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A Giulietta e Luciano Marsicano. 

Ea Rodolfo Sonego. 

Penso the sareste contenti. 

C'est pourquoi la meilleure part de notre memoire est hors de noun, 

dans un souffle pluvieux, dans l'odeur de renferme d'une chambre ou 

dans l'odeur d'une premiere flambee, partout oü nous retrouvons de 

nous-meme ce que notre intelligence, n'en ayant pas l'emploi, avait 

dedaigne, la deniere reserve du passe, la meilleure, celle qui, quand 

toutes nos larmes semblent taries, sait noun faire pleurer encore. Hors 

de nous? En nous pour mieux dire, mais derobee ä nos propres regards, 

dans un oubli plus ou moins prolonge. C'est grace ä cet oubli seul que 

nous pouvons de temps ä autre retrouver 1'etre que nous fumes, nous 

placer vis-ä-vis des choses comme cet eire 1'etait, souffrir a nouveau, 

parce que nous ne sommes plus nous, mais lui, et qu'il aimait ce qui 

nous est maintenant indifferent 

Marcel Proust 

"Ä 1 'ombre des jeunes filles enFleur" 



1 

Table of contents 
Table of contents 1 
Abstract iv 
Table of illustrations v 
Acknowledgements vii 
Statement viii 
List of abbreviations ix 

Chapter 1 Introduction. Overview of the cannabinoid system 1 

1.1 Historical aspects of Cannabis sativa: origin, diffusion and uses 1 

1.2 Hallmarks in cannabinoid research 3 

1.3 CB 1, the "brain type" cannabinoid receptor 5 
1.3.1 Mechanisms of action 5 

1.3.1.1 Inhibition of adenylate cyclase 6 
1.3.1.2 Modulation of ion channels 7 
1.3.1.3 Other pathways triggered by CB 1 9 

1.3.2 Distribution of CB 1 in the mammalian brain 11 
1.3.3 CB 1 ligands 14 

1.3.3.1 The problem of nomenclature 14 
1.3.3.2 CB 1 agonists 15 
1.3.3.3 CB 1 antagonists 15 

1.4 The cannabinoid system 17 
1.4.1 Synthesis of endocannabinoids 18 
1.4.2 Inactivation of endocannabinoids 20 

1.5 Proposed roles of the cannabinoid system in the CNS 21 
1.5.1 Nociception 21 
1.5.2 Locomotion 24 
1.5.3 Learning and memory 26 
1.5.4 Reward and motivational systems 29 
1.5.5 Neuroprotection 33 
1.5.6 Other proposed central roles of the cannabinoid system 35 

1.6 Aims of the Thesis 37 

Chapter 2 Expression of the cannabinoid receptor CB1 in distinct 
neuronal subpopulations in the adult murine forebrain 40 

2.1 Introduction 40 

2.1 Materials and methods 42 
2.2.1 Tissue preparation 42 
2.2.2 Synthesis of probes 42 
2.2.3 In situ hybridization 44 
2.2.4 Numerical evaluation of coexpression 46 

2.3 Results 47 
2.3.1 CB1 expression in the forebrain 47 
2.3.2 CB 1 expression in distinct interneuronal subpopulations of 

the hippocampus 50 
2.3.3 CB 1 expression in neuronal subpopulations in other cortical regions 56 



ll 

2.3.3.1 Neocortex 56 
2.3.3.2 Entorhinal/perirhinal cortex area 56 
2.3.3.3 Olfactory system 57 
2.3.3.4 Amygdaloid region 57 

2.3.4 CB1 expression in neuronal subpopulations in non cortical regions 58 
2.3.4.1 Striatum 58 
2.3.4.2 Hypothalamus 59 

2.4 Discussion 60 
2.4.1 CB 1 and the GABAergic system 60 
2.4.2 CB 1 expression indistinct neuronal subpopulations 62 
2.4.3 CB 1 and CCK 64 
2.4.4 From anatomy to function: putative sites of action of cannabinoids in 

cortical areas 65 

Chapter 3 Differential role of the nitric oxide pathway on A9-THC-induced 
central nervous system effects in mouse 69 

3.1 Introduction 69 

3.2 Materials and methods 71 
3.2.1 Animals 71 
3.2.2 Drugs and chemicals 72 
3.2.3 Behavioural testing 72 
3.2.4 In situ hybridization 73 
3.2.5 Statistical analysis 74 

3.3 Results 75 
3.3.1 Behavioural and pharmacological assessments 75 
3.3.2 Cannabinoid receptor CB 1 mRNA expression 76 
3.3.3 Analysis of CB 1 /nNOS coexpression 78 

3.4 Discussion 81 
3.4.1 Antinociceptive effects 81 
3.4.2 Effects on thermoregulation and locomotion 82 

Chapter 4 Generation of mouse CB1 mutants 87 

4.1 Introduction 87 

4.2 Materials and methods 96 
4.2.1 Molecular biology 96 

4.2.1.1 Restriction digestions and ligations 96 
4.2.1.2 Polymerase Chain Reaction (PCR) 97 
4.2.1.3 Transformation and growth of bacteria, bacterial 

colony lift and plasmid purification 98 
4.2.1.4 Growth of genomic DNA phage library and phage 

plaque lifts 99 
4.2.1.5 Isolation of genomic DNA 101 

4.2.1.5.1 DNA preparation from mouse tails 101 
4.2.1.5.2 DNA preparation from embryonic stem cells 101 

4.2.1.6 Southern blotting 102 
4.2.1.6.1 Electrophoresis and transfer 102 
4.2.1.6.2 Hybridization 102 



lll 

4.2.1.7 Screening of genomic DNA phage library and 
large-scale preparation of lambda phages 103 

4.2.2 Embryonic stem cells 105 
4.2.2.1 Preparation of embryonic mouse fibroblast cells 105 
4.2.2.2 Thawing and expanding of ESCs 108 
4.2.2.3 Electroporation of ESCs, antibiotic selection, 

picking and expansion of resistant clones 108 
4.2.3 In situ hybridization 110 

4.3 Results 110 
4.3.1 Genomic organization of the murine CB 1 110 

4.3.1.1 Cloning of phage insert 110 
4.3.1.2 Mapping of CB 1 locus 111 

4.3.2 Generation of the targeting construct 115 
4.3.3 Electroporation and selection of targeted embryonic stem cell clones 119 
4.3.4 Blastocyst injection, generation of chimeras 

and germ line transmission 120 
4.3.5 Generation of CB 1 "Null mutant" ("CBM' mouse line) 122 
4.3.6 Generation of "floxed mutant" ("foxed CB 1" line) 126 

4.4 Discussion 129 

Chapter 5 Neuroprotective properties of cannabinoids in vitro: role of CB1 133 

5.1 Introduction 133 

5.2 Materials and methods 135 
5.2.1 Chemicals 135 
5.2.2 Brain lipid oxidation assays 136 
5.2.3 Cell cultures 136 

5.2.3.1 Cell lines 136 
5.2.3.2 Primary cerebellar granule cells 137 

5.2.4 CB 1 expressing cell lines 138 
5.2.4.1 Cloning of CB 1 into an eukaryotic expression vector 138 
5.2.4.2 Electroporation of cells and selection of resistant clones 139 
5.2.4.3 Northern blot analysis of resistant clones 140 

5.2.5 Oxidative stress assays 141 

5.3 Results 143 
5.3.1 Cannabinoids as antioxidative and neuroprotective agents 143 
5.3.2 Cannabinoids are neuroprotective in rat cerebellar granule cells 145 
5.3.3 Cannabinoid-mediated neuroprotection in neuronal cell lines 

expressing CB 1 146 
5.3.4 Cannabinoid-mediated neuroprotection in primary 

cerebellar granule cells from CB 1 knock out mice 149 
5.3.5 Cannabinoid-mediated neuroprotection in differentiated PC 12 cells 150 

5.4 Discussion 151 

Conclusions and future perspectives 156 

List of references 159 

List of publications 182 



TheOpen 
University 

Library authorisation form 
Form SE12 (1996) 

Please return this form to the Research Degrees Office, Open University Validation Services, 344-354 
Gray's Inn Road, London WC1X 8BP. All students should complete Part 1. Part 2 applies only to 
PhD students. 

Student: Giovanni Marsicano PI: R9644408 

Sponsoring Establishment: Max-Planck-Institute of psychiatry 

Degree for which the thesis is submitted: ph _ D_ 

Thesis title: Physiological Role of the Cannabinoid Receptor 1 (CB1) in the 

Murine Central Nervous System 

Part 1 Open University Library Authorisation (to be completed by all students) 

I confirm that I am willing for my thesis to be made available to readers by the Open University 
Library and for it to be photocopied, subject to the discretion of the Librarian. 

Signed: Date: 02.03.2001 

Part 2 British Library Authorisation (to be completed by PhD students only) 

If you want a copy of your thesis to be available on loan to the British Library Thesis Service as and 
when it is requested, you must sign a British Library Doctoral Thesis Agreement Form and return it to 
the Research Degrees Office of the University together with this form. The British Library will 
publicize the details of your thesis and may request a copy on loan from the University Library. 
Information on the presentation of the thesis is given in the Agreement form. 

The University has decided that your participation in the British Library Thesis Service should be 
voluntary. Please tick one of the boxes below to indicate your intentions. 

XI am willing for the Open University to loan the British Library a copy of my thesis; a signed 
British Library Doctoral Thesis Agreement Form is attached. 

or 

I do not wish the Open University to loan a copy of my thesis to the British Library. 

Signed: Date: 02.03.2001 



iv 

Abs±rQ if 

The cannabinoid system is involved in many functions of mammalian brain, such as 

learning and memory, pain perception and 'locomotion. The "brain type" cannabinoid 

receptor CB 1 is one of the key elements of the cannabinoid system. In this Thesis, some 

aspects of the neurobiology of mouse CB 1 are described. 

CB 1 mRNA distribution was analysed by single and double in situ hybridization 

(ISH), revealing the expression of the receptor in specific neuronal subpopulations. This 

expression pattern suggests many putative functional cross-talks between the 

cannabinoid system and other signalling molecules in the brain, such as glutamate, 

GABA, cholecystokinin and nitric oxide (NO). 

The putative functional interactions of the cannabinoid system with the NO 

pathway was studied by pharmacological treatment of neuronal NO synthase (nNOS) 

mutant mice with the CBI agonist A9-tetrahydrocannabinol (A9-THC). The results 

showed that nNOS is necessary for some central effects of A9-THC. Moreover, ISH 

analysis revealed. that nNOS-deficient mice contain levels of CBI lower than normal in 

selected brain regions. 

A "conditional" targeting approach was developed to gain insights into the specific 

functions of CB 1 in mouse brain. By gene targeting experiments, two mutant lines were 

obtained. The "Flox CB 1" mouse line, containing the whole open reading frame of CB I 

flanked by two loxP sites will be the key tool for the generation of mouse mutants with a 

spatiotemporal-restricted deletion of CB I. The "CBN" mice, carrying a "null" mutation 

of CB 1, were used for a study aimed to clarify some aspects of the in vitro 

neuroprotective activity of cannabinoids and, in particular, the involvement of CB 1. 

In vitro oxidative stress assays were performed on cell lines and on primary 

neuronal cultures derived from homozygous CBN/CBN mice and wild type littermates. 

The results indicate a differential protective activity of cannabinoids on cell lines and 

)rilnary cultures. However, CBI does not appear to be involved in the in vitro 

leuroprotective effects of cannabinoids. 
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Chapter 1 

Introduction. Overview of the cannabinoid system 

1.1 Historical aspects of Cannabis sativa: origin, diffusion and uses 

Cannabis sativa (C. S. ), also known as Marihuana, is one of the oldest cultivated 

plants and is considered one of the very first plants grown not specifically for their food 

content (reviewed by Peters & Nahas, 1999). C. S. was cultivated for two purposes: 

fibres for tissues and extracts for therapeutic and recreative purposes. First historical 

reports of the use of C. S. were found in China nearly 5000 years ago, where it was 

grown rather for fibers than for production of psychoactive extracts. From China, the use 

of C. S. moved to India, where it was mentioned as a sacred plant in the Atharva Veda 

(one of the holy books of hindu religion, 2000 BC). Herodotus reported the use of hemp 

among populations along the coasts of Caspian and Aral Seas (Historiae III, 440 BC). 

Romans and Greeks did not use C. S. as a pleasure-inducing drug as they preferred 

alcohol, but they cultivated the plant to obtain fibers to make ropes and sails. Some 

medical uses were described by the Greek physicians Dioscorides (De materia medica, 

ca. 60 AD) and Galen (129-210 AD). C. S. became very widespread in the Islamic world 

during the Middle Age. Through the Arab invasions (ninth to twelfth century AD) its use 

was diffused to all the southern Mediterranean coast, from Egypt to Morocco (Nahas, 

1982). Arab physicians such as al-Razi (900 AD) and al-Badri (1251 AD) described 

many details of medical uses of C. S. and recommended it for the ear, for dissolving 

flatulence, to cure epilepsy and to induce appetite (references from Peters & Nahas, 

1999). 

In the first half of the 18th century, the British physician O'Shaughnessy 

introduced C. S. into British medicine, after observing its use in India. He and other 

British physicians prescribed C. S. extracts for the treatment of rabies, rheumatism, 
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epilepsy, tetanus and as antialgesic (Nahas, 1973). In 1840, Jacques-Joseph Moreau, 

considered as the father of modern psychopharmacology, observed experimentally the 

properties of C. S. (Moreau, 1845). He compared the effects of C. S. extracts on himself 

to the symptoms observed with his mental patients. He described eight symptoms present 

either after C. S. intoxication or in mental illness: feeling of bliss, dissociation of ideas, 

errors of time and space appreciation, exacerbation of the sense of hearing, fixed ideas, 

disturbances of emotions, irresistible impulses and illusions. Interestingly, from such 

observations, he became convinced of the organic nature of mental illness and that 

"hashish [is] a unique powerful tool to deeply explore the mental pathologies". 

1I �. r 

1000 B. 
goo origin 
A 2500 5000 } 

B. C. 
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Fig. 1.1. Schematic representation of the propagation of Cannabis sativa, through the ages. 

Marihuana smoking for recreational purposes reached the Americas via the 

African slaves deported to Brazil in the 17th century by the Portuguese. From Brazil, the 

use of "grass" (the translation of the Arabic word hashish) spread to central America and 

from there reached the U. S. A., where it was first the typical drug of black jazz musicians 

in the early 20th century. In the 1960s, it became widely diffused among university 

students and was then returned eastwards to Europe (Fig. 1.1). Today, C. S. extracts are 

ýýýý ýý 
ýý 

ýý 

1960.70 

the most widely used illicit drugs in western world. However, the therapeutic potential, 
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after many decades of oblivion, are again the focus of attention of scientific as well as 

social and political communities. 

1.2 Hallmarks in cannabinoid research 

Despite the long history, the mechanisms of action of C. S. derived drugs have not 

yet been completely understood. However, in the last decades, an impressive body of 

studies has led to many and important clarifications. An indicative progression of the 

scientific interest in C. S. can be obtained by a simple counting of the publications during 

the last three decades (Fig. 1.2). 

50( 

40( 

N 
30( 
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U) 
U 

CL 20( 
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Year 

Fig 1.2. Number of publications produced in recent decades, in relation to cannabinoid research. 

The values were obtained with a Medline search (http: //www. ncbi. nhn. nih. gov/entrez/query), 

using as keywords "cannabinoid OR marihuana" and limiting the search to two years' periods. 

Key discoveries are indicated. 

One of the first and most important steps in recent marihuana research was the 

purification of the major psychoactive compound in C. S., (-)-A9-tetrahydrocannabinol 

(A9-THC; Mechoulam & Gaoni, 1965; Petrzilka & Sikemeier, 1967). Since those 

pioneering studies, the number of published papers increased exponentially, indicating a 

high interest in the chemistry, biochemistry, biology and pharmacology of C. S. 
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derivatives (Fig 1.2). During the late 70s and the early 80s the number of publications 

seemed to decrease slightly, likely reflecting major difficulties in defining precise 

mechanisms of action of 09-THC and natural and synthetic cannabinoids. Due to the high 

lipophilicity of cannabinoid compounds, two mechanisms were postulated: a direct 

interaction with the cell membranes (Hillard et al., 1985) or an interaction mediated 

through still undiscovered membrane receptors (Howlett et al., 1986). Indicative data 

were present for both hypotheses. However, in 1988, the availability of new potent 

synthetic cannabinoid compounds, such as CP-55,940 (Johnson & Melvin, 1986), led to 

the discovery of a typical receptor-mediated interaction between cannabinoid compounds 

and biological tissues (Howlett et al., 1988). Such a finding, even though far from 

explaining all the effects of cannabinoids, represented a new impulse to the research. 

Two years later, Matsuda et al. (1990) cloned the first cannabinoid receptor (CBI) and 

opened the way to the molecular approach to the biology of cannabinoids. CB 1 was 

described as aG protein coupled receptor and was found to be expressed mainly in the 

brain, indicating a function in central effects of cannabinoids. Later, Munro et al. (1993) 

cloned a second receptor, named CB2, also able to bind cannabimimetic compounds, 

whose expression is limited to cells and tissues of the immune system. In this way, the 

early 90s paved the way towards the understanding of the mechanism(s) of action of 

exogenously administered C. S. derivatives and synthetic cannabinoids. However, one 

important piece of the puzzle was still missing: the endogenous ligands of the receptors, 

the so-called "endocannabinoids". One did not have a long time to wait to get such an 

answer. Devane et al. (1992) purified from porcine brains a novel compound that was 

able to bind and stimulate cannabinoid receptors. This compound is an amide of 

arachidonic acid and was named "anandamide", from the Sanskrit word for "bliss", 

ananda. Later, another endogenous ligand was described, 2-arachidonyl glycerol 

(Mechoulam et al., 1995; Sugiura et al., 1995). Furthermore, an active system for 
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anandamide uptake was uncovered in cells (Hillard et al., 1997; Beltramo et al., 1997; 

Bisogno et al., 1997a), and specific pathways were found that produce and degrade the 

endocannabinoids (Di Marzo et al., 1994). Such an impressive efflux of new data and 

discoveries led the "cannabinoid researchers" to postulate the existence of a new 

signalling system, made by endogenous compounds, their specific receptors and their 

specific mechanisms for production, release, uptake and degradation (reviewed by Di 

Marzo et al., 1998). Moreover, the functional interactions of the "cannabinoid system" 

with other physiological systems appear to be more and more relevant, participating in 

the maintenance of the physiological status and possibly being disregulated in 

pathophysiological conditions. As mentioned before, CB 1 and CB2 are expressed mainly 

in the brain and in the immune system, respectively. Therefore, it appears that two 

distinct (although likely interacting) "cannabinoid systems" exist, one related to brain 

function and the other to immunological activities. 

1.3 CB1, the "brain type" cannabinoid receptor 

1.3.1 Mechanisms of action 

Despite the possibility that cannabinoids could exert some of their actions 

through non receptor-mediated mechanisms, there is general agreement that most of such 

actions are mediated by specific receptors. At the moment, two "cannabinoid receptors" 

have been cloned: the "brain type" CB 1, expressed in the central nervous system, but 

also in many peripheral organs (Matsuda et al., 1990; Shire et al., 1995) although at 

lower levels and CB2, whose expression is limited to cells and organs of the immune 

system (Munro et al., 1993). Both CB 1 and CB2 are seven transmembrane G protein 

coupled receptors, generally coupled to Gi/o proteins. CB2 was cloned from a leukaemic 

cell line and has a relatively low sequence identity with CB 1 (44% overall the whole 

protein, 68% in the transmembrane regions) (Munro et al., 1993). CB 1 has been 

extensively characterised. In vitro studies, using primary neuronal cultures, neuronal cell 
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lines that endogenously express CB 1, heterologous expression of the receptor in other 

cell lines, or brain slices, have revealed that the intracellular signal transduction pathways 

stimulated by CB 1 activation are dependent on the system used. However, CB 1 is 

believed to exert its functions presumably through two main intracellular pathways: 

inhibition of adenylate cyclase and alterations of ion channels activity. However, in the 

recent years, also other intracellular pathways have been shown to be triggered by CB 1. 

1.3.1.1 Inhibition of adenylate cyclase 

A reversible, dose-dependent and stereoselective inhibitory action of A9-THC on 

adenylate cyclase activity in neuroblastoma cells was one of the key observations that led 

to the discovery of the existence of cannabinoid receptors (Howlett & Fleming, 1984; 

Howlett et al., 1986; Bidaut-Russell et al., 1990). Such an inhibition is mediated by 

inhibitory G proteins (G; /. ), because this effect can be blocked by pertussis toxin in 

neuroblastoma cells, in membranes derived from mammalian brain and in primary 

neuronal cultures (Howlett et al., 1986; Bidaut-Russel et al., 1990; Bouaboula et al., 

1995). Pertussis toxin is able to prevent the dissociation of the a and 0/7 subunits of Giro, 

thereby blocking the G protein-mediated inhibition of adenylate cyclase. Activation of 

G proteins was also shown by receptor-stimulated [31S]GTPyS binding to brain-derived 

membranes and to brain sections (Sim et al., 1995; Breivogel et al., 1997). Interestingly, 

the regional distribution of CB 1 receptor as revealed by radioligand binding, and the 

activation of G proteins by cannabinoid agonists are very similar, indicating that 

presumably all CB 1 receptors are able to activate G proteins. However, quantitative 

differences suggest that the receptor can have different coupling efficiencies in various 

brain regions (Sim et al, 1995; Childers & Breivogel, 1998; Ameri, 1999). The adenylate 

cyclase-cAMP-protein kinase A (PKA) pathway is one of the key mechanisms in 

neuronal physiology. As an example, cAMP-dependent gene expression appears to be 

universally required for establishing long-term memory (Silva et al., 1998; Alberini, 
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1999). Therefore, the inhibition of this pathway by cannabinoids acting at CBI can 

explain many of the pharmacological effects of cannabinoids, such as the inhibition of 

memory formation (Hampson & Deadwyler, 1998). The coupling of CB 1 to Gi/o proteins 

is considered one of the main mechanisms of action of the receptor, but evidence also 

exists indicating that different G protein subtypes are involved in CB 1 signal 

transduction. As an example, coupling with GS proteins was described in primary striatal 

neurons, after a simultaneous stimulation of CB 1 and D2 dopamine receptors (Glass & 

Felder, 1997). Another important element of the CB 1 signal transduction pathways is the 

ability of the receptor to sequester G proteins, rendering them unavailable for the action 

of other G protein coupled receptors (Vasquez & Lewis, 1999). 

1.3.1.2 Modulation of ion channels 

Gi/. is able to couple seven transmembrane receptors not only to adenylate 

cyclase, but also to ion channels. Studies on neuroblastoma cell lines and on primary 

neurons expressing CBI revealed that cannabinoid receptor activation inhibits voltage- 

activated inward calcium currents (Caulfield & Brown, 1992; Mackie & Hille, 1992). 

This effect appears to be mediated by Gi/., because it is blocked by pertussis toxin. In 

experiments using inhibitors of different calcium channel subtypes, it was shown that N- 

type and P/Q-type calcium channels are mainly involved in this effect of CB 1 (Mackie & 

Hille, 1992). Moreover, the addition of non-hydrolysible analogues of cAMP or 

inhibitors of phosphodiesterase did not alter the inhibitory effect of CB 1 onto calcium 

channels, thus indicating an adenylate cyclase-independent mechanism. CB 1 was shown 

to regulate also the actions of potassium channels. Early studies revealed that 

cannabinoids acting at CBI can modulate two potassium channels, the inwardly 

rectifying potassium (Kir) channel and the voltage-dependent A-type potassium channel. 

Inwardly rectifying potassium currents are enhanced by cannabinoids in a dose- and 

pertussis toxin-dependent manner, thus indicating a G; o-dependent process (Henry & 
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Chavkin, 1995; Mackie et al., 1995). Interestingly, a recent report by Garcia et al. (1998) 

showed that cannabinoid actions on Kir and on P/Q-type calcium channels can be 

strongly attenuated by phosphorylation of CB 1 at a single serine residue (S317) in the 

third cytoplasmic loop of the receptor by the action of protein kinase C (PKC), thus 

constituting a putative regulatory system of CB I. Deadwyler et al. (1993) have shown 

that the voltage-dependent potassium A currents (KA) are significantly enhanced in a 

concentration-dependent manner by CB 1 agonists in primary hippocampal cells. 

Fig. 1.3. Schematic representation of the main effects of CBI on ion channels. Activation of 

CB 1 leads to the stimulation of Gj1o proteins that, in turn, inhibits the adenylate cyclase-mediated 

conversion of ATP into cAMP. cAMP molecules can bind the regulatory subunits of protein 

kinase A (PKA) and cause the liberation of the catalytic subunits. Active PKA can phosphorylate 

A-type potassium channels (K+A), causing a decrease of the current. Given the negative effect of 

CB I on adenylate cyclase, the final result is an activation of A-type potassium channels. Gi/0 

activated by CB 1 can also directly inhibit N- or P/Q-type calcium channels and activate inwardly 

rectifying potassium channels (Kir). These last two effects are controlled by protein kinase C 

(PKC), that, when activated, can phosphorylate CBI in the third cytoplasmic loop and uncouple 

the receptor from the ion channels. 

The activation of A-type potassium channels (KA) by CB 1 is dependent on the 

inhibition of cAMP synthesis with the subsequent inhibition of a protein kinase A (PKA)- 

mediated phosphorylation of the channel, but not on a direct coupling of Gi/. proteins to 
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the A-type potassium channel (Deadwyler et al., 1993; Hampson et al., 1995; Childers 

and Deadwyler, 1996). 

Thus, cannabinoids acting at CB 1 are able to decrease the Ca`- influx by 

inhibiting N- and P/Q-type calcium channels and to increase the efflux of iC ions by 

activating inwardly rectifying potassium currents and A-type potassium channels (Fig. 3). 

Considering that i) the calcium channels are mainly located presynaptically and are 

necessary for evoked neurotransmitter release in the CNS (Takahashi & Momiyama, 

1993; Wheeler et al., 1994; Ameri, 1999), ii) the activation of potassium channels can 

amplify a presynaptic inhibition of calcium channels by reducing the duration of the 

action potential (Ameri, 1999), and iii) CB 1 is highly expressed in the presynaptic 

terminals (Herkenham et al., 1990,1991; Tsou et al., 1998a), it appears likely that CB 1 

plays a major role in the modulation of neurotransmitter release at synapses. Indeed, 

cannabinoids acting at CB 1 have been shown to inhibit the release of glutamate in 

cultured rat hippocampal cells (Shen et al., 1996), acetylcholine release in superfused rat 

hippocampal slices (Gifford et al., 1997), noradrenaline release in slices from human, 

guinea pig and rat hippocampus (Schlicker et al., 1997), and GABA release from rat 

hippocampal slices (Katona et al., 1999). Thus, the presynaptic inhibition of several 

neurotransmitters by cannabinoids can be considered as a plausible cellular mechanism 

underlying the psychoactive actions of cannabinoids. 

1.3.1.3 Other pathways triggered by CBI 

Inhibition of adenylate cyclase, stimulation of A-type and inwardly rectifying 

potassium currents, and inhibition of N- and P/Q-type calcium channels are considered as 

the main intracellular events induced by CB 1 in neurons. However, recent observations 

revealed additional regulatory mechanisms. In electrophysiological experiments on rat 

hippocampal slices, Schweitzer (2000) showed that cannabinoids acting at CB 1 are able 

to decrease the activity of postsynaptic potassium-persistent voltage-dependent M- 
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currents in CAI hippocampal pyramidal cells. This would indicate that cannabinoids may 

specifically increase the excitability of postsynaptic cells. Moreover, using microdialysis 

techniques, very recent results from Acquas et al. (2000) indicate an increase of 

acetylcholine release in hippocampus and frontal cortex of freely moving rats after in 

vivo treatment with low doses of cannabinoid agonists. It is therefore possible that 

cannabinoids acting at CB 1 can exert different intracellular effects in different brain areas 

or at different concentrations. Netzeband et al. (1999) showed that in primary cerebellar 

granule cells, CB 1 is able to enhance the peak amplitude of the Ca. 2+ response elicited by 

stimulation of the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors 

(NMDARs). This effect appears to involve pertussis toxin-sensitive G proteins (Gi/o) and 

the phopspholipase C (PLC)/inositol 1,4,5-trisphosphate (IP3) pathway, and finally 

results in an increased Ca 2+ release from intracellular stores. These data are very 

interesting in light of the facts that i) PLC and IP3 can trigger the activation of PKC 

(Schwartz & Kandel, 1991) and ii) PKC can inhibit, by phosphorylation of the third 

intracellular loop, the effects of CB 1 on calcium channels and inwardly rectifying 

potassium channels (Garcia et al., 1998). Therefore, it can be speculated that, in certain 

conditions (i. e. upon NMDAR activation by glutamate), cannabinoids acting at CB1 

might "switch" their effects on calcium mobility, by enhancing the release of Ca 2+ from 

intracellular stores, and by inhibiting, following PKC phosphorylation, their own effects 

on calcium channels and inwardly rectifying potassium channels. The involvement of IP3 

in the signal transduction cascade of CB 1 was also very recently shown by Gomez Del 

Pulgar et al. (2000). Using CB 1-transfected Chinese hamster ovary cells (CHO) and 

human glioma cells, these authors showed that cannabinoids can stimulate protein kinase 

B/Akt (PKB) in a CBI-, Gi/. - and IP3-dependent manner, thus, indicating a novel 

potential mechanism of cannabinoid action. Another potentially very interesting 

intracellular cascade triggered by CB 1 is the mitogen activated protein kinase (MAPK) 
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pathway. Bouaboula et al. (1995) showed that cannabinoid treatment of CB 1 transfected 

CHO cells was able to stimulate the phosphorylation of MAPKs in a receptor-dependent, 

pertussis toxin-sensitive and cAMP-independent manner. MAPKs pathway is very 

important in many aspects of neurophysiology, from differentiation and survival of 

neurons (Fukunaga & Miyamoto, 1998), to the induction of important forms of neuronal 

plasticity, such as long-term memory (Orban et al., 1999). However, thus far, the 

activation of MAPK by CBI receptor has only been found in non-neuronal cell lines 

artificially transfected with CB 1. Therefore, it is still uncertain whether it plays role in the 

CNS under physiological conditions. 

In conclusion, the inhibition of adenylate cyclase, the activation of A-type and 

inwardly rectifying potassium channels and the inhibition of N- and P/Q-type calcium 

channels appear as the prominent mechanisms through which cannabinoids acting at CB 1 

exert their intracellular effects. Nevertheless, other pathways can be, in different 

conditions, activated by CB1, and the direction of the research in the near future will 

likely focus not only on finding novel mechanisms of action, but also on defining the 

cellular status leading to the activation by cannabinoids of either of the intracellular 

pathways. Already the CB 1 signal transduction changes caused by simultaneous 

dopamine D2 receptors (Glass & Felder, 1997) and NMDAR activation (Netzeband et 

al., 1999) represent very interesting functional receptor cross talks that might contribute 

to the understanding of the different, and sometimes apparently divergent, effects of 

cannabinoids. 

1.3.2 Distribution of CB1 in the mammalian brain 

After the discovery of the existence of a cannabinoid receptor in the brain, the 

cannabinoid receptor distribution was first shown by autoradiography of ligand-receptor 

binding on slide-mounted rat brain sections, with the radiolabeled agonist [3H]CP 55,940 

(Herkenham et al., 1990,1991). Autoradiographic experiments using another radioligand 
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in rats, [3H] WIN 55,212-2, and [3H]CP 55,940 in humans, confirmed the general 

distribution of the receptor (Jansen et al., 1992; Glass et al., 1997a). It became quickly 

apparent that the quantity of receptor in the brain is very high, thus, CBI can be 

considered one of the most abundant G-protein coupled receptors in mammalian brain 

(Herkenham et al., 1990), comparable in quantity and density with glutamate receptors. 

After the cloning of CBI (Matsuda et al., 1990), the distribution of CBI was 

investigated at the mRNA level, by in situ hybridization (ISH) in rodents (e. g. Matsuda 

et al., 1993; Marsicano & Lutz, 1999) and in humans (Mailleaux et al., 1992; Westlake 

et al., 1994). More recently, anti-CBI antibodies became available, thus the 

immunohistochemical (IHC) distribution of the receptor was determined (Tsou et al., 

1998a; Pettit et al., 1998). Agonist-stimulated [35S]GTPYS binding to slide-mounted 

sections (Sim et al., 1995) is another interesting method that has been used to define the 

functional neuroanatomy of the brain type cannabinoid receptor (Breivogel & Childers, 

1998). 

The highest density of cannabinoid receptors has been demonstrated in basal 

ganglia (substantia nigra, globus pallidus, enteropeduncular nucleus and dorsolateral 

caudate putamen) and in the cerebellum. In these areas, discrepancies between mRNA 

(ISH) and protein (IHC and ligand binding) expression were observed, thus indicating 

the presence of the receptor on distal neuronal projections. As an example, substantia 

nigra pars reticulata does not contain CB1 mRNA, but is one of the most densely stained 

regions in immunohistochemical and ligand binding experiments (Mailleux & 

Vanderhaeghen, 1992; Westlake et al., 1994; Matsuda et al., 1993; Tsou et al., 1998a). 

High densities of binding were also described in the CA pyramidal cell layers of 

hippocampus (Herkenham et al. 1990). Such binding was shown by 

immunohistochemistry to be due to a dense plexus of immunoreactive fibres surrounding 

the cell bodies of pyramidal cells which appear per se devoid of CB 1 protein (Tsou et al., 
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1998a). However, pyramidal cells of hippocampus have been shown to express low but 

significant levels of CB 1 mRNA (Matsuda et al., 1993; Marsicano & Lutz, 1999; 

Chapter 2), thus again indicating the possibility that CB 1 protein is localised on distal 

projections of pyramidal CA hippocampal neurons. In hippocampus, neocortex (layers II, 

III, V and VI), entorhinal cortex, amygdaloid region (basomedial and basolateral 

amygdala), anterior olfactory nucleus, olfactory tubercle and piriform cortex, CB 1 is 

expressed (at mRNA and protein levels) both in scattered cells containing very high 

levels of the receptor and in more diffuse low-expressing neurons (Matsuda et al., 1993; 

Tsou et al., 1998a). In these cortical regions, scattered highly expressing cells are likely 

to be GABAergic interneuroris, while diffuse low-expressing cells are probably principal 

glutamatergic neurons (Katona et al., 1999; Marsicano & Lutz, 1999; Chapter 2). Other 

forebrain areas that contain low levels of CB1, generally uniformly distributed, are the 

ventromedial hypothalamic area and some thalamic nuclei. In the hindbrain, beside the 

molecular and granular layers of cerebellum expressing high levels of the receptor, CB 1 

is present at low levels in some nuclei of brain stem, such as the periaqueductal gray 

(Matsuda et al., 1993; Tsou et al., 1998a). 

Functional mapping by agonist-stimulated [35S]GTPYS binding using different 

CBI agonists, revealed that cannabinoid activation of G-proteins occurs with the same 

regional distribution as the receptors (Breivogel et al., 1997; Breivogel & Childers, 

1998). However, in some regions, the ratio between estimated amount of receptor and 

the G protein activation is not always constant, thus indicating regional differences in 

receptor coupling efficiencies (Breivogel & Childers, 1998). This is important to be 

considered, because sometimes cannabinoids seems to exert pharmacological effects that 

involve regions where the density of CB1 is very low (e. g. pain modulation mediated in 

the periaqueductal gray). Therefore, the activity of cannabinoids at CB 1 cannot be 

predicted solely based on relative receptor density, but other factors, such as receptor 
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coupling efficiency or different functional conditions of the receptor (e. g. 

phosphorylation, see above, 1.3.1 "Mechanisms of action") must be taken in account. 

1.3.3 CB1 ligands 

1.3.3.1 The problem of nomenclature. 

C. sativa contains more than 60 compounds belonging to the chemical family of 

"cannabinoids" (Iversen, 2000). Among them, A9-THC was described as the most 

psychoactive one and was shown to bind and activate CB 1 (Mechoulam and Gaoni, 

1965; Howlett et al., 1986; Matsuda et al., 1990). Considering this aspect, some 

problems arise for the nomenclature of cannabinoid compounds. Classically (and more 

correctly), the term "cannabinoid" should be referred to a class of compounds sharing 

some structural characteristics as three ring structure, the lack of nitrogen atoms and the 

presence of a pentyl side chain regardless whether derived from C. S. (Nahas et al., 

1999). However, with the discovery of the cannabinoid receptors and the development of 

new synthetic agonists and antagonists, the term "cannabinoid" has inevitably extended 

its meaning. In its general use, it names all the compounds derived from Cannabis sativa 

possessing the above mentioned structural characteristics and all the molecules (agonists 

or antagonists, natural or synthetic) that are able to bind to CB 1 and/or CB2 receptors. 

The discovery of endogenous ligands for CB1 and CB2 with the related mechanisms for 

synthesis, release, uptake and degradation (see below), have further increased the 

complexity of the "cannabinoid" nomenclature. Again, commonly, "endocannabinoids" 

are called the endogenous ligands of CBI and CB2 (Di Marzo et al., 1998), and, in a 

general sense, "cannabimimetic" compounds are all the chemicals (natural or synthetic) 

that are able to interfere with the metabolism of endocannabinoids, therefore increasing 

or decreasing the activity of these compounds. This classification is, of course, 

conventional and limited for many aspects, but it is the most common nomenclature used 

in the recent literature. Therefore, this will be the adopted convention, in this thesis. 
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1.3.3.2 CBI agonists 

From the chemical point of view, CBI agonists can be classified into four groups 

(Pertwee, 1997; Fig 1.4): (i) "classical cannabinoids", that are dibenzopyran derivatives 

and include A9-THC. (ii) "nonclassical cannabinoids", developed by Pfizer (USA), which 

contain bicyclic and tricyclic analogues of A9-THC that lack a pyran ring (Johnson and 

Melvin, 1986). The most important compound of this family is CP 55,940, used for the 

demonstration of the existence of the cannabinoid receptors (Howlett et al., 1986). (iii) 

Aminoalkylindoles, developed by Sterling Winthrop (USA) (Pacheco et al., 1991). The 

members of this group are structurally quite different from "classical" and "nonclassical" 

cannabinoids. The prototype of this group is WIN 55,212-2. (iv) "Eicosanoids", that are 

derivatives of arachidonic acid and were discovered as endogenous ligands of the 

cannabinoid receptors (Devane et al., 1992). Prototypes of this group are anandamide 

(arachidonylethanolamide, AEA) and 2-arachidonylglycerol, the two major 

endocannabinoids so far discovered in mammals. 

1.3.3.3 CBI antagonists 

As soon as cannabinoid receptors were discovered, several newly synthesised 

compounds were tested as putative specific antagonists of CBI or CB2. The first 

compounds to be shown to have some antagonistic properties at cannabinoid receptors 

were members of the aminoalkylindoles group, WIN 56,098 (Pacheco et at., 1991) and 

6-bromopravadoline (WIN 54,461; Casiano et al., 1991). However, the initial compound 

is rather weak antagonist (K1 in the order of micromolar), while the latter compound, 

even though more potent, has been shown to act, in some cannabinoid tests, as a partial 

agonist (Pertwee, 1997). Another aminoalkylindole compound, AM630 (6- 

iodopravadoline; Pertwee et al., 1995) has good potency, but again can act as partial 

agonist in some preparations and is not effective in vivo (Eissenstat et al., 1995). 
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Fig 1.4. Structures of CB 1 ligands. 

By far, the most potent and well-characterised CB1 antagonist is SR141716A 

(Rinaldi-Carmona et al., 1994; Fig 1.4). This compound is able to displace 

[3H]CP 55,940 from specific binding sites (Ka= ca. 2 nM) and is a potent antagonist of 

several of the typical effects of cannabinoids, both in vitro and in vivo. Another 

interesting property of SR141716A is the high specificity for CBI, having little or no 

affinity for CB2 and for a wide range of other membrane receptors (Rinaldi-Carmona et 

al. 1994; Compton et al., 1996). More recently, a CB2 specific antagonist was developed 

by the same group, SR 144528 (Rinaldi-Carmona, 1998). Both these antagonists were 

shown to act, in some conditions, in an opposite way as cannabinoid receptor agonists 

(inverse agonism) (Rinaldi-Carmona, 1998; Portier et al., 1999). SR141716A, in 

particular, is able to increase locomotor activity in mice (Compton et al., 1996), improve 

some forms of short-term memory in rats and mice (Terranova et al., 1996), and enhance 

the forskolin-induced production of cAMP in cells transfected with CBI (Felder et al., 

1995). Two different mechanisms could explain these observations. First, cannabinoid 

receptors might be tonically stimulated by endogenous ligands, whose action is blocked 

"Nonclassical" cannabinoids: 
CP 55,940 

Aminoalkylindoles: 
WIN 55,212-2 

CB1 antagonist: 
SR 141716A 
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by the addition of the antagonist. Second, the receptor might be present in two different 

conformational state, one precoupled to and the other uncoupled from the effector 

system(s). In this case, the SR compounds could produce their effects in absence of other 

drugs, because they bind preferentially to the receptor in the uncoupled state, thus 

shifting the equilibrium away from the precoupled status (Pertwee, 1997; Shire et al., 

1999). This second mechanism is very interesting, also in view of the regional differences 

in receptor coupling efficiencies of CB 1 (Breivogel & Childers, 1998), once more 

pointing to the importance of the functional status of the receptor in different anatomical 

regions and in different cellular conditions. 

1.4 The cannabinoid system 

With the discovery of cannabinoid receptors (Matsuda et al., 1990; Munro, 

1993), it became clear that natural and synthetic cannabinoids were likely to interfere 

with an endogenous neuronal system, in analogy, for example, to the opiates with the 

endogenous opioid system. In 1992, the first endogenous ligand of CB 1 was purified 

from porcine brain (Devane et al., 1992). The compound is an amide of arachidonic acid 

with ethanolamine and was named anandamide from the Sanskrit word "ananda" meaning 

"bliss". Early studies showed that anandamide (also called arachidonylethanolamide, 

AEA) is able to induce behavioural effects typical for A9-THC and other CB1 agonists in 

rodents, i. e. inhibition of locomotor activity, catalepsy, analgesia on a hot plate and rectal 

hypothermia (Fride & Mechoulam, 1993). After the discovery of anandamide, other 

metabolites were characterised in the brain with similar agonistic effects at cannabinoid 

receptors. These are all polyunsaturated fatty acid derivatives with no higher efficacy 

than anandamide and comprise docosatetraenoylethanolamide, di-homo-y- 

lineoylethanolamide (Hanus et al., 1993), and 2-arachidonylglycerol (2-AG, Mechoulam 

et al., 1995; Sugiura et al., 1995). 
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1.4.1 Synthesis of endocannabinoids 

Studies carried out in rat neurons demonstrated that synthesis and release of 

anandamide, whose basal levels in the brain are low as compared to most 

neurotransmitters, could be stimulated by treatment with depolarising agents such as 

ionomycin, 4-aminopyridine, kainate and high extracellular K+ concentrations (Di Marzo 

et al., 1994). 
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Fig. 1.5. Schematic representation of the main mechanisms involved in the synthesis, release, re- 

uptake and degradation of anandamide. AA, arachidonic acid; AC, adenylate cyclase; ArAPC, 

sn-1,2-di-arachidonoyl-phosphatidylcholine; AT, "anandamide transporter"; FAAH, fatty acid 

amide hydrolase; NArPE, N-arachidonoyl-phosphatidylcholine; NO, nitric oxide; PE, 

phosphatidyl-ethanolamine; PKA, cAMP-dependent protein kinase; PLD, N-acyl-phosphatidyl- 

ethanolamine-selective phospholipase D. 

Neurons and astrocytes are also able to rapidly uptake and degrade anandamide, 

,z ýý ý_,; _, '=h 

forming arachidonic acid and ethanolamine (Di Marzo et al., 1994; Deutsch & Chin, 

1993). In this view, anandamide appears to act as a classical neurotransmitter, with 

depolarisation-induced release, action at specific receptors, (re)-uptake by cells and 

intracellular degradation. However, differently from classical neurotransmitters, 
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anandamide and other endocannabinoids are not stored in presynaptic vesicles, but are 

thought to be synthesised "on demand" from membranous precursors. Anandamide, in 

particular, is likely to originate from the phospholipase D (PLD)-catalysed hydrolysis of 

a phospholipid precursor, N-arachidonyl-phosphatidyl-ethanolamine (NArPE; Di Marzo 

et al., 1994; 1998). NArPE is produced by the transfer of an arachidonate moiety from 

1,2-sn-di-arachidonyl-phosphatidylcholine (ArAPC) to phosphatidyl-ethanolamine (PE), 

catalysed by a Ca 2+-dependent trans-acylase (Sugiura et al., 1996; Cadas et al., 1996). 

Interestingly, it was shown that stimulation of adenylate cyclase and cAMP-dependent 

protein kinase (PKA) leads to an enhancement of the activity of the trans-acylase, thus, 

presumably increasing the final amount of produced anandamide (Cadas et al., 1996) (Fig 

1.5). 

Whereas the main metabolic pathway leading to the synthesis of anandamide is 

likely as above described, several pathways may contribute to the biosynthesis of the 

other important endocannabinoid, 2-arachidonylglycerol (2-AG). 2-AG was shown in 

several neuronal and non-neuronal cells to be produced after the stimulation of the 

phosphoinositide-phospholipase C (PI-PLC) pathway (Di Marzo et al., 1996). According 

to this pathway, 2-AG would be formed by the sequential hydrolysis of phosphatidyl 

inositols and diacylglycerols (DAGs) catalyzed by the G-protein-coupled PI-PLC and sn- 

1-selective DAG lipase, respectively (Di Marzo, 1999). However, also other pathways 

were proposed, where 2-AG is the result of a depolarisation-induced process. After 

stimulation with ionomycin, DAGs serving as 2-AG precursor can be produced by 

cortical neurons through the PI-PLC pathway (Stella et al., 1997) and by mouse 

neuroblastoma cells through the hydrolysis of phopsphatidic acid (PA) (Bisogno et al., 

1997b). In both cases, the sn-l-selective DAG lipase catalyses DAG hydrolysis to 2-AG. 

Moreover, precursors other than DAGs, such as 1-lyso-phosphoglycerides (Ueda et al., 

1993) can also generate 2-AG. 
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1.4.2 Inactivation of endocannabinoids 

Anandamide and 2-AG can diffuse through the cell membrane quite rapidly (Di 

Marzo, 1999). However, recently, a selective, temperature-sensitive, saturable and Na+- 

independent "anandamide transporter" protein was described in several primary neuron 

cultures and cell lines (Hillard et al., 1997; Beltramo et al., 1997; Bisogno et al., 1997a). 

Interestingly, the "anandamide transporter" was recently shown to be significantly 

stimulated by nitric oxide donors, thus, indicating a putative regulatory pathway for the 

inactivation of endocannabinoids (Maccarrone et al., 1998; 2000) (Fig. 1.5). No evidence 

has been yet presented for a similar uptake mechanism for 2-AG. Once inside the cells, 

anandamide and 2-AG are degraded to arachidonic acid and ethanolamine (Fig. 1.5) and 

glycerol, respectively. In 1996, the complete cDNA encoding for an enzyme able to 

specifically hydrolyse anandamide and other fatty acid amides was cloned (Cravatt et al., 

1996). This enzyme, generally referred to as fatty acid amide hydrolase (FAAH), is 

present in brain areas where high levels of CBI are also present (Thomas et al., 1997; 

Tsou et al., 1998b; Marsicano & Lutz, unpublished observations). While FAAH is the 

major anandamide-degrading enzyme (Katayama et al., 1997), FAAH is also able to 

hydrolyse 2-AG (Goparaju et al., 1998), but evidence also exists that other hydrolases 

also contribute to 2-AG breakdown in the CNS (Bisogno et al., 1997b; Di Marzo et al., 

1998; Goparaju et al., 1999). Interestingly, both the "anandamide transporter" and 

FAAH are able to transport and degrade, respectively, also other fatty acid amides 

different from anandamide, such as N-linoleoyl-ethanolamide (Maurelli et al., 1995; 

Maccarrone et al., 1998) or cis-9-octadecenoamide, also called oleamide (Cravatt et al., 

1996). These and other similar compounds have no direct cannabinoid activity, but are 

often released from neurons in higher amounts than anandamide (Di Marzo et al., 1994). 

Considering that the "anandamide transporter" and FAAH are likely to be very important 

for the physiological inactivation of anandamide in vivo (Beltramo et al., 1997; Compton 
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& Martin, 1997), it is therefore possible that these naturally occurring compounds 

contribute to the elevation of the endogenous levels of anandamide and 2-AG, by 

competing at transport and degradation sites. 

In conclusion, despite many still open questions regarding various aspects of the 

biology of cannabinoids, it is now accepted that the entity of endocannabinoids with their 

release, transport and degradation systems, and the CB 1 receptor, with its intracellular 

signal transduction mechanisms, constitute a novel neuronal system that could be 

involved in several important functions of the CNS. 

1.5 Proposed roles of the cannabinoid system in the CNS 

As mentioned above (1.3 "CBI, the `brain type' cannabinoid receptor"), the 

intracellular pathways triggered by CB 1, together with the anatomical distribution of the 

receptor, can account for most of the effects induced by pharmacological treatment of 

animals with cannabinoids (Breivogel & Childers, 1998). However, the recent discovery 

of endocannabinoids and the partial elucidation of the mechanisms involved in their 

regulation, allowed the researchers to hypothesise some of the physiological and/or 

pathophysiological functions which the cannabinoid system might be involved in. Here, I 

will briefly summarise the present evidence regarding the roles of the endocannabinoid 

system in various CNS functions and some of the potential therapeutic applications. 

1.5.1 Nociception 

In mammals, A9-THC and synthetic CB 1 agonists exert strong analgesic effects in 

several pain paradigms and through different administration routes, including local spinal 

and supraspinal applications (for recent reviews, see Martin and Lichtman, 1998; 

Chaperon & Thiebot, 1999). Exogenous cannabinoid analgesia appears to be partly 

connected with the opioid system (reviewed by Manzanares et al., 1999). Experiments 

using different opioid receptor antagonists administered either intrathecally (i. t. ) or 
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intracerebroventricularly (i. c. v. ) indicated that K-opioid receptors and µ-opiod receptors 

are involved in the spinal and supraspinal analgesic effects of cannabinoids, respectively 

(Reche et al., 1996). When pharmacologically administered, endogenous cannabinoids, 

such as anandamide, are also able to induce analgesia (Stein et al., 1996; Compton & 

Martin, 1997; Adams et al., 1998). However, the opioid system does not appear to be 

involved in the analgesic effect of exogenously administered anandamide (Welch et al., 

1995), thus, pointing to pharmacological differences between endocannabinoids and 

exogenous cannabinoid compounds. Recent studies have suggested that the endogenous 

cannabinoid system may modulate pain perception. Intrathecal administration of either 

the CBI antagonist SR 141716A or antisense oligonucleotides complementary to CBI 

mRNA, which resulted in a 60% decrease in CB 1 binding sites, elicited significant 

hyperalgesia in rats (Richardson et al., 1998; Edsall et al., 1996). Analgesia induced by 

anandamide administration was reversed by N-methyl-D-aspartate receptor antagonists, 

thus, indicating the involvement of glutamate transmission in the analgesic effects of 

endogenous cannabinoids. Moreover, in a peripheral pain model, Calignano et al. (1998) 

showed that endogenous cannabinoids can produce analgesic effects also at CB 1-like and 

CB2-like receptors located in the periphery, and, given the hyperalgesic properties of SR 

141716A in the same tests, suggested a tonic activation of the endogenous cannabinoid 

system directed to "buffer" the noxious stimuli. Furthermore, recently, Walker et al. 

(1999) demonstrated that peripheral pain stimuli were able to induce a significant release 

of anandamide in the periaqueductal grey, a brain area mainly devoted to the processing 

of nociceptive information. Discrepant results were obtained in genetic approaches. In 

1999, two CB 1-deficient mouse lines were established by two different groups (Zimmer 

et al., 1999; Ledent et al., 1999). Unexpectedly, regarding pain perception, the mouse 

line generated by Zimmer and co-workers showed a marked hypoalgesia. On the other 

hand, Ledent et al. (1999) were not able to detect any changes in basal pain perception in 
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their mutant mice. Besides the reasons putatively at the basis of such discrepancy 

(discussed in Introduction of Chapter 4), both mouse lines did not show the exogenous 

cannabinoid-induced analgesia. Interestingly, in further studies, the mouse line generated 

by Ledent et al. (1999), despite showing a normal antinociceptive response to opioid 

administration, did not possess the so-called "stress-induced" analgesia, which is believed 

to depend on the endogenous opioid system (Valverde et al., 2000). Moreover, the 

mouse line from Zimmer et al. (1999) presented a significant increase in the expression of 

some endogenous opioids, such as dynorphin and enkephalin (Steiner et al., 1999). 

Although, as discussed in the Introduction of Chapter 4, these phenotypic aspects of CB 1- 

mutant mice can be due to interactions between cannabinoid and opioid systems occurring at 

embryonic stages, nevertheless, such interaction might be reconsidered as an important point 

for the nociceptive functions of the endogenous cannabinoid system. 

In rodents, a combination of morphine with A9-THC or CP 55,940 resulted in 

greater than additive antinociceptive effects in several pain models (Reche et al., 1996; 

Smith et al., 1998; Pugh et al., 1996). This suggests the use of cannabinoids as potential 

analgesic drugs that could be used in combination with other analgesics, with the 

advantage of reducing potentially negative side effects. Particularly interesting appears 

the possibility that the endocannabinoid system is involved in particular 

pathophysiological conditions, such as chronic and inflammatory neuropathic pain 

(Herzberg et al., 1997). This would imply that drugs able to modulate the activity of 

endogenous cannabinoids might be used in order to increase their "natural" analgesic 

effect. However, the direct participation of endocannabinoids to these pathological 

conditions has still to be confirmed and discrepant results have recently been presented 

(Bealieu et al., 2000; Piomelli et al., 2000; Di Marzo et al., 2000). 
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1.5.2 Locomotion 

Exogenous cannabinoids profoundly affect locomotion in animals, in a dose- 

related biphasic manner. Large doses of natural and synthetic CB 1 agonists (including 

anandamide) strongly reduce motor activity and can induce catalepsy, while low doses 

could stimulate motor activity (Smith et al., 1994; Sulcova et al., 1998; Rodriguez de 

Fonseca et al., 1998; Sanudo-Pena et al., 1999; Sakurai et al., 1985). The CBI 

antagonist SR 141716A is able to reverse the locomotor inhibitory effects of CB 1 

agonists (Rinaldi-Carmona, 1994; Compton et al., 1996). When administered alone, the 

antagonist could induce hyperactivity in drug-naive mice, however larger doses than 

those necessary to counteract the effects of cannabinoid agonists were required 

(Compton et al., 1996). As for nociception, discrepant results were gained in the CB 1- 

deficient mice. Ledent et al. (1999) saw a modest stimulation of locomotor activity, 

while Zimmer et al. (1999) observed a severe hypomotility. CB 1 is highly expressed in 

the basal ganglia, a brain region that plays a crucial role in motor-related processes, with 

a high density of CB 1 protein in outflow nuclei, such as the entopeduncular nucleus 

(internal globus pallidus in primates), substantia nigra pars reticulata and external globus 

paffidus (Herkenham et al, 1990; Tsou et al., 1998a). Dorsolateral caudate putamen and 

subthalamic nucleus contain CB 1 mRNA, thus indicating GABAergic striatonigral and 

glutamatergic subthalamonigral axons as the main CB 1-containing subcellular structures 

(Mailleux & Vanderhaegen, 1992; Matsuda et al., 1993). A modulation of dopaminergic, 

GABAergic and glutamatergic transmission in these regions has been proposed for the 

cannabinoid-induced motor deficits (Glass et al., 1997b; Sanudo-Pena & Walker, 1997). 

Indeed, the potent synthetic CB 1 agonist WIN 55,212-2 was shown to be able to reduce 

the spontaneous firing rate of neurons in the globus pallidus (Miller & Walker, 1996), 

and exogenously administered anandamide and CP 55,940 decreased the electrically- 

evoked release of dopamine in striatal slices (Cadogan et al., 1997). A cannabinoid- 
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mediated reduction of GABA uptake was shown in substantia nigra and globus pallidus 

(Romero et al., 1998; Maneuf et al., 1996). 

In recent years, the endogenous cannabinoid system has been proposed to play an 

important role in locomotion, both in physiological and pathophysiological conditions 

(Rodriguez de Fonseca et al., 1998). Anandamide was found in microdialysates from the 

dorsal striatum of freely moving rats (Giuffrida et al., 1999). Its level was increased by 

depolarisation and was enhanced by stimulation of dopamine D2 receptors, whereas 

counteraction of its possible action at CBI with SR 141716A enhanced the motor- 

stimulatory effect of the D2 agonist quinpirole. Therefore, the authors proposed that the 

endocannabinoid system may act as a feedback mechanism inhibiting dopamine-mediated 

stimulatory activity. Anandamide and 2-AG were also shown to be present at high levels 

in the substantia nigra and external layer of the globus pallidus (Di Marzo et al., 2000). 

Interestingly, in the same study, the authors revealed a net increase of pallidal 2-AG in 

reserpine-treated animals, a model of Parkinson's disease, whereas DI or D2 receptor 

stimulation, respectively, in the same animals were able to decrease the levels of both 

endocannabinoids. Finally, full restoration of locomotion in the reserpine-treated animals 

was obtained by coadministration of the CB 1 antagonist SR 141716A and the D2 agonist 

quinpirole, thus indicating a link between the endocannabinoid signalling in the globus 

pallidus and symptoms of Parkinson's disease. Indeed, clinical studies have shown that 

cannabinoid agonists can be used to reduce the levodopa-induced dyskinesia in 

Parkinson's disease (Muller-Vahl et al., 1999; reviewed in Sevcik & Masek, 2000). Also 

other neurological disorders connected with altered locomotor function have been 

proposed to involve a dysfunctional cannabinoid system. Therefore, cannabinoid-related 

therapy might be beneficial. As examples, in human brain derived from Huntington's 

chorea patients, specific CBI binding appeared to be decreased in the basal ganglia at 

very early stages of the disease (Glass et al., 1993; Glass et al., 2000). Similar results 
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were obtained in a transgenic mouse model of the disease, with a net decrease of the 

CB I mRNA levels in subsets of neurons of striatum, cortex and hippocampus before the 

onset of the signs of the disease (Denovan-Wright & Robertson, 2000). The Gilles de la 

Tourette syndrome has also been proposed as a target of cannabinoid therapy (Muller- 

Vahl et al., 1997). Of particular interest is a recent report concerning the ability of 

cannabinoids to control spasticity and tremor in a mouse model of multiple sclerosis 

(Baker et al., 2000). The authors showed not only that pharmacological treatment with 

CB 1 agonists were able to drastically reduce these signs, but also that treatment of the 

animals with CB 1 and CB2 antagonists were able to exacerbate them. Therefore, they 

concluded that the endogenous cannabinoid system may be tonically active in the control 

of tremor and spasticity in multiple sclerosis. This and others studies indicate that 

therapeutic uses of cannabinoids should rely more on the modulation of the endogenous 

cannabinoid system (by, for example, the use of drugs able to reduce the uptake or the 

degradation of endocannabinoids) rather than on the administration of exogenous 

cannabinoid agonists and antagonists (for recent reviews, see Di Marzo et al., 2000; 

Piomelli et al., 2000). 

1.5.3 Learning and memory 

Synthetic and natural cannabinoids are able to inhibit memory formation in animals 

as assessed by various paradigms and generally exhibit their actions at doses that do not 

decrease locomotor activity (Heyser et al., 1993; Nakamura et al., 1991 Ferrari et al., 

1999). These effects are inhibited by the specific CBI antagonist SR 141716A, thus 

indicating the involvement of the receptor. CB 1 is highly expressed in brain areas that are 

considered as central elements for various kinds of memory formation, that are related to 

structures such as hippocampus, retrohippocampal areas (entorhinal and perirhinal 

cortex), amygdaloid nuclei and septal nuclei (Herkenham et al., 1990; Matsuda et al., 

1993; Tsou et al., 1998a). CBI is expressed in various subtypes of cells in these areas. 
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Both GABAergic interneurons and glutamatergic pyramidal cells express CB 1 at various 

levels (Matsuda et al., 1993; Tsou et al., 1998a; Katona et al., 1999; Marsicano & Lutz, 

1999; see also Chapter 2). Therefore, the mechanism of action of cannabinoids in these 

areas can be different depending on the cell types involved, but in most cases it appears 

to include a presynaptic inhibition of neurotransmitter release. In the hippocampus, 

cannabinoids were shown, to decrease the release of glutamate, acetylcholine, 

noradrenaline and GABA (Shen et al., 1996; Gifford et al., 1997; Schlicker et al., 1997; 

Katona et al., 1999). Such inhibitory effects on neurotransmitter release are considered 

to be the basis of the CB 1-mediated blockade of long term potentiation (LTP) in 

hippocampal slices, an electrophysiological model of synaptic plasticity (Nowicky & 

Teyler, 1987; Terranova et al., 1995; Misner & Sullivan, 1999). Interestingly, a recent 

report by Nava et al. (2000a) showed that memory impairment caused by A9-THC and 

the associated reduction of hippocampal acetylcholine concentrations were inhibited not 

only by the CB 1 antagonist SR 141716A, but also by the dopamine receptor D2 

antagonist sulpiride. This would indicate that cannabinoid-induced memory impairment 

are mediated by a concomitant D2 and CB 1 stimulation, thus pointing to an involvement 

of a cannabinoid dopamine cross-talk also in learning and memory processes. The 

endocannabinoids anandamide and 2-AG are also present in hippocampus and are able to 

inhibit LTP in a CB 1-mediated manner (Stella et al., 1997; Felder et al., 1996; Terranova 

et al., 1995). In particular, 2-AG production appears to be enhanced by electrical 

stimulation of hippocampal slices (Stella et al., 1997). In early experiments, exogenously 

administered anandamide failed to impair memory processes (Crawley et al., 1993; 

Lichtman et al., 1995), likely due to the metabolic instability of the compound. Indeed, 

anandamide impaired memory in rats pre-treated with the protease inhibitor 

phenylmethylsulphonyl fluoride (Mallet & Beninger, 1998) and the metabolically stable 

analogue R-methanandamide impaired memory in rats (Brodkin and Moerschbaecher, 
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1997). The endogenous cannabinoid system has been proposed to be tonically stimulated 

during active forgetting processes in which less important information is deleted from 

memory storage (Hampson & Deadwyler, 1998; Collin et al., 1995). This notion is 

supported by several experiments. Treatment with the CB 1 antagonist SR 141716A was 

shown to enhance social recognition (Terranova et al., 1996) and, more recently, to 

increase spatial memory in a delay version of the radial-arm maze task (Lichtman, 2000). 

Moreover, CB 1-KO mice showed also enhanced memory in a paradigm of object 

recognition (Reibaud et al., 1999) and increased hippocampal LTP (Bohnre et al., 2000). 

However, in contrast to the apparent memory enhancing effects of SR 141716A in some 

forms of memory, these results were not confirmed in a variety of different operant tasks 

(Brodkin & Moerschbaecher, 1997; Mallet and Beninger, 1998; Mansbach et al., 1996). 

These apparent discrepancies can indicate a tonic role of endocannabinoids in the 

modulation of some forms of memory and not in others. It is interesting to note that in 

both tasks where SR 141716A was shown to improve performances (Terranova et al., 

1996; Lichtman, 2000), the animals had to retain the information for substantially longer 

periods of time than in the tasks where no improving effects were observed. This would 

indicate that the endocannabinoid tone is involved more in a long-lasting active 

forgetting than in the immediate erasing of "unwanted information". 

The negative effects of cannabinoids on memory performance and the apparent 

enhancing effects of CBI antagonists suggest cannabinoid-related treatment in 

pathologies with alterations of various forms of memory. As an example, the use of the 

CB1 antagonist SR 141716A has been proposed in the pathological conditions marked 

by memory deficits, as in traumatic brain injury or neurodegenerative disease, such as 

Alzheimer's disease (Lichturan, 2000). 
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1.5.4 Reward and motivational systems 

Cannabis sativa derivatives have been known for millennia for their recreational 

and pleasure-inducing effects (Mechoulam, 1986). Among the many pharmacological 

effects produced by cannabinoid preparations is the dose-dependent "high", which is 

mainly due to the presence of A9-THC. On this basis, many studies in recent decades 

have attempted to clarify the mechanisms involved in these reward-inducing effects of 

cannabinoids by using animal models. In animals, motivational properties of drugs can be 

approached by three main behavioural procedures. 1) Intravenous self-administration 

(Goudie, 1991). 2) Drug-induced alterations of intracranial electrical self-stimulation, 

which occurs at a variety of electrode placements (the medial forebrain bundle being one 

of the more reward-relevant sites) (Stellar & Rice, 1989) 3) Place conditioning 

procedures, which are based on the principle that animals would learn to approach or 

avoid previously neutral environmental stimuli which have been paired with rewarding or 

aversive events, respectively (Carr et al., 1989). Numerous attempts to establish 

cannabinoids as reinforcers or self-administered drugs in näive or drug-experienced rats 

or monkeys were unsuccessful (e. g. Leite & Carlini, 1974). Moreover, several studies 

gave evidence that synthetic and natural cannabinoids behave as negative reinforcers in 

rodents (McGregor et al., 1996; Parker & Gillies, 1995). However, in different 

experimental conditions, cannabinoids were shown to possess some reinforcing effect. As 

examples, 09-THC was able to reduce the current threshold intensity for intracranial self- 

stimulation in the medial forebrain bundle in some strains of rats (Lepore et al., 1996), 

was self-administered at low concentrations in rats, after previous food deprivation 

(Takahashi & Singer, 1979), and supported place preference in rats at doses that differed 

depending on the time interval between injections (Lepore et al., 1995). Self- 

administration of cannabinoids was more consistently observed in mice. WIN 55,212-2 

was self-injected by CD 1 mice at moderate concentrations and became aversive at higher 
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doses. Such effects were likely CB 1-mediated, as they were abolished by SR 141716A 

and were absent in CB 1-knock out mice obtained in the same CD 1 genetic background 

(Martellotta et al., 1998; Ledent et al., 1999). Genetically determined strain differences 

could account for the discrepant results in drug preference, self-administration and 

intracranial self-stimulation obtained in rodents. Indeed, in the same experimental 

paradigm, A9-THC facilitated intracranial self-stimulation in the medial forebrain bundle 

at highest levels in Lewis rats, at half values in Sprangue-Dawley rats, but had no effect 

in Fisher 344 rats (Lepore et al., 1996). However, cannabinoids were shown to increase 

responding for palatable drinking, such as beer, near-beer and sucrose solutions, in a 

CB 1-dependent manner (Gallate et al., 1999) and to facilitate electrical self-stimulation in 

lateral hypothalamus, an area involved in feeding behaviour (Trojniar & Wise, 1991). 

These results would indicate that cannabinoids (although not consistently reinforcers per 

se and in some cases even producing aversion) may be active in facilitating the 

motivational effects of other positive reinforcers (Chaperon & Thiebot, 1999). This 

hypothesis is supported also by experiments in which the CB 1 antagonist SR 141716A 

was shown to block the establishment of conditioned place preference generated by 

classical reinforcers, such as cocaine, morphine and food (Chaperon & Thiebot, 1999). 

Moreover, morphine self-administration was highly reduced in CB 1-knock out mice 

(Ledent at al., 1999). SR 141716A also reduced motivation for sucrose solution, beer 

and alcohol consumption (Gallate & McGregor, 1999; Arnone et al., 1997; Colombo et 

al., 1998). Taken together, these results suggest that the endocannabinoid system is 

likely to be required for the perception of the motivational value of positive reinforcers, 

even if these reinforcers do not directly interact with the cannabinoid system itself 

(Chaperon & Thiebot, 1999). 

From the anatomo-functional point of view, the main circuits related to reward 

appear to consist of a synaptically interconnected series of neuronal tracts closely 
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associated with the medial forebrain bundle (reviewed in Gardner, 1997). Three stages 

can be individuated in the neuronal transmission connected with the reward circuits 

(Gardner & Vogel, 1998). 1) From various external reinforcing stimuli, a "first stage" of 

reward circuits originate diffusely in the ventral anterior forebrain, from different anterior 

bed nuclei of the medial forebrain bundle. Among these, CB 1 mRNA is present in the 

anterior lateral hypothalamus, in the horizontal limb of the diagonal band of Broca, in the 

lateral preoptic area, in the magnocellular preoptic nucleus and in the olfactory tubercle 

(Matsuda et al., 1993). From these and other nuclei of the medial forebrain bundle, 

projecting axons run posteriorly within the medial forebrain bundle and synapse on 

dopaminergic cells in the ventral tegmental area. These projections are believed to 

encode for information critical to the set point of hedonic tone (Gardner & Vogel, 1998). 

2) Dopaminergic neurons project anteriorly, always within the medial forebrain bundle to 

the nucleus accumbens and constitute the "second stage" of reward-related transmission. 

It is on this "second stage" dopaminergic convergence that addictive and abusable 

substances appear to increase brain reward functions and produce the pleasurable and 

euphoric effects at the basis of addiction (Gardner & Vogel, 1998; Kornetsky & 

Duvauchelle, 1994). 3) "Third stage" neurons appear to carry reward-relevant 

information from nucleus accumbens to the ventral pallidum, using as primary 

neurotransmitter the endogenous opioid peptide enkephalin (Gardner & Vogel, 1998). In 

order to complicate the picture, a number of additional circuits coming from several 

distinct anatomical regions such as prefrontal cortex, amygdala, locus ceruleus, raphe 

nucleus and others, synapse onto the above neuronal "stages", apparently to regulate and 

modulate the overall set point of hedonic tone (Gardner & Vogel, 1998). In this complex 

situation, cannabinoids acting at CBI are likely to interact at different stages with 

reward-related circuits. However, the mesolimbic dopaminergic system is considered as 

the common neuronal substrate for the motivational and rewarding effects of drugs and 
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for related physiological functions of the brain. Therefore, cannabinoids have been 

extensively studied in regard of their influence on this system. Ventrotegmental 

dopaminergic neurons are likely to be devoid of CB1, but anatomical and functional 

interactions between CBI and dopamine receptors were described in dorsolateral 

striatum (e. g. Glass & Felder, 1997; Giuffrida et al., 1999; Hermann, Marsicano & Lutz, 

in preparation). Even in absence of direct experimental evidence, given the fact that 

nucleus accumbens is coexentensive with the ventral striatum and that there is extensive 

homology between the afferents, efferents and internal neuroanatomical organisation of 

the nucleus accumbens and those of the dorsal striatum (Gerfen, 1988; 1993), it can be 

assumed that the anatomofunctional interactions between dopaminergic and cannabinoid 

systems found in dorsolateral striatum may also hold at some extent in the nucleus 

accumbens (Gardner & Vogel, 1998). However, A9-THC has been reported to enhance 

dopamine outflow in nucleus accumbens and medial prefrontal cortex of rats (Chen et al., 

1990a; 1990b). More recently, A9-THC and WIN 55,212-2 were shown to induce 

dopamine release selectively in the shell, but not in the core, of nucleus accumbens. Such 

an effect was completely prevented by SR 141716A (Tanda et al., 1997). These 

cannabinoid actions were also strongly reduced by the aspecific opioid receptor 

antagonist naloxone and by the µn opioid specific antagonist naloxonazine, thus 

indicating that CB 1 stimulation may facilitate mesolimbic dopamine transmission by 

activating the endogenous opioid system (Tanda et al., 1997; Chen at al., 1990a). In vivo 

electrophysiological studies have also shown that cannabinoids acting at CB 1 are able to 

activate mesolimbic and meso-prefrontal dopaminergic neurons (Diana et al., 1998; 

Gessa et al., 1998; French, 1997). On the other hand, SR 141716A did not change the 

spontaneous firing rate of mesolimbic dopaminergic cells, thus presumably excluding that 

these neurons are under the control of a tonically activated cannabinoid system (Gessa et 

al., 1998). 
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In conclusion, despite the fact that behavioural data are at some extent 

contradictory in revealing positive reinforcing properties of cannabinoids per se, an 

involvement of the cannabinoid system exists in many aspects of reward-related brain 

functions, mostly mediated by interactions with the dopaminergic and the opioid systems. 

In this respect, CB 1 antagonists treatment has been proposed for the management of 

opioid addiction (Ledent et al., 1999). On the other hand, cannabinoids or drugs aimed 

to enhance endogenous cannabinoid tone might be useful in the treatment of dysphoric 

states (Gardner & Vogel, 1998). 

1.5.5 Neuroprotection 

Natural and synthetic exogenous cannabinoids were shown to exert 

neuroprotective effects in several in vivo and in vitro neurotoxicity models (Hampson et 

al., 1998a; Nagayama et al., 1999; Sinor et al., 2000). Also endocannabinoids and related 

compounds have been proposed to exert neuroprotective activity (Di Marzo et al., 

1998). Anandamide is able to inhibit NMDA-receptor-mediated Ca 2+ influx (Hampson et 

al., 1998b) and has been shown to be released following glutamate stimulation or cell 

injury (Schmid et al., 1996; Cadas et al., 1996; Hansen et al., 1998). However, the exact 

mechanism(s) of these neuroprotective effects have not yet been clarified. "Classical" and 

"non-classical" cannabinoids such as A9-THC and CP 55,940 contain a phenolic ring 

(Fig. 1.4) which has been proposed as an important lead structure for protection against 

oxidative stress, regardless of any specific receptor-mediated action (Moosmann & Behl, 

1999). Therefore, the presence of a phenolic ring in many exogenous cannabinoids could 

account for their neuroprotective effects. Indeed, A9-THC, but also another constituent 

of C. Sativa, cannabidiol, which has a very low affinity for CB 1, were both shown to act 

as neuroprotective antioxidant (Hampson et al., 1998a). However, other mechanisms 

appear to be also involved. Aminoalkylindole compounds, such as WIN 55,212-2, and 

endocannabinoids do not contain the phenolic ring and, indeed, do not show antioxidant 
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properties (Marsicano, Moosmann, Behl & Lutz, in preparation; see also Chapter 5). 

However, WIN 55,212-2 was shown to be a potent neuroprotectant in a rat model of 

global and focal ischaemia (Nagayama et al., 1999). Interestingly, in the same report, the 

neuroprotective action of WIN 55,212-2 appeared to be CBI-mediated in vivo, but is 

CB 1-independent in vitro, thus indicating differences in the mechanisms of action in the 

whole animal or in isolated neuronal cultures. Recently, endocannabinoids were also 

shown to protect cortical neurons from in vitro 02 deprivation, in a CB 1- and CB2- 

independent way (Sinor et al., 2000). Moreover, palmitoylethanolamide, a non-CB 1- 

binding eicosanoid member of the same family of anandamide (Di Marzo et al., 1998), 

was shown to protect cerebellar granule cells from glutamate toxicity (Skaper et al., 

1996). Finally, CB 1 expression was recently shown to be increased in experimental 

stroke (Jin et al., 2000), thus indicating a likely involvement of CB 1-mediated 

endogenous cannabinoid signalling pathways in self-protecting mechanisms of the brain. 

Taken together, these data suggest complex mechanisms underlying the neuroprotective 

effects of cannabinoids and the putative neuroprotective role of the endogenous 

cannabinoid system, ranging from chemical antioxidant properties of "classical" and 

"non-classical" cannabinoids to the receptor-mediated effects of aminoalkylindoles and 

endocannabinoids. 

Whatever the underlying mechanism(s) are, these properties of exogenous and 

endogenous cannabinoids have been considered as promising in respect of possible 

therapeutic applications. Regulation of glutamate transmission, antioxidant properties 

and inhibition of Ca 2+ permeability can constitute a "cocktail" of positive effects in 

neurodegenerative pathologies. In this context, cannabinoids or drugs aimed to increase 

the endocannabinoid tone might emerge as potentially very useful therapeutic agents in 

neurotoxic diseases, such as brain ischaemia or Alzheimer's disease (Piomelli et al., 

2000). 
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1.5.6 Other proposed central roles of the cannabinoid system 

Besides the roles mentioned above, exogenous and endogenous exert also other 

effects in animals and humans. 

Natural and synthetic cannabinoids, as well as endocannabinoids produce a typical 

decrease of body temperature in animals (Pertwee, 1997). This effect is probably due to 

the presence of cannabinoid receptors in hypothalamic and caudal brainstem areas 

(Breivogel & Childers, 1998). Interestingly, recent results have shown that hypothermic 

effects induced by 09-THC are mediated by a coactivation of CB 1 and dopamine D2-like 

receptors (Nava et al., 2000b), underlying the importance of a functional cross-talk 

between cannabinoid and dopaminergic systems. An active cannabinoid tone was never 

shown to exist in the control of basal temperature, either by CB 1 antagonist treatment 

(Compton et al., 1996) nor in CB 1-knock out mice (Zimmer et al., 1999; Ledent et al., 

1999). However, given the facts that endocannabinoids are released in cellular stress 

conditions and that the cannabinoid system has been proposed to play a role in immune 

system and in inflammation (reviewed by Di Marzo et al., 1998), a role of the 

cannabinoid system in the modulation of body temperature in stress conditions might be 

hypothesized. 

The central endogenous cannabinoid system has also been proposed to have a role 

in sleep (Murillo-Rodriguez et al., 1998). The mechanism through which anandamide and 

other cannabinoids are able to induce sedation have not yet been clearly understood. 

However, very interestingly, the hypnotic actions of oleamide, a non-canriabimimetic 

fatty acid amide that accumulates in cerebrospinal fluids under conditions of sleep 

deprivation and that induces sleep in animals (Boger et al., 1998), were shown to be 

blocked by the CB 1 antagonist SR 141716A (Mendelson & Basile, 1999), thus 

indicating a central role of the cannabinoid system in sleep-inducing mechanisms. 

Appetite stimulation, relief of anxiety and sedation are three of the typical effects 
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described by Cannabis sativa extract users and have been correlated with the presence of 

cannabinoid receptors in the hypothalamus and limbic system (Di Marzo et al., 1998). 

The endogenous cannabinoid system has been proposed to play a tonic modulatory role 

in the sucrose and ethanol intake (Annone et al., 1997), in the inhibition of anxiety-like 

responses (Navarro et al., 1997) and in the decrease of arousal (Santucci et al., 1996) in 

rodents. Taken together, the main central effects of cannabinoids and the proposed roles 

of the endocannabinoid system could be related to a general stress-recovery system (Di 

Marzo et al., 1998). "Feel less pain, control your movement, relax, eat, forget, sleep and 

protect" might be some of the signals that are mediated by the activation of the 

endogenous cannabinoid system. 
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1.6 Aims of the Thesis 

Exploring some of the physiological and pharmacological aspects of the 

cannabinoid system was the major aim of this thesis. Several different methodological 

means were applied to investigate the biology of the mouse cannabinoid system and of 

the "brain type" cannabinoid receptor CB 1 in particular. 

In Chapter 2 and partly in Chapter 3, single and double in situ hybridization 

experiments were performed to determine the CB 1-expressing neuronal populations in 

the forebrain at the cellular level that are expressing the receptor. There were two 

purposes for these studies. First, to better understand the mechanisms through which the 

cannabinoid system might modulate neural activity in the brain; second, to describe genes 

that are coexpressed with CB 1 in the adult mouse brain in the light of defining which Cre 

recombinase-expressing transgenic mouse lines could be used to generate "conditional" 

mouse mutants (see "Discussion" of Chapter 4). Both aims were reached, with a detailed 

description of the expression pattern of CB 1 at cellular level and the definition of two 

genes, cholecystokinin and glutamic acid decarboxylase, whose regulatory sequences 

appear optimal candidates for spatially restricted expression of Cre recombinase in 

transgenic mouse lines. 

Neuroanatomical experiments constitute a good tool to get a deeper insight into 

possible physiological functions of a protein. However, it was also my interest to 

investigate some more functional aspects of the cannabinoid system. From the results 

described in Chapter 2, it was possible to hypothesise an involvement of CB 1 in the 

modulation of GABAergic and glutamatergic neurons. It is known that glutamatergic 

transmission is strictly connected with the nitric oxide pathway. Therefore, the 

availability of mutant mice for the gene nNOS (neuronal nitric oxide synthase) 

represented a good opportunity to explore in details one of the putative functional 

connections of the cannabinoid system with other neurotransmitter systems. With this 
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aim, in Chapter 3, the functional cross-talk between cannabinoid system and nitric oxide 

(NO) pathway was analysed. nNOS-knock out mice were behaviourally assayed for 

cannabinoid-induced pharmacological effects. Moreover, nNOS mutants were 

characterised for the expression of CB 1 in selected brain areas by in situ hybridization 

and coexpression between CBI and nNOS was analysed by double in situ hybridization 

in wild type mice. Results indicate that nNOS is necessary for some behavioural effects 

of A9-THC, that nNOS mutant mice express lower levels of CB 1 mRNA in selected brain 

areas and that CB 1 and nNOS are coexpressed in some regions of mouse forebrain. 

Chapter 4 constituted the central part of this thesis. It describes a sophisticated 

genetic approach to investigate very specifically and precisely the physiological functions 

of CB 1. The most important steps for the generation of a "conditional" CB 1-mutant 

mouse line are presented, with the obtaining of the "Floxed CB V" line and of the 

cannabinoid receptor null mice ("CBN" line). Several techniques were used for the 

preparation of this Chapter, ranging from molecular biology, to cell culture and mouse 

breeding methods. The "Floxed CB I" line will represent a powerful tool during the next 

years for the genetic analysis of the functions of CB I, whereas the "CBN" line represents 

an interesting model for the investigations on the activity of CB 1 at cellular level. 

One example of these investigations is described in Chapter 5. In the last Chapter 

of my thesis, I analysed some aspects of the neuroprotective properties of cannabinoids, 

by the use of in vitro neurotoxicity assays. Cannabinoids were shown to possess 

neuroprotective potentialities, but the exact mechanism(s) of these effects is still unclear. 

Therefore, several cannabinoids were tested in in vitro neurotoxicity assays and the 

involvement of CB I in cannabinoid-mediated neuroprotection was analysed. Cell lines 

were permanently transfected with CB 1 and neuroprotective effects of various 

cannabinoids were tested on such cell clones in comparison to the parental wild type cell 

clones. Moreover, primary cerebellar granule cells derived from wild type mice and from 
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CB I -knock out mice (CBN mouse line, as generated in Chapter 4) were also used to 

determine the role of CB 1 in cannabinoid-induced in vitro neuroprotection. Results seem 

to indicate that CB 1 is not necessary for cannabinoid-mediated neuroprotection in vitro. 

In conclusion, the overall strategy of the Thesis tried to cover several aspects of 

physiological roles of the cannabinoid system and of CB 1 in the mouse brain. 

Neuroanatomical and neurochemical results, as obtained in Chapter 2 and 3, represented 

the rationale for a functional analysis (cross-talk between cannabinoids and nitric oxide 

pathway in Chapter 3) and for the future spatial deletion of CB 1 (see the Discussion of 

Chapter 4). The generation of CB 1-mutant mice and in particular the "conditional" 

deletion of CB 1 (Chapter 4) will represent a powerful tool for understanding in details 

the physiological roles of the cannabinoid system in mouse physiology and behaviour. 

Moreover, null CB 1-deficient animals were used in this Thesis as a source of neurons to 

analyse the roles of CBI in in vitro neuroprotection of cannabinoids (Chapter 5). 

Although much work is still to be done in the future, the work described in this Thesis 

led to new insights into the roles of CB 1 and the cannabinoid system. 
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Chapter 2 

Expression of the cannabinoid receptor CB1 in distinct 

neuronal subpopulations in the adult mouse forebrain 

This work is published as Marsicano & Lutz, European Journal of Neuroscience, Vol. 

11, pp. 4213-4225,1999. 

2.1 Introduction 

The characteristic behavioural effects of cannabinoids are mediated by CB 1, the 

"brain type" cannabinoid receptor, a seven transmembrane G-protein-coupled receptor 

(Matsuda et al., 1990). Biochemical studies showed that G; io proteins transduce the 

cannabimimetic inhibition of adenylate cyclase (Howlett, 1995). CB 1 causes a cAMP- 

independent inhibition of N- and Q-type voltage-dependent Ca 2+ channels (Mackie & 

Hille, 1992; Felder et al., 1995) and a cAMP-dependent stimulation of inwardly 

rectifying K+ channels (Deadwyler et al., 1993; Mackie et al., 1995). These signal 

transduction pathways can explain some effects of cannabinoids in the central nervous 

system, such as inhibition of acetylcholine, noradrenaline and glutamate release, e. g. in 

hippocampus (Gifford & Ashby, 1996; Schlicker et al., 1997; Shen et al., 1996). CB 1 is 

also coupled to the activation of adenylate cyclase in striatal neurons upon simultaneous 

stimulation of the dopamine receptor D2 (Glass & Felder, 1997), possibly due to 

differential regulation of adenylate cyclase isozymes by CBI (Rhee et al., 1998). 

Endogenous ligands for CB 1 have been discovered (Devane et al., 1992; Stella et al., 

1997), sharing many of the properties of plant derived and synthetic cannabinoids. 

Therefore a cannabinoid system has been proposed to play an important 

neuromodulatory role in brain physiology (for review see Di Marzo et al., 1998). 

Several phannacological effects of cannabinoids (e. g. decrease of learning 

behaviour) are thought to be mediated by CB 1 expressed in forebrain structures. In situ 
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hybridization (ISH) and immunohistological studies described CB 1 expression in the rat 

forebrain in several cortical areas and in several non-cortical regions, such as striatum 

and some thalamic and hypothalamic nuclei (Mailleux & Vanderhaegen, 1992; Matsuda 

et al., 1993; Tsou et al., 1998a; Pettit et al., 1998). The pattern of CB 1 expression in the 

mouse forebrain, however, has not yet been described in detail. 

Determination of CB 1-positive neurons at a single cell resolution is a prerequisite 

for better understanding of the physiological role of the cannabinoid system in mouse. 

Based on morphological features, CB 1-expressing neurons in hippocampus and other 

cortical regions have been proposed to be GABAergic (Matsuda et al., 1993; Tsou et al., 

1998a), but conclusive evidence for this notion is still missing. GABAergic neurons 

express GABA and glutamic acid decarboxylase (GAD), and are classified according to 

criteria such as morphology, orientation of afferent and efferent fibres, type of 

innervating neurons and presence of distinct calcium binding proteins and neuropeptides 

(for review see Freund & Buszäki, 1996). Morphological criteria are difficult to be 

evaluated in ISH experiments, but detection of coexpression of CB1 with various 

markers can very well be accomplished using double ISH technique, as transcripts are 

generally localized in the soma of the cells. Thus, in this study, it was investigated which 

CB 1-expressing cells are GABAergic and whether CB 1 is coexpressed with other 

neuronal markers. 

Recent immunohistochemical studies in rats suggest that a fraction of CB 1- 

positive cells in the hippocampus has morphological features of basket cells, which are 

also called perisomatic inhibitory cells (Tsou et al., 1998a). Typically, basket cells are 

forming "basket" nets around principal cell bodies. From the neurochemical point of 

view, basket cells are GABAergic neurons that can further be divided into two distinct 

subpopulations: (1) basket cells containing the calcium binding protein parvalbumin 

(pV), and (2) basket cells containing the neuropeptide cholecystokinin (CCK) (Freund & 
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Buszdki, 1996; Soriano et al., 1990; Gulyas et al., 1991). In addition, Tsou et al. (1998a) 

described CB 1-positive neurons possessing fibers with orientations different from typical 

basket cells. Thus, CB 1-expressing cells might belong to an additional subpopulation of 

hippocampal GABAergic neurons. Two putative candidates for these CB 1-containing 

non-basket cells are calbindin D28k (C28)-positive mid-proximal dendritic inhibitory 

cells (Gulyas & Freund, 1996) and calretinin (CRT)-positive interneurons that are 

specialized in innervating other interneurons (Gulyas et al., 1996). Therefore, double ISH 

experiments were performed on hippocampus, but also on other cortical and some 

selected non-cortical areas of the mouse forebrain, using radioactive riboprobes for GAD 

65, CCK, C28, PV and CRT, respectively, together with a non-radioactive CB 1 

riboprobe. 

2.2 Materials and methods 

2.2.1 Tissue preparation 

Adult mice (3-5 months old; FVB/N and CD I strains) were killed by cervical 

dislocation. Brains were removed, snap-frozen on dry-ice and stored at -800C. After 

removing from -800C, brains were mounted on Tissue Tek (Polysciences, Warrington, PA, 

U. S. A. ), and 14-pun thick coronal sections were cut from forebrain on a cryostat Microtome 

HM560 (Microm, Germany). Sections were mounted onto frozen SuperFrost/Plus slides 

(Fisher Scientific, Ingolstadt, Germany), dried on a 42°C-warming plate and stored at -200C 

until used. 

2.2.2 Synthesis of probes 

Both radioactive (35S) and non-radioactive (fluorescein isothiocyanate, FITC) labeled 

riboprobes were used. Probes were generated by RT-PCR from cDNA derived from total 

mouse brain RNA. For each probe, GenBank accession number, length and sequence of the 

primers are listed below; nucleotide positions are identical to those used in deposited 
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sequences in GenBank: CB19 accession number U22948,1530 base pairs (bp) from 152 to 

1682 (forward primer 5'-GTT GAG CCT GGC CTA ATC AAA, reverse primer 5'-GTT 

GAC CGA ACC TCT GTT TTC); GAD 65, accession number D42051,1041 bp from 1055 

to 2096 (forward primer 5'-GGC GAT GGA ATC TTT TCT CCT, reverse primer 5'-CGA 

GGC GTT CGA TTT CTT CAA); PV, accession numbers X54613 and X67141,802 bp 

from 11 of accession number X54613 to 510 of accession number X67141 (forward primer 

5'-CAG CGC TGA GGA CAT CAA GAA, reverse primer 5'-GAT CTA GCT AGT CCT 

GAA GGA); CRT, accession number X73985,1023 bp from 35 to 1058 (forward primer 5'- 

CCG ACC GAA GAG AAT TTC CTT, reverse primer 5'-GGG AAG CCA AAG AGA 

AAA GGA); C28, accession number M21531,1016 bp from 166 to 1182 (forward primer 

5'-GAG ATC TGG CTT CAT TTC GAC, reverse primer 5'-GAT GAA CAC TTG GAT 

TTC CC); CCK, accession number X59520 and X59522,411 bp from 188 of accession 

number X59520 to 151 of accession number X59522 (forward primer 5'-ACT TAG CTG 

GAC TGC AGC TT, reverse primer 5'-GGA CTA CGA ATA CCC ATC GTA). PCR 

products were cloned into pBluescript KS- (Stratagene, CA, U. S. A. ) and used as templates 

for riboprobe synthesis. Identity of all fragments was checked by sequencing. Linearized 

template DNA was phenol-extracted, precipitated, resuspended in DEPC-treated H2O at a 

concentration of 1 µg/µ1, and stored at -200C. For 35S-labeled riboprobes, in vitro 

transcription was carried out for 3 hours at 37°C in a total volume of 30 µl containing 1.5 µg 

of linearized DNA, 1x transcription buffer, 1 mM of rATP/rCTP/rGTP each, 16.7 mM DTT, 

40 units RNasin (Promega, U. S. A., WI), 10 pi of 35S-thio-rUTP (NEN, U. S. A., MA; 1250 

Ci/mmol) and 30 units of T7 or T3 RNA polymerase (Roche Molecular Diagnostics, 

Germany). For FITC-labeled nloprobes, in vitro transcription was carried out for 3 hours at 

37°C in a total volume of 50 µl containing 1.5 µg of linearized DNA, Ix transcription buffer, 

0.35 mM FITC-rUTP (Roche Molecular Diagnostics, Germany), 0.65 mM rUTP, 1 mM of 

rATP/rCTP/rGTP each, 80 units RNasin (Promega, WI, U. S. A. ) and 100 units of T3 or T7 
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RNA polymerase. Reactions were treated with 20 units of RNase-free DNasel (Roche 

Molecular Diagnostics, Germany) for 15 min at 37°C, and labeled probes were purified by 

a monium acetate precipitation. Restriction enzymes (New England Biolabs, MA, U. S. A. ) 

used for linearization and RNA polymerases used for each probe were as follows: CB 1 sense, 

PstI, T7; CB 1 antisense, BamHI, T3; GAD 65 sense, EcoRI, T7; GAD 65 antisense, BamHI, 

T3; PV sense, BamHI, T3; PV antisense, Hindill, T7; CRT sense, EcoRI, T7; CRT 

antisense, BamHI, T3; C28 sense, EcoRV, T7; C28 antisense, BamH, T3; CCK sense, 

BamHI, T3; CCK antisense, EcoRI, T7. Using these probes in ISH experiments, sense 

controls did not give any detectable signals, and antisense probes gave distribution patterns 

identical to those already published in rat or mouse (data not shown). 

2.2.3 In situ hybridization 

Slides were warmed-up for 30 min at RT, fixed in ice-cold 4% paraformaldehyde in 

PBS (PBS contains 136 mM NaCI, 2.7 mM KCI, 10 mM, Na2HPO4,1.8 mM KH2PO4, pH 

7.4), rinsed three times in PBS, incubated for 10 min in 0.1 M triethanolamine-HC1(pH 8.0) 

to which 0.63 ml of acetic anhydride were added dropwise, rinsed twice in 2x SSC (lx SSC 

contains 150 mM NaCI, 15 mM Na3 citrate, pH 7.4), dehydrated in graded series of ethanol, 

delipidized in chloroform for 5 min, rinsed in 100% and 95% ethanol and air-dried. 

Hybridization was carried out overnight at 64°C in 90 µl of hybridization buffer containing 

35S-labeled riboprobe (35,000 to 70,000 cpm/µl) and/or FITC-labeled nboprobe (1 µg/ml). 

Hybridization buffer consisted of 50% formamide, 20 mM Tris-HCl pH 8.0,0.3 M NaCI, 5 

mM EDTA pH 8.0,10% dextran sulphate (D8906, Sigma, Germany), 0.02% Ficoll 400 

(F2637, Sigma, Germany), 0.02% polyvinylpyrrolidone (MW 40,000, PVP40, Sigma, 

Germany), 0.02% bovine serum albumin (BSA; A6793, Sigma, Germany), 0.5 mg/ml tRNA 

(Roche Molecular Diagnostics, Germany), 0.2 mg/ml fragmented herring sperm DNA and 

200 mM DTT. 

After incubation in humid chamber, slides were rinsed four times for 5 min each in 4x 
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SSC at room temperature (RT), incubated 30 min at 37°C in 20 µg/ml of RNaseA in 0.5 M 

NaCI, 10 mM Tris-HC1 pH 8.0,5 mM EDTA, rinsed at RT in decreasing concentrations of 

SSC (lx, 0.5x and 0.1x SSC) containing 1 mM DTT, washed twice for 30 min each at high 

stringency in 0.1x SSC/1mM DTT at 64°C and washed twice for 10 min at RT in 0.1x SSC. 

At this point, 35S-labeled slides were dehydrated in graded ethanol series, air-dried and 

exposed to Biomax MR film (Kodak, Germany). On the next day, slides were dipped in 

photographic emulsion (NTB-2 from Kodak, diluted 1: 1 in distilled water). After exposure 

for 5 to 20 days at 4°C, slides were developed for 3 min (D-19, Kodak, Germany), fixed for 6 

min (Kodak fixer), rinsed for 30 min in tap water and air-dried. Slides were mounted in DPX 

(BDH, England). 

For non-radioactive (FITC) and double-labeled (35S/FITC) ISH experiments, slides 

were soaked after the last 0.1 x SSC wash at RT (see above) in buffer 1 (100 mM maleic acid 

pH 7.5,150 mM NaCl) for 1 min at RT, blocked in buffer 2 (1% Blocking Reagent in buffer 

1, Roche Molecular Diagnostics, Germany) for 30 min at RT, incubated with alkaline 

phosphatase-conjugated anti-FITC antibody (Roche Molecular Diagnostics, Germany) 

diluted 1/3000 in buffer 2 for 2 hours at RT, washed 2x in buffer 1 for 15 min at RT, washed 

2x in buffer 3 (100 mM Tris-HC1 pH 9.5,100 mM NaCI, 50 mM MgCb) for 2 min at RT. 

Chromogenic reaction was carried out with Vector Red kit (Vector Laboratories, U. S. A., 

CA) at RT for 24-36 hours with 2 changes of staining solution. Reaction was stopped by a 

10-min incubation in 0.1 M Tris-HC1 pH 8.2, followed by 10 min in 2.5% glutaraldehyde in 

PBS and four washes for 15 min in 0. lx SSC. In double ISH experiments, slides were treated 

at this point like slides from radioactive ISH, with dehydration, dipping and developing. At 

the end, slides were counterstained for 10 sec in 0.1% aqueous toluidin blue solution, rinsed 

2x for 10 sec in tap water, destained for 45 sec in 70% ethanol (containing 1 drop of 100% 

acetic acid per 100 ml), rinsed for 45 sec in 100% ethanol and air dried. Slides from double 

ISH were mounted in Kaiser's Gelatin (BDH, U. K. ). 
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2.2.4 Numerical evaluation of coexpression 

As CB 1 is expressed at various levels, cells stained with FITC-labeled riboprobe were 

classified according to the following criteria. Cells expressing CB 1 at high levels (termed: 

high CB 1-expressing cells) were considered those showing a round-shaped and intense red 

staining surrounding the nucleus or even covering the entire nucleus (e. g. see Fig. 2.2D, F). 

Cells expressing CB 1 at low levels (termed: low CB 1-expressing cells) were defined as cells 

clearly stained above background levels and in a discontinuous shape and/or at uniform and 

low intensity of staining (e. g. see Fig. 2.2D, F). Principal cells in CAl/CA3 regions of 

hippocampus displayed low and uniform levels of expression, with a slightly stronger intensity 

in CA3. Concerning numerical evaluation of the double ISH experiments, these principal cells 

were not included. Sections were analysed on a Leica DMRB microscope. All CB 1-positive 

cells were checked for coexpression with the following markers: GAD 65, CCK, PV, CRT or 

C28, respectively. Cells were evaluated and classified as high CB 1-expressing cells or as low 

CB 1-expressing cells with or without coexpression of above markers, respectively. In 

hippocampus, CCK- and GAD 65-positive cells were also evaluated for coexpression with 

CBI. 
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2.3 Results 

2.3.1 CB1 expression in the forebrain 

In hippocampus (Fig. 2.1 D; Fig. 2.2A, B), both low and high CB 1-expressing cells were 

detected. Pyramidal cells (Py) express low levels of CB 1, while cells with intensity of signal 

ranging from low to very high were observed in all layers of hippocampus, mostly in the 

subgranular layer of dentate gyros (SGr) (see also in Fig. 2.3C) and the lacunosum-molecular 

layer of CAI and CA3 regions (LMol) (Fig. 2.2A). Neocortex showed the presence of 

scattered low and high expressing cells, located primarily in layers 11-111 and V-VI (Fig. 2.1 D, 

2.2A). Few low CB 1-expressing cells are scattered in layers I and IV. CB 1-positive cells are 

more abundant in the primary and secondary motor (M 1 /M2) and sensory areas (S 1 FL/HL) 

(Fig. 2.1 C, D). CBI is also highly expressed in olfactory areas (Fig. 2.1 A). Low CB 1- 

expressing cells are distributed uniformly in the entire anterior olfactory nucleus (AO) with 

the presence of many scattered cells expressing high levels of mRNA (data not shown). 

Rather high numbers of CBI-positive cells (both low and high CBI-expressing cells) were 

observed also in piriform cortex (Pir) and olfactory tubercle (Tu) (Fig. 2.1 B, C). In 

amygdaloid region, not all nuclei showed equal intensities of expression. Both anterior (BLA) 

(Fig. 2.1 D; Fig. 2.2C, D) and posterior parts of basolateral amygdaloid nucleus (data not 

shown) contain a very high number of low CB 1-expressing cells uniformly distributed, and a 

rather high number of scattered high CB 1-expressing cells. Basomedial amygdaloid nucleus 

(BMA) showed a similar pattern of CBI expression (Fig. 2.1 D), while other amygdaloid 

nuclei contain lower levels of expression (data not shown). Entorhinal and perirhinal cortical 

areas (Ent) showed a very high number of both low and high CB 1-expressing cells (Fig. 

2.1 C, D; Fig. 2.2E, F). Non-cortical areas such as striatum (dorsolateral caudate putamen, 

Cpu, and globus pallidus, GP) and hypothalamus (ventromedial, VMH, and anterior 

hypothalamic nucleus) showed the presence of low CB 1-expressing cells that are uniformly 

distributed at high cell density (Fig. 2.1 D). Expression levels in other hypothalamic areas and 
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in thalamus are relatively low as compared to other forebrain regions. Rather strong 

hybridization signals were detected in the septal region (lateral, Ls, and medial septum, Ms, 

and vertical and horizontal nuclei of the diagonal band, VDB) (Fig. 2.1 B). 

Fig. 2.1. Dark-field micrographs of coronal sections from adult mouse forebrain showing the 

distribution of CBI mRNA, as detected by ISH with a 35S-radiolabeled riboprobe for CB 1. Note the 

high levels of CB I expression in anterior olfactory nucleus (A), neocortex (A-D), dorso-lateral caudate 

putamen (B, C), hippocampus (C, D), entorhinal/perirhinal cortex area (C, D), basolateral and 

basomedial amygdaloid nuclei (D). Scale bars: 1 mm. 

Rather high levels of expression were also observed in hypothalamic regions, such as 

medial and lateral preoptic nucleus, magnocellular preoptic nucleus and hypothalamic nucleus 

(not shown). More caudally, the premamnillaty nucleus showed low and uniform levels of 

expression (not shown). Scattered, low CB 1-expressing cells were observed in the lateral 

hypothalamus (Fig. 2.1 D). Weak signals were also observed in thalamic regions, such as the 

paraventricular thalamic nucleus (PVT), lateral habenula (Lhb), reticular thalamic nucleus 

(Rt) and zona incerta (ZI) (Fig. 2.1 C, D). In summary, the pattern of CB 1 expression in 



49 

mouse was found to be very similar, if not identical, to that observed in rats (Matsuda et al., 

1993). Distribution, number and intensities of ISH signals generated with radioactive and 

non-radioactive niboprobes specific for CB 1 were then compared. Representative examples 

are shown in Fig 2.2. No differences were detected between these two techniques, and, thus, 

non-radioactive riboprobes for CB 1 were further used for double ISH experiments. 
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Fig. 2.2. Bright-field micrographs of coronal sections showing CB1 distribution and levels of 

expression in cortical and limbic structures. Parallel coronal sections from three different brain regions 

were hybridized either with a 35S-radiolabeled (A, C, E) or with a FITC-labeled (B, D, F) riboprobe. 
(A, B) hippocainpus and dorsal neocortex; (C, D) basolateral amygdaloid nucleus; (E, F) entorhinal 

cortex. Note that number of labeled cells and intensity of signals are the same when comparing the two 

ISH techniques. Both high and low CBI-expressing neurons can clearly be classified. The light grey 

area between CAI and cortex in (B) is due to nonspecific staining of white matter. Filled arrowhead, 

high CB 1-expressing cell; open arrowhead, low CB 1-expressing cell; open arrow, CB 1-negative cell. 

Scale bars: A and B. 150 pm; C and D, 40 pm; E and F, 10 pm. 

For a detailed analysis of coexpression of CB 1 with five neuronal markers, five cortical 

(hippocampus, neocortex, anterior olfactory nucleus, entorhinal cortex area and amygdaloid 

area) and two non-cortical areas (dorsolateral caudate putamen and ventromedial 

hypothalamic nucleus) were chosen, because of their high expression levels and the proposed 

functional relevance of these regions in cannabinoid physiology and pharmacology (Breivogel 

& Childers, 1998). 
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Fig. 2.3. Bright-field micrograph of coronal sections showing examples of coexpression of CB l 

(red staining) with CCK and GAD 65 (silver grains), respectively, as detected by double ISH. All 

sections were counterstained with toluidine blue. (A) Overview of hippocampus double-stained for 

CBI and CCK. Note the expression of CCK in pyramidal cells of CA1/CA3 regions. (B) Higher 

magnification of dentate gyrus from (A) showing high degree of coexpression of CB l with CCK (filled 

arrow, filled arrowhead). (C) Dentate gyrus double-stained for CBI and GAD 65, showing complete 

coexpression for high CBI-expressing cells. (D) Double staining for CBI and CCK in basolateral 

amygdaloid nucleus. Note that CBI and CCK display almost complete coexpression. (E) Double 

staining for CB 1 and CCK in entorhinal cortex area, showing high degree of coexpression. (F) Double 

staining for CBI and GAD 65 in entorhinal cortex area, showing that low CBI-expressing cells do 

colocalize partly with GAD 65. This is in contrast to CCK as shown in (E). Filled arrow, high CB1- 

expressing cell coexpressing CCK or GAD 65; filled arrowhead, low CBI-expressing cell 

coexpressing CCK or GAD 65; open arrow, high CB 1-expressing cell not coexpressing CCK or GAD 

65; open arrowhead, low CBI-expressing cells not coexpressing GAD 65 or CCK; asterisks, cells 

expressing only CCK or GAD 65. Scale bars: A, 150 m; B and C, 40 µm; D, E and F, 20 fin. 
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Double-positive cells are located in granular and subgranular layers of dentate gyrus. 

GAD 65-negative, but CB 1-positive cells contain only low levels of CB 1 and are located in 

the polymorph layer of the dentate gyrus. These cells are often mistaken for interneurons, but 

are actually thought to be "misplaced" principal cells (Freund & Buszäky, 1996; Toth & 

Freund, 1992). Therefore, CB 1 expression in these scattered cells is consistent with the 

general observation that all principal cells of CAl /CA3 area express CBI at low levels, but 

lack GAD 65 expression. 

CB1/GAD CB1/CCK 

Low CBI 16.5 37.2 

CA1 Area* High CBI 26.9 47.8 

Total 43.4 (1154) 85.0 (460) 

Low CB1 20.7 37.6 

CA3 Area* High CBI 21.3 45.3 

Total 42.0 (1366) 82.9 (683) 

Low CBI 23.2 26.8 

Dentate Gyrus High CBI 14.6 26.1 

Total 37.8 (387) 52.9 (187) 

Table 2.2. Percentage of coexpression of CBI in GAD 65- and CCK-positive cells in adult mouse 

forebrain. Percentages indicate the total fraction of CBI-expressing cells among the GAD 65- and 

CCK-positive populations. Numbers of analysed cells are in parentheses. Low and high, respectively, 

indicate the percentages of cells expressing CB 1 at low or high levels among the total number of GAD- 

and CCK-expressing cells. Total means the percentage of all C131-expressing cells among the total 

number of GAD- and CCK-positive cells. 

* Principal cells in CA 1 /CA3 areas express low levels of CBI mRNA and are not included in 

coexpression data. GAD 65 is not expressed in these cells, but CCK is expressed. 

Table 2.2 shows the percentage of CB 1 expression among the GABAergic cell 

population. In CAl/CA3 area, 42-43% of GAD-65 expressing cells also contain mRNA 

coding for CB 1, while the value decreases to 3 7.8% in the dentate gyrus. 

In summary, these results show that, with exception of principal cells in CA 1 /CA3 and 
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of cells in polymorph layer, all CBI-expressing cells in the hippocampus are GABAergic 

intemeurons and that CB 1-positive cells represent about 40% of GABAergic neurons. In all 

pyramidal cells of the CA1 /CA3 region, CB 1 and CCK (Fig. 2.2A, B; Fig. 2.3A) show full 

coexpression. In hippocampal cells outside the pyramidal cell layer, CCK mRNA is also 

highly coexpressed with CB 1, as shown in Fig. 2.3A, B and Table 2.1. Low CB 1-expressing 

cells show about 70% colocalization in CAl /CA3 and 47% in dentate gyrus. In high CB 1- 

expressing cells, values increase to 91% and 94% in CAI and CA3, respectively, and to 73% 

in dentate gyrus. Table 2.2 shows that the fraction of CB 1 expressing cells among all CCK- 

containing neurons is also very high: 85% and 83% and more than 50% in CAI, CA3 and 

dentate gyrus, respectively. CCK containing intemeurons in the hippocampus and dentate 

gyrus have been described as a specific subset of basket cells (Gulyas et al., 1991). According 

to this study, a large fraction of CBI-expressing cells belongs to this particular type of 

hippocampal interneurons. In addition, considering that pyramidal cells in CAI /CA3 do 

express both CB 1 and CCK (Fig. 2.3A), a very high fraction of all CCK-positive cells in the 

hippocampus do also express CB I. 

Colocalization experiments with calcium binding proteins resulted in a rather different 

situation. In the hippocampus, PV and CRT are coexpressed with CB 1 only at a very low 

percentage (Table 2.3; Fig. 2.4C). Together with the results obtained with CCK, these 

observations showed that hippocampal CBI-positive cells can be classified as a subset of 

basket cells being CCK-positive and PV-negative (Gulyas et A, 1991). Since another subtype 

of hippocampal interneurons, the axo-axonic cells, were described to contain PV, it is clear 

from this study that CB 1-positive cells belong only to a negligible extent to this interneuronal 

subtype. 
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Law CBI High CBI 

expressing cells expressing cells 

C28 PV CRT C28 PV CRT 

CAI Area* 32.4 (294) 1.3 (307) 1.1 (251) 29.1 (204) 1.3 (198) 0.0 (242) 

CA3 Area* 29.1 (341) 1.8 (383) 5.2 (313) 22.3 (221) 1.3 (247) 2.5 (247) 

Dentate Gyrus 

Layers II-III Neocortex 

Layers V-VI Neocortex 

Anterior Olfactory Nucleus 

Entorhinal Cortex Area 

Amygdaloid Area 

Striatuffi** 

Hypothalamus'" 

31.5 (144) 0.0 (119) 2.0 (145) 

24.9 (983) 0.5 (637) 1.0 (577) 

13.7 (1011) 1.1 (575) 1.3 (525) 

ND 4.1 (236) 19.2 (241) 

16.8 (722) 3.5 (691) 2.8 (612) 

13.1 (787) 4.6 (681) '''"` 

-75 -15 0.0 

-100 0.0 -100 

31.5 (144) 2.6 (91) 2.3(96) 

32.8 (471) 1.0 (302) 0.0 (332) 

13.7 (354) 1.5 (384) 0.0 (414) 

ND 0.0 (91) 0.0 (103) 

39.7 (92) 1.2 (87) 1.3 (75) 

73.5 (89) 1.7 (119)"` 

Table 2.3. Percentage of coexpression of calcium binding proteins with CBI in adult mouse 
forebrain. Percentages indicate cells expressing low levels or high levels of CB 1 that were also 

labeled with riboprobes specific for calbindin 28k (C28), parvalbumin (PV), or calretinin (CRT). 

Numbers of analysed cells are in parentheses. Data were collected from 35 (CB 1 +PV, 

CBI+CRT) and 30 (CB1+C28) sections from two different brains. ND: not determined. 

* Principal cells in CA 1 /CA3 areas express low levels of CBI mRNA and are not included in 

coexpression data. C28 is expressed in CA 1 principal cells, PV and CRT are not expressed. 
** Due to the uniform distribution of low CBI-expressing cells in the dorsolateral part of striatum 
and in the ventromedial and anterior hypothalamic nuclei, numbers in these areas reflect an estimation 
only. 
*** CB 1 /CRT coexpression varies in different amygdaloid nuclei: Basolateral posterior part: 31.7 
(184) (low CBI), 14.3 (42) (high CBI); Basolateral anterior part: 8.8 (274) (low CBI), 2.5 (40) (high 
CBI); Basomedial anterior part: 4.5 (220) (low CBI), 0.0 (37) (high CBI). 

Instead, C28 showed a significant percentage of colocalization, in the range of 22% to 

32% (Table 2.3; Fig. 2.4A, B). C28-expressing cells in the hippocampus were described as 

interneurons innervating dendrites of pyramidal cells (Gulyäs & Freund, 1996), but they are 

not considered as basket cells, as these cells innervate mostly the soma of principal neurons 

(Soriano et a1., 1990). 
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Fig. 2.4. Bright-field micrograph of coronal forebrain sections showing examples of coexpression of 

CB I (red staining) with C28 and PV (silver grains), respectively. All sections were counterstained with 

toluidine blue. (A) Overview of hippocampus double-stained for CB1 and C28. Note the expression of 
C28 in pyramidal cells of CAI region and in granular cells of dentate gyrus. (B) Higher magnification 

of CA3 from (A) showing some coexpression of CBI and C28 in CA3 area (filled arrow, filled 

arrowhead). (C) Lack of coexpression of CBI with PV in CA3 area (open arrow, open arrowhead, 

asterisks). (D) In basolateral amygdaloid nucleus, C28 is present in many high CBI-expressing cells 

(filled arrow), but only in a few low CBI-expressing cells (filled arrowhead). (E) Double staining for 

CB 1 and PV in basolateral amygdaloid nucleus, showing only a small fraction of colocalization (filled 

arrowhead). (F) Double staining of CBI and C28 in entorhinal cortex area, showing some 

colocalization (filled arrow). Filled arrows, high CBI-expressing cells coexpressing C28; filled 

arrowhead, low CBI -expressing cells coexpressing C28 or PV; open arrows, high CBI-expressing 

cells not coexpressing C28 or PV; open arrowheads, low CB 1-expressing cells not coexpressing C28 

or PV; asterisks, cells expressing only C28 or PV. Scale bars: A, 150 µm; B and C, 40 fin; D, E and 

F, 20 µm. 
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2.3.3 CB1 expression in neuronal subpopulations in other cortical regions 

2.3.3.1 Neocortex 

In the entire neocortex, nearly all CB 1-positive cells also express GAD 65 (Table 2.1). 

Similarly to hippocampus, coexpression with CCK is more than 99% for high CB 1- 

expressing cells in layers V-VI, but is decreased to 77% for low CB 1-expressing cells in 

layers 11-111 (Table 2.1). No apparent differences in degree of coexpression were observed in 

various neocortical subregions. PV and CRT showed very low coexpression with CB 1 (Table 

2.3). Thus, neocortical CBI-positive cells are GABAergic neurons, expressing CCK, but 

neither PV nor CRT. However, C28 showed some extent of coexpression with CB 1, which is 

higher in layers 11-111 than in layers IV-V (Table 2.3). 

2.3.3.2 Entorhinal/perirhinal cortex area 

Entorhinal and perirhinal cortex are the major cortical site of efferents and afferents to 

and from the hippocampus (Suzuki, 1996; Lopes da Silva et al., 1990). Layers 11-111 and 

layers V-VI display very high numbers of low CB 1-expressing cells and many scattered high 

CB 1-expressing cells (Fig. 2.1 C, D; Fig. 2.2E, F), furthermore pointing out the modulatory 

functions of cannabinoids in memory processes. Fig. 2.3F and Table 2.1 show that GAD 65 is 

expressed in nearly all high CB 1-expressing cells. Much lower colocalization is observed in 

the population of cells expressing low levels of CB 1. The degree of coexpression with CB 1 is 

higher for CCK than for GAD 65 (Table 2.1, Fig. 2.3E). Taken together, these results 

indicate that nearly all high CB 1-expressing cells are GABAergic neurons containing CCK, 

while the cells containing low levels of CB 1 mRNA are only partly GABAergic, but do 

express CCK, This is a striking difference to neocortex, where all CBI-positive cells are 

GABAergic, regardless of the levels of CB I. As observed in hippocampus and neocortex, 

coexpression of CBI with CRT and PV is very low (Table 2.3), but coexpression with C28 is 

16.8% for low and 39.7% for high CBI-expressing cells (Table 2.3; Fig. 2.4F). 
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2.3.3.3 Olfactory system 

Cells expressing low levels of CB 1 were detected in piriform cortex and in dorsal 

regions of the olfactory tubercle, and few high CB 1-expressing cells were present in the 

nucleus of the lateral olfactory tract. The most prominent expression area is located in the 

anterior olfactory nucleus (Fig. 2.1 A), where a high number of low CB 1-expressing cells is 

present interspersed by a low number of strongly positive neurons. All CB 1-positive cells are 

equally distributed throughout all parts of the anterior olfactory nucleus, where the degree of 

coexpression with GAD 65 and CCK is comparable to that observed in the 

entorhinaiperirhinal cortex area (Table 2.1). High CB 1-expressing cells were found to be 

positive for both markers in almost 100% of the neurons evaluated, while the degree for low 

CBI-expressing cells decreases to 35.2% and 89.5% for GAD 65 and CCK, respectively. 

Thus, as in other cortical regions, high CB 1-expressing cells seem to belong to a population 

of GABAergic neurons containing CCK, while the cells containing low levels of CB 1 mRNA 

partly belong to a CCK/GAD 65-double positive population and partly to another population 

that is CCK-positive, but GAD 65-negative. For PV and CRT, there is nearly a lack of 

coexpression with CB 1 (Table 2.3). Only few CRT-positive cells (19.2%) were observed in 

the low CBI-expressing cell population. Together with some nuclei of amygdaloid region 

(see below), this is the only cortical area in which a significant coexpression of CB 1 with 

CRT was observed. 

2.3.3.4 Amygdaloid region 

CB 1 is expressed in several nuclei of the amygdala.. Only low levels were detected in 

the bed nucleus of stria tenninalis and in the central amygdaloid nucleus (data not shown). 

High numbers of both low and high CB 1-expressing cells were found, however, in the 

anterior and posterior parts of the basolateral amygdaloid nuclei and in the anterior part of the 

basomedial nucleus (Fig. 2.1 D; Fig. 2.2C, D). In these latter nuclei, high CB 1-expressing cells 

also contain GAD 65 (Table 2.1). Instead, low CB 1-expressing cells have different levels of 
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GAD 65 coexpression, depending on the nuclei A gradual decrease along the posterolateral 

to anteromedial direction was apparent (Table 2.1, see note). In the posterior part of the 

basolateral nucleus, the percentage of colocalization is 42.7%, while it decreases to 15.0% in 

the basomedial anterior part. Taken together, almost all high CBI-expressing cells are 

GABAergic, while a fraction ranging from 57% to 85% for low CB 1-expressing neurons is 

non-GABAergic. CCK highly colocalizes with CB 1 in an uniform manner in the amygdaloid 

nuclei examined (Fig. 2.3D; Table 2.1). Approximately 90% of low CB 1-expressing cells and 

nearly all high CB 1-expressing cells contain CCK mRNA. As other cortical areas, amygdala 

contains low CBI-expressing cells that are CCK-positive, but GAD 65-negative. A distinct 

population comprising all high CB 1-expressing cells and a fraction of low CB 1-expressing 

cells express both GAD 65 and CCK. As Table 2.3 and Fig. 2.4E show, PV is present in very 

few CB1-positive cells. Similarly to GAD 65, coexpression of CRT also decreases along the 

posterolateral to anteromedial direction (Table 2.3, see note). C28 displays uniform 

coexpression throughout the amygdaloid nuclei analyzed. A considerable percentage is 

observed for low CBI-expressing cells (13.1%), but is increased to 73.5% in high CBI- 

expressing cells. Thus, in amygdaloid region, about 70-75% of high CB 1-expressing cells 

belong to a population of GABAergic neurons that contains both CCK and C28. 

2.3.4 CB1 expression in neuronal subpopulations in non-cortical regions 

2.3.4.1 Striatum 

CB 1 hybridization signals were detected at low levels in many cells throughout the 

striatum. Nucleus accumbens, ventromedial caudate putamen, globus pallidus and 

entopeduncular nucleus contain cells expressing quite low levels of CB 1. In contrast, 

dorsolateral caudate putamen showed an intense staining due to a very compact and uniform, 

but low level expression (Fig. 2.1 B, C). Nearly all medium-sized cells in dorsolateral caudate 

putamen are CBI -positive. Number of labeled cells and intensity of signal decrease along the 

medioventral axis. Due to uniform distribution of low CB 1-expressing cells in this area, it was 
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not feasible to count coexpressing cells at a single cell resolution. Thus, the numbers reflect an 

estimation only. Table 2.1 shows the values of coexpression of CB 1 with GAD 65 and CCK. 

Basically all CB 1-positive cells in the dorsolateral caudate putamen contain GAD 65 mRNA, 

while none are CCK-positive. Spiny neurons in caudate putamen express GAD 65, and they 

constitute approximately 95% of the cells in this region (Ottersen & Storm-Mathisen, 1984). 

As shown in Table 2.3, many CB 1-positive cells (circa 75%) coexpress C28. Scattered cells 

(ca. 15%) coexpress PV, while there is a lack of colocalization of CB 1 with CRT. These 

results revealed that CBI-expressing cells in dorsolateral caudate putamen are GABAergic 

neurons that do not express CCK. They might belong to two distinct or partly overlapping 

populations, which express C28 and PV, respectively. 

2.3.4.2 Hypothalamus 

Several hypothalamic nuclei display low levels of CB 1 mRNA. Strongest hybridization 

signals were detected in ventromedial (Fig. 2.1 D) and anterior hypothalamic nuclei (not 

shown), where CB1-positive cells are uniformly distributed. There is a lack of coexpression of 

CB 1 and GAD 65 in these hypothalamic nuclei (Table 2.1), as GAD 65 is expressed mainly in 

hypothalamic areas surrounding the ventromedial and anterior hypothalamic nuclei. 

Remarkably, there is also a lack of coexpression with CCK (Table 2.1, see note). Among all 

areas analyzed, this is the only forebrain region in which neither GAD 65 nor CCK colocalize 

with CB I. C28 and CRT are highly enriched in cell bodies of ventromedial and anteromedial 

hypothalamus. Thus, they coexpress with CB1 to a high degree (Table 2.3). PV is not 

expressed in the hypothalamus (Celio, 1990). 
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2.4 Discussion 

The aim of this study was to define in detail the distribution pattern and the 

neurochemical characteristics of CB 1-expressing neurons in the adult mouse forebrain. 

Therefore, single ISH experiments using 35S-labeled or FITC-labeled CB 1 riboprobes, and 

double ISH experiments using a FITC-labeled CBI riboprobe in combination with 35S-labeled 

riboprobes to GAD 65, CCK, PV, C28 and CRT, were performed. CB 1-expressing cells can 

clearly be discriminated into two different populations: one expressing high levels and the 

other expressing low levels. High CB 1-expressing cells are in the great majority GABAergic, 

characterized mostly by the expression of CCK, the lack of PV and CRT, and, rarely, the 

presence of C28. Low CB 1-expressing cells belong only partly to the same subpopulations of 

GABAergic cells as high CB 1-expressing cells. Remarkably, for low CB 1-expressing cells, 

the presence of CCK characterizes also non-GABAergic neurons. In cortical areas, they can 

be considered as principal projecting cells. These results are in agreement with recent similar 

observations obtained by other groups which used single and double immunohistochemistry 

on rat hippocampus (Tsou et a1., 1999; Katona et at, 1999). 

The discrimination between high and low CB 1-expressing cells is also in agreement 

with immunohistochemical observations in rats (Tsou et al., 1998a), indicating that the 

different levels of expression of mRNA are probably connected to different levels of protein 

expression. The different neurochemical properties of CBI-expressing cells in various 

forebrain areas are likely to underlie different functional properties. 

2.4.1 CB1 and the GABAergic system 

Previous immunohistochemical and ISH studies performed in rats (Tsou et aL, 1998a; 

Matsuda et al., 1993) suggested that in cortical structures CB 1 receptor is present mainly in 

GABAergic neurons. Our results indicate that this is true in the mouse forebrain only for high 

CBI-expressing cells, where GAD 65 colocalizes with CBI at a degree close to 100%. 

However, low CB 1-expressing cells appear to be less correlated with the GABAergic system. 
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Pyramidal cells of CA 1 /CA3 areas in hippocampus express low levels of CB l, but do not 

express GAD 65. The same is true for many cells in the polymorph layer of dentate gyrus that 

probably represent misplaced pyramidal cells. From immunohistochemical studies in rats, it is 

not clear whether CB 1 protein is expressed in pyramidal cells of hippocampus. Some authors 

(Tsou et al., 1998a; Katona et al., 1999; Tsou et al., 1999) report negligible levels of 

expression of CB1 protein in pyramidal cells of CAI/CA3 region. In contrast, using a 

different antiserum and different fixation procedures, Pettit et aL (1998) observed a clear 

expression of CB 1 in these cells. This discrepancy might be explained by the fact that different 

fixation procedures might mask different epitopes or can destroy particular subcellular 

organelles in which the protein is localized. However, in agreement with results obtained in 

rats (Matsuda et al., 1993), the present ISH data in mouse clearly revealed that a low but 

significant amount of CB1 mRNA is expressed in pyramidal cells of CA1/CA3 hippocampal 

regions. Similarly to hippocampus, in the anterior olfactory nucleus, entorhinal/perirhinal 

cortex and amygdaloid nuclei, the majority of low CB 1-expressing cells is not GABAergic. 

Only in neocortex, CB 1 seems to be completely correlated with the GABAergic system, 

regardless of the levels of CB 1 expression. 

Hippocampus, amygdala, and entorhinal/perirhinal cortex comprise the so-called limbic 

system, which is considered to be a central circuit for important brain functions, such as 

learning and memory, as well as cognition (Miller et at, 1998; Suzuki, 1996). The effects of 

cannabinoids on memory processes are generally believed to be due to the interaction of CB 1 

with the GABAergic system (Terranova et al., 1995). Recently, Paton et aL (1998) analyzed 

the involvement of GABA transmission in the mechanism by which cannabinoids are able to 

inhibit long-term potentiation (LTP), an electrophysiological correlate of learning and 

memory in hippocampal slices. Unexpectedly, the authors observed a decrease of GABAergic 

transmission in the presence of CB 1 agonists. Therefore, they concluded that increased 

GABA activity is not directly involved in the inhibition of LTP by cannabinoids. Moreover, 



62 

they speculate that presynaptic CB 1 receptors located specifically on terminals of principal 

glutamatergic neurons, which synapse onto inhibitory interneurons, may mediate the 

reduction of the excitatory drive of these cells. This is in agreement with the present 

observation that pyramidal cells of CA1/CA3 express low levels of CB1, but lack expression 

of GAD 65. 

2.4.2 CB1 expression in distinct neuronal subpopulations 

In hippocampus, neurochemical characterization of GABAergic neurons defines at least 

four distinct subpopulations (Freund & Buszäki, 1996). (1) PV-positive GABAergic 

interneurons are considered as basket cells that innervate perisoma of pyramidal cells and as 

axo-axonic cells, innervating the proximal part of axons of pyramidal cells (Soriano et al., 

1990). (2) CCK-positive GABAergic interneurons represent a different population of basket 

cells that does not overlap with PV-positive GABAergic neurons, but also innervates the 

soma of pyramidal cells (Gulyas et al., 1991). (3) C28 is present in cells innervating mid- 

proximal dendrites of pyramidal cells (Gulyas & Freund, 1996). (4) CRT is characteristic for 

interneurons specialized in innervating other interneurons (Gulyäs et at, 1996). In this study, 

it was found a high degree of coexpression of CB 1 with CCK, some coexpression with C28 

and nearly a lack of coexpression with PV and CRT, indicating that CB 1-expressing cells are 

mostly basket cells of the CCK-positive and PV-negative type and, to a lower extent, C28- 

positive interneurons innervating mid-proximal dendrites of pyramidal cells. As almost no 

coexpression of CBI was observed with CRT and PV, CBI is not present neither in axo- 

axonic cells, innervating the proximal part of the axons of pyramidal cells nor in intemeurons 

specialized in innervating other interneurons. Interestingly, for low CB 1-expressing cells in 

CAI /CA3 regions of hippocampus, the percentages of coexpression with C28 and with CCK, 

respectively, appear to be complementary (30% versus 70%). Thus, low CB 1-expressing 

cells that are GABAergic might belong to two distinct intemeuronal subpopulations: basket 

cells (CCK coexpression) and, to a lower extent, cells innervating mid-proximal dendrites 
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(C28 coexpression). For high CB 1-expressing cells there must be an overlap of at least 10- 

20%, as CBI/C28 coexpression is approx. 20%, whereas CB 1 /CCK coexpression is more 

than 90%. 

In the limbic system (e. g. entorhinaYperirhinal cortex, amygdala and hippocampus), a 

significant percentage of low CB 1-expressing cells are not GABAergic, but express CCK. In 

neocortex, many CCK-positive pyramidal cells were described as corticostriatal and 

corticothalamic projecting neurons (Ingram et aL, 1989; Burgunder & Young, 1988; Morino 

et aL, 1994; Senatorov et at, 1997). Many CCK-positive cells also appear to be projecting 

neurons in entorhinal/perirhinal cortex and amygdala, as, for example, CCK was shown to be 

present in fibers connecting entorhinal cortex and hippocampus, and in fibres crossing the 

amygdalo-hippocampal border (Greenwood et a1., 1981; Roberts et at, 1984; Fredens et at, 

1984). Considering the high levels of coexpression between CB 1 and CCK in GAD-negative 

cells, these observations might indicate an involvement of CB 1 in the limbic system that is not 

only due to an influence on GABAergic inhibitory control, but also to a direct effect on CCK- 

positive projecting neurons (see below and Fig 2.5). It is interesting to note that neurons 

expressing CCK and low levels of CB1, but no GAD 65, were not observed in neocortex, 

where nearly all CB 1-expressing cells are GABAergic and, thus, are considered as 

intemeurons. 

In caudate putamen, CB 1 is coexpressed with GAD 65 and, partly, with C28 and PV, 

but not with CCK. CB 1 was shown to be important for the expression of GAD and 

neuropeptides such as substance P, dynorphin and enkephalin (Steiner et aL, 1999). This is an 

indication that the relation between neuropeptides and cannabinoids is very important in 

physiology and pharmacology of the cannabinoid system and that different neuropeptides are 

involved in different brain areas. 
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2.4.3 CB1 and CCK 

A striking finding of this study is the very high coexpression of CB 1 with CCK in 

cortical areas. Excluding the dentate gyrus, in which coexpression is slightly lower, in all 

cortical areas analyzed, mRNA encoding the neuropeptide is present in approx. 70-90% of 

the low CB 1-expressing cells and 90-100% of the high CB 1-expressing cells. CCK, originally 

characterized as a gastrointestinal hormone, is one of the most abundant neuropeptides in the 

brain. The active forms, derived from the precursor pre-procholecystokinin range from 4 to 

58 amino acids, but the most abundant peptide is the sulfated octapeptide CCK-8S (Fink et 

a1., 1998). They exert their actions through two receptors, CCK-A, present mostly in the 

gastrointestinal tract and CCK-B, expressed predominantly in the brain. CCK is involved in 

feeding, learning and memory, behavioural expression of anxiety, mediation of painful stimuli 

and is also involved in functions controlled by the dopaminergic, serotonergic and opioid 

systems (Crawley & Corwin, 1994). It is interesting to note that many functions, in which 

CCK is involved, are also modulated by cannabinoids. In some cases, the two systems seem 

to act in an antagonistic fashion. For example, CCK was shown to be hyperalgesic, and CCK 

receptor antagonists are used to increase the analgesic effects of opioids (Faris et al., 1983; 

Kernstein & Mayer, 1991; Duggan, 1992), while the antinociceptive effects of cannabinoids 

are very well known (for a review, see Martin & Lichturan, 1998). CCK is also considered to 

be a satiety factor (Reidelberger, 1994), while CB 1 agonism was proposed to induce feeding 

behaviour (Mattes et al., 1994). Also, many effects of cannabinoids seem to be mediated by 

interaction with the dopaminergic and opioid systems (e. g. Castellano et aL, 1997; Giuffrida 

et al., 1999; Tanda et A, 1997; Ledent et aL, 1999), both of which are interacting with CCK 

as well (Crawley, 1991; Duggan, 1992). Given these findings and given the high degree of 

coexpression of CBI with CCK, it is tempting to speculate about a possible functional cross- 

talk between the two systems; e. g., cannabinoids might have an effect on production, 

processing or release of CCK peptides. Depolarization of cell membrane was shown to 
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induce release of CCK both in vitro and in vivo (Raiteri et aL, 1993). Compounds that are 

able to increase intracellular concentration of cAMP enhance depolarization induced release 

of CCK, and a decrease of cAMP inhibits CCK release (Beinfeld, 1996). Considering that 

activation of CB1 can inhibit cAMP production, it appears likely that cannabinoids may 

modulate the release of CCK. Indeed, preliminary results obtained in our laboratory, indicate 

a significant dose-dependent inhibitory effect (ca. 50% of maximal reduction) of the potent 

CB 1 agonist WIN55,212-2 (1 µM and 0.1 µM) on the KCl-induced release of CCK from 

mouse cortical slices (Marsicano & Lutz, unpublished observations). 

Possible interactions between CB1 and CCK may also involve the regulation of CCK 

synthesis by cannabinoids. In this regard, it is interesting to note a possible involvement of 

both the receptor and the peptide in some pathophysiological conditions, such as 

schizophrenia. Based on similar scores in psychodiagnostic tests between schizophrenic 

patients and healthy volunteers to which cannabinoids were administered, and based on the 

interaction of cannabinoids with the dopaminergic and glutamatergic system, a "cannabinoid 

hypothesis" of schizophrenia has recently been proposed, suggesting an increased 

pathological cannabinoid tone in schizophrenic patients (Emrich et al., 1997; Schneider et at, 

1998; Leweke et al., 1999). On the other hand, abnormally decreased levels of CCK mRNA 

were observed in schizophrenic subjects, but not in Alzheimer patients in discrete cortical 

areas, such as entorhinal cortex (Gabriel et at, 1996; Bachus et a1., 1997). It would be 

tempting to relate these observations with our CBl/CCK coexpression study and to propose 

that an increased stimulation by cannabinoids might lead to decreased levels of CCK in 

distinct cortical brain areas. 

2.4.4 From anatomy to function: putative sites of action of cannabinoids in cortical 

areas 

CB 1 is distributed throughout the central nervous system of mammals in greater 

abundance than most of the other known G-protein-coupled receptors (Herkenham et al., 
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1990). Therefore, it would be an error to underestimate the physiological importance of 

cannabinoids in cells that express CB 1 at low levels, because such expression is in any case 

very high as compared to other identified receptors in the brain. For example, despite the 

rather low levels of CBI mRNA expressed by single cells in caudate putamen and in other 

subcortical areas (e. g. preoptic area in hypothalamus), the CB 1 receptor seems to exert 

essential functions in locomotor activity and in hypothermia, respectively (Steiner et al. 1999; 

Giuffrida et al., 1999; Zimmer et al., 1999; Breivogel & Childers, 1998). 
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Fig. 2.5. Schematic representation of the connectivity of hippocampus and cortical areas that are 

proposed to be modulated by the cannabinoid system. CB 1 is present at low but significant levels (L- 

CB 1) in principal neurons participating in the "trisynaptic loop" between entorhinal cortex and 
hippocampus. Due to the high number of low CBI-expressing cells (that are GAD-negative and CCK- 

positive) in perirhinal and amygdaloid areas, it appears likely that cannabinoid signaling might also 

modulate neuronal transmission between perirhinal, entorhinal and amygdaloid area. Note the high 

degree of CB I /CCK coexpression in projecting neurons, suggesting an involvement of the neuropeptide 

in cannabinoid action. 

CBI is present in many cells belonging to the so-called "trisynaptic loop" (Knowles, 

1992) between entorhinal cortex and hippocampus (Fig. 2.5). The present results show that a 

high percentage of low CB 1-expressing cells are GAD 65-negative and CCK-positive and, 

thus, are likely to be principal projecting neurons. Cannabinoid activity on these receptors, 
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therefore, might result in a direct modulation of the "trisynaptic loop". Other likely sites of 

action of cannabinoids in the hippocampus and probably also in other forebrain areas (e. g. 

neocortex) are the local GABAergic inhibitory circuits (Fig. 2.6). 
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Fig. 2.6. Schematic representation of local hippocampal circuits in CA3 area that are proposed to be 

modulated by the cannabinoid system. (1) and (2): CBI is expressed both at low and at high levels 

(L/H-CB 1) in GAD 65-positive interneurons. (1): The majority of neurons (70-80%) belongs to the 

CCK-positive, PV-negative subfamily of basket cells, innervating the soma of pyramidal cells. (2): 20- 

30% of CB 1-positive cells belong to the C2 8-positive subfamily of interneurons that innervate the mid- 

proximal tract of dendrites of pyramidal cells. For clarity, pyramidal cells are represented as three 

different cells, but a direct feed-back between one pyramidal cell and one interneuron is also possible. 

(+) and (-) indicate an excitatory and an inhibitory effect of synaptic transmission, respectively. In 

summary, the cannabinoid system might be involved in local inhibitory GABAergic circuits, by 

modulation of basket and mid-proximal dendritic inhibitory cells. 

In hippocampal slices, cannabinoids were indeed shown to cause a reduction of release 

of several neurotransmitters, including glutamate and GABA (Shen et al., 1996; Katona et al., 

1999), possibly suggesting differential modulatory effects on different cell types. 

In summary, these diverse sites of action could indicate a balanced modulatory effect of 

cannabinoids on principal projecting neurons and on interneurons. Endocannabinoids are 

believed to be locally produced, released and rapidly inactivated (for reviews, see Di Marzo & 

Deutsch, 1998; Di Marzo et a1., 1998; Piomel i et a1., 1998). Anandamide and 2- 
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arachidonylglycerol, the two major endocannabinoids described so far, were shown to be 

released upon chemical or electrical stimulation of neurons (Stella et at, 1997; Giuffrida et at, 

1999; Piomelli et a1.1998). This locally induced release and the rapid inactivation of 

endocannabinoids, together with the differential expression of CB 1, could suggest that the 

cannabinoid system has different modulatory functions depending on particular physiological 

or pathophysiological conditions. 

Glutamate transmission is one of the most important events that occurr in the brain.. 

The expression study described in this Chapter suggests that the cannabinoid system might be 

a potential modulator of glutamatergic transmission. It is therefore possible that other systems 

that interact with glutamatergic neurons have some functional cross-talks with the 

cannabinoid system. As an example, strong connections are known between the nitric oxide 

system and glutamate transmission (Bredt & Snyder, 1994; East et al., 1996; Contestabile, 

2000). In this view, a putative functional interaction between the cannabinoid system and the 

nitric oxide pathway was hypothesised and experiments in this direction will be described in 

the next Chapter, by the use of neuronal nitric oxide synthase-deficient mouse mutants. 
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Chapter 3 

Differential role of the nitric oxide pathway on A9-THC- 

induced central nervous system effects in mouse 

The work described in this Chapter is in press as Azad, Marsicano, Eberlein, Putzke, 

Zieglgänsberger, Spanagel and Lutz, European Journal of Neuroscience. Azad and 

Marsicano share the first authorship. My contributions were the in situ hybridization 

experiments and their quantitative evaluation, whereas Dr. Shahnaz Azad performed the 

behavioural experiments. Results are given without discriminating the various 

contributions in order not to disrupt the completeness of the experimental strategy. 

3.1 Introduction 

A9-tetrahydrocannabinol (A9-THC), the major psychoactive constituent of C. 

sativa, is known to exhibit a variety of central effects including hypothermia, 

antinociception and changes of locomotor activity (Felder & Glass, 1998; Ameri, 1999; 

Pertwee, 1997). These effects are mainly mediated by the "brain-type" cannabinoid 

receptor CB 1, a seven transmembrane G-protein-coupled receptor predominantly 

expressed in the central nervous system (Pertwee, 1997). The entity of cannabinoid 

receptors with binding, synthesis, release and degradation of their endogenous ligands is 

generally referred to as a novel neuromodulatory system called the cannabinoid system 

(Di Marzo et al., 1998). Results of recent studies imply that the cannabinoid system is 

likely to interact with several neurotransmitter systems such as the GABAergic, 

dopaminergic, opioid and glutamatergic systems (Herkenham et al., 1991; Bidaut-Russell 

& Howlett, 1991; Glass & Felder, 1997; Pertwee & Wickens, 1991; Manzanares et al., 

1999; Ameri, 1999; Piomelli et al., 2000; Hampson et al., 1998b). There is also a general 

consensus that the nitric oxide (NO) pathway is strongly linked to the glutamatergic 
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system (Bredt & Snyder, 1994; East et al., 1996; Contestabile, 2000), but also to the 

GABAergic, dopaminergic and opioid ones (e. g. Jayakumar et al., 1999; Liu, 1996; 

Herman et al., 1995). NO is an intra- and extracellular messenger, which is produced by 

the nitric oxide synthase (NOS). There are three NOS genes encoding the respective 

isoforms: endothelial (eNOS), inducible (INOS) and neuronal NOS (nNOS) (Garthwaite 

& Boulton, 1995; Huang & Lo, 1998; Contestabile, 2000) with the latter being the focus 

of the present investigation. nNOS is a calcium/calmodulin-dependent enzyme which was 

found first in neurons (Bredt & Snyder, 1994). It is considered to participate in a variety 

of physiological and pathological processes such as neuronal plasticity and neurotoxicity 

(Dawson et al., 1998). In addition, NO is known to be involved in the effects of many 

centrally acting anaesthetic and analgesic drugs (Johns et al., 1992; Tonner et al., 1997; 

Ferreira et al., 1991). 

In vitro studies have shown that there is a link between cannabinoid signalling 

through cannabinoid receptors and NO pathway in vertebrate brain. CP-55940, a potent 

agonist of CB 1, is able to decrease the release of NO from endotoxin/cytokine-activated 

rat microglial cells (Waksman et al., 1999). Similarly, several potent CB 1 agonists were 

shown to inhibit KCl-induced activation of NOS from primary cerebellar cultures, 

whereas the cannabinoids had no effect on basal NOS activity (Hillard et al., 1999). In 

vivo pharmacological studies have analysed the effects of NOS inhibitors on cannabinoid- 

induced behavioural and pharmacological responses (Thorat & Bhargava, 1994; Spina et 

al., 1998). Both groups did not observe any effect of NOS inhibitors on analgesic, 

hypothermic or cataleptic effects of acute cannabinoid administration in mice and rats, 

respectively. However, only Spina et al. (1998) described an inhibitory effect of the NOS 

inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME) on tolerance to 

hypothermic and cataleptic effects induced in rats by chronic treatment with the potent 

cannabinoid agonist WIN 55,212-2. On the contrary. Thorat and Bhargava (1994), using 
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the NOS inhibitor NG-monomethyl-L-arginine (L-NMMA), did not observe any similar 

effect on tolerance to analgesic and hypothermic effects induced by chronic treatment 

with O9-THC. Even though such studies seem to indicate that NOS and NO pathway are 

not involved in the acute effects of cannabinoid agonists, the discrepant results on 

tolerance induced by chronic treatment with cannabinoids, could indicate that in vivo 

administered NOS inhibitors may have different efficacies in blocking NOS activity, e. g. 

depending on the species used in the experiments or on time, route or dosage of 

administration. 

For this reason, a genetic approach was chosen to test the existence of a specific 

functional link between behavioural and pharmacological actions of cannabinoids and the 

nNOS/NO pathway. Therefore, body temperature, nociception and locomotion were 

measured both in neuronal nitric oxide synthase knock-out (nNOS-KO) (Huang et al., 

1993) and wild-type (WT) control mice after intraperitoneal application of A9-THC. In 

addition, the distribution of CBI and nNOS transcripts was determined in adult mouse 

brains using in situ hybridization to reveal possible changes in CBI gene expression in 

nNOS-KO as compared with WT mice, and to reveal the brain areas, where CB 1 and 

nNOS were coexpressed in the same neuron. 

3.2 Materials and methods 

3.2.1 Animals 

Homozygous males with a deficiency in the neuronal nitric oxide synthase gene 

(nNOS-KO) and wild-type male control mice (WT) were used for the study. Targeted 

disruption of the nNOS gene is described in Huang et al. (1993). The genetic 

background consisted of a combination of the strains 129/Sv and C57BL/6J, with a 

predominance of C57BL/6J, as mutants were backcrossed for three generations onto 

C57BL/6J and were then intercrossed to obtain experimental animals. As it is known that 

male nNOS-KO mice show a markedly increased aggressive behaviour (Nelson et al., 
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1995), all animals were housed individually in the same temperature- and humidity- 

controlled room with a 12 hour light-dark cycle (light from 07: 00 to 19: 00) and with 

access to food and water ad libitum. At the time of investigation, animals were 9 to 10 

weeks old and had a body weight of 21-26 g. All animals were drug naive and were 

injected only once with A9-THC or vehicle. All behavioural experiments were performed 

between 9: 00 a. m. and 1: 00 p. m. All behavioural and molecular investigations were 

evaluated in a blinded way. The experimental protocols were approved by the Ethical 

Committee on Animal Care and Use of the Government of Bavaria, Germany. 

3.2.2 Drugs and chemicals 

A9-THC was purchased (Sigma, Deisenhofen, Germany) as a 100 mg/ml (w/v) 

solution in 100% ethanol. Immediately before injection i9-THC was diluted 1: 100 in 

45% 0-hydroxy-cyclodextrin (RBI/Sigma, Deisenhofen, Germany) and stirred for 10 min 

at 37°C. As a vehicle control, 45% ß-hydroxy-cyclodextrin containing 1% ethanol was 

used. All drugs were administered i. p. with an injection volume of 10 ml/kg body weight. 

For behavioural tests, 10 mice of each genotype received A9-THC or vehicle, 

respectively. In a pilot study carried out in C57BL/6 mice using various doses of A9- 

THC, a dose of 10 mg/kg 09-THC was found to be the lowest dose leading to clear 

analgesic and hypothermic effects. 

3.2.3 Behavioural testing 

To reveal possible differences between the nNOS-KO and WT mice concerning 

behavioural and physiological reactions to A9-THC, common cannabinoid-induced 

effects such as changes in nociception, body temperature and locomotor activity were 

assessed in both genotypes. Antinociceptive effects were measured 30,60 and 90 min 

after injection of A9-THC or vehicle using a hot-plate analgesia meter (Bachofer, 

Reutlingen, Germany). The latency until mice showed first signs of discomfort (licking or 
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flinching of the paws or jumping) on the plate, which was heated to 55 ± 0.5 °C, was 

recorded. A cut-off-time of 60 sec was set to prevent tissue damage. A9-THC-induced 

hypothermia. was determined using an infrared thermometer (C- 1600, Linear 

Laboratories, Fremont, California, USA) which was placed between the forepaws at a 

distance of exactly 3 cm. Body temperature was recorded immediately before as well as 

60 and 120 min after injection of drug or vehicle. Spontaneous locomotor activity was 

assessed by an automated open field system (box size 32 x 32 cm; illumination of 40-60 

lux, MOTION, TSE GmbH, Bad Homburg, Germany). 15 min after injection of A9-THC 

or vehicle, animals were tested individually for 30 min. The cumulative horizontal 

distance the animals moved within the box was recorded. 

3.2.4 In situ hybridization 

In situ hybridization on CB 1 mRNA was performed to reveal possible differences 

of CBI mRNA levels between the two genotypes. Six untreated mice of each genotype 

of the same age and weight as those tested in behavioural experiments were used. 

Animals were killed with C02, brains were rapidly removed, snap frozen on dry-ice and 

stored at -80°C. Coronal sections of 20 µm were cut on a cryostat microtome (HM 500, 

Microm, Walldorf, Germany). Sections were mounted onto frozen SuperFrost/Plus slides 

(Menzel, Braunschweig, Germany), dried and stored at -20°C. For hybridization, slides 

were warmed up for 45 min at room temperature. Labelling of the riboprobes and in situ 

hybridization with 35S-labelled riboprobes complementary to the mRNA of the mouse 

CB 1 were performed as described by Marsicano and Lutz (1999) and in Chapter 2. The 

slide-mounted sections were apposed to autoradiographic films (Kodak Biomax MR 

film, Integra Biosciences GmbH, Fernwald, Germany) for 11 hours. Developed films 

were illuminated with a light box and sections were scanned as grey scale images with 

256 grey values using a computer-assisted video camera. Mean densities of the regions 

of interest were measured using Object-Image1.62 for Macintosh with a value of zero 
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reflecting white and 255 reflecting black. 

For the colocalization of CB 1 and nNOS, double in situ hybridization experiments 

were performed according to Marsicano and Lutz (1999) (see also Chapter 2). nNOS 

template was obtained by reverse transcriptase-polymerase chain reaction (RT-PCR) 

using the 5' primer 5'-CCT GGT GGA GAT TAA CAT TGC-3'and the 3' primer 5'- 

CTG GTA CTG CAA CTC CTG ATT-3'. Amplification product was 1197 bp and 

covered positions 1985-3182 of Genbank accession number NM008712. PCR product 

was cloned in pBluescript KS- (Stratagene, CA, USA), and the clone was confirmed by 

sequencing. Sense and antisense riboprobes were obtained as described in Marsicano and 

Lutz (1999), linearizing the plasmid with the restriction enzyme BamHI and EcoRI, 

respectively, and using T3 and T7 RNA polymerase to obtain 35S-labelled riboprobes. 

CB 1 and nNOS sense probes gave no detectable signals. Double in situ hybridization 

experiments were performed using CB 1 antisense riboprobe labelled non-radioactively 

with FITC, and using 35S-labelled nNOS probe. The FITC signal was revealed using the 

Vector Red kit (Vector Laboratories, CA, USA) for 24-36 hours. The radioactive signal 

was revealed by dipping the slides in photographic emulsion (NTB-2, Kodak) and 

developing after 10-20 days. 

3.2.5 Statistical analysis 

Hot plate analgesia and temperature were first analyzed using analysis of variance 

(ANOVA) with repeated measurement and the genotypes and therapy as between- 

subject-factors. In case of significant interactions, univariate F-tests were performed in 

order to evaluate significant differences at the respective time points. Univariate analysis 

of variance was used for statistical evaluation of the open field observations. Results of 

in situ hybridization of the different brain regions were evaluated using multivariate 

analysis of variance. In all cases, a p-value < 0.05 was considered as statistically 

significant. All results are shown as mean and standard error of the mean (SEM) of the 
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absolute values. As the WT mice showed a lower basal activity in the open field system 

than the nNOS-KO mice, A9-THC-induced changes in locomotor activity were evaluated 

and expressed as a percentage of the mean activity of the vehicle-treated group for each 

genotype. 

3.3 Results 

3.3.1 Behavioural and pharmacological assessments 

Measurement of body temperature (Fig. 3.1 A) revealed no differences in basal 

values between the genotypes (Wilks multivariate test of significance; influence of 

genotype: F(2,34)=0.750; p=0.480). However, in contrast to the analgesic effects, there 

was a significant interaction between genotype and treatment (Wilks multivariate test of 

significance; effect of treatment: F(2,34)=5.87, p<0.01; effect of type x treatment: 

F(2,34)=3.407, p<0.05). 
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Fig. 3.1. Effects of intraperitoneal application of 10 mg/kg A9-THC in nNOS knock-out (KO) 

and wild-type control mice (WT). A. Body temperature B. Hot-plate latencies C. Spontaneous 

locomotion activity. Yellow bars, WT mice treated with vehicle; hatched yellow bars, WT mice 

treated with 09-THC; blue bars, KO mice treated with vehicle; hatched blue bars, KO mice 

treated with A9-THC. Data are shown as mean and SEM; asterisks, p<0.05 vs. vehicle. 

A hypothermic effect of 10 mg/kg A9-THC was observed only in the wild-type 
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mice reaching statistical significance at 120 min after injection (Univariate F-tests, p- 

value < 0.05). 

The effect of 09-THC on nociceptive responses to acute pain were assessed by 

using the hot plate test, which is considered to involve mainly supraspinal mechanisms of 

the nociceptive system. As shown in Fig. 3.1 B, hot plate latencies after injection of 

vehicle did not differ between the mutant mice and the wild-type controls. Acute 

intraperitoneal application of 10 mg/kg A9-THC exerted significant antinociceptive 

effects as measured by an increase of hot plate latencies in both the KO and the WT 

mice. Significant effects of A9-THC on latency was observed at all three time points 

analyzed (Univariate F-tests, p-value < 0.05), but there were no differences in the 

antinociceptive reactions to A9-THC between the genotypes. (Wilks multivariate test of 

significance; effect of treatment: F(3,34)=9.505, p<0.0001; influence of genotype: 

F(3,34)=0.151, p=0.928). 

Open-field observations revealed a significantly higher locomotor activity of the 

vehicle-treated nNOS-deficient mice as compared to the vehicle-treated wild-type 

controls (Univariate test of significance, p<0.01, data not shown). The 09-THC-induced 

changes in locomotion were therefore evaluated separately in each genotype and 

expressed as a percentage of the mean distance moved by the respective vehicle-treated 

group. The results in Fig. 3.1 C show that injection of 10 mg/kg A9-THC led to a 

decrease of movement in both genotypes, but this reduction reached significance only in 

the wild-type animals (Univariate test of significance, p<0.05). 

3.3.2 Cannabinoid receptor CB1 mRNA expression 

As a result of the different effects of A9-THC in the two genotypes regarding body 

temperature and locomotor activity, the levels of CB 1 mRNA were determined using in 

situ hybridization to reveal possible changes of CB 1 gene expression in the nNOS-KO as 

compared to the WT mice. Evaluation was performed by measuring the mean density 
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values on the autoradiographic films and included those brain areas which are proposed 

to be involved in mediating the respective cannabinoid-induced effects (Breivogel & 

Childers, 1998; Ameri, 1999; Martin & Lichturan, 1998). Periaqueductal grey, dorsal 

raphe, ventroposterolateral thalamus and amygdala were investigated regarding 

antinociceptive effects. Median preoptic area and ventromedial hypothalamus were 

evaluated in respect to hypothermia.. Caudate putamen, globus pallidus and substantia 

nigra were analysed regarding locomotor activity. 

Area Wild-type mice Knock-out mice 
Periaqueductal grey 63.2+5.5 

Dorsal raphe 38.9+6.5 

Ventroposterolateral thalamus 10.2+3.2 

Amygdala 144.1+6.7 

Median preoptic area 107+10.7 

Ventromedial hypothalamus 151.2+10.3 

Caudate putamen 201+8.9 

63.2+ 7.4 

38.3+ 4.7 

8.4+2.4 

128+6 

101+17.8 

114.8+ 23.9 

182 + 8.7 * 

Globus pallidus 21.3+3.6 18.0+1.4 

Table 3.1. Density values of the regions of interest reflecting CB 1 mRNA levels in nNOS knock- 

out (KO) and wild-type (WT) control mice. Hybridization was made using the same probe and in 

the same experiment. Slides from KO and WT were exposed to the same autoradiographic film. 

Data are shown as mean and SEM of averaged values from four sections from each mouse. N=6 

mice for each genotype; *p<0.05 between the two genotypes. 

Statistical analysis revealed a significant interaction between the genotype and the 

mean density values reflecting CB 1 mRNA levels (Wilks multivariate test of significance; 

effect of genotype: F(8,1)=12371.84, p<0.01). A subsequent detailed analysis of the 

particular areas (Table 3.1) showed that there were significantly lower levels of CB 1 

mRNA in the ventromedial hypothalamus and the caudate putamen of the KO in 

comparison to the WT mice (p<0.05). No significant differences between the two 

genotypes were observed in either of the other regions. Representative examples of the 
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in situ hybridization analysis are depicted in Fig. 3.2, showing decreased CB 1 expression 

in the ventromedial hypothalamus and caudate putamen, as compared with areas where 

no significant differences were observed (i. e. periaqueductal grey and median preoptic 

area). 
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Fig 3.2. Reversed dark-field micrograph of coronal sections showing examples of CB 1 mRNA 

expression levels in different brain areas, as compared between WT and nNOS-KO animals. (A, 

A') Periaqueductal grey and dorsal raphe. (B, B') Medial preoptic area. (C, C') Ventromedial 

hypothalamus. (D, D) Dorsolateral caudate putamen. Note the lower expression of CB 1 mRNA 

in VMH and Cpu in the nNOS-KO. Abbreviations: 3V, third ventricle; Aq, aqueductus; Cpu, 

caudate putamen; DR, dorsal raphe; MPA, medial preoptic area; PAG, periaqueductal grey (DM, 

dorsomedial; VL, ventrolateral); VMH, ventromedial hypothalamus. Scale bars: 100 fin. 

3.3.3 Analysis of CB1/nNOS coexpression 

Since mice lacking nNOS responded to A9-THC treatment at a reduced extent in 

particular behavioural paradigms and, moreover, showed a decreased expression of CB I 

in the brain areas that are considered to be involved in the behavioural effects of 09- 

THC, the question arose whether these results are based on a cell autonomous event, i. e. 

on changes in the physiology of neurons expressing both nNOS and CB 1, or whether the 

differential responses of nNOS-KO mice to A9-THC are the consequence of an altered 

cross-talk between different neurons. 

To answer this question, a double in situ hybridization study was carried out on 
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forebrain tissue of wild-type animals to describe the expression of nNOS and CB I at a 

single cell level. The mouse forebrain contains cells that express both high and low levels 

of CB 1 mRNA and protein (Matsuda et al., 1993; Tsou et al., 1998a; Pettit et al., 1998; 

Marsicano & Lutz, 1999, Chapter 2). While cortical areas possess both high and low 

CB 1-expressing cells, subcortical regions contain mostly low CB 1-expressing cells that 

are usually densely packed. Cortical areas, such as the hippocampus (Fig 3.3A), 

neocortex (Fig. 3.3B), entorhinal cortex or basolateral amygdala (data not shown) 

display a very low extent of coexpression of CB l with nNOS. 
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Fig. 3.3. Bright-field micrographs of coronal sections showing examples of coexpression of CB 1 

(red staining) with nNOS (silver grains), respectively, as detected by double ISH in WT mice. All 

sections were counterstained with toluidine blue. (A) CA3 area of hippocampus, showing 

coexpression only in the principal cell layer. (B) Double staining for CB1 and nNOS in 

neocortex. Almost no coexpression is observed. (C) Dorsal caudate putamen. Note the scattered 

distribution of nNOS-positive cells and the diffuse staining of CB 1. A certain fraction of nNOS- 

expressing cells contain also CBI mRNA. Filled arrows: CBI-expressing cell. Open arrows: 

nNOS-expressing cell. Arrowheads: cells coexpressing CBI and nNOS transcripts. Scale bars: 

20 µm. 

Only principal cells in CAI and CA3 regions of the hippocampus (Fig. 3.3A) and a 

few cells in the basolateral amygdala (data not shown) express low levels of CBI 

together with low levels of nNOS mRNA. Due to the low levels of CB I expression and, 

thus, to the diffuse appearance of the signals in subcortical areas, it was not always 

possible to determine single CB I -expressing cells with the same high precision as in 

cortical regions. However, in dorsolateral caudate putamen, one of the two regions 
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where an altered CB 1 expression was observed in the nNOS-KO as compared to the WT 

controls, an indicative evaluation of coexpression was possible. In the striatum, nNOS is 

present in scattered cells containing generally high levels of mRNA. In comparison, CB 1 

is expressed at low and uniform levels in the majority of medium-spiny neurons of the 

dorsolateral caudate putamen (Marsicano & Lutz, 1999; Chapter 2). An approximate 

numerical evaluation of nNOS/CB 1 coexpressing cells revealed that about 50% of 

nNOS-positive cells also express low levels of CBI mRNA (Fig. 3.3C). Due to the low 

levels of both CBI and nNOS mRNA in the ventromedial hypothalamus, it was not 

possible to evaluate numerically the coexpression in this area using the double in situ 

technique. 

Fig. 3.4. Dark-field micrographs of parallel coronal sections from a WT mouse showing the 

expression of nNOS (A) and CB 1 (B) in ventromedial hypothalamus. Note the similar 

distribution pattern of the two transcripts. Abbreviations: 3V, third ventricle; VMH, ventromedial 

hypothalamus. Scale bars: 100 gm. 

However, parallel sections hybridized either with radioactive riboprobes for CB 1 

or nNOS revealed a similar pattern of expression in this brain area (Fig 3.4). This 

observation allowed to conclude that in the mouse ventromedial hypothalamus, nNOS- 

expressing cells contain also CB 1 mRNA at a rather high levels. 
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3.4 Discussion 

This study aimed to investigate whether the nitric oxide pathway is involved in 

mediating 09-THC-induced central nervous system effects. Thus, the effects of 09-THC 

were examined in mice with targeted disruption of the neuronal nitric oxide synthase 

(nNOS) gene and in wild-type controls. Intraperitoneal injection of 10 mg/kg i\9-THC 

resulted in the same increase of the hot plate latencies in both genotypes, indicating that 

A9-THC-mediated antinociceptive effects do not require nNOS. In contrast, a significant 

09-THC-induced decrease of body temperature and locomotor activity was observed 

only in the wild-type mice, while the nNOS-KO mice showed a markedly reduced 

response. Determination of the expression of CB 1 by in situ hybridization revealed 

significantly lower levels of CB 1 transcripts in the ventromedial hypothalamus and the 

caudate putamen of the nNOS knock-out animals than in WT controls. These two areas 

are known to be among the regions involved in thermoregulation and cannabinoid- 

induced decrease of locomotion, respectively. Moreover, in these areas, CB 1 and nNOS 

mRNAs are expressed to a rather high levels in the same neurons. 

3.4.1 Antinociceptive effects 

The lack of differences in nociceptive response between the two genotypes 

observed in this study is surprising as it would be expected that 09-THC, which has been 

shown to reduce NMDA-receptor-mediated Ca 2+ influx (Hampson et al., 1998b), also 

inhibits the production of NO and, thus, the NO-mediated increase of presynaptic release 

of glutamate, which in turn plays a major role in pain transmission (Zieglgänsberger & 

Tölle, 1993; Tölle et al., 1996). Other studies indicate that A9-THC-induced 

antinociception also involves systems such as the spinal noradrenergic and the kappa 

opioid systems, both of which do not play a role in other central effects of A9-THC. For 

example, intrathecal administration of the a2-noradrenergic antagonist yohimbine was 

shown to block the antinociceptive effects of intravenously applied A9-THC, but failed to 
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antagonize its cataleptic or hypothermic effects, indicating that involvement of the 

adrenergic system is relatively specific to antinociception (Lichtman & Martin, 1991). In 

addition, intrathecal or intracerebroventricular administration of the kappa antagonist 

nor-BNI (nor-binaltorphimine) was able to block the antinociceptive effects of 

intrathecally applied A9-THC, but again without affecting i\9-THC-induced catalepsy or 

hypothermia (Martin & Lichturan, 1998). These results together with the present findings 

suggest that 09-THC-induced supraspinal antinociception involves transmitter systems 

different from the NO pathway. 

3.4.2 Effects on thermoregulation and locomotion 

The results of pharmacological studies investigating the central role of the NO 

pathway in thermoregulation and locomotion are still contradictory (Scammell et al., 

1996; Gourine, 1995; Simon, 1998; Calignano et al., 1997; Sandi et al., 1995; Johansson 

et al., 1997). However, the behavioural results described here clearly show that nNOS is 

required for A9-THC-induced decrease of body temperature and locomotor activity. 

Several hypotheses can be put forward to explain the lack of effect of A9-THC in 

thermoregulation and locomotion in nNOS-KO mice. A very recent report (Nava et al., 

2000b) showed that in rats the hypothermic effect of A9-THC is mediated by a 

coactivation of CB 1 and dopamine D2-like receptors. Blockade of either CB 1 or D2 

completely abolished the hypothermic effects of 09-THC. The authors discuss that this 

effect could be attributed to the ability of A9-THC in vivo to induce the release of 

dopamine (Chen et al., 1990a, b) and to activate dopamine neurons (Diana et al., 1998; 

Gessa et al., 1998), which would consequently lead to a simultaneous activation of CB 1 

and D2-like receptors. Recently, Glass and Felder (1997) showed that in striatal neurons 

costimulation of CB 1 and D2-like receptors leads to an accumulation of cAMP, in 

contrast to the decrease normally observed upon activation of either receptor alone. In 

neuroblastoma cells (Inada et al., 1998), cAMP accumulation was shown to stimulate 
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NO production. Dopamine D2 receptors are expressed in the striatum and in the 

ventromedial hypothalamus (Weiner et al., 1991) and are also colocalized with CB 1 to a 

considerable extent at least in the dorsolateral caudate putamen (Hermann, Marsicano & 

Lutz, unpublished results). CB1 is expressed in aproximately 50% of nNOS-positive cells 

in dorsolateral caudate putamen and in ventromedial hypothalamus a considerable 

number of neurons express both transcripts. Although triple colocalization studies would 

be required, it seems possible that CBI and D2 receptors are coexpressed with nNOS in 

the same cell. 

DA 

AK Temperature 
NO* -10-QX 'N* 

Locomotion 

Fig. 3.5. Schematic representation of a putative mechanism through which A9-THC might exert 

its effects on thermoregulation and locomotor activity, involving the nNOS pathway. A9-THC 

administration would induce the release of dopamine (DA). A9-THC and DA would 

simultaneously or sequentially stimulate CB1 and D2 receptors, respectively, provoking an 

accumulation of cyclic adenosin monophosphate (cAMP). cAMP accumulation would lead to an 

activation of nNOS with a release of NO, which would exert the decreases in temperature and/or 

locomotion, through a still unknown mechanisms (X). 

Taken together, as depicted in Fig. 3.5, these observations speak in favour of the 

following cascade of events: coactivation of CB 1 and D2-like receptors on the same cell 

may result in an accumulation of cAMP with a subsequent increase of nNOS activity and 

A9-THC 
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an enhanced release of NO, which would finally exert the hypothermic and, possibly, also 

the locomotor effects of A9-THC. This interpretation of the results, however, appears to 

be inconsistent with the report of Thorat and Bhargava (1994). These authors found that 

pretreatment of mice with the NOS inhibitor NG-monomethyl-L-arginine (L-NMMA) 

did not change analgesic or hypothermic effects of A9-THC. Such an apparent 

discrepancy could be explained by intrinsic differences between pharmacological and 

genetic approaches. It is possible that the treatment of animals with L-NMMA is not 

sufficient to completely block the stimulation by 09-THC. Alternatively, the disruption of 

the nNOS gene could lead to profound alterations, such as defective brain development, 

or/and to the disruption of downstream pathways that cannot be achieved by a 

pharmacological treatment with nNOS inhibitors. One example of a long-term effect 

caused by the disruption of the nNOS gene is our observation of decreased levels of CB 1 

mRNA in the striatum and the ventromedial hypothalamus in the knock-out mice. 

Alternatively or complementary to the explanation depicted in Fig. 3.5, this change in 

CB 1 expression could also serve as a molecular mechanism to explain the decreased 

effects of A9-THC in locomotion and thermoregulation in nNOS-KO mice (Fig. 3.6). 

Investigations using human neuroblastoma, lymphoma and endothelial cells have revealed 

that anandamide is rapidly taken up by a high affinity transporter which can be activated 

by NO (Maccarrone et al., 1998,2000). Within the cell, anandamide is then hydrolyzed 

to arachidonate and ethanolamine by the fatty acid amide hydrolase (FAAH) 

(Mechoulam et al., 1998; Di Marzo & Deutsch, 1998). In this context, it could be 

hypothesized that the lack of NO in the nNOS-KO mice may lead to a decreased re- 

uptake of endogenous anandamide and, thus, to an increased extracellular concentration. 

High levels of extracellular anandamide may in turn downregulate CB 1 expression in 

selected areas such as the caudate putamen, as it is also described for long-term 

treatment of rats with A9-THC (Corchero et al., 1999; Zhuang et al., 1998). Finally, 
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decreased levels of CB 1 would lead to a reduced responsiveness to A9-THC as observed 

in this study (Fig. 3.6). 
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Fig. 3.6. Schematic representation of a putative mechanism through which the lacking of nNOS 

might lead to a decrease in CBI mRNA expression and, thus, a decreased responsiveness to A9- 

THC in selected areas. A, Wild type situation: NO is able to activate the anandamide transporter 

(AT), thus contributing to the equilibrium between extracellular anandamide (AEA) and 

intracellular uptake and degradation through the enzyme fatty acid amide hydrolase (FAAH). 

Extracellular AEA binds to CB 1 receptors in an equlibrate fashion and thus the turnover of CB 1 

mRNA is maintained physiologically constant. B, nNOS knock out situation: the lack of a 

functioning nNOS decreases the levels of NO and thus also the positive drive onto AT. Therefore 

extracellular levels of AEA are free to overstimulate CB1 receptors, with the consequent 

alteration of the receptor mRNA turnover and a decrease of CB I mRNA synthesis. Decreased 

levels of CB 1 would, in turn, account for the decreased activity of A9-THC in selected brain areas 

related to locomotion and thermoregulation. For clarity, the processeses are depicted in different 

cells, but it is possible that they happen in the same cell. 

Another mechanism explaining the observed down-regulation of CB 1 can also be 

put forward. NO-responsive elements were characterized in the promoter of the tumor 

necrosis factor alpha gene and were found to be Spl binding sites (Wang et al., 1999). 

As the mouse CB 1 gene also contains several Sp I binding sites (Marsicano & Lutz, 

unpublished results), the down-regulation of CB 1 mRNA levels could also be mediated 

by the reduced transcriptional activation of the CB 1 gene due to reduced stimulation by 

NO. In other terms, the changed A9-THC responsiveness observed in the nNOS-KO 
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mice could then mainly or partly be due to the reduced levels of CB 1 transcripts in the 

respective brain regions, i. e. in the ventromedial hypothalamus and in the dorsolateral 

caudate putamen. 

In conclusion, the behavioural and molecular findings described in this Chapter 

clearly suggest that the nitric oxide pathway is involved in some of the central effects of 

A9-THC including hypothermia and decrease of locomotor activity. In addition, it 

appears that this transmitter system plays only a minor role in A9-THC-induced 

supraspinal antinociception. 

In Chapter 2 and in the present Chapter, CB 1 was analysed in some of its 

neuroanatomical and functional aspects. However, the cannabinoid system represent a 

potentially very important and complex neuromodulatory apparatus that is likely to 

interact with many neuronal systems in the brain. CB 1-deficient mice could represent 

very powerful tools to gain deeper insights into the specific functions of the cannabinoid 

system in different brain activities. For this reason, a genetic approach was carried out to 

understand the functions of CB 1 during the preparation of this Thesis. Next Chapter will 

describe an innovative gene targeting approach to enable us obtain a spatio-temporal 

specific disruption of CB 1. 



87 

Chapter 4 

Generation of mouse CB1 mutants 

4.1 Introduction 

During the last decade, targeted mutagenesis in mice has become one of the most 

powerful tools to study gene function. The potential to disrupt or modify in principle any gene 

of interest in the mouse genome has led to fundamental discoveries in all fields of mammalian 

biology, ranging from embryonic development to the generation of animal models for human 

diseases. A milestone in the development of the gene targeting technology was the 

establishment of totipotent cell lines (embryonic stem cells, ESCs) derived from mouse 

blastocysts (Bradley et al., 1984). If kept in appropriate conditions, these cells can contribute 

to all cell types of the body including germ cells. The second hallmark was the observation by 

Capecchi and colleagues (Folger et a1., 1982) that mammalian somatic cells possess the 

enzymatic machinery for efficiently mediating homologous recombination between newly 

introduced, non-replicating DNA molecules. Both, homologous recombination and the 

availability of embryonic stem cells led to the first gene disruption experiments (Thomas & 

Capecchi, 1987; Doetschman et al., 1987), now currently referred to as gene "knock-out". 

When this approach became available for the scientific community, hope arose to study 

and understand protein functions in the entire animal, thus avoiding many of the limitations of 

in vitro models. Also for behavioural studies, this technology appeared to be suitable to 

understand the basic mechanisms underlying highly complex brain functions, such as learning 

and memory, cognition and pain perception. Indeed, in the last 10 years, enormous progress 

has been made in the study of higher brain functions by using this technology. As an example, 

the study of learning and memory in gene targeted mutant animals has led to the discovery of 

important key mechanisms by which the brain is able to select, to store and to recall 

information (Silva et al., 1992; Grant et al., 1992). 



88 

Despite the progress enabled by this new technology, some intrinsic caveats and 

limitations became soon evident. 

1. Lack of temporal restriction. In a "conventional" gene targeting experiment, the gene of 

interest is disrupted in every cell of the animal; thus, it is inactivated both during development 

and adult life in all tissues. However, many proteins have different functions in various stages 

and tissues, e. g. early functions, essential for the normal embryonic growth and development 

and later functions in the adult, participating in molecular mechanisms to control the 

physiological status of the organism, including specific behaviours. Thus, in a "conventional" 

knock-out, we might provoke general developmental defects that mask the function(s) of a 

gene in the adult. 

2. Lack of spatial selectivity. The central nervous system is highly complex. Different 

anatomical regions and different cell types in the same regions differentially contribute to 

various physiological functions. On the other hand, particular brain functions, such as 

behaviour, are the result of coordinate interactions between different anatomical regions and 

cell types. In most cases, proteins are expressed in many anatomical regions and cell types, 

very often exerting different tasks. Therefore, in the attempt to understand the contribution of 

a given gene product to particular CNS functions, it is essential to "dissociate" this 

contribution into its anatomical and cellular aspects. When a gene function is disrupted by 

"conventional" gene targeting, all body cells will carry this modification. Therefore, it is 

difficult, if not impossible, to relate the protein function to particular anatomical brain regions 

and cell types. 

3. Compensatory mechanisms. Mammalian cells in general, and neuronal systems in 

particular, are equipped with finely regulated control systems which help to overcome 

naturally occurring imbalancies. Thus, the disruption of a gene at early stages of development 

could induce compensatory mechanisms which could mask important functions of the gene in 

the adult physiology. Such mechanisms could range from the simple compensatory 
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overexpression of other related proteins with similar functions, to the misexpression of non- 

related genes, finally leading to a possible phenotype masking the function of the targeted 

gene and resulting in an interpretation of gene function that is only partially correct (for a 

review, see Gerla. i, 2000). 
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Fig. 4.1. Schematic representation of the Cre/loxP system. A. Graphical representation of loxP site 

(red triangle), Cre recombinase (blue circle) and nucleotide sequence of the loxP site. LoxP consists of 

two sequences forming a palindrome, which is separated by a non-palindromic nucleotide stretch. 

Orientation of the loxP site is given by the orientation of this core sequence. Two molecules of Cre bind 

to one loxP site (Mack et al., 1992). B. When loxP sites are oriented "head-to-head", Cre recombinase 

catalyzes an inversion of the sequence between the two IoxP sites. C. When loxP sites are oriented 

"head-to-tail", Cre recombinase catalyzes an excision of the interposed sequence. 

Therefore, during the last years, great efforts have been made to improve the gene 

targeting methodology in order to reduce the intrinsic problems of the "conventional" knock- 

out, and to obtain disruption or modification of targeted genes in a more selective way. This 

+tft 
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new technology is commonly referred to as "conditional" gene targeting, using the Cre/loxP 

system (Sauer & Henderson, 1989). 

A 

XX 

B 

Fig. 4.2. Schematic representation of different gene targeting strategies. A. "Conventional" gene 

targeting. The sequence to be deleted (X, top) is displaced by the selection cassette (usually an 

antibiotic resistance gene, bottom). B. "Conditional" gene targeting. The wild type gene (top) is 

conserved, but two loxP sites and a selection cassette from the targeting construct (bottom) are 

introduced. In order to guarantee the completely wild type expression of the floxed gene, the selection 

cassette is flanked by two different recombination sites (FRT), that will be excised by another 

recombinase, called flipase (see below, same paragraph). X, sequence of interest; selection, selection 

cassette; red triangles, loxP sites; blue triangles, FRT sites; black bars, homology arms. 

Cre recombinase is aP1 bacteriophage-derived enzyme that is able to mediate site- 

specific recombination between a 34 bp-long sequences referred to as loxP (locus of 

crossover x in P 1) (Sternberg & Hamilton, 1981). The loxP site consists of two 13 bp-long 

repeats oriented head-to-head and forming a palindrome, which is interrupted by an 8 bp-long 

non-palindromic sequence. This sequence gives an intrinsic orientation to the loxP site (Fig. 

4.1). 

To generate a "conditional" knock-out with the Cre/loxP system, two components are 

required. First, by homologous recombination in ES cells, two loxP sites are introduced 5' 

and 3' to the gene of interest (Fig. 4.2). Second, cells containing the correctly recombined 
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locus are then used to generate a mouse line expressing the "floxed" (i. e. flanked by two loxP 

sites) sequences of interest. Given the shortness of the loxP sequences, and provided the 

excision of the selection cassette (see below, same paragraph) this mouse line is still 

expressing the gene of interest in a wild type manner. This line is then crossed with a 

transgenic mouse line expressing Cre-recombinase in a defined tissue and/or at a distinct time 

point. In the progeny mice, Cre will recognize the two loxP sites and will excise the 

sequences between these sites. Depending on the regulatory sequences that drive the 

expression of Cre, the excision of the sequence of interest will be "conditioned" in a temporal 

and/or spatial way (Fig. 4.3). 

wild type 

1 

º IoxP " Cre recombinase 
- gene of interest 

i- 
_L 

modified = "wild type" Tissue-specific 

or floxed allele expression of 
re recombinase 

Tissue-specific mutant 

Fig. 4.3. Schematic representation of a "conditional" gene targeting using the Cre/loxP system. Red 

triangles are loxP sites; blue circle is Cre recombinase; black box is the gene of interest. 

CB 1 is expressed in several different regions of the CNS and, as shown in Chapter 2 

and 3, in different cell populations. It is also expressed, even though at lower levels, in 

peripheral tissues (e. g. Shire et al., 1995) and at high levels during the entire embryonic 

development (Buckley et al., 1998; Paria et al., 1995; Berrendero et al., 1998). Therefore, a 

"conventional" gene knock-out might not give conclusive insights into the roles of CB 1 in the 
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adult brain physiology. Indeed, despite the valuable information gained, the published CB 1 

mutants obtained by "conventional" gene targeting approaches reveal phenotypic aspects 

whose origin might be partially due to the lack of temporal and/or spatial restriction of the 

gene deletion. As an example, it cannot be excluded that the lack of CB 1 expression during 

embryonic development of the mutants is among the causes leading to the defects described 

by Zimmer et al. (1999) in adult animals. These mice showed hypomotility, hypoalgesia and 

premature death. Both hypomotility and hypoalgesia are surprising, considering the similar 

effects caused by pharmacological treatment with CB 1 agonists (Chaperon & Thiebot, 1999). 

Locomotion defects are likely due to alterations in gene expression in striatal cells, where the 

transcripts encoding for the opioid peptides dynorphin and enkephalin are present at higher 

levels in mutant animals as compared to wild type controls (Steiner et a1., 1999). As it was 

shown that cannabinoid treatment during pregnancy can increase the adult expression of 

opioid peptides, decrease opioid receptors and increase the morphine self-administration in 

adult offspring (Vela et at, 1998; Corchero et at, 1998; Manzanares et at, 1999), it cannot 

be excluded that the defects observed in adult CB 1 mutant animals are due to alterations 

occurring during in utero development. In other words, it is possible that the disruption of a 

functional cross-talk between cannabinoid and opioid system in utero is one of the principal 

causes of the adult phenotype observed in the mutants, thus, the function of CB 1 in the adult 

brain physiology might be masked by alterations during development (Gerlai, 2000). 

Embryonic deficits could also account for the early mortality described in this mutant line 

(Zimmer et al., 1999). At birth, the expected Mendelian distribution is not completely 

reached, likely indicating a certain rate of embryonic lethality of CB 1 null mutants. 

Furthermore, homozygous mice died without any obvious sign of disease in a higher 

incidence than heterozygous or wild type littermates, starting as early as 6-8 weeks after birth. 

Obviously, this might represent a major obstacle in the phenotypic analysis of the adult. In 

addition, the hypomotility of the mice described by Zimmer et al (1999) might mask other 
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important phenotypic aspects of the mutants. As an example, the majority of learning and 

memory paradigms require the animal to accomplish tasks in which a correct locomotion 

system is necessary. It appears obvious that it is very difficult to test hypomotile mice in such 

paradigms. A spatially restricted deletion of CB1 in brain regions not directly involved in 

locomotor functions would presumably avoid this obstacle (see 4.4 "Discussion"). Also 

Ledent and colleagues (1999) described another mutant CB 1 mouse line obtained by 

"conventional" gene targeting. In contrast to the results of Zimmer et a1. (1999), these mutant 

mice did not present any evident phenotypes without pharmacological treatment. They were 

unresponsive to cannabinoid treatment and, interestingly, showed reduced sensitivity to 

addictive effects of opiates (Ledent et aL 1999). The apparent discrepancies between the 

phenotypes of these two mouse lines are likely to be caused by the different genetic 

background used during analysis. CB 1-KOs from Ledent at A (1999) were bred in the 

outbred CD 1 strain, while the line of Zimmer et al. (1999) was back-crossed into the inbred 

C57BL/6J strain. It is possible that CB1 has different functions in adult brain physiology in 

these two mouse strains, but it appears also likely that the lack of CB 1 causes different 

developmental alterations in different strains, thus, leading to different adult phenotypes. 

Generally, outbred strains possess a higher vigor than inbred strains, probably due to the 

lower homozygosity rate. Therefore, it could be suggested that inbred strains such as 

C57BL/6J have compensatory mechanisms during prenatal development insufficient to 

completely compensate the lack of CB 1. On the other hand, the outbred CD 1 strain may have 

a better compensatory machinery. Moreover, it is interesting to note that the alterations in 

gene expression described by Zimmer and colleagues (Steiner et a1., 1999) also involve 

components of the endogenous opioid system, such as dynorphin and enkephalin. This 

observation, together with the above mentioned experiments showing that prenatal 

cannabinoid treatment causes profound alterations in the adult endogenous opioid signalling 

(Manzanares et a1., 1999), might indicate a similar interaction between CBI and opioid 
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system at prenatal stages also in the CB 1-mutant mice described by Ledent et al. (1999). 

Therefore, it cannot be excluded that also the cause of the reduced sensitivity to the addictive 

effects of opiates as observed in the mice generated by Ledent et at (1999) resides in the 

disruption of the functional cross-talk between CB 1 and opioid system in utero, similarly to 

as hypothesized above for CBI mutants in C57BL/6J background. These potential 

developmental effects of the disruption of CBI were not analysed by the two groups. 

However, it appears possible that the phenotypes described by Zimmer et al. (1999) and 

Ledent et al. (1999) in adult mutant animals are only partially due to the lack of the gene at 

the moment of the analysis. Moreover, it is possible that the discrepant results obtained in the 

two different strains are due to a different compensatory potential to similar alterations 

occurring during in utero development. In other words, the hypoalgesia and hypolocomotion 

observed in the mutant mice from Zimmer et a1. (1999) and the lack of morphine self- 

administration described in the mice of Ledent et al. (1999) cannot necessarly be attributed to 

specific functions of CB 1 in the adult brain physiology. 

As mentioned above, one of the aims of "conditional" gene targeting is to avoid any 

possible misinterpretation caused by "conventional" approaches, where compensatory 

mechanisms might mask the real function of a deleted gene. Moreover, while "conventional" 

gene targeting experiments do not have spatial resolution, the "conditional" approach can 

provide information about the specific region or cell type where CB 1 function resides. Taken 

together, in order to analyze the physiological roles of CBI in the adult mouse brain, a 

"conditional" gene targeting approach was chosen, with the hope to obtain information as 

precise as possible and not to mask the phenotypes by "compensatory" mechanisms. 

The generation of a "floxed" mouse line is a time-consuming experiment. It is therefore 

important to be able to show the actual functioning of the system as soon as possible. The 

quickest way to demonstrate the Cre-mediated excision of the gene in the living animal is the 

generation of a "null mutant", by crossing the "floxed" mouse line with a so-called "Cre- 
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deleter" mouse line, in which Cre expression is driven by a constitutive promoter (Schwenk et 

al., 1995). By this way, the excision of the gene of interest is achieved in all body cells, 

including germ cells. Moreover, despite the fact that a "conventional" null mutation approach 

has the main limitations described above, e. g. for behavioural analyses, such mutants can 

constitute an useful tool for phenotypic analyses at cellular levels, such as investigations on 

primary neuronal cultures. CB 1 null mutant mice (designated here as CBN) were generated in 

order to study the neuroprotective effects of cannabinoid compounds in vitro (Chapter 5). 

Another important prerequisite of the Cre/loxP approach is the perfect wild type expression 

of the "foxed" gene before the Cre-mediated excision. The targeting approach needs the 

presence of a selection gene to select for the recombined locus. Usually, the enzyme 

neomycin phosphotransferase "Neo") is used to confer to the cells the ability to survive in 

presence of the neomycin derivative geneticin (G418). Generally, the presence of such a 

"cassette" in the gene locus is not a problem in the "conventional" gene targeting approach, as 

the gene of interest is simply substituted by the selection cassette (Fig. 4.2A). In a 

"conditional" gene targeting approach, however, the presence of the "Neo" cassette might 

influence the expression of the targeted gene. Therefore, in the gene targeting construct 

described in this Chapter, the "Neo" cassette is flanked by two other recombination sites, 

named "FRT" (Flipase Recombination Target). These sites are recognized by another 

recombinase called "flipase" (Flp) (Landy, 1992). As Flp/FRT system is originally derived 

I, -- yeast, which grow at 30°C, it is less efficient than Cre/loxP at 370 C. However, Flp/FRT 

still maintains a sufficient activity to allow a Flp-mediated excision in mammalian cells 

(Dymecki, 1996). In this thesis, it was decided to excise the "Neo" cassette by crossing the 

"floxed-Neo" CBI mice with a "Flp-deleter" mouse line, which express Flp recombinase 

ubiquitously (Dymecki, 1996). 

In this Chapter of my thesis I will describe the generation of the "floxed CB 1', mouse 

line. Moreover, the in vivo functioning of the Cre-mediated excision of the "floxed" CB 1 gene 
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will be shown by the generation of the CB 1 null mutant (CBN). Further potential applications 

of the technology to the study of the cannabinoid system in the mouse physiology are also 

discussed. 

4.2 Materials and methods 

4.2.1 Molecular biology 

Where not differently stated in the results section, these are the basic methods used 

during the work. Solutions are described as final concentration. Stock solutions were 

prepared according to Sambrook et al. (1989). DNA sequencing was performed by MWG 

Biotech (Germany). The plasmid pFTM-loxP, containing the 34 bp-long loxP site, was 

obtained from Dr. Theo Mantamadiotis, Heidelberg, Germany. The plasmid pSVpaZl1- 

PGK-Neo, containing the selection Neo cassette (neomycin phosphotransferase gene) under 

the control of the human PGK (phosphoglycerate kinase I) promoter and flanked by two FRT 

sites was a kind gift of Dr. Bernhard Löscher, Zurich, Switzerland. This plasmid constitutes a 

derivative of pSVpaZll, generated by Dr. Francis Stewart, Heidelberg, Germany. "Cre- 

deleter" mouse line is described in Schwenk et al. (1995) and was kindly provided by Prof. 

Rajewsky, Köln, Germany. "Flp-deleter" mouse line is described in Dymecki (1996) and was 

kindly provided by Dr. Susan Dymecki, Baltimore, U. S. A. Both these mouse lines were bred 

in a C57BL/6 genetic background. 

4.2.1.1 Restriction digestions and ligations 

Restriction enzymes and modification enzymes were purchased from New England 

BioLabs (NEB, USA). Digestions of plasmid DNA were carried out in the appropriate buffer 

at the recommended temperature for 1-5 hours. Enzyme units used were adjusted to the 

amount of DNA to be digested. When necessary, DNA fragments were blunted after 

digestion. Briefly, DNA digest (2-5 µg) was mixed in a total volume of 100 µl containing 1x 

T4 DNA polymerase buffer, 0.5 mg/mi BSA, 0.1 mM each of dATP, dCTP, dTTP, dGTP, 
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4.5 units of T4 DNA polymerase. The mixture was incubated 20 minutes at 11 IT, and the 

enzyme was inactivated by adding 20 of 0.5 M EDTA. For ligation, DNA fragments and 

vectors were separated by gel electrophoresis (0.8-1.5% agarose in Ix TAE: 40 mM Tris- 

acetate, 1 mM EDTA, pH 8.0, containing 0.1 µg/ml ethidium bromide) and purified using the 

Gel Extraction kit (Qiagen, Germany). Ligations were performed with T4 DNA ligase, in 10 

µl of provided ligation buffer and with molar ratios of vector: insert ranging from 1: 2 to 1: 10. 

All plasmids generated in this thesis are derived from pBlueScript KS(-) (pKS, Stratagene, 

U. S. A. ). Digestions of genomic DNA were performed after precipitation of 10-20 µg DNA 

from mouse tail or of the entire DNA content of a single well of a 96-well plate of DNA from 

ESC clones (see below). DNA pellets were resuspended in 30 µl of final digestion solution, 

containing 1x buffer, 100 µg/ml RNase A (NEB, USA) and 100 units of restriction enzyme. 

After 6-12 hours of incubation at the recommended temperature, spermidine at final 

concentration of 4 mM and 60 units of enzyme were added, and the reaction was further 

incubated at the same temperature overnight. 

4.2.1.2 Polymerase Chain Reaction (PCR) 

PCR reactions were performed in a final volume of 50 0 containing 10 mM Tris-HC1 

pH 8.3,50 mM KCI, 1.5 mM MgCI2,0.2 mM dNTPs, 0.5 pmoVgl of both forward and 

reverse primers, 1 µl of DNA template (50-500 ng), 10 of DNA polymerase. Taq 

polymerase was used for most of the reactions. When particularly precise amplification was 

needed, recombinant Pfu polymerase (Stratagene, USA) was used. All primers were designed 

to have a T. of approximately 58°C. Thus, all PCR reactions were carried out in a 

Robocycler (Stratagene) with the following parameters: 1 cycle at 95°C for 5 minutes; 37 

cycles at 95°C for 1 minute, 55°C for 1 minute, 72°C for 1 minute; 1 cycle at 72°C for 5 

minutes. Table 4.1 shows name, sequence, orientation and relative position of the primers 

designed and used in this chapter. 
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Name Sequence Orientation Position 

GI 5' - GTT GAG CCT GGC CTA ATC AAA - 3' forward - 30 bp from CBI ATG 

G2 5' - CCG ATG AGA CAA CAG ACT TCT - 3' reverse + 1500 bp from CB1 ATG 

G3 5' - GTT GAC CGA ACC TCT GTT TTC - 3' forward - 182 bp from CB1 ATG 

G7 5' - GGA CTT GGC AGA CGA ATT GTA - 3' forward - 199 from putative intron donor site 

G8 5'- CTA CCC CTG AAG GAA GTT AGA - 3' reverse + 167 from CB1 ATG 

G50 5'- GCT GTC TCT GGT CCT CTT AAA - 3' forward - 563 bp from CB 1 ATG 

G51 5' - GGT GTC ACC TCT GAA AAC AGA - 3' reverse - 150 bp from CB 1 ATG 

G52 5' - GAC TGT CAC CGT GCT TAC TTA - 3' forward + 1539 bp from CB1 ATG 

G53 5'- CTC CTG TAT GCC ATA GCT CTT - 3' reverse + 1957 bp from CBI ATG 

G54 5' - CCT ACC CGG TAG AAT TAG CTT - 3' reverse + 22 bp from 5' FRT site in FRT-PGK-Neo cassette 

Table 4.1. PCR primers. 

"Cre-deleter" mice were genotyped by PCR as described in Schwenk et al. (1995), 

using the primers B42 (5'- GAT CGC TGC CAG GAT ATA CG - 3') and B43 (5'- CAT 

CGC CAT CTT CCA GCA G- 3'), in the same conditions as described above. "Flipase- 

deleter" mice were genotyped as described in Dymecki (1996), using the primers B34 (5'- 

GTG GAT CGA TCC TAC CCC TTG CG - 3') and B35 (5'-GGT CCA ACT GCA 

GCC CAA GCT TCC - 3'), in the following conditions: 1 cycle at 95°C for 5 minutes, 

70°C for 3 minutes and 72°C for 5 minutes; 34 cycles at 90°C for 1 minute, 70°C for 1 

minute, 72°C for 1 minute; 1 cycle at 72°C for 10 minutes. 

4.2.1.3 Transformation and growth of bacteria, bacterial colony lift and plasmid 

purification 

Bacteria were transformed with a few ng of plasmid DNA, or with 5µl of ligation 

reaction. Competent DH5a cells were thawed on ice. Plasmid DNA or ligation reaction was 

added to 200 µl of bacterial suspension and incubated for 30 minutes on ice. After 1 minute 

and 30 seconds at 42°C, 800 µl of SOC buffer (20 g/1 bactotryptone, 5 g/1 yeast extract, 

0.5 g/l NaCl, 20 mM glucose) were added and cells were shaken for 30 minutes at 37°C. 

Finally, bacteria were plated onto Luria Broth (LB)-agar plates containing 100 µg/ml 
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ampicillin. In some cases, colony lifts were necessary to find positive clones. The procedure 

for bacterial colony lifts was identical as for the phage plaque lifts (see below, 4.2.1.4 

"Growth of genomic DNA phage library and phage plaques lift"), with the only differences 

that one single Hybond NX membrane (Amersham, USA) was used for each plate and that, 

after transfer, bacterial plates were reincubated at 37°C for 2-4 hours in order to rescue the 

colonies. Mini plasmid purifications were carried out by growing single bacterial colonies in 2 

ml of LB overnight. 1 ml of the culture was then centrifuged and the cell pellet was lysed in 

300 µl of TENS buffer (10 mM Tris/HC1 pH 7.5,1 mM EDTA, 0.1 M NaOH, 0.5% SDS). 

After 5 minutes of lysis, 150 µl of 3M Sodium acetate pH 5.2 were added and, after 

vortexing, the lysate was incubated on ice for 5 minutes. Then, the preparation was 

centrifuged at 16,000 xg for 10 minutes at 4°C. 400 µl of the supernatant was collected in a 

fresh tube containing 900 µl of 100% ethanol. DNA was precipitated for 5 minutes at 4°C, 

and centrifuged at 16,000 xg for 5 minutes. The DNA pellet was washed with 70% ethanol, 

air-dried and resuspended in 30 0 of TE buffer (10 mM Tris/HC1 pH 7.5,1 mM EDTA), 

containing 100 µg/ml RNase A. 

4.2.1.4 Growth of genomic DNA phage library and phage plaques lift 

A lambda DASHII genomic library constructed from E14 embryonic stem cells partial 

Sau3A genomic digestion (Kühn et al., 1991) was screened to isolate DNA fragments 

containing the CB1 locus. A single colony of the host e. coli LE392 was inoculated in 50 ml 

of LB, supplemented with 0.2% maltose and 10 mM MgSO4. Cells were incubated overnight 

at 300C and were then centrifuged at 2000 rpm. Bacterial pellet was gently resuspended in 30 

ml of 10 mM MgSO4. From this point on, bacteria were kept on ice. The optical density at 

600 nm (OD6oo) of bacterial suspension was measured and the cells were diluted in 10 mM 

MgSO4 to OD6oo = 0.5. NZY agar plates (22x22 cm for primary screening or 9 cm diameter 

for further screenings) were prewarmed at 43°C. NZY agar plates contain 5 g/l NaCl, 2 g/l 

MgSO4-7FbO, 5 g/l yeast extract (LIFE Technology, U. S. A. ), 10 g/l NZ Amine (casein 
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hydrolysate, Sigma, U. S. A. ), and 1.5% Difco bacto agar. Absorption of phages onto bacteria 

was obtained by incubating (15 minutes at 37°C) 1.2 ml of host bacteria (Moo = 0.5) with 

900 µl of phages diluted in SM buffer (primary screenings), or 200 µl of host bacteria with 

100 0 of phages (further screenings). SM buffer consists of 5.8 g/1 NaCI, 2 g/1 MgSO4-7H20, 

50 mM Tris-HCI, and 0.01% gelatin, pH 7.5. As determined by preliminary titration 

experiments, 100,000 plaque forming units (pfus) were used for primary screening, 10,000 

pfus for secondary, 1,000 pfus for tertiary and 100 pfus for quarterly. Top agar (as NZY agar 

plates, but containing 0.7% agarose instead of Difco bacto agar) was melted in microwave 

and cooled down in water bath to 48°C. 25 ml (primary screenings) or 2.5 ml (other 

screenings) of top agar were added to the phage/bacteria mixture, quickly mixed and 

immediately poured onto NZY agar plates that were prewarmed at 43°C. After solidification 

of top agar/phage/bacteria mixture, plates were incubated overnight at 37°C. After growth of 

phages, appearing as plaques in the layer of bacteria, plates were chilled at 4°C. Hybond NX 

membranes (Amersham, USA) of the appropriate size were carefully placed onto the surface 

of the plates and were let soak for 2 minutes. Asymmetrical holes were made onto the 

membrane with a syringe needle, in order to know the relative position of plaques. After 

peeling the first membrane, a second membrane was put onto the plate surface for a second 

transfer of 5 minutes. Membranes with phage plaques uppermost were placed onto a series of 

sheets of 3MM filter paper soaked with denaturing and neutralizing solution, for 5 minutes 

and twice for 3 minutes, respectively. Denaturing solution contains 1.5 M NaCl, and 0.5 M 

NaOH. Neutralizing solution contains 1.5 M NaCl, and 0.5 M Tris-HCl pH 7.4. After the 

second neutralizing step, membranes were vigorously washed in 2x SSC (20x SSC is 3M 

NaCI, 0,3 M Na3 citrate, pH 7.0) to remove protein debris and were then air-dried. DNA was 

fixed to the membrane by UV crosslinking in a Stratalinker (Stratagene, USA). 
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4.2.1.5 Isolation of genomic DNA 

4.2.1.5.1 DNA preparation from mouse tails 

About 0.5-1 cm of a mouse tail was cut and put into 700 µl of tail lysis buffer (50 mM 

Tris-HC1 pH 8.0,100 mM EDTA, 100 mM NaCI, 1% SDS). 40 µl of 10 mg/ml Proteinase 

K stock were freshly added and tails were incubated overnight at 56°C. Then, 300 µl of 

saturated NaCl (7 M) were added, and the mixture was shaken for 5 minutes. After 

centrifugation at room temperature at 16,000 xg for 5 minutes, 750 µl of the supernatant 

were transferred to a fresh tube, containing 500 pi isopropanol. After mixing by inversion and 

centrifugation as above, the supernatant was removed, and the DNA pellet was washed once 

in 70% ethanol and air-dried for 10-20 minutes at room temperature. Finally, the DNA pellet 

was resuspended in 150-300 µl of TE and stored at -20°C. 

4.2.1.5.2 DNA preparation from embryonic stem cells 

G418 resistant embryonic stem cells clones (see 4.2.2.3 "Electroporation of ESCs, 

antibiotic selection, picking and expansion of resistant clones") were grown on gelatin-coated 

96-wells plates until they reached complete confluence. Then, cells were rinsed twice with 

PBS (139.9 mM NaCI, 2.7 mM KCI, 10.1 mM Na2HPO4-H20,1.8 mM KH2PO4, pH 7.4) 

and 50 µl of ESC lysis buffer (10 mM Tris HCI, 10 mM EDTA, 10 mM NaCI, 0.5% Sarcosyl 

and 1 mg/ml Proteinase K freshly supplemented) was added. Plates were incubated overnight 

at 500C in a sealed humid chamber. Then, plates were spun 1 minute at 2500 rpm, and 100 µl 

of a freshly prepared mixture containing 150 µl of 5M NaCl dissolved in 10 ml of 100% 

ethanol were added to precipitate nucleic acids. Plates were shaken at room temperature for 

30 minutes and were then spun again at 2500 rpm. Supernatant was discarded, and 

precipitated nucleic acids were rinsed three times with 150 µl of 70% ethanol. After the final 

wash, precipitated nucleic acids were either left in 70% ethanol and stored at -200C, or air- 

dried for 10 minutes and resuspended in digestion solution (see above, 4.2.1.1 "Restriction 

digestion and ligation") for Southern blot analysis or in TE buffer for PCR analysis. 
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4.2.1.6 Southern blotting 

4.2.1.6.1 Electrophoresis and transfer 

Digested genomic, phage or plasmid DNA was electrophoresed in 0.8-1.2% agarose 

gels. The gels were then photographed on a UV transilluminator and then shaken 10 minutes 

in a solution of 0.25% HCI. After rinsing with distilled water, the gels were shaken 30 

minutes in denaturation buffer and then, 30 minutes in neutralizing buffer (see above, 4.2.1.4 

"Growth of genomic DNA phage library and phage plaques lift", for composition of the 

buffers). Capillary blot was performed in lOx SSC, as described in Sambrook et al. (1989), to 

transfer DNA onto Hybond NX filters (Amersham, USA). Gels with genomic and phage 

DNA were blotted overnight, whereas gels containing plasmid DNA were blotted with three 

different filters for 10 minutes, 5 minutes, and overnight, respectively. This procedure allows 

to hybridize the same plasmid digestions with three different probes at the same time. 

4.2.1.6.2 Hybridization 

Membranes containing either digested genomic, phage or plasmid digested DNA after 

blotting, or bacterial colonies or phage plaques after membrane lifts, were pre-incubated for 2 

hours at 65°C in 20 ml of pre-warmed hybridization buffer (0.5 M Na-phosphate buffer pH 

7.2,7% SDS, 10 mM EDTA). Probe labeling was performed using the Random Primers 

DNA Labeling System kit (LIFE, USA) following the manufacturer's recommendations. 

Briefly, 100 ng of DNA fragment was denatured 5 minutes at 95 °C in 10 µl of H2O. Then, 15 

µl of Random Primer Mix, 6 µl of a mixture containing 0.5 mM of each dATP, dCTP, dGTP, 

1 µl of Klenow enzyme (3 units) and 5µl 32P-dCTP (3000 Ci/mmol; 50 mCi, Amersham, 

U. S. A. ) were mixed with the denatured fragment in a final volume of 50 µl. Labeling reaction 

was carried out at 37°C for 30-60 minutes. Radioactive probe was purified using MicroSpin 

Column S-300HR (Pharmacia, Germany), following manufacturer's recommendations. 

Indicative evaluation of incorporation rate was performed with a hand radioactivity counter, 

comparing the amount of radioactivity in the MicroSpin Column (unincorporated) to the 
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amount in the eluted fraction (incorporated). Eluted probes were denatured for 5 minutes at 

95°C and chilled on ice. After preincubation of the membrane, hybridization buffer was 

substituted with 10 ml of fresh prewarmed buffer and the radioactive probe was added. 

Hybridization was carried out at 65°C overnight. After hybridization, the hybridization 

mixture was frozen at -200C (re-used up to three times, but not for genomic DNA), and 

membranes were subjected to stringent washes according to the following protocol: brief 

rinse in 50 ml of 2x SSC/0.1% SDS at room temperature, 10 minutes in 50 ml of 2x 

SSC/0.1% SDS at 650C, twice for 10 minutes in 0. lx SSC/0.1% SDS at 65°C. Wet 

membranes were sealed in plastic bags and exposed for 3 hours to 3 days to autoradiographic 

films (DuPont, U. S. A. ), using markers for orientation of the film to the membrane 

(Stratagene, U. S. A. ). 

4.2.1.7 Screening of genomic DNA phage library and large-scale preparation of lambda 

phages 

After hybridization with the probe CB 1 HII, corresponding to the CB 1 ORF (Fig. 4.4), 

only signals present on both membranes from the same plate were considered as 

corresponding to positive plaques. After orienting of the autoradiographic film with 

membranes and with plates, positive plaques were picked from the agar plate. In primary 

screenings, the wider end of a sterile Pasteur pipette was used to pick the surrounding area of 

positive plaques, and the piece of agar containing the phages was blown into an Eppendorf 

tube containing 1 ml of SM buffer. Phages were eluted by cutting the agar piece in small 

fragments and incubating at 4°C overnight with gentle shaking. For storage of phages, 2 

drops of chloroform were added to the eluted SM buffer. For secondary and tertiary 

screenings, the eluted phages were treated as described above (see "4.2.1.4 Growth of 

genomic DNA phage library and phage plaques lift"), with the only differences that higher 

phage dilutions were plated out onto smaller plates and that smaller positive areas were 

picked from the plates. Finally, after 3 or 4 rounds of screening, positive phages were 
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considered as homogeneous when all plaques on a plate gave a hybridization signal. For large 

scale preparation of lambda phage DNA, 3x 10' pfus of the positive phages in 0.5 ml of SM 

buffer were mixed with 0.5 ml MgCbICaCb (10 mM each) and 0.5 ml of the bacteria (OD6oo 

1, e. coli strain LE392). After incubation at 37°C for 10 minutes, the mixture was 

inoculated into 400 ml NZY broth and incubated at 37°C overnight with shaking. NZY broth 

contains 5 g/l NaCl, 2 g/l MgSO4-7H20,5 g/1 yeast extract (LIFE Technology), 10 g/l NZ 

Amine (casein hydrolysate, Sigma). When cell lysis was apparent (12-18 hours), 0.8 ml of 

chloroform was added, and the incubation was continued at 37°C for another 15 minutes. 

The lysate was then centrifuged in chloroform resistant 500-ml buckets at 7000 rpm for 10 

minutes at 4°C. Supernatant was transferred to a1 liter glass beaker and 23.4 g NaCl and 40 

g polyethyleneglycol (PEG) 8000 were added. After shaking at 37°C until complete 

dissolving of PEG, the beaker was incubated 30 minutes on ice. Phages were then collected 

by spinning at 7000 rpm for 30 minutes at 4°C. Phage pellet was carefully resuspended in 6.5 

ml of 1x Buffer A and transferred to a 50 ml Falcon tube. Buffer A was prepared as al Ox 

concentrated stock, stirred overnight at 4°C and stored at 4°C. It contains 5% (v/v) NP40,36 

mM CaCI2,300 mM Tris-HC1(pH 7.5), 50 mM MgCI2,1.25 M KC, 5 mM EDTA (pH 8.0), 

2.5% (w/v) Na-deoxycholate. lx Buffer A was freshly prepared by mixing 5 ml of IOx stock 

buffer A, 45 ml H2O and 20.5 ul of 14.63 M ß-mercaptoethanol solution. 160 µg of DNase I 

(Sigma, U. S. A. ) and 400 µg of RNase A were added to the phage suspension, and the 

mixture was incubated 30 minutes at 300C. PEG was then removed by addition of an equal 

volume of chloroform, shaking and centrifugation for 10 minutes at 3000 rpm at room 

temperature. Phages were carefully collected from the upper layer. Conical polyallomer 1 O-m1 

tubes (Beckmann) were used to prepare a one-step gradient with a bottom layer of 750 µl of 

a 40% glycerol solution and an upper layer of 2.5 ml of a 5% glycerol solution. 40% glycerol 

solution contains 40% glycerol, lx buffer B, 0.4 µJ/ml of 14.63 M ß-mercaptoethanol. 5% 

glycerol solution is the same, but with a decreased amount of glycerol. IOx buffer B stock 
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solution contains 5% NP40,300 mM Tris-HC1(pH 7.5), 1.25 M KCl and 5 mM EDTA. The 

8 ml phage solution was finally placed on top of the two step gradient and centrifuged at 

35,000 rpm for 1 hour at 4°C. Supernatant was carefully discarded and the phage pellet was 

resuspended in 1.6 ml of 2x ET buffer (0.04 M Tris-HCI, pH 7.5; 0.1 M EDTA) and 

transferred to a5 ml cryotube (Nunc, U. S. A. ). After adding 0.4 ml of a 10% SDS solution, 

the phage suspension was incubated overnight at 55°C. Phage DNA was then extracted with 

an equal volume of phenol, by gentle shaking, centrifugation at 2000 rpm for 5 minutes at 

room temperature, and removal of the lower organic phase. Liquid phase was further 

extracted with an equal volume of phenol/chloroform (1: 1) in the same way. Finally, the 

liquid phase was extracted with an equal volume of chloroform and the upper liquid phase 

was saved in a 15-ml Falcon tube. DNA was precipitated with 2 volumes of 100% ethanol 

and the visible DNA clump was pulled out with a bent glass micropipette. After a brief 

washing in 70% ethanol, the DNA was dissolved in 500 µl of TE buffer. The concentration of 

DNA was determined by spectrophotometric absorption at 260 nm and, then, phage DNA 

was stored at 4°C. 

4.2.2 Embryonic stem cells 

E14 mouse embryonic stem cells (129o1a strain; Kühn et al., 1991), were kindly 

provided by Dr. Klaus Pfeffer, Munich, Germany. Tissue culture plates were purchased from 

NUNC (Germany). Sterile plastic tubes (50 ml and 15 ml) were purchased from Falcon 

(Germany). 

4.2.2.1 Preparation of embryonic mouse fibroblast feeder cells 

In order to maintain their undifferentiated and totipotent status, embryonic stem cells 

(ESCs) need the presence of factors that inhibit differentiation. Early experiments showed that 

primary embryonic mouse fibroblast constitute a very good source of these factors (Bradley 

et at., 1984). 
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Primary embryonic fibroblast cells were obtained from mice embryos at 14-16 days 

post coitus (dpc). The pregnant mouse was killed and embryos were isolated from the uterus 

free of membranes. Embryos were transferred to a petri dish containing sterile PBS (Ca 2+ and 

Mg 2+ free, LIFE Technologies GIBCO, Germany) and heads, internal organs and limbs were 

removed. Carcasses were washed three times in 35 ml of sterile PBS. After the PBS washes, 

carcasses were quickly minced on ice with a sterile scalpel Minced carcasses were incubated 

in 10 ml 0.5% trypsin/1 mM EDTA (LIFE Technologies GIBCO, Germany), supplemented 

with 200 µg/m1 of DNase I (Boehringer Mannheim, Germany) at 37° C for 15 minutes. A 

teflon mesh was sterilized for 30 minutes in boiling Ampuwa water (Fresenius, Germany). 

After cooling to room temperature and sequential washing in PBS and trypsin/EDTA 

solution, the mesh was placed into a 250 ml Erlenmeyer flask. After the trypsin incubation, 

the minced embryos were pressed with a sterile 5 ml syringe plunger through the mesh. A 

total of 50 ml trypsin/EDTA solution was used to rinse the mesh. The solution was further 

incubated for 30 minutes at 37° C with shaking, and then it was decanted in two 50 ml Falcon 

tubes. After filling the tubes with complete feeder cells medium, cells were centrifuged at 

1500 rotations per minute (rpm, about 300x g) and the cell pellet was resuspended in 10 ml of 

complete medium. Complete feeder cell medium consists of Dulbecco's Modified Eagles 

Medium (OMEN, high glucose, with Na-pyruvate, LIFE Technologies GIBCO, Germany, 

cat. 41966052), supplemented with 10% foetal calf serum (FCS, PAA Laboratories, 

Germany, cat. A15-041), 2 mM glutamine (LIFE Technologies GIBCO, Germany), 100 

U/ml Penicillin and 100 U/ml Streptomycin (100x Penicillin/Streptomycin solution, LIFE 

Technologies GIBCO, Germany). Cells were again centrifuged and the cell pellet was again 

resuspended in 10 ml of complete feeder cells medium Viable cells were counted using the 

Trypan blue exclusion method (Sigma, Germany). Cells were plated at the density of 5x106 

cells/dish onto 15-cm cell culture dishes containing 25 ml of complete feeder cell medium. 

After overnight culture at 37°C, 5% C02 (cell culture incubator, Haereus, Germany), the 
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medium was replaced with fresh medium. After 2-3 days, cells formed a confluent monolayer 

and were washed twice in PBS and trypsinized in 0.5% trypsin/1 mM EDTA for 5 minutes at 

37° C. Cells were then centrifuged at 200 xg (about 270x g) and replated at a dilution of 1: 5 

and further incubated. After another 2-3 days, the cells were confluent. They were again 

trypsinized as above and resuspended at the concentration of about 10-20x 106 cells/ml. Cell 

suspensions were pipetted into 0.5 ml aliquots into 2 ml-freezing vials (Nalgene, Germany). 

The content of each vial was mixed with 0.5 ml of ice-chilled 2x concentrated freezing 

medium. 2x freezing medium consists of 6 ml of complete feeder cells medium, supplemented 

with 2 ml of FCS and 2 ml of Dimethylsulfoxide (DMSO, Sigma, Germany). Cells were 

frozen at -80° C, and then stored in liquid nitrogen until used for the preparation of feeder cell 

plates. 

One vial of frozen primary embryonic fibroblast cells was quickly thawed and 10 ml of 

complete feeder cells medium were added. After centrifugation at 200 xg (about 270x g) for 

5 minutes and resuspension of the cell pellet in 10 ml of complete DMEM, cells were plated 

onto 5 cell culture dishes (15 cm diameter) and incubated for 4 days in cell culture incubator, 

or until they formed a confluent monolayer. After washing twice in PBS, cells were 

trypsinized at 37°C for 5 minutes. After centrifugation as above and resuspension in complete 

DMEM, the cells were plated at a 1: 4 dilution onto 20 cell culture dishes (15 cm diameter). 

After 3 days, cells were treated with mitomycin C (Sigma, Germany), in order to block cell 

proliferation. The medium was removed and substituted with fresh medium containing 10 

µg/ml of mytomicin C and the cells were put into the incubator for 3 hours. Cells were 

washed twice in PBS, trypsinized as above, counted and then plated at the concentration of 

onto convenient plates (ranging from 96 well-plates to 10 cm cell culture 4x 104 cells/cm 2 

dishes). 
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4.2.2.2 Thawing and expanding of ESCs 

An aliquot of E14 embryonic stem cells (ESCs, 129Sv strain; Kühn et at, 1991) was 

quickly thawed and transferred to a 50 ml Falcon tube containing 10 ml of complete ESC 

medium. Complete ESC medium consists DMEM, supplemented with 10% foetal calf serum 

(FCS, Boehringer Mannheim, Germany, cat. 210471, lot 14870302), 10-4 M (3- 

mercaptoethanol (LIFE Technologies GIBCO, Germany), 2 mM glutamine, 1000 U/ml 

leukemia inhibitory factor (LIF, LIFE Technologies GIBCO, Germany), 100 U/ml Penicillin 

and 100 U/ml Streptomycin. The cells were centrifuged 5 minutes at 200 xg, the cell pellet 

was resuspended in ESC medium and then the cell suspension was plated onto a 6-cm cell 

culture dish, containing mytomicin-treated primary mouse embryonic fibroblasts (feeder 

plate). On the second day, the cells were washed in PBS and trypsinized in order to obtain a 

single cell suspension. After centrifugation, cells were resuspended in ESC medium and 

plated at a 1: 4 dilution. After 2 days, the cells were split in the same way onto 10 cm-feeder 

plates at a 1: 4 dilution. After another two days, cells were trypsinized and plated onto 4 

gelatin pre-treated 10 cm plates. Gelatin pre-treatment of the plates consists of an incubation 

with 0.1 % gelatin (BDH, Germany) in Ampuwa water for few minutes, followed by two 

washes in PBS. After 36 hours of incubation, the cells were ready for electroporation. 

4.2.2.3 Electroporation of ESCs, antibiotic selection, picking and expansion of resistant 

clones 

60 µg of the targeting construct were digested overnight with Notl to obtain complete 

linearization (clone G134.1, see below 4.3.2 "Generation of the targeting construct"). The 

restriction enzyme was then inactivated at 70° C for 20 minutes. The ESCs were carefully 

trypsinized in order to obtain a single cell suspension. After centrifugation (3 minutes at 

200 xg) and resuspension in 10 ml PBS, the cells were kept in ice and counted. 7x106 cells 

were again centrifuged for 5 minutes at 200 xg. Cell pellet was resuspended in 800 pJ of cold 
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PBS and 20 0 of linearized DNA (1 mg/ml) were added. The cell suspension was transferred 

into one electroporation cuvette (BioRad, Germany). Electroporation was obtained in a Gene 

Pulser electroporation apparatus (BioRad, Germany) at the following conditions: 0.24 kV, 

500 gF for 5.6 milliseconds. After electroporation, the cells were let in ice for 15 minutes and 

then diluted into 20 ml of complete ESC medium. The cells were then plated onto 2 gelatin- 

pretreated 10 cm-plates and put into the incubator. After 1 day, the medium was changed 

with fresh medium and after another day, the medium was substituted with selection medium, 

consisting of complete ESC medium supplemented with 200 µg/ml of geneticin (G418, LIFE 

Technologies GIBCO, Germany). G418 is prepared as a 100x concentrated stock solution in 

PBS and stored at -20° C. Fresh complete ESC/G418 medium was changed every two days. 

After 8 days of selection, resistant clonal colonies had appeared. Single colonies were picked 

with the aid of plastic sterile pipette tips and plated onto single 96 well-feeder plates in 

complete ESC medium without G418. After one day, the clones were trypsinized with 50 µl 

of Trypsin/EDTA, resuspended to single cells and, after adding 50 µl of complete ESC 

medium, were replated in the same well "tryplation"). When clones had grown enough 

(ranging from 1 to 4 days later), they were split onto two 96 well-feeder plates and one 

gelatin-pretreated 96 well-plate. The expansion continued until three 96 well-feeder plates 

and 3 gelatin-pretreated 96 well-plates were obtained for each clone. At this point, gelatin- 

treated plates were used for genomic DNA extraction (see above 4.2.1.4.2 "DNA preparation 

from embryonic stem cells"), while cells grown on feeder plates were frozen in the following 

way: cells were washed once with PBS, and 50 µl of trypsin/EDTA solution were added. 

Cells were incubated at 37°C for 20 minutes to obtain a single cell suspension. 50 µl of cold 

complete ESC medium and 100 µl of cold 2x concentrated freezing medium were added. 2x 

freezing medium consists of 6 ml of complete ESC medium with 2 ml FCS and 2 ml DMSO. 

After mixing the cells with the freezing medium, the plates were sealed with Parafilm 

(American National Can, U. S. A. ) and immediately frozen at -80°C. In this way, 96 well- 
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plates with viable cells were stored for up to 3 months. 

After Southern analysis of the DNA derived from the cells grown on gelatin-treated 

plates revealed the presence of positive clones, the corresponding frozen clones were thawed 

and expanded. Thawing of 96 well-plates was similar as described above (4.2.2.2 "Thawing 

and expanding of ESCs"). Cells were split progressively onto larger feeder plates (24 well- 

plates, 6 well-plates, 6 cm-plates, 10 cm plates). When sufficient numbers of cells were 

obtained from positive clones, aliquots of cells were frozen. Briefly, the cells of one 10 cm- 

feeder plate were trypsinized to single cell suspension, centrifuged and resuspended in 1 ml of 

cold complete ESC medium. 1 ml of cold 2x freezing medium was added, and cells were 

frozen at -80°C in 2 ml-freezing vials (Nalgene). After a few days, frozen vials were 

transferred to liquid N2, where they were stored until used for blastocyst injections. Blastocyst 

injection were performed according to Hogan et a1. (1986). 

4.2.3 In situ hybridization 

Non-radioactive in situ hybridization on brain sections derived from wild type and 

CB 1-mutant mice was performed as described in Chapter 2. The only differences were that 

the Tyramide Signal Amplification kit (NEN, USA) was used following the manufacturer's 

instructions and that diaminobenzidine was used as chromogenic substrate for visualization of 

the riboprobes. The riboprobe for CB 1 was the same as used in Chapters 2 and 3. 

4.3 Results 

4.3.1 Genomic organization of the mouse CB1 

4.3.1.1 Cloning ofphage insert 

To characterize the genomic organization of the mouse CB 1 gene, a mouse genomic 

phage hibrary (Kühn et al., 1991) was screened with a1 kb EcoRV-HindHII fragment from 

CB 1 ORF (CB I HIII, Fig. 4.4). From this screening, four phage genomic clones were 

obtained (CB 1.1, CB 1.2, CB 1.4 and CB 1.5). After phage DNA purification, restriction 
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mapping and Southern blot hybridization using the CB 1 HIII probe (Fig. 4.4), phage clones 

CB 1.2, CB 1.4 and CB 1.5 appeared to have an identical 21 kb insertion; CB 1.1 was about 2 

kb shorter than the others, included about 1 kb more at the 5' end of the gene, and 

overlapped with them by abouth 18 kb. After Not I digestion, the insert from clone CB 1.2 

was subcloned into pBlueScript KS(-) (pKS). Given the length of the insert, this cloning step 

was quite difficult. After some fruitless attempts using standard ligation procedures, the phage 

insert was cloned by coprecipitation of the fragment and the plasmid in sodium acetate and 

70% ethanol and resuspension in a small volume (5 µl) of complete ligation mixture. After 

colony screening, using CB 1 HIII (Fig. 4.4) as probe, six clones were identified as positive, 

and after restriction mapping, three clones were shown to contain the entire phage fragment. 

Among these, clone G23.10 was chosen for further experiments. 

4.3.1.2 Mapping of CBI locus 

Gross mapping and fragment subcloning. Several restriction digestions were carried 

out on clone G23.10, to reveal the gross restriction map of the CB 1 genomic locus. Smaller 

fragments of G23.10 were subcloned to obtain more detailed information about the restriction 

map and to facilitate sequencing. Thus, a 4.1 kb EcoRV-BamHI fragment, covering about 1.5 

kb of the CB 1 ORF and about 2.6 kb of the 3' flanking region, was subcloned into pKS 

(clone G34.10; Fig. 4.4) and completely sequenced. A 3.0 kb Pstl-EcoRV fragment, covering 

about 2.8 kb of the 5' flanking region of CB 1 ORF and about 100 bp of the CB 1 ORF, was 

also subcloned into pKS (clone G35.2; Fig. 4.4) and entirely sequenced. These two clones 

together contained the entire CB 1 ORF, which was confirmed to be identical to the mouse 

CB 1 sequence present in GenBank database (accession number U22948). 

Defining limits of the targeting construct. In order to further restriction map the 5' and 

3' regions of the genomic locus of CB 1, two other probes were chosen, Spe6 and EIX (Fig. 

4.4), and Southern blots were hybridized with these probes. This revealed the presence of two 

convenient restriction sites for designing the termini of the two homology arms for the 
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targeting construct. At a distance of about 2 kb from the 5' end of the phage insert (about 7 

kb 5' to the CB 1 ORF) a EcoRV site is present, while at a distance of about 2 kb from the 3' 

end of the phage insert (about 5 kb 3' to the CB 1 ORF) a HindIIl site was found (Fig. 4.4). 

These sites were chosen as the margins of the targeting construct. 

Finding probes for screening of targeted ESCs. The fragments outside the homology 

margins (corresponding to the 5' and 3' end regions of clone G23.10) were subcloned (clones 

G88.2 and G95.1, respectively; Fig. 4.4), to find suitable restriction sites for diagnostic 

digestions of genomic DNA of embryonic stem cells after homologous recombination and to 

characterize external probes for screening these diagnostic digestions (see below, 4.3.3 

"Electroporation and selection of targeted embryonic stem cell clones"). A Xbal and a Spel 

site were found in clone G88.2 (5' region) and in clone G95.1 (3' region), respectively. Xbal 

is absent in the entire 5' region of CB 1 locus covering the chosen homology arm and is 

present only at the 3' end of CBI ORF, at a distance of about 10 kb. Spel is absent in the 3' 

region of CB1 locus chosen as the 3' homology arm, and it is present only in the 5' region, at 

a distance of about 12 kb from the other Spel site outside the 3' homology arm (Fig. 4.4). 

The regions between the Xbal site and the 3' end of clone G88.2, and between the Spei site 

and the 5' end of clone G95.1, were checked for the presence of repetitive sequences by 

reverse Southern blot hybridization using 129Sv genomic DNA as probe. By this approach, 

positive hybridization signals would reveal the presence of genomic repetitive sequences. This 

could represent a problem for the use of a fragment as probe for genomic DNA screening. 

The 0.6 kb XbaI-HindJIl fragment (XH6) in clone G88.2 and the 0.4 kb Spei Xbal fragment 

(SpeX4) in clone G95.1 were found to be free of repetitive sequences, as shown by lack of 

hybridization signal (data not shown). Therefore, these fragments were chosen as probes for 

the screening of targeted ESC clones (Fig. 4.4, XH6 and SpeX4). 
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Fig. 4.4 Schematic representation of the mouse CB I genomic locus with restriction mapping (clone 

G23.10). Underlined restriction sites were fully mapped. Grey box represents the intron sequence. 

White box represents the open reading frame (ORF) of CB1. Black boxes are the 5' and 3' flanking 

regions of the CB I ORF. Red bars are fragments used as probes in Southern blot experiments. Black 

bars represent subclones as described in the text. 

Characterization of 5' intronic sequence. Another important feature of a conditional 

gene targeting construct is the position where to place the loxP sites, in order to minimize the 

disturbance that they might cause to the normal expression of the "floxed" gene. Rat and 

human CB 1 loci have an approximately 2 kb intron sequence at about 60 bp 5' of the CB 1 

ORF (Shire et a1., 1995). To detect whether there was a similar intron sequence in the mouse 

locus, PCR was performed on mouse genomic DNA and on whole brain mouse cDNA, using 

the primer pairs GI-G2 and G3-G2 (Table 4.1). Primer pair GI-G2, as expected, amplified a 

1.6 kb fragment both on genomic and on cDNA, whereas G3-G2 amplified a 1.7 kb fragment 

only on genomic DNA, indicating the putative presence of an intron sequence in the area of 

primer G3 (data not shown). A further analysis of the sequence of clone G35.2 (2.8 kb 5' of 

CB 1 ORF), revealed the presence of a splice donor site (5'- GAGCAG/GTAAAT -3') at 

position -2102 (considering the ATG of CB1 ORF as position +1), and of a splice acceptor 

site (5' -GTTAG/GGTT- 3') at position -62, thus suggesting the presence of the intron 

sequence 5' to the CB 1 ORF also in the mouse genomic locus (Fig. 4.5). 
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Clone G3ä. 4---------- TTTTAAGCTT CTTCCAGTGT GCCATACATT GTGGTGAGAA TTGAATACTA 
Genomicseq---------- TTTTAAGCTT CTTCCAGTGT GCCATACATT GTGGTGAGAA TTGAATACTA 

AGATAGATTA AGTCTCCAGG GAGGTCCTCG TGGAACTTTC TGTGGAGCTT GGGAGCAAGA 
AGATAGATTA AGTCTCCAGG GAGGTCCTCG TGGAACTTTC TGTGGAGCTT GGGAGCAAGA 

SPLICE 

-2102 -62 
GGCAGAGCAG GGTTCCCTCC 
GGC-AL&GCA2_GTAAAjjG ------2040 bp intron------ CTCC TTAG GGT CCTCC 

+1 
1 
r TGGCACCTCT TTCTCAGTCA CGTTGAGCCT GGCCTAATCA AAGACTGAGG TT ýZAAGTC 

TGGCACCTCT TTCTCAGTCA CGTTGAGCCT GGCCTAATCA AAGACTGAGG TTATGAAGTC 

GATCTTAGAC ------------- 
GATCTTAGAC ------------- 

Fig. 4.5. Sequence alignment of clone G3 8.4 (derived from cDNA) and genomic CBI locus (derived 

from clone G35.2, see Fig. 4.4), showing the presence of a 2040 bp intron from position -2102 to -62 
upstream to the mouse CB 1. Box, donor and acceptor splice sequences. 

Primers G7 and G8 (Table 4.1) were designed to be located upstream of the putative 

splice donor site and downstream of the putative splice acceptor site, respectively. PCR 

reaction using mouse whole brain cDNA as template was performed with this primer pair and 

the product (about 1 kb) was cloned and sequenced (clone G38.4). By comparing the 

genomic sequence from clone G35.2 (Fig. 4.4) with the cDNA sequence from clone G38.4, it 

was possible to confirm the existence of a 2040 bp intron sequence from position -2102 to - 

62 upstream of the ATG of mouse CB 1 (Fig. 4.5). 

Determination of appropriate locations for loxP sites. At position -372, inside the 

intron sequence, there is an AvrII restriction site that is unique in the 5' region of the genomic 

locus. As loxP sites are rather unlikely to perturb the normal expression of a gene when they 

are introduced into introns (Torres & Kühn, 1997), the AvrII site was chosen to introduce the 

5' loxP site. On the 3' side of CBI ORF, no intron was revealed to be present, but at least 

two "non-canonical" polyadenylation signals are present. A unique Ach site, at about 2 kb 

downstream of the AvrII site, is present between the first and the second polyadenylation 
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signal. This was considered to be a good position to place the 3' loxP site. 

In conclusion, restriction mapping, Southern hybridization and sequencing of the CB 1 

genomic locus revealed the presence of a single ORF encoding for CB 1, confirmed the 

presence of a2 kb intron sequence at about 60 bp 5' to CB1 ORF and allowed me to design a 

conditional gene targeting construct. 

4.3.2 Generation of the targeting construct 

Given the sequence information and the restriction mapping data, the construction of 

the gene targeting construct was carried out. Fig. 4.6 shows the cloning steps that were 

necessary to achieve this construct. Restriction sites were introduced, during the cloning 

steps, in order to facilitate the Southern blotting screening of targeted ESC clones. Major 

difficulties were encountered at the last steps, because of the dimensions of the inserts and 

vectors. In some cases, i. e. steps 8-10, bacterial colony lifts were necessary to find positive 

clones, and, given the low yields of large plasmids, high amounts of bacterial cultures (up to 3 

liters) were used for plasmid preparations. No blunt ligation was used in the steps where big 

fragments (> 5 kb) were to be cloned. An Xbal site was left in the neighboring 3' region of 

the 5' loxP site (Fig. 4.6, step 2), while a Spei site was carried on from the subcloning of the 

FRT-PGK-Neo cassette in position 3' to the second FRT site (Fig. 4.6, steps 5,6 and 8). At 

step 2, a Notl site carried from the loxP original plasmid (pFTM-loxP), was destroyed by 

digestion, blunting and self-ligation (clone G 105.16 to clone G 109.2), in order to maintain a 

unique Nod site in the 5' polylinker region of the final construct, since a single restriction site, 

external to the targeting construct, is necessary for linearization of the plasmid prior to 

electroporation of ESCs. 
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Note the presence of the Xba I sites 5' of CB1 that will be used for 
targeting screening of cell clones. 
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Fig 4.6 (continued) 
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Fig. 4.6 (see also previous two pages). Schematic representation of the cloning steps performed to 

obtain the gene targeting construct. Steps 1 to 4 were performed to assemble the left arm of homology 

(LA, black box), the 5' loxP site (loxP, red triangle) and the CBI ORF (CBI, white box) (clone 

G 121.8). Steps 5 to 8 were necessary to assemble the 3' loxP site (loxP, red triangle), the FRT-PGK- 

Neo cassette (FRT, black triangle; PGK-Neo, yellow box) and the right arm of homology (RA, black 

box) (clone G 128.2). Steps 9 and 10 were used to assemble the two arms of the construct, in order to 

obtain the final gene targeting construct G134. I. Grey box represents the intron sequence. Scale bars 

are 1 kb, but the backbone plasmid sequence, the loxP site, the FRT site and the polylinker regions are 

not represented in correct proportion. At each step, used restriction enzymes are bold and circled. 

Abbreviations: pKS, pBlueScript KS(-); restriction enzymes: Acll, Ac1I; Avr2, AvrII; BH I, BamHI; 

BXI, BstXI; C 1, C1aI; H3, Hindill; K1, Kpnl; N1, Not!; P 1, Pstl; R1, EcoRI; R5, EcoRV; S 1, 

SacI; S2, Sac11; Sa 1, Sall; Sm 1, SmaI; Sp 1, Spel; Xb 1, Xbal; Xh 1, Xhol. 

Before proceeding to embryonic stem cells electroporation, the final clone G 134.1, was 

sent for sequencing of the complete CBI ORF and of the most important regions of the 

construct (lox P sites, FRT sites, junctions between different fragments). Sequencing data 

confirmed the identity of the construct and the lack of mutations. 
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4.3.3 Electroporation and selection of targeted embryonic stem cell clones 

60 µg of clone G134.1 were linearized by Nod digestion and 20 µg were used for 

electroporation of E 14 mouse embryonic stem cells (129Sv strain; Kühn et al., 1991). After 

8 days of selection in geneticin (G418) at 200 µg/ml, approximately 400 resistant clones were 

picked, grown in 96-well plates and subsequently expanded for screening and freezing. In a 

loxP gene targeting construct, there are three regions of homology where homologous 

recombination can occur: the region 5' to the first loxP site (left arm of homology, LA), the 

sequence of interest (in this case: the CB1 ORF) and the region 3' to the second loxP site 

(right arm of homology, RA). To obtain the desired gene targeting, recombination events 

should occur exclusively in the first (LA) and the third (RA) of these homology regions. If 

one of the homologous recombinations between gene targeting construct and genomic DNA 

involves the second of these homology regions (CB 1 ORF), one of the two loxP would be 

inevitably lost, thus blocking the Cre/loxP approach. In the 3' region (RA) of clone G134.1, 

the selection cassette PGK-Neo is present, conferring the resistance to the drug G418 in the 

ESCs. It is therefore very likely that G418-resistant ESC clones contain the RA of homology. 

Thus, the primary screening was addressed to the LA, using XbaI genomic DNA digestions 

of picked and expanded clones. Southern blot hybridization, using the probe XH6 (Fig. 4.4) 

revealed the presence of two bands at about 10 kb (wild type allele) and at 8.5 kb (targeted 

allele) in 11 clones (about 3% recombination efficiency) (Fig. 4.7A, B). As expected, a further 

digestion with Spel and subsequent Southern blot hybridization using the probe SpeX4, 

revealed that the wild type (WT) band at about 12 kb and the correctly recombined band at 

about 6.5 kb were also present in all the 11 clones (Fig. 4.7A, Q. Additional random 

integrations of the Neo cassette were checked by restriction digestion of genomic DNA of 

positive ESC clones with three different enzymes (Xhol, Sall and Spel) and Southern 

hybridization using a 600 bp-long Xbal-Pstl fragment of the Neo gene as a probe. Only 

clones that showed a single positive band with all three digestions (not shown), indicating a 
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single correct targeted site of integration, were used for further experiments. Two clones out 

of the eleven targeted ones showed additional random integration sites (data not shown). 

4.3.4 Blastocyst injection, generation of chimeras and germ line transmission 

Three ESC clones (clones SD7, SSB12 and MBH2) were chosen for injection of 

C57BL/6-derived blastocysts. Table 4.2 summarizes the results of blastocyst injection 

experiments. A total of 538 blastocysts were injected with either of the three ESC clones. Of 

the 77 pups born from these experiments, 29 were chimeric (37,7%), with various values of 

chimerism. 

Number of Number of Number of 
Clone injected chimeras 

Germ line 
born pups transmission 

embryos (% of chimerism) 

SD7 152 17 7 (20-80%) YES 

SSB12 197 42 14 (3-100%) YES 

MBH2 189 18 8 (2-80%) YES 

Table 4.2. Sununaiy of blastocyst in ion experiments. The percentage of chimerism was 

empirically evaluated based on the coat colour of chimeras. 

Chimeras derived from all the three ESC clones were mated with wild type C57BL/6 

mice to check the germ line transmission of the targeted allele. Germ line transmission was 

revealed by the coat colour of offspring (black, not germ line; agouti, germ line transmission 

of agouti ESCs), and was confirmed by PCR (Fig. 4.7D) and by Southern blot experiments 

(data not shown) of tail-derived genomic DNA. Two primers, G50 and G5 1, were used for 

PCR analysis (Tab. 4.2). Both primers correspond to wild type sequences, one located 5' 

(G50) and the other located 3' (G5 1) of the AvrII restriction site, where the 5' loxP site was 

inserted. 
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Fig. 4.7. Analysis of targeted ESC clones and germ line transmission of the gene targeting construct. 

A. Schematic representation of the wild type (WT) and "flox-Neo" alleles. B. Southern blot analysis of 

G418-resistant ESC clones. Clone SD7 (and also SSB12 and MBH2, not shown) contains the correct 

recombination of the 5' region of the targeting construct (primary screening, left arm of homology, 

LA). C. Southern blot analysis of G418-resistant ESC clones. Clones SD7, SSB 12 and MBH2 contain 

the correct recombination of the 3' region of the targeting construct (secondary screening, right arm of 

homology, RA). D. PCR analysis of germ line transmission. Agouti offsprings derived from crossing 

of wild type C57BL/6 mice with clone SD7-derived chimeras. Double PCR bands correspond to germ 

line transmitted animals. Black bars, homology arms (LA and RA); grey bar, intron sequence; white 

bar, CBI open reading frame; yellow bar, PGK-Neo cassette; red triangle, loxP site; black triangle, 

FRT site; G50 and G5 1, primers used for PCR analysis; XH6 and SpeX4, probes used for Southern 

blot analysis. 

Using these primers, wild type alleles give an amplicon of 413 bp, whereas targeted 

alleles give a 493 bp amplicon (Fig. 4.7A, D). These two bands are clearly distinguishable in a 

1.5 % agarose gel, and easily allow to distinguish between wild type homozygosity (only the 

X=6 Sp eX4 
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lower band), mutant homozygosity (only the higher band) and heterozygosity (both bands) in 

the genomic DNA. 

Southern blot analysis was performed on mouse tail DNA with the same conditions as 

for ESC genomic DNA and gave identical results (not shown). All three lines gave rise to 

germ line transmission, with efficiencies (evaluated as percentage of agouti pups per litter), 

ranging from 10% to 100%. These germ line-transmitted animals were defined as the "flox- 

Neo" line, as they contain the complete sequence of the targeting construct, with the "floxed" 

CBI and the PGK-Neo cassette flanked by FRT sequences. The following experiments were 

carried out using only mice derived from SD7 and SSB12 cell clones, keeping the MBH2 

derived mice as a "back-up" line. 

4.3.5 Generation of CB1 "Null mutant" ("CBN"mouse line) 

To check the efficiency of the Cre-mediated excision of the "floxed" CB 1 gene and to 

generate a CB 1-null mutant (CBN) mouse line to be used for further experiments, 

heterozygous animals of the "flox-Neo" line were crossed with "Cre-deleter" mice. The "Cre- 

deleter" mice are a transgenic line that express Cre recombinase under the control of a human 

cytomegalovirus minimal promoter (PBi-2, Baron et al., 1995). Given the relatively low 

specificity of the promoter, these mice express rather high levels of Cre recombinase in 

virtually all the cells of the body, including germ cells (Schwenk et at, 1995). The excision of 

CB 1 (CBN allele) was checked by PCR and Southern blotting of tail-derived DNA from mice 

of the Fl generation (offspring of heterozygous "flox-Neo" mice and heterozygous "Cre- 

deleter" mice). PCR was performed using three primers in the same reaction: G50, G51 and 

G54. G50 and G51 are described in the previous paragraph (Fig. 4.7A, D), while G54 is a 

reverse primer located in the 5' end region of the "PGK-Neo" cassette (Table 4.2 and Fig. 

4.8A). Best results were obtained when the final concentrations of the primers were as 

follows: G50 I nmoVml, G51 0.5 nmoUml, G54 0.7 nmol/ml. On wild type alleles, which lack 

the "PGK-Neo" cassette, the G50/G51 primer pair gave an amplification product of 413 bp 
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(Fig. 4.8C). On CB 1-deleted alleles (CBN), G51 does not have the template to anneal with, 

while the PGK-Neo cassette is moved closer to the G50 primer (Fig. 4.8A). In this case, the 

G50/G54 primer pair gave a 342 bp amplification product, clearly distinguishable from the 

wild type G50/G51 product on a 1.5% agarose gel (Fig. 4.8C). Also in this case, it was easy 

to discriminate between homozygosity or heterozygosity. 

Southern blot analysis was performed by digesting tail-derived genomic DNA with the 

restriction enzyme Spei. A 0.6 kb BamHI fragment in the LA of homology, located 3' to the 

Spel site in the same area, was used as a probe (Fig. 4.4 and Fig. 4.8A, B). Wild type alleles 

gave an approximately 12 kb band that was the same as described in the previous paragraph 

for the SpeX4 probe (Fig. 4.7C). An Spel site in the 3' flanking area of the first loxP site (i. e. 

inside the region excised by Cre recombinase) was kept during the cloning steps of the 

targeting construct (Fig. 4.6, step 2). Moreover, another Spel site is present in the 5' region 

inside the PGK-Neo cassette (Fig. 4.8A). Therefore, in case of Cre-mediated deletion of CB 1 

("CBN allele"), Southern blot hybridization gives a 3.3 kb band, whereas a "flox-Neo" allele 

(i. e., where no recombination had occurred), gives a 2.7 kb band (Fig. 4.8B). Southern 

blotting analysis gave the same conclusions as the PCR experiments described above. 

Mice carrying a CBN allele were then crossed with wild type C57BL/6 mice to check 

the germ-line transmission of the mutation. The efficiency of Cre-mediated deletion of CB 1 

ORF was very high. In the Fl generation (offspring of heterozygous "flox-Neo" mice and 

heterozygous "Cre-deleter" mice), 50% of the mice containing the Cre transgene carried the 

CBN locus, thus showing the high activity of Cre-mediated CB 1 excision in vivo (Fig. 4.8B, 

C). Nevertheless, in the F1 generation, the Cre-mediated deletion might have a "mosaic" 

character, with only a limited number of cells in which the recombination has actually 

occurred. However, also in F2 generation (Fl crossed with wild type C57BL/6 mice), about 

50% of the offspring carried the deletion of the CBI ORF band (Fig. 4.8D). This gives a 

strong indication of the high efficiency of the Cre-mediated excision of "floxed" CB 1 in vivo. 
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Fig. 4.8. Cre recombinase-mediated deletion of CB 1 ORF and generation of the "CBN" (CB 1-null) 

mouse line. A. Schematic representation of the wild type (WT) allele, of the "flox-Neo" allele and of the 

"CBN" allele after the Cre-mediated deletion of the CB 1 ORF. Symbols are as in Fig. 4.7. B. Southern 

blot analysis of individuals of the F1 generation obtained by mating "flox-Neo" with "Cre-deleter" 

mice. About 50% of the offspring mice containing the Cre transgene carried the deleted allele. C. PCR 

analysis of FI generation as in B, but not in the same order. D. PCR analysis of mice of the F2 

generation obtained by mating "F 1" deleted mice (as in A and B) with C57B1/6 wild type mice. 50% of 

the offspring carry the germ line-transmitted deletion, indicating a very efficient Cre-mediated deletion 

of the CB I locus already at FI generation. 
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In further F3 breedings, heterozygous CBN mice (CBN/+) were successively 

intercrossed, in order to generate homozygous null mutants (CBN/CBN). Such breedings 

gave rise to 53% (63/119) heterozygous (CBN/+), 24% (29/119) homozygous mutant 

(CBN/CBN) and 23% (27/119) wild type (+/+) mice, as counted in the first days of life. Such 

proportions corresponds to the expected Mendelian transmission, thus revealing no 

embryonic lethality of the mutation. The majority of mice were sacrificed during the first days 

of life for in vitro experiments using primary neuronal cultures (see Chapter 5 of this Thesis). 

However, animals that were allowed to age (up to four months, at the time of writing) did not 

show any gross phenotypical defect, and body weight and growth rate were normal. The 

expression of CBI was checked in wild type (+/+) and homozygous mutant (CBN/CBN) 

littermates by in situ hybridization on coronal brain sections. Fig. 4.9 shows the lack of CB 1 

expression in CBN/CBN mice in the hippocampus, in contrast to wild type control 

littermates. 
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Fig. 4.9. Non-radioactive in situ hybridization on coronal sections of hippocampi derived from wild 

type (A) and CBN/CBN (B) mice. The CBI riboprobe was the same as described in Chapter 2. 

Diaminobenzidin (DAB) was used as chromogenic substrate. Both sections were counterstained with 

toluidine blue. 

In conclusion, the Cre-mediated excision of CB 1 was shown to occur in a reliable and 

efficient way. This is an important observation, because the efficiency of the Cre/loxP system 

in the mouse can be influenced by many events that are very often unpredictable (Torres & 
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Kühn, 1997). Therefore, these results constitute a strong indication that the "conditional" 

deletion of CB 1 will be possible by using "floxed CB 1" mice as described in the next 

paragraph and suitable Cre-expressing mouse lines. Moreover, the lack of expression of CB 1 

in CBN/CBN mice will constitute a valuable tool for in vitro investigations (e. g. see Chapter 

5). 

4.3.6 Generation of "floxed mutant" "floxed CB1" line) 

As mentioned in the Introduction of this Chapter, one of the key points of a conditional 

gene targeting approach is the completely wild type expression of the gene of interest before 

the Cre-mediated excision (i. e. before the crossing with a Cre-expressing mouse line). To 

achieve this result, the length of sequences artificially introduced into the genomic locus must 

be as short as possible. Any long sequence introduced might cause alterations in the wild type 

expression of the gene of interest. For this reason, given the presence of the 1.8 kb "PGK- 

Neo" cassette in the 3' region of CBI locus, the "flox-Neo" mouse line obtained from the 

gene targeting and the blastocyst injection of the ESCs, cannot yet be considered as optimal 

for a further conditional gene mutation. The "PGK-Neo" cassette used for the gene targeting 

construct is flanked by two recombination sites, different from loxP (Fig. 4.2B and Fig. 

4.7A). These are FRT sites, and they are recognized by a yeast derived recombinase, called 

flipase (flp) (Dymecki, 1996). The flp/FRT system is less efficient than the Cre/loxP one at 

37°C, but still maintains a certain activity (Buchholz et al., 1996). Since efficient transfection 

conditions of a flipase-expressing vector into ESCs are still to be established, it was decided 

to induce the excision of the FRT-flanked PGK-Neo cassette by crossing the "flox-Neo" 

mouse line with a "flipase-deleter" mouse line. In this transgenic mouse line, the recombinase 

is under the control of the constitutively active promoter of the human (3-actin gene and is, 

therefore, rather ubiquitously expressed (Dymecki, 1996). The deletion of the "PGK-Neo" 

cassette in the progeny of this cross was checked by PCR and by Southern blot analysis on 

tail-derived genomic DNA. PCR was performed using the primers G52 and G53 (Tab. 4.1 
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and Fig. 4.10A). These primers anneal to wild type sequences on either side of the AcII 

restriction site where the loxP-PGK-Neo cassette was inserted (Fig. 4.6). On wild type alleles, 

G52/G53 gave an amplification product of 418 bp, whereas in the "PGK-Neo"-deleted 

alleles, the product is 520 bp, clearly distinguishable from wild type in a 1.5% agarose gel. 

Alleles where no deletion has occurred should give a >2 kb band. However, in a 

heterozygous state, the presence of the much shorter wild type and "Neo-deleted" products, 

which are more efficiently amplified in the PCR reactions than the >2 kb band, made it 

impossible to distinguish between animals where the recombination was complete and animals 

where a "mosaic" situation was present. In fact, given the relatively low efficiency of the 

flp/FRT system at 37°C (Buchholz et al., 1996), it was expected that in the F1 generation 

("flox-Neo" heterozygous mice crossed with heterozygous "Flp-deleters"), single animals 

would be mosaic, with the deletion of the "PGK-Neo" cassette only in limited number of 

cells. However, in the Fl generation, about 50% of the animals carrying the Flp transgene 

showed to have at least a mosaic deletion of the "PGK-Neo" cassette (Fig. 4.10B). The 

"mosaic" situation of the F1 generation was confirmed by checking the germ line transmission 

of the deletion of the "PGK-Neo" cassette. Only mice where the deletion had occurred in 

germ line cells were expected to be able to transmit the mutation to the next generation, after 

mating with wild type C57BL/6 mice (F2 generation). Indeed, by using PCR analysis (using 

primers G52 and G53) on tail-derived DNA from offspring of the F2 generation, only about 

10% of the mice were shown to contain the deletion of the "PGK-Neo" cassette (Fig. 4.1 OC). 

These mice were further used for breeding a new mouse line, called "Floxed CB I" line. To 

confirm the reliability of the PCR-based genotyping, Southern blot analysis was also 

conducted in F3 generation mice (F2 generation "Floxed CB 1" crossed with wild type 

C57BL/6 mice) (Fig. 4.10D). BamHI digests of genomic DNA from mouse tails were 

electrophoresed, blotted and hybridized with the CB 1 Hill probe (Fig. 4.4). 
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Fig. 4.10. Flipase-mediated deletion of the "Neo" cassette and generation of the "floxed CB 1" mouse 

line. A. Schematic representation of the wild type allele (WT), the "flox-Neo" allele and the "flox" allele 

after the flipase-mediated deletion of the ' Neo" cassette. Symbols are as in Fig. 4.7. B. PCR analysis of 
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As expected, about 50% of the F3 offspring carried both the wild type band of 4.7 kb 

and the "flox" band of 2.5 kb. No animal contained the 4.0 kb band, thus, excluding the 

possibility of residual presence of the "PGK-Neo" cassette. 

The "floxed CB 1" mouse line was then ready for further experiments, in which crossing 

it with specific Cre-expressing mouse lines should generate progeny carrying a spatially 

and/or temporally conditioned deletion of the CB 1 ORF. This progeny should allow the 

analysis of region-specific functions of CBI and the cannabinoid system in mouse brain 

physiology. 

4.4 Discussion 

In this Chapter, the generation of CB 1 mutant mouse lines is described. The steps 

involved in this task were: screening of a genomic DNA phage library, characterization of the 

CB 1 genomic locus, generation of a "conditional" gene targeting construct, transfection and 

selection of embryonic stem cells, injection of positive clones into mouse blastocysts, 

generation of mouse chimeras and germ line transmission of the mutation, and, finally, 

breeding of mutant animals to obtain two different mouse lines. These are the CB 1-null 

"CBN" line) and the "floxed CB V" line. The first one was obtained by crossing mice 

containing the original gene targeted sequences "flox-Neo" line) with "Cre-deleter" mice, 

which express Cre recombinase in an ubiquitous manner (Schwenk et al, 1995), thus, 

deleting the CBI ORF in the progeny. FI mice were crossed with wild type C57BL/6 mice, 

obtaining F2 progeny to check the germ line transmission of the deletion of the CB 1 ORF. In 

this way, two aims were accomplished: first, the Cre recombinase was actually able to delete 

the "floxed" CBI, in vivo, thus, providing the direct demonstration that the "conditional" gene 

targeting approach indeed works in the CBI locus; second, CBI null mutant mice ("CBN" 

line) were generated in order to analyze the CB 1 functions in experimental conditions where 

no spatio-temporal resolution is required, such as in in vitro cell biology assays (see Chapter 

5). The second mouse line generated during the work was obtained by crossing the gene- 
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targeted allele with "flipase-deleter" mice, expressing the enzyme flipase in an ubiquitous 

manner (Dymecky, 1996). Fl mice were then used for further crossing with wild type 

C57BL/6 mice to check for the germ line transmission of the flipase-mediated deletion of the 

"PGK-Neo" cassette. Flipase is able to recognize and recombine short sequences, called FRT, 

in an analogous fashion as Cre recombinase with loxP sites (Buchholz et al., 1996). In the 

gene targeting construct, FRT sites, flanked the selection cassette "PGK-Neo", necessary for 

the selection of positive targeted clones in ESCs. As the presence of this cassette might be 

deleterious for a perfect wild type expression of the "floxed" gene of interest, the deletion of 

the selection cassette is a necessary step for the generation of an optimal "conditional" 

inactivation of any gene. The mouse line obtained in this way, the "floxed CB I" line, is the 

starting mouse line for any "conditional" knock-out approach to analyze the behavioural 

functions of CB 1, in the living mouse. 

In "conditional" gene inactivation using the Cre/loxP system, the expression of the Cre 

recombinase is of fundamental importance. The regulatory sequences driving the expression 

of Cre recombinase in the transgenic mice are currently the main limiting points of this 

technique. Expression of the recombinase in specific areas or cell types and, possibly, at 

specific time points is often required. Such characteristics are present in some genes 

expressed in the brain. As an example, 8.5 kb from the promoter of the CaMK IIa gene, 

encoding the calcium/calmodulin-dependent kinase, can direct Cre expression and, thus, Cre- 

mediated recombination into specific forebrain areas at postnatal stages in transgenic mice 

(Tsien et a1., 1996; Minichiello et al., 1999). CB 1 is widely expressed in the mouse brain 

(Matsuda et al., 1993; Tsou et al., 1998a; see Chapter 2 and 3), and, in single brain areas, 

specific cell types appear to coexpress CB 1 with various neuronal cell markers. In the mouse 

forebrain, CB 1 is expressed partly in GABAergic and non-GABAergic (glutamatergic) cells 

(Marsicano & Lutz, 1999; Katona et a1., 1999; Chapter 2). Glutamic acid decarboxylase 65K 

(GAD 65), a specific marker for GABAergic cells, is coexpressed with CB 1 in a subset of 
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cells of hippocampus, neocortex, entorhinal cortex, amygdala and striatum, while the 

neuropeptide cholecystokinin (CCK), a marker for a subset of both GABAergic and 

glutamatergic cells, is highly coexpressed with CB 1 in hippocampus, neocortex, entorhinal 

cortex, amygdala, but not in striatum. Thus, transgenic mice carrying Cre recombinase under 

the control of GAD 65 and CCK, respectively, after crossing with the "floxed CBI " line, 

could lead to the excision of the gene in specific neuronal subpopulations. "GAD 65-Cre" 

should lead to the disruption of CB 1 in all GABAergic cells, while "CCK-Cre" should lead to 

the lack of CBI in both GABAergic and glutamatergic cells, but leave CBI expression still 

intact in basal ganglia, thus possibly avoiding locomotor defects that were observed in the 

CB 1 knock out mice of Zimmer et a1. (1999). 

The major limitation of the Cre/loxP system is the temporal control. Cases like the 

CaMK IIa gene with a perinatal start of expression, are very rare. GAD 65 and CCK are 

expressed at very early embryonic stages (Pinal & Tobin, 1998; Lay et al., 1999). As a 

consequence, in GAD 65-Cre or CCK-Cre mice with "floxed CBI", recombination would 

occur already during development. Therefore, there is the risk of inactivating the gene in 

neuronal precursors, with the final result of a mouse lacking CB 1 in the great majority of 

neurons, including many cells not expressing GAD 65 or CCK in the adult. Therefore, 

inducibility of Cre activity is needed to use such such promoters for Cre expression to best 

effect. Recent reports (Indra et al., 1999; Li et al., 2000) have suggested that a fusion protein 

of a mutated estrogen receptor ligand binding domain (ET2) and Cre recombinase is an useful 

tool to regulate the activity of Cre recombinase. This fusion protein is normally inactive, but 

can be activated by administration of the synthetic steroid hormone tamoxifen. Using this 

method, a broad range of regulatory sequences is now suitable to drive the expression of Cre 

recombinase, regardless of its "intrinsic" start of expression. Such "inducible" Cre-expressing 

transgenic mouse lines under the control of GAD 65 and CCK are in progress to be generated 

in the laboratory of Dr. Lutz. 



132 

As mentioned above in this paragraph, the generation of a "conventional" CB 1- 

deficient mouse line, named CBN, can constitute an useful source of primary tissues where 

CB 1 expression is totally abolished. These tissues can be used in experiments where no 

spatio-temporal specific disruption of the gene is necessary. One example is the use of 

primary neuronal cultures, in which the functions of CB 1 can be studied by comparing the 

characteristics of wild type cells and of the CB 1-deficient cells in different experimental 

conditions. Such an approach will be adopted in the next Chapter, where the role of CB 1 in 

neuroprotective properties of cannabinoids will be analysed in oxidative stress experiments. 
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Chapter 5 

Neuroprotective properties of cannabinoids in vitro: role 

of CB1 

The work described in this Chapter is in preparation as Marsicano, Moosmann, Behl & 

Lutz. My contributions were the generation of CB 1-expressing cell lines and their 

characterization, the preparation of primary cerebellar granule cells and the in vitro 

neurotoxicity assays. Bernd Moosmann contributed the biochemical antioxidant assay. 

Results are given without discriminating the various contributions in order not to disrupt 

the completeness of the experimental strategy. 

5.1 Introduction 

Natural and synthetic cannabinoids, as well as endocannabinoids, appear to exert 

most of their actions in the central nervous system through the "brain type" cannabinoid 

receptor 1, CB 1 (Matsuda et al., 1990; Zimmer et al., 1999; Ledent et al., 1999). 

However, non CB 1-mediated actions of many cannabinoids have been proposed. In 

particular, the highly lipophilic character of many cannabinoids (see Chapter 1.3.3 "CB 1 

ligands") could be the basis for a direct interference with cell membranes (Hillard et al., 

1985). 

Neuroprotective effects have been proposed for natural, synthetic and endogenous 

cannabinoids in several in vitro and in vivo neurotoxicity models (Hampson et al., 

1998a; Nagayama et al., 1999; Sinor et al., 2000). However, the exact mechanism(s) 

mediating neuroprotection have not been clearly understood yet. "Classical" and "non 

classical" cannabinoids, such as 09-THC and CP 55,940 contain a phenolic ring (Fig 

5.1). This chemical structure could confer the antioxidant activity to the lipophilic 

cannabinoids able to enter the cell membrane (Moosmann & Behl, 1999). Indeed, 
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"classical" cannabinoids, such as the CBI agonist A9-THC and the non CBI-binding 

component of Cannabis sativa cannabidiol, were shown to protect cells from oxidative 

stress (Hampson et al., 1998a). These observations would indicate a completely 

receptor-independent action of cannabinoids in this regard. Indeed, for many phenolic 

natural and synthetic compounds, a protective activity against oxidative stress, 

independent of any specific receptor-mediated action, has been recently proposed 

(Moosmann & Behl, 1999). However, CB 1 has been implicated in some neuroprotective 

mechanisms. WIN 55,212-2, a potent CBI agonist belonging to the family of 

aminoalkylindoles (see 1.3.3 "CB 1 ligands"), exerted a potent neuroprotecting effects in 

a rat model of of global and focal ischaemia (Nagayama et al., 1999). Such an effect 

appeared to be blocked by the previous administration to the rats of the specific CB 1 

antagonist SRI 41716A, pointing to the involvement of CB 1 in this effect. Interestingly, 

in the same report, WIN 55,212-2 was also able to protect cultured rat primary cortical 

neurons from in vitro hypoxia and glucose deprivation, but this effect did not appear to 

be blocked by CB 1 or CB2 antagonists, thus, indicating different mechanisms of action 

in in vivo versus in vitro neuroprotection of WIN 55,212-2. 

In the present study, some aspects of neuroprotective effects of cannabinoid 

compounds, and the involvement of CB 1 in these effects, were analyzed. Biochemical 

assays were performed to test the chemical antioxidant potential of several 

cannabinoids, and their antioxidant neuroprotective effects were tested in cell lines and 

rat primary cerebellar granule cell models of oxidative stress. Nine compounds were 

tested in these experiments: four "classical cannabinoids" (A9-THC, cannabinol and 

cannabidiol as Cannabis sativa derivatives, and the synthetic HU 210); one synthetic 

"nonclassical cannabinoid" (CP 55,940); one aminoalkylindole (WIN 55,212-2); one 

metabolically stable synthetic analogue of anandamide (methanandamide); one CB 1 

antagonist (SR 141716A); one inhibitor of "anandamide transporter" (AM 404, see 
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Chapter 1,1.4.2 "Inactivation of endocannabinoids"). Subsequently, in order to analyze 

the involvement of CB 1 in the neuroprotective effects of various cannabinoid 

compounds, two genetic approaches were adopted. First, cannabinoids belonging to 

different subgroups (classed on their ability to activate CB 1 and their chemical 

antioxidant properties) were tested in oxidative stress assays, using cell lines stably 

transfected with CB 1 cDNA and expressing the functional receptor in comparison with 

parental wild type cells. Second, two cannabinoids, CP 55,940 (antioxidant and CB 1 

agonist) and WIN 55,212-2 (CB 1 agonist, but not antioxidant) were tested as 

neuroprotective agents in primary granule cell cultures derived either from CB 1-knock 

out mice (CBN mouse line, as described in Chapter 4) or from wild type controls. By 

these experiments, CB 1 was shown not to be directly involved in the mechanism(s) by 

which antioxidant cannabinoids protect cells from oxidative stress in vitro. Moreover, 

the ability of WIN 55,2121-2 to protect primary neurons (but not neuronal cell lines) in 

in vitro oxidative stress assays was also shown not to depend either by intrinsic 

antioxidant properties of the compound nor by a CB 1-mediated mechanism. 

5.2 Materials and methods 

5.2.1 Chemicals 

Cannabinoids were purchased from Sigma, Germany (A9-THC, cannabinol and 

cannabidiol), from Tocris, U. S. A. (CP 55,940, WIN 55,212-2, methanandamide, HU 

210 and AM 404) and from Sigma/RBI, Germany (SR 141716A). These compounds 

were prepared as 10 mM stock solutions in 100% ethanol (A9-THC, cannabinol, 

cannabidiol and methanadamide) or in 100% DMSO (CP 55,940, WIN 55,212-2, HU 

210 and AM 404). Forskolin was purchased from Sigma and was prepared as 10 mM 

stock solution in DMSO. 
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5.2.2 Brain lipid oxidation assays 

Dissected cerebral cortex of adult Sprague-Dawley rats was homogenized in 

3 volumes of degassed lipid buffer (20 mM Tris/HCI, 1 mM MgCl2,5 mM KCI, pH 7.4) 

with a Kontes glass homogenizer (all steps were performed at 4°C). After centrifugation 

(3000x g, 5 minutes), the pellet was solubilized by sonication in 3 volumes of lipid 

buffer supplemented with 0.5 M NaCl, incubated for 10 minutes, and centrifuged 

(100,000x g, 20 minutes). This step was repeated and followed by three washings using 

3 volumes of degassed water instead of lipid buffer. Finally, the pellet was resuspended 

in water at a concentration of 5 mg/ml protein, snap-frozen on dry ice and stored at - 

80°C. 

For the oxidation assay, the rat brain membrane preparation was diluted with PBS 

to a concentration of 0.6 mg/ml protein and sonicated. Cannabinoids to be tested were 

added to the 1-ml aliquots at various concentrations (final concentration of ethanol or 

DMSO was 0.4%) and the oxidative chain reaction was started by adding 50 µM 

ascorbate and incubated at 37°C. Six hours later, single photon counting was done for 1 

minute in a Beckman scintillation counter set in the visible light range. Data were 

corrected for the baseline photocurrent and normalized to control values. 

5.2.3 Cell cultures 

Tissue culture plates were purchased from NUNC (Germany). Sterile plastic tubes 

(50 ml and 15 ml) were purchased from Falcon (Germany). 

5.2.3.1 Cell lines 

The two neuroblastoma cell lines PC 12 and HT22 were used for oxidative stress 

experiments. Cells were cultured in complete DMEM at 37°C, 5% CO2 in humidified 

atmosphere. Complete DMEM consists of Dulbecco's Modified Eagles Medium 

(DMEM, LIFE Technologies GIBCO, Germany), supplemented with 15% (PC12 cell 
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line) or 10% (HT22 cell line) foetal calf serum (FCS, LIFE Technologies GIBCO, 

Germany) and 100 U/ml penicillin and 100 U/ml streptomycin (100x 

Penicillin/Streptomycin solution, LIFE Technologies G1BCO, Germany). Cells were kept 

on 10 cm-cell culture dishes and trypsinized prior to experiments. Briefly, after washing 

twice with sterile phosphate buffer saline (PBS, containing 139.9 mM NaCl, 2.7 mM KCI, 

10.1 mM Na2HPO4-H20,1.8 mM KH2PO4, pH 7.4), 3 ml of 0.5% Trypsin/1 mM EDTA 

(LIFE Technologies GIBCO, Germany) were added to the culture plate, and cells were 

incubated at 37°C for 10-15 minutes. Cells were pipetted to obtain a single cell 

suspension, reaction was stopped with complete DMEM, and cells were counted in a 

haemocytometer. 104 cells/well (PC 12 cell line) and 103 cells/well (HT22 cell line) were 

plated onto 96-well plates. Each well contained 100 µl of complete DMEM. Cells were 

incubated overnight and then used for the oxidative stress experiments (see below, 5.2.5 

"Oxidative stress assays"). In some experiments, differentiation of PC 12 cells was induced 

by treatment with 1 µM forskolin overnight. 

5.2.3.2 Primary cerebellar granule cells 

Primary cerebellar granule cells were obtained from Sprague-Dawley newborn rats 

(3 days old) and from newborn mice (3 to 6 days old). For genotyping of the CBN allele 

(Chapter 4), PCR was performed on DNA derived from tails of 1-2 day old pups. 

Homozygous wild type (WT) and homozygous CBN/CBN mice (CB 1 KO) were used 

for the experiments. The methods for isolation and culture of primary cerebellar granule 

cells were identical between rats and mice. Newborn animals were sacrified by 

decapitation and cerebella were isolated and put in ice-cold, sterile DMEM containing 

100 U/ml penicillin/streptomycin. Using a stereomicroscope which was placed into a 

cell culture hood, cerebella were dissected free of meninges and put into a 50-ml Falcon 

tube containing 10 ml of cold DMEM. 10 ml of 0.1% Trypsin/1 mM EDTA were then 

added to the tube and cerebella were incubated with gentle shaking for 10-20 minutes at 
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37°C. The tissue was then throughly pipetted first with 5-ml plastic pipettes and then 

with Pasteur glass pipettes. Tissues were centrifuged at 500x g for 4 minutes and then 

resuspended in 10 ml complete DMEM medium (see previous paragraph). After a 

further step of disruption by throughly pipetting in Pasteur glass pipettes, the tubes were 

let stand for 5 minutes at room temperature, in order to allow the heaviest debris to 

sediment. Supernatant, containing cells and small debris, was transferred to a fresh tube 

and centrifuged. Cell pellet was resuspended in 1 ml of complete DMEM. A drop of the 

cell suspension was checked under an inverse microscope for the presence of debris and 

cell clumps. Centrifugation and resuspension were repeated until the quantity of single 

cells was higher than tissue debris and cell clumps. At this point, cell suspension was 

counted with a haemocytometer and cells were plated onto poly-L-lysine-treated 96- 

wells plates, at a density of about 106 cells/well. Poly-L-lysine pre-tretament of plates 

consisted of an incubation for 1-2 hours at room temperature with 50 µl/well of a 

10 µg/ml sterile solution of poly-L-lysine (Sigma, Germany), followed by two washes 

with sterile PBS. After plating, cells were incubated at 37° C in a cell culture incubator. 

After two days, the cytostatic drug cytosin arabinofuranoside (Sigma, Germany) was 

added to each well at 10 µM (final concentration), in order to block the overgrowth of 

fibroblasts and glial cells. After 10-15 days of incubation, the cultures appeared to 

contain >90% neurons and were ready to be used in oxidative stress experiments (Fig. 

5.3C). 

5.2.4 CB1 expressing cell lines 

5.2.4.1 Cloning of CBI into an eukaryotic expression vector 

Molecular biology methods were as described in Chapter 4. Mouse CB 1 cDNA 

was obtained by PCR using as template clone G23.10 (Chapter 4,4.3.1.1 "Phage insert 

cloning"), and the high fidelity Pfu polymerase (Stratagene, Germany) was used to 

minimize the errors caused by PCR. The primer pair was G1-G2 (see Chapter 4, Table 
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4.1). PCR product was eluted from a gel and subcloned into the Smal site of pBlueScript 

KS (-) (pKS, Stratagene, U. S. A. ), to produce the clone G73.3. The insert was entirely 

sequenced to check for PCR-induced mistakes. A 1.6 kb BamHI Xhol fragment, 

containing the whole open reading frame of CB 1, was then subcloned into the 

corresponding sites of the eukaryotic expression vector pcDNA3 (Invitrogen, Germany) to 

generate clone G160.1, which was then used for the stable transfection of CBI in PC 12 

and HT22 cells. 

5.2.4.2 Electroporation of cells and selection of resistant clones 

Electroporation protocols were identical for PC 12 or HT22 cell lines. A confluent 

10-cm cell culture plate was trypsinized as described above (5.2.3 "Cell cultures"). 

Single cells were transferred into a 50-ml Falcon tube and centrifuged for 4 minutes at 

200x g. Cell pellet was resuspended in 390 pl of electroporation buffer (50 mM 

K2HPO4,63.9 mM K2HPO4,16.17 mM potassium acetate, pH 7.35). 10 µl of 1M 

MgSO4 were freshly added to the cell suspension. Cell suspension was carefully mixed 

with 10 µl of a solution containing 1 pg/gl of Notl-linearized plasmid G160.1. The 

mixture was then transferred to an electroporation cuvette (BioRad, Germany). 

Electroporation was performed in a Gene Pulser electroporation apparatus (BioRad, 

Germany) at the following settings: 0.3 kV, 500 µk'. After electroporation, cells were kept 

on ice for 5 minutes and then plated onto a 10-cm cell culture plate with complete DMEM. 

Cells were incubated for two days and medium was changed every 24 hours to remove 

dead cells. Cells were then split at dilutions 1: 3 (PC 12) and 1: 4 (HT22), and selection with 

geneticin (G418, LIFE Technologies GIBCO, Germany) was started. Preliminary dose- 

response experiments on parental cells showed that 3.5 mg/ml and 2.5 mg/ml were the 

optimal concentration of G418 to induce cell death in HT22 and PC 12 cells, respectively 

(data not shown). After 8-10 days selection, resistant cell clones became readily visible 

and were picked with the aid of sterile 200 pl pipette tips. Clones were transferred to 24- 
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well plates containing 0.5 ml of complete DMEM. Cells were pipetted up and down to 

disrupt the colony and obtain a single cell suspension. Clones were grown until they 

formed confluent monolayers (medium was changed every two days). Confluent clones 

were trypsinized and transferred to 6-cm cell culture plates. After reaching confluence, 

cells were split to a 10-cm cell culture plate. At confluency, cells were split at dilution 1: 3. 

After 2-3 days, cells from two plates were frozen (see Chapter 4,4.2.2.3 "Electroporation 

of ESCs, antibiotic selection, picking and expansion of resistant clones"), whereas one 

plate was used for RNA extraction. After Northern blot screening, positive cell clones 

were thawed and expanded to generate several aliquots of frozen cells. 

5.2.4.3 Northern blot analysis of resistant clones 

RNA extraction from confluent 10-cm cell culture plates was performed using the 

PeqGold RNApure kit (PeqLab, Germany), following the manufacturer's instructions. 

All plasticware used for Northern blot analysis was treated with 1M NaOH and 

subsequent rinses with RNase-free water to get rid of RNAase; all solutions were 

prepared RNase-free by DEPC treatment and autoclaving. RNA extracts were 

electrophoresed in a gel containing Ix running buffer, 1% agarose and 6% 

formaldehyde. Running buffer was prepared as al Ox solution containing 200 mM 3-(N- 

morpholino) propane sulfonic acid (MOPS), 50 mM sodium acetate, 10 mM EDTA, pH 

7.0. Samples were prepared by mixing on ice 4 µl of RNA (5 µg/µ1) and 16 pl 

denaturing mix. After incubation at 55°C for 15 minutes, samples were chilled on ice 

and 2. l of loading buffer were added. Denaturing mix consists of 200 µl formamide, 70 

µl of 37% formaldehyde, 40 µl of lOx running buffer and 10 µl H2O. Loading buffer 

was prepared as al Ox stock solution containing 50% glycerol, 1 mM EDTA, 0.2% 

bromophenol blue. After electrophoresis, capillary blot was performed in 1Ox SSC, as 

described in Sambrook et al. (1989) to transfer RNA onto Hybond NX filters (Amersham, 

USA). Hybridization was performed using the fragment CB I HIII as probe (see Chapter 4, 
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Fig. 4.4). Probe labeling was performed using the Random Primers DNA Labeling System 

kit (LIFE Technologies GIBCO, Germany) following the manufacturer's 

recommendations. Hybridization was performed as Southern hybridization (see Chapter 4, 

4.2.1.5.2 "Hybridization") with the only differences that pre-hybridization, hybridization 

and washing were at 68°C. Washed membranes were exposed 1-3 days onto 

autoradiography films (DuPont, U. S. A. ). 

5.2.5 Oxidative stress assays 

The day before the experiment, cell lines were plated onto 96-well plates as 

described above (5.2.3 "Cell cultures"). Cannabinoids were prepared as pre-dilutions in 

ethanol or DMSO, and 1 pl of each pre-dilution was added to each well containing the 

cells and 100 µl of medium. Controls were obtained by adding 1 µl of 100% ethanol or 

DMSO to each control well. Experiments were performed in triplicate or quadruplicate 

and were repeated at least twice for each cell clone or primary cell culture. After adding 

the drug, cells were incubated overnight, and then, different concentrations of H202 

(prepared in sterile water) were added, ranging from 60 pM to 250 µM. The volume of 

the H202 pre-dilution added to each well was 1 to 3 pl. After overnight incubation, 10 

pl of a5 mg/ml solution in water of dimethylthiazollyl-diphenyl-tetrazolium bromide 

(MTT, Sigma, Germany) were added to each well. MTT, which is normally yellow, is 

transformed in the mitochondria of living cells into the insoluble precipitate formazan, 

that appears blue. After 4 hours MTT incubation at 37°C, 100 µl of cell lysis solution 

(45% dimethylformamide, 10% SDS, pH 4.2) were added to each well. Lysis was 

allowed overnight at room temperature and the day after the plates were read with 

Dynatec microplate reader (Germany) set at a 570 nm wave length. Cell death was 

indicated by a decreased MTT reaction and thus by a decreased absorption at 570 nm. 

Values in the wells where both vehicle (ethanol or DMSO) and H202 were added 

(maximal death) were compared to the values of the wells where only vehicle was added 
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(maximal survival, 100%). The fraction between these values gave the maximal 

percentage of death in the experiment. Only experiments where a maximal cell death 

percentage of >70% (i. e. <30% survival) was obtained, were considered in the Results 

section. In order to compensate any proliferative or antiproliferative effects of the drugs, 

values derived from wells containing the different concentrations of cannabinoids and 

H202 were normalized to the corresponding concentration of drug in the absence of 

H202. To better compare the results of different experiments, data are given as 

percentages of the maximal theoretical protection (100%, corresponding to the value in 

vehicle-treated wells, without toxin), considering as 0% the maximal cellular death. 

Therefore, each value is calculated as follows: 

DS - TCS x 100, 
MP - TCS 

where DS is the drug-induced percent of survival, TCS is the cell survival in the 

presence of H202 alone (with <30% as the limit for the acceptance as a successful 

experiment), and MP is the theoretical maximal protection (100%, corresponding to 

vehicle-treated cells). 
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5.3 Results 

5.3.1 Cannabinoids as antioxidative and neuroprotective agents 

Cannabinoid compounds are generally classified into four different chemical 

groups, based on their structural characteristics (Pertwee, 1997; Fig 1.4). Regarding 

putative neuroprotective properties, cannabinoids can also be classified into three 

groups, based on whether or not they bind to cannabinoid receptors and whether or not 

they have a phenolic structure: i) phenolic compounds that do not bind CB 1 (Fig. 5.1 A); 

ii) non phenolic compounds that bind CBI (Fig 5.113); iii) phenolic compounds that 

bind CB 1 (Fig. 5.1 C). 
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Fig 5.1. Classification of cannabinoids on the basis of CB 1 binding and presence of phenolic 

moieties (in green). A. Phenolic cannabinoids with no or very low affinity for CB 1. B. 

Nonphenolic compounds with high affinity for CB 1. C. Phenolic cannabinoids with high 

affinity for CB 1. 

Accordingly, Fig 5.2A, B and C show the antioxidant properties of various 

cannabinoids and cannabimimetics. Compounds containing a phenolic group, such as 

cannabinol, cannabidiol, AM 404 (not binding CBI, Fig. 5.2A), and A9-THC, 

CP 55,940 and HU 210 (binding CB I, Fig. 5.2C) were shown to be potent antioxidants 

in a brain lipid oxidation assay. On the other hand, cannabinoids not containing a 
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phenolic ring, such as methanandamide (a stable analogue of anandamide), WIN 

55,212-2 and SR 141716A did not show any antioxidant activity in the same assay (Fig 

5.2B). Oxidative stress experiments in HT22 cells generally reflect the chemical 

antioxidant properties of the tested compounds, e. g. oestrogenic drugs (Bernd 

Moosmann, personal communication). Therefore, this notion was tested here for 

cannabinoids. Indeed, the same compounds that showed biochemical antioxidant 

properties resulted also in potent protection for H202-induced oxidative stress in HT22 

cells (Fig. 5.2A', C'), whereas the non phenolic compounds, regardless of whether they 

were CB 1 agonists (methanandamide and WIN 55,212-2) or CB 1 antagonists 

(SR 141716A), were not able to protect the cells from oxidative stress (Fig. 5.2B'). 
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Fig 5.2. Antioxidant properties of cannabinoids and protection against oxidative stress in HT22 

cells. A, B, C, percentages of inhibition of oxidation of brain lipids induced by 50 . tM 

ascorbate. 100% indicates maximal oxidation in the absence of any cannabinoid. A', B', C', 

percentages of protection against oxidative stress in HT22 cells, induced by 120 µM of H202. 

0% indicates the cell death in the absence of cannabinoids. 100% indicates the maximal 

possible protection against oxidative stress. Data are indicated as ± s. e. m. 
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These results seem to indicate the antioxidant properties of cannabinoids as the 

main mean through which they exert neuroprotection in oxidative stress assays. 

However, neither HT22 nor PC 12 cells express CB 1 (see below, Fig. 5.4). Therefore, 

from these results, it cannot be excluded that cannabinoid-mediated neuroprotection is 

dependent in part on a receptor-dependent mechanism. Thus, as a source of CB 1- 

expressing neurons, rat primary cerebellar granule cells cultures were assessed and 

tested in similar oxidative stress paradigms. 

5.3.2 Cannabinoids are neuroprotective in rat cerebellar granule cells 

Neuroprotective properties of cannabinoids were then assessed in oxidative stress 

assays carried out on cultured primary cerebellar granule cells which are known to 

contain CB 1 protein (e. g. Hillard et al., 1999). Four CB 1 agonists were chosen for these 

tests, namely the two non phenolic compounds methanandamide and WIN 55,212-2 and 

the two phenolic antioxidant compounds CP 55,940 and HU 210. Fig. 5.3A and C show 

that CP 55,940 and HU 210 possess similar neuroprotective potentials as in HT22 cells 

(Fig. 5.2C, C'). These results indicate that phenolic cannabinoids are able to protect 

primary granule cells in in vitro oxidative stress assays. In contrast, the results with the 

other two compounds, WIN 55,212-2 and methanandamide, seem to indicate different 

mechanisms of cannabinoid protection in neuronal cell lines and cultured primary 

neurons. These compounds belong to the group of CBI-binding molecules that are 

neither phenolic (Fig 5.1B), nor antioxidant or protecting HT22 cells from oxidative 

stress (Fig 5.2B, B'). Fig. 5.3B shows that methanandamide does not appear to have any 

neuroprotective effect on granular neurons at any of the concentrations tested, whereas 

WIN 55,212-2 seems to be able to protect granular neurons from oxidative stress, as 

protection values of 43±0.5% and 25±0.6% were reached at 1 µM and 10 µM, 

respectively. 
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Fig. 5.3. Cannabinoid-mediated neuroprotection in oxidative stress assays on cultured primary 

rat cerebellar granule cells. A. Neuroprotective effects of CP 55,940 and HU 210 (phenolic 

antioxidant CB 1 agonists). B. Neuroprotective effects of WIN 55,212-2 and methanandamide 

(non phenolic CB1 agonists) C. Phase contrast micrographs showing examples of CP 55,940- 

mediated neuroprotection in cultured primary rat cerebellar granule cells. In A and B, results 

are presented as in Fig. 5.2A', B', C'. 

These results indicate that in oxidative stress assays conducted with primary 

cerebellar granule cells, the protective properties of some cannabinoids cannot be only 

attributed to their biochemical antioxidant actions, and hence, the question remains of 

whether a receptor-mediated mechanism exists. 

5.3.3 Cannabinoid-mediated neuroprotection in neuronal cell lines expressing CB1 

Cerebellar granule cells express CBI (Matsuda et at, 1993; see also Chapter 1). 

Therefore, it is possible to hypothesize that the presence of the receptor may account for 

the differences in in vitro neuroprotective properties of different cannabinoids (i. e. WIN 

55,212-2) observed in neuronal cell lines as compared to primary neuronal cell cultures. 

control +H2O2 +H201+CP 55,940 
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To test this hypothesis, two neuronal cell lines not endogenously expressing CB 1, 

HT22 and PC 12, were stably transfected with an expression vector coding for the mouse 

CB 1. Such an expression vector contains also the cDNA for the neomycin 

phosphotransferase gene, conferring antibiotic resistance to G418 (see also Chapter 4). 

After transfection of the cells and 8 days of selection in 2.5 mg/ml and 3.5 mg/ml G418 

for HT22 and PC 12 cells, respectively, 18 resistant clones were picked for each cell line, 

expanded and checked for the expression of CB 1 mRNA by Northern hybridization. 
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Fig 5.4. Northern blot analysis of HT22 and PC 12 cell clones, after stable transfection with the 

expression vector G160.1, containing the mouse CBI cDNA. Ribosomal RNA was used as 

molecular weight marker (28S, approximately 4.6 kb; 18 S, approximately 1.9 kb). The fragment 

CB 1 HIII (see Chapter 4, Fig. 4.4) was used as probe. Mouse cortex RNA, containing high levels 

of CB 1 RNA (about 6.0 kb), was used as positive control. Negative controls were cell clones 

transfected with the empty expression vector (WT). Positive signals in clones HT22.18, PC 12.17 

and PC 12.18 correspond to a band of about 1.6-1.7 kb, consistent with the expected size. 

Cells transfected with an empty vector were used as negative controls (termed as 

PC 12 WT and HT22 WT). Fig 5.4 shows the results of Northern blots of HT22 and PC 12 

RNA extracts, probed with the fragment CB I HIII (see Chapter 4, Fig. 4.4). The positive 

control was RNA from mouse cortex. Hybridization signals were detected at 

approximately 6.0 kb for cortex RNA, as previously described (Matsuda, 1997) and at 
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approximately 1.6 kb for many G418-resistant CB1-transfected clones. As expected, no 

band was present in G418-resistant clones transfected with the empty vector (PC 12 WT 

and HT22 WT). Clones HT22.18 and PC 12.17 (PC 12 CB 1 in Fig. 5.5) with their 

respective parental negative controls (WT) were used for further experiments (Fig. 5.4). 

Fig. 5.5 shows the neuroprotective effects of four CBI agonists in PC 12 cells either 

expressing (PC 12 CB 1) or not expressing (PC 12 WT) the receptor. 
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Fig. 5.5. Cannabinoid-mediated neuroprotection in in vitro oxidative stress assays on PC 12 cells 

expressing CB 1 (PC 12 CB 1) and not expressing CB 1 (PC 12 WT). Results are presented as in Fig. 

5.2A', B', C'. Note the lack of difference between the two cellular genotypes. 

The four CB 1 agonists to be tested were chosen in light of their previously 

determined effects in the antioxidant assay and in the oxidative stress assays in HT22 cells 
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and primary cerebellar granule cells cultures (Fig. 5.2 and 5.3). A9-THC and CP 55,940 
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were used as prototypes of the phenolic antioxidant group, while methanandamide and 

WIN 55,212-2 represented non phenolic-non antioxidant compounds (Fig. 5.2). As shown 

in Fig 5.5A and B, the two phenolic compounds A9-THC and CP 55,940 were able to 

protect PC 12 cells up to values of 60-70% and 55-60%, respectively. However, no 

difference was observed between the wild type (PC 12 WT) and the CBI-expressing 

(PC 12 CB 1) clones. The dose-response curves were almost identical, thus indicating that 

the presence of CB 1 was altering neither the efficacy nor the potency of the drugs. Once 

again, methanandamide (Fig. 5.5C) showed no ability to protect cells from oxidative 

stress, neither in the absence nor in the presence of CB I. Also WIN 55,212-2 (Fig. 5.5D), 

despite some apparent effect at low concentrations, could not show any reliable and 

significant protective effect even at concentrations as high as 10 µM. Similar experiments 

using HT22 WT and HT22.18 gave very similar values as the ones depicted in Fig. 5.2B' 

and C', and no difference was observed between the two different genotypes (data not 

shown). These observations indicate that CB 1 is not required for the protective effects of 

cannabinoids in in vitro oxidative stress assays in neuronal cell lines. Neither WIN 55,212- 

2, which is able to protect primary cerebellar granule cells, did show any clear effect in 

CB 1-expressing cell lines. 

5.3.4 Cannabinoid-mediated neuroprotection in primary cerebellar granule cells 

from CB1 knock out mice 

WIN 55,212-2 was shown to protect rat primary granule cells from oxidative stress 

(Fig. 5.3B), but not neuronal cell lines regardless the presence of CBI (Fig. 5.2B' and 

Fig. 5.5D). It is possible that in primary cultures, the presence of CBI is associated with 

other factors that are absent in neuronal cell lines. If this is the case, WIN 55,940 should 

not be able to protect cultured primary granule cells that do not contain CB I. In order to 

test this hypothesis, primary cerebellar granule cell cultures were assessed from WT and 

CB I knock-out mice (CBN/CBN, see Chapter 4). 
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Fig. 5.6. Cannabinoid-mediated neuroprotection in in vitro oxidative stress assays on primary 

cerebellar granule cell cultures derived from wild type mice (WT) and homozygous CBN/CBN 

littermates (CB1 KO, see Chapter 4). Results are presented as in Fig. 5.2A', B', C'. Note the lack 

of difference between the two genotypes and the protection caused by WIN 55,212-2. 

CP 55,940 was used as phenolic antioxidant cannabinoid, and its effects were 

compared to WIN 55,212-2. Fig. 5.6A shows that CP 55,940 was able to protect WT and 

CB 1-KO cells as much as 40%, whereas WIN 55,212-2 (Fig. 5.6B) showed a protection to 

almost 60%. However, no difference was observed between WT and CB1-KO cells. These 

results indicate that CB 1 is not necessary for the neuroprotective activity of CP 55,940 and 

WIN 55,212-2 in the in vitro oxidative stress assays using H202. 

5.3.5 Cannabinoid-mediated neuroprotection in differentiated PC12 cells 

Although at high concentrations, WIN 55,212-2 is able to protect primary granule 

cells in a CB 1-independent manner, but not neuronal cell lines. Neuronal cell lines share 

many characteristics with neurons, but have also some important differences. One of the 

most important is that neuroblastoma cell lines consists of proliferating and relatively 

undifferentiated cells, whereas mature neurons do not proliferate. It is, therefore, 

possible that the differentiation state of the cells play a role in the differential protective 

effects of WIN 55,212-2. In order to test this hypothesis, neuronal differentiation was 

induced in PC12 cells by treatment with forskolin (Caillaud et al., 1995). 
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Fig. 5.7. Protection against oxidative stress in undifferentiated (PC 12) and differentiated 

(PC 12 +1 µM forskolin) PC 12 cells. Results are given as in Fig. 5.2 A', B', C'. 

After overnight treatment with 1 µM forskolin, PC 12 cells showed a neuron-like 

morphology (not shown). Fig. 5.7A shows that 19-THC was equally able to protect 

undifferentiated and differentiated PC12 cells. However, WIN 55,212-2 was not able to 

protect either of the two cell types against oxidative stress (Fig. 5.7B). These results 

indicate that the differentiation state is unlikely to account for the differential 

neuroprotective effects of WIN 55,212-2 on PC 12 cell line and on primary neurons. 

5.4 Discussion 

In this Chapter, the neuroprotective properties of cannabinoids were analysed in in 

vitro oxidative stress assays. Oxidative stress represents one of the major events that 

occurs during neurodegeneration in many neurological diseases (Behl, 1999a; Browne et 

al., 1999; Fahn & Cohen, 1992). Therefore, drugs which are able to inhibit these processes 

are ideal candidate for the treatment of such diseases. Chemical antioxidants, e. g. vitamin 

E (Behl, 1999b), are examples of these neuroprotective drugs. However, oxidative stress is 

accompained by a series of complex intracellular events that contribute to the cell death 

and that can be modulated also by means other than a simple chemical antioxidant activity. 

As an example, oxidative stress and excessive activation of glutamate receptors, with the 

THC 

10 1 

consequent excessive intracellular concentration of Ca 2- represent sequential and 
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interacting processes that provide a final common pathway for cell vulnerability in the 

brain (Coyle & Puttfarcken, 1993). Many cannabinoids have typical structural features 

of antioxidants, and on the other hand, through CB 1 activation, they are able to inhibit 

excitability of the cells, by increasing K+ and decreasing Ca 2+ permeability (see Chapter 

1,1.3.1 "Mechanisms of action" and references therein). Therefore, they could exert 

neuroprotective activities through different mechanisms and thus, possess very 

interesting therapeutic potentials for several neurodegenerative diseases. 

Several cannabinoids were tested in a biochemical antioxidant assay, and, as 

expected, phenolic compounds (09-THC, cannabinol, cannabidiol, CP 55,940, HU 210 

and AM 404), were found to be potent antioxidant. These observations were confirmed 

by in vitro oxidative stress experiments, by using two neuronal cell lines, PC 12 and 

HT22, and primary cerebellar granule cells: antioxidant phenolic cannabinoids were also 

protective against oxidative stress on the cells. However, one compound, WIN 55,212-2, 

a potent CB 1 agonist belonging to the family of aminoalkylindoles, was able to protect 

primary neurons but not cell lines. This observation is interesting, also in view of the 

fact that this compound is not a phenolic antioxidant. Other mechanism(s) should, 

therefore, be triggered by the drug in primary neurons that are not present in cell lines. 

The most obvious candidate for this differential protective mechanism appeared to be 

the presence of CB 1 in cerebellar primary neurons, but not in neuronal cell lines. One 

way to test this hypothesis would be to use the specific CB1 antagonist SR141716A in 

the same neurotoxicity assays, in combination with the CB 1 agonists (Nagayama et at., 

1999). However, SR141716A was shown to exert, both in vivo and in vitro, actions 

different from the simple antagonistic effect at CBI receptors. In CB 1-transfected cells 

and in endogenously CBI-expressing neuronal cell lines, SR 141716A was shown to act 

as an inverse agonist (Shire et al., 1999; Meschler et al., 2000) and, furthermore, in 

primary cerebellar granule cells, SR141716A was recently shown to exert different 
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effects on cannabinoid-mediated inhibition of Ca2+ mobility in different subcellular 

portions of the neurons. A mere antagonistic effect was observed at CB 1 receptors 

located in the neuntes, whereas a paradoxical "agonist-like" inhibition of Ca 2+ influx 

was observed in the soma of the neurons (Hillard et al., 2000). A direct consequence of 

these observations is that, at least in in vitro experiments, the use of SR141716A cannot 

be considered always a reliable mean to detect receptor-mediated actions of CBI 

agonists. Therefore, the involvement of CB 1 in WIN 55,212-2-mediated 

neuroprotection was checked by two genetic approaches, i. e. in heterologously CB 1- 

expressing cell lines as compared to parental lines and in primary cerebellar neurons 

derived from wild type and CB 1-deficient mice (CBN/CBN, see Chapter 4). However, 

unexpectedly, no differences were observed in the neuroprotective activity of the drug in 

presence or in absence of CB 1. Another difference between primary neurons and 

neuronal cell lines is the differentiation state. It is possible that WIN 55,212-2 exert its 

neuroprotective actions only in differentiated postmitotic neurons and not in 

proliferating cell lines. However, even in forskolin-induced differentiated PC 12 cells, 

WIN 55,212-2 was not able to exert the same neuroprotective actions as observed in 

primary neurons. 

An intriguing hypothesis that could explain the effects of WIN 55,212-2 in 

neuronal protection of primary neurons is that these actions are mediated by another 

receptor, distinct from CB 1. WIN 55,212-2 is a potent agonist of CB 1, but is also able to 

bind and activate the "peripheral" cannabinoid receptor, CB2 (Pertwee, 1997). However, 

despite discordant reports (Skaper et al., 1996), CB2 does not appear to be functionally 

present in cerebellum (Griffin et al., 1999). Interestingly, recent results showed that 

WIN 55,212-2 is able to stimulate G proteins in cerebral membranes derived from CB 1- 

deficient mice, thus strongly suggesting the existence of a novel "cannabinoid receptor" 

(Breivogel et al., 2000). Therefore, it could be argued that this "third" receptor might be 
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the responsible for neuroprotective effects of WIN 55,212-2. However, preliminary 

experiments conducted in our laboratory to test the ability of the drug to inhibit 

forskolin-induced increases in cAMP production in primary cerebellar neurons from 

wild type and CBN/CBN mice, revealed that WIN 55,212-2 is able to inhibit cAMP 

accumulation in presence of CB1 but has no effect in mutant neurons. It appears, 

therefore, unlikely that the "third" receptor uses a similar signal transduction pathway to 

CB 1. However, G proteins can trigger also many other intracellular pathways. 

Experiments in this direction, in relation to the mechanisms underlying the 

neuroprotective properties of WIN 55,212-2 and the existence of a novel signal 

transduction pathway stimulated by the drug, are planned in the laboratories of Dr Lutz 

and Dr Behl. 

H202-induced oxidative stress in vitro is a relatively simple paradigm of 

neurodegeneration that can provide useful information about the neuroprotective aspects 

of several drugs. However, the in vivo situation, during neurodegenerative conditions 

induced by brain damage or diseases, is more complex than any in vitro models. As an 

example, cannabinoids, and WIN 55,212-2 in particular, were shown to act differentially 

in similar neurodegenerative models in vivo or in vitro (Nagayama et al., 1999). 

Therefore, the apparent CB 1-independent mechanism of protection of cannabinoids as 

observed in this in vitro study needs to be confirmed in vivo. In other words, an 

involvement of CB 1 in neuroprotection mechanisms during neurodegeneration, as 

shown, for example, by the increased CBI expression in particular brain areas during 

induced ischaemia in rats (Jin et at., 2000), cannot be excluded. Moreover, it could be 

proposed that the increased mortality observed by Zimmer et al. (1999) in CB 1-deficient 

mice might be due to a general decrease of neuroprotective mechanisms in which CB 1 

might play an important role in vivo. Therefore, experiments of in vivo 

neurodegeneration induced in different ways are planned, using CBN/CBN and/or 
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"conditional" CB 1 mutants (see Chapter 4) mice compared with wild type controls. 

In conclusion, in this Chapter, some aspects of neuroprotective properties of 

cannabinoids were analysed. The most important results are the purely antioxidant and 

CB 1-independent mechanism in neuroprotection in these particular in vitro paradigms 

using neuroblastoma cell lines, and the non antioxidant and CBI-independent 

neuroprotection induced by WIN 55,212-2 in cerebellar granule cells. These results 

would indicate the existence of a novel signal transduction pathway triggered by 

WIN 55,212-2 in cerebellar neurons. 
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Conclusions and future perspectives 

The work described in this thesis was designed to better understand some of the 

physiological functions of the "brain type" cannabinoid receptor CB 1 and of the 

cannabinoid system in the mouse central nervous system. Neurochemical and 

neuroanatomical aspects were analysed in Chapter 2 and 3, with some interesting 

findings regarding the distribution and the expression of CB 1 at cellular level. These 

findings further underline the potential central role of the cannabinoid system as a 

modulator of many of the brain functions in physiological and pathological conditions. 

Neurochemical and neuroanatomical results would indicate that the cannabinoid system 

might potentially influence both excitatory and inhibitory pathways in the brain and might 

establish many functional interactions with other signalling systems. 

A functional analysis of one of these putative interactions is presented in Chapter 3, 

where the effects of A9-THC were analysed in mice with a disrupted neuronal nitric oxide 

synthase (nNOS) gene. Results demonstrated that locomotor and hypothermic effects of 

the cannabinoid drug are absent in the mutant animals as compared to wild type controls, 

thus indicating a central key function of the nitric oxide (NO) pathway in these 

cannabinoid effects. Moreover, mutant animals have a selective reduction of CB 1 mRNA 

expression in particular brain areas, thus revealing a putative cross-talk between NO and 

cannabinoid system also at the level of expression control. These studies are still ongoing 

in Dr. Lutz's laboratory, with the discovery of decreased levels of CBI also in 

hippocampi of nNOS mutant animals. This will open new perspectives in the analysis of 

behavioural effects of cannabinoids in this mutant strain, regarding hippocampal- 

dependent learning and memory paradigms. Moreover, in collaboration with other 

groups in the Institute and outside, experiments are planned to analyse hippocampal 

electrophysiological responses to cannabinoids in nNOS-mutants and to measure 
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endocannabinoid content in several brain areas of the animals, in an attempt to find 

putative mechanisms through which the cross-talk between cannabinoid and NO systems 

are interacting. Another interesting consequence of the results obtained in Chapter 2 is 

the putative existence of a functional cross-talk between the cannabinoid system and 

cholecystokinin (CCK). As discussed in this Chapter, CBI and CCK often have 

counteracting effects. Our group has recently obtained from Prof Linda Samuelson 

(U. S. A. ) mutant mice carrying a deleted CCK gene. In the near future, we will analyse 

the interactions between these two systems by treatment of this CCK-mutant with 

cannabinoids and by treatment of null (CBN) or "conditional" CB 1-mutants with CCK 

receptor agonists. Moreover, we will also analyse the expression pattern of genes 

involved in the cannabinoid and cholecystokinergic systems in these mouse strains, 

respectively. 

The work described in Chapter 4 has occupied my time during the entire duration 

of my thesis and is still ongoing. In this Chapter, a "conditional" gene targeting approach 

is described. Two mouse lines were obtained: "CBN", carrying a null mutation of CB 1, 

and "Floxed CBI",, representing the key element for a future spatio-temporal restricted 

deletion of CB 1. One aspect of the phenotype of the first line is already described in this 

Thesis (Chapter 5), but other experiments are also ongoing in our lab and in our 

Institute. For example, electrophysiological experiments revealed that induced long term 

potentiation is improved in the amygdala of homozygous CBN/CBN mice (Marsicano, 

Rammes & Lutz, unpublished results). This is a very interesting aspect that could 

indicate a central role of CBI in amygdala-dependent forms of learning and memory, 

such as cued fear conditioning. Experiments in this direction are planned in our 

laboratory. The "Floxed CB I" mouse line will be the central tool for the "conditional" 

deletion of the gene. As discussed in Chapter 4, the coexpression data obtained in 

Chapter 2 represent very interesting findings also in view of a spatio-temporal specific 



158 

deletion of CB 1. In fact, the regulatory sequences of CCK and glutamic acid 

decarboxylase (GAD) might provide a specific spatial restriction to the expression of Cre 

recombinase in transgenic mice. Together with the use of drug-inducible forms of Cre 

(see Chapter 4,4.4 "Discussion"), it will be possible to obtain a very finely regulated 

deletion of the CB 1 in cholecystokinergic and GABAergic neurons, respectively. In 

collaboration with other members of Dr Lutz's laboratory, the generation of these 

specific Cre-expressing transgenic mouse lines is planned for the near future. 

In Chapter 5, neuroprotective effects of cannabinoids were analysed in vitro. The 

involvement of CB 1 in these cannabinoid-mediated effects was analysed by heterologous 

expression in neuronal cell lines and in primary neuronal cultures derived from wild type 

and homozygous CBN/CBN mice. The results would indicate that CB 1 is not necessary 

for cannabinoid-mediated in vitro neuroprotection in oxidative stress assays, as 

protection appears to be principally due to chemical antioxidant properties of 

cannabinoids. However, a non-antioxidant CBI agonist (WIN 55,212-2) seems to exert 

CB 1-independent neuroprotective effects. Also this aspect of the cannabinoid system will 

be further studied in the future, with the aid of CB 1-mutant animals. As an example, it 

will be very interesting to analyse the differential responses of wild type and mutant 

("null" or "conditional") to various neurotoxic conditions in vivo. 

In conclusion, the preparation of this thesis represented a very exciting and 

challenging set of tasks, which allowed me to acquire knowledge of several technical and 

theoretical approaches to neurobiology and to be bewitched by the fascinating world of 

the cannabinoid system. For these reasons, I wish to keep on working on this specialized 

but apparently central aspect of mammalian brain physiology in the future. 



159 

List of references 

Acquas, E., Pisanu, A., Marrocu, P., & Di Chiara, G. (2000). Cannabinoid CB(1) 
receptor agonists increase rat cortical and hippocampal acetylcholine release in vivo. Eur. 
J. Pharmacol. 401,179-185. 

Adams, I. B., Compton, D. R., & Martin, B. R. (1998). Assessment of anandamide 
interaction with the cannabinoid brain receptor: SR 141716A antagonism studies in mice 
and autoradiographic analysis of receptor binding in rat brain. J. Pharmacol. Exp. Ther. 
284,1209-1217. 

Alberini, C. M. (1999). Genes to remember. J. Exp. Biol. 202,2887-2891. 

Ameri, A. (1999). The effects of cannabinoids on the brain. Prog. Neurobiol. 58,315- 
348. 

Annone, M., Maruani, J., Chaperon, F., Thiebot, M. H., Poncelet, M., Soubrie, P., & Le 
Fur, G. (1997). Selective inhibition of sucrose and ethanol intake by SR 141716, an 
antagonist of central cannabinoid (CBI) receptors. Psychopharmacology (Berl) 132, 
104-106. 

Bachus, S. E., Hyde, T. M., Herman, M. M., Egan, M. F., & Kleinman, J. E. (1997). 
Abnormal cholecystokinin mRNA levels in entorhinal cortex of schizophrenics. J. 
Psychiatr. Res. 31,233-256. 

Baker, D., Pryce, G., Croxford, J. L., Brown, P., Pertwee, R. G., Huffinan, J. W., & 
Layward, L. (2000). Cannabinoids control spasticity and tremor in a multiple sclerosis 
model. Nature 404,84-87. 

Baron, U., Freundlieb, S., Gossen, M., & Bujard, H. (1995). Co-regulation of two gene 
activities by tetracycline via a bidirectional promoter. Nucleic Acids Res. 23,3605-3606. 

Beaulieu P., Bisogno T., Punwar, S., Farquhar-Smith, W. P., Ambrosino, G., Di Marzo, 
V., & Rice, A. S. (2000). Role of the endogenous cannabinoid system in the formalin test 

of persistent pain in the rat. Eur. J. Pharmacol. 396,85-92. 

Betel, C. (1999). Vitamin E and other antioxidants in neuroprotection. Int. J. Vitam. 
Nutr. Res. 69,213-219. 

Beltramo, M., Stella, N., Calignano, A., Lin, S. Y., Makriyannis, A., & Piomelli, D. 
(1997). Functional role of high-affinity anandamide transport, as revealed by selective 
inhibition. Science 277,1094-1097. 

Berrendero, F., Garcia-Gil, L., Hernandez, M. L., Romero, J., Cebeira, M., de Miguel, 
R., Ramos, J. A., & Fernandez-Ruiz, J. J. (1998). Localization of mRNA expression and 
activation of signal transduction mechanisms for cannabinoid receptor in rat brain during 
fetal development. Development 125,3179-3188. 

Bidaut-Russell, M., Devane, W. A., & Howlett, A. C. (1990). Cannabinoid receptors & 

modulation of cyclic AMP accumulation in the rat brain. J. Neurochem. 55,21-26. 

Bidaut-Russell, M. & Howlett, A. C. (1991). Cannabinoid receptor-regulated cyclic AMP 

accumulation in the rat striatum. J. Neurochem 57,1769-1773. 



160 

Bisogno, T., Maurelli, S., Melck, D., De 
Biosynthesis, uptake, and degradation of 
leukocytes. J. Biol. Chem. 272,3315-3323. 

Petrocellis, L., & Di Marzo, V. (1997a). 
anandamide and palmitoylethanolamide in 

Bisogno, T., Sepe, N., Melck, D., Maurelli, S., De Petrocellis, L., & Di Marzo, V. 
(1997b). Biosynthesis, release and degradation of the novel endogenous cannabimimetic 
metabolite 2-arachidonoylglycerol in mouse neuroblastoma cells. Biochem. J. 322,671- 
677. 

Boger, D. L., Henriksen, S. J., & Cravatt, B. F. (1998). Oleamide: an endogenous sleep- 
inducing lipid and prototypical member of a new class of biological signaling molecules. 
Curr. Pharm. Des 4,303-314. 

Bohme, G. A., Laville, M., Ledent, C., Parmentier, M., & Imperato, A. (2000). Enhanced 
long-term potentiation in mice lacking cannabinoid CB 1 receptors. Neuroscience 95,5-7. 

Bouaboula, M., Poinot-Chazel, C., Bourrie, B., Canat, X., Calandra, B., Rinaldi- 
Carmona, M., Le Fur, G., & Casellas, P. (1995). Activation of mitogen-activated protein 
kinases by stimulation of the central cannabinoid receptor CB 1. Biochem. J., 637-641. 

Bradley, A., Evans, M., Kaufman, M. H., & Robertson, E. (1984). Formation of germ- 
line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 309,255-256. 

Bredt, D. S. & Snyder, S. H. (1994). Nitric oxide: a physiologic messenger molecule. 
Annu. Rev. Biochem. 63,175-195. 

Breivogel, C. S. & Childers, S. R. (1998). The functional neuroanatomy of brain 
cannabinoid receptors. Neurobiol. Dis. 5,417-431. 

Breivogel, C. S., Sim, L. J., & Childers, S. R. (1997). Regional differences in cannabinoid 
receptor/G-protein coupling in rat brain. J. Pharmacol. Exp. Ther. 282,1632-1642. 

Breivogel, C., Di Marzo, V., Zimmer, A., ZimmerA., & Martin, B. (2000). 
Characterisation of an unknown cannabinoid receptor in CBI knock out mouse brain 

membranes. 2000 Symposium on the Cannabinoids. Burlington, Vermont, International 
Cannabinoid Research Society, page 6. 

Brodkin, J. & Moerschbaecher, J. M. (1997). SR141716A antagonizes the disruptive 

effects of cannabinoid ligands on learning in rats. J. Pharmacol. Exp. Ther. 282,1526- 
1532. 

Browne, S. E., Ferrante, R. J., & Beal, M. F. (1999). Oxidative stress in Huntington's 
disease. Brain Pathol. 9,147-163. 

Buchholz, F., Ringrose, L., Angrand, P. O., Rossi, F., & Stewart, A. F. (1996). Different 
thermostabilities of FLP and Cre recombinases: implications for applied site-specific 
recombination. Nucleic Acids Res. 24,4256-4262. 

Buckley, N. E., Hansson, S., Harta, G., & Mezey, E. (1998). Expression of the CBI and 
CB2 receptor messenger RNAs during embryonic development in the rat. Neuroscience 
82,1131-1149. 

Burgunder, J. M. & Young, W. S., III (1988). The distribution of thalamic projection 
neurons containing cholecystokinin messenger RNA, using in situ hybridization 
histochemistry and retrograde labeling. Brain Res. 464,179-189. 



161 

Cadas, H., Gaillet, S., Beltramo, Menance, L., & Piomelli, D. (1996). Biosynthesis of an 
endogenous cannabinoid precursor in neurons and its control by calcium and cAMP. J. 
Neurosci. 16,3934-3942. 

Cadogan, A. K., Alexander, S. P., Boyd, E. A., & Kendall, D. A. (1997). Influence of 
cannabinoids on electrically evoked dopamine release and cyclic AMP generation in the 
rat striatum. J. Neurochem. 69,1131-1137. 

Caillaud, T., Opstal, W. Y., Scarceriaux, V., Billardon, C., & Rostene, W. (1995). 
Treatment of PC12 cells by nerve growth factor, dexamethasone, and forskolin. Effects 
on cell morphology and expression of neurotensin and tyrosine hydroxylase. Mol. 
Neurobiol. 10,105-114. 

Calignano, A., La Rana, G., Giuffrida, A., & Piomelli, D. (1998). Control of pain 
initiation by endogenous cannabinoids. Nature 394,277-281. 

Calignano, A., Persico, P., Mancuso, F., & Sorrentino, L. (1993). Endogenous nitric 
oxide modulates morphine-induced changes in locomotion and food intake in mice. Eur. 
J. Pharmacol. 231,415-419. 

Can, G. D., Fibiger, H. C. & Phillips, A. G (1989) Conditioned place preference as a 
measure of drug reward. In Liebman, J. M. & Cooper, S. J. (eds), The 
neuropharmacological basis of reward. Claredon Press, Oxford. pp 264-319. 

Casiano, F. M., Arnold, R., Haycock, D., Kuster, J., & Ward, S. J. (1991). Putative 
aminoalkylindoles (AAI) antagonists. NIDA Res. Monogr 105,295-296. 

Castellano, C., Cabib, S., Palmisano, A., Di Marzo, V., & Puglisi-Allegra, S. (1997). The 
effects of anandamide on memory consolidation in mice involve both DI and D2 
dopamine receptors. Behav. Pharmacol. 8,707-712. 

Caulfield, M. P. & Brown, D. A. (1992). Cannabinoid receptor agonists inhibit Ca current 
in NG 108-15 neuroblastoma cells via a pertussis toxin-sensitive mechanism. Br. J. 
Pharmacol. 106,231-232. 

Chaperon, F. & Thiebot, M. H. (1999). Behavioral effects of cannabinoid agents in 
animals. Crit Rev. Neurobiol. 13,243-281. 

Chen, J., Paredes, W., Lowinson, J. H., & Gardner, E. L. (1990a). Delta 9- 
tetrahydrocannabinol enhances presynaptic dopamine efflux in medial prefrontal cortex. 
Eur. J. Pharmacol. 190,259-262. 

Chen, J. P., Paredes, W., Li, J., Smith, D., Lowinson, J., & Gardner, E. L. (1990b). Delta 
9-tetrahydrocannabinol produces naloxone-blockable enhancement of presynaptic basal 
dopamine efflux in nucleus accumbens of conscious, freely-moving rats as measured by 
intracerebral microdialysis. Psychopharmacology (Berl) 102,156-162. 

Childers, S. R. & Deadwyler, S. A. (1996). Role of cyclic AMP in the actions of 
cannabinoid receptors. Biochem. Pharmacol. 52,819-827. 

Collin, C., Devane, W. A., Dahl, D., Lee, C. J., Axelrod, J., & A1kon, D. L. (1995). Long- 
term synaptic transformation of hippocampal CAI gamma-aminobutyric acid synapses 
and the effect of anandamide. Proc. Natl. Acad. Sci. U. S. A 92,10167-10171. 



162 

Colombo, G., Agabio, R., Fa, M., Guano, L., Lobina, C., Loche, A., Reali, R., & Gessa, 
G. L. (1998). Reduction of voluntary ethanol intake in ethanol-preferring sP rats by the 
cannabinoid antagonist SR-141716. Alcohol Alcohol 33,126-130. 

Compton, D. R., Aceto, M. D., Lowe, J., & Martin, B. R. (1996a). In vivo 
characterization of a specific cannabinoid receptor antagonist (SR141716A): inhibition of 
delta 9-tetrahydrocannabino1-induced responses and apparent agonist activity. J. 
Pharmacol. Exp. Ther. 277,586-594. 

Compton, D. R., Aceto, M. D., Lowe, J., & Martin, B. R. (1996b). In vivo 
characterization of a specific cannabinoid receptor antagonist (SR141716A): inhibition of 
delta 9-tetrahydrocannabinol-induced responses and apparent agonist activity. J. 
Pharmacol. Exp. Ther. 277,586-594. 

Compton, D. R. & Martin, B. R. (1997). The effect of the enzyme inhibitor 
phenylmethylsulfonyl fluoride on the pharmacological effect of anandamide in the mouse 
model of cannabimimetic activity. J. Pharmacol. Exp. Ther. 283,1138-1143. 

Contestabile, A. (2000). Roles of NMDA receptor activity and nitric oxide production in 
brain development. Brain Res. Brain Res. Rev. 32,476-509. 

Corchero, J., Romero, J., Berrendero, F., Fernandez-Ruiz, J., Ramos, J. A., Fuentes, 
J. A., & Manzanares, J. (1999). Time-dependent differences of repeated administration 
with Delta9- tetrahydrocannabinol in proenkephalin and cannabinoid receptor gene 
expression and G-protein activation by mu-opioid and CB 1-cannabinoid receptors in the 
caudate-putamen. Brain Res. Mol. Brain Res. 67,148-157. 

Coyle, J. T. & Puttfarcken, P. (1993). Oxidative stress, glutamate, and neurodegenerative 
disorders. Science 262,689-695. 

Cravatt, B. F., Giang, D. K., Mayfield, S. P., Boger, D. L., Lerner, R. A., & Gilula, N. B. 
(1996). Molecular characterization of an enzyme that degrades neuromodulatory fatty- 
acid amides. Nature 384,83-87. 

Crawley, J. N. & Corwin, R. L. (1994). Biological actions of cholecystokinin. Peptides 15, 
731-755. 

Crawley, IN., Corwin, R. L., Robinson, J. K., Felder, C. C., Devane, W. A., & Axelrod, J. 
(1993). Anandamide, an endogenous ligand of the cannabinoid receptor, induces 
hypomotility and hypothermia in vivo in rodents. Pharmacol. Biochem. Behav. 46,967- 
972. 

Dawson, V. L. & Dawson, T. M. (1998). Nitric oxide in neurodegeneration. Prog. Brain 
Res. 118,215-229. 

Deadwyler, S. A., Hampson, R. E., Bennett, B. A., Edwards, T. A., Mu, J., Pacheco, M. A., 
Ward, S. J., & Childers, S. R. (1993). Cannabinoids modulate potassium current in 

cultured hippocampal neurons. Receptors. Channels 1,121-134. 

Denovan-Wright, E. M. & Robertson, H. A. (2000). Cannabinoid receptor messenger 
RNA levels decrease in a subset of neurons of the lateral striatum, cortex and 
hippocampus of transgenic Huntington's disease mice. Neuroscience 98,705-713. 

Deutsch, D. G. & Chin, S. A. (1993). Enzymatic synthesis and degradation of 
anandamide, a cannabinoid receptor agonist. Biochem. Pharmacol. 46,791-796. 



163 

Devane, W. A., Hanus, L., Breuer, A., Pertwee, R. G., Stevenson, L. A., Griffin, G., 
Gibson, D., Mandelbaum, A., Etinger, A., and Mechoulam, R. (1992). Isolation and 
structure of a brain constituent that binds to the cannabinoid receptor. Science 258, 
1946-1949. 

Di Marzo, V.., Bisogno, T., & De Petrocellis, L. (2000). Endocannabinoids: new targets 
for drug development. Curr. Pharm. Des 6,1361-1380. 

Di Marzo, V. (1998). 'Endocannabinoids' and other fatty acid derivatives with 
cannabimimetic properties: biochemistry and possible physiopathological relevance. 
Biochim. Biophys. Acta 1392,153-175. 

Di Marzo, V. (1999). Biosynthesis and inactivation of endocannabinoids: relevance to 
their proposed role as neuromodulators. Life Sci. 65,645-655. 

Di Marzo, V., Bisogno, T., Sugiura, T., Melck, D., & De Petrocellis, L. (1998b). The 
novel endogenous cannabinoid 2-arachidonoylglycerol is inactivated by neurons. 
Biochem. J. 331,15-19. 

Di Marzo, V., De Petrocellis, L., Sugiura, T., & Waku, K. (1996). Potential biosynthetic 
connections between the two cannabimimetic eicosanoids, anandamide and 2- 
arachidonoyl-glycerol, in mouse neuroblastoma cells. Biochem. Biophys. Res. Commun. 
227,281-288. 

Di Marzo, V., & Deutsch, D. G. (1998). Biochemistry of the endogenous ligands of 
cannabinoid receptors. Neurobiol. Dis. 5,386-404. 

Di Marzo, V., Fontana, A., Cadas, H., Schinelli, S., Cimino, G., Schwartz, J. C., & 
Piomelli, D. (1994). Formation and inactivation of endogenous cannabinoid anandamide 
in central neurons. Nature 372,686-691. 

Di Marzo, V., Hill, M. P., Bisogno, T., Crossman, A. R., & Brotchie, J. M. (2000). 
Enhanced levels of endogenous cannabinoids in the globus pallidus are associated with a 
reduction in movement in an animal model of Parkinson's disease. FASEB J. 14,1432- 
1438. 

Di Marzo, V., Melck, D., Bisogno, T., & De Petrocellis, L. (1998a). Endocannabinoids: 

endogenous cannabinoid receptor ligands with neuromodulatory action. Trends 
Neurosci. 21,521-528. 

Diana, M., Melis, M., & Gessa, G. L. (1998). Increase in meso-prefrontal dopaminergic 

activity after stimulation of CBI receptors by cannabinoids. Eur. J. Neurosci. 10,2825- 
2830. 

Doetschman, T., Gregg, R. G., Maeda, N., Hooper, M. L., Melton, D. W., Thompson, S., 
& Smithies, O. (1987). Targetted correction of a mutant HPRT gene in mouse 
embryonic stem cells. Nature 330,576-578. 

Duggan, A. W. (1992). Neuropharmacology of pain. Curr. Opin. Neurol. Neurosurg. 5, 
503-507. 

Dymecki. S. M. (1996). Flp recombinase promotes site-specific DNA recombination in 

embryonic stem cells and transgenic mice. Proc. Natl. Acad. Sci. U. S. A 93,6191-6196. 

East, S. J., Parry-Jones, A., & Brotchie. J. M. (1996). lonotropic glutamate receptors and 
nitric oxide synthesis in the rat striatum. Neuroreport 8,71-75. 



164 

Edsall, S. A., Knapp, R. Janderah, T. W., Roeske, W. R., Consroe, P., & Yamamura, H. I. 
(1996). Antisense oligodeoxynucleotide treatment to the brain cannabinoid receptor 
inhibits antinociception. Neuroreport 7,593-596. 

Eissenstat, M. A., Bell, M. R., D'Ambra, T. E., Alexander, E. J., Daum, S. J., Ackerman, 
J. H., Gruett, M. D., Kumar, V., Estep, K. G., & Olefirowicz, E. M. (1995). 
Aminoalkylindoles: structure-activity relationships of novel cannabinoid mimetics. J. 
Med. Chem. 38,3094-3105. 

Emrich, H. M., Leweke, F. M., & Schneider, U. (1997). Towards a cannabinoid 
hypothesis of schizophrenia: cognitive impairments due to dysregulation of the 
endogenous cannabinoid system. Pharmacol. Biochem. Behav. 56,803-807. 

Fahn, S. & Cohen, G. (1992). The oxidant stress hypothesis in Parkinson's disease: 
evidence supporting it. Ann. Neurol. 32,804-812. 

Faris, P. L., Komisaruk, B. R., Watkins, L. R., & Mayer, D. J. (1983). Evidence for the 
neuropeptide cholecystokinin as an antagonist of opiate analgesia. Science 219,310-312. 

Felder, C. C. & Glass, M. (1998). Cannabinoid receptors and their endogenous agonists. 
Annu. Rev. Pharmacol. Toxicol. 38,179-200. 

Felder, C. C., Joyce, K. E., Briley, E. M., Mansouri, J., Mackie, K., Blond, 0., Lai, Y., 
Ma, A. L., & Mitchell, R. L. (1995). Comparison of the pharmacology and signal 
transduction of the human cannabinoid CBI and CB2 receptors. Mol. Pharmacol. 48, 
443-450. 

Felder, C. C., Nielsen, A., Briley, E. M., Palkovits, M., Priller, J., Axelrod, J., Nguyen, 
D. N., Richardson, J. M., Riggin, R. M., Koppel, G. A., Paul, S. M., & Becker, G. W. 
(1996). Isolation and measurement of the endogenous cannabinoid receptor agonist, 
anandamide, in brain and peripheral tissues of human and rat. FEBS Lett. 393,231-235. 

Ferrari, F., Ottani, A., Vivoli, R., & Giuliani, D. (1999). Learning impairment produced 
in rats by the cannabinoid agonist HU 210 in a water-maze task. Pharmacol. Biochem. 
Behav. 64,555-561. 

Ferreira, S. H., Duarte, I. D., & Lorenzetti, B. B. (1991). The molecular mechanism of 
action of peripheral morphine analgesia: stimulation of the cGMP system via nitric oxide 
release. Eur. J. Pharmacol. 201,121-122. 

Fink, H., Rex, Aoits, M., & Voigt, J. P. (1998). Major biological actions of CCK-a 
critical evaluation of research findings. Exp. Brain Res. 123,77-83. 

Folger, K. R., Wong, E. A., Wahl, G., & Capecchi, M. R. (1982). Patterns of integration 
of DNA microinjected into cultured mammalian cells: evidence for homologous 
recombination between injected plasmid DNA molecules. Mol. Cell Biol. 2,1372-1387. 

Fredens, K., Stengaard-Pedersen, K., & Larsson, L. I. (1984). Localization of enkephalin 
and cholecystokinin immunoreactivities in the perforant path terminal fields of the rat 
hippocampal formation. Brain Res. 304,255-263. 

French, E. D. (1997). delta9-Tetrahydrocannabinol excites rat VTA dopamine neurons 
through activation of cannabinoid CBI but not opioid receptors. Neurosci. Lett. 226, 
159-162. 



165 

Freund, T. F. & Buzsaki, G. (1996). Interneurons of the hippocampus. Hippocampus 6, 
347-470. 

Fride, E. & Mechoulam, R. (1993). Pharmacological activity of the cannabinoid receptor 
agonist, anandamide, a brain constituent. Eur. J. Pharmacol. 231,313-314. 

Fukunaga, K. & Miyamoto, E. (1998). Role of MAP kinase in neurons. Mol. Neurobiol. 
16,79-95. 

Gabriel, S. M., Davidson, M., Haroutunian, V., Powchik, P., Bierer, L. M., Purohit, D. P., 
Perl, D. P., & Davis, K. L. (1996). Neuropeptide deficits in schizophrenia vs. Alzheimer's 
disease cerebral cortex. Biol. Psychiatry 39,82-91. 

Gallate, J. E. & McGregor, I. S. (1999). The motivation for beer in rats: effects of 
ritanserin, naloxone and SR 141716. Psychopharmacology (Berl) 142,302-308. 

Gallate, J. E., Saharov, T., Mallet, P. E., & McGregor, I. S. (1999). Increased motivation 
for beer in rats following administration of a cannabinoid CBI receptor agonist. Eur. J. 
Pharmacol. 370,233-240. 

Garcia, D. E., Brown, S., Hille, B., & Mackie, K. (1998). Protein kinase C disrupts 
cannabinoid actions by phosphorylation of the CBI cannabinoid receptor. J. Neurosci. 
18,2834-2841. 

Gardner, E. L., (1997) Brain reward mechanisms. In Lowinson, J. H., Ruiz, P., Millman, 
R. B. & Langrod, J. G. (eds), Substance abuse: a comprehensive text book. William & 
Wilkins, Baltimore, USA. pp 51-85. 

Gardner, E. L. & Vorel, S. R. (1998). Cannabinoid transmission and reward-related 
events. Neurobiol. Dis. 5,502-533. 

Garthwaite, J. & Boulton, C. L. (1995). Nitric oxide signaling in the central nervous 
system. Annu. Rev. Physiol 57,683-706. 

Gerfen, C. R. (1988). Synaptic organization of the striatum. J. Electron Microsc. Tech. 
10,265-281. 

Gerfen, C. R. (1993). Functional organization of the striatum: relevance to actions of 
psychostimulant drugs of abuse. NIDA Res. Monogr 125,82-91. 

Gerlai, R. (2000). Targeting genes and proteins in the analysis of learning and memory: 
caveats and future directions. Rev. Neurosci. 11,15-26. 

Gessa, G. L., Melis, M., Muntoni, A. L., & Diana, M. (1998). Cannabinoids activate 
mesolimbic dopamine neurons by an action on cannabinoid CB1 receptors. Eur. J. 
Pharmacol. 341,39-44. 

Gifford, A. N. & Ashby, C. R., Jr. (1996). Electrically evoked acetylcholine release from 
hippocampal slices is inhibited by the cannabinoid receptor agonist, WIN 55212-2, and is 

potentiated by the cannabinoid antagonist, SR 141716A. J. Pharmacol. Exp. Ther. 277, 
1431-1436. 

Gifford, AN, Samiian, L., Gatley, S. J., & Ashby, C. R., Jr. (1997). Examination of the 

effect of the cannabinoid receptor agonist, CP 55.940, on electrically evoked transmitter 

release from rat brain slices. Eur. J. Pharmacol. 324,187-192. 



166 

Giuffrida, A., Parsons, L. H., Kerr, T. M., Rodriguez de Fonseca, F., Navarro, M., & 
Piomelli, D. (1999). Dopamine activation of endogenous cannabinoid signaling in dorsal 
striatum. Nat. Neurosci. 2,358-363. 

Glass, M., Faull, R. L., & Dragunow, M. (1993). Loss of cannabinoid receptors in the 
substantia nigra in Huntington's disease. Neuroscience 56,523-527. 

Glass, M. & Felder, C. C. (1997). Concurrent stimulation of cannabinoid CB1 and 
dopamine D2 receptors augments cAMP accumulation in striatal neurons: evidence for a 
Gs linkage to the CB1 receptor. J. Neurosci. 17,5327-5333. 

Glass, M., Dragunow, M., & Faull, R. L. (1997a). Cannabinoid receptors in the human 
brain: a detailed anatomical and quantitative autoradiographic study in the fetal, neonatal 
and adult human brain. Neuroscience 77,299-318. 

Glass, M., Brotchie, J. M., & Maneuf, Y. P. (1997b). Modulation of neurotransmission by 
cannabinoids in the basal ganglia. Eur. J. Neurosci. 9,199-203. 

Glass, M., Dragunow, M., & Faull, R. L. (2000). The pattern of neurodegeneration in 
Huntington's disease: a comparative study of cannabinoid, dopamine, adenosine and 
GABA(A) receptor alterations in the human basal ganglia in Huntington's disease. 
Neuroscience 97,505-519. 

Gomez, D., Pelasco, G., & Guzman, M. (2000). The CBI cannabinoid receptor is 
coupled to the activation of protein kinase B/Akt. Biochem. J. 347,369-373. 

Goparaju, S. K., Ueda, N., Yamaguchi, H., & Yamamoto, S. (1998). Anandamide 
amidohydrolase reacting with 2-arachidonoylglycerol, another cannabinoid receptor 
ligand. FEBS Lett. 422,69-73. 

Goparaju, S. K., Ueda, N., Taniguchi, K., & Yamamoto, S. (1999). Enzymes of porcine 
brain hydrolyzing 2-arachidonoylglycerol, an endogenous ligand of cannabinoid 
receptors. Biochem. Pharmacol. 57,417-423. 

Goudie, A. J. (1991) Animal models of drug abuse and dependence. In Willner, P. (ed), 
Behavioural models in psychopharmacology: theoretical, industrial and clinical 
perspectives. Cambridge University Press, Cambridge. pp 453-484. 

Gourine, A. V. (1995). Pharmacological evidence that nitric oxide can act as an 
endogenous antipyretic factor in endotoxin-induced fever in rabbits. Gen. Pharmacol. 26, 
835-841. 

Grant, S. G., O'Dell, T. J., Karl, K. A., Stein, P. L., Soriano, P., & Kandel, E. R. (1992). 
Impaired long-term potentiation, spatial learning, and hippocampal development in fyn 

mutant mice. Science 258,1903-1910. 

Greenwood, R. S., Godar, S. E., Reaves, T. A., Jr., & Hayward, J. N. (1981). 
Cholecystokinin in hippocampal pathways. J. Comp. Neurol. 203,335-350. 

Griffin G, Wray EJ, Tao Q, McAllister SD, Rorrer WK, Aung MM, Martin BR and 
Abood ME (1999). Evaluation of the cannabinoid CB2 receptor-selective antagonist, 
SR144528: further evidence for cannabinoid CB2 receptor absence in the rat central 
nervous system. Eur. J. Pharmacol. 377,117-125. 



167 

Gulyas, A. I., Toth, K., Danos, P., & Freund, T. F. (1991). Subpopulations of GABAergic 

neurons containing parvalbumin, calbindin D28k, and cholecystokinin in the rat 
hippocampus. J. Comp Neurol. 312,371-378. 

Gulyas, A. I. & Freund, T. F. (1996). Pyramidal cell dendrites are the primary targets of 
calbindin D28k- immunoreactive interneurons in the hippocampus. Hippocampus 6,525- 
534. 

Gulyas, A. I., Hajos, N., & Freund, T. F. (1996). Interneurons containing calretinin are 
specialized to control other interneurons in the rat hippocampus. J. Neurosci. 16,3397- 
3411. 

Hampson, A. J., Grimaldi, M., Axelrod, J., & Wink, D. (1998a). Cannabidiol and 
(-)Delta9-tetrahydrocannabinol are neuroprotective antioxidants. Proc. Natl. Acad. Sci. 
U. S. A 95,8268-8273. 

Hampson, A. J., Bornheim, L. M., Scanziani, M., Yost, C. S., Gray, A. T., Hansen, B. M., 
Leonoudakis, D. J., & Bickler, P. E. (1998b). Dual effects of anandamide on NMDA 
receptor-mediated responses and neurotransmission. J. Neurochem. 70,671-676. 

Hampson, R. E., Evans, G. J., Mu, J., Zhuang, S. Y., King, V. C., Childers, S. R., & 
Deadwyler, S. A. (1995). Role of cyclic ANW dependent protein kinase in cannabinoid 
receptor modulation of potassium "A-current" in cultured rat hippocampal neurons. Life 
Sci. 56,2081-2088. 

Hampson, R. E. & Deadwyler, S. A. (1998). Role of cannabinoid receptors in memory 
storage. Neurobiol. Dis. 5,474-482. 

Hansen, H. S., Lauritzen, L., Moesgaard, B., Strand, A. M., & Hansen, H. H. (1998). 
Formation of N-acyl-phosphatidylethanolamines and N- acetylethanolamines: proposed 
role in neurotoxicity. Biochem. Pharmacol. 55,719-725. 

Hanus, L., Gopher, A., Almog, S., & Mechoulam, R. (1993). Two new unsaturated fatty 

acid ethanolamides in brain that bind to the cannabinoid receptor. J. Med. Chem. 36, 
3032-3034. 

Henry, D. J. & Chavkin, C. (1995). Activation of inwardly rectifying potassium channels 
(GIRKI) by co- expressed rat brain cannabinoid receptors in Xenopus oocytes. 
Neurosci. Lett. 186,91-94. 

Herkenham, M., Lynn, A. B., Little, M. D., Johnson, M. R., Melvin, L. S., de Costa, B. R., 
& Rice, K. C. (1990). Cannabinoid receptor localization in brain. Proc. Natl. Acad. Sci. 
U. S. A 87,1932-1936. 

Herkenham, M., Lynn, A. B., Johnson, M. R., Melvin, L. S., de Costa, B. R., & Rice, K. C. 
(1991). Characterization and localization of cannabinoid receptors in rat brain: a 
quantitative in vitro autoradiographic study. J. Neurosci. 11,563-583. 

Herman, B. Hocci, F., & Bridge, P. (1995). The effects of NMDA receptor antagonists 
and nitric oxide synthase inhibitors on opioid tolerance and withdrawal. Medication 
development issues for opiate addiction. Neuropsychopharmacology 13,269-293. 

Herzberg, U., Eliav, E., Bennett, G. J., & Kopin, I. J. (1997). The analgesic effects of 
R(+)-WIN 55,212-2 mesylate, a high affinity cannabinoid agonist, in a rat model of 
neuropathic pain. Neurosci. Lett. 221,157-160. 



168 

Heyser, C. J., Hampson, R. E., & Deadwyler, S. A. (1993). Effects of delta-9- 
tetrahydrocannabinol on delayed match to sample performance in rats: alterations in 
short-term memory associated with changes in task specific firing of hippocampal cells. J. 
Pharmacol. Exp. Ther. 264,294-307. 

Hillard, C. J., Harris, R. A., & Bloom, A. S. (1985). Effects of the cannabinoids on 
physical properties of brain membranes and phospholipid vesicles: fluorescence studies. 
J. Pharmacol. Exp. Ther. 232,579-588. 

Hillard, C. J., Edgemond, W. S., Jarrahian, A., & Campbell, W. B. (1997). Accumulation 
of N-arachidonoylethanolamine (anandamide) into cerebellar granule cells occurs via 
facilitated diffusion. J. Neurochem. 69,631-638. 

Hillard, C. J., Muthian, S., & Kearn, C. S. (1999). Effects of CB(1) cannabinoid receptor 
activation on cerebellar granule cell nitric oxide synthase activity. FEBS Lett. 459,277- 
281. 

Hillard, C. J., Nogueron, M. I. & Porgilsson, B. (2000). Differential effects of CB 1 
receptor activation on calcium responses in neurites and soma of cerebellar granule cells. 
2000 Symposium on the Cannabinoids. Burlington, Vermont, International Cannabinoid 
Research Society, page 44. 

Howlett, A. C. & Fleming, R. M. (1984). Cannabinoid inhibition of adenylate cyclase. 
Pharmacology of the response in neuroblastoma cell membranes. Mol. Pharmacol. 26. 
532-538. 

Howlett, A. C., Qualy, J. M., & Khachatrian, L. L. (1986). Involvement of Gi in the 
inhibition of adenylate cyclase by cannabimimetic drugs. Mol. Pharmacol. 29,307-313. 

Howlett, A. C., Johnson, M. R., Melvin, L. S., & Milne, G. M. (1988). Nonclassical 
cannabinoid analgetics inhibit adenylate cyclase: development of a cannabinoid receptor 
model. Mol. Pharmacol. 33,297-302. 

Howlett, A. C. (1995). Pharmacology of cannabinoid receptors. Annu. Rev. Pharmacol. 
Toxicol. 35,607-634. 

Huang, P. L., Dawson, T. M., Bredt, D. S., Snyder, S. H., & Fishman, M. C. (1993). 
Targeted disruption of the neuronal nitric oxide synthase gene. Cell 75,1273-1286. 

Huang, P. L. & Lo, E. H. (1998). Genetic analysis of NOS isoforms using nNOS and 
eNOS knockout animals. Prog. Brain Res. 118,13-25. 

Inada, H., Shindo, H., Tawata, M., & Onaya, T. (1998). cAMP regulates nitric oxide 
production and ouabain sensitive Na+, K+- ATPase activity in SH-SY5Y human 

neuroblastoma cells. Diabetologia 41,1451-1458. 

Indra, A. K., Warot, X., Brocard, J., Bornert, J. M., Xiao, J. H., Chambon, P., & Metzger, 
D. (1999). Temporally-controlled site-specific mutagenesis in the basal layer of the 
epidermis: comparison of the recombinase activity of the tamoxifen- inducible Cre-ER(T) 

and Cre-ER(T2) recombinases. Nucleic Acids Res. 27,4324-4327. 

Ingram, S. M., Krause. R. G., Baldino, F., Jr., Skeen, L. C., & Lewis, M. E. (1989). 
Neuronal localization of cholecystokinin mRNA in the rat brain by using in situ 
hybridization histochemistry. J. Comp Neurol. 287,260-272. 



169 

Iversen, L. L. (2000) The science of Marijuana. Oxford University Press, Oxford, pp 29- 
75. 

Jansen, E. M., Haycock, D. A., Ward, S. J., & Seybold, V. S. (1992). Distribution of 
cannabinoid receptors in rat brain determined with aminoalkylindoles. Brain Res. 575, 
93-102. 

Jayakumar, A. R., Sujatha, R., Paul, V., Asokan, C., Govindasamy, S., & Jayakumar, R. 
(1999). Role of nitric oxide on GABA, glutamic acid, activities of GABA-T and GAD in 
rat brain cerebral cortex. Brain Res. 83 7,229-23 5. 

Jin, K. L., Mao, X. O., Goldsmith, P. C., & Greenberg, D. A. (2000). CBI cannabinoid 
receptor induction in experimental stroke. Ann. Neurol. 48,257-261. 

Johansson, C., Jackson, D. M., & Svensson, L. (1997). Nitric oxide synthase inhibition 
blocks phencyclidine-induced behavioural effects on prepulse inhibition and locomotor 
activity in the rat. Psychopharmacology (Berl) 131,167-173. 

Johns, R. A., Moscicki, J. C., & Di Fazio, C. A. (1992). Nitric oxide synthase inhibitor 
dose-dependently and reversibly reduces the threshold for halothane anesthesia. A role 
for nitric oxide in mediating consciousness? Anesthesiology 77,779-784. 

Johnson, M. R. & Melvin, L. S. (1986) The discovery of nonclassical cannabinoid 
analgetics. In Mechoulam, R. (ed), Cannabinoids as therapeutic agents. CRC Press, 
Boca Raton. 

Katayama, K., Ueda, N., Kurahashi, Y., Suzuki, H., Yamamoto, S., & Kato, I. (1997). 
Distribution of anandamide amidohydrolase in rat tissues with special reference to small 
intestine. Biochim. Biophys. Acta 1347,212-218. 

Katona, I., Sperlagh, B., Sik, A., Kafalvi, A., Vizi, E. S., Mackie, K., & Freund, T. F. 
(1999). Presynaptically located CB 1 cannabinoid receptors regulate GABA release from 

axon terminals of specific hippocampal interneurons. J. Neurosci. 19,4544-4558. 

Kellstein, D. E. & Mayer, D. J. (1991). Spinal co-administration of cholecystokinin 
antagonists with morphine prevents the development of opioid tolerance. Pain 47,221- 
229. 

Knowles, W. D. (1992). Normal anatomy and neurophysiology of the hippocampal 
formation. J. Clin. Neurophysiol. 9,252-263. 

Kornetsky, C. & Duvauchelle, C. (1994). Dopamine, a common substrate for the 

rewarding effects of brain stimulation reward, cocaine, and morphine. NIDA Res. 
Monogr 145,19-39. 

Kühn, R., Rajewsky, K., & Muller, W. (1991). Generation and analysis of interleukin-4 
deficient mice. Science 254,707-710. 

Landy, A. (1993). Mechanistic and structural complexity in the site-specific 

recombination pathways of Int and FLP. Curr. Opin. Genet. Dev. 3,699-707. 

Lay, J. M., Gillespie, P. J., & Samuelson, L. C. (1999). Murine prenatal expression of 
cholecystokinin in neural crest, enteric neurons, and enteroendocrine cells. Dev. Dyn. 
216,190-200. 



170 

Ledent, C., Valverde, 0., Cossu, G., Petitet, F., Aubert, J. F., Beslot, F., Bohme, G. A., 
Imperato, A., Pedrazzini, T., Roques, B. P., Vassart, G., Fratta, W., & Parmentier, M. 
(1999). Unresponsiveness to cannabinoids and reduced addictive effects of opiates in 
CB 1 receptor knockout mice. Science 283,401-404. 

Leite, J. R. & Carlini, E. A. (1974). Failure to obtain "cannabis-directed behavior" and 
abstinence syndrome in rats chronically treated with cannabis sativa extracts. 
Psychopharmacologia. 36,133-145. 

Lepore, M., Vorel, S. R., Lowinson, J., & Gardner, E. L. (1995). Conditioned place 
preference induced by delta 9-tetrahydrocannabinol: comparison with cocaine, morphine, 
and food reward. Life Sci. 56,2073-2080. 

Lepore, M., Liu, X., Savage, V., Matalon, D., & Gardner, E. L. (1996). Genetic 
differences in delta 9-tetrahydrocannabinol-induced facilitation of brain stimulation 
reward as measured by a rate- frequency curve-shift electrical brain stimulation paradigm 
in three different rat strains. Life Sci. 58, L365-L372. 

Leweke, F. M., Giuffida, A., Wurster, U., Emrich, H. M., & Piomelli, D. (1999). 
Elevated endogenous cannabinoids in schizophrenia. Neuroreport 10,1665-1669. 

Li, M., Indra, A. K., Warot, X., Brocard, J., Messaddeq, N., Kato, S., Metzger, D., & 
Chambon, P. (2000). Skin abnormalities generated by temporally controlled RXRalpha 
mutations in mouse epidermis. Nature 407,633-636. 

Lichtman, A. H. & Martin, B. R. (1991). Cannabinoid-induced antinociception is mediated 
by a spinal alpha 2- noradrenergic mechanism. Brain Res. 559,309-314. 

Lichtman, A. H., Dirnen, K. R., & Martin, B. R. (1995). Systemic or intrahippocampal 

cannabinoid administration impairs spatial memory in rats. Psychopharmacology (Berl) 
119,282-290. 

Lichtman, A. H. (2000). SR 141716A enhances spatial memory as assessed in a radial- 
arm maze task in rats [In Process Citation]. Eur. J. Pharmacol. 404,175-179. 

Liu, Y. (1996). Nitric oxide influences dopaminergic processes. Adv. Neuroimmunol. 6, 
259-264. 

Lopes da Silva, F. H., Witter, M. P., Boeijinga, P. H., & Lohman, A. H. (1990). Anatomic 

organization and physiology of the limbic cortex. Physiol Rev. 70,453-511. 

Maccarrone, M., van der Stelt, M., Rossi, A., Veldink, G. A., Vliegenthart, J. F., & 
Finazzi-Agro, A. F. (1998). Anandamide hydrolysis by human cells in culture and brain. J. 
Biol. Chem. 273,32332-32339. 

Maccarrone, M., Bari, M., Lorenzon, T., Bisogno, T., Di Marzo, V., & Finazzi-Agro, A. 
(2000). Anandamide uptake by human endothelial cells and its regulation by nitric oxide. 
J. Biol. Chem. 275,13484-13492. 

Mack, A., Sauer, B., Abremski, K., & Hoess, R. (1992). Stoichiometry of the Cre 

recombinase bound to the lox recombining site. Nucleic Acids Res. 20,4451-4455. 

Mackie, K. & Hille, B. (1992). Cannabinoids inhibit N-type calcium channels in 

neuroblastoma-glioma cells. Proc. Natl. Acad. Sci. U. S. A 89,3825-3829. 



171 

Mackie, K., Lai, Y., Westenbroek, R., & Mitchell, R. (1995). Cannabinoids activate an 
inwardly rectifying potassium conductance and inhibit Q-type calcium currents in AtT20 
cells transfected with rat brain cannabinoid receptor. J. Neurosci. 15,6552-6561. 

Mailleux, P., Parmentier, M., & Vanderhaeghen, J. J. (1992). Distribution of cannabinoid 
receptor messenger RNA in the human brain: an in situ hybridization histochemistry with 
oligonucleotides. Neurosci. Lett. 143,200-204. 

Mailleux, P. & Vanderhaeghen, J. J. (1992). Distribution of neuronal cannabinoid 
receptor in the adult rat brain: a comparative receptor binding radioautography and in 
situ hybridization histochemistry. Neuroscience 48,655-668. 

Mallet, P. E. & Beninger, R. J. (1998). The cannabinoid CB1 receptor antagonist 
SR141716A attenuates the memory impairment produced by delta9- 
tetrahydrocannabinol or anandamide. Psychopharmacology (Berl) 140,11-19. 

Maneuf, Y. P., Nash, J. E., Crossman, A. R., & Brotchie, J. M. (1996). Activation of the 
cannabinoid receptor by delta 9-tetrahydrocannabinol reduces gamma-aminobutyric acid 
uptake in the globus pallidus. Eur. J. Pharmacol. 308,161-164. 

Mansbach, R. S., Rovetti, C. C., Winston, E. N., & Lowe, J. A., III (1996). Effects of the 
cannabinoid CB1 receptor antagonist SR141716A on the behavior of pigeons and rats. 
Psychopharmacology (Berl) 124,315-322. 

Manzanares, J., Corchero, J., Romero, J., Fernandez-Ruiz, J. J., Ramos, J. A., & Fuentes, 
J. A. (1999). Pharmacological and biochemical interactions between opioids and 
cannabinoids. Trends Pharmacol. Sci. 20,287-294. 

Marsicano, G. & Lutz, B. (1999). Expression of the cannabinoid receptor CB 1 in distinct 
neuronal subpopulations in the adult mouse forebrain. Eur. J. Neurosci. 11,4213-4225. 

Martellotta, M. C., Cossu, G., Fattore, L., Gessa, G. L., & Fratta, W. (1998). Self- 

administration of the cannabinoid receptor agonist WIN 55,212-2 in drug-naive mice. 
Neuroscience 85,327-330. 

Martin, B. R. & Lichtman, A. H. (1998). Cannabinoid transmission and pain perception. 
Neurobiol. Dis. 5,447-461. 

Matsuda, L. A., Lolait, S. J., Brownstein, M. J., Young, A. C., & Bonner, T. I. (1990). 
Structure of a cannabinoid receptor and functional expression of the cloned cDNA. 
Nature 346,561-564. 

Matsuda, L. A., Bonner, T. I., & Lolait, S. J. (1993). Localization of cannabinoid receptor 
mRNA in rat brain. J. Comp Neurol. 327,535-550. 

Matsuda, L. A. (1997). Molecular aspects of cannabinoid receptors. Crit Rev. Neurobiol. 
11,143-166. 

Mattes, R. D., Engelman, K., Shaw, L. M., & Elsohly, M. A. (1994). Cannabinoids and 
appetite stimulation. Pharmacol. Biochem. Behav. 49,187-195. 

Maurelli, S., Bisogno, T., De Petrocelhs, L., Di Luccia, A., Marino, G., & Di Marzo, V. 
(1995). Two novel classes of neuroactive fatty acid amides are substrates for mouse 
neuroblastoma'anandamide amidohydrolase'. FEBS Lett. 377,82-86. 



172 

McGregor, I. S., Issakidis, C. N., & Prior, G. (1996). Aversive effects of the synthetic 
cannabinoid CP 55,940 in rats. Pharmacol. Biochem. Behav. 53,657-664. 

Mechoulam, R. & Gaoni, Y. (1965). Hashish. IV. The isolation and structure of 
cannabinolic cannabidiolic and cannabigerolic acids. Tetrahedron 21,1223-1229. 

Mechoulam, R. (1986) The pharmacohistory of Cannabis sativa. In Mechoulam, R. (ed), 
Cannabinoids as therapeutic agents. CRC Press, Boca Raton. pp 1-16. 

Mechoulam., R. & Fride, E. (1995) The unpaved road to the endogenous brain 
cannabinoid ligands, the anandamides. In Cannannabinoid receptors Pertwee, R. G. (ed), 
Academic Press pp 233-258. 

Mechoulam, R., Ben Shabat, S., Hanus, L., Ligumsky, M., Kaminski, N. E., Schatz, 
A. R., Gopher, A., Almog, S., Martin, B. R., & Compton, D. R. (1995). Identification of 
an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid 
receptors. Biochem. Pharmacol. 50,83-90. 

Mechoulam, R., Fride, E., & Di Marzo, V. (1998). Endocannabinoids. Eur. J. 
Pharmacol. 359,1-18. 

Mendelson, W. B. & Basile, A. S. (1999). The hypnotic actions of oleamide are blocked 
by a cannabinoid receptor antagonist. Neuroreport 10,3237-3239. 

Meschler, J. P., Kraichely, D. M., Wilken, G. H., & Howlett, A. C. (2000). Inverse agonist 
properties of N-(piperidin-1-yl)-5-(4-chlorophenyl)-1- (2,4-dichlorophenyl)-4-methyl- 
1H-pyrazole-3-carboxamide HCl (SR141716A) and 1-(2-chlorophenyl)-4-cyano-5-(4- 
methoxyphenyl)-1 H- pyrazole-3-carboxyl is acid phenylamide (CP-272871) for the 
CB(1) cannabinoid receptor [In Process Citation]. Biochem. Pharmacol. 60,1315-1323. 

Miller, A. S. & Walker, J. M. (1996). Electrophysiological effects of a cannabinoid on 
neural activity in the globus pallidus. Eur. J. Pharmacol. 304,29-35. 

Miller, L. A., Lai, R., & Munoz, D. G. (1998). Contributions of the entorhinal cortex, 
amygdala and hippocampus to human memory. Neuropsychologia 36,1247-1256. 

Minichiello, L., Korte, M., Wolfer, D., Kuhn, R., Unsicker, K., Cestari, V., Rossi- 
Arnaud, C., Lipp, H. P., Bonhoeffer, T., & Klein, R. (1999). Essential role for TrkB 

receptors in hippocampus-mediated learning. Neuron 24,401-414. 

Misner, D. L. & Sullivan, J. M. (1999). Mechanism of cannabinoid effects on long-term 

potentiation and depression in hippocampal CAI neurons. J. Neurosci. 19,6795-6805. 

Moosmann, B. & Behl, C. (1999). The antioxidant neuroprotective effects of estrogens 
and phenolic compounds are independent from their estrogenic properties. Proc. Natl. 
Acad. Sci. U. S. A 96,8867-8872. 

Moreau, 10 845) Du haschisch et de 1'alienation. Masson, Paris. 

Morino, P., Herrera-Marschitz, M., Castel, M. N., 

G., & Hokfelt, T. (1994). Cholecystokinin in 

immunohistochemical studies at the light and f 
Neurosci. 6,681-692. 

Ungerstedt, U., Varro, A., Dockray, 
cortico-striatal neurons in the rat: 
Lectron microscopical level. Eur. J. 



173 

Muller-Vahl, K. R., Kolbe, H., Schneider, U., & Emrich, H. M. (1998). Cannabinoids: 
possible role in patho-physiology and therapy of Gilles de la Tourette syndrome. Acta 
Psychiatr. Scand. 98,502-506. 

Muller-Vahl, K. R., Kolbe, H., Schneider, U., & Emrich, H. M. (1999). Cannabis in 
movement disorders. Forsch. Komplementarmed. 6 Suppl 3,23-27. 

Munro, S., Thomas, K. L., & Abu-Shaar, M. (1993). Molecular characterization of a 
peripheral receptor for cannabinoids. Nature 365,61-65. 

Murillo-Rodriguez, E., Sanchez-Alavez, M., Navarro, L., Martinez-Gonzalez, D., 
Drucker-Colin, R., & Prospero-Garcia, 0. (1998). Anandamide modulates sleep and 
memory in rats. Brain Res. 812,270-274. 

Nagayama, T., Sinor, A. D., Simon, R. P., Chen, J., Graham, S. H., Jin, K., & Greenberg, 
D. A. (1999). Cannabinoids and neuroprotection in global and focal cerebral ischemia and 
in neuronal cultures. J. Neurosci. 19,2987-2995. 

Nahas, G. G. (1973) Marihuana deceptive weed. Raven Press, New York pp. 1-58. 

Nahas, G. G. (1982) Hashish and Islam: 9th to 18`h century. Bull. NY Acad. Med., 58. 
814-831. 

Nahas, G. G., Harvey, D. J., Sutin, K. M. & Agurell, S. (1999) Receptor and nonreceptor 
membrane-mediated effects of THC and cannabinoids. In Nahas, G. G., Sutin, K., 
Harvey, D. & Agurell, S. (eds), Marihuana and medicine. Humana Press Inc, Totowa 
(NJ), pp. 781-805. 

Nakamura, E. M., da Silva, E. A., Concilio, G. V., Wilkinson, D. A., & Masur, J. (1991). 
Reversible effects of acute and long-term administration of delta-9- tetrahydrocannabinol 
(THC) on memory in the rat. Drug Alcohol Depend. 28,167-175. 

Nava, F., Carta, G., Battasi, A. M., & Gessa, G. L. (2000a). D(2) dopamine receptors 
enable delta(9)-tetrahydrocannabinol induced memory impairment and reduction of 
hippocampal extracellular acetylcholine concentration. Br. J. Pharmacol. 130,1201- 
1210. 

Nava, F., Carta, G., & Gessa, G. L. (2000b). Permissive role of dopamine D(2) receptors 
in the hypothermia induced by delta(9)-tetrahydrocannabinol in rats. Pharmacol. 
Biochem. Behav. 66,183-187. 

Navarro, M., Hernandez, E., Munoz, R. M., Del Arco, I., Villanua, M. A., Carrera, M. R., 
& Rodriguez de Fonseca, F. (1997). Acute administration of the CB 1 cannabinoid 
receptor antagonist SR 141716A induces anxiety-like responses in the rat. Neuroreport 
8,491-496. 

Nelson, R. J., Demas, G. E., Huang, P. L., Fishman, M. C., Dawson, V. L., Dawson, T. M., 
& Snyder, S. H. (1995). Behavioural abnormalities in male mice lacking neuronal nitric 
oxide synthase. Nature 378,383-386. 

Netzeband, J. G., Conroy, S. M., Parsons, K. L., & Gruol, D. L. (1999). Cannabinoids 

enhance NMDA-elicited Ca2+ signals in cerebellar granule neurons in culture. J. 
Neurosci. 19,8765-8777. 



174 

Nowicky, AN, Teyler, T. J., & Vardaris, R. M. (1987). The modulation of long-term 
potentiation by delta-9- tetrahydrocannabinol in the rat hippocampus, in vitro. Brain Res. 
Bull. 19,663-672. 

Orban, P. C., Chapman, P. F., & Brambilla, R. (1999). Is the Ras-MAPK signalling 
pathway necessary for long-term memory formation?. Trends Neurosci. 22,38-44. 

Pacheco, M., Childers, S. R., Arnold, R., Casiano, F., & Ward, S. J. (1991). 
Aminoalkylindoles: actions on specific G-protein-linked receptors. J. Pharmacol. Exp. 
Ther. 257,170-183. 

Paria, B. C., Das, S. K., & Dey, S. K. (1995). The preimplantation mouse embryo is a 
target for cannabinoid ligand- receptor signaling. Proc. Natl. Acad. Sci. U. S. A 92, 
9460-9464. 

Parker, L. A. & Gillies, T. (1995). THC-induced place and taste aversions in Lewis and 
Sprague-Dawley rats. Behav. Neurosci. 109,71-78. 

Paton, G. S., Pertwee, R. G., & Davies, S. N. (1998). Correlation between cannabinoid 
mediated effects on paired pulse depression and induction of long term potentiation in 
the rat hippocampal slice. Neuropharmacology 37,1123-1130. 

Pertwee, R., Griffin, G., Fernando, S., Li, X., Hill, A., & Makriyannis, A. (1995). 
AM630, a competitive cannabinoid receptor antagonist. Life Sci. 56,1949-1955. 

Pertwee, R. G. (1997). Pharmacology of cannabinoid CBI and CB2 receptors. 
Pharmacol. Ther. 74,129-180. 

Pertwee, R. G. & Wickens, A. P. (1991). Enhancement by chlordiazepoxide of catalepsy 
induced in rats by intravenous or intrapallidal injections of enantiomeric cannabinoids. 
Neuropharmacology 30,237-244. 

Peters, H. & Nahas, G. G. (1999) A breef History of four millennia (B. C. 2000-A. D. 
1974). In Nahas, G. G., Sutin, K., Harvey, D. & Agurell, S. (eds), Marihuana and 
medicine. Humana Press Inc, Totowa (NJ), pp. 3-7. 

Petrzilka, T. & Sikemeier, C. (1967). [Conversion from (-)-delta-6,1-3,4-trans- 
tetrahydrocannabinol in (-)- delta-l, 2-3,4-trans-tetrahydrocannabinol]. Hely. Chim. 
Acta 50,2111-2113. 

Pettit, D. A., Harrison, M. P., Olson, J. M., Spencer, R. F., & Cabral, G. A. (1998). 
Immunohistochemical localization of the neural cannabinoid receptor in rat brain. J. 
Neurosci. Res. 51,391-402. 

Pinal, C. S. & Tobin, A. J. (1998). Uniqueness and redundancy in GABA production. 
Perspect. Dev. Neurobiol. 5,109-118. 

Piomeffi, D., Beltramo, M., Giuffiida, A., & Stella, N. (1998). Endogenous cannabinoid 
signaling. Neurobiol. Dis. 5,462-473. 

Piomelli, D., Giuffrida, A.. Calignano, A., & Rodriguez de Fonseca, F. (2000). The 

endocannabinoid system as a target for therapeutic drugs. Trends Pharmacol. Sci. 21, 
218-224. 



175 

Portier, M., Rinaldi-Carmona, M., Pecceu, F., Combes, T., Poinot-Chazel, C., Calandra, 
B., Barth, F., Le Fur, G., & Casellas, P. (1999). SR 144528, an antagonist for the 
peripheral cannabinoid receptor that behaves as an inverse agonist. J. Pharmacol. Exp. 
Ther. 288,582-589. 

Pugh, G., Jr., Smith, P. B., Dombrowski, D. S., & Welch, S. P. (1996). The role of 
endogenous opioids in enhancing the antinociception produced by the combination of 
delta 9-tetrahydrocannabinol and morphine in the spinal cord. J. Pharmacol. Exp. Ther. 
279,608-616. 

Raiteri, M., Paudice, P., & Vallebuona, F. (1993). Release of cholecystokinin in the 
central nervous system. Neurochem. Int. 22,519-527. 

Reche, I., Fuentes, J. A., & Ruiz-Gayo, M. (1996). Potentiation of delta 9- 
tetrahydrocannabinol-induced analgesia by morphine in mice: involvement of mu- and 
kappa-opioid receptors. Eur. J. Pharmacol. 318,11-16. 

Reibaud, M., Obinu, M. C., Ledent, C., Parmentier, M., Bohme, G. A., & Imperato, A. 
(1999). Enhancement of memory in cannabinoid CBI receptor knock-out mice. Eur. J. 
Pharmacol. 379, R1-R2. 

Reidelberger, R. D. (1994). Cholecystokinin and control of food intake. J. Nutr. 124, 
1327S-1333S. 

Rhee, M. H., Bayewitch, M., Avidor-Reiss, T., Levy, R., & Vogel, Z. (1998). 
Cannabinoid receptor activation differentially regulates the various adenylyl cyclase 
isozymes. J. Neurochem. 71,1525-1534. 

Richardson, J. D., Aanonsen, L., & Hargreaves, K. M. (1998). Hypoactivity of the spinal 
cannabinoid system results in NMDA-dependent hyperalgesia. J. Neurosci. 18,451-457. 

Rinaldi-Carmona, M., Barth, F., Heaulme, M., Shire, D., Calandra, B., Congy, C., 
Martinez, S., Maruani, J., Neliat, G., & Caput, D. (1994). SR141716A, a potent and 
selective antagonist of the brain cannabinoid receptor. FEBS Lett. 350,240-244. 

Rinaldi-Carmona, M., Barth, F., Millan, J., Derocq, J. M., Casellas, P., Congy, C., 
Oustric, D., Sarran, M., Bouaboula, M., Calandra, B., Portier, M., Shire, D., Breliere, 
J. C., & Le Fur, G. L. (1998). SR 144528, the first potent and selective antagonist of the 
CB2 cannabinoid receptor. J. Pharmacol. Exp. Ther. 284,644-650. 

Roberts, G. W., Woodhams, P. L., Polak, J. M., & Crow, T. J. (1984). Distribution of 
neuropeptides in the limbic system of the rat: the hippocampus. Neuroscience 11,35-77. 

Rodriguez de Fonseca, F., Del Arco, I., Martin-Calderon, J. L., Gorriti, M. A., & 
Navarro, M. (1998). Role of the endogenous cannabinoid system in the regulation of 
motor activity. Neurobiol. Dis. S, 483-501. 

Romero, J., de Miguel, R., Ramos, J. A., & Fernandez-Ruiz, J. J. (1998). The activation 
of cannabinoid receptors in striatonigral GABAergic neurons inhibited GABA uptake. 
Life Sci. 62,351-363. 

Sakurai, Y., Ohta, H., Shimazoe, T., Kataoka, Y.. Fujiwara, M.. & Ueki, S. (1985). delta 
9-Tetrahydrocannabinol elicited ipsilateral circling behavior in rats with unilateral nigral 
lesion. Life Sci. 37,2181-2185. 



176 

Sambrook, J., Fritsch, E. F. & Maniatis, T. (eds) (1989) Molecular cloning: a laboratory 

manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor. 

Sandi, C., Venero, C., & Guaza, C. (1995). Decreased spontaneous motor activity and 
startle response in nitric oxide synthase inhibitor-treated rats. Eur. J. Pharmacol. 277,89- 
97. 

Santucci, V., Storme, J. J., Soubrie, P., & Le Fur, G. (1996). Arousal-enhancing 
properties of the CB 1 cannabinoid receptor antagonist SR 141716A in rats as assessed 
by electroencephalographic spectral and sleep-waking cycle analysis. Life Sci. 58, L103- 
L110. 

Sanudo-Pena, M. C. & Walker, J. M. (1997). Role of the subthalamic nucleus in 
cannabinoid actions in the substantia nigra of the rat. J. Neurophysiol. 77,1635-1638. 

Sanudo-Pena, M. C., Tsou, K., & Walker, J. M. (1999). Motor actions of cannabinoids in 
the basal ganglia output nuclei. Life Sci. 65,703-713. 

Sauer, B. & Henderson, N. (1989). Cre-stimulated recombination at loxP-containing 
DNA sequences placed into the mammalian genome. Nucleic Acids Res. 17,147-161. 

Scammell, T. E., Elmquist, J. K., & Saper, C. B. (1996). Inhibition of nitric oxide synthase 
produces hypothermia and depresses lipopolysaccharide fever. Am. J. Physiol 271, 
8333-8338. 

Schlicker, E., Timm, J., Zentner, J., & Gothert, M. (1997). Cannabinoid CBI receptor- 
mediated inhibition of noradrenaline release in the human and guinea-pig hippocampus. 
Naunyn Schmiedebergs Arch. Pharmacol. 356,583-589. 

Schmid, H. H., Schmid, P. C., & Natarajan, V. (1996). The N-acylation- 
phosphodiesterase pathway and cell signalling. Chem. Phys. Lipids 80,133-142. 

Schneider, U., Leweke, F. M., Mueller-Vahl, K. R., & Emrich, H. M. (1998). 
Cannabinoid/anandamide system and schizophrenia: is there evidence for association? 
Pharmacopsychiatry 31 Suppl 2,110-113. 

Schwartz, J. H. & Kandel, E. R. (1991) Synaptic transmission mediated by second 
messengers. In Kandel, E. R., Schwartz, J. H. & Jesse!, T. M. (eds), Principles of neural 
science. Elsevier Science Publishing, New York. pp. 173-193. 

Schweitzer, P. (2000). Cannabinoids decrease the K(+) M-current in hippocampal CA] 

neurons. J. Neurosci. 20,51-58. 

Schwenk, F., Baron, U., & Rajewsky, K. (1995). A cre-transgenic mouse strain for the 
ubiquitous deletion of loxP- flanked gene segments including deletion in germ cells. 
Nucleic Acids Res. 23,5080-5081. 

Senatorov, V. V., Trudeau, V. L., & Hu, B. (1997). Expression of cholecystokinin 
messenger RNA in reciprocally-connected auditory thalamus and cortex in the rat. 
Neuroscience 79.915-921. 

Sevcik, J. & Masek, K. (2000). Potential role of cannabinoids in Parkinson's disease [In 
Process Citation]. Drugs Aging 16,391-395. 



177 

Shen, M., Piser, T. M., Seybold, V. S., & Thayer, S. A. (1996). Cannabinoid receptor 
agonists inhibit glutamatergic synaptic transmission in rat hippocampal cultures. J. 
Neurosci. 16,4322-4334. 

Shire, D., Calandra, B., Bouaboula, M., Barth, F., Rinaldi-Carmona, M., Casellas, P., & 
Ferrara, P. (1999). Cannabinoid receptor interactions with the antagonists SR 141716A 
and SR 144528. Life Sci. 65,627-635. 

Shire, D., Carillon, C., Kaghad, M., Calandra, B., Rinaldi-Carmona, M., Le Fur, G., 
Caput, D., & Ferrara, P. (1995). An amino-terminal variant of the central cannabinoid 
receptor resulting from alternative splicing. J. Biol. Chem. 270,3726-3731. 

Silva, A. J., Paylor, R., Wehner, J. M., & Tonegawa, S. (1992). Impaired spatial learning 
in alpha-calcium-calmodulin kinase II mutant mice . Science 257,206-211. 

Silva, A. J., Kogan, J. H., Frankland, P. W., & Kida, S. (1998). CREB and memory. Annu. 
Rev. Neurosci. 21,127-148. 

Sim, L. J., Selley, D. E., & Childers, S. R. (1995). In vitro autoradiography of receptor- 
activated G proteins in rat brain by agonist-stimulated guanylyl 5'-[gamma-[35S]thio]- 
triphosphate binding. Proc. Natl. Acad. Sci. U. S. A 92,7242-7246. 

Simon, E. (1998). Nitric oxide as a peripheral and central mediator in temperature 
regulation. Amino. Acids 14,87-93. 

Sinor, A. D., Irvin, S. M., & Greenberg, D. A. (2000). Endocannabinoids protect cerebral 
cortical neurons from in vitro ischemia in rats. Neurosci. Lett. 278,157-160. 

Skaper, S. D., Buriani, A., Dal Toso, R., Petrelli, L., Romanello, S., Facci, L., & Leon, 
A. (1996). The ALIAmide palmitoylethanolamide and cannabinoids, but not anandamide, 
are protective in a delayed postglutamate paradigm of excitotoxic death in cerebellar 
granule neurons. Proc. Natl. Acad. Sci. U. S. A. 93,3984-3989. 

Smith, F. L., Cichewicz, D., Martin, Z. L., & Welch, S. P. (1998). The enhancement of 
morphine antinociception in mice by delta9- tetrahydrocannabinol. Pharmacol. Biochem. 
Behav. 60,559-566. 

Smith, P. B., Compton, D. R., Welch, S. P., Razdan, R. K., Mechoulam, R., & Martin, 
B. R. (1994). The pharmacological activity of anandamide, a putative endogenous 
cannabinoid, in mice. J. Pharmacol. Exp. Ther. 270,219-227. 

Soriano, E., Nitsch, R., & Frotscher, M. (1990). Axo-axonic chandelier cells in the rat 
fascia dentata: Golgi-electron microscopy and immunocytochemical studies. J. Comp 

Neurol. 293,1-25. 

Spina, E., Trovati, A., Parolaro, D., & Giagnoni, G. (1998). A role of nitric oxide in 

WIN 55,212-2 tolerance in mice. Eur. J. Pharmacol. 343,157-163. 

Stein, E. A., Fuller, S. A., Edgemond, W. S., & Campbell, W. B. (1996). Physiological and 
behavioural effects of the endogenous cannabinoid, arachidonylethanolamide 
(anandamide), in the rat. Br. J. Pharmacol. 119,107-114. 

Steiner, H., Bonner. T. I., Zimmer, A. M.. Kitai, S. T., & Zimmer, A. (1999). Altered gene 

expression in striatal projection neurons in CBI cannabinoid receptor knockout mice 
Proc. Natl. Acad. Sci. U. S. A 96,5786-5790. 



178 

Stella, N., Schweitzer, P., & Piomelli, D. (1997). A second endogenous cannabinoid that 
modulates long-term potentiation. Nature 388,773-778. 

Stellar, J. S. & Rice, M. B. (1989) Pharmacological basis of intracranial self- stimulation 
reward. In Liebman, J. M. & Cooper, S. J. (eds), The neuropharmacological basis of 
reward. Claredon Press, Oxford. pp. 14-65. 

Sternberg, N. & Hamilton, D. (1981). Bacteriophage P1 site-specific recombination. I. 
Recombination between loxP sites. J. Mol. Biol. 150,467-486. 

Sugiura, T., Kondo, S., Sukagawa, A., Nakane, S., Shinoda, A., Itoh, K., Yamashita, A., 
& Waku, K. (1995). 2-Arachidonoylglycerol: a possible endogenous cannabinoid 
receptor ligand in brain. Biochem. Biophys. Res. Commun. 215,89-97. 

Sugiura, T., Kondo, S., Sukagawa, A., Tonegawa, T., Nakane, S., Yamashita, A., 
Ishima, Y., & Waku, K. (1996). Transacylase-mediated and phosphodiesterase-mediated 
synthesis of N- arachidonoylethanolamine, an endogenous cannabinoid-receptor ligand, 
in rat brain microsomes. Comparison with synthesis from free arachidonic acid and 
ethanolamine. Eur. J. Biochem. 240,53-62. 

Sulcova, E., Mechoulam, R., & Fride, E. (1998). Biphasic effects of anandamide. 
Pharmacol. Biochem. Behav. 59,347-352. 

Suzuki, W. A. (1996). The anatomy, physiology and functions of the perirhinal cortex. 
Curr. Opin. Neurobiol. 6,179-186. 

Takahashi, R. N. & Singer, G. (1980). Effects of body weight levels on cannabis self- 
injection. Pharmacol. Biochem. Behav. 13,877-881. 

Takahashi, T. & Momiyama, A. (1993). Different types of calcium channels mediate 
central synaptic transmission. Nature 366,156-158. 

Tanda, G., Pontieri, F. E., & Di Chiara, G. (1997). Cannabinoid and heroin activation of 
mesolimbic dopamine transmission by a common mul opioid receptor mechanism 
Science 276,2048-2050. 

Terranova, J. P., Michaud, J. C., Le Fur, G., & Soubrie, P. (1995). Inhibition of long-term 

potentiation in rat hippocampal slices by anandamide and WIN55212-2: reversal by 
SR141716 A, a selective antagonist of CB1 cannabinoid receptors. Naunyn 
Schmiedebergs Arch. Pharmacol. 352,576-579. 

Terranova, J. P., Storme, J. J., Lafon, N., Perio, A., Rinaldi-Carmona, M., Le Fur, G., & 
Soubrie, P. (1996). Improvement of memory in rodents by the selective CB 1 cannabinoid 
receptor antagonist, SR 141716. Psychopharmacology (Berl) 126,165-172. 

Thomas, E. A., Cravatt, B. F., Danielson, P. E., Gilula, N. B., & Sutcliffe, J. G. (1997). 
Fatty acid amide hydrolase, the degradative enzyme for anandamide and oleamide, has 

selective distribution in neurons within the rat central nervous system. J. Neurosci. Res. 
50,1047-1052. 

Thomas, K. R. & Capecchi, M. R. (1987). Site-directed mutagenesis by gene targeting in 

mouse embryo-derived stem cells. Cell 51,503-512. 

Thorat, S. N. & Bhargava, H. N. (1994). Effects of NMDA receptor blockade and nitric 

oxide synthase inhibition on the acute and chronic actions of delta 9- 

tetrahydrocannabinol in mice. Brain Res. 667,77-82. 



179 

Tölle, T. R., Berthele, A., Schadrack, J., & Zieglgänsberger, W. (1996). Involvement of 
glutamatergic neurotransmission and protein kinase C in spinal plasticity and the 
development of chronic pain. Prog. Brain Res. 110,193-206. 

Tonner, P. H., Scholz, J., Lamberz, L., Schlamp, N., & Schulte am, E. J. (1997). 
Inhibition of nitric oxide synthase decreases anesthetic requirements of intravenous 
anesthetics in Xenopus laevis. Anesthesiology 87,1479-1485. 

Torres, R. M. & Kühn, R. (eds) (1997) Laboratory protocols for conditional gene 
targeting. Oxford University Press, Oxford. 

Toth, K. & Freund, T. F. (1992). Calbindin D28k-containing nonpyramidal cells in the rat 
hippocampus: their immunoreactivity for GABA and projection to the medial septum. 
Neuroscience 49,793-805. 

Trojniar, W. & Wise, R. A. (1991). Facilitory effect of delta 9-tetrahydrocannabinol on 
hypothalamically induced feeding. Psychopharmacology (Berl) 103,172-176. 

Tsien, J. Z., Chen, D. F., Gerber, D., Tom, C., Mercer, E. H., Anderson, D. J., Mayford, 
M., Kandel, E. R., & Tonegawa, S. (1996). Subre. Cell 87,1317-1326. 

Tsou, K., Brown, S., Safludo-Pefia, M. C., Mackie, K., & Walker, J. M. (1998a). 
Immunohistochemical distribution of cannabinoid CB 1 receptors in the rat central 
nervous system. Neuroscience 83,393-411. 

Tsou, K., Nogueron, M. I., Muthian, S., Sanudo-Pena, M. C., Hillard, C. J., Deutsch, 
D. G., & Walker, J. M. (1998b). Fatty acid amide hydrolase is located preferentially in 
large neurons in the rat central nervous system as revealed by immunohistochemistry. 
Neurosci. Lett. 254,137-140. 

Tsou, K., Mackie, K., Sanudo-Pena, M. C., & Walker, J. M. (1999). Cannabinoid CBI 
receptors are localized primarily on cholecystokinin- containing GABAergic interneurons 
in the rat hippocampal formation. Neuroscience 93,969-975. 

Ueda, H., Kobayashi, T., Kishimoto, M., Tsutsumi, T., & Okuyama, H. (1993). A 

possible pathway of phosphoinositide metabolism through EDTA- insensitive 

phospholipase Al followed by lysophosphoinositide-specific phospholipase C in rat 
brain. J. Neurochem. 61,1874-1881. 

Valverde, 0., Ledent, C., Beslot, F., Parmentier, M., & Roques, B. P. (2000). Reduction 

of stress-induced analgesia but not of exogenous opioid effects in mice lacking CB 1 

receptors. Eur. J. Neurosci. 12,533-539. 

Vasquez, C. & Lewis, D. L. (1999). The CBI cannabinoid receptor can sequester G- 

proteins, making them unavailable to couple to other receptors. J. Neurosci. 19,9271- 
9280. 

Waksman, Y., Olson, J. M., Carlisle, S. J., & Cabral, G. A. (1999). The central 
cannabinoid receptor (CB 1) mediates inhibition of nitric oxide production by rat 
microglial cells. J. Pharmacol. Exp. Ther. 288,1357-1366. 

Walker, J. M., Huang, S. M., Strangman, N. M., Tsou, K., & Sanudo-Pena, M. C. (1999). 
Pain modulation by release of the endogenous cannabinoid anandamide. Proc. Natl. 
Acad. Sci. U. S. A 96,12198-12203. 



180 

Wang, S., Wang, W., Wesley, R. A., & Danner, R. L. (1999). A Sp 1 binding site of the 
tumor necrosis factor alpha promoter functions as a nitric oxide response element. J. 
Biol. Chem. 274,33190-33193. 

Weiner, D. M., Levey, A. I., Sunahara, R. K., Niznik, H. B., O'Dowd, B. F., Seeman, P., & 
Brann, M. R. (1991). DI and D2 dopamine receptor mRNA in rat brain. Proc. Natl. 
Acad. Sci. U. S. A 88,1859-1863. 

Welch, S. P., Dunlow, L. D., Patrick, G. S., & Razdan, R. K. (1995). Characterization of 
ananda. J. Pharmacol. Exp. Ther. 273,1235-1244. 

Westlake, T. M., Howlett, A. C., Bonner, T. I., Matsuda, L. A., & Herkenham, M. (1994). 
Cannabinoid receptor binding and messenger RNA expression in human brain: an in vitro 
receptor autoradiography and in situ hybridization histochemistry study of normal aged 
and Alzheimer's brains. Neuroscience 63,637-652. 

Wheeler, D. B., Randall, A., & Tsien, R. W. (1994). Roles of N-type and Q-type Ca2+ 
channels in supporting hippocampal synaptic transmission. Science 264,107-111. 

Zhuang, S., Kittler, J., Grigorenko, E. V., Kirby, M. T., Sim, L. J., Hampson, R. E., 
Childers, S. R., & Deadwyler, S. A. (1998). Effects of long-term exposure to delta9-THC 
on expression of cannabinoid receptor (CB 1) mRNA in different rat brain regions. Brain 
Res. Mol. Brain Res. 62,141-149. 

Zieglgänsberger, W. & Tölle, T. R. (1993). The pharmacology of pain signalling. Curr. 
Opin. Neurobiol. 3,611-618. 

Zimmer, A., Zimmer, A. M., Hohmann, A. G., Herkenham, M., & Bonner, T. I. (1999). 
Increased mortality, hypoactivity, and hypoalgesia in cannabinoid CB 1 receptor 
knockout mice. Proc. Natl. Acad. Sci. U. S. A 96,5780-5785. 



181 

List of publications 

Marsicano G and Lutz B (1999) Expression of the cannabinoid receptor CB 1 in 

distinct neuronal subpopulations in the adult mouse forebrain. European Journal of 
Neuroscience 11(12): 4213-25. 

Azad SC, Marsicano G, Eberlein I, Putzke J, Zieglgänsberger W, Spanagel R 

and Lutz B Differential role of the nitric oxide pathway on A9-THC-induced central 

nervous system effects in mouse. European Journal of Neuroscience 13(3): 561-568. 

Pagotto U, Marsicano G, Theodoropoulou M, Grübler Y, Stalla J, Arzberger T, 

Fezza F, Milone A, Losa M, Di Marzo V, Lutz B and Stalla G K. Normal human 

pituitary gland and pituitary adenomas express cannabinoid receptor type 1 and 

synthesize endogenous cannabinoids. First evidence for a direct role of cannabinoids on 
hormone modulation at human pituitary level. In press in Journal of Clinical 

Endocrinology and Metabolism. 

Marsicano G, Moosmann B, Hermann H, Lutz B and Behl C Neuroprotective 

properties of cannabinoids in vitro: role of the cannabinoid receptor CB I. Submitted to 

Molecular Pharmacology. 

Marsicano G, Rammes G, Azad S, Zieglgänsberger W, Wotjak W and Lutz B 

CB 1-deficient mice show improved long-term potentiation in the amygdala and 

decreased extinction in amygdala-dependent memory. In preparation. 

Hermann H, Marsicano G and Lutz B Coexpression of the cannabinoid receptor 

type 1 with dopamine and serotonin receptors in distinct neuronal subpopulations of the 

adult mouse forebrain. Submitted to Neuroscience. 

* Share the first authorship. 


