515-1530 0.0009174 
1130-1145 0.0003673 1530-1545 0.0008326 
1145-1200 0.0001835 1545-1600 0.0033976 
1200-1215 0.0007401 1600-1615 0.0004587 
1215-1230 0.0000917 1615-1630 0.0002775 
1230-1245 0.0003704 
1245-1300 0.0005505 
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Figure 97: 'Real World' Tcst Results for TDA5051, Day 4 (Thursday) 
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8.4.10 Results for TDA5051, Day 5 (Friday) 

The following data shows the measured BER, averaged over 15 minute time slots, 

over a working day in a'typical' light industrial power line environment. 

Time: BER: Time: BER: 
0900-0915 0.0013876 1300-1315 0.0002752 
0915-0930 0.0002755 1315-1330 0.0000000 
0930-0945 0.0000917 1330-1345 0.0004587 
0945-1000 0.0000000 1345-1400 0.0000918 
1000-1015 0.0008257 1400-1415 0.0005550 
1015-1030 0.0107438 1415-1430 0.0000000 
1030-1045 0.0003670 1430-1445 0.0002755 
1045-1100 0.0003700 1445-1500 0.0000917 
1100-1115 0.0001837 1500-1515 0.0004625 
1115-1130 0.0002752 1515-1530 0.0057798 
1130-1145 0.0000925 1530-1545 0.0000000 
1145-1200 0.0006422 1545-1600 0.0000925 
1200-1215 0.0004591 1600-1615 0.0001835 
1215-1230 0.0007339 1615-1630 0.0000000 
1230-1245 0.0003700 
1245-1300 0.0017447 
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Figure 98: 'Real World' Test Results for TDA5051, Day 5 (Friday) 
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8.4.11 Analysis of 'Real World' BER Test Results 

Looking at the results for the real world tests, we can make the following 

comments. 

" The BER values measured are a lot less than might be expected, based on the 

FTB BER test results. This suggests that the noise levels experienced in the 

factory environment are generally significantly less harsh. 

9 The results for the TDA5051 are in some respects (which will be discussed 

later) better than those for the ST7537. 

The ST7537, for example, shows a peak BER value (averaged over 15 minute time 

slots) of 0.01 %. This represents one corrupted bit in 10000. For the rest of the test period, 

BER values were at or below typically 0.003 % (three bits in 100000 corrupted). 

The TDA5051, on the other hand, showed a peak BER value of 0.12 %, 

representing 12 corrupted bits in 10000. Aside from a few lesser peaks, the rest of the BER 

values tended to 0.001 % or less (one bit in 100000), in other words, better than the 

ST7537! Further research would be required try and ascertain why this should be so. 

Study of the raw data for these tests shows that these peak values for the TDA5051 

were a results of incidents of high errors over just one or two 1000 bit samples within the 

15 minute time frame. 

We can postulate, then that events occurred on the power line at these points that 

the TDA5051 was unable to withstand, resulting in the high data loss. We cannot speculate 

as to the exact nature of the events, and it would be a subject for further experimental tests 

to try and profile the noise characteristics. 
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Since the real world tests analysed took place on different weeks, we cannot 

absolutely guarantee that the noise levels would be comparable, although, since an entire 

weekly time frame was involved in each, they should at least have been similar. The only 

way around this shortcoming would be to produce a'dual channel' BERT, capable of 

handling two PL modems simultaneously on the same power line. Either, each modem 

would pass a 1000 bit sequence in turn (although even this arrangement might miss short 

duration transient events), or (preferably) both modems would run simultaneously, passing 

identical data. This latter arrangement would require the modems to operate in exclusive 

frequency bands, to avoid mutual interference (of course, our modems already do this, as 

the TDA5051 carrier is at 115 kHz, and the ST7537 is centred around 132.5 kHz). The 

development of such an improved BERT is beyond the scope of this initial research, but 

will be further discussed in the next chapter. 

8.5 Conclusions 

To finish this chapter we will look how our results fit in to our proposed industrial 

application of PLC techniques. 

In terms of the FTB test BER values alone it is evident that the ST7537 modem 

offers the better performance under almost all circumstances. This does not necessarily 

rule out the TDA5051 as will be explained next. 

Taking as an example our HART data packet, which we analysed in a previous 

chapter. We have already calculated that a'typical' HART packet might contain between 

110 and 616 bits. 

Since we will not be employing any error correction techniques, corrupted packets 

must be re-transmitted. In other words, a data packet must get through the communications 

link uncorrupted, and preferably without too many retries, within our response time frame 

of1to2s. 
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If a transmission link has a BER of 1 %, it implies that in a sample of (say) 1000 

bits there are likely to be 10 corrupted bits. From our experimental results, this BER is 

achievable for the ST7537 for all FTB amplitudes, at signal levels above 20 mV. Even the 

generally lower performing TDA5051 can achieve it above 20 mV for all but the most 

stringent (2 kV) FTB amplitude. 

These corrupted bits could be contiguous, i. e. all together in a bunch, or might be 

evenly spaced over time. In the former instance, it implies that there should be a clear run 

of 990 bits with no interference, and in the latter a clear run of only 99 bits. Our example 

data packets would, in theory, be able to pass over the communications link with the 

former noise profile, but not with the latter. A small reduction in the minimum packet size 

would allow these to pass even with the latter noise profile. 

Looking at the structure of the actual FTB noise signal, discussed in an earlier 

chapter, we can see that the 15 ms blocks of noise pulses are separated by 285 ms gaps. 

This does not however imply that all of the corrupted bits associated with the FTB 

waveform will occur during the noise period, and there will be the opportunity for 285 ms 

of clean transmission. For example, the TDA5051 automatic gain control system will 

likely react to the noise pulses, and take a finite time to recover afterwards, during which 

reliable communication might not be guaranteed. Also, it must be remembered that the 

FTB pulse train is a 'generic' waveform (designed by committee! ), easy to replicate, but not 

necessarily indicative of noise in the real world. Real world noise is likely to be much less 

deterministic. 

To make any judgements we would also need to ascertain the determinism of the 

'real' power line noise. Such tests are beyond the scope of this initial work, but are another 

line for further experimentation. 
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To summarise then: 

" Our experimental results have shown that we can achieve usable BER values 

with either of the PL modems evaluated. 

" Our 'real world' tests have shown that actual BER values are likely to be lower 

than those achieved in the bench experiments. 

Overall, our initial round of experimentation strongly suggests that PLC systems 

have a place in an industrial control scenario. We can achieve suitably low BER rates 

without special precautions, and have the scope to improve the power line noise 

environment further, utilising filters and similar techniques 

That concludes our analysis of the results of this experimental work. We have 

touched on the need to analyse the noise profile of the industrial power line environment in 

more detail, and also to tailor our final choice of protocol and packet structure to that 

environment. We will further consider these, and the other additional lines of 

experimentation that have suggested themselves, in the next chapter, before concluding 

this Thesis with a look at other aspects of the future of power line communications. 
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Chapter 9: Future Developments 

We will conclude this Thesis with a look at the future, from various viewpoints. We 

will look at the directions in which our research could be continued (some of which have 

already been touched upon) and at enhancements that might be made to the BERT 

equipment, developed as a part of this research. Finally, we will look at some of the other 

directions in which PLC research and technologies are being applied. 

9_1 Additional Topics) Research 

The results obtained so far indicate that PLC does have a potential for use within an 

industrial environment. We have ascertained that communication is achievable with an 

acceptably low error rate, and at a signalling rate sufficient for carrying out control 

functions within an appropriate time-scale. 

In the course of the experimental work carried out in this research, we have raised 

many questions that would benefit from additional investigation. We will firstly look at 

questions arising directly from the experimental work already carried out, before looking at 

future directions which the research might take. 
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9.1.1 Topics Arisin' Directly From the Experiments Carried Out 

" In the real world tests, it was notable that the ST7537 performed (on average) 

somewhat worse than the TDA5051, despite the fact that theory would suggest 

the opposite. Of course, the actual levels experienced were sufficiently low that 

reliable communications would be perfectly feasible with either modem. 

Nevertheless, it would be useful to try and establish why this should be so. 

" There were several other instances of somewhat anomalous results, which 

would also warrant further investigation, viz: 

For the ST7537 FTB tests, why negative amplitude tests tended to produce 

noticeably lower BER values than positive amplitude tests at the same test 

voltage. This effect was much less evident with the TDA5051, but when 

noted tended to be the opposite sense - i. e. positive FTB tests produced a 

slightly lower BER value than negative. 

For the spot frequency tests, why unexpected types of bit error (logic `0', or 

logic 'I') were found, when a simple prediction of the effect of the noise 

suggested that only one bit level would be affected. 

. The variation of the noise susceptibility bandwidth of the TDA5051 in the 

presence of different input signal levels. 

" All of the above effects warrant a closer look at the internal operation of each 

modem, with specific attention paid to some of the (modern) signal processing 

techniques employed, in an effort to achieve an explanation. 

We will now take a broader outlook, and consider entire new lines of research that 

might be pursued. 
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9.1.2 Other Lines of Research 

" To perform tests to gauge the nature of the power line noise within the 

industrial environment, and its determinism (or otherwise). This would 

certainly require additional, specialised, test equipment, not available to the 

author. It may be an additional opportunity to develop custom-built equipment, 

as has already been done with the BERT equipment used in this Thesis. 

" In our `real world' tests, we noted some unusual effects when the modems were 

coupled to the power line, regarding the change in the signal amplitude. It 

would therefore be worthwhile to investigate the effectiveness of the coupling 

circuitry between the PL modems and the power line, as well as attempting to 

measure the actual impedance values for the power line. 

" Having carried out tests at the basic physical layer of the OSI model, the next 

step would be to consider the most appropriate choice of protocols. A 

theoretical evaluation could be backed up by a new series of experiments to 

assess the performance of the protocols under noise conditions. 

" Once we start to incorporate a protocol in the communications link, the way 

would be opened to experiment with some of the more highly integrated 

modem chipsets. 

" Finally, we would evaluate the advantages to be gained by the systematic use of 

filters, from the point of view of both decreasing noise levels and optimising the 

power line impedance. 

An integral part of our experimental work was the BERT equipment. We will next 

discuss improvements and enhancements that might be made to this equipment. 
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9.2 Further Development of the BERT Equipment 

The BERT equipment was designed specifically to assist in the experimental work 

for this Thesis. However, it has the potential to be used as an item of general purpose test 

equipment for power-line (or indeed, general) communications use. 

The most notable limitation is the fact that the BERT is currently in prototype 

format, constructed on an open breadboard. It would certainly be advantageous to package 

the device in a secure manner. We have already discussed the fact that isolation circuitry 

needed to be included in the BERT for it to operate under the experimental FTB noise 

conditions. Even with the isolators, the standard BERT was still vulnerable to FTB levels 

of 4 kV. This was not a problem with our experiments, as the standards only required a 

maximum FTB level of 2 W. However, it does indicate the pervasiveness of 

electromagnetic noise, and packaging the BERT equipment properly, with due attention 

paid to screening and filtering on the power and data lines, would almost certainly be 

advantageous. 

Beyond these `cosmetic' and EMC issues, the basic design of the BERT could be 

refined further for improved functionality: 

" We have already mentioned that it would be desirable to create a twin channel 

BERT. This would be capable of simultaneous testing of two modems in a real 

world scenario, on the same power line, thus providing improved confidence in 

the real world results. 
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" We have also mentioned the incorporation of protocols in our experimentation. 

If we are to use the BERT equipment in these advanced tests, it must 

accommodate this. It would be feasible for the BERT equipment to handle the 

assembly and disassembly of data packets, in the format of various protocols, 

and to provide BER results to the user. Indeed, this is a function available in 

many commercial bit error rate testers. When dealing with integrated PL 

modem chip-sets, that incorporate their own protocol-handling 

microcontrollers, the BERT must handle and analyse the outputs from these, in 

whatever format the might be, in order to evaluate the link performance. 

The changes proposed above would require significant enhancements to the 

hardware and software of the BERT front-end system. It would be necessary to consider if 

the simple PIC16F84 microcontroller has sufficient resources for this task. There are more 

advanced members of the PIC family available, that might be suitable, or it may even be 

necessary to go to a PC-based solution for the BERT hardware. 

That concludes our discussion of enhancements to the BERT equipment. An 

important concept, used as the backbone of our research effort, is the `Power Bus'. We will 

next look at potential further work in this specific area. 
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9.3 Further Development of the 'Power Bus' Concept 

So far, we have evaluated some practical PL modem solutions suitable for our 

`Power Bus' concept, and have proposed new lines of relevant research, such as 

investigating the performance of protocols. 

Whilst future research may involve other types of PL modem, the two evaluated 

(ASK and FSK) are perfectly adequate for our purpose. Looking at the requirements from 

a practical viewpoint, our power bus node must be a compact device, as it may be fitted 

into a small item of equipment on the industrial plant. It may even have to be retrofitted to 

an existing item of equipment, where available space may be even more at a premium. 

In addition, it must be remembered that a practical power bus node will require 

additional circuit elements above and beyond the modem itself: 

"A power supply, probably derived from the power line itself. For simple 

devices, this may be stand-alone, and might not even require a mains 

transformer. Devices that are more complex (perhaps already incorporating 

electronics) may have their own power supply available. 

" Some ̀ intelligence'. This will probably be a microcontroller, and so will be 

small in its own right. If a node is to be incorporated into an existing item of 

microcontroller based equipment, the main controller may have sufficient spare 

resources to handle the extra facilities. 

" Interfacing elements to the items to be controlled or monitored (which will 

obviously depend on the complexity of the device with which the node is 

associated). 
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"A power line interface. This is usually built into the modem, but in a practical 

realisation may also incorporate line conditioning and filtering elements, which 

we have already discussed. 

The authors' own preferences, from a practical engineering point of view, tend to 

lie with the TDA5051 modem, despite its (theoretically) poorer performance. The ST7537 

requires a much greater amount of support circuitry, not to mention two power supply 

voltages. The TDA5051, on the other hand, is highly integrated, easily coupled to the 

power line, and only requires a single 5V power supply. 

Before concluding this final look at the `Power Bus' concept, we must consider 

another important factor in any potential industrial application - safety and fault tolerance. 

9.3.1 The Power Bus and ; Safety Critical' , Systems 

Within the realm of control systems, the term 'safety critical' refers to instances 

where equipment must be'fail-safe'. The term fail-safe broadly implies that a system must, 

in the presence of one (or more) faults either: 

" Continue to operate normally. 

9 Shut down to a safe state in a controlled fashion. 

In either of the above examples, the equipment should ideally flag that a fault has 

occurred, in order that remedial action may be taken. 'Faults' within the context of an 

electronic system generally refer to the failure of individual components within the system, 

The author has previously carried out research on the techniques applicable to the 

design of a fault tolerant microprocessor-based controller for safety critical 

applications [60]. 
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The field of burner control, which we have used as an example of a potential 'power 

bus' application, is itself classed as a safety critical application (and indeed, this same 

subject area was chosen by the author in his previous work). 

During this work, a burner controller was developed which was designed to be 

tolerant of single faults within its circuitry. The design was 'conventional' insofar as it 

interfaced with the various peripheral I/O devices over discrete wiring. In keeping with the 

certification requirements of a national testing body for this type of equipment (British 

Gas), the design was intended to function safely in the presence of any one fault [61]. 

Since the original work was carried out, standards covering the performance and 

operation of such controllers have been expanded to encompass the use of `complex 

electronics', such as microcontrollers, in their design. The standard now lays down the 

component failure modes and test regimes that must be applied [62]. 

Should we wish to expand this to realise a practical burner control system utilising 

the 'power bus' concept to communicate with its various peripheral devices, we must apply 

similar levels of fault tolerance to the communications link. 

We must not only consider the availability of the link, under all noise conditions, 

but must also consider the reliability of the circuitry of the power bus nodes themselves. It 

is likely that we will need to have 'fall-back' scenarios - perhaps involving multiple 

communications techniques over the same power line, and redundant or fault tolerant 

hardware in the nodes. In the event of catastrophic loss of the communications link, nodes 

would have to act autonomously, and to gracefully shut down their particular part of the 

overall control scheme. 

All in all, the author considers that looking at PLC from the point of view of safety 

critical systems would offer an exciting and worthwhile line of future research. 
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That concludes our look at possible future research and experimentation work. We 

will conclude this thesis by taking an overview of developments in the power line 

communications field today, with special consideration given to the emergent field of 

high speed PLC systems. 

9.4 Hijilr Speed Power Line Communications 

The PLC techniques that we have discussed so far in this research are in line with 

the recommendations of the EN 50065 family of standards. 

EN 50065 specifies discrete operational bands within the frequency range 9 kHz to 

148.5 kHz, and in our work we have been specifically concentrating on the sub band of 

125 to 140 kHz. The modem techniques we have been using only provide relatively low 

signalling rates. Whilst these rates are lower than the theoretical limits for a given 

communications channel, defined by researchers such as Shannon [63], they are 

nevertheless quite sufficient for the types of industrial control application that we are 

considering. 

Even if we could make use of the entire bandwidth available, and the channel 

characteristics were perfect, we could not achieve signalling rates much above 

15 kilo-baud, given the bandwidths available (for the band 125 to 140 kHz). 

However, efforts are being made to establish PLC systems working at frequencies 

considerably above the 148.5 kHz frequency limit of EN 50065. As suggested above, the 

principle advantage of utilising higher frequencies is that they offer the potential for higher 

data rates. It has been suggested that such high speed PLC systems might be utilised as a 

convenient means of providing high-speed Internet access [64] by providing a link between 

a building and a central node (perhaps at a local electricity sub-station). In addition, within 

a home or building, high speed PLC has been cited as a means of achieving a LAN facility 

without the need for additional wiring. 
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9.4.1 Potential Disadvantages of High Speed PLC Systems 

Such applications have drawbacks insofar as they must utilise higher carrier 

frequencies to achieve that data rates desired. We have already discussed the undisciplined 

topology of the mains distribution network and the mains wiring from the viewpoint of the 

transmission of higher frequency signals. In this instance, we are also working at 

frequencies that coincide with other services such as radio broadcasting. This has 

implications from both the emission and immunity standpoints. The PLC signals may be 

radiated from the power lines, disturbing radio broadcast signals, or the power lines may 

act as receiving antennae, picking up radio broadcasts, which might in turn compromise 

the PLC signals. 

Work has been done [65] to evaluate the likely radiated signals from a high speed 

PLC system proposed for providing Internet connectivity. The study also worked with a 

system called 'Asymmetrical Digital Subscriber Line' (ADSL), another new means of high 

speed digital communication utilising existing copper telephone lines as the medium. 

Techniques for telephone cabling, by the nature of their intended function (the carrying of 

voice traffic), at least pay some attention to avoiding the pick-up of extraneous noise. 

Such precautions will also improve emission characteristics, even when these 

telephone cables are carrying the much higher frequency ADSL signal, and it was found 

that relatively little extraneous radiation was produced. It should be noted, though, that the 

amounts involved are not considered insignificant by various authorities, as will be 

discussed in the next section). 

The PLC system, on the other hand, was much more problematical, especially at 

points, such as at the feeds to street lighting, where the cables have to move from below 

ground to above ground level. Within a building, where the majority of the power line 

wiring will already be above ground level and unshielded, the situation could be expected 

to be worse. 
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Consequently, there is great controversy surrounding these proposals for high speed 

PLC, which we will look at in the next section. 

9.4.2 Hit'h Sneed PLC and Radio Communications 

The frequency bands specified in EN 50065 generally lie outside the bands used for 

radio communications. There are exceptions - radio time code signals are transmitted at 

frequencies within this band (for example, at 60 kHz from Rugby in the UK). In addition, 

Radio Amateurs are permitted to utilise frequencies within this band, specifically, 

137 kHz. However, the nature of radio propagation at these low frequencies (LF) means 

that high transmission powers are required, so the low power levels used in PLC are 

unlikely to cause problems to these activities, and vice-versa. Conversely, once we go 

above 148.5 kHz we are well and truly within the realm of radio communications. 

Technically, the band from 30 kHz to 300 kHz, encompassing the EN 50065 

frequencies, is referred to as'Low Frequency' (LF). The band from 300 kHz to 3 MHz is 

referred to as'Medium Frequency' (W), and the band from 3 MHz to 30 MHz is termed 

'High Frequency' (HF). However, any PLC system operating above 148.5 kHz tends to be 

referred to as'HF, so for convenience we will use this convention. 

We have already mentioned the Intellon'Chirp' system of spread spectrum, which 

occupies a bandwidth from 100 kHz to 400 kHz. Within the USA, where the system 

originated, and is utilised as a part of the CE-Bus system, MF broadcast radio stations 

begin at higher frequencies. However, in the UK and Europe, this is not the case, with 

many stations occupying this part of the frequency band. 

The typical frequency band mooted for HF PLC systems is in the 1 MHz - 30 MHz 

area. This clearly covers the entire HF radio spectrum, and the upper part of the MF 

spectrum. 
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As a result of their studies, the authors of the Smith Group report [65] concluded 

that HF PLC would be likely to produce excessive levels of RF pollution, causing 

problems or disruptions to amateur and commercial radio services. 

Such is the concern at the potential effects of HF PLC systems (and, it must be 

stated ADSL and similar technologies), that great concern is being shown by groups 

representing users of the radio spectrum. 

The Radio Society of Great Britain (RSGB), which represents the interests of 

Amateur Radio in the UK, have raised serious reservations about the introduction of HF 

PLC systems [66], citing the fact that the likely signal levels involved in HF PLC will 

exceed the levels permitted under the terms of the EMC emissions standards. 

The European Radiocommunications Committee (ERC), part of the European 

Conference of Postal and Telecommunications Administrations (CEPT), have also 

produced a report [67] which highlights the fact that the HF radio spectrum is still a greatly 

utilised resource in Europe. 

Both organisations believe that the widespread introduction of such 

communications systems will jeopardise all HF radio communication activities, both 

commercial and amateur. 

Surrounded as it is by such controversy, we will nevertheless now outline some of 

the initiatives and techniques proposed for HF PLC systems. 
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9.4.3 Some HF PLC Solutions 

The list presented here is not intended to be exhaustive, but to give the reader an 

idea of the direction in which HF PLC is being pursued by various organisations. It is 

interesting to note that some organisations such as Nortel Networks have, after great initial 

enthusiasm, already given up on the concept of HF PLC, after deciding that the idea 

doesn't have market potential. 

The `Home Plug Alliance' 

This is a non-profit making industry association consists of a number of interested 

parties from the fields of retailing, hardware and software, services, semiconductor 

technology and consumer electronics. It was formed early in the year 2000 with the stated 

aim of achieving a 10 Mbps, Ethernet class connection over a domestic mains network. 

PolvTrax 

PolyTrax Information Technology are a German company who, in association with 

Hitachi in Japan, have developed a PLC solution operating at a transmission rate of 

2.4 Mbps maximum, with a claimed average rate of 1.5 Mbps achievable even under high 

noise conditions. 

Main. net 

Main. net is an Israeli organisation offering high-speed PLC solutions. The systems 

made by Main. net use frequencies between 1 MHz and 30 MHz to send data from the 

home to the local power substation at rates of up to 2.5 Mbps. 

Local power companies in Germany are already utilising Main. net technology to 

provide Internet connections to its customers. 
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Itran 

Itran are also an Israeli company, and have developed a range of sophisticated PL 

modem devices based on advanced ASIC (Application Specific Integrated Circuit) 

techniques. 

Their devices range in speed up to a maximum of 24 Mbps. Their modems (as 

indeed do a number of other high speed PLC systems) utilise a modulation technique 

called Orthogonal Frequency Division Multiplex (OFDM). This is a rather complex 

scheme incorporating multiple signalling states (typically 64), and multiple carrier 

frequencies (the technique is also known as Multi-Carrier Modulation). A wide bandwidth 

of up to 10 MHz is required, depending on the signalling rate. 

The designers claim a high immunity to noise at all signalling rates, compared to 

other techniques such as DS spread spectrum and FSK [68]. 

The success of such systems as those described above remains to be seen, 

especially in view of the strong objections voiced from organisations associated with users 

of the radio spectrum. Their potential usefulness within the realm of industrial control 

would be down to the fact that they offer much greater communications speeds, and so 

could conceivably replace some of the higher level industrial networks, such as MAP and 

TOP. At the level of industrial control considered in this Thesis, and for the Power Bus 

concept, they would seem to offer few advantages. 

Moving away from HF PLC, a further noteworthy development is the concept of a 

local network having extended connectivity with the Internet, specifically with the 

World Wide Web (WWW). 
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9.5 The `Web Connected Appliance' 

The term `Web Connected Appliance' is often associated with quite frivolous ideas, 

for example, linking your refrigerator to the Internet in order to remotely check its 

contents! However, there is a more serious side to the concept, such as permitting the 

remote monitoring of a building for security or safety purposes. 

Consider the following scenario (quite common these days in an IT context): 

A local area network of PCs is provided with a `gateway' to the Internet. This permits the 

PCs on the local network to access the wider Internet. Conversely (in principle), users on 

the Internet would also be able to access the local network. In practice, such uncontrolled 

two way accessibility is a very bad idea. The 'gateway' that handles traffic flow between 

the Internet and the local network must provide essential security and other functions to 

prevent (possibly malicious) users on the Internet from accessing the machines on the local 

network. Equally, local users can be prevented from making unauthorised use of the 

Internet. A gateway performing this function is refereed to as a'Firewall'. 

If we now extend this idea to local control networks located within a building, 

factory or home, it is now (theoretically) possible for any equipment on the control 

network to be accessed from anywhere on the Internet. This means that users would have 

the capability to control or monitor the system remotely (in fact, from anywhere in the 

world! ). There are even greater implications for security with this approach. The firewall 

must prevent any accidental or malicious attempts to access the local control system, as 

these might have grave safety implications if the operation of the process or plant could be 

compromised. 
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The Internet utilises a family of protocols that tend to be referred to by the generic 

abbreviation TCP/IP, referring to the two most important, 'Transmission Control Protocol' 

(TCP), and Internet Protocol (IP) [69]. However, there are many others that work alongside 

these, intended for carrying out different tasks. For example, transferring files over the 

Internet uses a protocol called 'File Transfer Protocol' (FTP), E-mail uses a protocol called 

'Simple Message Transfer Protocol' (SMTP), and Web pages rely on a protocol called 

'HyperText Transfer Protocol (HTTP). 

In our previous example, the local network would need to implement the 

appropriate TCP/IP family protocols to allow the nodes on the local network to provide the 

required services over the Internet. This is not such a daunting task, given the power of 

modern microcontrollers, and indeed many example systems have been designed. 

These systems often incorporate an Ethernet adapter, and connect to the Internet 

over an existing local LAN, via a gateway. Alternatively they may include a telephone 

modem, and connect directly to an Internet Service Provider (ISP) over a standard 

telephone line. The latter arrangement would be advantageous for a standalone controller 

requiring occasional Internet connectivity for purposes such as uploading or downloading 

data. 

Even using a modest micro controller, such systems are capable of generating a 

Web page that can contain dynamic information, related to the control task, and that can be 

accessed from anywhere on the Internet [70]. 

An alternative to this arrangement is to leave the existing local control network 

unchanged, and to have the interface gateway handle the conversion between the local 

protocol and TCP/IP family protocols. Such a system could create a ̀ virtual' network, 

from the point of view of users accessing it via the Internet. A system using these 

principles has been proposed for use with the CE-Bus home automation network [71,72]. 
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The ability to monitor a process over a LAN using a PC located elsewhere in the 

building or plant is potentially useful, but most control networks, whatever technology they 

are based on, can do this. The ability to do the same from anywhere else in the world might 

be considered less important, although the standardisation provided by the use of the 

TCP/IP protocols would at least give a level of standardisation. 

That brings us to the end of the main body of this Thesis. The rest of the document 

consists of the Appendices, the Table of Figures, and the Bibliography. The Author 

sincerely hopes that you have found reading this Thesis to be worthwhile. 
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Appendix I: Detailed FTB Experimental Results 

The following data shows the bit error rates measured when fast transient burst 

pulse trains were applied to the test set-up at a range of amplitudes, polarities, and modem 

signalling rates. The tests were repeated at various modem transmit signal amplitudes. 

These results are summarised and discussed in Chapter 8 of this Thesis. 

Detailed ST7537 FTB Results-for 10 mV RMS Signal Level 

The following data shows the effect of the FTB pulse trains with a modem transmit 

signal amplitude of 10 mV RMS. 

FTB Modem Si alling Rate 
Magnitude 300 baud 600 baud 1200 baud 2400 baud 

+500 V 0.2228571 0.2611111 0.2930556 0.2726644 

-500 V 0.1914286 0.1944444 0.2020833 0.2384083 
+1 kV 1.4257143 1.3750000 1.5013889 1.4062284 
-1 kV 1.1371429 1.1583333 1.2326389 1.2591696 
+2 kV 2.3028571 2.3652778 2.4534722 2.3840830 

-2 kV 2.4371429 2.3250000 2.3145833 2.3480969 

2.5-r; 

+1000V -1000V +2000V 

FTB Test Magnitude 

O 2400 baud 

M 300 baud 
  600 baud 
Q 1200 baud 

Figure 99: Detailed ST7537 FTB Results for 10 mV RMS Signal Level 
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Detailed ST7537 FTB Results for 20 mV RMS Signal Level 

The following data shows the effect of the FTB pulse trains with a modem transmit 

signal amplitude of 20 mV RMS. 

FTB Modem Si alling Rate 
Magnitude 300 baud 600 baud 1200 baud 2400 baud 

+500 V 0.0314286 0.0277778 0.0243056 0.0283737 
-500 V 0.0400000 0.0166667 0.0194444 0.0197232 
+1 kV 0.6657143 0.6500000 0.6541667 0.6854671 

-1 kV 0.4057143 0.4250000 0.48611 11 0.5401384 
+2 kV 1.0228571 1.1166667 1.2625000 1.2806228 

-2 kV 0.7400000 0.7875000 0.8479167 0.8010381 

1.4ý 

+500V -500V +1000V -1000V +2000V 
FTB Test Magnitude 

-2000V 

0 300 baud 
  600 baud 
01200 baud 

13 2400 baud 

Figure 100: Detailed ST7537 FTB Results for 20 mV RMS Signal Level 
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Detailed ST7537 FTB Results-for 40 mV RMS Signal Level 

The following data shows the effect of the FTB pulse trains with a modem transmit 

signal amplitude of 40 mV RMS. 

FTB Modem Si nallin Rate 
Magnitude 300 baud 600 baud 1200 baud 2400 baud 

+500 V 0.0257143 0.0083333 0.0256944 0.0425606 

-500 V 0.0171429 0.0166667 0.0166667 _ 0.0089965 
+1 kV 0.0228571 0.0222222 0.0173611 0.0238754 

-1 kV 0.0114286 0.0152778 0.0291667 0.0145329 
+2 kV 0.0314286 0.0291667 0.0250000 0.0228374 

-2 kV 0.0371429 0.0138889 0.0451389 0.0290657 1 

a° 
m 
.ý ý ý 
ý 0 t 
w 
ý m 

0.05 T 

0.045- 

0.04- 

0.035 

0.03 

0.025 

0.02 

0.015 

0.01 

0.005 

0 
+500V -500V 

0300 baud 
  600 baud 
Q 1200 baud 

13 2400 baud 

+1000V -1000V +2000V -2000V 
FTB Test Magnitude 

Figure 101: Detailed ST7537 FTB Results for 40 mV RMS Signal bevel 
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Detailed ST7537 FTB Results-for 80 mV RMS Signal Level 

The following data shows the effect of the FTB pulse trains with a modem transmit 

signal amplitude of 80 mV RMS. 

FTB Modem Si nallin Rate 
Magnitude 300 baud 600 baud 1200 baud 2400 baud 

+500 V 0.0028571 0.0013889 0.0034722 0.0044983 
-500 V 0.0028571 0.0027778 0.0083333 0.0038062 
+1 kV 0.0142857 0.0041667 0.0013889 0.0093426 

-1 kV 0.0057143 0.0055556 0.0125000 0.0017301 
+2 kV 0.0114286 0.0083333 0.0055556 0.0176471 
-2 kV 0.0114286 0.0013889 0.0069444 0.0048443 

0.018- 1 

0.016 

0.014 

0.012 

0.01 

0.008 

0.006 

0.004 

0.002 

0 
+500V -500V +1000V -1000V +2000V -2000V 

FTB Test Magnitude 

0 300 baud 

  600 baud 
131200 baud 

D 2400 baud 

Figure 102: Detailed ST7537 FTB Results for 80 mV RMS Signal Level 
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Detailed TDA5051 FTB Results 10 mV RMS Signal Level 

The following data shows the effect of the FTB pulse trains with a modem transmit 

signal amplitude of 10 mV RMS. 

FTB Modem Si alling Rate 
Magnitude 300 baud 600 baud 1200 baud 2400 baud 

+500 V 1.6371429 1.6361111 1.5020979 2.0259516 
-500 V 1.7200000 1.7972222 1.5958042 2.1761246- 
+1 kV 2.3114286 2.3694444 2.3349650 2.8370242 

-1 kV 1.9571429 2.0000000 1.9440559 2.6020761 
+2 kV 3.2914286 2.4375000 2.3013986 4.3525952 
-2 kV 3.0114286 2.6861111 2.7489510 7.0221453 

X300 baud 
0600 baud 
131200 baud 

6 

+500V -500V +1000V -1000V +2000V 

FTB Test Magnitude 

Q 2400 baud 

-2000V 

Figure 103: Detailed TDA5051 FTB Results for 10 mV RMS Signal Level 
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Detailed TDA5051 FTB Results for 20 mVRMS Signal Level 

The following data shows the effect of the FTB pulse trains with a modem transmit 

signal amplitude of 20 mV RMS. 

FTB Modem Si ailing Rate 
Magnitude 300 baud 600 baud 1200 baud 2400 baud 

+500 V 0.6914286 0.5361111 0.4388889 0.3522491 

-500 V 0.8028571 0.6277778 0.4222222 0.3975779 
+1 kV 1.0885714 0.8236111 0.9576389 1.1301038 

-1 kV 1.0085714 0.7500000 0.6979167 _ 0.6570934 
+2 kV 2.3085714 2.2736111 2.2909722 2.3093426 

-2 kV 2.2828571 2.3263889 2.3520833 2.2737024 

2.5, 

+500V -500V +1000V -1000V 
FTB Test Magnitude 

+2000V -2000V 

D 300 baud 
 600 baud 
Q 1200 baud 

Q 2400 baud 

Figure 104: Detailed TDA5051 FTB Results for 20 mV RMS Signal Level 
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Detailed TDA 5051 FTB Results for 40 mV RMS Signal Level 

The following data shows the effect of the FTB pulse trains for a modem transmit 

signal amplitude of 40 mV RMS. 

FTB Modem Sig nallin Rate 
Magnitude 300 baud 600 baud 1200 baud 2400 baud 

+500 V 0.4657143 0.3791667 0.2965278 0.2494810 

-500 V 0.2571429 0.4555556 0.2826389 0.2128028 
+1 kV 0.5371429 0.7597222 0.7013889 0.5972318 

-1 kV 0.7800000 0.6291667 0.5076389 0.4166090 

+2 kV 1.9342857 1.9583333 2.0180556 1.8830450 

-2 kV 1.9657143 2.0069444 2.0145833 1.9190311 

2.511 _ 

+500V -500V +1000V -1000V +2000V 

FTB Test Magnitude 
-2000V 

D 300 baud 
  600 baud 
Q 1200 baud 

Q 2400 baud 

Figure 105: Detailed TDA5051 FTB Results for 40 mV RMS Signal Level 

243 



Detailed TDA 5051 FTB Resultsq 80 mV RMS Sienal Level 

The following data shows the effect of the FTB pulse trains for a modem transmit 

signal amplitude of 80 mV RMS. 

FTB Modem Si nallin Rate 
Magnitude 300 baud 600 baud 1200 baud 2400 baud 

+500 V 0.3228571 0.2263889 0.1930556 0.1750865 

-500 V 0.3171429 0.2569444 0.2520833 0.2183391 
+1 kV 0.6114286 0.5083333 0.4680556 0.4249135 

-1 kV 0.6028571 0.4083333 0.3888889 0.3716263 
+2 kV 1.6600000 1.7375000 1.8604167 1.6868512 

-2 kV 1.7685714 1.9277778 1.8437500 1.7307958 

2, 

+500V -500V +1000V -1000V +2000V 

FTB Test Magnitude 
-2000V 

D 300 baud 
  600 baud 
O 1200 baud 
Q 2400 baud 

Figure 106: Detailed TDA5051 FTB Results for 80 mV RMS Signal Level 
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Appendix 2: BER Tester Assembly Code Firmware 

BER test. ASM 

TITLE "PLC Modem Bit-Error-Rate Test Set" 

; **, t, r, r+r, t, t, r, t, t+t, r*, ttt, r, t, ttr, ttr, týt, t*t+rtr, týr, t, r, t, r, r*, º, r, r*, r, º, rý, r, ra, r, r, r, rrttt, tý, t, rrtr, tttttt+s, r, r, t" 

Processor 16C84 

Radix DEC 

EXPAND 

include "16Cxx. h" 

; ý, t, t, tý**, tý*, tý, tt, rtý, r, r, rtrr, º, trfr, t, t, t, r*ft, týt, týtýt*, tt, t*it*ý, týý, ºý, t*t, rt, trt, tt*, ttrt+ttýt, r, t*t, r" 

rtccDivider set Ox9f ; divide value for 4800 baud 

NOLIST 

ttttt++tt+tt+ttt++++t+ttt+tt+tttt+++tttttt++++ttttttt+t++tttt+ttt+tttttt+t+r+t 

Pin Assignements 

ttt+tt++tt++tt+ttttttttttttttt++tt+t+++tt+++ttttt+t++t+t+++t+t++++++tt+++++tt+ 

#define TX yortb, 7 ; RS232 transmit pin 

#define BERout jortb, 2 ; BER bit stream Tx output pin 

#define BERin Jortb, 3 ; BER bit stream Rx input pin 

other i/o pins are used as follows: 

PortB, bits 4,5,6 - delay setting switch, bits 0,1,2 

PortA, bits 0,1,2 - BER test baud rate setting, bits 0,1,2 

; these bit locations 
#define bits torel 
#define bitstore2 

#define bitstore3 

#define bitstore4 

#define bitstore5 

are used to store the BER output state used by the delay counters 
GP bits, 0 

GP bits, l 

OP bits, 2 

GP bits, 3 

GPbits, 4 

#define 
_txmtProgress 

c3P bits, 6 ; flags if RS232 transmission is under way 
#define StartBit GP bits,? ; defines if start bit sent yet 

ý####*##*#*##tttt#t#t#t#####*##tt###r#"t#t####t###r##t#t###t######tr######t###t 

LIST 

; file register locations used within the 16F84 

CBLOCK OxOC 

TxReg 

GP bits 

BitCount 

SaveWReg 

SaveStatus 

tempi, temp2 

RandIi, RandLo 

baud 

baud rat 

delayval 

BERcntl, BERcnth 

start address of general purpose register block 

RS232 transmit data holding/shift register 

array of general purpose flag registers (defined later) 
bit counter for RS232 transmission routine 
temporary holding register for WREG during INTERRUPT 

temporary holding register for STATUS register during INTERRUPT 

temporary locations 

random number seeds 

baud rate divider for BER bitstream 

current ber baud rate divider value 

1-4800,2-2400,3-1200,4-600,5-300 

current delay value after outputting data, before sampling input 

1=208ps, 2=417ps, 3-635ps, 4=833ps, 5-1042ps (max) 

counter for 1000 bits test sample 
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; rr*******r*****rr*r*rrr****r***rr*rrr**********rrrrr*rr*r*r****r*** 

** the next locations hold the various test bit and error counts ** 

rrrrrrrrrrr*rrrrrrrrrrrr*rr*rr*rrrrrrr***rrrrrrrrrr*rrr**rrrrrrrrrr 

10ERR1 ; LSB of the count of low bit errors (Tx=O, Rx=l) 

loERRh ; MSB of the count of low bit errors (Tx=O, Rx=1) 

h1ERR1 ; LSB of the count of high bit errors (Tx=1, Rx=0) 

hiERRh ; MSB of the count of high bit errors (Tx=l, Rx=O) 

loBITl ; LSB of the count of low bits 

loBITh ; MSB of the count of low bits 

hiBITl ; LSB of the count of high bits 

hiBITh ; MSB of the count of high bits 

rrtrttttttttttttttttttttttttttttttttttttttaattttttttatttttttttttttttttttttttttttttattt 

these locations hold a mirror of the above data, used during the transmission of ** 

** the data to the PC host, whilst a new set of results are concurrently obtained ** 

rraraa: r: rattraaattrataaaattaattatttaarttrttttatatattttttttttttaattaatttartttattttttta 

loERRlx, loERRhx, hiERRlx, hiERRhx, loBITlx, loBIThx, hiBlTlx, hiBlThx 

** Tx-Rx delay counters, dynamically assigned by the software ** 

######t#*#tt#t*##tt#*##**#*#**##**#**#**#####*******#***#####t#* 

delayl, delay2, delay3, delays, delay5 

ende end of code block 

; ** Firstly the reset and interrupt vectors ** 

ORG ResetVector 

goto Start 

ORG 
_IntVector 

goto Interrupt 

*# Hardware & software initialisation ** 

*********#****##***##*#*#*##*###*#####*# 

Start 

bsf 
_rpo 

bcf 
_rpl 

; first select register page 1 

; ready to set the characteristics of I/O port A 

movlw b'11111111' 

movwf trisa ; set port A as all inputs 

; (bits 0-2 are used to select the BER test baud rate) 

; (bits 0-2 are used to select the BER test baud rate) 

; ready to set the characteristics of I/O port B 

MOVLW 8'01111011'. 

MOVWF trisb ; set port B As all inputs except bit 2 (TX) L7 (BERout) 

; (bits 4-6 are used to select the BER TX-Rx delay) 

246 



; ready to set the OPTION register of the PIC 

HOVLW B'10010000' , bit 7-1 - port B pullups are disabled 

bit 6-0 - interrupt on falling of R80 pin (not used) 

bit 5-0 - RTCC signal source is internal 

bit 4-1 - RTCC increments on high-low transition of RA4 

(irrelevant since source is internal) 

bit 3=0 - prescaler is assigned to RTCC 

bit 2=0 \ 

bit 1=0 - prescaler is set to 1: 2 (RTCC) 

bit 0=0 / 

MOVWF option 

BCF 
_rp0 

; finished with page 1, so restore page 0 

bsf TX ; initially set the TX output pin high 

bsf BERout ;& the same for the BER test output 

moviw OxFF 

movwf delayl 

movwf delay2 

movwf delay3 

movwf delay4 

movwf delay5 

moviw rtccDivider 

movwf rtcc 

moviw 0x30 

movwf RandHi 

moviw 0x45 

movwf RandLo 

call ClrCnt 

; initialise the delay counters to their idle values 

load the RTCC divider value 

; initialise the random number generator seeds 

set up the counters & delay values 
caii set. 4 u; and the BER test baud rate 

bsf rtie 

bsf gie ; finally enable the interrupts ready to start 

** MAIN PROGRAM LOOP ** 

wait for the end of a BER test cycle 

Loop 
Call Random ; keep stirring the random no. generator whilst waiting 

movf BERcnth, w ; check if the MSB of the 1000-bit counter is zero 

btfss z 

goto Loop ; carry on looping if not 

movf BERcntl, w ; else test the LSB 

btfss z 

goto Loop ; carry on looping if not 
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ý*#t**##tt****#*t##tt**#*t##ttt#*t#*tttt*t***tt*#tf*t#*******t***#*** 

** count has reached zero, so capture data and start another run ** 

*#*#t*##tt#*#*##t##tttttttttttt#ttt##ttt#t***tttttttttttttt*#t#t#t#* 

transfer the various data bytes to their mirrors 

movf lOERR1, w 

movwf 1oERRlx 

movf loERRh, w 

movwf 1oERRhx 

movf hiERRl, w 

movwf h1ERRix 

movf hiERRh, w 

movwf hiERRhx 

movf loBlTl, w 

movwf lOBITlx 

movf loBITh, w 

movwf loBIThx 

movf hiBlTl, w 

movwf hiBITlx 

movf hiBITh, w 

movwf hiBIThx 

** now reset the counters for the next run ** 

(also update delay value and baud rate if necessary) 

call ClrCnt 

** now send the saved data to the host PC ** 

movf loBIThx, w MSB total number of low bits in run 
call sendch send it 

movf loBlTlx, w ; LSB total number of low bits in run 
call sendch ; and again 

movf hiBIThx, w MSB total number of high bits in run 

call sendch ; send it 

movf hiBlTlx, w ; LSB total number of high bits in run 

call sendch ; and again 

movf loERRhx, w ; MSB total number of low bit errors in run 

call sendch ; send it 

movf loERRlx, w ; LSB total number of low bit errors in run 

call sendch ; and again 

movf hiERRhx, w ; MSB total number of high bit errors in run 

call sendch ; send it 

movf hiERRlx, w ; LSB total number of high bit errors in run 

call sendch ; and again 
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send a CR/LF to delimit each line of data 

movlw 13 

call sendch ; send a CR 

mavlw 10 

call sendch ; and an LF 

; (NOTE: CRLF should never occur in the normal data stream) 

goto Loop ; carry on until the end of the next run 

*" send a byte value to the serial port ** 

***#******#*##************#*************** 

sendch 

movwf TxReg 

call PutChar ; send character 

sendchl ; now wait for the transmission to finish 

btfss 
_txmtProgress 

return ; return if finished 

call Random ; keep stirring that seed! 

goto sendchl ; and continue looping 

** Reset the various count parameters prior to a new run ** 

ClrCnt 

movies 03 

movwf BERcnth 

movlw 232 

movwf BERcntl ; for a total bit count of 1000 
; reset the Various counters 
cirf 1oERR1 

cirf loERRh 

cirf h1ERR1 

cirf hiERRh 

cirf loBIT] 

cirf loBITh 

cirf hiBIT1 

cirf hiBITh 

** get the baud rate value from the switch (valid input range 0-4) ** 

& convert it to a binary division ratio ** 

incf corta, w ; get switch value +1 

andlw bt00000111' ; mask the unused bits 

movwf tempi ;& save the value 

; now test if >5 

sublw 5; 5 is maximum value (300 baud) 

btfsc 
_carry 

goto clrcnt0 ; carry on if the value is <-5 

movies 5 else set to the default maximum value 

movwf templ ; re-save the new value 
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; convert the value to a binary divisor 1-1,2-2,3=4,4=8,5=16 

clrcnto 

clrf tenp2 

bsf carry ; carry will shift into bit 0 

clrcntl 

rlf temp2, f ; shift data along 

decfsz templ, f 

goto clrcntl ; loop 1-5 times according to original value 

tempt now holds the binary divider value 

movf temp2, w 

movwf baud rat ; save the value 

** get the Tx-Rx delay value from the switch (valid input range 0-4) ** 

movf 
_portb, 

w 

andiw b'01110000' 

movwf tempi 

rrf templ, f 

rrf templ, f 

rrf templ, f 

rrf templ, f 

incf templ, w 

movwf delayval 

; now test if >5 

sublw 5 

btfsc carry 
return 

moviw 5 

movwf delayval 

return 

(bits 4,5,6 are the switch inputs) 

mask the unused bits 

place the data in temporary store 

then 

shift 

it along 

into bits 0-2 

increment it & place it in w 

; then save it 

;5 is maximum delay value (c. lms) 

exit if ok (<-5) 

else reset to the default value 
and save 
before returning 

** routine to set the BER (i. e. pseudorandom bit stream) baud rate ** 

setBAUD 

movf baud rat, w ; get current value 

movwf baud ; put in the prescaler 

return 

** the following routines are utilised by the counter ** 

** routines to update the various bit and error counters ** 

**#**##*****#****#********#**********##*##****#*******##*## 

; routine to increment the high bit counter 

incHBIT 

moviw 1 

addwf hiBIT1, f ; increment no. of high bits in run 

btfsc carry 
incf hiBlTh, f 

return 
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; routine to increment the high bit error counter 

incHERR 

movlw 1 

addwf hiERRh, f ; bit was low, so increment error count 

btfsc 
_carry 

incf hiERRh, f ; process carry bit if applicable 

return 

; routine to increment the low bit counter 

incLBIT 

movlw I 

addwf loBITl, f ; increment no. of low bits in run 

btfsc 
_carry 

incf loBITh, f 

return 

; routine to increment the low bit error counter 

incLERR 

movlw 1 

addwf loERR1, f ; bit was high, so increment error count 

btfsc 
_carry 

incf loERRh, f 

return 

INTERRUPT SERVICE ROUTINE - called solely by the RTCC ** 

###**#*#*#*tt##t**##**##t##t##*tttttt#ttt#tttttttttt##t*# 

Interrupt 

bt£ss 
_rtif 

retfie ; another spurious interrupt, simply return i enable OIE 

Save Status On INT : WREG & STATUS Regs 

movwf SaveWReg 

swapf 
_status, 

w ; affects no STATUS bits : Only way OUT to save STATUS 
Reg ????? 

movwf SaveStatus 

movlw rtccDivider 

movwf 
_rtcc 

; RESET RTCC 

*****+******+**+**++***++***++++********************************** 

** test if output transmission under way (always at 4800 baudl) ** 

test tx 

btfsc 
_txmtProgress 

call 
_TxmtNextBit 

Txmt Next Bit 
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** next process the delay counters (those having a value of 255 are on ** 

** standby, and ignored), others are decremented and processed if zero ** 

; *********t***************tt*ttttt********#*t**t*t**ttt***tt***t*ttttt*t** 

test-dl ; test delay counter #1 

incfsz delayl, w ; skip if not in use 

call dec dl ; else decrement counter 

test_d2 ; test delay counter #2 

incfsz delay2, w ; skip if not in use 

call dee d2 ; else decrement counter 

test-d3 ; test delay counter #3 

incfsz delay3, w ; skip if not in use 

call dea d3 ; else decrement counter 

test_44 ; test delay counter #4 

incfsz delay4, w ; skip if not in use 

call dec d4 ; else decrement counter 

test d5 ; test delay counter #5 

incfsz delay5, w ; skip if not in use 

call dec d5 ; else decrement counter 

goto de _dend ; none are in use, so carry on 

*** decrement those delay counters in use ** 
****#**#**#***####****####*##*#*##*####*###* 

dec dl ; decrement delay counter #1 
decfsz delayl, f 

return 

else counter 1 is zero, 

decf delayl, f 

btfss bitstorel 

goto outLO1 

; not yet zero, so carry on 
so process the results 

now set to 255, so counter available for re-use 
test the stored state for this counter 
if stored state is low 

; else output state was high 

call incHBIT 

btfsc BERin 

return 

call incHERR 

return 

increment high bit count 

now test input pin, 

carry on if input high i. e. ok 

else increment high bit error count 

; else output state was low 

outLO1 call incLBIT ; increment low bit count 

btfss BERin ; test input pin 

return ; carry on if input is low 

call incLERR ; else increment low bit error count 

return 

dec_d2 ; decrement delay counter #2 

decfsz delay2, f 

return ; not yet zero, so carry on 
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else counter 2 is zero, so process the results 

deaf delay2, f ; now set to 255, so counter available for re-use 

btfss bitstore2 

goto outLO2 

; else output state was high 

call incHBIT increment high bit count 

btfsc BERin ; now test input pin, 

return ; carry on if input high i. e. ok 

call incHERR ; else increment high bit error count 

return 

; else output state was low 

outLO2 call incLBIT ; increment low bit count 

btfss BERin ; test input pin 

return ; carry on if input is low 

call incLERR ; else increment low bit error count 

return 

dec d3 ; decrement delay counter #3 

decfsz delay3, f 

return ; not yet zero, so carry on 
else counter 3 is zero, so process the results 

decf delay3, f ; now set to 255, so counter available for re-use 

btfss bitstore3 

goto outLO3 

; else output state was high 

call incHBIT ; increment high bit count 
btfsc BERin ; now test input pin, 
return ; carry on if input high i. e. ok 
call incHERR ; else increment high bit error count 
return 

; else output state was low 

outLO3 call incLBIT ; increment low bit count 
btfss BERin ; test input pin 
return ; carry on if input is low 

call incLERR ; else increment low bit error count 
return 

dec_d4 ; decrement delay counter #4 

decfsz delay4, f 

return ; not yet zero, so carry on 

else counter 4 is zero, so process the results 

decf delay4, f ; now set to 255, so counter available for re-use 

btfss bitstore4 

goto outLO4 

; else output state was high 

call incHBIT ; increment high bit count 

btfsc BERin ; now test input pin, 

return ; carry on if input high i. e. ok 

call incHERR ; else increment high bit error count 

return 
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; else output state was low 

outL04 call incLBIT ; increment low bit count 

btfss BERin ; test input pin 

return ; carry on if input is low 

call incLEPR ; else increment low bit error count 

return 

dec d5 ; decrement delay counter #5 

decfsz delay5, f 

return ; not yet zero, so carry on 

else counter 5 is zero, so process the results 

decf delay5, f ; now set to 255, so counter available for re-use 

btfss bitstore5 

goto outLO5 

; else output state was high 

call incHBIT ; increment high bit count 

btfse BERin ; now test input pin, 

return ; carry on if input high i. e. ok 

call incHERR ; else increment high bit error count 

return 

; else output state was low 

outLOS call incLBIT ; increment low bit count 

btfss BERin ; test input pin 

return ; carry on if input is low 

call incLERR ; else increment low bit error count 
return 

; (unified exit point for these routines) 
deo dend 

; **t**#**tt##tt*t**t*#t###itt*#t###*###t#tt##t#t*t*#tt**tt#ttt##****t#####*##t#*t#***t 

** Test the BER baud rate divider to see if it is time to alter the BER output bit "# 
; **tt#####**#*t#tt*#######t#t#tt#tt*tt*******#**####*######*t#**#t####*t**#t#t#*##*#*# 

BERtest 

decf baud, f 

btfss z; if result zero then send next bit 

goto setdelend ; carry on if not 

** decrement the 1000 bit counter ** 

movlw 1 

subwf BERcntl, f 

btfss 
_carry 

; test if LSB of count has passed through zero 

decf BERcnth, f ; if so, decrement the MSB count 
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; º******************************* 

** set up the next output bit ** 

******************************** 

call setBAtJD ; reset the baud rate counter 

call Random ; get the next random number 

btfss RandLo, l ; bit 1 is used as the BER data, skip if set 

bcf BERout ; else set BER output low 

btfsC RandLo, l ; skip if clear 

bsf BERout ; else set the BER output high 

** store the current BER output value and set up a delay counter ** 

******************************************************************* 

; first find a free counter (with a value of 255) 

setdell 

incfsz delayl, w ; skip if counter not in use 

goto setdel2 ; else try the next counter 

counter 1 is available, so use it! 

movf delayval, w ; delay count, from input switch 

movwf delayl ; save value 
bcf bitstorel 

btfsc RandLo, l 

bsf bitstorel ; save the BER bit state 
goto setdelend ; finished 

setdel2 

incfaz delay2, w 
goto setdel3 

counter 2 is available, 

movf delayval, w 
movwf delay2 

bcf bitstore2 

btfsc RandLo, l 

bsf bitstore2 

goto setdelend 

setdel3 

; skip if counter not in use 
; else try the next counter 

30 use it! 

delay count, from input switch 
save value 

save the EER bit state 
finished 

incfsz delay3, w ; skip if counter not in use 

goto setdel4 ; else try the next counter 

counter 3 is available, so use itl 

movf delayval, w ; delay count, from input switch 

movwf delay3 ; save value 

bcf bitstore3 

btfsc RandLo, 1 

bsf bitstore3 ; save the BER bit state 

goto setdelend 

255 



setdal4 

incfsz delay4, w ; skip if counter not in use 

goto setdel5 ; else try the next counter 

counter 4 is available, so use it? 

movf delayval, w ; delay count, from input switch 

movwf delay4 ; save value 

bcf bitstore4 

btfsc RandLo, l 

bsf bitstore4 ; save the BER bit state 

goto setdelend 

setdel5 

incfsz delay5, w ; skip if counter not in use 

goto setdelend ; (should never happen in practicelt! ) 

counter 5 is available, so use itl 

movf delayval, w ; delay count, from input switch 

movwf delays ; save value 

bcf bitstore5 

btfsc RandLo, l 

bsf bitstore5 ; save the BER bit state 

; unified exit point for this routine 

setdelend 

** end of the interrupt routine ** 

Restorelntstatus: 

olrwdt 

awapf Savestatus, w 
movwf 

_status ; restore STATUS Reg 
awapf SaveWReg, f ; save WREG 

awapf SaveWReg, w ; restore WREG 
bcf 

_rtif ; clear the int flag 

retfie 

** asynchronous transmit routine ** 

; *********************************** 

Function to transmit A Byte Of Data 

Before calling this routine, load the Byte to be transmitted into TxReg 

PutChar: 

bsf 
_txmtProgress 

; flag transmission in progress 

bsf 
_StartBit 

; these flags are used to indicate when start 

movlw 9 

movwf BitCount ; total bit count-1 + two stop bits 

return 
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rrtrrºrºrtrtrrtrtrrtrtttrtrrttttttrrrrtrrrrtt: rttttrtrttrtttrttrrrrtttttrrtttttttttrtttttt 

7 Internal Subroutine entered from Interrupt Service Routine when transmission in progress 

rtttrtrtrrrrrrrtttºº+rarrtttrrºttttrrrr: rtttrrtrrttttrtttrttrttttttttrtttttttttttttttttttt 

TxmtNextHit 

btfss StartBit ; first test if at start of transmission? 

goto next ; if not, then carry on 

; else at start, so send start bit 

bcf TX ; the start bit is low 

bcf 
_StartBit 

; flag that start bit has now been sent 

return ; carry on 

; sending body of data 

next 

movf BitCount, f ; test if finished data transmission? 

btfse 
_z 

; count will be 0 if so 

goto 
_finished 

; yes, finished 

decf BitCount, f ; else just decrement the counter 

; and transmit the next bit 

_NextTxmtBit 
bsf 

_carry 
rrf TxReg, f 

btfss 
_carry 

bcf TX 

btfsc carry 

baf TX 

return 

_finished 
bcf 

return 

ready for sending stop bits 

shift data right, into carry 

if the data is high, then skip 

else set the Tx output low 

if the data is low, then skip 

else set the Tx output high 

then carry on 

txmtProgress ; flag the end of the transmission 

and carry on 

RANDOM - Generates a pseudorandom number. Works best if called from a loop so that the * 
value of its workspace variable (consisting of lowB and hMB) is constantly stirred. 

Random movf 

iorwf 

btfsc 

comf 

movlw 

btfsc 

xorwf 

btfsc 

xorwf 

btfsc 

xorwf 

RandEi, w ; First, ensure that hiB and lowB aren't 
RandLo, w ; all zeros. If they are, NOT hiB to FFh. 

z; Otherwise, leave hiB and lowB as is. 

RandHi, f 

#80h ; We want to XOR hiB. 7, hiB. 6, hiß. 4 

RandHi, 6 ; and lowB. 3 together in W. Rather than 

RandHi, f ; try to line up these bits, we just 

RandHi, 4 ; check to see whether a bit is a 1. If it 

RandHi, f ; is, XOR 80h into hiB. If it isn't, 

RandLo, 3 ; do nothing. When we're done, the 

RandHi, f ; XOR of the 4 bits will be in hiB. 7. 

rlf RandHi, w ; Move hiB. 7 into carry. 

rlf RandLo, f ; Rotate c into 1owB. 0, lowB. 7 into c. 

rlf RandHi, f ; Rotate c into hiB. O. 

return 

end 
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Appendix 3: Most Com, 

PROGRAM TEST BER ; 

uses 

Dos, 

Crt, 

Async4 ; 

VAR 

c 

cnum, cnuml 

TestPort 

TestRate 

TestParity 

TestWordLen 

TestStopBits 

CurrRate 

CurrParity 

CurrWordLen 

CurrStopBits 

DelayCount 

YorN 

CharMask 

State 

Open 

tHour, 

sample 

char 

byte; 

INTEGER 

aBpsRate 

aParitySetting 

byte 

byte 

aBpsRate ; 

aParitySetting 

byte 

byte 

INTEGER ; 

CHAR 

byte 

(MenuMode, 

titer Lo DQ rin, e Software Listin 

TermMode, Exitting) ; 
: BOOLEAN ; 

tMinute, tSecond, tHundredth : word; 
: integer; (* counter for time stamping 

OP file text; (* text output file *) 

op data : integer; (* data to be stored *) 

PROCEDURE OpenPort ; 

BEGIN { OpenPort } 

IF NOT Async Open( TestPort, 

TestRate, 

TestParity, 

TestWordLen, 

TestStopBits ) THEN BEGIN 

WRITELN('**ERROR: Async Open failed') 

Open :s FALSE 

END 

ELSE 

Open TRUE 

END { OpenPort }; 

*ý 
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PROCEDURE TermTest ; 

Function Get Data : integer; (* get and return a 2-byte value 

var temp : integer; 

begin 

temp :-0, 
repeat until Async Buffer Check(c); 

temp :- ord(c) * 256; 

repeat until Async Buffer Check(s); 

Get Data := temp + ord(c) 

end; 

BEGIN ( TermTest ) 

sample: -10; (* initialise timestamp counter *) 

.ý 

IF Open THEN BEGIN 

assign(OP file, 'DATAFILE. TXT'); 

Rewrite(OP file); 

WRITELN('Data Logging begins now... (Press <FlO> to terminate.. )'); 

State :s TermMode 

REPEAT 

repeat (* first get CRLF delimiter *) 

repeat until Async Buffer Check(c); 

cnuml: =cnum; 

cnum: -ord(c); 

until (cnum1a13) and (cnum=10); 
OP data :- get data; 
write(OP data, ' '); 

write(OP file, OP data, ', '); 

OP data :- get data; 

write(OP data, ' '); 

write(OP file, OP data, ', '); 

OP data :- get data; 

write(OP data, ' '); 

write(OP file, OP data, ', '); 

OP data := get data; 

write(OP data); 

write (OP file, OP data); 

(* add time stamp to data every 10 samples*) 

if sample -0 then 

begin 

GetTime(tHour, tMinute, tSecond, tHundredth); 

write(' - ', tHour, ': ', tMinute, ': ', tSecond); 

write(OP file, ' - ', thour, ': ', tMinute, '; ', tSecond); 

sample :m 10 

end; 

sample pred(sample); (* decrement sample *) 

writeln; 

writeln(OP file); 
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IF KeyPressed THEN BEGIN 

c :e ReadKey ; 

IF (c - #0) THEN { handle IBM Extended Ascii codes } 

c :- ReadKey ;{ get the rest of the extended code 

if c= #68 then State: =MenuMode; 

END 

END 

UNTIL State - MenuMode 

END 

ELSE BEGIN 

WRITELN( 'You must open the port first! ' ) 

END; 

END ( TermTest ); 

BEGIN ( TtyDG } 

ClrScr ; 

WRITELN( '* Data Logging Software for BER Tester *' ); 

Open false ; 

DelayCount :=1; 

TestPort 2; 

TestRate bps9800 ; 

TestWordLen 8; 

TestStopBits 1 

TestParity NoParity ; 
CharMask :_ $FF ; 

REPEAT 

State :- MenuMode 

OpenPort; 

WRITE( 'R (un, Q(uit 

REPEAT 

c :s upcase( ReadKey) 

UNTIL c IN ('R', 'Q'] 

); WRITELN( C 

CASE C OF 

'R' TermTest 

'Q' State Exitting 

END ;( CASE } 

UNTIL State - Exitting 

WRITELN( 'Closing async' 

Async Close; 

close (01? 
-file) 

END ( TTYDG ) 

BEGIN 

} 
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Appendix 4: Published Papers 

Power Line Carrier Systems 
For Industrial Control Applications 

Dr John E. Newbury, The Open University 
Manchester, M21 9UN, UK 

E-mail: J. E. Newbury@open. ac. uk 

Kerry J. Morris, Elcontrol Ltd. 
Weymouth, Dorset, DT4 9DW, UK 

E-mail: kerry@elcontrol. demon. co. uk 

Abstract - This paper addresses the potential 
4applications of power-line-carrier (PLC) 

communications technology within the field of 
industrial plant/equipment control. The special 
needs and requirements for this application (in 
terms of such factors as system integrity and 
response times) will be considered in 

comparison with those for other types of PLC 

application. Existing PLC technologies will be 
discussed and their suitability (or otherwise) 
for this application considered. 

I. Introduction 

The low voltage distribution line, operating at 
230V within the United Kingdom, potentially has 
a dual function. Firstly, as a carrier of electrical 
energy, operating at 230V and 50Hz, and 
secondly as a communications medium. The 
concept of using the power line for 
communications or control purposes has been 
with us for some time. By the 1940's, practical 
PLC systems were already in use over the high 
voltage distribution network [1], and during the 
same period, proposals were even made to utilise 
PLC to provide a telephone service to domestic 

users in remote areas [2]. In recent years, 
especially with the growth of interest in concepts 
such as 'home automation' moves have been made 
to define international standards relating to PLC. 

This form of communication has potential 
coverage nation-wide, into both industrial, 
commercial and residential buildings throughout 
the UK, although in this instance we are 
concerned only with the in-building/on-site 
context. 

However, there are disadvantages with this form 
of transmission medium. Unlike other media used 
for the transmission of data, which have well 
defined characteristics for bandwidth, 
characteristic impedance and potential noise 
levels, PLC is very undeterministic. 

PE-390-PWRD-0-11-1998 A paper recommended and 
approved by the IEEE Power System Communications 
Committee of the IEEE Power Engineering Society for 
publication in the IEEE Transactions on Power Delivery. 
Manuscript submitted July 20,1998; made available for 
printing December 2,1998. 

Even allowing for these disadvantages, PLC as a 
means of communication into buildings, both 
industrial and residential, have many advantages, 
as identified by Formby and Adams [3]. 

These problems are being addressed in the 
European Economic Commission's Committee for 
Electrotechnical Standardisation' (CENELEC) 
standard EN50065. 
This standard provides the key characteristics for 
transmission and reception over the low voltage 
distribution line, in the frequency band 3KHz to 
148.5KHz. The band 3KHz to 95KHz is reserved 
for communications by the utilities (e. g. meter 
reading or load control), and the band 95KHz to 
148.5KHz for 'consumer' communications. In 
addition, the standard endeavours to tie-down 
other key characteristics of the power line, 
including impedance variation, signal disturbance 
and immunity to signal disturbance, modulation 
systems and protocols, and also to specify filters 
to condition the line, all with a view to facilitating 
efficient, seamless communication. Specifying all 
of these parameters is a quite formidable task, 
however good progress is being made. 

II. A 'Typical' Industrial Control Scenario 

An area in which PLC technology may prove to 
be of value is that of industrial process control. 
By this, we mean the 'real-time' control of an item 
of plant, machinery, or process. At its most grand, 
this may cover an entire industrial complex, but 
we are in this instance considering the control of a 
single 'stand-alone' installation (which may in 
turn be part of an overall distributed control 
system). The advantages which PLC might offer 
over conventional solutions will be discussed in 
subsequent sections. 

Whilst this concept falls broadly under the 
heading of a 'Fieldbus', it is the intention of this 
paper to concentrate solely on the use and 
suitability (or otherwise) of the PLC technologies 
currently available, and not to dwell on other 
types of fieldbus physical layers. 

Consider a typical industrial control scenario -a 
large burner installation used as a source of 
process heat for an industrial site. Physically, 
such plant can be quite large (at least as large as a 
medium-sized house). 
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Fig. 1. Typical control application (simplified) 

Conventionally, such an installation may have a 
local control panel, dedicated to the control of the 

particular installation, which may in turn link into 

a distributed control system for the entire site. In 
this paper we are primarily interested in 
considering the local control functions of the 
system. 

There is likely to be a cabinet, containing the 
'intelligence' of the control system - 
Programmable Logic Controllers, relays, 
indicators, operator control switches, and other 
electronic systems. The control panel will be 
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operating a variety of valves and actuators on the 
plant, and likewise be monitoring the input from a 
range of sensors. Conventionally, all of these will 
be hard-wired to the control cabinet using a 
myriad of individual cables (Fig. 1). 
In the example shown, most of the outputs from 
the control system are mains operated, as indeed 
are many of the sensors. Consider the benefits if 
all of this individual cabling could be replaced 
with a simple 'power-bus' running around the 
plant, distributing power and sending/receiving 
commands and data to the various plant inputs 
and outputs (Fig. 2). In addition to the much 
simplified initial wiring, modifications and 
upgrades would be facilitated. 
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Fig. 2. Arrangement using 'Power Bus' 
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III. Practical Considerations 

Much has been written of the unpredictable nature 
of the mains distribution network [4,5,6], and it 
is extremely difficult to make any generalisations 
regarding the characteristics likely to be 
experienced on any one installation. 

In the context under consideration in this paper, 
we are at a slight advantage, in so far as the extent 
of the PLC network is known (i. e. the size of the 
plant), and the PLC environment is controllable 
(i. e. the equipment to be connected to it is 
known). The feed to the 'power-bus' (via the 
control cabinet) can easily be provided with in- 
line filters or stabilisation networks. Likewise, the 
various plant inputs and outputs, since they will 
be purpose built for the application, will be 
manufactured with predictable PLC 
characteristics. This may appear to make the 
design of such a system somewhat easier, but 
there are still many factors which must be 
considered for the safe and reliable operation of 
the plant. Because of the effective isolation of the 
envisaged 'power bus' from the rest of the 
distribution network, it can be argued that we do 
not necessarily have to conform to the 
recommendations of the international standards 
such as EN50065-1 [7], although, in truth, it 
would be unwise not to do so, and this is the approach which we will take in this paper. 

In addition, in view of the 'safety critical' aspects 
of the type of application under consideration, 
regard must be given to the safety aspects of the 
PLC system, both in terms of the resilience of the 
communications network and the fault-tolerance 
of the hardware employed, particularly in view of 
the reliance on microprocessors/microcontrollers 
and other LSI or VLSI parts [8]. 

IV. Typical PLC Networks 

It would next be prudent to consider some of the 
requirements for the industrial control PLC 
network, as against some other typical 
applications of PLC: 

Let us first define some parameters to use in these 
comparisons: 

Extent: An indication of the likely physical area 
to be covered by the communications network. 

Response Time: How quickly can a transmission 
be sent from node to node on the network. This 
will depend on such factors as transmission speed, 
the number of nodes in service, and the protocol 
involved, plus of course the response 
requirements of the application. 

Worst Case Response Time: The maximum delay, 
above and beyond the typical response time, that 
can be tolerated in a particular application (caused 
by re-transmissions due to line noise etc. ) 

Implications in the Event of Link Loss: How 
should the network behave if there is a breakdown 
of the communications link itself. 

Implication of Node Loss: How should the 
network behave if one of the nodes is lost 
(through being disconnected or becoming faulty). 

Data Security Implications: Is it necessary for the 
link to be secure (i. e. incapable of being 
monitored by third parties), and how necessary is 
it to avoid data corruption from interference, 
either caused deliberately, (due to malicious 
tampering), or as a result of such factors as line 
noise. 

Now let us look at specific applications: 

A) Automatic Meter Reading 

Extent: Possibly very wide, but most likely to be 
between a local electricity sub-station and the 
consumers served by it. Data would most likely 
be sent onwards from the substation by other 
network systems which may or may not utilise 
PLC. 

Response Time: A typical scenario (for the 
electricity supply industry) would involve meter 
readings being taken every 30 minutes. Other 
types of utility could probably tolerate even 
longer response times. 

Worst Case Response Time: A delay of a few 
minutes in acquiring the next reading would not 
present a significant problem in any likely A. M. R. 
application. 

Implications in the Event of Link Loss: Since (at 
least in the simplest form of the application) data 
is simply being read, and nothing is being 
controlled, there would be no serious implications. 

Implication of Node Loss: Again, there would be 
no serious implications. 

Data Security Implications: The ability to falsify 
the data would be highly undesirable. 
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13) Nome Automation: 

Extent: By definition, local, within a home or 
building. 

Response Time: A response within 1-2 seconds 
would be acceptable in most instances. Certain 

types of device (e. g. heating appliances) could 
probably tolerate even longer response times. 

Worst Case Response Time: Longer times than 
those above would present no serious problems, 
apart from possibly being inconvenient to the 
users. 

Implications in the Event of Link Loss: 
Inconvenient, but no serious implication in most 
instances. 

Implication of Node Loss: Again, inconvenient, 
but no serious implication in most instances. 

Data Security Implications: If the system 
permitted access to the home/building or 
incorporated a security system, then susceptibility 
to external monitoring/tampering would be most 
unacceptable. Otherwise, no serious implications. 

Q. Industrial Automation: 

Extent: Relatively localised (within the context under consideration) - it may involve a self- contained section of a plant, or may involve 
several items of plant sharing a network. The 
transfer of information over larger areas is likely 
to be handled by an alternative system such as a formal Fieldbus. 

Response Time: A response time within 1-2 
seconds maximum would be essential for real- 
time control of the type envisaged. 

Worst Case Response Time: Longer times than 
(typically) twice those above would be 

unacceptable. 

Implications in the Event of Link Loss: Potentially 

serious, if the loss existed for longer than a certain 
period, or occurred at the wrong point within an 
operational sequence of a process. Ideally, each 
node should have the ability to perform 
autonomously in a safe manner, and to gracefully 
shut down the process being controlled, should 
the link be lost. 

Implication of Node Loss: Potentially serious in 

most instances. Impact can be minimised by the 
rest of the network hardware being able to 
gracefully shut down the process being controlled 
in the event of such a failure. This implies that the 
status of the nodes must be capable of being 
determined via the network itself, possibly with 
communication between nodes as well as simply 
via the master control cabinet. 
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Data Security Implications: Less important, 

unless there were a risk of malicious disruption to 
the process under control. 

Analysing the previous statements, it can be seen 
that safety-critical real-time industrial control has 

some of the most stringent requirements of all of 
the applications discussed, requiring both a 
(relatively) fast response time and high levels of 
data and hardware integrity. 

We will now consider some of the PLC 
technologies currently available and attempt to 
make an initial assessment as to their suitability 
for our purposes. 

In reality, such systems must be split into two 

parts, the transmission technique, and the 
protocol. At this stage we need not concern 
ourselves with those aspects of the protocol 
relating to the higher levels of the OSI model, 
simply those which govern the integrity and 
routing of the data (i. e. level 4 and below). 
Whenever possible, we will discuss both 

transmission technique and protocol together. 

V. Spread Spectrum vs. The Rest 

Spread spectrum is much vaunted as a resilient 
technique for overcoming the problems inherent 
in real world PLC applications, although some 
commentators do express certain reservations [9]. 
It may be simply defined as a technique for 
deliberately increasing the bandwidth 
requirements of a transmission above and beyond 
those limits dictated by simple signalling theory. 
Spread spectrum techniques have implications 
with regard to both transmission security, bandwidth sharing, and immunity to noise and 
other interference sources. In this context, the 
latter attributes are of most interest. 

The term spread spectrum can be applied to a 
range of different techniques for spreading the bandwidth of the signal. 

Direct Sequence: Here the spreading is achieved by modulating the data stream with a pseudo- 
random spreading sequence. 

Frequency Hopping: As the name suggests, this 
technique uses a range of different carrier 
frequencies, and either moving between them 
rapidly, in a known sequence, or changing in 
response to varying line conditions. 
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Chirp: Here, the transmitted signal consists of a 
carrier swept over a certain frequency range. 

A factor which limits the usefulness of spread 
spectrum techniques for the purpose under 
consideration is the relatively small bandwidths 
permitted for 'consumer' transmissions under the 
CENELEC standard for PLC [7]. Vendors who 
offer spread spectrum solutions for use within the 
wider 'utility' part of the PLC spectrum have to 
resort to other modulation techniques for their 
'consumer' products. An example is Echelon, 
whose PLC modem is mentioned later in this 
paper. 

VI. The X-10 System 

X-10 is a relatively long established (almost 20 

years) system of power line carrier 
communication. It is very popular amongst the 
'home automation' fraternity, particularly in the 
USA. It has a relatively simple protocol and 
command set [10] geared up towards home 

automation functions (i. e. switching lights on and 
off, controlling heating etc. ). 

In essence it can be described as an on-off keying 
(OOK) system, utilising a fixed single carrier 
frequency of 120KHz. The protocol is extremely 
simple, indeed, at its most basic there is not even 
any mechanism to acknowledge that a particular 
command has been received correctly. The only 
concession towards error detection is a bi-phase 
bit transmission protocol, coupled with 
duplication of each transmission. There are 
certain enhancements to the basic protocol which 
do permit some scope for two-way data traffic, 
and thus the potential for improved error 
detection/correction. 

The relatively slow bit rate (synchronised to that 
mains zero-crossing points) and bit redundancy, 
means that X- 10 commands take around a second 
to send at best, and commands requiring 
acknowledgements, or the transfer of data, 
correspondingly longer. 

In conclusion, X-10 probably represents a 
minimum standard for a workable PLC control 
system, although it would be essential that a 
protocol allowing error detection was 
implemented. It does already operate within the 
CENELEC frequency band designated for 
'consumers' [7], although not at the preferred 
'Access Protocol' frequency. Conceivably, the 
carrier frequency could be moved in order to 
become compliant, but this would represent a 
variation of the X-10 system. 

VII. CEBus 

CEBus ('Consumer Electronic Bus') is an open 
standard for home automation systems endorsed 
by the Electronic Industries Association ('EIA'). 
Although primarily intended for home automation 
applications, it comprises a comprehensive and 
sophisticated protocol, suitable for our 
application, and is capable of operating over a 
range of other media as well as power line. The 
manufacturer Intellon support CEBus with their 
range of products, including a spread spectrum 
power line modem using the 'chirp' principle. 
Unfortunately though, this solution does not 
comply with the CENELEC requirements for the 
'consumer' band. 

VIII. Echelon LonWorks PLC Modems 

Echelon offer a PLC solution based on the 
requirements of EN50065-1 [7] in terms of both 
frequency band and access protocol. The 
'consumer' ('C') band variant operates at a 
nominal carrier frequency of 132.5KHz (for 
compliance with the CENELEC access protocol), 
using Binary Phase Shift Keying (BPSK) as the 
modulation type, and Echelon's proprietary 
'LonTalk' protocol. 

IX. Other Digital Techniques & Protocols: 

Other manufacturers have responded to the need 
for PLC hardware with a range of different 
modem solutions. The more recent parts comply 
with the CENELEC 'Access Protocol', as outlined 
in EN50065-1 - operating at or around a 
frequency of 132.5KHz. The access protocol 
permits the sharing of the band, both by other 
systems of the same type, or by different systems 
utilising different modulation types or protocols. 
Examples of such devices are the ST7537HS1 
from SGS-Thomson [11], which utilises a 
narrow-band FSK modulation technique centred 
around 132.45KHz, and the recently introduced 
TDA5051 from Philips [12], which uses an ASK 
technique centred on 132.5KHz. The ST7537HS1 
part ties in with the 'European Home System' 
('EHS') a European effort directed at a similar 
market to the CEBus already discussed. Another 
power line modem is the National Semiconductor 
LM1893/LM2893, an older FSK part, released 
before EN50065, which is nevertheless capable of 
complying with the requirements of that standard. 
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X. Conclusions: 

It is the intention to consider the suitability of 
these different PLC technologies for the purposes 
of industrial control, based on the pre-requisites 
already discussed. These conclusions will be 
backed up by appropriate experimental findings, 
to determine the performance of the technology. 
Where proprietary combinations of transmission 
technique and protocol exist, they will be 
considered together. In other cases (such as the 
discrete modem chips described in section 10), 
appropriate protocol(s) will be chosen to suit. The 
results will hopefully be discussed in subsequent 
papers. 
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