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ABSTRACT 

The relative importance of habitat and landscape for chalk grassland butterflies was 

investigated among a network of chalk grassland habitat patches. Local scale habitat 

selection models were derived from analyses on a single large chalk grassland site 

(Porton Down). Landscape scale models were . then derived from species-specific local 

scale variables added to variables measured in the patch network, which included Porton 

Down as a major source site. An investigation was also carried out as to whether 

landscape scale processes were acting within Porton Down. 

Models showed that landscape scale processes may be acting within the single, large site 

for some species. However, lack of patch definition and natural variations in local 

population densities may give rise to apparent landscape scale processes within this site 

which fundamentally differ from true landscape scale processes. 

At the true landscape scale across the patch network, patch area was the most commonly 

included landscape scale variable in models, although only for five species. For one 

species, dark green fritillary Argynnis aglaja, distance from the major source site and 

average distance from other sites were of over-riding importance. For most species, local 

scale habitat and environment variables were sufficient to describe their presence or 

density among the patch network. 

Incidence Function Models were used to estimate metapopulation dynamic parameters 

for seven species, Both sensitivity to environmental stochasticity and colonisation ability 



were correlated with species' scores on canonical community analysis axes (related to 

local habitat, patch area, distance from source site and inter-patch'distance measures). 

This suggests that species conforming to conventional metapopulation models form an 

ecological continuum with those responding to local scale habitat and landscape scale 

processes in a less prescriptive fashion. 

Species groups with either restricted or widespread distributions appear to conform to a 

landscape connectivity model. Five ecologically similar species appear to be moving 

from the former to latter group across a ̀ connectivity threshold', possibly due to recent 

increases in larval food-plant availability in the wider landscape. 
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1. INTRODUCTION 

1,1 HISTORICAL OVERVIEW OF INVERTEBRATE POPULATION ECOLOGY 

The study of animal populations has tended to focus on particular academic hypotheses 

which have ebbed and flowed in importance. The first emphasis was on the tension 

between biotic and climatic factors (Uvarov 1931) followed by Nicholson's (1933) 

argument for regulation by density-dependence. In fact, this latter aspect of population 

regulation has been a central theme for zoological ecology since Andrewartha and Birch 

(1954) set it in full context. Detailed analyses of population cycles by workers such as 

Hassell and Varley (1969) and mortality (k-factor) analysis by workers such as Varley and 

Gradwell (1960) focussed down in an attempt to explain population regulation by rigorous 

descriptive statistics but, in failing to detect density-dependence, the search for population 

regulation became something of a holy grail (Cappuccino 1995). 

Since the mid-1960s, wider concepts with links to other fields of study or disciplines have 

become the most tantalizing academic areas of study. Firstly, the island biogeography 

theories of MacArthur and Wilson (1967), and subsequently, the first author's 

development of the concept of community ecology (MacArthur 1955) was picked up and 

developed by a number of leading academics (Kareiva 1989). To a large degree, it was 

these latter two areas of research which formalized the link between population dynamics 

and species' natural surroundings, or habitat. 

While some topics, such as optimal foraging behaviour theory (Krebs and McCleery 

1984), re-focussed energy on autecological research, population dynamics has itself re- 



focussed on nonequilibrium dynamics, in which local populations do not inevitably, and 

more realistically, show a trend towards stable population levels (Murdoch 1994). 

1.2 CURRENT THEORETICAL APPROACHES TO INVERTEBRATE POPULATION 

ECOLOGY 

1.2.1 Patterns in Time series 

Time series data have often provided the largest data sets for population analysis. 

However, the statistical means for deriving information from these data have only 

relatively recently been developed. Comparison between modelled and observed time 

series is one of the most common methods of analysis. Population regulation can also be 

revealed by calculating the cumulative variance of natural populations (Murdoch and 

Walde 1989), where regulated ('bounded') populations show a stabilizing cumulative 

variance. Population cycles and even chaotic behaviour can be incorporated in this method 

(Murdoch 1994). 

Comparative approaches looking at the relationship between organismal traits such as r- 

and k-selected tendencies (Southwood 1981), generalists versus specialists (Watt 1964) 

and tendency to aggregate (Root and Cappuccino 1992) have all shown to have some 

bearing on the degree and boundedness of invertebrate population levels over time. For 

butterflies, analysis of long-term trends has been restricted comparisons across 

`experimental blocks' such as relative changes within wood white Leptidea sinapsis 

populations due to changes in ride habitat (Warren 1985). 



1.2.2 Other Factors Driving Population Change 

1.2.2.1 Predation and Parasitism 

Predation and parasitism are clearly very important factors and have been intensively 

studied in invertebrates (Hassell 1976). In butterflies, anti-predator mechanisms through 

camouflage and chemical defences are well known (Brakefield et al 1992). Parasitism, 

through predation by parasitoids, is a common and well studied mechanism in insects 

(Cappuccino 1995). The levels of parasitism observed in butterflies appears to be 

generally low in most years (Warren 1992), but is now known to be an important driver of 

metapopulation dynamics in some (e. g. marsh fritillary, Porter 1983) and wider population 

cycles (e. g. Holly blue Celastrina argiolus). Avoidance of parasitoids has been shown to 

influence habitat selection by ovipositing females (Shaw 1977) and probably has wider, 

but as yet, unknown consequences on butterfly distributions (Porter et al 1992). 

1.2.2.2 Dispersal 

Dispersal has recently been recognized as arguably the single most important mechanism 

influencing invertebrate population size and stability (Denno and Peterson 1995). 

Dispersal as migration is a central tenet in metapopulation theory (see Section 1.2.3) in 

that colonization rates are intimately dependent on migration rates (Hanski and Kuussaari 

1995). Hanski (1999) lists five local factors which are also likely to affect an invertebrates 

decision to migrate: inbreeding avoidance, sibling competition, resource competition (at 

high population density), conspecific attraction (at low population density) and escape 

from imminent extinction. 



1.2.2.3 Disease 

Disease is a major factor in determining population levels and has been shown to drive the 

cyclic dynamics of forest lepidoptera (Anderson and May 1980). There is not much 

evidence that disease plays a major part in regulating temperate butterfly populations 

except when species which can feed on commercial crops reach pest proportions. Warren 

(1992) felt that a large proportion of recorded deaths due to predation in life-table studies 

could actually be attributable to already diseased animals. 

1.2.2.4 Maternal Effects 

The `quality' of the individual and therefore collectively the population, may be 

influenced by the environment of the previous generation. Such a time-lag effect is known 

to cause fluctuations in population growth (May 1974) and has been termed the maternal 

effect (Rossiter 1995). Rossiter (1995) has documented five Lepidoptera genera (all 

moths) where the maternal effect has been recorded, with the best data on the gypsy moth 

Lymantria dispar. In this species, food quality has an immediate effect on the current 

generation and effects both the ability of survival to reproductive age and fecundity of the 

subsequent offspring. There is no reason to believe that the maternal effect is not strong 

among butterfly species, particularly as most are more specialized than the generally 

polyphagous moths. 
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1.2.3 Metapopulation Dynamics 

The term metapopulation describes a set of local populations that persist in a balance 

between stochastic local extinctions and establishment of new local populations (Hanski 

and Gilpin 1991). The concept of a `metapopulation' was introduced three decades ago 

(Levins 1970), but linking the concept to models of metapopulation dynamics is a 

comparatively new area of work. Hanski (1999) lists twelve types of ecological 

observation which are evidence that metapopulation processes are active in dynamic 

population ecology. They are: 

" Population size or density is significantly affected by migration. 

" Population density is affected by patch area and isolation. 

" Asynchronous local dynamics make simultaneous extinctions unlikely. 

" Population turnover (extinction and re-colonization) is a relatively common 

occurrence. 

" Apparently suitable habitat is often empty. 

" Metapopulations persist despite population turnover. 

" Extinction risk is related to patch area. 

" Colonization rate is related to patch isolation. 

" Patch occupancy is related to patch area and isolation. 

" Spatially realistic metapopulation models are robust predictors of metapopulation 

dynamics in any given fragmented landscape. 

" Competitors can coexist in dynamic metapopulations. 

" Predators and prey can coexist in dynamic metapopulation. 



Despite the apparently exacting list of conditions above, metapopulation dynamic models 

have been constructed and tested for a number of species including the northern spotted 

owl Strix occidentalis caurina (Lande 1988), the Eurasian red squirrel Sciurus vulgaris 

(Andren and Delin 1994) the silver-spotted skipper Hesperia comma (Thomas and Jones 

1993) and the seminal work on the Glanville fritillary Melitaea cinxia by Hanski and his 

co-workers (Hanski et al 1994; Hanski et al 1995). 

1.3 COMMUNITIES 

Despite the fact that butterfly species clearly live together in intimate proximity, there is 

very little evidence that these are true species associations such as can be found in the 

constant groupings of plants (Rodwell 1991 et seq. ). Classification of `communities' is 

difficult for butterflies due to constant species changes. These appear to be due to 

associations with vegetation succession and land-use changes rather than species-species 

interactions (Porter et al 1992). 

Intraspecific interactions have been observed in many species. The classic example is the 

territorial flight behaviour of speckled wood Pararge aegeria (Davies 1978). There may 

also be competition between adults and larvae for food-plants, which has resulted in 

cannibalism among orange tip Anthocaris cardamines larvae (Courtney 1980). 

Interspecific interactions can be largely explained by non-competitive factors (Strong et al 

1984). For example, most larvae competing for food are affected by reductions in food 

quality and the need to find alternative resources. There is therefore no clear evidence for 

competitive exclusion (Hutchinson 1959) in British butterflies, but compelling evidence 

was seen in North America when the European small white Pieris rapae was introduced 



triggering a subsequent decline in the local race of green-veined white Pieris napi which 

feeds on the same larval food-plant (Shapiro 1975). 

Resource partitioning is the final type of community interaction relevant to butterflies and 

this is discussed in Section 1.4 below. 

1.4 HABITAT SELECTION 

Owen (1959) and Gilbert and Singer (1975) listed five major niche differences among 

British butterflies: 

1. Larval food (host) plant; 

2. Part of host plant used; 

3. Phenology and voltinism; 

4. Parasite and predator escape mechanisms and behaviour; and 

5. Habitat and flowers (nectar sources) visited by adults. 

This could have been extended to most, if not all phytophagous insect groups. 

Despite this early marker, insect and typically, butterfly habitat requirement studies have 

historically been largely confined to host food-plant selection in population dynamic 

studies (see for example Solbreck 1995). Few studies of butterflies have implicitly studied 

species-specific habitat selection in the wider sense, where the larval food-plant is set in 

the context of underlying geology and surrounding plant communities and associated 



structural elements. Warren's (1995) description of high brown fritillary Argynnis adippe 

habitat selection is one of only a few to do so. 

Porter et al (1992) described partitioning by habitat in closely related butterflies and 

extended the concept by drawing on descriptive work for chalk grassland butterfly 

"preferred turf height" given in the Butterflies Under Threat Team report (BUTT 1986). 

This neatly showed that very few species occupying this habitat have a shared mid-range 

of preferred turf (sward) height, despite using different ranges of larval food-plants and 

nectar sources and therefore possessing low niche overlap values for these. The preferred 

turf heights are reproduced in Figure 1.1. 

Porter et al (1992) also described relationships between butterflies and plants that impinge 

on habitat partitioning and species' habitat selection such as chemical defences (against 

larval `predation'), physical defences (such as thick cuticles and spines), pollination 

mechanisms and butterfly-host plant coevolution. 

It was J. Thomas (1993) who first pointed out that many British species occupy early 

successional stages of vegetation. He showed that ten species, including chalk grassland 

specialists such as adonis blue Lysandra bellargus and silver-spotted skipper Hesperia 

comma, occupied very narrow and ephemeral niches, breeding near the ground in the 

earliest habitat seral stages. He suggested that these species were relicts from previous 

climatically warmer eras and would have become extinct if man had not produced the 

widespread early seral stage habitats. 
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Figure 1.1: Preferred turf heights for British grassland butterflies. (From BUTT 1986). 

Species Turf Height (cm) 

0.5 123456789 10 15 20 30 >30 

Adonis blue ""--'-"-- 

Si. sp. skip ----- ' 
Chalkhill bl. ----------- --------------- 
Si-stud. bl. 

Brown arg. 
Common bl. --------------------- 
Dingy sk. 
Grayling 

Grizzled sk. 
Small hth. 

Small cop(1) ---------------------- 
Small cop(2) 
Wall 

Small blue ---------- 

Meadow br. ---------- --------- 
Green hstk. 

Marsh frit. 

Marbled wh. 
Dk. gr. frit. --------------- 
Hedge br. .. _,., ý.., 
Large skip. 
Duke of B. 

Ringlet 

Small skip. 
Essex skip. 
Lulworth sk. 

9 



C. Thomas (1995) pointed out that many British butterflies breed in successional or 

plagioclimactic vegetation, Good examples are three woodland fritillaries, the heath 

Mellicta athalia, small pearl-bordered Boloria selene and pearl-bordered fritillary Boloria 

euphrosyne, all of whom occupy woodland habitats for the first few years of succession 

after canopy clearance (Warren and Thomas 1992). The silver-studded blue Plebejus 

argus, is known to occupy relatively short stages (5-10 years) of early succession on 

heathland (Thomas and Harrison 1992). Grasslands are often a complicated mosaic of 

successional patches and semi-natural chalk grasslands are a good example of this, with 

short turf on thin skeletal soils on slopes, taller turf, usually consisting of different 

vegetation communities on deeper loams (Rodwell 1992), together with scrub and track 

edges. Erhardt (1985) showed that early successional stages of abandoned sub-alpine 

meadow grasslands in Switzerland had the highest butterfly diversity. Similar studies in 

woodland have shown a high degree of correlation between butterfly diversity and 

physical and vegetation species components (Porter et al 1992 using data from Peachey 

1980). This butterfly-plant diversity correlation is mirrored at the species level where 

some species require a number of different host-plants in different seasons, such as holly 

blue Celastrina argiolus, or even at different stages of larval development such as marbled 

white Melanargia galathea (BUTT 1986). 

Thomas and Jones (1993) showed how habitat heterogeneity was important to silver- 

spotted skipper survival, where, in drought years, the butterfly was able to utilize more 

sheltered areas with longer swards to enable the population to persist. This need for 

resource heterogeneity was also shown by Carey (1994) who showed that egg densities of 

the silvery blue butterfly Glaucopsyche lygdamus in Colorado were correlated only with 

measures of total host-plant diversity and not with any single host-plant species. This 
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butterfly's larval host-plants were all ephemeral and in young growth stages and therefore 

extremely vulnerable to drought and late frosts. An adaptation to wider host-plant niches is 

clearly necessary for population persistence in poor years for any one, or groups of, host- 

plant species. Habitat heterogeneity has been shown to (negatively) correlate strongly with 

population variability in other insect groups such as Orthoptera (Kindvall 1996). 

Much of the modern debate and theory on metapopulation dynamics has assumed that 

patch networks consist of individual patches, which vary in size and inter-patch distance 

but not necessarily quality of habitat. Hanski (1999 after Gyllenberg and Hanski 1997) 

discusses patch quality as an adjunct to the rescue effect (Section 1.5) as a factor which is 

likely to affect the relationship between the fraction of empty patches and the amount of 

suitable habitat. He showed that as habitat destruction is associated with a decrease in 

remaining habitat quality, the fraction of empty patches at equilibrium should also 

increase. The quality of the empty patches becomes even more important for 

metapopulation growth (Nee 1994). However, intra-patch habitat quality is a very difficult 

variable to build into the metapopulation models and despite formulating habitat quality 

effects on isolation and long-term probability of patch occupancy (Moilanen and Hanski 

1998), it has been excluded from the core Incidence Function Model (Moilanen pers. 

comm. ). 

1.5 HABITAT FRAGMENTATION 

Habitat fragmentation is distinct from habitat loss in that the former is defined as the 

remaining habitat of fixed total area is located in increasingly smaller and more isolated 

discrete patches or fragments (Hanski 1999) between which habitat loss is occurring. 
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Habitat fragmentation affects the connectivity between patches, which is a major area of 

investigation in metapopulation studies, but there is also an increase in relative amount of 

habitat edge which may become a major factor to local populations (Harris 1988; Mills 

1995). 

Habitat fragmentation is a fundamental property of metapopulation ecology and is 

intimately linked with the effect of patch isolation on colonization (Hanski 1999). 

Hanski (1999) suggests that in the early stages of habitat destruction, while remaining 

habitat is still well connected, populations are primarily affected by habitat loss. At this 

time, population sizes are related to the total area of remaining habitat. As habitat 

destruction continues, connectivity between remaining patches is reduced, compounding 

the effect of habitat loss, until at around 50 per cent loss, the total effect suddenly 

increases exponentially (Bascompte and Sole 1996). In practice, the effect appears to be 

delayed until the proportion of habitat loss is higher due to migration across unsuitable 

habitat and non-equal spatial loss of habitat (Andren 1994). 

Levins (1969 and 1970) was the first to provide a realistic metapopulation model which 

showed that metapopulation persistence is a stochastic balance between local extinctions 

and recolonizations of empty habitat patches. The model is described by: 

dP=cP(1-P)-eP 
dt 

where P(t) is the fraction of patches occupied at time t, and c and e are colonization and 

extinction rates respectively, 
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The model does however describe a deterministic rate of change (although based on 

stochastic local extinctions), assumes an infinite number of habitat patches and that 

colonization is not affected by distance. Modification of the original model by 

parameterization of the habitat loss (May 1991; Nee and May 1992; Lawton et al 1994 and 

Nee 1994), has led to the realisation that a simplified rule, the `Levins rule' (Hanski 1996) 

can be applied. This states that "A sufficient condition for metapopulation survival is that 

the remaining number of habitat patches following a reduction in patch number exceeds 

the number of empty but suitable patches prior to patch destruction". However, 

applicability of this rule appears mixed for a number of reasons, one of which is the very 

important rescue effect (Brown and Kodric-Brown 1977), which, in metapopulations with 

a mainland-island structure, is simply the effect of constant migration from the mainland 

to the islands which reduces the risk of extinction termed a `pseudo-rescue' effect by 

Hanski (1999). In non mainland-island situations, however, the effect is more diffuse, with 

local interactions varying according to local population sizes, patch size and inter-patch 

distances. 

1.6 PATCH AREA 

Patch area is the second fundamental property of metapopulation ecology (together with 

patch isolation) and is intimately linked with extinction rates (Hanski 1999). Patch area 

and isolation have been termed the first-order landscape effects on population biology 

(Hanski 1999). 

The relationship between patch area and time to extinction for a local population becomes 

steeper (greater time to extinction for a smaller patch area), where populations are exposed 
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to weaker environmental stochasticity. There are various possible reasons for this 

relationship. One is that as patches get larger, the carrying capacity (k) of the population 

increases and the effect of environmental stochasticity is reduced. In addition, larger 

patches also exhibit a greater variety of habitats which hold important secondary resources 

when environmental conditions produce stress on primary resources (Ehrlich and Murphy 

1987). The relationship is summarized in Figure 1.2 (adapted from Figure 2.5a in Hanski 

1999). These two effects may have different influences on small (carrying capacity) and 

large (habitat heterogeneity) populations. Indeed, the species-area curve which is such a 

widespread phenomenon in community ecology (MacArthur and Wilson 1967), may 

actually be a `reverse function' of the extinction-area effect (Hanski 1999). 

These relationships are fundamental to the role of habitat patches as ̀ source and sink' 

habitats. These terms relate to those patches which contain populations which contain 

source (where intrinsic rate of increase r> 0) or sink (intrinsic rate of increase r< 0) 

populations and are therefore net contributors to or users of metapopulations. In some 

circumstances, populations exist where deaths exceed births at equilibrium and decline to 

a new equilibrium level rather than extinction due to the presence of other populations. 

Habitat patches containing such populations have been termed 'pseudo-sinks' Watkinson 

and Sutherland 1995). 

A classic British example of a species existing in source-sink metapopulations is the marsh 

fritillary Eurodryas aurinia. Metapopulations have consisted of a number of persistent 

local populations interspersed with highly variable local populations in apparently poor 

quality habitat (Warren 1994). Many of the latter go extinct for short periods, obviously 

re-colonizing from the persistent (source) populations in good years. 
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Figure 1.2: Relationship between time to metapopulation extinction and population ceiling 

or patch area. 
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1.7 POPULATIONS AND METAPOPULATIONS IN A LANDSCAPE CONTEXT 

The theoretical approach to populations and metapopulations discussed in the previous 

sections views local population dynamics as being density-dependant within patches and 

more or less asynchronous between patches. If migration rates between patches are 

relatively large in relation to inter-patch distance, then local patch population dynamics 

can begin to mix together and behave as a single large local population. 
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Wiens (1997) gave a resume from a landscape ecology point of view, pointing out that 

patch occupancy, size and shape all vary and that making spatially explicit metapopulation 

models is a necessary process but is not sufficient to fully describe dynamics in a 

landscape context. He further demonstrated that the more realistic model is a complex 

mosaic of inter-patch habitats which include corridors and boundaries and that therefore 

inter-patch distances are not Euclidian but a complex function of boundary permeabilities 

and relative patch `viscosities' to a migrating organism. He added that other aspects of 

metapopulation structure, including dynamics of the patches themselves (and therefore 

patch extinction probability), must be influenced by landscape structure. 

Much of the empirical evidence to support Wiens' view comes from the non-linear effects 

of scale on populations at a landscape scale. For example, if continuous habitat is 

fragmented, initial effects are due to the loss of habitat alone. As loss continues, a 

threshold is reached where the effect of patch isolation becomes more important and 

increasing fragmentation accelerates the inter-patch distances and therefore isolation. This 

has been shown to be the case for both birds and mammals (Andren 1994) and is 

summarized in Figure 1.3. 

From a landscape ecologist's point of view, the recent emphasis on spatially explicit 

metapopulation modelling need a shift of scale from movements and patches defined by 

individual home ranges to broader scale movements of populations combined with a scale 

of patchiness modelled from interactions within a local population. One of the best 

examples of the over-simplification of `landscape' measurement is probably the classic 

species-area curve in Island Biogeography Theory (MacArthur and Wilson 1967). The 

scatter of points above the line have been interpreted as ̀ supersaturation' of species while 
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those below the line have been interpreted as the result of disturbance and extreme 

isolation. The scatter is much more likely to be at least partly a combined effect of 

connectivity, patch context and edge conditions (Wiens 1989). 

Figure 1.3: The hypothetical relationship between the proportion of suitable habitat in a 

landscape and the relative importance of habitat loss and patch isolation to individual 

movement or population dynamics. Vagility is a measure of mobility across the landscape 

elements and effects the position of the connectivity threshold. (From Wiens 1997). 
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1.8 AIMS OF THE RESEARCH 

The overall aim of the current research project is to investigate the relative importance of 

landscape and habitat for chalk grassland butterflies both at the `local' scale (i. e. within 

habitat blocks), and at the landscape scale (i. e. among habitat patches). 

This is to be done by the following steps: 

1. Species analysis 

a) Describe species' habitat selection and resource needs within a single, contiguous 

large chalk grassland site where landscape scale processes are assumed to be 

minimised; 

b) Carry forward the local scale models from above to incorporate in a landscape 

scale analysis of fragmented patches of chalk grassland in an agricultural/forested 

landscape; 

c) Additionally use the local scale models in an intermediate scale analysis among 

less well defined habitat patches within the single, contiguous large patch of chalk 

grassland. 

Use independent sites (or sub-sites), to test between-site and between-year predictive 

power of models constructed in each of the three analyses above. 

2. Community analysis 

To determine species' relationships as described by their positions along 

environmental gradients which may be combinations of habitat, environmental or 

landscape factors. 

3. For a selected number of species, to model parameters relating to metapopulation 

processes. 
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4. To relate results from each of these processes to current knowledge of chalk grassland 

butterfly population ecology and to investigate whether methods and results can be 

used to aid a simplified approach to the study of butterfly population processes and to 

aid nature conservation planning at the local and landscape scales. 

Small heath 

Picture: Simon Coombes 
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2. METHODS 

2.1 STUDY AREA 

The study area encompassed a series of calcareous grassland patches south of Salisbury 

Plain on the Wiltshire/Hampshire border in southern England. The sites were located in an 

area of approximately 160 km2 bounded by Porton Down to the north, the broad valley of 

the River Avon to the west, the acid soils and heaths of the New Forest to the south and 

intensive farmland to the east, The relative location of Porton Down and the other sites, 

referred to as the Fragmented Sites in this study, are shown in Figure 2.1. The full list of 

site names, Ordnance Survey grid location patch area and codes to locations in Figure 2.1 

are shown in Table 2.1. 

A single, large patch of calcareous grassland formed the northern boundary of the suite of 

study sites. This site, Porton Down, is owned by the Defence Evaluation and Research 

Agency (DERA), an agency of the Ministry of Defence (MoD), and has been used for 

chemical weapons and defence experimentation since the Government acquired the area in 

1918. The DERA estate at Porton Down totals 2773 ha of which approximately 1700 ha is 

calcareous and mesotrophic grassland. The highest quality grassland makes up the majority 

of 1227 ha which have been designated Site of Special Scientific Interest (SSSI), Special 

Protection Area (SPA) and proposed Special Area of Conservation (pSAC), the latter 

together with Salisbury Plain and Parsonage Down. The DERA/MoD describe Porton 

Down as their "jewel in the crown" as it is rich in biodiversity. 
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Figure 2.1: Map showing location of Porton Down and Fragmented Sites relative to major 

regional features. 
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It is the second largest remaining tract of calcareous grassland in Britain, has 46 recorded 

species of butterfly (the highest of any site in Britain), regularly hosts 12 per cent of the 

UK's breeding stone curlew Burhinus oedicnemus population, holds sixteen species of 

orchid and over 700 species of macrofungi and is home to some three million yellow 

meadow ant Lasius flavus nests containing some 35 billion ants (Porton Down 
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Conservation Group Site Dossier). In addition, the area has an extremely important suite of 

Neolithic and Bronze Age archaeological remains. Although much of the site has been 
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shallow ploughed in the last few centuries (Wells et al 1976), the lack of modern 

agricultural disturbance and the recolonisation potential of the core, undisturbed areas, has 

ensured the conservation of this unique ecological resource. 

Partly in recognition of the site's ecological importance, Porton Down became the UK's 

tenth terrestrial Environmental Change Network (ECN) site in 1994. The ECN is the UK's 

foremost integrated environmental monitoring network sponsored by participating 

organisations and co-ordinated by CEH Merlewood (Sykes and Lane 1996). This study 

draws on some of the data collected for the ECN by the author who was ECN Site 

Manager during the period February 1994 to February 2000. 

The Fragmented Sites were located from previous work or by searching the area (see 

Section 2.3.2). `Quality' and type of calcareous grassland within each site was very varied 

and ranged from highly managed SSSIs such as Broughton Down to the many rank, 

ungrazed smaller patches in the network. Permission for access to these sites was obtained 

during the winter of 1995-1996. 

Battery Hill (Porton Down) and surrounding farmland 

ý�ý ý- -- 
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Table 2.1: Site names, Ordnance Survey grid location, patch area and map code 

Name Central OS grid reference Area Map Code 

Porton Down SU24003640 1942.00 A 

Pheasant Field: 

NW Corner SU22903495 1.28 B 

Long Strip SU23053500 0.15 C 

Double Tumulus SU23133495 0.25 D 

Field @ Gate 13 SU22923472 0.32 E 

S of Winterslow. Firs SU22443475 0.75 F 

Winterslow Firs SU21983458 4.60 G 

Area @ Gate 14/15 SU20323369 0.30 H 

Figsbury Ring SU18883385 12.30 I 

Thorney Down Tip SU21323437 1.50 J 

Jowett's Clump SU22053390 0.69 K. 

Gutteridge's Farm SU24463438 2.15 L 

Lopcombe Corner SU25003503 0.30 M 

Bracknell Croft SSSI SU18103308 3.50 N 

Cockey/Laverstock 

Downs (part) SSSI SU16853150 27.00 0 

King Manor Hill: 

Palace/Picnic Area SU17903005 0.60 P 
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Table 2.1: (Continued) 

Partridge Bank SU17222967 2.50 Q 

Savage's Farm SU18653068 1.20 R 

Witherington Down East SU21022471 0.20 S 

Fussell's Lodge Road SU19303230 0.30 T 

Stock's Bottom SU19781993 0.60 U 

Pitton Downs: 

White Hill S SU20943067 1.00 V 

White Hill N SU21183096 1.35 W 

Barford Lane SU19182203 3.00 X 

Pitton Downs: 

a SU21553153 1.20 Y 

b SU21923191 1.20 Z 

c SU22163214 2.15 Aa 

Ashley's Copse SU26183474 4.70 Bb 

Bussle's Wood SU26683451 5.40 Cc 

Kestrel's Farm SU27443456 0.40 Dd 

Broughton Down SSSI SU28503330 42.70 Ee 

Barford Down SU20072282 11.25 Ff 

Witherington Down West SU20552493 6.70 Gg 

Pepperbox Hill SSSI SU21352480 7.00 Hh 

Brickworth Down SSSI SU22002555 32.50 Ii 

Whitehouse Copse Ride SU24972600 0.63 Jj 
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Table 2.1: (Continued) 

Whitehouse Copse East SU24862584 2.00 Kk 

Royal Naval Armaments 

Depot (RNAD): 

South Section SU26102645 7.26 Ll 

Woodland Glade SU26032723 0.23 Mm 

Juniper Area SU25552733 1.60 Nn 

North Banks SU25752647 5.00 Oo 

Whitehouse Copse West SU24322589 0.80 Pp 

Bullock's Hole SU27713421 4.25 Qq 

Stockbottom Farm SU19583340 0.12 Rr 

East Winterslow SU22483279 4.34 Ss 

E Winterslow Droveway SU24003388 0.25 Tt 

Little Firs farm SU25553582 3.92 Uu 

The Anchorage SU26003547 4.13 Vv 

Bussle's Wood Droveway SU27093443 0.19 Ww 

Broughton Down SSSI 

Extension SU29473267 2.80 Xx 

Standlynch Droveway SU20352422 0.21 Yy 

Witherington Dn. Reservoir SU20662417 0.06 Zz 

Cockey Bottom SU17213261 0.12 as 

Thorney Down Bank SU21243400 0.91 bb 

Bossington SU32133120 4.69 cc 
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2.2 BUTTERFLY SURVEY 

2.2.1. Selection of species to be studied 

Species names and taxonomic affiliations follow Thomas and Lewington (1991). 

The first criterion for selection of species to be studied was that only species which were 

non-migrant and non-irruptive should be included. Inclusion of these species would have 

masked habitat selection analyses. This effectively excluded three of the whites (Pieridae: 

large white Pieris brassicae, small white P. rapae and green-veined white P. napi) and four 

of the nymphalids (red admiral Vanessa atalanta, painted lady Cynthia cardui, small 

tortoiseshell Aglais urticae and peacock Inachis io). 

The selection of which other species should be incorporated in the study was largely 

guided by criteria incorporated in management documents and by knowledge of regional 

butterfly habitat selection behaviour. For example, the twenty-seven species selected for 

discussion in the Butterflies Under Threat Team document (BUTT 1986), included two 

(Lulworth skipper Thymelicus acteon and silver-studded blue Plebejus argus) which did 

not occur in the Porton Down study area. Two other species, brimstone Gonepteryx 

rhamni and holly blue Celastrina argiolus, were felt to be too wide-ranging in terms of 

within-season mobility and habitat requirements (see Pollard & Yates 1993) to be 

assignable as ̀ chalk grassland' species in this study. This left 23 species for inclusion in 

the study (Table 2.2). 
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Table 2.2: Species included in the study 

Taxonomic Group Common name Scientific name 

Hesperidae small skipper Thymelicus sylvestris 

Essex skipper Thymelicus lineola 

silver-spotted skipper Hesperia comma 

large skipper Ochlodes venata 

dingy skipper Erynnis tages 

grizzled skipper Pyrgus malvae 

Lycaenidae green hairstreak Callophrys rubi 

small copper Lycaena phlaeas 

small blue Cupido minimus 

brown argus Aricia agestis 

common blue Polyommatus icarus 

chalkhill blue Lysandra coridon 

adonis blue Lysandra bellargus 

Riodinidae Duke of Burgundy Hamaeris lucina 

Nymphalidae dark green fritillary Argynnis arglaja 

marsh fritillary Euphydryas aurinia 

Satyridae wall Lasiommata megera 

marbled white Melanargia galathea 

grayling Hipparchia semele 

hedge brown Pyronia tithonus 
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Table 2.2 (Continued) 

meadow brown Maniolajurtina 

ringlet Aphantopus hyperantus 

small heath Coenonympha pamphilus 

2.2.2. Selection of Butterfly Sampling Method 

As the proposed study was intended to be wide-ranging in terms of species and geography 

it was decided that presence-absence data would be an acceptable measure, together with 

indices of relative abundance where appropriate. The alternative measure to an index for 

each species would have been an absolute population measure. This would have required a 

large amount of marking and re-capturing work which would have probably enabled only a 

few species to be studied due to the time and labour resources required. 

An adaptation of the method which gives the Index of Abundance measure used by the 

British Butterfly Monitoring Scheme (BMS - Pollard and Yates 1993) appeared to be the 

most appropriate for the present study. This method requires weekly species counts along 

transects. These counts are then summed to give a population index. The rationale behind 

this measure is that adults of most British butterflies have individual life spans of 

approximately seven days and therefore weekly counts will give an approximate area 

under the population curve, as in approximation methods in integral calculus. Populations 

are uniformly sampled by recording butterflies in a moving 5x5 metre area in front of the 

slowly walking observer. Statistical checks on the relationship between the BMS Index 
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Brown argus 

Picture: Simon Coombes 

Marbled white 

Picture: Simon Coombes 

Silver-spotted skipper 

Picture: Simon Coombes 
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and populations calculated from mark-recapture studies have been performed by other 

workers (see e. g. Zonneveld 1991) and appear to be consistent among univoltine species. 

Two BMS transects were set up at Porton Down, the first under the ECN Programme from 

1994, the second an additional voluntary one carried out by Mr R. Ryan from 1995. Data 

from these transects were used for comparative purposes and in statistical analysis of 

research transect data (see Section 2.6.1). 

This study has required an adapted Index of Abundance measure, since individual (sub-) 

populations could not be sampled weekly. This is explained in Section 2.5 `Statistical 

Analysis'. 

The sex of the Blues (Lycaenidae) was also recorded as were any additional species seen 

outside the recording box and in the same habitat patch. 

Individual populations were mostly sampled using 200 metre long transects stratified 

within vegetation types (see Section 2.3). This is approximately the average length of 

transects used to sectionalise BMS monitoring sites. At Fragmented Sites, 200 metre 

transects could not always be fitted in to sample habitats. Data from these shorter transects 

were standardised accordingly (see Section 2.5 ̀ Statistical Analysis'). 
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Other criteria used for the BMS were also adopted for this study. These are: 

* Time of recording to be restricted to between the hours of 10: 45 and 15: 45 BST. 

* Ambient temperature should be >13 degrees Celsius if 60 per cent or more sun, while 

if the temperature is >17 degrees Celsius, the amount of sunshine is not relevant. 

* Surveys should not take place if it is raining or wind is greater than Force 5 on the 

Beaufort Scale (= 9 m"S). 

In marginal weather conditions, these criteria were slightly adapted to be applied as 

averages for groups of transects if field work had already started on them. Also, the time 

period was allowed to be flexible on very fine days in mid-summer. 

2.2.3. Butterfly Recording Period 

The butterfly recording period for all survey years was 1 May to 30 September. This period 

encompassed the average first emergence date for spring emerging species and most of the 

flight period for all but the last few individuals of late summer univoltine species (such as 

meadow brown Maniolajurtina) and second broods of bivoltine species (such as common 

blue Polyommatus icarus, adonis blue Lysandra bellargus and brown argus Aricia 

agestis). Small copper (Lycaena plilaeas) presented a problem in that it often has a third 

brood in good summers, which is on the wing well into October in some years. However, 

it was not felt feasible to carry on survey work to add data for one species. 
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Battery ill (Porton Down) showing ranker mesotrophic grassland growing on deeper soil 

in the foreground with rabbit-grazed calcareous grassland in the background 
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Species-rich CG2 grassland at Porton Down with much evidence of rabbits and a silver- 

spotted skipper nectaring on self-heal Prunella vulgaris 
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Transects on Porton Down were visited according to which areas of the working Range 

were accessible. The order of first visits generally dictated the order of subsequent visits, 

again, depending on access. As soon as one round of visits finished, the next round started 

independent of date. In this way, it was hoped that there would be a visit to each transect at 

least once during the flight period of every butterfly species to be surveyed. 

Transects on Fragmented Sites were visited under similar criteria as those above, with 

access permission being the most restricting factors. Again, the order of initial visits 

largely dictated the order of subsequent visits. 

2.3 SELECTION OF SAMPLING AREAS 

2.3.1 Porton Down 

It was known from previous surveys (Wells et al 1976; Wilson and Reed 1992) that the 

semi-natural chalk grassland on the Porton Ranges fell into five major categories of 

classification according to the National Vegetation Classification, (`NVC' - Rodwell 

1992). These are shown in Table 2.3. 

There were also small areas of `Acid Heath' often with heather Calluna vulgaris and also 

tor-grass hrachypodium pinnatum dominated areas, akin to the CG4 NVC type. 

Additionally, small areas of more mesotrophic grassland which could be classified as 

crested dog's-tail-black knapweed Cynosurus cristatus - Centaurea nigra (MGS) and rye 

grass-crested dog's-tail Lolium perenne - Cynosurus cristatus (MG6 NVC type). Where 
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either of these latter two NVC types occurred on samples, they were assigned to a single 

`MG5/6' group. 

Table 2.3: NVC categories found on Porton Down. 

MG1- False oat-grass Arrhenatherum elatius grassland 

CG2 - Sheep's fescue-meadow oat-grass Festuca ovina-Avenula pratensis grassland 

CG3 - Upright brome Bromus erectus grassland 

CG6 - Hairy oat-grass Avenula pubescens grassland 

CG7 - Sheep's fescue-mouse-ear hawkweed-thyme Festuca ovina-Hieracium pilosella- 

Thymus spp grassland 

In addition, vegetation monitoring under the ECN Project, had identified two scrub 

communities on Porton Down which could be ascribed to the W21 hawthorn-ivy 

Crataegus monogyna-Hedera helix scrub and W24 blackberry-Yorkshire fog Rubus 

fruticosus-Holcus lanatus underscrub NVC types. These were not typically present in 

historically open grassland areas, but in woodland clearings, particularly where storm 

damage had occurred and at grassland `break' areas. Other scrub was usually ascribable to 

`scrubby' open grassland types (grassland NVCs with scrub species as associates). 

These NVC types had been mapped by Wilson and Reed in 1991, and it was felt 

reasonable to assume that these maps would still be relevant to grassland communities on 

the ground in 1995. These areas therefore formed the basis of a stratified sampling system 
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for butterfly populations. Copies of the vegetation maps from Wilson and Reed (1992) are 

shown in Appendix la-d. 

2.3.2 Fragmented Sites 

A total of 42 sites, with the range 0.07 ha to 42.7 ha were initially identified as potential 

butterfly survey sites from maps, aerial photographs and previous surveys. 

Many of these sites had been surveyed by English Nature during a wider survey of 

remnant chalk grassland in Wiltshire during the period 1989-1990 (McSweeney 1991). 

Some information required for stratification of samples could be gleaned from NVC maps 

resulting from this work. For sites without this information, pre-sampling visits were made 

during February and March 1996 in order to assess approximate NVC types and area. 

A further 12 sites were subsequently found and surveyed in 1997. Data from these sites 

were used to test statistical models from the 1996 sites but were added to the sites 

surveyed in 1996 for an Incident Function Model analysis (see Section 2.7). 

2.3.3 Placement of Transects 

This was initially a map-based exercise using mapped NVC areas as described in 2.3.1 and 

2.3.2 above. 

36 



For Porton Down, an initial set of 100 200m long transects were drawn on a vegetation 

map, ensuring that each transect covered no more than one mapped NVC type. If grassland 

NVC areas were large enough to contain more than one transect, they were placed either 

end-to-end or a minimum of 200m apart laterally. If the grassland NVC area was less than 

200m wide, then no transect was placed within it. Subsequently, transects were either 

moved or added to, in order that areas were sufficiently sampled by stratified area and 

NVC type, with a rule that no two transects were nearer than 100m apart laterally. 

Numbers of transects were apportioned according to known total areas of NVC, once the 

mapping exercise was completed. NVC types and numbers of transects are shown in Table 

2.4. Transect locations are shown in Figure 2.2. 

For Fragmented Sites, a total of 99 transects (originally 100 but one was `lost'), were 

placed on maps in the same stratified manner as on Porton Down, except where small sites 

had more than one (or a mosaic) of NVC types. In this case, single transects were 

positioned such that transect length was maximised across all grassland NVC types. 

Numbers of transects per site ranged from one to 10. Sites and transect data are given in 

Appendix 2. NVC types identified from the McSweeney survey and represented on 

transects in the 1996 survey are shown in Table 2.5. These figures are frequencies as many 

transects covered more than one NVC type. 
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Table 2.4: Number of transects per NVC type at Porton Down 

NVC No. Transects 

MG1 - False oat-grass Arrhenatherum elatius grassland 11 

CG2 - Sheep's fescue-meadow oat-grass Festuca ovina-Avenula 16 

pratensis grassland 

CG3 - Upright brome Bromus erectus grassland 24 

CG6 - Hairy oat-grass Avenula pubescens grassland 13 

CG7 - Sheep's fescue-mouse-ear hawkweed-thyme Festuca ovina- 51 

Hieracium pilosella-Thymus spp grassland 

Unclassifiable - mainly common rock-rose Helianthemum chamaecistus 10 

`Antscape' vegetation 

Further transects which were placed in unclassified vegetation 27 

Total 152 

The remaining transects were not classified previous to the botanical assessment in this 

study. 
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Figure 2.2: Locations of butterfly research transects on Porton Down. Each 200m section 

is denoted by arrows. Boundary of SSSI/SPA/pSAC shown by red line 

Green hairstreak 

Picture: Simon Coombes 
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Table 2.5: NVC types represented on transects on Fragmented Sites surveyed in 1996 

NVC Frequency on Transects 

MG1 - False oat-grass Arrhenatherum elatius grassland 12 

MG5/6 - Semi-improved mesotrophic grassland 13 

CG2 - Sheep's fescue-meadow oat-grass Festuca ovina-Avenula 34 

pratensis grassland 

CG3 - Upright brome Bromus erectus grassland 14 

CG6 - Hairy oat-grass Avenula pubescens grassland 0 

CG7 - Sheep's fescue-mouse-ear hawkweed-thyme Festuca ovina- 1 

Hieracium pilosella- Thymus spp grassland 

W21 - Hawthorn-ivy Crataegus monogyna-Hedera helix scrub and W24 0 

blackberry-Yorkshire fog Rubusfruticosus-Holcus lanatus 

underscrub 

For the Fragmented Sites covered in the 1997 survey, there was no prior knowledge of 

NVC communities. 
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2.4 HABITAT AND ENVIRONMENTAL VARIABLES 

2.4.1 Recording Methods 

In 1995,60 sample transects were randomly selected from the Porton Down set, stratified 

across grassland NVC types to provide a representative sample. At each transect, between 

5 and 10 points were selected using random numbers between 0 and 200. At each of these 

points, the following variables were recorded in a lxlm square quadrat (unless otherwise 

stated): 

1. Location (metres from the start of the transect). 

2. Slope (degrees from horizontal across the quadrat location). 

3. Aspect (on a sixteen point scale i. e. North, North-north East, North-east, etc). 

4 a. Number of rabbit fecal pellets <8 days old. 

b. Total number of rabbit fecal pellets. 

c. Number of rabbit fecal pellets <8 days old in an expanded 2x2m area. 

d. Total number of rabbit fecal pellets in the expanded 2x2m area. 

5. Sward height in centimetres at five points, lm apart along a perpendicular line, centred 

on the quadrat. 

6. Scrub cover (species and percentage cover) in an expanded IOx10m quadrat. 

7. Bare ground (percentage cover). 

S. Stones, i. e. flint or chalk fragments (percentage cover). 
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The rabbit survey method (4) is based on that developed by Dolman & Sutherland (1992). 

The number of eight day old pellets was assessed using a reference set of fecal pellets 

which were collected from grassland at a known age of eight days, photographed and 

sprayed with fixative to prevent further desiccation and biodegradation. Photographs and a 

phial of reference pellets were carried in the field to aid identification. 

Sward height during key stages in butterfly life-cycles is known to be important for many 

species (Oates 1995), but detailed assessments for each species would have been 

prohibitively time-consuming. Sward height therefore was taken as the final (summer) 

height of herbaceous growth and was intended to be used as an index of the product of soil 

productivity, grazing pressure and to some extent grass species composition (and therefore 

vegetation community). However, the relationship between final sward heights and heights 

at growth stages in the spring and summer at Porton Down was investigated in 1998 (see 

Sections 2.8.2 and 3.4). 

Sward height assessment (5) was carried out using a `drop disk'. This consisted of a 30cm 

diameter wooden disk weighing 200g with a 1.5cm diameter wooden dowel passing 

through a hole in its centre. The dowel was marked at 1cm graduations excepting 0-10cm 

which were marked at 0.5cm graduations. The end of the dowel was placed on the surface 

at the sample point, the disk was dropped from a consistent height of 1m and allowed to 

settle on the vegetation and the height of the disk above this level was recorded. 

In 1995, at alternate quadrat sample points along the transect (usually points 2,4 etc), a 

botanical assessment was carried out in the ixim quadrat. All higher vascular plants were 
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recorded with an estimate of percentage cover within the quadrat. Also, percentage cover 

of bryophytes and lichens as taxonomic groups was recorded as were key species (e. g. 

Cladonia furcata or Pseudoscleropodium purum) where identifiable. This was important 

for NVC classification purposes. 

Other notes on grazing stock type and numbers, presence of ant-hills and other potentially 

important features were also taken. 

Standard recording forms were used for botanical, physical feature and management 

recording (see Appendix 3). Other features were recorded on a separate form (see Appendix 

4). 

At the end of each sample transect, an overall assessment was made of cover-abundance of 

all higher vascular plant species, plus bryophytes, lichens, bare soil, stones and litter. This 

was carried out using the 1-10 Domin scale (Dahl & Hadac 1941) shown in Table 2.6. The 

assessment was based on the 200x5m butterfly recording band except for scrub cover 

which was based on an expanded 200x10m area. 

Due to the amount of time taken to carry out the habitat and environment assessments 

using the above methods, in 1996 and subsequent years, only the overall assessments were 

made of habitat and environmental variables in the transect bands. Slope and aspect were 

recorded as upper and lower limits or one mid-range value if there was little variation. 
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Table 2.6: The Domin Scale 

Domin Score Cover-abundance Equivalent 

1 <4 percent cover, one or few individuals 

2 <4 percent cover, several individuals 

3 <4 percent cover, many individuals 

4 4-10 percent cover 

5 11-25 percent cover 

6 26-33 percent cover 

7 34-50 percent cover 

8 51-75 percent cover 

9 76-90 percent cover 

10 91-100 percent cover 

2.4.2 Larval Food-plants 

The abundance of preferred butterfly larval food-plants was assessed from field data sheets 

post hoc. A list of larval food-plant species was compiled from several sources (BUTT 

1986; Pollard and Yates 1993; Dennis 1992) and is shown in Appendix 5. Many have 

multiple larval food-plants but the final list for each species was chosen to reflect the 

habitat and known plant species abundance at Porton Down. This meant that some 

perceived commonly used plant species were not included. 
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For two species, meadow brown and marbled white, it is known that the larvae use a 

number of grass species, with larval instars moving from the finer grasses to coarser 

grasses as they develop and grow larger (BUTT 1986). For these two species, the total 

number of grass species in the vegetation sample was used as a surrogate for larval food- 

plant diversity. 

2.4.3 Nectar Sources 

The abundance of preferred nectar source plants was also assessed from field data sheets 

post hoc. A list of nectar source plant species was compiled mainly from BUTT (1986) 

and is shown in Appendix 6. 

2.4.4 Grazing 

Stock grazing was also recorded as an environmental variable. Number and type of stock 

was recorded on the field data forms for later assessment. Many sample areas had been 

grazed by stock in the previous winter or few months; where this management was known, 

this was also recorded. 

Only the presence or absence of grazing was used in the analyses. Previous (e. g. winter) 

grazing was not distinguished from current for this purpose although timing of grazing is 

known to be important (Oates 1995). 
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2.4.5 Landscape Variables 

A number of variables were used to examine the relationship between 

populations/metapopulations and landscape scale features. The selection of these variables 

was based on Hanski's (1999) premise that the two most important effects in 

metapopulation dynamics are patch area on extinction and patch isolation on colonisation 

(see Section 1.2.3 ̀ Metapopulation Dynamics'). 

Patches were defined after Hanski and Gilpin (1997) as "a continuous area of space with 

all the necessary resources for the persistence of a local population and separated by 

unsuitable habitat from other patches". For Fragmented Sites, patches were delineated 

usually by clear boundaries between calcareous grassland and scrub of varying quality and 

surrounding farmland or other very different habitats. Where historically large areas were 

sub-divided, there was at least "some tens of metres of unsuitable habitat" (such as mature 

dense scrub) (Hauski 1999) between patches. On Porton Down, the definition of 

`unsuitable' habitat by Hanski and Gilpin (1997) above was somewhat re-defined as 

`poorly defined habitat between well-defined uniform patches of calcareous grassland' 

where clearly unsuitable habitat (such as mature scrub) was not obvious. In practice, such 

areas were those remaining after uniform areas of particular NVC communities and/or 

areas of uniform structure (e. g. tall Bromus erectus grassland) had been delineated. 
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2.4.5.1 Patch area 

On Fragmented Sites, patch area was defined as the total area of grassland of any type. 

Patches of scrub were included in this definition as long as the scrub was growing amongst 

grassland and was clearly a contemporary successional feature. 

On Porton Down, patches of uniform calcareous grassland NVC types were mapped for 

the ECN project under contract by Dr P Wilson of Wessex Environmental Associates in 

summer 1996. These NVC boundaries were added to habitat features of known structural 

uniformity (mainly areas of scrub, rank and very short grassland), and these were 

delineated as composite maps. Only clearly defined patches were selected which would 

stand out either floristically and/or structurally from the surrounding vegetation. 

Patch areas were either previously determined on many Fragmented Sites by McSweeney 

(1991) or were estimated for these sites and Porton Down patches using a `dot and square' 

transparent overlay where e. g. each dot represented 0.04 ha for 1: 10,000 scale maps and 

each square 1 ha. 

2.4.5.2 Isolation 

For Fragmented Sites, measures involving both the distance from Porton Down (the 

potential major `source' site - see Section 1.6) and the average distance from each patch to 

all other patches were used (see Section 2.5.3.1). 
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For measures within Porton Down, equivalent measures were used which involved the 

distance of each patch to the nearest major concentration of the species being analysed 

('population nodes') and the average distance of each patch to all such nodes. This latter 

measure replaced that involving distances to other patches as it was felt this would be 

intuitively more important given the potential fluidity of movement between patches. 

2.5 STATISTICAL ANALYSIS 

2.5.1 Butterfly Counts 

Total counts for each species were recorded for each 200m transect. Where transects were 

less than 200m, counts were standardised to 200m by 

N=n. (200/L) 

where n= unstandardised count, 

L= length of transect 

For calculations involving means, (standardised) counts were log (+1) transformed using 

natural logarithms, and these geometric means were back-transformed. 

Butterfly data were initially entered onto EXCEL spreadsheets for export to other software 

packages. 
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2.5.2 Environmental Variables 

Transect sward height was calculated as an average value of means of measurements at 

each sample quadrat. 

Transect rabbit fecal counts were averages of counts at each sample quadrat. Values were 

calculated for each sample ̀ nest' and age estimation (see Section 2.4.1). 

Examination of both sward height and rabbit fecal counts revealed inconsistencies in types 

of frequency distribution. Within data sub-sets, some frequency distributions for sward 

height were normal, some logarithmic in character. Clearly these distributions were 

strongly related to grazing pressure and the grass species involved. For rabbit fecal counts, 

some frequency distributions were near-normal, others showed a more square-root 

distribution. It was therefore decided that each data set should only be transformed if the 

final grouped frequency distributions showed a clear overall pattern and only if parametric 

analyses were being performed. For calculations involving means, untransformed data 

were used. 

Aspect descriptions were re-coded to reflect the ̀ degree of southerliness' of the transect. 

Thus, north was coded 1, north-north west and north-north east 2, north west and north 

east 3 and so on to south which was coded 9. This avoided circularity, giving equal weight 

to both westerly and easterly aspects and maximum weight to warmer and sunnier slopes. 

Median values were used for both slope and aspect where ̀average' values were required 

within patches with >1 transects. 
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Values based on Domin scores proved problematic when average or additive scores were 

calculated such as calculating mean scores within patches with >1 transects or where total 

cover-abundance values for all food-plants were required. Several attempts have been 

made to transform Domin scores for these sorts of calculations (see Bannister 1966; 

Currall 1987), but these use mid-ranges of transformed percentage cover-abundance 

values. Averaging is a common way of dealing with rank scores such as Ellenberg 

Indicator values (see for example, Mountford et al 2000). It was felt that it was better to 

under-estimate combinatory scores rather than over-estimate so the following rules were 

applied: 

Average scores: scores below 4 were assessed according to their directly translated value 

(e. g. 2=<4 percent cover with a few individuals), then 1+1 = 2; 2+2 = 2; 3+3 = 3; but 

4+3 =4 (significant area covered); then rounded down medians were used e. g. 4+5 = 4, 

5+6 = 5, but 5+6+7 = 6. 

Additive scores: scores below 3 summed to the single highest score (e. g. 2+2+1+1+1 = 2). 

Thereafter 3+3 =4 and 4+3 =4 but 4+4 = 5,5+5 =6 etc and 5+6 = 5. It can be seen from 

Table 2.7 that this works quite well for all combinations excepting 6+6 and 8+8 and above 

although the latter are not likely to truly approach ̀saturated' cover and were not often 

encountered in samples. 
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Table 2.7: Additive Domin Scores 

Domin Scores Cover-abundance Equivalent Additive Score 

1+1 <4 percent cover, one or few individuals No change 

2+2 <4 percent cover, several individuals 

3+3 <4 percent cover, many individuals x2 

4+4 (4-10)+(4-10) percent cover 

5+5 (11-25)+(11-25) percent cover 

6+6 (26-33)+(26-33) percent cover 

7+7 (34-50)+(34-50) percent cover 

8+8 (51-75)+(51-75) percent cover 

9+9 (76-90)+(76-90) percent cover 

10+10 (91-100)+(91-100) percent cover 

2.5.3 Landscape variables 

2.5.3.1 Isolation 

Hanski (1999) used a measure of patch isolation S;: 

No change 

4-10 percent cover 

11-25 percent cover 

26-33 percent cover 

34-50 percent cover 

51-75 percent cover 

76-90 percent cover 

91-100 percent cover 

100 percent cover 

Si=X exp(-(xd; ý)NN 

where the constant c describes how fast the numbers of migrants from patch j decline with 

increasing distance from the patch, du is the straight line distance between patches i and j 
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and Nj are the population sizes. Nj can be re-stated as = p1Aj where pj equals 1 for occupied 

and 0 for empty patch of area Aj. 

However, in an earlier study (Hanski 1994) the same author used a simpler measure, the 

distance of patch i to the average co-ordinates of all patches in the study network. Using 

appended data from the paper, it was found that the correlation between this statistic and 

the measure S; above was very high (R2 = 0.79, F1,48 =180.37, P «0.001). These data 

were gathered extremely intensively on a metapopulation of the Glanville fritillary Melitea 

cinxia and the conclusion must be that for a study where even presence-absence data may 

not truly reflect patch occupation (due to low or highly variable probability of detection for 

example), then the average co-ordinate statistic is a highly suitable measure of isolation. 

For Fragmented sites, isolation was calculated for each patch using the distance between 

patch edges as these were clearly defined and such a measure is spatially more realistic. 

For Fragmented Sites, a simple straight-line distance (in km) was measured from the 

nearest boundary of Porton Down to the nearest boundary of the focal site. This was a 

distance measure which ignored the effects of other sites as stepping-stones or as source 

sites. 

2.5.3.2 Other Distance Measures 

For Porton Down, major population concentrations were modelled interpolatively by 

plotting total transect butterfly counts as a contour map in Systat 5.0, using mid-transect 
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grid co-ordinates. A negative exponential smoothing model (NEXPO in Systat) was used 

as this was most appropriate for the poisson nature of the count data (Burrough 1995). 

Graphical (visual) estimation of the optimum smoother level was used as recommended by 

Forney (2000). As Porton Down is an elongated site, dummy locations and 0 counts were 

added in order to make the grid square. This did not appear to affect the models within the 

core area of surveyed grassland. Maps for the seventeen species with sufficient data are 

given in Appendix 7 with two examples shown here in Figures 2.3 a&b. Reference 

should be made to Figure 2.2 for data source points. 

Figure 2.3a: Butterfly count contour map for marbled white at Porton Down in 1997, using 

mid-transect grid co-ordinates and a negative exponential smoothing model (NEXPO) 
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Figure 2.3b: Butterfly count contour map for silver-spotted skipper at Porton Down in 

1995, using mid-transect grid co-ordinates and a negative exponential smoothing model 

(NEXPO) 
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Centres of major population concentrations (`population nodes') were identified from the 

major `peaks' in the contours. These were marked and the distance from these to patches 

was used for two measures for each species: 

1. The distance from the patch centre to the nearest population node. 

2. The average distance from the patch centre to all population nodes. 
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A decision had to be made for some species as to how many population nodes should be 

used. If a species showed a very patchy distribution with a number of localised population 

concentrations, all of the nodes with values around the modelled maximum were included. 

In some instances, a single high value node was used in addition to others of lesser value 

where it was clear that they stood out from the background values. These high value nodes 

could not be disregarded (as with outliers in regression models), as they would clearly be 

able to affect population densities on transects some distance away, particularly in mobile 

species. 

2.5.4 Analysis of Butterfly and Habitat/Environmental Data as Response and 

Explanatory Variables 

SYSTAT 5.0 and 6.0 (Wilkinson 1990; SPSS 1996) were used to perform all of the 

statistical analyses except those otherwise mentioned. 

Analysis of vegetation data was initially carried out using the Vespan III package (Malloch 

1995a) which included DECORANA (Hill 1979; Hill & Gauch 1980). DECORANA 

(Detrended Correspondence Analysis) is an ordination method, similar to Reciprocal 

Averaging, but where correlations between first and subsequent axes are removed and 

where the resulting `arch' effect is avoided. 

The program MATCH (Malloch 1995b), together with comparison with NVC tables in 

Rodwell (1992) was used to assign samples to NVC types. Match gives percentage fit 

coefficients between sample data and NVC communities and sub-communities, 
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Multiple regression models were constructed in the Generalised Linear Modelling package 

GLIM 4 (Francis et al 1994) to analyse the relationship between butterfly abundance and 

explanatory habitat and environmental variables. Response (butterfly presence-absence or 

counts) variables were modelled using either binary or normal errors depending on 

sparseness of response data. Sparse data were modelled as presence-absence (binary) while 

common species were modelled using Adjusted Population Indices (see Section 2.6.1). All 

data sets were initially modelled using the binary form of response data. Where there was 

no model convergence through the iterative process, then Adjusted Population Indices 

were used as the response variable in a normal model. 

The form of multiple regression model in GLIM using binary data is the `logistic' term: 

loge [p/(1 p)] = bo + bjxl + b2x2 + ........ baxa 

where loge [p/(1 p)] is the logit or probability of occurrence and bn parameters and xa 

environmental parameters respectively. The logit link is used in GLIM (Crawley 1993). 

The form of the multiple regression model in GLIM using normal errors is the expression: 

17 = bo + bjxl + b2x2 + ........ bnzn 

where r) is the transformed count or estimated population index and ba constants and xo 

environmental parameters respectively. The identity link is used in GLIM (Crawley 1993). 

A forward elimination process was used to find the most parsimonious (minimal adequate) 

model for each response variable using maximum likelihood estimation methods. This 

proceeded by adding in and then subtracting each of the (x) explanatory variables in turn to 
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a null model, keeping the variable showing the greatest change in scaled deviance Chi- 

square (x2) value in logistic and the greatest t-value in normal models. The model was 

then re-run with the new (x-1) data set. The model selected was that which contained all 

the variables included in the forward process which had individually significant changes in 

scaled deviance x2 values or, for normal models, F-values calculated from change in 

deviance and scale parameter when each variable was subtracted from the full model 

(Crawley 1993). The form of model using normal errors includes the Scale Parameter in 

the modelling process and therefore accounts for overdispersion in subsequent significance 

tests (K. Vines pers. comm; Crawley 1993). Overdispersion is the lack of a relationship 

between one or a few environmental parameters and the response variable and meant that 

the use of Poisson errors in the models was problematical (Crawley 1993). 

AIX2 values in logistic models greater than 3.841 (i. e. P<0.05), were allowed in the total 

model as individual parameter degrees of freedom are unitary. In normal models, t-values 

greater than that defined for the degrees of freedom relevant to the current model (i. e. 1, (n- 

(v-1)) where n= total number of explanatory variables and v= number of variables in the 

model) were allowed in the total model. 

Models were fitted using data sets which included discrete NVC categories classified from 

the Match analyses. As transect samples were relatively large for vegetation sampling, they 

often covered two or more NVC types. For Porton Down, these were therefore included as 

binary variables and any one sample could carry several unit scores. For the Fragmented 

Sites whole patch analyses, areas of NVC types were used (see Sections 2.3.2 and 2.3.3). 
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Raw data for each explanatory variable were plotted to see if their relationship with the 

response variable was strongly curvilinear. These relationships are often gaussian in nature 

and should be incorporated in the model if over-simplification is to be avoided (Jongman 

et al 1995). If this was the case, the square of the explanatory variable was included in the 

analysis. If, in the minimal adequate model, the coefficient of the explanatory variable was 

positive and that of its square was negative, then the variable had a gaussian distribution 

(if the coefficient of the explanatory variable was negative and that of its square was 

positive, then the variable had an inverse gaussian distribution). If the normal version of 

the explanatory variable was excluded during the forward process, the square form was 

also excluded. 

The above criteria were also applied to variables consisting of Domin values as they were 

to be treated in a similar fashion to continuous variables in GLIM. An alternative method 

would be to treat Domin scores which showed strong curvilinearity as Factors (Crawley 

1993; N. Aebischer pers. comm. ) but this would have created a large number of 

explanatory variables and would lead to potential Type I errors (Zar 1984). Ter Braak 

(1987a) used rank environmental scores as continuous variables in polynomial regression 

analysis; this is the method employed in CANOCO (see below). 

CANOCO (Canonical Community Ordination, ter Braak 1987a) was used to correlate 

butterfly communities to habitat and environmental variables (see Section 2.4). CANOCO 

is an extension of DECORANA (Hill 1979), but does not assume linearity in the data, 

correlates environmental variables with ordination axes and is able to detect unimodal 

(gaussian) relationships between species and external variables. Using this method, species 
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occurrences were investigated in relation to ordination axes, where more general patterns 

of coincidence of several species provides a greater ability to detect species-environment 

relationships (ter Braak 1987b). The version CANOCO 3.1 was used in this study. 

2.5.5 Model Testing 

The basic premise was that habitat selection models would be constructed from the Porton 

Down 1995 data and tested, in terms of predictive power, using the Porton Down 1997 

data. Models constructed using the 1995 Porton patch data were tested using the 1997 

Porton Down patches. Population `nodes' (see Section 2.5.3.2) were modelled and used 

separately for 1995 and 1997 data. There were, however, three scenarios where this was 

not possible or where additional analysis using the other data sets was required. These 

were: 

i) Due to the unusual climatological nature of the 1995 flight season, particularly during 

July and August (see Section 3.6), habitat selection behaviour may not have been 

typical in this year. This would have been manifest when models were tested against the 

1997 Porton Down data. In this case, models were produced retrospectively using the 

1997 Porton Down data. The predictive power of these models was tested against the 

1995 Parton Down data. If the 1997 and 1995 models predicted very different 

outcomes, then the 1997 model was assumed to be the best as climatological conditions 

were more `normal' in that year. 

ii) A few species were present in low numbers on sample transects at Porton Down in both 

1995 and 1997. However, these species (small and Essex skippers and ringlet), were 
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relatively common on Fragmented Sites and therefore required local scale habitat 

models. It was decided that models produced from Fragmented Site transect data would 

be the only way of describing habitat selection. The caveat here is that there is no way 

of telling the degree to which isolation and other metapopulation processes might affect 

the outcome of these models. However, as the species were absent from only a very few 

Fragmented Sites, it was felt that these models would be adequate to describe habitat 

selection behaviour on a regional level and at a local scale. 

iii) For common blue and chalkhill blue, models produced from Porton Down data 

were not considered adequate and therefore models from Fragmented Site data were 

used comparatively. Both of these species were more common on Fragmented Sites and 

it was felt that models produced from Fragmented Site local scale data might have 

greater predictive power. 

Models constructed from 1996 Fragmented Site patch data were tested using the 1997 

Fragmented Sites data set. However, these two sets of sites probably influence 

metapopulation processes between each other and for this reason, measures such as 

isolation were calculated using the 1996 and 1997 sites as a single data series. 

2.5.6 Intra-set Correlations 

Correlations among explanatory variables are a well-known problem in multiple regression 

analysis (Crawley 1993). The degree of correlation in the 1995 Porton Down data set was 

investigated initially by normalising data as far as possible by log transforming sward 
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height and square root (+0.5) transforming rabbit index (fecal pellet count) and examining 

the Pearson Correlation Matrix. This is shown in Appendix 8.1. 

The degree of correlation among the other major data sets used (Porton Down 1997 and 

Fragmented Sites 1996) was also investigated and these are shown in Appendix 8.2 and 

8.3. 

Additionally, the data set for each butterfly species which included its larval food-plants 

and nectar sources as well as landscape variables (where applicable), was examined for 

high correlations. 

Where explanatory variables were `brought forward' from a local scale to a landscape 

scale analysis, those variables which were excluded from the final local scale model but 

were strongly correlated with variables which were included in the model, were added to 

the modelling process for landscape scale models. This avoided chance exclusions of 

potentially significant variables due to multiple correlations. 

The recommended method for dealing with strongly correlated variables is to model them 

as individual variables and as products (Crawley 1993). One problem with this is that 

`global' models which include all possible products will lead to over-parameterisation 

(Mauritzen et al 1999). Only products of strongly correlated variables (r > 0.5) were 

therefore included and as long as there was a logical biological meaning to them. This was 

carried out as required for each data set when regression analyses using GLIM4 were run. 
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In exceptional cases, highly correlated variables which were of low frequency were used 

additively as well as product parameters. This prevented product parameters becoming 

largely series of zeros. 

2.6 CUSTOMISED ANALYSES 

2.6.1 Butterfly Data 

For each butterfly species, a matrix of transect (row) by visit date (column) data was 

entered on a spreadsheet. Weekly population index data were recorded independently on 

the ECN BMS transects, enabling population curves to be drawn which were smoothed by 

eye. Attempts to super-impose model curves on these data were not successful as ̀ least 

squares' methods could not be made to fit well even at high level polynomials. Methods 

for fitting curves to these data are being developed by statisticians at CEH Monk's Wood 

and CEH Merlewood (A. Scott and N. Greatorex-Davies both pers. comm. ) for 

interpolating BMS counts and calculating residuals of population curves. Zonneveld 

(1991) had some success fitting simple curves to butterfly count data in order to estimate 

death rates but these were largely single emergence, univoltine species. 

As research survey data represented between one and six dates during the flight period for 

any one sample transect, a method needed to be found whereby these sparse data could be 

corrected for the point in the flight period when the survey date was super-imposed on the 

population curve (see Figure 2.4a). 
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In notation, and referring to Figure 2.4a (stylised BMS monitoring population curve) and 

Figure 2.4b (stylised example research transect population curve): 

If t= the sampling date, It = the BMS count on day t, Pt is the research transect count on 

day t, then 

Pt=c*It 

ý Pt 
Where c= and standard error of c is iE Pt /£ It 

it 

Assuming a Poisson distribution and p=c*1 

NB: Standard error was arrived at by maximum likelihood estimation (K. Vines, pers. 

comm. ). 

Figure 2.4a: Stylised BMS monitoring population curve. 

Index (I) 
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Figure 2.4b: Stylised example research transect population curve. 

Index (P) 

Over all sampling dates in a flight period, each arrow showing the difference between the 

BMS count and research transect count on day t in Figure 2.4c would therefore 

approximate to Pr / I, 
. 

Instead of attempting to calculate the area under the curve to arrive at F It 
, the local 

Porton Down BMS population index was used, as explained in Section 2.2.2. 

Results from these adjusted estimates correlated strongly with summed total counts for all 

five species concerned (Figures 2.5a to 2.5e). Values for R2adj. were: common blue 0.591; 

dark green fritillary 0.786; marbled white 0.955; meadow brown 0.939; small heath 0.872. 

The two data sets were not independent and these figures therefore simply give an 

indication of variance between ̀ source' data and modelled data. Errors for common blue 

were relatively large. This was probably due to the high index for the second generation 

which would produce greater errors when sample transects where recorded by chance 

towards the ends of the population curve. 
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Figure 2.4c: Illustration of relationship between BMS and research transect counts on 

sample days. 

Index 

A test of the statistical power of this method was performed on data for the meadow brown 

using Porton Down BMS transect data and is shown in Appendix 9. 

Population data from the Porton Down BMS transects were also used to calculate indices 

for transects on Fragmented Sites for common blue, marbled white, hedge brown and 

meadow brown. These species were very common and had to be modelled using generated 

`count' data. These indices were then used for regression analyses only (see Section 2.5.4). 

The assumption that population curves at Porton Down would closely reflect those on 

Fragmented Sites was tested using data from Broughton Down and Dean Hill, two of the 

study sites, and also Martin Down, a large chalk grassland site some 10 km west of the 
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Figure 2.5: The relationship between adjusted population index and total count per transect 

for a) common blue, b) dark green fritillary, c) marbled white, d) meadow brown and e) 

small heath. All data are for 1995. 
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study area boundary. If a high, or sufficient degree of correlation could be found between 

the within-year population curves on Porton Down and these sites, then the index 

calculation method could be used. 

In fact, strong within-week correlations were found for marbled white, hedge brown and 

meadow brown (all P: 5 0.001). For common blue, the correlation was weaker (0.01 >P> 

0.001) due to differences in first generation indices, but was felt sufficiently strong for the 

method to be used. The full results of the tests are given in Appendix 10. 

2.6.2 Data Used in CANOCO Analyses 

Total count data were used in all CANOCO analyses as there was a requirement for 

comparative quantitative data for all species (to sufficiently distinguish between common 

species occupying similar habitats) and the adjusted estimate method (above) showed that 

total counts were reasonably well correlated to modelled population estimates. 
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2.7 INCIDENCE FUNCTION MODELS 

The Incident Function Model (IFM) has two main functions in metapopulation modelling. 

Firstly, it provides parameters relating to the stochastic processes observed in the 

metapopulations being modelled. Secondly, it uses these parameters to model incidence 

(patch occupancy and turnover) on the patch network. In this study, the main interest is in 

the relationship between the metapopulation parameters (relating to minimum patch area, 

degree of environmental stochasticity, colonization ability and the effect of distance on 

dispersal) and the landscape level model parameters arising from GLIM regression 

analyses. 

The IFM is a discrete-time stochastic patch model, a metapopulation level extension of a 

first order linear Markov chain model for an individual habitat patch (Hauski 1994 

&1999). The model is fitted to presence-absence data from a set of habitat patches to 

estimate a series of parameter values, which then allow numerical iteration of 

metapopulation dynamics in other systems of habitat patches. If Jt is the stationary 

probability that patch i is occupied, then this `incidence' can be described by 

ci 
Ji 

C, + E; 
(2.1) 

where E, and Ci are extinction and colonization probabilities. 

Transition probabilities between the two states Er and C; are functions of patch area and 

isolation as defined by 

e 
Et = if Al > etix (2.2) 

Aix 
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Ei= 1 if Ai # ellx (2.3) 

where Ai is the area of patch i and e and x are two constants, and 

m2 
C; = 

M; 2 + y2 
(2.4) 

where M; is the number of immigrants into patch i and y is a parameter which determines 

how fast the colonization probability approaches 1 with increasing Mi. This function gives 

an s-shaped increase in the colonization probability from 0 to 1 with increasing numbers 

of immigrants. 

Two further effects are taken into account in developing the full model. Firstly there is the 

rescue effect (see Section 1.5), which is the decrease in the risk of local extinction due to 

the raised level of immigration from a patch with a large population. This reduces the 

extinction probability to (1 - C; )E; and equation 2.1 above becomes 

C1 
Jl = (2.5) 

Ci + Ei - C; Ei 

Assuming also that the isolation effect is a function of distance between patches, patch 

area and population, given by the equation 

S, =I exp(- ocd; ý) Nj (2.6) 

then the following expression describes the incidence of patch i 

1 
Ji = (2.7) 

1+ 
12 Si At 

69 



Parameters e and y can be separated by defining a minimum patch area Ao, for which the 

extinction probability in unit time is 1, Ej =1= e/Ao , from which e= Ao (Hanski 1994). 

The model parameters and their meaning can be summarised as follows: 

J is the long-term probability of patch occupancy. 

e and x are parameters of annual extinction probability E as a function of patch 

area E=e/Ax. 

x reflects the effective strength of environmental stochasticity and the value 

decreases with increasing environmental stochasticity. 

y describes the colonisation ability of a species. Good colonisers which are little 

affected by isolation have small y values. 

-a is the effect of distance on dispersal. The quicker the drop-off in a species' 

dispersal ability, the greater the value. 

S describes patch isolation as a function of distance to, and occupancy of patches in 

a network. Large values of S correspond to small isolation. 

Ao is the critical minimum patch area where extinction probability in unit time is 1. 

Parameters were estimated by maximum likelihood methods (Moilanen 1999). Models 

were provided by the University of Helsinki Metapopulation Study Group and were 

downloaded from their web-site (www. helsinki. fi/science/metapop). Two stages of 

modelling were required. Firstly, a relatively quick estimation, using the NLR (Non- 

Linear Regression) method, gave an approximation for parameters. It was important that 

`seed' values were reasonable estimates, otherwise parameter estimation varied greatly. 

These were taken from published (mainly Hanski 1999) and unpublished (R. Wilson, 

70 



Leeds University pers. comm. ) sources. This method also gave an estimated patch turnover 

rate. These values were then put in another model which used implicit statistical inference 

and Monte Carlo estimation methods (Moilanen 1999). Ten model runs were made to 

provide a mean estimate and errors for each requested parameter. 

Adaptations were made to the data to run the models. Firstly, Porton Down, which was 

included as part of the modelled patch network, was split into seven patches of < 100 ha 

and observed presence-absence of the focal species in these patches was used. The reasons 

for this is as follows (Moilanen pers. comm): 

1. A very large patch would have a zero extinction probability (possible for some species, 

unlikely for many). 

2. It would also produce a huge number of migrants which would cause many patches in 

the network to be occupied all of the time. 

3. The metapopulation would persist forever in the modelling sense, and the pattern of 

occupancy would be greatly distorted. 

4. Parameter estimation over a very wide range of patch areas and isolation would cause 

problems in terms of function fitting. 

Clearly, a large ̀ mainland' patch such as Porton Down does not exert influences in direct 

proportion to its relative size. 

A limitation also exists on the species which could be modelled using the IFM. Hanski 

(1994) recommended that the fraction of occupied patches for the species should be 

greater than 0.2 and less than 0.8. Under this criterion, only seven species qualified from 
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the Fragmented Sites. These were grizzled skipper, dingy skipper, green hairstreak, small 

copper, brown argus, chalkhill blue and dark green fritillary. 

One important assumption in the IFM model is that populations are at equilibrium 

(Moilanen 2000). However, this is not quite so important when parameters are being 

estimated rather than modelling patch occupancy. If sampled metapopulations are not at 

`stochastic quasi-equilibrium' then trends in metapopulation size will result. For the 

purpose of this study, only relative parameter estimates were required and any error due to 

sampling in one year would not be critical. 

As an assumption of population stability is implicit in the use of the IFM in this study, the 

data for Fragmented Sites surveyed in 1996 were added to those from 1997 to give as 

complete a picture of the Fragmented Site metapopulation as possible. 

2.8 OTHER DATA CONSIDERATIONS 

2.8.1 Rabbit Index Data 

Data on the number of rabbit fecal pellets were recorded on a nested quadrat basis adapted 

from the method of Dolman & Sutherland (1992) as explained in Section 2.4.1. This 

method required the estimation of the number of fecal pellets less than 8 days old. In 

practice, distinguishing between fecal pellets less than 8 days old and older ones proved to 

be extremely difficult. This was because old pellets could take on the appearance of ones 

less than 8 days old when wet after rain and if they were still intact. It was felt that this 

may have produced unacceptable error in the data. 
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In order to investigate an adequate alternative method, data from 354 of the 356 quadrats 

recorded in 1995 were analysed. It was assumed that a) decay rates for rabbit fecal pellets 

were constant between sample areas and across sample dates, b) measured sward height 

was strongly correlated with the number of rabbits present and c) rabbits produced 

approximately constant numbers of fecal pellets with time and across habitat types. 

2.8.2 Assessing Sward Height Changes 

The rationale behind the vegetation sampling in this study is to obtain relative measures of 

vegetation characteristics as explained in Section 2.4.1. However, many detailed studies of 

butterfly biology have found relatively narrow limits of tolerance to sward height at key 

stages of development (see for example, Thomas 1983). In order to better understand how 

the single measure of sward height relates to seasonal sward heights, it was decided to 

sample selected transects which experienced different grazing pressures. 40 transects were 

selected and sward height was measured at 10 points along the transect, starting at 10 

metres in from the end (i. e. at 10,30,50.... 190 m), This would ensure that as far as 

possible, the same vegetation patch was measured at each sampling period. These 

transects were measured in May, June, July, August, September and October 1998 to co- 

incide with the main butterfly monitoring period (May-September inclusive) and the main 

vegetation sampling period during 1995-1997. 

Transect averages were calculated for the ten samples. Samples were ranked according to 

relative rabbit grazing pressure into 3 (high), 2 (medium) and 1 (low grazing pressure). 

Ranking was done according to mean numbers of rabbit fecal pellets per transect, where 0- 

50 was low, 51-150 medium and 151+ high grazing pressure. Transects were grouped 
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according to rabbit fecal data gathered over the three sample years at Porton Down and 

therefore there would have been some local differences compared to 1998 due to changes 

in rabbit populations. 

2.8.3 The Relationship Between Adult Butterfly and Larval Populations 

The basic premise tested in this study is that adult butterfly population samples closely 

reflect their use of the habitat for breeding purposes, i. e. adult/egg/larva numbers are 

closely correlated. It might be, for example, that some adults, particularly of highly mobile 

species, were using particular habitats for nectaring and these habitats were entirely 

unsuitable for breeding purpose. 

To test this, a mobile species, dark green fritillary, was selected. Adult (adjusted 

population indices) were available for sample transects. 20 of the 1997 transects were 

randomly selected and sample points were selected at 20m intervals as in Section 2.8.2 

above. Transects were walked during the period 29 July to 5 September after the larvae 

had finished their initial development phase. The nearest patch of larval food-plant Viola 

hirta was located from these points and the number of leaves in a lm2 quadrat were 

counted. The number of leaves predated by dark green fritillary larvae was then counted in 

the same patch. The ratio 

No. predated leaves/Total No. leaves in sample 

gave an index of larval activity. 

In 1998, a similar method was applied to the silver-spotted skipper. In this case, an attempt 

was made to count egg numbers in samples based on the sampling strategy above. 
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However, eggs were extremely difficult to find and after 10 sample transects this part of 

the study was abandoned. The reason for the scarcity of eggs was probably that suitable 

egg-laying habitat is relatively widespread on Porton Down and the method devised was 

not intensive enough to count eggs at such a low density. 

Small blue 

ý-..,,. 

Picture: Simon Coombes 
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3. GENERAL RESULTS 

3.1 DATA SETS 

There were five data sets available for producing and testing baseline models from transect 

data. These were: 

a) Porton Down 1995 (60 transects) 

b) Porton Down 1996 (20 transects) 

c) Porton Down 1997 (67 transects) 

d) Fragmented Sites 1996 (94 transects) 

e) Fragmented Sites 1997 (25 transects). 

The transects sampling periods between 1995 and 1997 are shown in Appendix 11. 

It was decided that the Porton 1996 data set was probably too small to be useful for 

producing and testing baseline models and it was therefore not used for this purpose. 

3.2 VEGETATION ANALYSIS 

DECORANA analysis of both the Porton 1995 and 1997 and Fragmented Sites 1996 data 

sets were carried out separately using VESPAN III and MATCH (see Section 2.5.4). A 

DECORANA analysis was run on each data set using a standard run except that rare 

species were down-weighted. This ensures that rare species do not overly influence the 

ordinations and cause both species and sample ̀ outliers' to occur (Hill and Gauch 1980). 
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The results of the Porton Down 1995 and 1997 and Fragmented Sites 1996 analyses are 

shown in Figures 3.1,3.2 and 3.3 respectively. These plots show axes I and 2 of species 

and sample ordinations. Overlaid on the sample ordinations are the results of Match 

analyses which have assigned NVC types to the samples. 

Figure 3.1 shows that the four main calcareous grassland NVC types, CG2, CG3, CG6 and 

CG7, are clearly separated from the main mesotrophic grassland type, MG I (plus MG5/6) 

along axis 1, the major axis. Separation of the calcareous grassland types is along axis 2. 

Figure 3.1: Site scores for the first two axes of a DECORANA analysis for the Porton 

Down 1995 transects 
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Figure 3.2: Site scores for the first two axes of a DECORANA analysis for the Porton 

Down 1997 transects 
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Figure 3.3: Site scores for the first two axes of a DECORANA analysis for the 

Fragmented Sites 1996 transects 
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Table 3.1 shows the Spearman rank correlation coefficients between DECORANA Porton 

Down 1995 site scores and habitat/environmental measures at those sites. Axis 1 is clearly 

related to sward height in one direction and rabbit grazing intensity, bare ground and 

stones (which are strongly correlated see Appendix 8.1), in the other direction. This is 

probably also a function of factors such as soil depth which dictate productivity and 

therefore vegetation growth rates. 

Table 3.1: Spearman rank correlation coefficients between DECORANA site scores and 

habitat/environmental measures 

Variable Axis 1 Axis 2 

Sward height 0.640 *** 0.314 ** 

Rabbit grazing index -0.516 *** -0.332 

Slope -0.115 -0.173 

Aspect 0.014 0.084 

Scrub -0.189 0.611 *** 

Bare ground -0.498 *** -0.032 

Stones -0.530 *** -0.035 

Asterisks indicate the statistical significance of correlations: *P<0.01, ** P<0.002, *** 

P<0.001 (n = 60 for all). 

The species plots for axes 1 and 2 of the DECORANA ordination of the Porton 1995 data 

is shown in Figure 3.4. Key species only are notated. 
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Gibson et al (1991) classified plant species as being associated with early, mid, mid-old 

and old (> 100 years) stages of succession on calcareous grasslands in southern Britain. 

Using these classifications as ranks, there is a strong negative correlation between the 

species scores along axis 1 and their groupings (Spearman rank correlation rs = -0.689; n= 

75; P<0.001). There is no correlation with axis 2 (rs = -0.071; NS). Axis 1 is therefore 

also related to age of grassland, with the older grassland occurring towards the end where 

species such as Festuca ovina, Helianthemum nummularium and Asperula cynanchica are 

constants in the species-rich CG2a community (Rodwell 1992). Wells et at (1976) found 

good evidence for the Porton grasslands having been ploughed at various stages in the last 

200 years, with the most recent disturbance around 75 years BP. The range of dates 

determined by Wells relates well with the species' plots shown in Figure 3.4. 

The DECORANA ordination for the Porton 1997 data produced similar results to that of 

1995 and is shown in Figure 3.2. The mesotrophic grassland (MG1/5) complex is again 

well separated from the calcareous grassland groups. Within the latter group, the CG2 and 

CG7 types show a similar degree of overlap as in the 1995 ordination and both occupy the 

left side of the ordination space. The main differences are shown by the calcareous 

grassland types CG3 and CG6. CG6 is known to occur on more mesotrophic soils on 

flatter areas, which is why most of this NVC type has been converted to agriculture 

(Rodwell, 1992). This is also why the sites for this community occupy the centre (as in the 

1995 analysis) and the mesotrophic end of the ordination. The high degree of overlap of 

the CG3 community with CG2 and CG7 probably reflects the increasing level of rabbit 

grazing during the mid to late 1990s at Porton. Environmental Change Network 

monitoring data from spotlight counts showed an increase in the rabbit 'head' count index 

(Bealey et al 1999) from 135 to 513 between 1995 and 1997, an increase of 380 per cent. 
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Grazing of the highly palatable Bromus erectus has suppressed its dominance in the sward 

and probably reduced the frequency of the associates which distinguish the community. 

A model of vegetation dynamics at Porton Down was developed (Bealey 1999) partly 

from earlier models of Wells (1976) for Porton Down and Jones-Walters (1990) for Aston 

Rowant and Martin Down and partly from the above analyses and is shown in Figure 3.5. 

It clearly shows the tendency for CG3 communities to move towards CG2 under heavy 

rabbit grazing and the dynamic relationship between CG2 and CG7 communities, both of 

which are reflected in the Porton Down DECORANA ordinations. 

The DECORANA ordination site plots for axis 1 and 2 for the Fragmented Site 1996 

transect data is shown in Figure 3.3. This ordination plot reveals a much closer 

relationship between the CG grasslands and the MG1/5 groups. The CG2 complex is fairly 

distinct but there is a large degree of overlap between the CG3/CG6 groups and MG1/5. 

This probably reflects the within-site complexity of communities on the less well-grazed 

sites. Here, habitat mosaics occur over relatively short distances, whereas the grazed sites 

tend to be equally grazed all over (and therefore show uniformity among the CG2 group). 

Axis 1 is clearly an axis reflecting grazing management intensity, going from well grazed 

on the left to ungrazed, with developing scrub, to the right. The position of the species- 

poor MG6 group at the top of the ordination reflects improved grasslands. Only one 

transect was classified as CG7. This reflects the true rarity of this type in southern Britain 

outside Porton Down (Rodwell 1992). 

82 



Figure 3.5: A model of vegetation dynamics at Porton Down 
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3.3 RABBIT INDICES 

The relationship between sward height and two measures of fecal pellet production at two 

sample nests is shown in Table 3.2. The relationship generally increases in strength from 

the less than 8 day measure in Im2 to the total number of pellets in 4m2. 

Table 3.2: Spearman rank correlation coefficients between sward height and fecal pellet 

production measures 

Quadrat size 

l m2 4m2 

Fecal pellets <8 days -0.491*** -0.524*** 

Total No. fecal pellets -0.513*** -0.512*** 

*** All significant at P<0.001. 

It was felt safe to conclude that a simple measure of total number of fecal pellets in the 

4m2 sample would be an accurate estimate of rabbit grazing intensity for this study. 

To ensure that this measure related to that used by Dolman & Sutherland (1992 - see 

Section 2.8.1), twenty permanently marked 4m2 quadrats were randomly selected from a 

series of fifty two used for vegetation monitoring by the ECN project at Porton Down and 

were re-located in June and July 1998. Total fecal pellet counts were carried out in these 

quadrats and then all fecal pellets were removed. After a period of between 14 and 20 
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days, quadrats were re-visited and the number of fecal pellets were counted. This gave a 

daily rate of fecal pellet production for each quadrat. The relationship between this rate 

(Ln transformed) and total pellet count was significant (F1,18 = 4.459; P=0.049). The 

measures are therefore complimentary. 

3.4 SWARD HEIGHT ASSESSMENTS 

Figure 3.6 shows the average sward heights grouped by rabbit grazing pressure and for 

each sample period. It is clear that overall sward heights at any season are strongly 

influenced by grazing pressure. Also, sward heights follow a curve where initially, 

biomass growth is greater than that consumed by rabbits. By July, an equilibrium is 

reached and thereafter grazing reduces biomass and also height quite rapidly. The heavily 

grazed (rank = 3) sward only varies by a centimetre or so on average over the whole 

season and some of this is due to flowering spikes of species such as Sanguisorba minor in 

mid-summer. The effect shown by the least grazed (rank = 1) group is augmented by the 

death and physical collapse of tall grass tussocks in totally ungrazed areas. 
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Figure 3.6: Average sward heights grouped by rabbit grazing pressure for each sample 

period 
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Figure 3.7: The relationship between adjusted adult counts and larval food-plant predation 

rate of dark green fritillary in 1997 (95 per cent confidence limits shown) 
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Dark green fritillaries are strong fliers and would find it easy to travel many hundreds of 

metres and further, to find suitable habitat for resource requirements other than that 

associated with breeding. It would seem reasonable to assume from this study therefore, 

that counts and indices based on adult numbers are a good index of habitat use over the 

entire butterfly species life-cycle for most if not all species in this study. 
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3.6 THE 1995 SUMMER DROUGHT 

The summer of 1995 was one of the warmest and driest in the UK since records began. 

June - August rainfall was the lowest in the 229 year combined series for England and 

Wales, while temperatures in August 1995 were the second highest for any month in the 

336 year Central England Temperature Record (Marsh 1996). Most of 1996 also had 

below average rainfall and some aspects of the drought, such as dry soil conditions, 

persisted until 1997, despite some wet periods in autumn 1995 and winter 1995-96 

(Morecroft et al 2000). June - August means for temperature and rainfall at all terrestrial 

ECN sites between 1993 and 1997 are shown in Figures 3.8a & b. 

It can be seen from these figures that Porton Down experienced extreme drought and high 

temperatures. The general effects of this drought are being investigated across the ECN for 

butterflies and other invertebrate groups (Morecroft et al In Press). It is clear that, in 

considering data from this period, particular care must be taken to account for unusual 

behaviour in the day-flying butterflies. This is particularly the case for species which may 

have been searching for less desiccated food-plants on which to lay their eggs. Such plants 

may have been situated in more sheltered areas or even different habitats and 

microhabitats compared to more `normal' years (Dennis 1993). 
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Figure 3.8a: June - August means for temperature at all terrestrial ECN sites between 

1993 and 1997 
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Figure 3.8b: June - August means for rainfall at all terrestrial ECN sites between 1993 

and 1997 
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3.7 DISCUSSION 

As a prelude to investigations into butterfly-habitat relationships, this chapter has proven 

useful in setting out the context in terms of vegetation dynamics and relationships among 

calcareous grassland communities. Relationships between soil type, grassland age, 

management and calcareous grassland communities will clearly influence butterfly species 

and communities in terms of food-plant abundance and other preferred habitat features. 
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4. REGRESSION ANALYSIS OF BUTTERFLIES ON PORTON DOWN 

4.1 INTRODUCTION 

This chapter presents analyses of butterfly presence or population density (for the 

commonest species) as defined by habitat and environmental variables and therefore 

defines species' baseline models at the local scale. Analyses are presented by taxonomic 

order given in Thomas and Lewington (1991). 

4 .2 OVERVIEW OF ANALYSIS OF SMALL SKIPPER Thymelicus sylvestris AND 

ESSEX SKIPPER Thymelicus lineola 

There was an initial problem in the use of data gathered in the field in that, due to field 

identification difficulties, small and Essex skippers were sometimes recorded as ̀ small' 

skipper species where identification was not possible down to species level. Some sample 

transects may have had records of Essex plus `small', small plus `small', all three or only 

`small'. It was decided that where one true species was recorded plus `small' then the 

sample could not be used for analysis for the alternative true species, as there is no way of 

knowing the probability of the alternative true species being present. Also, where only 

`small' skippers were recorded in a transect, that sample would not be used for analysis for 

either species. This should not have biased the analyses as identification to true species 

was usually weather dependant, with specific identification more likely during cooler 

weather as the butterflies were less active. 
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4.3 SMALL SKIPPER Thymelicus sylvestris 

Analysis of the 1995 Porton Down data produced the following model: 

Independent variable Logit estimate 

(s. e. ) 

Constant -7.988 (2.604) 

MG5/6 -11.46 (34.49) 

Food-plant 1.131 (0.4957) 

Change in scaled Probability 

deviance x2 (all 

5.168 

9.03 

Bare*Sward 0.07278 (0.03592) 6.926 

(Total Model Scaled Deviance x23 = 20.8; P<0.001) 

0.02301 

0.002656 

0.008495 

It was not possible to test the predictive power of this model against 1997 Porton Down 

data as small skippers were very scarce in this year (frequency of 3 out of 55 transects 

where data were useable for this species, see Section 4.2). To test the predictive power of 

the model, predicted P-values were therefore calculated for the 1996 Fragmented Site data 

and regressed against Fragmented Site transect count totals. This relationship is not 

significant (Spearman Rank Correlation Coefficient, rs = 0.166; n= 71, P>0.1). 

This model was however generated from a small sample size (frequency of presence =9 

out of 50 transects in 1995), which may explain its lack of predictive power. 
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Analysis of Fragmented Site local scale data revealed an apparently better model: 

Independent variable Logit estimate 

(s. e. ) 

Constant 3.28 (0.9363) 

Rabbit Index -0.1991 (0.08802) 

Bare -0.7761 (0.2161) 

Change in scaled Probability 

deviance x2 all df =1 

12.43 <0.001 

20.15 <0.001 

(Total Model Scaled Deviance )? 2 = 29.88; P «0.001) 

To test the predictive power of the model, predicted P-values were calculated for the 1995 

Porton Down data and are shown plotted against transect count totals in Figure 4.1. This 

relationship approaches significance (Spearman Rank Correlation Coefficient, rs = 0.268; 

n= 50, P>0.05). 

4.4 ESSEX SKIPPER Thymelicus lineola 

Analysis of the 1995 Porton Down data produced a poor model with very large variable 

coefficients. This model was: 

Logit (-55.95 -(0.2148*Rabbit Index)-(47.04*CG6)-(3.366*Aspect)+(6.349*Nectar 

Sources)+(1.478*(Bare*Sward Height)) 
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Modelling iteration was stopped as there was no further convergence. This was due to the 

small sample size (frequency of presence =8 out of 49 transects under the above criteria). 

Analysis of Fragmented Site local scale data revealed an apparently better model: 

Independent variable Logit estimate Change in scaled Probability 

(s. e. ) deviance x2 (all df =1 

Constant -0.2891 (0.8829) 

Rabbit Index -0.3588 (0.1493) 18.3 <0.001 

Scrub 0.4355 (0.173) 8.467 0.003612 

Bare*Stones -0.1292 (0.03837) 17.3 <0.001 

(Total Model Scaled Deviance x23 = 39.36; P «0.001) 

Figure 4.1: The relationship between predicted P-values generated from 1995 Porton 

Down data and transect count totals for small skipper 

u. a 
0.8 

0.7 
0.6 
0.5 

. 0.4 

0.3 

0.2 
0 0.1 

0.0 06ea1 

-0.1 

-2 02468 10 12 
Total counts per transect 

95 



To test the predictive power of the model, predicted P-values were calculated for the 1995 

Porton Down data and are shown plotted against transect count totals in Figure 4.2. This 

relationship is highly significant (Spearman Rank Correlation Coefficient, rg = 0.444; n= 

47, P<0.002). 

Figure 4.2: The relationship between predicted P-values generated from 1995 Porton 

Down data and transect count totals for Essex skipper 
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4.5 SUMMARY OF SMALL AND ESSEX SKIPPER MODELS 

It would seem that models generated from Fragmented Site local scale data have medium 

to strong predictive power when applied to Porton Down data. They are therefore 

considered adequate for predictive and descriptive use on a regional basis and between 

years. 
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4.6 SILVER-SPOTTED SKIPPER Hesperia comma 

Analysis of the 1995 Porton Down data produced the following model: 

Independent variable Logit estimate 

(s. e. ) 

Change in scaled Probability 

deviance x2 (all df =1 

Constant -2.09 (0.696) 

MGi -9.306 (20.94) 

Slope 0.4975 (0.1659) 

9.701 0.001842 

16.74 <0.001 

(Total Model Scaled Deviance x22 = 26.45; P<0.001) 

When the 1995 model was used to generate P-values from 1997 Porton Down data and 

then regressed against total counts on the same transects, there was no relationship 

(Spearman Rank Correlation Coefficient, rs = -0.051; n= 67, NS). 

The conventional wisdom is that in the UK, the silver-spotted skipper selects south-facing 

slopes where it can warm up in direct sunlight and it can lay eggs on small tussocks of 

sheep's fescue Festuca ovina on the edges of bare ground. This allows eggs and early 

larval instars to develop in an environment where temperatures are raised above the 

surrounding ambient (BUTT 1986; Thomas et al 1986). During the 1995 summer flight- 

period, conditions became very hot and dry (see Section 3.6) and much of the grassland 

became desiccated. Lepidopterists at other sites reported seeing silver-spotted skippers in 

cooler habitats where they had never been seen before. 
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A plot of log-transformed (In) mean counts grouped by aspect (Figure 4.3) reveals that 

silver-spotted skippers were actively seeking cooler aspects, or were actively avoiding hot 

and dry aspects during their 1995 flight-period. Comparison with the `availability' of 

aspect on the sample transects reveals that this is definitely the case (Figure 4.4). 

The same plots for transects sampled in 1997 on Porton Down (Figures 4.5 and 4.6) shows 

that in that year, silver-spotted skippers were selecting by aspect in a much more expected 

fashion. The summer of 1997, although temperatures were almost as high as those 

recorded in summer 1995, did not experience drought conditions (see Section 3.6). It is 

reasonable therefore, to assume that this species was selecting habitat using criteria 

observed during the majority of `normal' years in terms of weather during 1997. 

Figure 4.3: Log-transformed (In) mean counts grouped by (median) aspect for silver- 

spotted skipper in 1995 
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Figure 4.4: Availability of aspect to silver-spotted skippers on the sample transects in 1995 
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Figure 4.5: Log-transformed (In) mean counts grouped by (median) aspect for silver- 

spotted skipper in 1997 
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Figure 4.6: Availability of aspect to silver-spotted skippers on the sample transects in 1997 
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A model was therefore produced using Porton Down 1997 data. This was: 

Independent variable Logit estimate 

(s. e. ) 

Constant -5.726 (1.884) 

CG6 2.795 (1.428) 

Slope -0.09228 (0.04935) 

Food-plant 0.5572 (0.1988) 

Nectar Sources 0.5397 (0.2083) 

Change in scaled Probability 

deviance x2 alli___df =1l 

4.677 0.03057 

3.98 0.04604 

11.85 <0.001 

8.345 0.003868 

(Total Model Scaled Deviance x24 = 26.04; P<0.001) 
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When predicted P-values were generated from the 1995 Porton Down data set and plotted 

against counts on the same transects, there was a significant relationship (Figure 4.7), 

(Spearman Rank Correlation Coefficient, rs = 0.284; n= 60, P<0.05). 

Given the above scenario, it is reasonable to assume that this model is adequate to predict 

and describe silver-spotted skipper habitat selection behaviour during most `normal' years 

in terms of weather, although its adequacy as a regional model is questionable. 

Figure 4.7: The relationship between predicted P-values generated from 1995 Porton 

Down data and transect count totals for silver-spotted skipper 
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4.7 LARGE SKIPPER Ochlodes venata 

Analysis of the 1995 Porton Down data produced the following model: 
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Independent variable Logit estimate 

Constant 

CG3 

Aspect 

Bare*Sward 

Food-plant 

(s. e. ) 

-3.291 (1.872) 

6.356 (2.117) 

-1.52 (0.5424) 

0.1761 (0.07542) 

0.7212 (0.4014) 

Change in scaled Probability 

deviance x2 (all df =1 

22.02 <0.001 

20.37 <0.001 

11.57 <0.001 

4.277 0.03863 

(Total Model Scaled Deviance x24 = 39.63; P «0.001) 

Unfortunately, the model could not be tested against 1997 Porton Down data as only two 

large skippers were recorded on two transects. Predicted P-values for 1996 Fragmented 

Site transects were generated from the 1995 Porton Down model and plotted against 

counts on the same transects. This showed a significant relationship (Figure 4.8), 

(Spearman Rank Correlation Coefficient, rs = 0.256; n= 94, P<0.02). 

This is a relatively rare species on the Porton Down grasslands, but the model produced 

from the 1995 data, when it was slightly more widespread, does appear to reflect objective 

knowledge of the species' habitat requirements and carries a high degree of statistical 

significance. The model also appears to predict habitat selection on a regional basis quite 

well. 
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Figure 4.8: The relationship between predicted P-values generated from 1996 Fragmented 

Site data and transect count totals for large skipper 
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4.8 DINGY SKIPPER Erynnis taxes 

Analysis of the 1995 Porton Down data produced the following model: 

Independent variable Logit estimate Change in scaled Probability 

(s. e. ) deviance x. 2 all df =1 

Constant -5.106 (1.374) 

Aspect 0.3087 (0.1534) 4.634 0.03134 

Food-plant 0.505 (0.1989) 8.904 0.002845 

(Total Model Scaled Deviance x22 = 14.04; P<0.001) 
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When the model was tested by generating predicted P-values from the 1997 Porton Down 

data set and regressing these against counts on the same transects, there was no 

relationship, (Spearman Rank Correlation Coefficient, r$ = 0.218; n= 67, P>0.05). This is 

another uncommon species at Porton Down and it may be that the low frequencies of 

occurrence (13 in 1995,11 in 1997) may have affected the accuracy of the model for 

predictive purposes. 

4.9 GRIZZLED SKIPPER Pyrgus malvae 

Analysis of the 1995 Porton Down data produced a poor model where no variables were 

fitted to any degree of significance (the nearest being food-plant at change in scaled 

deviance x21 = 1.99; P=0.1583). This was almost certainly due to the small sample size 

(frequency of presence =4 out of 60 transects). 

In 1997, grizzled skippers were present in quite large numbers, probably due to the warm 

late winter/early spring weather. The BMS Index for 1997 at Porton Down was 86 

compared to 22 in 1995. A model was therefore produced using Porton Down 1997 data. 

This was: 
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Independent variable Logit estimate Change in scaled 

(s. e. ) deviance x2 

Constant -1.983 (0.6084) 

CG7 2.12 (0.8868) 7.413 

Food-plant 0.3804 (0.1578) 6.66 

(Total Model Scaled Deviance x22 = 11.29; P=0.003535) 

Probability 

a11ý, df =1) 

0.006475 

0.00986 

When the model was tested by generating predicted P-values from the 1995 Porton Down 

data set and regressing these against counts on the same transects, there was no 

relationship (Spearman Rank Correlation Coefficient, r3 = 0.038; n= 60, NS). This is an 

even less common species at Porton Down than dingy skipper and its generally low 

frequencies of occurrence would probably affect the accuracy of the model for predictive 

purposes during most years. 

4.10 GREEN HAIRSTREAK Callophrvs nibä 

Analysis of the 1995 Porton Down data produced the following model: 
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Independent variable Logit estimate 

(s. e. ) 

Constant -4.109 (1.297) 

CG2 2.47 (1.013) 

CG6 -8.611 (15.66) 

Scrub 0.4648 (0.1452) 

Change in scaled Probability 

deviance x2 (all df =1 

7.776 0.005294 

4.691 0.03032 

14.19 <0.001 

(Total Model Scaled Deviance x23 = 27.48; P «0.001) 

To test the predictive power of the model, predicted P-values were calculated for the 1997 

Porton Down data and are shown plotted against transect count totals in Figure 4.9. This 

relationship is highly significant (Spearman Rank Correlation Coefficient, rs = 0.408; n= 

67, P<0.001). 

Figure 4.9: The relationship between predicted P-values generated from 1997 Parton 

Down data and transect count totals for green hairstreak 
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It would therefore seem that the above model is adequate for descriptive and predictive 

purposes between years. 

4.11 SMALL COPPER Lycaena phlaeas 

A model was initially produced using 1995 Porton Down data. However, there were no 

statistically significant terms in the model, the highest change in scaled deviance x2ý 

value being 3.05 (P = 0.08074) for the parameter scrub. This model was therefore rejected. 

Consequently, a model was produced using 1997 data, when small coppers were more 

abundant and widespread at Porton Down (1997 BMS Index of 152 compared to 54 in 

1995). 

This model was: 

Independent variable Logit estimate 

(s. e. ) 

Constant -7.525 (2.405) 

CG6 

Nectar Sources 

-8.475 (22.1) 

1.057 (0.3931) 

Change in scaled Probability 

deviance ßr2 (all df =1 

4.917 0.02659 

10.79 0.00102 

(Total Model Scaled Deviance x22= 12.76; P=0.001695) 

107 



To test the predictive power of the model, predicted P-values were calculated for the 1995 

Porton Down data and regressed against transect count totals. This relationship is not 

significant (Spearman Rank Correlation Coefficient, rs = 0.088; n= 60, NS). However, the 

test would suffer from a paucity of data in 1995 (frequency of 9 on 60 transects) as 

suggested by the small skipper analysis (Section 4.3). 

It would therefore seem that the above model is probably adequate for descriptive and 

predictive purposes between years. 

4.12 SMALL BLUE Cupido minimus 

Analysis of the 1995 Porton Down data showed no significant terms but the closest to 

significance produced the following model: 

Independent variable Logit estimate Change in scaled 

(s. e. ) deviance x2 

Constant 0.8059 (1.7) 

Bare -0.8543 (0.5629) 2.712 

Food-plant -6.899 (25.08) 2.042 

(Total Model Scaled Deviance x22 = 4.851; P=0.08843) 

Probability 

all df =1 

0.0996 

0.153 

This species was only common in 1995 when the BMS Index at Porton Down was 45, 

having been 161 in 1994. Subsequently, an apparent decline has continued with BMS 

Indices of 9 and 10 in 1996 and 1997 respectively. This species has only one food-plant, 
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kidney vetch Anthyllis vulneraria, which is prone to boom and bust population cycles 

(Morton 1985), often germinating strongly after hot summers but being suppressed by a 

series of cool summers (BUTT 1986). Also, the small blue lays its eggs on the flowers 

where the larvae also develop, so lack of flowering produces a severe problem to this 

species (BUTT 1986). Kidney vetch was very common at Porton Down in 1994 but 

declined thereafter. The resulting low populations of small blues have not enabled testing 

or improvement of the above model. 

It is not known, therefore, whether the above model is adequate for descriptive and 

predictive purposes between years. 

4.13 BROWN ARGUS Aricia agestis 

Analysis of the 1995 Porton Down data produced the following model: 

Independent variable Logit estimate 

(s. e. ) 

Constant -0.2932 (0.9534) 

Sward Height 

Scrub 

Food-plant 

-0,3681 (0.1436) 

0.3442 (0.1492) 

0.4259 (0.1683) 

Change in scaled Probability 

deviance x2 all df =1 

10.17 0.001427 

6.339 0.01181 

8.237 0.004104 

(Total Model Scaled Deviance )? 3 = 27.32; P «0.001) 
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To test the predictive power of the model, predicted P-values were calculated for the 1997 

Porton Down data and are shown plotted against transect count totals in Figure 4.10. This 

relationship is highly significant (Spearman Rank Correlation Coefficient, rs = 0.383; n= 

67, P<0.002). 

It would therefore seem that the above model is adequate for descriptive and predictive 

purposes between years. 

Figure 4.10: The relationship between predicted P-values generated from 1997 Porton 

Down data and transect count totals for brown argus 
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4.14 COMMON BLUE Polyommatus Icarus 

Models were initially produced from 1995 Porton Down data using corrected indices as 

normal response variables. This produced the following model: 
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Independent variable Estimate Deletion test Probability 

(s. e. ) F-statistic (all df =1,55) 

Constant 2.673 (1.149) 5.415 0.02367 

Sward Ht*Food-plant 0.8833 (0.01948) 20.571 <0.001 

Sward Ht*Rabbit Ind. -0.002359 (0.0007) 11.296 0.001418 

Sward Ht*Bare -0.04419 (0.02071) 4.552 0.03736 

Aspect 0.2764 (0.1355) 4.16 0.0462 

Scale parameter = 5.503; Filliben coefficient = 0.9926 

When predicted populations were regressed against observed for 1997 Porton Down data, 

there was no trend and the relationship was not significant (Spearman Rank Correlation 

Coefficient, rs = -0.05 1; n= 67, NS). 

Examination of the 1995 population curve (Figure 4.11) showed that there was a very 

large second generation, presumably due to the increasingly warm and dry conditions 

prevailing during the second flight period. It is very likely, therefore, that common blue 

behaviour in terms of habitat selection, was atypical during this period and may have been 

instrumental in producing a `false' model as with the silver-spotted skipper. 

A model was therefore produced using the 1997 Porton Down data set. This model was: 
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Independent variable Estimate Deletion test Probability 

(s. e. ) F-statistic (all df =1,64) 

Constant 2.782 (0.469) 35.177 <0.001 

Slope -0.1348 (0.03493) 14.898 <0.001 

Scrub 0.185 (0.08331) 4.934 0.02988 

Scale parameter = 3.326; Filliben coefficient = 0.9891 

Figure 4.11: The 1995 population curve for common blue at Porton Down 
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Predicted populations were generated from this model for 1995 Porton Down data and 

regressed against (adjusted) observed. Although the relationship is a much better one than 

the previous it is still not significant (Spearman Rank Correlation Coefficient, r9 = 0.226; n 

= 60, P>0.05). 
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It was decided to look at a model produced from Fragmented Site data to see whether 

there was any predictive power shared between models. Using individual Fragmented Site 

transects as independent samples, the model was: 3.648+(0.2625*Aspect); scale parameter 

= 14.68; Filliben coefficient = 0.974. None of the terms were significant. 

This model was therefore not useable for predictive purposes. 

When predicted populations for Fragmented Site 1996 data are generated from the 1995 

Porton Down model and plotted against observed (Figure 4.12), this relationship is 

significant (Spearman Rank Correlation Coefficient, rs = 0.243; n= 94, P<0.02). 

It would seem that the best overall model for descriptive and predictive purposes between 

years and on a regional scale was the model derived from the Porton Down 1995 data. 

4.15 CHALKHILL BLUE Lysandra coridon 

Analysis of the 1995 Porton Down data produced the following model: 

Independent variable Logit estimate Change in scaled 

(s. e. ) deviance x2 

Constant -1.122 (0.3077) 

Food-plant 4.468 (10.6) 7.976 

(Total Model Scaled Deviance x21= 7.976; P=0.00474) 

Probability 

lall df =1 

0.00474 
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Figure 4.12: The relationship between predicted populations for Fragmented Site 1996 

data and transect count totals for common blue 
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There were not enough counts from the Porton Down 1997 data to test the predictive 

power of this model. However, it was felt that due to the relative scarcity of the food-plant 

horse-shoe vetch Hippocrepis comosa at Porton Down, this model may not be adequate 

for regional and between year predictive purposes. To test this, a model was produced 

using Fragmented Site data, This was: 

Independent variable 

Constant 

Food-plant 

Logit estimate 

(s, e. ) 

-1.592 (0.3158) 

0,7296 (0.1709) 

Change in scaled Probability 

deviance x2 (all df =1 

26.7 <0.001 

(Total Model Scaled Deviance x21= 26.7; P<0.001) 

00 

a 
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0 f 

114 



Predicted P-values were generated from this model for the Porton Down 1995 data and 

plotted against observed count totals on the same transects (Figure 4.13). This relationship 

is significant (Spearman Rank Correlation Coefficient, rs = 0.344; n= 60, P<0.01). 

Similary, when predicted P-values were generated for Fragmented Site transects from the 

Porton Down 1995 model data and plotted against observed count totals on the same 

transects (Figure 4.14), the relationship is highly significant (Spearman Rank Correlation 

Coefficient, rs = 0.599; n= 94, P «0.001). 

Figure 4.13: The relationship between predicted P-values generated from 1995 Porton 

Down data and transect count totals for chalkhill blue 
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Figure 4.14: The relationship between predicted P-values generated from 1996 

Fragmented Site data and transect count totals for chalkhill blue 
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The important feature of these models is that the food-plant is consistently selected as the 

single important variable at the local scale of analysis. The fact that the models vary 

widely in their predictive power should not be cause for concern as the food-plant 

coefficient would not be forced into any regional model. 

4.16 ADONIS BLUE Lysandra bellargus and 4.17 DUKE OF BURGUNDY Namaeris 

lucina 

There were insufficient data from any year to perform modelling for these species. 

4.18 DARK GREEN FRITILLARY Arrvnnis a 'lain 

Analysis of the 1995 Porton Down data produced the following model: 
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Independent variable Estimate Deletion test 

(s. e. ) F-statistic 

Constant 2.979 (0.4266) 48.77 

CG3 1.784 (0.5868) 9.239 

Food-plant 0.4101 (0.114) 12.938 

Scale parameter = 3.537; Filliben coefficient = 0.9951 

Probability 

fall df =1,55) 

<0.001 

0.003598 

<0.001 

This model's predictive power was tested by generating predicted populations for the 1997 

Porton Down data and plotting them against observed (adjusted) populations (Figure 

4.15). This relationship is highly significant (Spearman Rank Correlation Coefficient, rs = 

0.36; n= 67, P<0.005). 

This model therefore appears to be adequate to describe and predict dark green fritillary 

habitat selection on a between year basis. 
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Figure 4.15: The relationship between predicted populations for Porton Down 1997 data 

and transect count totals for dark green fritillary 
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4.19 MARSH FRITILLARY Euphydryas aurinia and 4.20 WALL Lasiommata me. eera 

There were insufficient data from any year to perform modelling for these species. 

4.21 MARBLED WHITE Melanargia galathea 

Analysis of the 1995 Porton Down data produced the following model: 
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Independent variable Estimate Deletion test Probability 

(s. e. ) F-statistic (all df =1,55) 

Constant 0.1978 (0.7378) 0.072 0.7895 

Sward Height 0.2051 (0-04583) 20.023 <0.001 

CG3 1.374 (0.6611) 4.32 0.04235 

Scrub 0.3393 (0.09303) 13.308 <0.001 

Stones -0.5024 (0.1752) 8.218 0.005867 

Scale parameter = 3.014; Filliben coefficient = 0.9952 

This model's predictive power was tested by generating predicted populations for the 1997 

Porton Down data and plotting them against observed (adjusted) populations (Figure 

4.16). This relationship is significant (Spearman Rank Correlation Coefficient, rs = 0.317; 

n= 67, P<0.01). 

This model therefore appears to be adequate to describe and predict marbled white habitat 

selection on a between year basis. 
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Figure 4.16: The relationship between predicted populations for Porton Down 1997 data 

and transect count totals for marbled white 
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4.22 GRAYLING Hipparchia semele 

There were insufficient data from any year to perform modelling for this species. 

4.23 HEDGE BROWN Pyronia tithonus 

Analysis of the 1995 Porton Down data produced the following model: 
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Independent variable Logit estimate 

(s. e. ) 

Constant 5.669 (2.357) 

Food-plant -1.068 (0.3536) 

Change in scaled Probability 

deviance x2 (all df =1 

11.94 <0.001 

(Total Model Scaled Deviance x21= 11.94; P<0.001) 

Predicted P-values were generated from this model for the Porton Down 1997 data and 

regressed against observed count totals on the same transects. This relationship is not 

significant (Spearman Rank Correlation Coefficient, rs = -0.086; n= 67, NS). 

Hedge brown is another species which is relatively rare in some years on the Porton Down 

grasslands (frequency of 9 on 60 transects in 1995). A model was produced using the 

Fragmented Site 1996 transect data to see whether it would provide stronger descriptive 

and predictive power. This model was: 

Independent variable Estimate 

(s. e. ) 

Constant 2.274 (0.8908) 

CG3 2.197 (0.805) 

Scrub 0.3888 (0.1496) 

Rabbit Index -0.1217 (0.04979) 

Deletion test Probability 

F-statistic (all df =1,90) 

6.513 0.01239 

7.45 0.00763 

6.752 0.01094 

5.98 0.01642 

Scale parameter = 13.45; Filliben coefficient = 0.9599 
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This model was used to generate predicted populations for Porton Down in 1995 and 1997 

and these were regressed against observed transect totals (adjusted populations were not 

generated due to the species' relative rarity). Neither of these show a significant 

relationship (Spearman Rank Correlation Coefficient, rs = 0.07; n= 60, NS and rs = 0.061; 

n= 67, NS respectively). 

It would appear that neither the 1995 Porton Down nor the 1996 Fragmented Site model 

has a greater degree of predictive (or descriptive) power than the other. However, the 1996 

Fragmented Site model possesses significant parameters that are objectively good 

predictors for the species and relate to current knowledge of habitat requirements (BUTT 

1996) and also is based on a much larger data set from more `typical' hedge brown habitat. 

The latter model therefore appears to be generally adequate to describe and predict hedge 

brown habitat selection between years. 

4.24 MEADOW BROWN Maniola jurtina 

Analysis of the 1995 Porton Down data produced the following model: 
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Independent variable Estimate Deletion test Probability 

(s. e. ) F-statistic (all df =1,53) 

Constant -0.5093 (1.521) 0.112 0.7392 

MG1 -2.438 (1.044) 5.454 0.02334 

Slope 0.6014 (0.1304) 21.272 <0.001 

Aspect 0.564 (0.1571) 12.898 <0.001 

Nectar Sources 0.812 (0.1737) 21.862 <0.001 

Sward Ht*B are 0.09533 (0.02842) 11.25 0.001476 

Scale parameter = 7.122; Filliben coefficient = 0.9955 

This model excluded one outlier case with an unusually high count. 

This model's predictive power was tested by generating predicted populations for the 1997 

Porton Down data and regressing them against observed (adjusted) populations. This 

relationship is not significant (Spearman Rank Correlation Coefficient, rg = 0.202; n= 67, 

P=0.1). 

This is another species which has a large proportion of its flight period during late summer 

and this may well have affected its habitat selection behaviour during the hot and dry 

months of July and August1995. The model shown above includes significant parameters 

which are counter-intuitive to perceived meadow brown behaviour such as the avoidance 

of longer grassy swards in MG1 communities. This and the selection for steeper slopes, 

which at Porton Down tend to be those which are north-facing, points to behaviour related 

to avoidance of drought conditions during the summer of 1995. Inspection of relationships 
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at a univariate level reveals that both sward height and slope showed differences between 

1995 and 1997 (Figures 4.17 a&b and 4.18 a& b). This may demonstrate the species' 

need to seek less desiccated areas for egg-laying as its larval food-plants (grasses) dried 

up. 

Figure 4.17a: The relationship between adjusted population index and sward height at 

Porton Down in 1995 (first order polynomial regression line shown t) 
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1A linear relationship is not assumed in any of these Figures. 
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Figure 4.17b: The relationship between adjusted population index and slope at Porton 

Down in 1995 (first order polynomial regression line shown) 
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Figure 4.18a: The relationship between adjusted population index and sward height at 

Porton Down in 1997 (first order polynomial regression line shown) 
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Figure 4.18b: The relationship between adjusted population index and slope at Porton 

Down in 1997 (first order polynomial regression line shown) 
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A model was subsequently produced using data for Porton Down in 1997 which was 

almost as warm as 1995 but much more normal in terms of rainfall (see Section 3.6). This 

was: 

Independent variable Estimate Deletion test Probability 

(s. e. ) F-statistic (all df =1,61) 

Constant -5.662 (2.98) 3.611 0.06213 

Aspect 0.547 (0.2622) 4.353 0.04113 

Scrub 0.7917 (0.2127) 13.851 <0.001 

Stones 1.456 (0.4454) 10.684 0.00178 

No. Food-plants 1.138 (0.295) 14.885 <0.001 

Bare*Rabbit Ind. -0.004045 (0.0013) 9.688 0.002822 

Scale parameter = 18.28; Filliben coefficient = 0.9951 
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This model's predictive power was tested by generating predicted populations for the 1995 

Porton Down data and plotting them against observed (adjusted) populations (Figure 

4.19). This plot excludes one outlier with an unusually high count. This relationship is 

highly significant (Spearman Rank Correlation Coefficient, rs = 0.605; n= 59, P« 

0.001). 

There was an additional factor which may account for some of the poor predictive power 

of the 1995 model and that was the relatively low population in that year. The BMS Index 

for 1995 was 1923 but was nearly 0.5 times greater in 1997 at 2743. The 1995 Index was 

also up on 1994 (914) and continued to increase in 1996 (2809) so was not solely the 

result of within-season climatic conditions. 

Figure 4.19: The relationship between predicted populations for Porton Down 1995 data 

and transect count totals for meadow brown 
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The 1997 Porton Down model therefore appears to be adequate to describe and predict 

meadow brown habitat selection on a between year basis. 

4.25 RINGLET Aphantopus hyperantus 

It was not possible to produce models from either 1995 nor 1997 Porton Down data as 

frequencies were extremely low in both data sets (4 and 2 respectively). However, the 

species was fairly common at Fragmented Sites and therefore a model was produced from 

1996 Fragmented Site data at a local scale. This was: 

Independent variable Logit estimate Change in scaled 

(s. e. ) deviance x2 

Constant -0.81931 (0.559) 

Aspect -0.2972 (0.1077) 

Rabbit Index -0.08092 (0.03845) 

Scrub*Nectar Sources 0.06265 (0.01516) 

8.866 

5.498 

22.9 

Probability 

(all df =1) 

0.002905 

0.01904 

<0.001 

(Total Model Scaled Deviance X2 3= 30.8; P «0.001) 

There were clear differences between the recording years where, in 1995, ringlets were 

observed ̀ retreating' into their optimal habitat, entirely away from open areas as hot and 

dry conditions ensued (Greatorex-Davies 1996). 1996 was a very much cooler and wetter 

summer and the species was presumably able to recolonize many of the more marginal 

habitats. 
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The model may also reflect differences in habitats where sample transects were placed. 

Most of these were on open grassland at Porton Down whereas there were several more 

scrubby/woodland edge areas on the Fragmented Sites. 

The Fragmented Site model would appear to be an adequate one for descriptive and 

predictive purposes on a regional scale and for most normal years in terms of climate. 

4.26 SMALL HEATH Coenonympha pamphilus 

Analysis of the 1995 Porton Down data produced the following model: 

Independent variable Estimate Deletion test Probability 

(s. e. ) F-statistic (all df =1,54) 

Constant 0.2461 (0.7729) 

CG2 1.945 (0.519) 14,069 <0.001 

CG3 1.935 (0.5461) 12.563 <0.001 

CG6 1.706 (0.8085) 4.452 0.03951 

Slope 0.222 (0.0809) 7.534 0.008204 

Aspect 0.2766 (0.09587) 8.327 0.005603 

Scale parameter = 2.684; Filliben coefficient = 0.9927 

This model's predictive power was tested by generating predicted populations for the 1997 

Porton Down data and plotting them against observed (adjusted) populations 
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Figure 4.20: The relationship between predicted populations for Porton Down 1997 data 

and transect count totals for small heath 
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(Figure 4.20). This relationship is not significant (Spearman Rank Correlation Coefficient, 

rs = 0.223; n= 67,0.1 >P>0.05). There was a large difference between population 

indices recorded in the two years for small heath on the BMS (352 in 1995 and 503 in 

1997,43% higher) and this may explain the relative lack of the model's predictive power. 

This model therefore appears to be adequate to describe and predict small heath habitat 

selection on a between year basis. 
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4.27 SUMMARY OF RESULTS 

Table 4.1: Summary results of habitat analysis on Porton Down. (Significant variables 

obtained from Fragmented Site local scale analyses shown in parentheses) 

Species Significant variables included 

Small skipper ((-)Rabbit Index, (-)Bare Ground) 

Essex skipper ((-)Rabbit Index, Scrub, (-)Bare Ground*Stones) 

Silver-spotted Presence CG6, (-)Slope, Food-plant, Nectar Sources 
skipper 

Large skipper Presence CG3, (-)Aspect, Bare Ground*Sward Height, Food-plant 

Dingy skipper Aspect, Food-plant 

Grizzled skipper Presence CG7, Food-plant 

Green hairstreak Presence CG2, (-)Presence CG6, Scrub 

Small copper (-)Presence CG6, Nectar Sources 

Small blue (No Significant Variables) 

Brown argus (-)Sward Height, Scrub, Food-plant 

Common blue Sward Height*Food-plant, (-)Sward Height*Rabbit Index, (-) 
Sward Height*Bare Ground, Aspect 

Chalkhill blue Food-plant 

Dark green Presence CG3, Food-plant 
fritillary 

Marbled white Sward Height, Presence CG3, Scrub, (-)Stones 

Hedge brown Food-plant 

Meadow brown Aspect, Scrub, Stones, (-)Bare Ground*Rabbit Index, No. Food- 
plants 

131 



Table 4.1 (Continued) 

Ringlet ((-)Aspect, (-)Rabbit Index, Scrub*Nectar Sources) 

Small heath Presence CG2, Presence CG3, Presence CG6, Slope, Aspect 

4.28 DISCUSSION 

Of the eighteen species with enough data to construct models, analysis of all but one 

(small blue) resulted in models which defined their presence or population density 

according to habitat and environmental variables with statistical significance. Of these 

seventeen, ten models showed good between-year predictive power with a further three 

marginal. Only three showed poor between-year predictive power (ringlet could not be 

tested). 

The analyses demonstrate to a large degree, how `fixed' butterflies are in terms of habitat 

selection and this partly reflects the ability of Lepidopterists to be able to predict species' 

presence in certain habitats. However, the fact that only ten of the species showed 

significant selection for food-plants (only two for food-plant only), demonstrates how 

simplistic attempts to predict and manage habitats for this feature only are. As with other 

invertebrate and vertebrate groups (Newton 1998), habitat selection involves a wide 

variety of behavioural, physiological and physical requirements to maintain the adult form 

(Warren 1995). 

Table 4.2 shows species grouped according to their similarity of selection for habitat and 

environmental variables. Groups were partly assigned by a cluster analysis performed in 
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Systat 6.0 and partly by objective comparisons. There are three main groups, assigned 

according to associations with sward height, rabbit index and food-plants, with two further 

poorly defined groups of one and two species respectively. The three main groups do 

reflect a set of species associations according to broad chalk grassland types. The first 

group (large skipper to marbled white), could probably be combined with the second 

(small skipper to meadow brown), in that all species here prefer areas of long grass, 

although for common blue, a mixture of long and short grass areas is ideal (BUTT 1986). 

The third group (silver-spotted skipper to dark green fritillary), is largely characteristic of 

grazed chalk grasslands (BUTT 1986). Hedge brown is included in this group for the 

model having selected its food-plant only, but is very much more a species of sheltered 

areas with longer grass. Small heath could be added to this group as shown by its selection 

for species-rich chalk grassland NVC types, which, at Porton Down, are largely the grazed 

ones (see Section 3.2). The last group (green hairstreak and small copper) is due to these 

species' negative association with CG6 NVC type and this is probably a reflection of their 

preferred habitat which often includes scrubby edges (BUTT 1986). 

Further analysis of species' associations with habitat and environmental variables is given 

in Chapter 7 ("Community Analysis"). 
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5. REGRESSION ANALYSIS OF BUTTERFLIES ON PORTON DOWN PATCHES 

5.1 INTRODUCTION 

This chapter presents analyses of butterfly presence or population density (for the 

commonest species) as defined by patch habitat and environmental variables. The aim of 

these analyses is to identify any medium-scale landscape effects. Analyses are presented 

by taxonomic order given in Thomas and Lewington (1991) and Chapter 4. 

Details of methods used to summarise data derived from Porton Down patches are given 

in Section 2.5. 

5.2 OVERVIEW OF ANALYSIS OF SMALL SKIPPER 77tymelicus sylvestris and 

ESSEX SKIPPER Thymelicus lineola 

The same criteria were used for including data on small and Essex skippers from 

fragmented sites as on Porton Down (see Section 4.2). 

5.3 SMALL SKIPPER Thymelicus sylvestris 

Analysis of the 1995 Porton Down Patch data produced the following model: 

135 



Independent variable Logit estimate Change in scaled 

(s. e. ) deviance ßr2 

Constant -4.334 (1.788) 

Food-plant 0.872 (0.4321) 5.967 

(Total Model Scaled Deviance )21= 5.967; P=0.01458). 

Probability 

(all df =1 

0.01458 

Predicted P-values were calculated for the 1997 Porton Down Patch data and regressed 

against Porton Down Patch mean counts. This relationship is not significant (Spearman 

Rank Correlation Coefficient, r$ = 0.083; n= 16, NS). 

Although food-plant was not selected in the Porton Down local scale analysis, it was 

strongly correlated with both sward height and rabbit index and included as product 

variables with these in the current GLIM analysis. The process of averaging of data could 

have resulted in any or all of these variables being included in the model. 

5 .4 ESSEX SKIPPER Thvmelicrus lineola 

Analysis of the 1995 Porton Down Patch data failed to produce a significant model. The 

nearest variables to a significant fit were the product of sward height*bare ground (x21= 

3.504; P=0.0612). (-) Bare ground was included as a significant variable in both the local 

scale and Fragmented Site GLIM analyses and was consistently correlated with stones, 

sward height and rabbit index throughout these. 
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5.5 SILVER-SPOTTED SKIPPER Hesperia comma 

Analysis of the 1995 Porton Down Patch data produced the following model: 

Independent variable Logit estimate Change in scaled Probability 

(s. e. ) deviance x2 (all df =1) 

Constant -6.753 (2.575) 

Slope 0.376 (0.1848) 10.57 0.001149 

Nectar sources 1.001 (0.4597) 8.183 0.004228 

(Total Model Scaled Deviance x22= 17.45; P= <0.001) 

Predicted P-values were calculated for the 1997 Porton Down Patch data and regressed 

against Porton Down Patch mean counts. This relationship is not significant (Spearman 

Rank Correlation Coefficient, rs = -0.021; n= 17, NS). 

Interestingly, (+)slope was selected in the Porton Down 1995 local scale GLIM analysis 

while nectar sources was selected from the 1997 data set when climatic conditions were 

more ̀ normal' (see Section 4.6). 

5.6 LARGE SKIPPER Ochlodes venata 

Analysis of the 1995 Porton Down Patch data failed to produce a significant model. The 

nearest variable to a significant fit was aspect (x21 3.182; P=0.07445). Aspect was one 

of the variables selected in the Porton Down 1995 local scale GLIM analysis. 
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5.7 DINGY SKIPPER Erynnis taees 

Analysis of the 1995 Porton Down Patch data produced the following model: 

Independent variable Logft estimate 

(s. e. ) 

Constant -7.405 (2.696) 

Aspect 0.633 (0.3288) 

Food-plant 0.9243 (0.3519) 

Change in scaled Probability 

deviance x2 (all d=11 

5.224 0.02228 

12.35 <0.001 

(Total Model Scaled Deviance x22=15.48; P <0.001) 

Predicted P-values were calculated for the 1997 Porton Down Patch data regressed against 

Porton Down Patch mean counts, This relationship is not significant (Spearman Rank 

Correlation Coefficient, rg = 0.016; n= 17, NS). 

The variables aspect and food-plant were the only ones selected in the Ponton Down 1995 

local scale GLIM analysis. 

5.8 GRIZZLED SKIPPER Fungus malvae 

Analysis of the 1995 Porton Down Patch data produced the following model: 
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Independent variable Logit estimate Change in scaled 

(s. e. ) deviance x2 

Constant 0.9203 (0.9676) 

Nrst Pop Node -1.559 (0.769) 7.752 

(Total Model Scaled Deviance x21= 7.752; P=0.005365) 

Probability 

(all df=1 

0.005365 

It was not possible to test the model against observed 1997 data as there were too few 

recorded in `test' patches, despite the species being very much more common in this year. 

This landscape variable was of over-riding importance in explaining variation in the data. 

The next nearest variable to being included was food-plant (x21= 2.939, P=0.08646), 

which was one of the local scale variables included in the Porton Down 1997. 

5.9 GREEN HAIRSTREAK Callonhas nibi 

Analysis of the 1995 Porton Down Patch data produced the following model: 

Independant variable Logit estimate 

(s. e, ) 

Constant -9.566 (32.41) 

CG2 10.56 (32.41) 

Change in scaled Probability 

deviance x2 (all df =l 

11.09 <0.001 

(Total Model Scaled Deviance)?, = 11.09; P <0.001) 
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Predicted P-values were calculated for the 1997 Porton Down Patch data and regressed 

against Porton Down Patch mean counts. This relationship is not significant (Spearman 

Rank Correlation Coefficient, rs = 0.159; n= 17, NS). However, high mean counts were 

observed in patches where there were also high predicted P-values. 

Presence of CG2 was one of the significant variables selected in the Porton Down 1995 

local scale GLIM analysis for this species. 

5.10 SMALL COPPER Lycaena phlaeas 

Analysis of the 1995 Porton Down Patch data failed to produce a significant model. The 

nearest variable to a significant fit was the product of Nrst. Pop. Node*Ave. Dist. to Nodes 

(x21= 2.498; P=0.114). 

5.11 SMALL BLUE Cupido minimus 

Analysis of the 1995 Porton Down Patch data produced the following model: 

Independent variable Logit estimate 

(s. e. ) 

Constant 

Bare ground 

Change in scaled 

deviance Z 

Probability 

(all df =1 

11.3 (5.579) 

-2.268 (1.204) 6.046 0.01394 

Dist. To Nrst Node -10.26 (5.19) 13.52 

(Total Model Scaled Deviance x22 = 17.23; P <0.001) 

<0.001 
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It was not possible to test the model against observed 1997 data as there were too few 

recorded in `test' patches, as the species was very much less common in this year. 

Bare ground was the variable which was closest (x21= 2.712; P 0.0996) to being 

included in the GLIM model in the Porton Down 1995 local scale GLIM analysis for this 

species. However, it would seem that the inclusion of landscape scale variables greatly 

improves the power of the model. 

5.12 BROWN ARGUS Aricia aeestis 

Analysis of the 1995 Porton Down Patch data produced the following model: 

Independent variable Logit estimate Change in scaled Probability 

(all df =1) 

<0.001 

<0.001 

(s. e. ) 

Constant 

Sward height 

0.2372 (1.206) 

-0.6601 (0.2755) 

deviance x2 

14.35 

Scrub 1.048 (0.4648) 11.11 

(Total Model Scaled Deviance x22=19.62; P <0.001) 

Predicted P-values were calculated for the 1997 Porton Down Patch data and regressed 

against Porton Down Patch mean counts. This relationship is not significant (Spearman 

Rank Correlation Coefficient, rs = 0.102; n= 17, NS). However, the highest mean count 

was observed in a patch where there was also a high predicted P-value. 
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Sward height and scrub were two of the three significant variables selected in the Parton 

Down 1995 local scale GLIM analysis for this species the other being food-plant which 

had the next highest x2 value in the regression analysis (x21= 2.861; P=0.09075). The 

Patch analysis therefore produced very similar results to the local scale one. 

5 
. 13 COMMON BLUE Polyommatus icarus 

Analysis of the 1995 Porton Down Patch data failed to produce a significant model. The 

nearest variable to a significant fit was (-) Distance to Nearest Node (F1,29 = 3.756; P= 

0.06241). 

5 . 14 CHALKHILL BLUE Lysandra coridon 

Analysis of the 1995 Porton Down Patch data produced the following model: 

Independant variable Logit estimate 

(s. e. ) 

Constant 2.144 (1.042) 

Ave. Dist, to Nodes -0.7256 (0.2901) 

deviance x2 all df =1 

7.636 0.005721 

(Total Model Scaled Deviance x21 = 7.636; P=0.005721) 

This landscape scale variable was of over-riding importance with no other variable coming 

near to significance for inclusion in the model. 

Change in scaled Probability 
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Predicted P-values were calculated for the 1997 Porton Down Patch data and regressed 

against Porton Down Patch mean counts. This relationship is not significant (Spearman 

Rank Correlation Coefficient, rs = 0.206; n= 17,0.5 >P>0.2). However, the highest 

mean count was observed in a patch where there was also a high predicted P-value. 

5.15 DARK GREEN FRITILLARY Argynnis aglaia 

Analysis of the 1995 Porton Down Patch data produced the following model: 

Independent variable Estimate Deletion test Probability 

(s. e. ) F-statistic (all df =1,28) 

Constant 2.891 (0.6839) 17.87 <0.001 

CG3 1.615 (0.5755) 7.875 0.009018 

Food-plant 0.3946 (0.1781) 4.908 0.03504 

Scale parameter = 2.282; Filliben coefficient = 0,9942 

This model's predictive power was tested by generating predicted mean counts for the 

1997 Porton Down patch data and regressing them against observed mean counts. This 

relationship is not significant (Spearman Rank Correlation Coefficient, r$ = 0.461; n =17, 

0.1 >P>0.05). 

The GLIM patch model is remarkably similar, in both having the same selected local scale 

variables and the parameter estimates generated as the Porton Down 1995 local scale model. 
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5.16 MARBLED WHITE Melanareia galathea 

Analysis of the 1995 Porton Down Patch data produced the following model: 

Independent variable Estimate Deletion test Probability 

(s. e. ) F-statistic (all df =1,27) 

Constant -1.458 (0.8687) 2.818 0.1048 

CG3 2.208 (0.7002) 9.946 0.003929 

Sward height 0.2102 (0.07078) 8.819 0.006188 

Scrub 0.3805 (0.1486) 6.56 0.01633 

Scale parameter = 2.939; Filliben coefficient = 0.985 

This model's predictive power was tested by generating predicted mean counts for the 

1997 Porton Down patch data and regressing them against observed mean counts. This 

relationship is not significant (Spearman Rank Correlation Coefficient, r9 = 0.205; n= 17, 

0.5 >P>0.2). 

The local scale variables selected in the above model were also selected in the Porton 

Down 1995 local scale GLIM analysis, with the addition of (-) stones. 

5.17 HEDGE BROWN Pyronia tithonus 

Analysis of the 1995 Porton Down Patch data produced the following model: 
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Indenendent variable Loeit estimate 

(s. e. ) 

Constant 5.363 (2.572) 

Rabbit Index -0.04344 (0.02185) 

Dist. To Nrst Node -5.453 (2.251) 

Change in scaled Probability 

deviance y2 (all df =1 

7.289 0.006938 

13.76 <0.001 

(Total Model Scaled Deviance x22 = 17.56; P<0.001) 

Predicted P-values were calculated for the 1997 Porton Down Patch data and regressed 

against Porton Down Patch mean counts. This relationship is not significant (Spearman 

Rank Correlation Coefficient, rs = 0.332; n= 17, P<0.2). However, the highest mean 

count was observed in a patch where there was also a high predicted P-value, 

5.18 MEADOW BROWN Maniola '»ý rtina 

Analysis of the 1995 Parton Down Patch data produced the following model: 

Independent variable Estimate Deletion test Probability 

(s. e. ) F-statistic (all df =1.28) 

Constant 9.38 (1.187) 62.424 <0.001 

Scrub*Nectar sources 0.1555 (0.03779) 16.93 <0.001 

Dist. To Nrst Node -2.399 (0.7811) 9.429 0.004713 

Scale parameter = 9.043; Filliben coefficient = 0.9879 
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This model's predictive power was tested by generating predicted mean counts for the 

1997 Porton Down patch data and plotting them against observed mean counts (Figure 

5.1). This relationship is significant (Spearman Rank Correlation Coefficient, rs = 0.544; n 

= 17,0.05 >P>0.02). Figure 5.1 shows that the 1995 model predicts less mean counts 

than were observed. This discrepancy is probably due to the general increase in numbers 

of this species at Porton Down between the years (see Section 4.24). 

Figure 5.1: The relationship between predicted populations for Porton Down 1997 patch 

data and mean transect count totals for meadow brown 
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The 1995 Porton Down local scale model selected six variables, including nectar sources, 

in order to describe the variation in meadow brown numbers. It would seem that the 

inclusion of the landscape scale variable gives a robust and much simpler model which 

also has a high degree of between-year predictive power. 
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5 . 19 RINGLET Aphantopus hyperantus 

There were insufficient data for GLIM analysis for this species. 

5 . 20 SMALL HEATH Coenonymnha namnhilus 

Analysis of the 1995 Porton Down Patch data produced the following model: 

Independent variable Estimate Deletion test Probability 

(s. e. ) F-statistic (all df =1,28) 

Constant 4.47 (0.9294) 23.135 <0.001 

Aspect 0.3001 (0.1362) 4.854 0.03598 

Patch area -0.1158 (0.04051) 8.179 0.00792 

Scale parameter = 2.268; Filliben coefficient = 0.9836 

This model's predictive power was tested by generating predicted mean counts for the 

1997 Porton Down patch data and regressing them against observed mean counts. This 

relationship is significant (Spearman Rank Correlation Coefficient, rs = 0.284; n 17,0.5 

>P>0.2). 

Aspect was one of the variables included in the 1995 Porton Down local scale GUM 

model. 
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5.21 SUMMARY OF RESULTS 

Table 5.1: Summary results of habitat & landscape analysis on porton down patches 

Significant variables included at two scales 

Species Local scale Landscape scale 

Small skipper Food-plant 

Essex skipper (No Significant Variables) 

Silver-spotted Slope, Nectar Sources 
skipper 

Large skipper (No Significant Variables) 

Dingy skipper Aspect, Food-plant 

Grizzled skipper (-)Nearest Pop. Node 

Green hairstreak Presence CG2 

Small copper (No Significant Variables) 

Small blue (-)Bare Ground (-)Nearest Pop. Node 

Brown argus (-)Sward Height, Scrub 

Common blue (No Significant Variables) 

Chalkhill blue (-)Ave. Distance to Pop. 
Nodes 

Dark green Presence CG3, Food-plant 
fritillary 

Marbled white Sward Height, Presence 
CG3, Scrub 

Hedge brown (-)Rabbit Ind. (-)Nearest Pop. Node 

Meadow brown Scrub*Nectar Sources, (-)Nearest Pop. Node 

Ringlet (Insufficient Data) 

Small heath Aspect (-)Patch Area 
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5.22 DISCUSSION 

Of the seventeen species with enough data to construct models, analysis of thirteen 

resulted in models which defined their presence or population density according to patch 

habitat and environmental variables with statistical significance. Of these thirteen, only 

one model showed good between-year predictive power with one approaching marginal. 

For the majority of species with significant models, local scale habitatlenvironmental 

variables were still important, with most having variables in common with the full local 

scale analysis (Chapter 4). The inclusion of a landscape scale variable (in six species) 

appeared to be associated with colonial/territorial species with relatively small, closed 

populations (Warren 1992; Brereton et al 1998) and this suggests that even within a large, 

contiguous block of similar habitat, patch dynamics may play a major part in population 

regulation. In this case, the most simple explanation for the relationships involving 

distance to nodes/node centres is as a surrogate for distance from the high population 

density core of a colony. The non-inclusion of some species which might be included in 

this group, such as silver-spotted skipper and dingy skipper, is logical if their colonies are 

more diffuse at Porton Down, reacting to widespread and relatively abundant resources. 

However, species such as green hairstreak would be expected to show selection for 

landscape scale variables, if indeed the mechanism being detected is associated with 

distance from the high population density core of a colony. 

Table 5.2 shows species grouped according to their similarity of selection for patch habitat 

and environmental variables. Groups were partly assigned by a cluster analysis performed 
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in Systat 6.0 and partly by objective comparisons as in Table 4.2. However, there are 

really only two main groups, assigned according to whether selection included landscape 

scale variables or not. There do not appear to be any further consistent groupings. 

Two species showed selection for landscape scale variables other than distance to the 

nearest node. Small heath showed selection for patch area. The negative relationship with 

patch area shown in Figure 5.2 is at first puzzling but nevertheless clear. As total patch 

area decreases, the total boundary length decreases even though the relative (to area) patch 

boundary length increases and this could be the explanation for the nature of this 

relationship. A preference for `edges', of scrub or tracks and paths, has been quoted in 

BUTT (1986) for example. This may be a reflection of the species' requirement for 

mosaics of short and long turf (opp. cit. ), and is possibly why three NVC grassland types 

were included in the Porton Down 1995 local scale model (Section 4.26). Negative 

density-area relationships are not uncommon in insects (Connor et a! 2000), and other 

effects such as social interaction and predation rates as well as spatial scaling of habitat 

selection (as above) have all been proposed as underlying causes (Bowers and Matter 

1997). 
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Figure 5.2: The relationship between mean adjusted index and patch area for small heath 

on Porton Down patches in 1995 (first order polynomial regression line shown ) 
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Chalkhill blue showed selection for average distance to nodes. This species is known to be 

able to exist in extremely small colonies (Warren 1992). This appears to be the current 

scenario at Porton Down where previously ideal habitat conditions due to lack of rabbit 

grazing had produced large colonies of many hundreds of individuals (R. Ryan pers. 

comm. ). The greatly increased grazing pressure has reduced these colonies to several 

scattered ones containing only a few tens of individuals. Under this scenario, a density- 

distance effect would be extremely difficult to detect, but the alternative measure, average 

distance to nodes ('historical' population cores? ), appears to be sensitive enough to detect 

a residual effect. 
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6. REGRESSION ANALYSIS OF BUTTERFLIES ON FRAGMENTED SITES 

6.1 INTRODUCTION 

This chapter presents analyses of butterfly presence or population density (for the 

commonest species), as defined by habitat, environmental and landscape variables and 

therefore defines species' presence or abundance at the landscape scale. The aim of these 

analyses is to identify landscape-scale effects of patch (site) area and inter-patch distance 

while also accounting for local scale habitat selection. Analyses are presented by 

taxonomic order given in Thomas and Lewington (1991) and Chapters 4 and 5. 

Details of methods used to summarise data derived from Fragmented Site patches are 

given in Section 2.5. 

6.2 OVERVIEW OF ANALYSIS OF SMALL SKIPPER Thvmelicus sylvestris and 

ESSEX SKIPPER Thymelicits lineola 

The same criteria were used for including data on small and Essex skippers from 

fragmented sites as on Porton Down (see Section 4.2). 

6.3 SMALL SKIPPER Thymelicris sylvestris 

Analysis of the 1996 Fragmented Site data produced the following model: 
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Independent variable Logit estimate Change in scaled Probability 

(s. e. ) deviance x2 (all df =11 

Constant 2.644 (1.496) 

Rabbit Index -0.9605 (0.5123) 9.307 0.002283 

Bare Ground -0.8926 (0.3902) 6.384 0.01152 

Sward Ht*Rabbit Ind . 0.1057 (0.0711) 4.047 0.04425 

Patch Area 0.1803 (0.1123) 8.303 0.003958 

(Total Model Scaled Deviance x24 = 21.9; P<0,001) 

Predicted P-values were calculated for the 1997 Fragmented Site data and regressed 

against Fragmented Site transect count means. This relationship is not significant 

(Spearman Rank Correlation Coefficient, rs = 0.073; n= 12, NS). As shown by the 1997 

Porton Down data small skippers were very scarce in this year (frequency of 3 out of 12 

Fragmented Sites a were useable for this species). This may have affected the testing of 

the 1996 model. 

6.4 ESSEX SKIPPER Thynielicus lineola 

Analysis of the 1996 Fragmented Site data produced the following model: 
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Independent variable Logit estimate Change in scaled 

(s. e. ) deviance x. 2 

Constant -0.03171 (1.265) 

Scrub 0.4044 (0.2192) 4.483 

Bare Ground -0.5918 (0.2457) 7.528 

(Total Model Scaled Deviance x22 =10.07; P=0.006506) 

Probability 

(all df=l 

0.03423 

0.006075 

To test the predictive power of the model, predicted P-values were calculated for the 1997 

Fragmented Site data and regressed against transect count means. This relationship is not 

significant (Spearman Rank Correlation Coefficient, rs = 0.222; n= 12, NS). 

6.5 SILVER-SPOTTED SKIPPER Hesperia comma 

Silver-spotted skippers were seen on only one Fragmented Site in 1996 and one in 1997 

during this study. A colony was present at another site, Broughton Down, during the entire 

study period, but no butterflies were seen there during survey work. It is known that the 

species is also present in very low numbers at four other sites. This species has a high 

profile due to its national rarity (Barnett and Warren 1995) and surveyors tend to make 

special efforts to find individuals on sites where long-term survival probability is low. 

In order to investigate how the known distribution of silver-spotted skippers fits the 

available habitat on Fragmented Sites, the Porton Down local scale model was used to 

generate predicted probabilities for all 42 Fragmented Sites surveyed in 1996. This 
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showed that only one of the five highest predicted probabilities (P > 0.8) included a site 

with a colony, although this colony, at Broughton Down, is the strongest outside Porton 

Down. Broughton Down is also the only one of these high probability sites with a good 

landscape link with Porton Down (3.18 km boundary-boundary with a number of 

intervening fragmented sites as potential `stepping stones'). Although this result is 

probably clouded by within-site availability of suitable habitat, it does strongly suggest 

that landscape scale factors are an important feature of silver-spotted skipper distribution. 

This has already been clearly shown in a number of pieces of work on this species (see 

Thomas and Jones 1993; Hill et al 1996). 

6.6 LARGE SKIPPER Ochlodes venata 

Analysis of the 1996 Fragmented Site data produced the following model: 

Independent variable 

Constant 

Aspect 

Logit estimate 

(s. e. ) 

1.182 (0.7758) 

-0.3934 (0.1879) 

Change in scaled Probability 

deviance x2 (all df =l 

5.437 0,01971 

Patch Area*Area CG3 0.6285 (0.4289) 14.34 <0,001 

(Total Model Scaled Deviance x22 = 17.81; P<0.001) 

Predicted P-values for 1997 Fragmented Sites were generated from the 1996 Fragmented 

Site model and regressed against mean counts on the same transects. This showed a non- 
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significant relationship, (Spearman Rank Correlation Coefficient, r, = 0.339; n= 12,0.5 > 

P>0.2). However, the 1996 model does predict high probabilities where the large skipper 

occurred on Fragmented Sites in 1997, which, as with small skipper, was a poor year for 

this species locally (Porton Down BMS Index of 4 in 1997 compared to 15 in 1996). 

6 .7 DINGY SKIPPER Ervnnis tages 

Analysis of the 1996 Fragmented Site data produced the following model: 

Independent variable Logit estimate Change in scaled 

(s. e. ) deviance x2 

Constant -3.57 (1.331) 

Stock Grazing -2.492 (1.404) 4.346 

Food-plant 0.7423 (0.366) 6.274 

Patch Area 0.1952 (0.09686) 8.801 

(Total Model Scaled Deviance )? 3 = 18.32; P<0.001) 

Probability 

(all df =1 

0.0371 

0.01225 

0.003011 

When the model was tested by generating predicted P-values from the 1997 Fragmented 

Site data set and regressing these against mean counts on the same transects, there was no 

relationship, (Spearman Rank Correlation Coefficient, rs = 0.022; n= 12, NS). This 

species was found on only two Fragmented Sites in 1997, one of which had a high 

predicted probability of occurrence. This species did not show a decline locally between 
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these years. It would seem that other factors might be involved in the absence of dingy 

skippers from the Fragmented Sites surveyed in 1997 

6.8 GRIZZLED SKIPPER Pyrgus malvae 

Analysis of the 1996 Fragmented Site data produced the following model: 

Independent variable Logit estimate Change in scaled 

(s. e. ) deviance x2 

Constant -2.303 (0.6014) 

Area CG2 0.554 (0.2294) 14.51 

(Total Model Scaled Deviance x21= 14.51; P<0.001). 

Probability 

allem df =1) 

<0.001 

When the model was tested by generating predicted P-values from the 1997 Fragmented 

Site data set and regressing these against mean counts on the same transects, there was no 

relationship, (Spearman Rank Correlation Coefficient, rs = 0.394; n= 12,0.5 >P>0.2). 

This species was recorded on only one Fragmented Site during 1997, despite both a local 

increase (Porton Down BMS Index of 25 in 1996,86 in 1997) and national increase 

(Greatorex-Davies and Pollard 1997). Predicted probabilities for the 1997 Fragmented 

Sites were generally low however and rapid colonization from other, more suitable sites 

might not be expected. 
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6.9 GREEN HAIRSTREAK Callophrys rubi 

Analysis of the 1996 Fragmented Site data produced the following model: 

Independent variable Logit estimate Change in scaled 

(s. e. ) deviance x2 

Constant -3.649 (1.277) 

Food-plant 0.4928 (0.2297) 6.102 

Patch Area 0.1634 (0.08517) 8.815 

(Total Model Scaled Deviance x22 = 14.92; P<0.001) 

Probability 

(all df =1, l 

0.0135 

0.002988 

Predicted P-values were calculated for the 1997 Fragmented Site data and regressed 

against site mean counts. This relationship is not significant (Spearman Rank Correlation 

Coefficient, rs = -0.131; n= 12, NS). 

As with grizzled skipper, this species was recorded on only one Fragmented Site in 1997 

and had been showing a steady decline locally since 1995 (Ponton Down IMS 44 in 1995, 

18 in 1996,8 in 1997). This trend was not reflected nationally however (Greatorex-Davies 

and Pollard 1997). 

6.10 SMALL COPPER L ccaena phlaeas 

Analysis of the 1996 Fragmented Site data produced the following model: 
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Independent variable Logit estimate Change in scaled Probability 

(s. e. ) deviance y2 allem df =1) 

Constant -2.259 (0.7536) 

Area CG6 2.193 (2.053) 5.746 0.01653 

Stock Grazing -2.917 (1.784) 4.07 0.04365 

Food-plant 1.62 (0.6958) 8.1 0.004427 

(Total Model Scaled Deviance x23 =14.54; P=0.002255) 

Predicted P-values were calculated for the 1997 Fragmented Site data and are shown 

plotted against site mean counts in Figure 6.1. This relationship is significant (Spearman 

Rank Correlation Coefficient, rS = 0.6; n= 12, P<0.05). This test is again based on very 

few (three) sites where the species was observed in 1997 but it does correctly predict sites 

where probability of presence is high (Figure 6.1). 

Figure 6.1: The relationship between predicted P-values generated from 1997 Fragmented 

Site patch data and transect count mean totals for small copper 
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6.11 SMALL BLUE Cupido minimus 

This species was found on only three Fragmented Sites in 1996 and one in 1997. Although 

the small blue was acknowledged to be generally common in 1994 throughout its 

Wiltshire haunts (Fuller 1995), a subsequent decline appeared to set in which is reflected 

in the Porton Down BMS data (see Section 4.12). 

The boom and bust nature of its one food-plant, kidney vetch Anthyllis vulneraria, appears 

to give rise to asynchronous population fluctuations (Morton 1985) among its colonies. 

There are no known large colonies among the Fragmented Sites in this study area (Fuller 

1995) so the lack of records was probably not a function of temporarily low populations in 

any case. 

6.12 BROWN ARGUS Aricia a. eestis 

Analysis of the 1996 Fragmented Site data produced the following model: 

Independent variable 

Constant 

Lo it estimate Change in scaled Probability 

(s. e. ) deviance x2 (all df=l 

-1.539 (0.4728) 

Bare Ground*Food-plant 0.1298 (0.04716) 11.93 

(Total Model Scaled Deviance x2i = 11,93; P<0.001) 

< 0.001 
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Predicted P-values were calculated for the 1997 Fragmented Site data and regressed 

against site transect mean counts. This relationship is not significant (Spearman Rank 

Correlation Coefficient, rs = 0.408; n= 12, P=0.2). This species was only recorded at two 

Fragmented Sites in 1997 and show high predicted probabilities (> 0.7) at these sites. The 

test of the 1996 model should therefore be seen as moderately successful. 

6.13 COMMON BLUE Polyommatus Icarus 

Analysis of the 1996 Fragmented Site data produced the following model: 

Independent variable Estimate Deletion test 

(s. e. ) F-statistic 

Constant 1.379 (1.377) 1.003 

Food-plant 1.005 (0.3118) 10.398 

Scale parameter = 16.6; Filliben coefficient = 0.9663 

Probability 

(all df =1.55) 

0.3226 

0.002514 

When predicted populations for 1997 Fragmented Site data are generated from the 1996 

Fragmented Site model and regressed against observed site transect mean counts, this 

relationship is not significant (Spearman Rank Correlation Coefficient, r, = -0.121; n =12, 

NS). 

This is a widespread species of both open grassland and woodland rides in the region and 

although the model above reflects both the findings on Porton Down (Section 4.14) and 
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general knowledge of its requirements (management for its leguminous larval food-plants 

BUTT 1986), the explanation for the lack of relationship between years and sites must lie 

elsewhere. 

6.14 CHALKHILL BLUE Lysandra coridon 

Analysis of the 1996 Fragmented Site data produced the following model: 

Independent vari able Logit estimate Change in scaled 

(s. e. ) deviance x2 

Constant -1.41 (0.4501) 

Food-plant 0.8676 (0.3117) 11.75 

(Total Model Scaled Deviance x21= 11.75; P<0.001) 

Probability 

all df =1 

<0.001 

Predicted P-values were generated from this model for the Fragmented Site 1997 data and 

regressed against site transect mean counts. This relationship is not significant (Spearman 

Rank Correlation Coefficient, rs = 0.435; n= 12,0.2 >P>0.1). However, two of the three 

sites where the species was present had high (>0.9) predicted probabilities. 

As with the local scale models, the important feature of this landscape scale model is that 

the food-plant has again been selected as the single important variable. 
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6.15 ADONIS BLUE Lysandra bellargus and 6.16 DUKE OF BURGUNDY Nainaerts 

lucina 

There were insufficient data from any year to perform modelling for these species. 

6.17 DARK GREEN FRITILLARY Argynnis aglaia 

Analysis of the 1996 Fragmented Site data produced the following model: 

Independent variable Logit estimate Change in scaled Probability 

(s. e. ) 

Constant 1.2 (0.4889) 

deviance X2 

Distance from Porton* -0.03113(0.01247) 7.674 
Average Dist. From All Sites 

(Total Model Scaled Deviance )Z1= 7.674; P=0.005602) 

all df =1 

0.005602 

This model's predictive power was tested by generating predicted probabilities for the 

1997 Fragmented Site data and regressing them against site transect mean counts. This 

relationship is not significant (Spearman Rank Correlation Coefficient, rg 0,458; n= 12, 

0.2 >P>0.1), although all sites where the species was present had some of the highest 

predicted probabilities. 
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Despite the lack of between-year predictive power shown above, the significance level of 

the model would seem to provide strong evidence for an over-riding landscape effect for 

this species. 

6.18 MARSH FRITILLARY Euphydryas aurinia and 6.19 WALL Lasiommara mesera 

There were insufficient data from any year to perform modelling for this species. 

6.20 MARBLED WHITE Melanargia alathea 

Analysis of the 1996 Fragmented Site data produced the following model: 

Independent variable 

Constant 

Rabbit Index 

Scrub 

Estimate 

(s. e. ) 

3.999 (1.371) 

-0.1911 (0.09076) 

0.6581 (0.2055) 

Deletion test 

F-statistic 

8.514 

4.432 

10.256 

5.016 

Probability 

(all df =1,38) 

Bare Ground*Stones -0.1069 (0.04773) 

Scale parameter = 9.858; Filliben coefficient = 0.9927 

0.00589 

0.04194 

0.002755 

0.03104 

This model's predictive power was tested by generating predicted populations for the 1997 

Fragmented Site data and regressing them against site transect mean counts. This 

relationship is not significant (Spearman Rank Correlation Coefficient, r, = 0,285; n =12, 

0.5 >P>0.2). 
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This model is not dissimilar to the Porton Down local scale one where scrub and stones 

were selected with sward height which is very strongly correlated with rabbit index and 

bare ground (selected here). Clearly, local scale variables are an over-riding feature even 

at the landscape level. 

6.21 GRAYLING Hipparchia semele 

There were insufficient data from any year to perform modelling for this species. 

6 . 22 HEDGE BROWN Pvronia tithonus 

Analysis of the 1996 Fragmented Site data produced the following model: 

Independent variable Estimate Deletion test Probability 

(s. e. ) F-statistic (all df =1.39) 

Constant 0.9352 (1.002) 0.87 0,3567 

Scrub 0.6797 (0.1609) 17.838 <0.001 

Sward Height*Rabbit -0.0264 (0.01085) 5.919 0.01967 

Scale parameter = 6.004; Filliben coefficient = 0.9843 

This model's predictive power was tested by generating predicted populations for the 1997 

Fragmented Site data and regressing them against site transect mean counts. This 

relationship is not significant (Spearman Rank Correlation Coefficient, ra = 0.453; n= 12, 
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0.2 >P>0.1). However, four of the five highest predicted populations had the highest 

observed populations so the model did show moderately high predictive power. 

The variables selected in this model largely reflect the habitat available to this species at 

the Fragmented Sites where there was much more scrub and rank ungrazed scrub edge, 

even in the middle of the grassland patches. 

6.23 MEADOW BROWN Maniola iurtina 

Analysis of the 1996 Fragmented Site data produced the following model: 

Independent variable Estimate Deletion test 

(s. e. ) F-statistic 

Constant 5.265 (2.482) 4.499 

Stock-grazing -4.477 (1.995) 5.036 

No. Food-plants 0.8905 (0.275) 10.489 

Scale parameter = 32.92; Filliben coefficient = 0.9804 

Probability 

(all df =1.39) 

0.04033 

0.03057 

0.002456 

This model's predictive power was tested by generating predicted populations for the 1997 

Fragmented Site data and regressing them against site transect mean counts. This 

relationship is not significant (Spearman Rank Correlation Coefficient, rS = -0.27; n= 12, 

0.5 >P>0.2) and in fact, the model seems to over-predict populations despite the general 

increase in numbers indicated by counts at Porton Down (sec Section 4.24) and elsewhere 

locally (Fuller 1999). 
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Number of food-plants, i. e. diversity of grasses, is the most strongly selected variable in 

this analysis, as was the case in the Porton Down local scale analysis (Section 4.24). The 

only other consistently selected element is that of grazing, which was dominated by 

rabbits at Porton Down and by domestic stock on the Fragmented Sites. 

6 
. 24 RINGLET Aphantopus hyperantus 

Analysis of the 1996 Fragmented Site data produced the following model: 

able Independent vari Logit estimate Change in scaled Probability 

(s. e. ) deviance x2 

Constant 

Aspect 

(all df =1 

-4.629 (2.507) 

-0.3311 (0.1694) 4.24 

Nectar Source 1.103 (0.4362) 11.73 

(Total Model Scaled Deviance x22 =15.97; P<0.001) 

0.03948 

<0.001 

Predicted P-values were generated from this model for the Fragmented Site 1997 data and 

plotted against observed site transect mean counts (Figure 6.2). This relationship is 

significant (Spearman Rank Correlation Coefficient, r$ = 0.738; n =12, P<0.01. The 1996 

model appears therefore to have very high predictive power between years and sites. 

Both (-) aspect and nectar sources were strongly selected for in the local scale analysis 

which was derived from Fragmented Site data. 
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Figure 6.2: The relationship between predicted P-values generated from 1997 Fragmented 

Site patch data and transect count mean totals for ringlet 
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6.25 SMALL HEATH Coenonvmpha pamphilus 

Analysis of the 1996 Fragmented Site data produced the following model: 

Independent vari able Logit estimate Change in scaled Probability 

(s. e. ) deviance x2 (all df =1 

Constant -1.333 (0.4993) 

Area CG2*Area CG6 6.702 (5.56) 4.445 0.035 

Patch Area 0.2236 (0.1268) 7.444 0.006365 

(Total Model Scaled Deviance x22 = 15.2; P<0.001) 

169 



Predicted P-values were generated from this model for the Fragmented Site 1997 data and 

regressed against site transect mean counts. This relationship is not significant (Spearman 

Rank Correlation Coefficient, rg = 0.177; n= 12, NS. For this species, the 1996 model 

appears therefore not to have very high predictive power between years and sites. 

This was one of only five species to show a significant relationship with patch area in 

these analyses. The inclusion of CG2 is not surprising given the strength of the 

relationship at the local scale, with CG6 included as a strongly correlated variable. 

6.26 SUMMARY OF RESULTS 

Table 6.1: Summary results of habitat & landscape analysis on fragmented sites 

Significant variables included at two scales 

Species 

Small skipper 

Local scale 

(-)Rabbit Index, (-)Bare 
Ground, Sward Height* 
Rabbit Index 

Landscape scale 

Essex skipper 

Silver-spotted 
skipper 

Large skipper 

Dingy skipper 

Grizzled skipper 

Green hairstreak 

Small copper 

(-)Bare Ground, Scrub 

[Insufficient data] 

(-)Aspect 

Patch Area 

Patch Area*Arca CG3 

Food-plant, (-)Stock Grazing Patch Area 

Area CG2 

Food-plant Patch Area 

Area CG6, Food-plant, 
(-)Stock Grazing 
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Table 6.1 (Continued) 

Small blue [Insufficient data] 

Brown argus Bare Ground*Food-plant 

Common blue Food-plant 

Chalkhill blue Food-plant 

Dark green 
fritillary 

(-)Distance from Porton Down*Ave. 
Distance Between Patches 

Marbled white (-)Rabbit Index, Scrub, 
(-)Bare Ground*Stones 

Hedge brown Scrub, (-)Sward Height* 
Rabbit Index 

Meadow brown No. Food-plants, (-)Stock 
Grazing 

Ringlet (-)Aspect, Nectar Sources 

Small heath Area CG2*Area CG6 Patch Area 

6.27 DISCUSSION 

Analysis of all sixteen species with enough data to construct models resulted in models 

which defined their presence or population density according to patch habitat and 

environmental variables with statistical significance. Of these, only two models showed 

good between-year predictive power. 

Of these sixteen species, only six showed any association with landscape scale variables, 

the rest selecting habitat/environmental variables, albeit at the whole-patch scale. Of these 

six, only one, dark green fritillary, showed selection for inter-patch distance. The 

remaining five showed selection for patch area only of the landscape scale variables. 
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Species groupings according to similarity of selection for habitat, environmental and 

landscape variables are shown in Table 6.2. Group selection criteria were the same as in 

sections 4.28 and 5.22. Two main groups arise from selection for habitat variables. The 

first, Essex skipper, marbled white and hedge brown appear to be strongly associated with 

scrub and indicators of low rabbit grazing on the Fragmented Sites. For Essex skipper and 

marbled white, general selection of variables at the landscape patch scale was very similar 

to that at the local scale on Porton Down (Table 4.2), suggesting that population regulation 

for these species is very much at the finer, habitat and local resource scale. The second 

group, common blue, chalkhill blue, brown argus and small copper show strong 

associations with their food-plants. All except small copper also selected food-plant at the 

local scale on Porton Down, although other differences exist between the two analyses 

(see Table 4.2). 

The third main group, small skipper, large skipper, dingy skipper, small heath and green 

hairstreak, all selected patch area. It is very noticeable, that four of these species also 

selected either area of NVC types as preferred habitat or food-plant. Area of NVC showed 

strong intra-set correlations (directly with patch area in the case of large skipper), while 

the food-plants of both dingy skipper and green hairstreak were relatively rare on the 

Fragmented Sites. For this whole group, therefore, a direct positive correlation between 

patch size and level of resources for breeding is intimated. 

The one species which stands out from this analysis is dark green fritillary. This species 

was the only one which selected the isolation measures, distance from Parton Down (the 

major `source' site) and average distance between patches, as a product combination. This 

product relationship was negative, indicating that the species is extremely sensitive to 
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distance from major and minor `source' populations. In addition, no local scale habitat or 

environmental variables were selected, despite these featuring very strongly in the 

previous analyses (see Tables 4.2 and 5.2). Very little is known about this relatively 

widespread butterfly in terms of movements and metapopulation dynamics. It is generally 

known to range widely within habitat patches and is a strong flier, both of which can be 

corroborated by observations at Porton Down. However, only one site, site K within a few 

hundred metres of the boundary of Porton Down, was observed to receive individuals 

which were crossing a main road and travelling along a grassy bank containing good 

nectar sources. Further analysis will hopefully reveal this species' relative sensitivity to 

local and landscape scale effects. 
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7. BUTTERFLY COMMUNITY ANALYSIS 

7.1 INTRODUCTION 

This chapter extends the species' analyses to multivariate analysis where each species' 

presence or relative abundance places them in ordination space relative to other species in 

the community (Hill and Gauch 1980) and through using the canonical correspondence 

analysis (CCA) method (ter Braak 1987a & b), is also explained by a combination of 

environmental variables. The CCA package CANOCO (ter Braak 1987a and see Section 

2.5.4) is used for all analyses. 

7.2 PORTON DOWN LOCAL SCALE DATA 

Table 7.1 shows the results of a CCA analysis using CANOCO on the Porton Down 1995 

transect data. Figures in brackets are the ranks of the four highest ranking inter-set 

correlations of environmental variables with the axes. 

The first axis accounted for 50 percent of the species-environment relationship while the 

second axis accounted for a further 15.8 percent only. An unrestricted Monte Carlo test 

was carried out on axis 1 and was significant at P=0.01. This showed that the relationship 

between the species and environmental variables was not random on this, the most 

important axis. Also, calculated inflation factors showed that correlations among 

environmental variables was not a problem in this analysis (all inflation factors < 3.5). 
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Table 7.1: Results of CANOCO analysis of the Porton Down 1995 transect data 

Axis 

1234 

Eigenvalue 0.246 

Species-env. correlations 0.870 

Cumulative percentage variance 

of species data 20.3 

of species-env. relation 50.0 

Interset correlations of environ- 

mental variables with axes (Rank): 

Sward Height 

Rabbit Index 

Slope 

Aspect 

Scrub 

Bare 

Stones 

CG2 

CG3 

CG6 

CG7 

MG! 

MG5/6 

0.647 (1) 

-0.481 

-0.410 

-0.320 

-0.112 

-0.211 

-0,159 

-0.367 
0.000 

-0.610 (3) 

-0.19 
0.555 (4) 

-0.630 (2) 

0.078 0.048 

0.794 0.734 

26.7 

65.8 

30.6 

75.6 

-0.423 
0.265 

-0.900 (1) 

-0.275 

-0.179 
0.442 (4) 

0.577 (2) 

-0.200 

-0.542 (3) 

-0.192 
0.279 

0.130 

-0.103 

0.780 (1) 

-0.270 

-0.240 
0.527 (3) 

0.145 

0.560 (2) 

0.243 

-0.298 
0.470 (4) 

0.100 

0.149 

0.265 

0.239 

Figure 7,1 shows the species scores for the first two CANOCO axes with the 

0.039 

0.670 

33.9 

83.6 

0.500 (=2) 
-0.131 
0.188 
0.440(4) 

-0.503 (1) 

-0.172 

-0.170 
-0.258 

-0.246 
0.245 

0.500 (=2) 

0.240 

0.344 

environmental variables displayed as vectors. The vector scores were calculated from the 

interset correlations (Table 7.1), standard deviations of the species axes and the 
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eigenvalues (Ter Braak 1987). It can be seen from these biplots that the first axis is mainly 

correlated with sward height, the presence of MG1 communities, rabbit grazing, slope and 

the presence of CG3 communities. Larval grass-feeders of tall swards are located along 

the positive part of axis 1 and the species associated with well-grazed CG communities are 

located along the negative part. Axis two, which is of much less importance in explaining 

variation in the data (see above), is mainly correlated with bare ground, stones, aspect and 

sward height. 

As the conditions were very different between the summer drought year of 1995 and 1997, 

a CANOCO analysis of the Porton Down 1997 transect data was also performed. The 

results are shown in Table 7.2 

Comparing the ordination results reveal that both the eigenvalues and cumulative 

percentage variances of axis 1 of the 1997 analysis are much lower values and therefore 

this analysis may not have been as robust as the 1995 one. However, the species- 

environment correlations are high for both analyses. An unrestricted Monte Carlo test was 

carried out on axis 1 and was significant at P=0.01 showing that the relationship between 

the species and environmental variables was not random on this axis. However, the 

associated F-ratio was smaller for this data set (5.77 for 1997 compared to 11.69 for 

1995). Calculated inflation factors showed that correlations among environmental 

variables was not a problem in this analysis (all inflation factors < 3.2). 
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Table 7.2: Results of CANOCO analysis of the Porton Down 1997 transect data 

Axis 

1234 

Eigenvalue 0.135 0.070 0.047 0.035 

Species-env. correlations 0.812 0.743 0.645 0.674 

Cumulative percentage variance 

of species data 10.0 15.2 18.6 21.2 

of species-env. relation 34.2 51.9 63.8 72.6 

Interset correlations of environ- 

mental variables with axes (Rank): 

Sward Height 0.642 (2) 0.267 -0.138 -0.199 
Rabbit Index 0.280 -0.468 0.250 0.342 

Slope 0.460 0.550 0,240 0.411 

Aspect -0.570 (3) 0.800 (2) 0.208 -0.259 
Scrub -0.116 0.880 (1) 0.425 (3) 0.875 (1) 

Bare -0.266 -0.315 0.159 0.530(4) 

Stones -0.270 -0.159 0.142 -0.300 

CG2 -0.309 -0.350 0.152 0.117 

CG3 0.160 -0.210 -0.700 (1) -0.144 

CG6 0.151 -0.630 (4) -0.230 -0.229 
CG7 -0.196 0.650 (3) -0.306 (4) 0,239 

MG1 0.478 (4) 0.361 0.300 -0.700 (2) 

MG5/6 0.670 (1) -0.200 -0.470 (2) -0.550 (3) 

Figure 7.2 shows the species scores for the first two CANOCO axes with the 

environmental variables displayed as vectors for the 1997 Porton Down data. Species 

groupings are broadly similar to those of 1995 (Figure 7.1) with the tall sward larval grass- 

feeders located along the positive part of axis 1 and the species associated with well 
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grazed CG communities along the negative part. One species included in the 1997 analysis 

but not the 1995 was the wall. This species, although being a larval grass-feeder, is 

associated with broken turf with bare ground (BUTT 1986) and is therefore located with 

the bare ground and stones vectors. The position of chalk-hill blue can be explained by the 

fact that the species was less common in 1997 compared to 1995 (Ponton Down BMS 

index of 15 versus 22 respectively) and had probably retreated to its preferred habitat of 

tall grass with some rabbit grazing which aids establishment of its food-plant Ifippocrepis 

comosa. An even greater decline had occurred with large skipper (Parton Down BMS 

index of 4 versus 51) and small blue (Porton Down BMS index of 10 versus 45) and these 

species appear to have retreated totally to scrub edges on the open downland. 

A very noticeable difference between the ordinations is that both the slope and aspect 

environmental vectors are reduced in terms of biplot scores, although aspect retains some 

overall influence in the ordination (Table 7.2). This reflects the major difference in climate 

between the years where species present during the 1995 drought period (mid to late 

summer) were forced to inhabit sheltered situations and avoid exposed south-facing slopes 

(see Chapter 4). 
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A further difference between the 1995 and 1997 situation was that stock grazing had been 

re-introduced to some areas of the downland. A separate analysis was therefore performed 

on the Porton Down 1997 data including stock grazing as an environmental variable and 

the results are shown in Table 7.3 

These results are very similar to the previous ordination. The addition of stock grazing has 

made some difference to the power of the ordination with an increase in the eigenvalue 

and species-environment correlation of axis 1. 

Stock grazing also ranks sixth among the interset correlations of environmental variables 

with axes so its inclusion appears significant. A Monte-Carlo test again proved significant 

(P = 0.01) for axis 1 with a slightly improved F-ratio (6.29). 

Figure 7.3 shows the species scores for the first two CANOCO axes with the 

environmental variables, including stock grazing, displayed as vectors for the 1997 Porton 

Down data. Species scores are very similar to those of the 1997 ordination without grazing 

as an environmental vector (Figure 7.2). The biplot position for stock grazing appears at 

first to be slightly contradictory as it lies quite close to those of sward height and MG1 

community. This would suggest therefore that the mostly winter grazing regime was 

having a relatively minor effect on the ranker areas of grassland which have been 

exclusively selected for this management and the ordination is not greatly affected by 

transects which are included in these areas. 
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Table 7.3: Results of CANOCO analysis of the Porton Down 1997 transect data (including 

stock grazing as an environmental variable) 

Axis 

1234 

Eigenvalue 0.149 0.075 0.049 0.04 

Species-env. correlations 0.849 0.739 0.694 0.661 

Cumulative percentage variance 

of species data 11.0 16.5 20.1 23.0 

of species-env. relation 34.1 51.3 62.5 71.6 

Interset correlations of environ- 

mental variables with axes (Rank): 

Sward Height 0.606 (3) 0.355 0.810(2) -0.232 
Rabbit Index 0.680 (=2) -0.439 -0.261 0.275 

Slope 0.600 0.190 0.780 (3) 0.350 
Aspect -0.820 (1) 0.500 W) -0.272 -0.151 
Scrub -0.134 0.950 (1) -0.378 0.246 

Bare -0.238 -0.329 -0,173 0.820 (1) 

Stones -0.258 -0.177 -0.149 0.300 

Stock Grazing 0.507 -0.231 0.103 0.257 

CG2 -0.298 -0.840 (2) -0.930 (1) 0.193 
CG3 -0.200 0.160 -0.620(4) -0.183 
CG6 0.144 -0.170 -0.520 -0.217 
CG7 -0.186 -0,300 0.364 0.780 (2) 

MG 1 0.442 0.413 0.600 -0,400 (4) 

MG5/6 0.680 (=2) 0.500 (=3) 0.330 -0.580(3) 
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7.3 FRAGMENTED SITES LOCAL SCALE DATA 

Table 7.4 shows the results of a CANOCO analysis of the Fragmented Sites transect (local 

scale) data for 1996 only. 

The first axis accounted for 35.3 percent of the species-environment relationship while the 

second axis accounted for a further 16.3 percent. However, an unrestricted Monte Carlo 

test was carried out on axis 1 and was significant at P=0.01 with a fairly high F-ratio 

(8.78). Calculated inflation factors showed that correlations among environmental 

variables was not a problem in this analysis (all inflation factors < 4.0). 
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Table 7.4: Results of CANOCO analysis of the Fragmented Sites 1996 local scale data 

Axis 

1 2 3 4 

Eigenvalue 0.121 0.056 0.044 0.030 

Species-env. correlations 0.827 0.716 0.709 0.604 

Cumulative percentage variance 

of species data 10.1 14.8 18.5 21.0 

of species-env. relation 35.3 51.6 64.5 73.3 

Interset correlations of environ- 

mental variables with axes (Rank): 

Sward Height 0.604 (2) 0.228 -0.257 0.236 

Rabbit Index -0.175 -0.300 0.287 0,169 

Slope 0.370 -0.289 (=4) 0.960 (1) 0.980 (1) 

Aspect -0.259 0.275 -0.351 -0.102 
Scrub 0.272 -0.338 (2) -0.268 0.170 

Bare -0.434 (4) -0.396 (1) -0.150 0.650 (1) 

Stones -0.411 -0.139 -0.148 0.111 

Stock Grazing -0.334 -0.297 (3) -0.400 (4) -0.270 
CG2 -0.479 (3) -0.156 0.212 0.118 
CG3 -0.168 -0.192 -0.377 -0.840 (=3) 

CG6 0.160 0.181 0.940 (2) 0.106 

CG7 -0.229 -0.240 0.570 (3) 0.328 

MG1 0.361 0.166 -0.171 -0,880 (2) 
MG5/6 0.690 (1) 0,289 (=4) 0.350 -0.840 (=3) 

W21/24 0.177 0.151 -0.255 0.680 
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Figure 7.4 shows the species scores for the first two CANOCO axes with the 

environmental variables displayed as vectors for the 1996 Fragmented Site data. Species 

were again grouped largely into the rank sward and larval grass-feeders at one end and 

those associated with well-grazed swards at the other end of the ordination. 

The position of dark green fritillary shows no relation to habitat associations arising from 

the Porton Down local scale analyses. The reason for this is discussed in Section 7.5. 

7.4 PORTON DOWN PATCH DATA 

Table 7.5 shows the results of a CANOCO analysis of the Ponton Down patch data for 

1995 only. 

The first axis accounted for 36.9 percent of the species-environment relationship while the 

second axis accounted for a further 14.8 percent. An unrestricted Monte Carlo test was 

carried out on axis 1 and was significant at P=0.01 but with a fairly low F-ratio (4.49). 

Calculated inflation factors showed that correlations among environmental variables were 

generally higher in this analysis with sward height, average distance to nodes and distance 

to nearest node all > 5.0. 

Inspection of Table 7.5 shows that axis 1 is correlated most strongly with the vectors 

sward height, MGI and average distance to nodes in one direction and CG7 in the other. 

Axis 2 is correlated most strongly with the vectors MG5/6, CG7 and patch area in one 

direction and average distance to nodes in the other. 
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Table 7.5: Results of CANOCO analysis of the Porton Down 1995 patch data 

Axis 

1 2 3 4 

Eigenvalue 0.194 0.078 0.061 0.047 

Species-env. correlations 0.939 0.854 0.843 0.842 

Cumulative percentage variance 

of species data 24.3 34.1 41.6 47.5 

of species-env. relation 36.9 51.7 63.2 72.1 

Interset correlations of environ- 

mental variables with axes (Rank): 

Sward Height 0.462 (4) 0.068 0.212 0.176 

Rabbit Index -0.443 0.093 -0.061 -0.013 
Slope -0.112 -0.072 -0.056 0.363 (1) 

Aspect -0.125 -0.103 -0,164 -0.059 
Scrub 0.195 -0.065 -0.205 -0.344 (2) 

Bare 0.022 0.130 -0.409 (1) -0.152 
Stones -0.092 0.172 -0.355(3) -0.276 
CG2 0.097 0.127 -0.385 (2) 0.178 

CG3 0.127 -0.218 -0.056 0.282(4) 

CG6 -0.045 -0.220 0.108 0.291(3) 

CG7 -0.520 (2) 0.356 (3) -0.117 -0.064 
MG1 0.550(l) 0.041 0.115 -0.065 
MG5/6 0.460 0.570 (1) 0.224 0.099 

Nearest Node 0.425 -0.208 -0.180 0.234 

Ave Dist Nodes 0.513 (3) -0.257 (4) -0.107 0.201 

Patch Area -0.344 0.534 (2) 0.304 (4) -0.075 
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Species scores for the first two CANOCO axes with environmental variables displayed as 

vectors are shown in Figure 7.5. The only species which clearly shows a relationship with 

any landscape vectors is ringlet, which lies on the plane of both vectors related to distance 

to population nodes. 

In order to investigate the importance of the landscape variables alone a further CANOCO 

analysis was performed with the three landscape variables only. The results are shown in 

Table 7.6. 

The first axis accounted for 69.2 percent of the species-environment relationship while the 

second axis accounted for a further 21.5 percent. However, when an unrestricted Monte 

Carlo test was carried out on axis 1 it was not significant (P = 0.06). The eigenvalues of 

both axis 1 and 2 are also low and therefore only a limited amount of additional 

information is provided by this analysis. 
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Table 7.6: Results of CANOCO analysis of the Porton Down 1995 patch data (landscape 

variables only) 

Axis 

1234 

Eigenvalue 

Species-env. correlations 

Cumulative percentage variance 

of species data 

of species-env. relation 

Interset correlations of environ- 

mental variables with axes (Rank): 

0.087 0.027 0.012 0.000 

0.715 0.560 0.450 0.000 

10.9 14.3 15.7 0.0 

69.2 90.7 100.0 0.0 

Dist-Nrst Node 0.547 (3) -0.089 (3) 0.281(1) 0.000 

Ave Dist Nodes 0.643 (1) -0.227 (2) 0.075 (3) 0.000 

Patch Area -0.586 (2) -0.296 (1) 0.100 (2) 0.000 

The positions of some species on the ordination of species with local and landscape 

vectors shown in Figure 7.5 are exaggerated somewhat by this analysis as shown in Figure 

7.6. 

Ringlet is clearly related to greater distances from the grassland species nodes. This is due 

to the species being associated with rank grassland and tall scrub or woodland edge and its 

avoidance of open grassland where its microhabitat and food-plants would be too 

desiccated (BUTT 1986; Pollard and Yates 1993). This would also be true for hedge 

brown but to a lesser extent. The only other species which stands out somewhat along axis 

1 and from the main cluster of species around the origins of the axes is grizzled skipper. 
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7.5 FRAGMENTED SITES PATCH AND LANDSCAPE SCALE DATA 

Table 7.7 shows the results of a CANOCO analysis of the Fragmented Sites patch data for 

1996 and 1997 combined. 

The first axis accounted for 29.0 percent of the species-environment relationship while the 

second axis accounted for a further 20.3 percent. Both axes are of a similar level of 

importance in explaining variation in the data therefore. An unrestricted Monte Carlo test 

was carried out on axis 1 and was significant at P=0.01 but with a fairly low F-ratio 

(4.85). Calculated inflation factors showed that correlations among environmental 

variables were not a problem for all but two in this analysis (inflation factors for bare and 

stones 7.9 and 5.7 respectively, all the rest < 4.0). 
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Table 7.7: Results of CANOCO analysis of the Fragmented Sites patch data 

Axis 

1 2 3 4 

Eigenvalue 0.147 0.103 0.057 0.039 

Species-env. correlations 0.901 0.852 0.781 0.698 

Cumulative percentage variance 

of species data 12.2 20.7 25.5 28.7 

of species-env. relation 29.0 49.3 60.6 68.3 

Interset correlations of environ- 

mental variables with axes (Rank): 

Sward Height -0.640 (1) 0.441(3) 0.010 0.047 

Rabbit Index 0.392 -0.113 -0.244 -0.014 
Slope 0.052 -0.275 0.137 0.048 

Aspect 0.209 0.416 (4) 0.218 0.030 

Scrub -0.593 (2) -0.368 0.145 0.110 

Bare 0.154 -0.479 (2) 0.465 (1) 0.088 

Stones 0.113 -0.320 0.390 (2) 0.163 

Stock Grazing 0.264 -0.162 0.163 -0.090 
CG2 0.462 (4) -0.343 0.090 0.057 

CG3 -0.266 -0.073 0.365 (3) -0.402 (2) 

CG6 0.151 -0.130 -0.308 (4) 0.130 

CG7 0.256 0.054 -0.185 0.004 

MGI -0.194 0,248 0.080 -0,438(1) 
MG5/6 0.077 0.205 -0.191 -0.177 
W21/24 -0.294 0.065 0.108 0.349 (3) 

Distance-PD -0.084 -0.518 (1) -0.294 -0.198 (4) 

Ave Dist Patches 0.284 -0.266 -0,274 -0.112 
Patch Area 0.513(3) -0.070 0.077 -0.171 
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Figure 7.7 shows the species scores for the first two CANOCO axes with the 

environmental variables displayed as vectors for the 1996 and 1997 combined Fragmented 

Site patch data. Although the ordination has ̀ flipped' along the first axis (a common 

occurrence in ordination analysis), the species groupings are largely similar in comparison 

to the previous analysis at a local scale with one exception, the small blue. This species 

was only recorded on three transects over the two years (one in 1997) and therefore 

appears to show sensitivity to the analysis due to its inconsistency in terms of broad 

habitat selection. The wall occurred on one Fragmented Site in 1997 and strongly reflected 

the habitat selection displayed on Porton Down (see Section 7.2). 

It was decided to investigate the importance of the landscape variables alone so a further 

CANOCO analysis was performed with the three landscape variables only. The results are 

shown in Table 7.8. 

The first axis accounted for 57.5 percent of the species-environment relationship while the 

second axis accounted for a further 34.3 percent. Both axes are of a similar level of 

importance in explaining variation in the data as reflected in their eigenvalues. An 

unrestricted Monte Carlo test was carried out on axis 1 and was significant at P=0.01 but 

with a fairly low F-ratio (3.92). Calculated inflation factors showed that correlations 

among environmental variables were not a problem in this analysis (all < 2.0). 

196 



,n uo 

o O 
O 

° 

h 

O 

x y E r, 
Cl) a 

N 
fý 

O 'n m 

> f 

w °i 

li 
Co 

CT3 
U 

b - 
CL 
Cl 

Cý 
. 

U 

Y 
L 

,,, 
-0 

,ý E E 
cn 

ro 
a G m 

C 

N 
>. 

S" N 
O1 

CD 

+-I m n ac O 

Q O 
mN 

3 Q r ý #0 m 
ýý+ 

Q E 
m 

Cl) 0 

to t ON 

ö ! o 
ö 

4 

LO 
E 

3 o 
LIJ CM 

co 

U 
zI IXV 



Table 7.8: Results of CANOCO analysis of the Fragmented Sites patch data for 1996 and 

1997 combined (landscape variables only) 

Axis 

1 2 3 4 

Eigenvalue 0.088 0.053 0.013 0.000 

Species-env. correlations 0.711 0.66 0.445 0.000 

Cumulative percentage variance 

of species data 7.3 11.6 12.7 0.0 

of species-env. relation 57.5 91.8 100.0 0.0 

Interset correlations of environ- 

mental variables with axes (Rank): 

Distance-PD -0.234 (2) 0.621(l) 0.031(3) 0.000 

Ave Dist Patches 0.200 (3) 0.501 (2) -0.261(1) 0.000 

Patch Area 0.500 (1) 0.283 (3) 0.252 (2) 0.000 

Figure 7.8 shows the species scores for the first two CANOCO axes with the 

environmental variables distance to Porton Down, average inter-patch distance and patch 

area only displayed as vectors for the 1996 and 1997 combined Fragmented Site patch 

data. As shown by the inter-set correlations of environmental variables with axes in Table 

7.8 above, axis 1 separates species according to their affinity with patch area while axis 2 

separates species according to their affinity with the `connectivity and distance' variables. 
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The ordination plot is very revealing in that most species are spread only along axis 1, 

with adonis blue, small blue, silver-spotted skipper and wall appearing to require large 

patches. 

There are four species which appear to show sensitivity to the distance vectors as they 

show some 'spread' along axis 2. However, any species showing a relationship along the 

positive part of this axis can only be doing so due to a chance location of (a) strong 

population(s) on sites away from Porton Down as any real effect would be a negative one. 

Inspection of the raw data for Fragmented Sites reveals that the two strongest colonies of 

grizzled skipper outside Porton Down were at site Ee (Broughton Down, 3.5km distant) 

and site Ll-Oo (RNAD Dean Hill, 9km distant) where the highest counts occurred (see 

Table 2.1). This explains this species' position on the second axis close to the 'distance 

from Porton Down' vector. 

7.6 DISCUSSION 

From the analysis of Porton Down 1995 local scale data (Table 7.1 and Figure 7.1), the 

positions of the species reflect the environmental variables shown to be important in the 

GLIM analyses (see Chapter 4). The group of seven larval grass-feeders on the positive 

side of axis 1 are related to ranker, taller grass-dominated plant communites, although the 

ubiquitous meadow brown shows no affinity. The position of the ringlet also reflects its 

negative relationship with warm, sunny aspects (Section 4.25). Conversely, adonis blue 

shows the well known affinity to hot south-facing, well-grazed slopes (Thomas 1983a). 

The group of species in the top left quadrant of the ordination is generally related to open 

swards, well grazed by rabbits (and therefore with much bare ground and dug-up flints and 

200 



chalk pieces - the environmental variable ̀ stones'). These are the conditions under which 

the two NVC communities CG2 and CG7 are maintained (Rodwell 1992). All of the 

species in this quadrant have major larval food-plants associated with one or both of these 

communities (Rodwell 1992). 

The position of small blue is interesting as the GLIM analysis was unable to explain the 

species' presence (Section 4.12). This species is known to be intolerant of anything but 

moderate grazing pressure as the eggs and larvae are very vulnerable due to locating 

themselves on the flower heads (BUTT 1986; Coulthard 1982). It also likes some scrub 

and warm, sunny aspects. Its larval food-plant Anthyllis vulneraria, is frequent in all CG 

communities but CG6 (Rodwell 1992), and so its position on the ordination appears to 

reflect the lack of grazing plus aspect and scrub presence. 

Comparisons of the Porton Down 1995 local scale and Fragmented Site local scale 

analyses (Tables 7.1 to 7.4 and Figures 7.1 to 7.4), show many similarities. One species 

which was common enough to include in the Fragmented Site local scale analysis, Duke of 

Burgundy, is located along axis 2 which is related to the presence of scrub, bare ground, 

stock grazing and slope. This reflects the peculiarity of the sites where it was found, two 

of which were scarps, lightly grazed by sheep and Icelandic horses and the other a bank 

alongside a droveway. All sites had stock- or footpaths along them (hence the association 

with `bare ground'). These sites fit well with the known requirements of this species for 

warm micro-habitats, usually at the scrub-grassland interface where its food-plants 

Primula veris and P. vulgaris are sheltered and therefore large-leaved (Oates 2000; BUT T 

1986). 
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The positions of some other species are also clear in a management context. For example, 

chalkhill blue appears to thrive under a moderate stock grazed regime among broken 

ground while adonis blue and silver-spotted skipper prefer the harder grazed sunnier 

slopes. Small copper here shows an association with NVC types MG5/6, where its chalk 

grassland food-plant, Rumex acetosa is commonly found, particularly on the sub- 

community MG5a which is often associated with horse-grazing (Gibson 1995). 

In reference to the Porton Down Patch analysis (Section 7.4), the GLIM analyses in 

Chapter 5 showed that five species had significant negative relationships with distances to 

population nodes (plus one near-significant). However, only one, grizzled skipper, appears 

to show this relationship on the ordination plot. This implies that these landscape variables 

are not of over-riding importance in comparison to the local scale variables. The negative 

relationship of small heath with patch area shown in the GLIM analysis is partly reflected 

in the species' position on the ordination but appears to be more influenced by the other 

variable selected in GLIM (aspect). The position of grizzled skipper also re-iterates the 

GLIM patch analysis where a negative relationship with distance to the nearest population 

node was the only significant variable. 

The positions of small copper and Essex skipper on axis 2 are also clearly influenced by 

patch area which ranked second in the previous analysis and first in this. This is probably 

due to the rarity of their habitat at Porton Down which has been shown to be towards the 

MGi to MG5/6 NVC communities in the previous analyses. The larger patches are more 

likely to have patches of these rare communities within them or at their edges, often on 

tracksides. 
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The Fragmented Sites landscape scale ordination explains the anomalous position of dark 

green fritillary in the Fragmented Site local scale analysis (Section 7.3). GLIM analysis 

showed that despite strong affinities with the presence of the CG3 community and its 

food-plant Viola hirta shown by local scale analysis of Porton Down populations (see 

Chapter 4), the presence of this species on Fragmented Sites was over-ridingly determined 

by a combination of distance from Porton Down and the average distance between 

patches. This is almost precisely reflected by the position of dark green fritillary as a 

negative product of these two vectors on the ordination diagram (Figure 7.7). 

Five species showed a relationship with patch area in the GLIM analyses, although they all 

showed additional relationships with local scale variables. Three species, small heath, 

green hairstreak and dingy skipper are all positioned on or close to the patch area vector, 

their closeness reflecting the relative importance of this variable (see Chapter 6). 

Large skipper showed a relationship with patch area in the GLIM analysis that was the 

result of a correlation product with the CG3 community and this is reflected by its position 

close to this vector on the ordination (Figure 7.7). 

The only apparently anomalous species among this group is small skipper. The GLIM 

analyses, both at a local scale on Porton Down and on Fragmented Sites, showed a strong 

affinity to long grass and no rabbit grazing. This species is known to favour grassy edges, 

along paths and tracks for example (BUTT 1986), and these micro-habitats are relatively 

scarce on the generally widely grazed chalk grassland sites in this study. The relationship 

with patch area in the GLIM analysis is almost certainly an artefact of the increasing 

probability of a minimum number of suitable habitat patches with an increase in whole 
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patch area. This single variable is therefore masked by the combined relative importance 

of the other local scale variables in the ordination. 

When only landscape scale variables were included in the ordination analysis, the position 

of dark green fritillary confirmed the findings of the previous CANOCO analysis and the 

GLIM analysis that the two distance vectors are very important in determining the species' 

presence at Fragmented Sites. Another species, adonis blue, was only present in strong 

numbers at one site, Figsbury Ring, (site I), which, although within lkm of Porton Down, 

presents almost ideal habitat conditions for the species due to careful stock grazing 

management and hot, sunny aspects on the steep slopes of the iron age fortifications. It is 

unlikely that Porton Down has ever been a major source population for replenishing this 

local population as numbers of the major colony within Parton Down, on Thorneydown, 

have never been high since the 1950s (R Ryan pers. comm. ). Metapopulation processes 

may nevertheless be acting between these two local populations and the only other 

potentially viable one at Cockey Down, (site 0), 3km from Porton Down and less than 

2km from Figsbury Ring. 

The position of one of the two remaining species which appear to be influenced by the 

`distance' vectors along axis 2 was confirmed by the GLIM analyses. Brown argus 

showed quite a strong but insignificant effect of the average distance between sites in a 

logistic regression analysis (x2i = 3.483; P>0.05). For small copper, distance from Porton 

Down was the next ranked variable in the GLIM logistic analysis, but did not approach 

significance. 
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Overall, these analyses at the community level have reiterated and to a degree, simplified 

the GLIM analyses. The capability of CANOCO to include species with low frequencies, 

which inevitably tend to be the rarer ones (both regionally and nationally), is also useful as 

these species often show extremes in terms of habitat selection (Oates 1995). Positions of 

such species in ordination space can therefore help place more generalist species in 

context. The major finding, however, is that most species show a mixed reaction to a 

combination of resources at a local scale and landscape scale factors which are known to 

determine long-term survival of populations and metapopulations (Hanski 1999). The link 

between patch area and resource availability, implicit in metapopulation ecology (Hanski 

1999), is also pointed at by several species in both the GLIM and community analyses. 

The effect of distance, presumably on dispersal between colonies and populations, is 

however, a relatively unimportant factor, at least in this study system. 
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S. INCIDENCE FUNCTION MODELS 

8.1 INTRODUCTION 

This chapter examines modelled metapopulation parameters (relating to minimum patch 

area, degree of environmental stochasticity, colonization ability and the effect of distance 

on dispersal) and compares these to the landscape level model parameters arising from 

GLIM regression analyses (see Section 2.7). Seven species qualified for Incidence 

Function Model (IFM) modelling under the criteria in Hanski (1994) (see Section 2.7) 

from the Fragmented Sites. These were grizzled skipper, dingy skipper, green hairstreak, 

small copper, brown argus, chalkhill blue and dark green fritillary. 

The model parameters and their meaning can be summarized as follows: 

e and x are parameters of annual extinction probability E as a function of patch 

area E= C/Ax. 

x reflects the effective strength of environmental stochasticity and the value 

decreases with increasing environmental stochasticity. 

y describes the colonization ability of a species. Good colonizers, which are little 

affected by isolation, have small y values. 

- is the effect of distance on dispersal. The quicker the drop-off in a species' 

dispersal ability, the greater the value. 
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Ao is the critical minimum patch area where extinction probability in unit time is 1. 

The following is an approximate guide to values used where some parameters are not 

themselves modelled: 

Fora, values are usually set at -0.5 for the most dispersive species, -1.0 for moderately 

dispersive species, -2.0 for intermediate and -3.0 for the most sedentary species. All values 

from R. Wilson, Leeds University pers. comm. 

xis usually set at 1.0, which is considered to be an average value for all species (A. 

Moilanen pers. comm. ). 

8.2 RESULTS 

Means (±1 standard error) of parameter estimates are shown in Table 8.1. 

8.3 LINKING IFM AND INDEPENDENT ANALYSES 

8.3.1 Population Variability and Critical Minimum Patch Area (Ao) 

The relationship between population variability (coefficient of variation of natural 

logarithm of values from Porton Down BMS 1994-99) and Ao as modelled with the IFM is 

shown in Figure 8.1. This relationship is highly significant (Spearman Rank Correlation 

Coefficient, rs = 0.964; n=7, P=0.005). BMS data from Porton Down were used as these 

local populations would show variation due to local scale environmental stochasticity and 
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these would be `background' values. This innate population variability could be due to 

density-dependence (Hanski and Woiwod 1993) or more simply a result of local scale 

habitat selection which, if it results in reduced habitat heterogeneity, translates to a need 

for a larger patch area the more susceptible the species (Kindvall 1996). 

Table S 1: Means (±1 standard error) of parameter estimates 

Parameter 

Species xye 1ý, Q 

Dingy skipper -1.786 1.412 62.413 0.009 0.032 

Erynnis tages (0.096) (0.089) (13.925) (0.002) (0.004) 

Grizzled skipper -1.818 1.576 73.308 0.010 0.048 

Pyrgus malvae (0.137) (0.072) (14.580) (0,003) (0.007) 

Green hairstreak -1.220 1.347 31.081 0.035 0.084 

Callophrys rubi (0.071) (0.052) (1.528) (0.003) (0.009) 

Brown argus -0.870 1.319 57.06 0.0195 0.050 

Aricia agestis (0.035) (0.057) (4.154) (0.002) (0.006) 

Chalkhill blue -0.945 1.161 32.947 0.025 0.042 

Lysandra coridon (0.039) (0.042) (1.416) (0.002) (0.005) 

Dark green fritillary -1.217 0.763 12.924 0.0198 0.006 

Argynnis arglaja (0.101) (0.023) (1.393) (0.001) (0.001) 

Small heath -1.107 1.471 111.765 0.0049 0.0255 

Coenonympha pam- (0.047) (0.047) (14.093) (0.001) (0.003) 

philus 
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One of the few species included in this study which has had independent estimates of Ao is 

silver-spotted skipper. Thomas, Lewis and Hill (unpublished but shown in Thomas and 

Hanski 1997) estimated Ao as -0.5 ha from observational data. Hanski (1994), however, 

used Thomas' data to parameterize Ao using an early version of the IFM and estimated the 

value at 0.0104 ha, with an observed value at 0.02 ha. Using a linear regression model 

applied to the data shown in Figure 8.1, y=0.001 + 0.294x, the coefficient of variation for 

the silver-spotted skipper data from the Porton Down BMS (0.163), gives a predicted Ao of 

0.0489 for the entire patch network. This is close to the values estimated for the species 

associated with well-grazed chalk grassland such as grizzled skipper, and is not far from 

Hanski's estimate. 

8.3.2 Parameter Estimates and their Relationship with Multivariate Analyses of Butterfly 

Species and Local and Landscape Scale Variables 

The relationship between estimates for the parameter for effective strength of 

environmental stochasticity (x) and species' scores on CANOCO axis I of the Fragmented 

Site analysis is shown in Figure 8.2. The correlation is not significant (Spearman Rank 

Correlation Coefficient, rs = 0.714; n=7, P=0.1). There is a trend however and the 

correlation would be reduced by the position of grizzled skipper. The linear regression 

model fitted to these data (y = 1.038 + 0.637x) gives a predicted value for the silver- 

spotted skipper parameter x at 2.077, given a CANOCO axis 1 score of 1.631 for this 

species. This is way beyond the estimates for the other species given in Table 8.1. It is 

possible that the relationship is non-linear and, fitting a second order polynomial to the 

data (y = 1.068 + 1.008x - 0.656x2) gives a predicted value for the silver-spotted skipper 
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parameter x at 0.967, given a CANOCO axis 1 score of 1.63 1. This is remarkably close to 

the figure modelled by Hanski (1994) which was 1.009 (standard error 0.222). 

Figure 8.1: The relationship between population variability (coefficient of variation of 

natural logarithm of values from Porton Down BMS 1994-99) and Ao 
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Figure 8.2_ The relationship between the parameter for effective strength of environmental 

stochasticity (x) and species' scores on CANOCO axis 1 of the Fragmented Site analysis 
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The relationship between estimates for the parameter for effective strength of 

environmental stochasticity (x) and species' scores on CANOCO axis 2 of the Fragmented 

Site landscape variables analysis is shown in Figure 8.3. 
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Figure 8.3: The relationship between the parameter for effective strength of environmental 

stochasticity (x) and species' scores on CANOCO axis 2 of the Fragmented Site landscape 

variables analysis 
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The correlation is significant (Spearman Rank Correlation Coefficient, r, = 0.929; n=7, P 

= 0.01). The linear regression model fitted to these data (y = 1.256 + 0,467x) gives a 

predicted value for the silver-spotted skipper parameter x at 1.334, given a CANOCO axis 

2 score of 0.1667 for this species. This predicted value is even closer to Hanski's (1994) 

predicted value of 1.009 than that from the previous analysis. This shows that for this 

parameter at least, the landscape scale metapopulation dynamics have a strong influence 

and it is probable that the rescue effect (Brown and Kodric-Brown 1977, and Section 1.5), 

is a function mainly of the distances from Porton Down and between Fragmented Patches. 
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The relationship between estimates for the parameter for effective strength of 

environmental stochasticity (x) and species' scores on CANOCO axis 2 of the Fragmented 

Site analysis is shown in Figure 8.4. The correlation is significant (Spearman Rank 

Correlation Coefficient, rs = -0.857; n=7, P<0.05). The linear regression model fitted to 

these data (y = 1.267 - 0.384x) gives a predicted value for the silver-spotted skipper 

parameter x at 1.284, given a CANOCO axis 2 score of -0.043 for this species. This axis 

also appears to predict the silver-spotted skipper score with a good level of accuracy 

despite its strong correlation with local scale variables as well as distance from Porton 

Down (Section 7.5). However, this axis had a relatively high eigenvalue and showed a 

much stronger correlation with distance from Porton Down than did axis 1 of the 

ordination (Section 7.5). 
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Figure 8.4: The relationship between the parameter for effective strength of environmental 

stochasticity (x) and species' scores on CANOCO axis 2 of the Fragmented Site analysis 
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The relationship between estimates for the parameter for the colonization ability of species 

(y) and species' scores on CANOCO axis 1 of the Fragmented Site analysis is shown in 

Figure 8.5. The correlation is significant (Spearman Rank Correlation Coefficient, r, 

0.857; n=7, P<0.05). Good colonizers appear to lie at the negative end of axis I which is 

related to local scale variables. However, the positive end is related strongly to patch area 

and, to a lesser degree, distance between patches (ranked seventh of the eighteen 

variables), both of which would become more important to species with lower 

colonization ability. 
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Hure 8.5: The relationship between the parameter for the colonization ability of species 

(y) and species' scores on CANOCO axis 1 of the Fragmented Site analysis 
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Clearly, the apparent lack of relationship between good colonizers and landscape scale 

variables is a function of the small effect features such as patch size and inter-patch 

distance has on these species rather than a negative effect per se. 

There were no significant relationships between IFM parameter estimates and species' 

CANOCO scores for the Porton Down patch data. 
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8.4 DISCUSSION 

8.4.1 IFM Parameter Estimates 

Dingy skipper appears to be a poor disperser over distance and a poor colonizer but is not 

badly affected by environmental stochasticity. The latter property is probably related to the 

species' flexibility of use of two larval food-plants, Lotus corniculatus and Ilippocrepis 

comosa, both of which can be fairly abundant in some years and among different types of 

chalk grassland. All of the GLIM analyses found food-plant abundance to be a 

consistently significant factor in determining this species' presence. There is probably a 

relationship therefore, between this factor and the species' poor dispersal and colonization 

ability. Its habitat and food-plant requirements have historically been fulfilled across the 

chalk landscape and therefore local and regional extinction probabilities have been 

relatively low. Recent declines have been shown to be significant over both woodland and 

chalk grassland sites (Greatorex-Davies and Roy 2000). This may well be due to the 

landscape reaching a critically high degree of fragmentation (see Section 1.7). 

Grizzled skipper has the highest values of all the species modelled for the effect of 

distance on dispersal and the effect of environmental stochasticity. It is also a poor 

colonizer. Marking studies have shown the species to have low mobility (Brereton 1997). 

Taken together, these factors would appear to make this species particularly vulnerable to 

local and regional extinctions. Indeed, the grizzled skipper has recently shown rapid 

declines in distribution and colony size over its British range (Brereton, Boum and Warren 

1998), although how much of this can be apportionately attributed to fragmentation and 

within-patch declines in habitat quality is not known. It is clear from the GLIM analyses 
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that high quality CG2 and/or CG7 grassland is preferred and this is at a premium in most 

regions now. 

Green hairstreak has mid-range values for most parameters except the critical minimum 

patch area, which is the highest. This species is fairly conservative in its food-plant and 

structural habitat requirements, but the combination of deep soils (for scrub growth) and 

skeletal soils (for the food-plants) required to provide these (BUTT 1986) is actually an 

uncommon combination in any but the larger chalk downland patches. This would explain 

the relatively high Ao value. 

Brown argus also has mid-range values for most parameters except the effect of distance 

on dispersal which is the lowest. This should mean that the species has good powers of 

dispersal over a relatively high proportion of the inter-patch distances in the network. 

Despite worries over fragmentation of chalk grasslands, this species has not only 

maintained its populations on established colonies, but has (re-)colonized many sites 

following high population levels in 1995 and 1996 (Greatorex-Davies 1999; Fuller 1999). 

This reflects the strong value for the distance-dispersal parameter in the IFM model above 

and is reinforced by the consistent selection of local scale variables only in the GLIM 

analyses. 

Chalkhill blue also shows a low value for the effect of distance on dispersal but with a 

relatively small value for the effect of environmental stochasticity. This species is 

renowned for huge, asynchronous population fluctuations at some colonies (annual indices 

of between 0 and 150 at Aston Rowant South in successive years for example, Greatorex- 

Davies and Roy (2000). The sole larval food-plant, Hippocrepis coanosa, often remains 
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abundant during these fluctuations and it may therefore be due to this species' reliance on 

ants (Lasius alienus, L. flavus and Myrmica sabuleti) to tend the larvae and a possible 

sensitivity to timing of grazing which may cause high rates of over-wintering egg 

mortality. This combination of parameter values appears to give rise to similar 

circumstances to that of the marsh fritillary Euphydryas aurinia, which is known to rely on 

regular re-colonization from nearby patches within the metapopulation following near- or 

actual local extinction (Warren and Brereton 1998). 

Dark green fritillary shows by far the smallest values for the effect of environmental 

stochasticity, colonization ability and minimum critical patch area. In combination, this 

species shows contrasting characteristics of being a good initial colonizer requiring only 

relatively small habitat patches, but thereafter being highly vulnerable to stochastic 

extinction events due to environmental factors. This species probably uses only one food- 

plant on chalk grassland sites (Viola hirta), which can be present in large patches but is 

also highly vulnerable to stock grazing (high levels resulting in predation, low levels 

resulting in shading out) and desiccation of preferred large plants before larvae have fully 

developed (BUTT 1986). The large dark green fritillary population present on Porton 

Down is due to the fact that the primary grazer here is the rabbit, which avoids Viola Iiirta. 

The GLIM analyses showed a clear dependence on distance from Porton Down and other 

patches. The GLIM and IFM analyses shows a dependence on the few large colonies in 

the patch network to constantly re-colonize smaller sites, despite the dark green fritillary's 

high mobility and ability to `find' new sites. 

Small heath has mid-range values for most parameters except the one for colonization 

ability which is exceptionally high. This translates to the species having a poor ability to 
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colonize, although how much isolation is a factor is not clear as the parameter for the 

effect of distance on dispersal is of mid-range value. The relatively low value for critical 

minimum patch area may have something to do with this species' liking for edge habitat 

which increases with small patches (see Section 7.5). Although widespread geographically 

and over several habitats, this species has recently shown a severe national decline 

(Greatorex-Davies and Roy 2000), and it could be that a combination of habitat quality 

(see Section 4.26) and fragmentation has reached a critical point where its poor 

colonization ability is preventing recovery. 

8.4.2 Linking IFM and Independent Analyses 

The strong relationship between AO and ̀ inherent' butterfly population variability shown in 

Figure 8.1 is a clear indication of different sensitivities to factors such as environmental 

and resource changes by different species. Mechanisms relating to this relationship are 

clearly set out by the inclusion of patch area as a factor in population extinction 

probability in metapopulation dynamics (Hanski 1999). However, the exact nature of these 

mechanisms are not known, although one suggestion is the `changing environment 

scenario'. This relates species' population ceilings, or carrying capacities (k in population 

dynamics), positively to patch size, but is complicated by independent factors acting on 

statistical variance around population growth. Larger patches are likely to be more 

heterogeneous than small ones and therefore when environmental stochasticity increases, 

essential resources are more likely to remain in the larger patches (Ehrlich and Murphy 

1987). This is better referred to as the vegetation mosaic hypothesis (Short and Turner 

1994). Clearly, the quantification of `resource' in terms of species' habitat requirements, is 
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not a simple assessment of number of larval food-plants for example, as the order of 

species shown in Figure 8.1 would otherwise be very different. 

The relationships between parameter estimates for effective strength of environmental 

stochasticity (x) and CANOCO axes from Fragmented Site ordinations show a great deal 

of consistency across axes and analyses (Figures 8.2 - 8.4). Species showing high values 

for x, and therefore low susceptibility to environmental stochasticity, are those which lie at 

the ends of the ordination axes related to landscape scale factors such as increased distance 

from potential source sites. Species showing low values for x, and therefore high 

susceptibility to environmental stochasticity, are those which lie at the ends of the 

ordination axes related to local scale factors (mainly habitat features). The implication 

here is that those species with low susceptibility occupy a more `risky' ecological niche, as 

illustrated by positions on the ordinations. Species showing high susceptibility, however, 

do not risk involvement at the landscape level and probably occupy niches in areas of least 

heterogeneity. Inspection of the Figures shows one species in particular demonstrating a 

consistent position on this relationship, dark green fritillary. This species was shown to be 

very strongly (negatively) related to distance from Porton Down and inter-site distances in 

Chapters 6 and 7, but strongly related to its food-plant and preferred habitat (NVC type) in 

Chapters 4 and 5. Such clear and strong relationships at the two, local and landscape, 

scales, are unique among the study species and warrant further investigation. 

Finally, the relationship between parameter estimates for the colonization ability of 

species, y, and the CANOCO axis from the Fragmented Site ordination (Figure 8.5), 

relates weakly to species' relationships with parameters for susceptibility to environmental 

stochasticity (Spearman Rank Correlation Coefficient, rs = 0.764; n=7,0.1 >P>0.05). In 
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metapopulation dynamics terms, successful colonization of an empty habitat patch is 

probably most strongly related to propagule (i. e. colonization population) size (Ludwig 

1996). This is in turn related to biological factors such as mode of reproduction and 

fecundity. However, niche width is also important, as generalists are regarded as better (or 

more commonly observed), colonizers than specialists (Ehrlich 1986). Looking at the 

species at the two ends of the graph in Figure 8.5, dark green fritillary and small heath, the 

niche hypothesis does not hold well as both species appear to require fairly specific habitat 

types, with dark green fritillary in particular, occupying a very narrow niche in terms of 

food-plant and preferred habitat (see Section 4.18). However, it may be that across the 

network of sites in this study, preferred resources are unusually abundant and niche width 

is less of a factor here. For dark green fritillary in particular, the IFM parameterisation (see 

Section 8.4.1) was useful in demonstrating a probable tendency to both colonize and 

rapidly become extinct. It may be that many of the species are still showing behavioural 

patterns which relate to past high landscape connectivity and habitat quality and which 

now conform to a consistent ̀ sink' metapopulation pattern (see Section 1.6). 
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9. DISCUSSION 

9.1 INTRODUCTION 

This discussion chapter will examine similarities and differences between the scales and 

methods of analysis in the previous results chapters. An overview of these conclusions 

will then incorporate theoretical and observational data from similar studies to attempt to 

form a synthesis. 

9.2 LOCAL SCALE ANALYSES 

Of the eighteen butterfly species analyzed by regression analysis, sixteen showed a 

significant model between presence/absence on transects and habitat and local scale 

environmental variables and only one, small blue, did not. Models could not be tested 

predictively between years for one due to low numbers. Ten of the sixteen species showed 

that models constructed from one year could successfully be used to predict 

presence/absence or population levels in subsequent (or previous years) with statistical 

significance. A further three species showed a measure of success with the between-year 

predictive power of the models but at P>0.05. Only three species, grizzled skipper, small 

copper and hedge brown showed no apparent between-year predictive power of the 

models. Perhaps surprisingly, only eight of the seventeen species showing significant 

models in the regression analyses had larval food-plant as one of the explanatory 

variables. Only two species, chalkhill blue and hedge brown, had larval food-plant as the 

only explanatory variable in the model. 
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Butterfly distributions are dependent on a combination of environmental parameters 

including tolerance of climate, microclimatic development needs and distribution of adult 

nectar sources and larval food-plants (Dennis 1992). Of these, the closest relationship any 

butterfly has is its physiological one with its larval food-plants. Indeed, isolation of races 

within a species' geographical range is often accompanied by the evolution of different 

relationships with larval food-plants which are more suited to `local' climate and habitats 

(Dempster 1995). In turn, the distribution of plant species is dependent largely on 

interactions between climate and soils which produce conditions of common physiological 

ecology for many other species and these therefore form characteristic communities 

(Rodwell 1991-2000). 

It is not surprising therefore, that many of the species' models included explanatory 

variables that combined to give a broader picture of the overall resource requirements. For 

many of the butterfly species which apparently showed no selection on the presence of 

larval food-plant, the vegetation community provides a surrogate measure. For example, 

green hairstreak showed a preference for the CG2 NVC community; this community 

shows the highest frequency for two of the larval food-plants, common rock-rose 

jielianthemum nummularium and bird's-foot trefoil Lotus corniculatus (Rodwell 1992), 

Similarly, small heath showed a preference for three NVC communities, CG2, CG3 and 

CG6. These communities have the highest frequency values for two of this butterfly's 

most important larval food-plants, sheep's fescue Festuca ovina and red fescue Festuca 

rubra (Rodwell 1992). These associations are reinforced by both larval food-plant and its 

NVC community of highest frequency being selected together in the analyses (eg Viola 

hirta and CG3 for dark green fritillary, Fragaria vesca and CG7 for grizzled skipper). - 
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The few exceptions to this rule were three species with grasses as larval food-plants. These 

species, small skipper, Essex skipper and ringlet, appeared to display a more diffuse type 

of habitat selection with the skippers being associated with lack of rabbit grazing and the 

ringlet selecting this plus cooler aspects and scrub with nectar sources. All of these 

observations agree well with the (relatively little) known requirements of the species 

(BUTT 1986). 

9.3 LANDSCAPE SCALE ANALYSES 

9.3.1 Fragmented Sites 

Of the sixteen species for which there were sufficient data to perform regression analysis, 

twelve had local scale variables which were common to the Porton Down local scale 

models (including area of NVC types instead of presence/absence). Five species showed a 

relationship with patch area and only one, dark green fritillary, showed a relationship with 

distance effects. 

9.3.2 Porton Down Patch Analysis 

Of the seventeen species which had sufficient data to perform regression analysis, four 

produced models which were not significant at the P<0.05 level while a further six had 

local scale variables which were common to the Porton Down local scale models. Six of 

the thirteen species with significant models showed a relationship with landscape scale 

variables (one with patch area, four with the nearest population node and one with average 

distance to population nodes). 
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The degree of similarity between selected variables showing ̀ landscape effects' in the 

Porton Down Patch analysis and those showing landscape effects in the Fragmented Sites 

analysis are summarized in Table 9.1. 

Most obvious from these results is the lack of consistency of species showing sensitivity to 

landscape effects across the two analyses. Assuming this is not a simple result of 

anomolous methodology or an artefact of the data or statistics used, then there must be an 

explanation through different ecological and behavioural responses. 

For those species with a relationship with Distance to the Nearest Population Node, there 

appears to be no association with the degree of coloniality as given in Warren (1992). 

Neither does there seem to be a relationship with mobility as given in Pollard and Yates 

(1993). 

There does seem to be some pattern with the species showing a relationship with distance- 

related landscape scale variables in this analysis and those which had GLIM models with 

either poor between-year predictive power or which included a relatively large number of 

variables, or, in the case of small blue, did not produce a significant model in the Porton 

Down local scale analysis (Section 4.12). 
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Table 9.1: The degree of similarity between selected variables showing `landscape effects' 

in the Porton Down Patch analysis and those showing landscape effects in the Fragmented 

Sites analysis. Species in bold show agreement. 

Landscane Effect? 

Species Porton Down Patches 

Small Skipper No 

Essex Skipper (No) 

Silver-spotted Skipper No 

Large Skipper (No) 

Dingy Skipper No 

Grizzled Skipper Yes 

Green Hairstreak No 

Small Copper ? 

Small Blue Yes 

Brown Argus No 

Common Blue (Yes) 

Fragmented Sites 

Yes 

No 

Yes 

Yes 

No 

Yes 

No 

No 

No 
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Table 9.1 (Continued) 

Chalkhill Blue Yes No 

Dark Green Fritillary No Yes 

Marbled White No No 

Hedge Brown Yes No 

Meadow Brown Yes No 

Ringlet ? No 

Small Heath Yes(-ve) Yes(+ve) 

(Yes/No) denotes models which approached significance i. e. P= but > 0.05) 

The implication here is that the best predictor of butterfly numbers or presence in these 

species is simply the distance from the core of the preferred habitat, which itself is poorly 

defined. In this case, the distance variables used (distance to nearest population node and 

average distance to nodes), are not really simple indicators of movement (as is the 

`dispersal kernel' (Hanski 1999)), but is some function of a combination of local dispersal 

and local habitat availability. The reason for the poor between-year predictive power of 

these species' models is that their presence on sample transects away from their population 

nodes is less due to the presence of suitable habitat and more due to local dispersal during 

years of high population levels. It is not possible to say where this behaviour lies on the 
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scale of the relationship between local population dynamics and landscape scale (or 

metapopulation) dynamics. 

One species, small heath, showed a relationship with patch area at both scales of GLIM 

analyses, but negative with the Porton Down Patches and positive with the Fragmented 

Sites. This species is known to be sedentary, often has two to three indistinct generations 

per year and appears to require early seral stage microhabitats within larger areas of 

diverse grassland (BUTT 1986; Shreeve 1995). Otherwise, it is widely recognized that this 

is one of the least known species in Britain (Oates 1995). 

Usually, species which occupy early seral stage habitats are highly mobile due to the 

continual need for finding these temporary habitats (Oates 1995). However, the small 

heath is an example of an early seral stage occupant which also exhibits a strong sedentary 

nature and can exist in small `closed' populations (Warren 1992). This behaviour is 

combined with the apparent need for edge microhabitats such as track edges or areas of 

grassland where sward height changes (BUTT 1986). There is therefore a clear correlation 

with patch area as these microhabitats are relatively scarce and therefore the probability of 

occurrence on a patch increases mainly as a function of total patch size. The different 

relationships shown in the two analyses above are almost certainly due to the type of data 

ie transect counts at Porton Down (producing population density estimates) and 

presence/absence on the Fragmented Sites (producing probabilities of occurrence). A 

negative density-area relationship was found for the Glanville fritillary Melitaca cinxia by 

Hanski et al (1994). Although no explanation for this relationship was found (there was no 

correlation with isolation), this species occupies habitat of a very patchy nature, perhaps 

providing a parallel with small heath in this study. 
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Generally, therefore, the same (or similar) ecological processes may well be acting within 

the two study systems but with different apparent outcomes. Processes such as 

environmental stochasticity would clearly be more likely to produce extinctions among the 

Fragmented Sites while exactly the same perturbations would produce more subtle 

changes in population density gradients among the Porton Down Patches. 

9.4 COMMUNITY ANALYSIS 

9.4.1 Local Scale Data 

The analyses of both Porton Down and Fragmented Patch local scale data proved very 

useful in both emphasising the results of the GLIM analyses and demonstrating the 

species' affinities in terms of habitat and (micro-)site selection. For the rarer species, such 

as wall and adonis blue, positions on the CANOCO ordination plots accurately reflected 

their known requirements. Some ̀ extremes' of habitat selection were also shown, such as 

that of the two `small' skippers, Essex and small skipper, at one end of the ordination and 

adonis blue and silver-spotted skipper at the other. Equally striking was the degree of 

neutrality of meadow brown, which is interesting for a species which can show a high 

degree of polymorphism (Brakefield 1990; Ford 1975; Brakefield and Shreeve 1992). 

One additionally useful aspect of these analyses was the contrast between the 1995 and 

1997 Porton Down local scale data. These showed how between-year climatic differences, 

combined with population changes (over 90 per cent reduction in large skipper numbers 

occurred between these years), can produce quite different profiles of habitat selection. 

Some of these species show regular population fluctuations due to external factors such as 
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changes in larval food-plant demography. Such a species is small blue (Morton 1985). 

Others may be on the edge of their natural range or may be near the limits of their 

ecological tolerance on the well-grazed grasslands at Porton Down. The large skipper 

would seem to be a good example of the latter. 

Finally, the extent to which some species with `closed' populations (Warren 1992) could 

be positively managed on a local scale with spectacular results was demonstrated by the 

comparison between Porton Down and Fragmented Patch local scale data. The two 

lycaenids, adonis and chalkhill blue, showed huge population densities on some relatively 

small, but prescriptively managed (by stock grazing) sites. How much immigration of 

individuals from other sites is required to maintain these levels is unknown. 

9.4.2 Landscape Scale Data 

9.4.2.1 Porton Down Patches 

Community analysis of Porton Down Patch data largely substantiated the GUM analyses 

in that the `landscape scale' variables of distance to population nodes did not appear to 

relate truly to real landscape scale factors, while patch area was relatively unimportant 

compared to local scale variables such as major contrasting NVC types, sward structure 

and grazing pressure. It must be accepted that the difficulties of `imposing' landscape 

scale factors on a single, large area of habitat with indistinct patch boundaries and 

unmeasured rates of migration between patches has limitations for interpreting the 

possible processes involved. However, a few species, such as Essex skipper and small 

copper, which have generally not been highlighted by the other analyses, showed some 
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sensitivity to this approach and more detailed studies involving measurement of processes 

mentioned above may reveal some interesting results. 

9.4.2.2 Fragmented Sites 

These analyses fairly successfully teased out the relative importance of patch area and 

isolation (which have been termed the first-order landscape effects on population biology 

(Hanski 1999) see Section 1.2.3) in comparison with local scale habitat and environment. 

Patch area appeared to have the strongest effect on species' presence/absence for several 

species, particularly those with requirements for short turf such as silver-spotted skipper, 

wall and adonis blue. Clearly, the increasing probability of `rare' micro-habitats occurring 

on larger patches is the driver here. Interestingly, the relationship with patch area shown 

by small heath in the GLIM analyses was continued here, with this species' need for a 

diversity of edge-type micro-habitats ultimately being reflected by a positive relationship 

with patch area. 

The most anomalous species in these analyses, however, was the dark green fritillary. This 

species appeared to show a complete dependence on a combination of distance from its 

major `source' site Porton Down and the average distance between all sites in determining 

its presence at a site in the patch network. The degree of dependence can be demonstrated 

by Figure 9.1 which shows the predicted populations on Fragmented Site transects (from 

the Porton Down local scale ̀ habitat' model) plotted against observed transect count totals 

adjusted by the regression Adjusted Index = S. 23ß+2.476*Total Transect Count (shown in 

Figure 2.4b). The bold line shows where points would lie if the relationship was 1: 1. The 

vast majority of data points lie above this line however. It is clear that habitat quality alone 
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severely underestimates the numbers seen on the majority of samples within patches and 

that other factors - migration from source populations - is of over-riding importance for all 

but the smallest populations. 

Figure 9.1: The relationship between predicted populations on Fragmented Site transects 

(from the Porton Down local scale ̀ habitat' model) against adjusted observed transect count 

totals 
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INCIDENCE FUNCTION MODELS (IFMs) 

IFMs were run for seven species which were present in the patch network within the 

criteria set by Hanski (1994). Standard errors over ten model runs were acceptable for all 

modelled parameters and for all species and one can use these results with some 

confidence assuming some data constraints and the IFM algorithmic constraints (Moilanen 
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2000). Parameter estimations generally fitted extremely well with current knowledge of 

species' biology and population ecology. One extraordinary finding, which fitted well with 

the GLIM and CANOCO analyses but is not backed up by current knowledge, was that for 

dark green fritillary. This species showed an almost complete dependence on the few high 

quality `source' sites from where it appears that many individuals temporarily colonize 

other patches. The reason for its high susceptibility to environmental stochasticity is not 

known but may be linked to the ecology of its larval food-plant Viola hirta. Viola hirta is a 

plant which is highly sensitive to grassland management despite being a moderate stress- 

tolerator (Grime et al 1988), and is likely to fluctuate in abundance from year to year, 

particularly where stock grazing is used. 

At the other end of the scale, small heath showed very poor colonization ability which is 

linked to the species' apparent need for edge microhabitats. This is in turn linked to patch 

area (which was substantiated by the low value for critical minimum patch area), and 

diversity of grassland communities. Such an ecological profile does not augur well for the 

species in an increasingly fragmented and poorly managed set of patch networks. Indeed, a 

continual and significant decline in monitored populations of small heath has occurred 

over the past 15 years (Greatorex-Davies and Roy 2000). 

Perhaps surprisingly, the species which showed least susceptibility to environmental 

stochasticity included the two chalk grassland skippers, grizzled and dingy skippers. The 

grizzled skipper is a naturally uncommon species, occurring at low densities even on 

prime sites (Brereton et al 1998). It is perhaps less surprising in this light, that the species 

shows resilience to environmental stochasticity and therefore general resistance to local 

extinction. The dingy skipper showed less resilience to environmental stochasticity and 
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occurs at only slightly higher densities than the grizzled skipper at most sites. This species 

has shown a significant decline on monitored sites in the last 15 years (Greatorex-Davies 

and Roy 2000) and it may be that critical levels have been reached in terms of landscape 

connectivity and management. 

The relationship between population variation and critical minimum patch area for the few 

species modelled with the IFM can be extended by using Warren's (1992) groupings of 

`closed population' species under minimum areas from which colonies have been 

recorded. Using these groupings as ranks, a plot of minimum area against (log) population 

coefficient of variation (CV) on Porton Down's grassland BMS transect shows a positive 

relationship with three outliers (Figure 9.2). The correlation is therefore low (Spearman 

Rank Correlation Coefficient rs = 0.239; n= 18, NS). Grizzled skipper was added ranked 2 

(from IFM estimates of Ao) as this species did not appear in the original Table. If data 

from Porton Down's woodland ride BMS-type transect are substituted for large skipper 

and ringlet (as populations here are much less marginal compared to the well-grazed 

grassland ones) and data for marsh fritillary on this transect are also added, the 

relationship is greatly improved. 

Two anomalous species in this relationship are small blue and dark green fritillary. As 

previously discussed (Section 4.12), small blue appears to show highly volatile population 

fluctuations which track its only food-plant, Anthyllis vulneraria. l~or this reason, this 

species has an unusually large population CV and has presumably adapted genetically and 

behaviourally to regular local effective extinctions. 
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Figure 9.2: The relationship between rank minimum colony area and (log) population 

coefficient of variation (CV) on Porton Down 
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Dark green fritillary, on the other hand, appears to show unusually small population 

fluctuations at Porton Down. An analysis of CVs at other sites locally show figures of 

around 0.3 to 0.5 to be more typical (Taverner 1999; Fuller 1999). Treating these two 

species as outliers (Jongman et al 1987), their removal greatly improves the overall 

relationship (Figure 9.3) which is highly significant (Spearman Rank Correlation 

Coefficient rs = 0.718; n= 16, P<0.005). 
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Figure 9.3: The relationship between rank minimum colony area and (log) population 

coefficient of variation (CV) on Porton Down (two outliers removed) 
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For the vast majority of species in this study therefore, the relationship between population 

variation (as measured by population CV), and measures of minimum patch/habitat areas 

appears to be strong. 

The final question in relation to patch area would be where it lies in importance between 

the true metapopulation view (patches are relatively separate habitat units, with 

populations acting in isolation apart from occasional inter-site migration), and the 

landscape context view (patches are connected by corridors of varying permeabilities 

producing a complex mosaic of patches and inter-patch habitats). In this study, the 
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selection of patch area as an important factor in regression models was restricted to 

species known to be relatively sedentary (see Section 6.26) and show a 'closed' population 

structure (Warren 1992). In addition, community analysis showed patch area to be 

strongly related to within-patch quality variables (Chapter 7), with inter-patch distance 

occupying a different vector. The conclusion for this set of study sites must be therefore, 

that patch area relates strongly to within-patch local scale habitat quality which then 

becomes a strong determinant of landscape scale metapopulation dynamics as inferred in 

the vegetation mosaic hypothesis (Short and Turner 1994 and see Section 8.4.2). For most 

species, the large rescue effect of the Porton Down site and the few other moderately large 

sites with high quality habitat, plus the connectivity of the landscape, has produced a 

system more akin to Weins' Landscape Ecology model (Section 1.7). 

9.6 LINKING THE ELEMENTS: A SYNTHESIS 

When IFM and CANOCO analyses were compared (Chapter 8), there were several 

statistically significant correlations between IFM parameters for the degree of 

susceptibility to environmental stochasticity (x) and the colonization ability of a species 

(y) and species' scores on the ordination axes. For x, this relationship was even stronger 

when only the landscape variables distance from Porton Down (the major `source' patch), 

average distance between patches and patch area were used to generate species. 

environment ordination axes. Clearly, the more isolated a species becomes in ecological 

terms, the more resilient it needs to be in order to resist widescale extinction among patch 

networks. 
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For colonization ability (y), the relationship appears to be strongly oriented towards issues 

of habitat quality and structure, which in turn is related to patch size due to the rarity of 

`quality' habitat in small patches. The question is how does this habitat quality issue relate 

to metapopulation ecology? 

Species' positions along the Fragmented Sites CANOCO axis 1 (Figure 7.7) possibly 

reflect the way their population ecology determines how they move about the landscape 

and how they use the available habitat when they settle. In order to test this theory, species 

scores on axis 1 were regressed against a number of independent measures of habitat 

selection and occupancy. Figure 9.4 shows the relationship between species' scores and 

seral stage scores as given in Dennis (1992). Younger seral (successional) stages score 

lower. Where a range of scores was given, a median value was taken. This relationship is 

highly significant (Spearman Rank Correlation Coefficient rs = -0.723; n= 20, P<0.001). 

Species towards the positive end of axis 1 require well-grazed, more two dimensional but 

often relatively species-rich habitats (not `species-saturated' as in higher seral stages). 

These habitats are likely to be variable in quality over time and such species need to have 

some inherent resistance to extinction, which has been shown to be the case above in 

terms of lower susceptibility to environmental stochasticity. 

238 



Figure 9.4: The relationship between species' scores on Fragmented Sites CANOCO axis 

1 and seral stage scores 
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Saccheri (1998) showed that the average number of heterozygous loci in 42 populations of 

Glanville fritillary was much lower in those populations at greater risk of extinction due to 

ecological factors. This was usually due to a high level of inter-sibling mating. Although 

this may be an extreme example, it nevertheless demonstrates the pressures on such 

species to evolve genetic robustness. The additional price paid for this combination of 

attributes is relatively poor powers of dispersal. However, individuals can still make long 

migrations to find suitable habitats to colonize as has been shown by mark-recapture 

studies on silver-spotted skippers whose longest observed colonization distance was nearly 

30 times further than the longest observed migration distance (Thomas and Jones 1993). 
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Recent work has also shown that more isolated populations of this species have rapidly 

evolved individuals adapted for longer migration flights (Hill et al 1999). 

Species in the mid-range of axis 1 tend to have moderate to good powers of dispersal, as 

measured by the effect of distance on dispersal (a) in the IFM. Some evidence is shown 

by three mark-release-recapture studies in Hanski and Kuusaari (1995) who quote longest 

observed migration distances of 7.3 km for marbled white and 0.3 km for both silver- 

spotted skipper and adonis blue and a more recent study by Baguette et al (2000) where 

the longest distance moved by marbled white was 2.5 km but only 0.75 km for small blue 

in the same patch network. Species in the mid-range group of axis 1 tend to be those 

which show medium specialization both in terms of the number of larval food-plants 

(Spearman Rank Correlation Coefficient rs = -0.414; n= 20,0.1 >P>0.05 between axis 1 

score and number of principal larval food-plants) and in terms of local habitat and 

microhabitat requirements as demonstrated by the relationship with seral stages shown 

above. However, both larval food-plants and preferred habitat would be relatively rare in 

the general landscape and these species would find intervening habitat relatively alien to 

them. The group does include species which have ̀ good' years when high population 

levels trigger dispersal into new areas. These occurrences may be regionally or even 

nationally synchronized, as with brown argus in 1996 and grizzled skipper in 1997 

(Greatorex-Davies and Pollard 1997), or may be more local and unsynchronized as with 

chalkhill blue (Fuller 1995b). 

Species at the negative end of axis 1 tend to be good dispersers, either due to being strong 

fliers who can migrate easily between suitable patches (as the dark green fritillary), or due 

to viewing the landscape as a series of highly suitable patches of habitat connected by less 
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suitable, but adequate habitat. Thus, this group consists largely of species which arc larval 

grass-feeders, utilising several common species, and can use areas of ephemeral vegetation 

as breeding habitat. Recent work has shown a possible link between an increase in 

abundance of several of these species and that of some common plant species such as 

couch Elytrigia repens and nettle Urtica dioica (Smart et al 2000). 

It is useful at this stage, to examine the relationship between species' general ecology in 

the landscape (from the previous analyses) and measures of regional distribution. Data are 

available from two sources, the BMS (Greatorex-Davies and Roy 2000) and the most 

recent Atlas of British Butterflies (Heath et al 1984). A plot of the number of BMS sites at 

which species were found against the percentage of occupied 10km squares in the atlas 

shows that nearly all species are ̀ over-represented' in the BMS as shown by the linear 

regression trend line (Figure 9.5), which would lie at 45 degrees and arising from the 

origin if the two distributions were equal. There is, however, a strong agreement between 

the two measures of regional distribution overall (Spearman Rank Correlation Coefficient 

rS = 0.903; n= 20, P<0.001). One problem with using the two methods is that the atlas 

data are now at least 18 years old and it is known that most of these species have changed 

in both range and abundance over the past decade (Cowley et al 1999; R. Fox, Butterfly 

Conservation, pers. comm. ). 
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Figure 9.5: The relationship between the number of BMS sites at which species occur and 

the percentage of occupied 10km squares in the 1984 Atlas 
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Equally, the BMS sites tend to be nature reserves and other sites of high butterfly species 

richness with large populations (Pollard and Yates 1993). Species could lie above or 

below the trend line for two reasons: firstly, they may be exaggeratedly over. or under- 

represented at the BMS sites and secondly, populations have changed greatly relative to a 

reference period when it can be assumed they were all positioned closer to the line. 

Figure 9.6a shows the relationship between CANOCO axis 1 scores for Fragmented Sites 

and percent of 10km squares occupied from the Atlas data. Given the scatter, it is not 

surprising that the relationship is not significant for all the species (Spearman Rank 
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Correlation Coefficient rs = -0.312; n= 20,0.2 >P>0.1). However, there appears to be 

two separate groups on the plot. The group towards the top right sector (the 'C' group) of 

the plot are widespread and (at the time of the Atlas work), relatively common species in 

Britain. The group towards the bottom left sector of the plot (the `R' group) are those of a 

more restricted nature. Most distributions in this group are restricted by climate or geology 

or a combination of both. A few, particularly dark green fritillary, green hairstreak and 

small blue are restricted due to other, largely unknown factors, although grassland 

`quality' is probably important (Warren 1992). Taken as distinct groups, the ̀ R' group 

shows a significant relationship with axis I scores (Spearman Rank Correlation 

Coefficient rs = -0.779; n= 15, P<0.001), but the ̀ C' group does not (Spearman Rank 

Correlation Coefficient rr = -0.9; n=5, P=0.1). This latter group does show a strong 

trend, however, and probably suffers statistically from having only a few members. Linear 

regression trend lines are shown plotted for each group separately in Figure 9.6b and have 

remarkably similar slopes. 

Further analysis of the relationship between overall and within-group axis 1 scores 

(Figures 9.6a & b) and some selected life history factors is very revealing and is 

summarized in Table 9.2. 

The number of main larval food-plants is taken from the same sources as for the GLIM 

analyses (BUTT 1986; Pollard and Yates 1993; Dennis 1992 and see Appendix 5) and 

number of generations from Pollard and Yates (1993). 
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Figure 9.6a: The relationship between CANOCO axis 1 scores for Fragmented Sites and 

percent of 10km squares occupied from the 1984 Atlas 
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There were also between group differences among these two life history factors, with the 

`C' group showing a tendency towards using more food-plants (polyphagy) and the ̀ R' 

group towards few or single food-plants (mono- or oligophagy) (Mann-Whitney U statistic 

U= 60.0; df = 1, P=0.044), and the ̀ C' group showing a tendency towards 

multivoltinism compared to the generally single brooded 'R' group (Mann-Whitney U 

statistic U= 62.0; df = 1, P=0.011). 
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Figure 9.6b: The relationship between CANOCO axis 1 scores for Fragmented Sites and 

percent of 10km squares occupied from the 1984 Atlas (group regression lines shown) 
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There is a distinct ̀ cline' within the groups in relation to voltinism, with species at the top 

left end of each group in Figure 9.6 being single brooded. However, the `C' group shows a 

trend from the meadow brown, which, although being single brooded, shows great 

flexibility in emergence date and length of its single generation (Brakefield 1987), through 

common blue which is univoltine in the north of Britain, bivoltine in the south, to small 

heath, small copper and wall which have up to three broods in the south of Britain (a 

partial third for wall). 
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Table 9.2: Summary of tests for correlations between CANOCO axis 1 scores and life 

history factors 

Spearman Rank Correlation Coefficient rg 

a) No. Main Food-plants All species `C' group `R' group 

-0.414 (*) -0.154 -0.670 ** 

b) No Generations All species `C' group 'R' group 

0.610 ** 0.707 0.560 * 

Asterisks indicate the statistical significance of correlations: *P<0.05, ** P<0.01, (*) 

approaching significance at 0.1 >P>0.05. 

In many ways, the differences above reflect the species' abilities to cope with 'range' and 

its correlated components of climate and resource predictability. The more widespread a 

species, the more it needs a larger number of resource alternatives to survive 

environmental changes (Dennis 1993). It also needs flexibility in terms of reproduction, 

with species showing inflexible, short and seasonally fixed flight periods being much less 

likely to be found across wider latitudes. Dennis (1993), ranked species according to their 

`internal' i. e. biological, vulnerability relating to their capacity to withstand changes and 

their flexibility to respond to changes. The two measures are a sum of factors related to 

latitudinal range in Britain, general distribution, food-plant utilisation, food-plant 
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abundance, vulnerability of seral stage occupied and range of semi-natural habitats 

occupied (capacity to withstand change), dispersal ability, voltinism, length of flight 

period and overwintering stage (flexibility to withstand change). The overall index (minus 

the distributional factors) correlates very strongly with the number of occupied 10km 

squares in the Atlas (Spearman Rank Correlation Coefficient rs = 0.799; n= 20, P< 

0.001), as do the separate indices for `capacity' (rs = 0.767; n= 20, P<0.001), and 

`flexibility' (rs = 0.707; n= 20, P<0.001). While, as Dennis points out, there are 

exceptions within the trends, this degree of correlation between range and vulnerability 

agrees well with current (at that time) population and range trends, especially within 

taxonomic groups. 

The three measures, the two discussed above plus the CANOCO axis 1 scores, can be 

viewed as measures of the species' ecology within the landscape (CANOCO axis 1 score), 

their regional distribution (per cent 10km squares occupied in Britain) and their biological 

robustness (Dennis' vulnerability scores minus distribution). This relationship is shown in 

Figure 9.7. The major `step' between the `C' and ̀ R' groups is very evident on the 

biological robustness axis. 

One way of investigating the processes behind this group difference is to plot CANOCO 

Fragmented Site axis 1 scores against the more recent, but less strict (see above), measure 

of regional distribution, the number of BMS sites at which species occur. This plot is 

shown in Figure 9.8. Several of the rarer species (the 'R' group in Figure 9.6a & b) show 

increases in their relative values between the two regional distribution measures, including 

dingy and grizzled skippers, brown argus and marbled white. These probably reflect the 

quality of the BMS sites, although it is known that brown argus and marbled white have 
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shown recent increases in their populations and distributions (Greatorex-Davies and Roy 

2000). The biggest difference, however, is shown by the group of five larval grass-feeders 

which were at the top left end of the ̀ R' group in Figure 9.8. These species, small/Essex 

skipper (counted as one in the BMS), large skipper, hedge brown and ringlet, have all 

increased considerably in their relative abundance between the two measures. All five 

species are known to have increased in range and abundance, despite in some cases, 

having previously contracted in range around the time of the Atlas (Heath et al 1984). In 

addition, these were among a group of nine species, out of a total of seventeen studied, 

who showed a relatively large increase in food-plant cover between 1978 and 1990 in the 

study by Smart et al (2000). 

Interestingly, meadow brown and wall were the other two species in the group that are 

included in this study to show both relatively large increases in food-plant cover and 

recent increases in abundance on the BMS distributions (Greatorex-Davies and Roy 2000). 

Figure 9.9 shows how the apparent changes in regional distribution might be explained 

according to the landscape model of Weins (1997). The 'connectivity threshold' is the 

region on the graph where loss of habitat becomes critical according to where a species 

lies on the `sensitivity' (y) axis. Loss of all semi-natural habitat has been progressive over 

the last 5 decades (Bunce et al 1999), and particularly on calcareous substrates (Keymer 

and Leachl990; Burnside et al 1998). Some species will have hit the critical threshold 

some time ago, and are now in a situation where true metapopulation processes are 

dictating population survival probabilities in a series of small habitat patches surrounded 

by an essentially alien landscape. 
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Figure 9.7: The relationship between species' ecology within the landscape, regional 

distribution and their biological robustness (see text for details) 
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Figure 9.8: The relationship between CANOCO Fragmented Site axis 1 scores and the 

number of BMS sites at which species occur 
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These are generally akin to the ̀ R' group shown towards the right hand end of Figure 9.9. 

Other species, particularly those which use the landscape as a series of highly suitable 

patches of habitat connected by less suitable, but adequate habitat (see above), are still above 

any critical threshold and are shown as the `C' group to the left of Figure 9.9, The five 

species of particular interest here, are shown as a separate group, who had probably reached 

the area of critical threshold and were showing a decline as seen in the Atlas study, but have 

been ̀ pushed' back over the threshold, perhaps due to the increase in abundance of their 

larval food-plant as discussed above. It is important to point out that it is the threshold which 

has changed position rather than the species' which would tend to show relatively fixed 
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behaviour. Rather, these species' behaviour will have been in response to a change in 

resources. 

The most recent data from Butterfly Conservation's Millenium Atlas work (Asher et al 

2001) and kindly provided by Dr R. Fox (pers. comm. ) does appear to corroborate this 

theory. Changes in per cent occupation of 10 km squares between 1970-1982 and 1995- 

1999 show between -5.7 and -14.5 for the `C' group while the floating group show between 

-0.2 and +12.8. These two groups are therefore converging as in Figure 9.9. The 'R' group 

shows a great mixture of changes from positive to negative, with Duke of Burgundy 

showing the greatest decrease (-14.2) and marbled white and brown argus both showing an 

increase of +9.8. 

Only a re-analysis of species' relationships with habitat and landscape factors would show 

whether the floating and ̀ C' groups are also converging on the CANOCO Fragmented 

Sites axis 1, although this would not be expected due to the lack of correlation between 

this axis and distance/isolation factors (Section 7.5). 



Figure 9.9: Hypothesised relationship between the critical thresholds of the species in this 

study and their observed changes in regional distribution (figure adapted from Wiens 

1997). 
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9 .7 ACADEMIC VERSUS APPLIED CONSERVATION: JOINED-UP GOVERNANCE 

Butterfly ecology (as opposed to biology) is only a relatively recent area of study. 

Knowledge of grassland butterfly ecological requirements is still fairly poor although 

some of the scarcer species have been extensively researched recently (Oates 1995). Oates 

lists eight species where "comprehensive knowledge including management details" 

exists, four where "useful ecological knowledge, including management basics " exists, 
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eight where "basic knowledge, at least in some habitats or regions, including general 

understanding of habitat management! 'exists and five where "inadequate knowledge, 

especially regarding management" exists. He adds six species whose ecological 

requirements are almost unknown in detail, and these are the ubiquitous species: Essex 

skipper, large skipper, hedge brown, wall, ringlet and small heath. This study has 

hopefully added to our knowledge of these species' ecology in terms of habitat 

requirements and environmental preferences. 

Ubiquity is no excuse for lack of input either. The wall brown has shown some alarming 

regional downward trends in recent decades, although a recovery is now apparent 

(Greatorex-Davies and Roy 2000). However, the small heath is showing some worrying 

long-term declines which are probably linked to the general ̀ well-being' of the British 

semi-natural grasslands, and this is the species about which Oates feels we know least of 

all. 

Generally, the approach to nature conservation needs for British butterflies by the UK 

conservation agencies is `bottom up' with the rarest and quickest declining being the 

subject of Species Action Plans under the Biodiversity Action Plan (iliodiversity: the UK 

Steering Group Report, 1995). However, only eleven species, of which six show strong 

associations with semi-natural grasslands, are subject to the highest tier, the Priority 

Action Plans. Several others have had Species Action Plans written for them by Butterfly 

Conservation (who also lead on the Priority species), where sufficient concern has been 

expressed over their status and decline. A good example is grizzled skipper (Brcreton et al 

1998). Among the research needs for this species, the following are listed: investigation of 

the dispersal ability, effect of habitat loss and isolation of colonies on population viability; 

253 



research on parasitoids and associated species in its habitats; investigation of the role of 

rabbit grazing in maintaining habitats and the extent of the species' reliance on rabbit 

grazing. This study will have added to the knowledge base on at least the last two fronts. 

As flagship species, butterflies are ideal for driving nature conservation decision making. 

They are attractive, relatively easy to observe, and occupy a whole suite of habitats and 

seral stages within them. Managing for carefully selected butterfly communities should 

benefit a huge number of associated fauna and flora. While a systems based approach such 

as that proposed for chalk grassland invertebrates by Jones-Walters (1990) would be an 

ideal modus operandi for integrated nature conservation if resources were available, in 

reality, such careful management is still a long way off. 

What is important, however, is that butterflies are viewed as indicators of certain 

conditions and are also seen as community members rather than as species existing in 

isolation. This study has hopefully moved research towards a more holistic approach to 

butterfly ecology. 
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APPENDIX la-d: Maps of NVC Types at Porton Down in 199I(frorn Wilson & Reed 
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APPENDIX 2: Fragmented Sites Transect Data 

Sites Surveyed in 1996 

Site 

Porton Pheasant Fields: 

NW Corner 

`Long Strip' 

`Double Tumulus' 

Porton Field @ Gate 13 

Porton `Clump' 

Winterslow Firs 

Porton area @ Gate 14/15 

Figsbury Ring & Mast Fld 

Thorneydown Tip Field 

Jowett's Clump 

Gutteridge's Farm 

Lopcombe Corner Farm 

Bracknell Croft 

Cockey & Laverstock Dns, 

King Manor Hill Palace 

King Manor Hill Bank 

Savage's Farm 

Witherington Down (E) 

Fussell's Lodge Road 

Stock's Bottom 

Pitton Downs: 

White Hill (S) 

White Hill (N) 

Barford Lane 

Area (ha) No. Transects OS Grid Reference * 

1.28 1 SU 2290 3495 

0.15 1 SU 2305 3500 
0.25 1 SU 2313 3495 

0.32 1 SU 2292 3472 
0.75 1 SU 2244 3475 

4.6 2 SU 2198 3458 

0.3 1 SU 2032 3369 

12.3 7 SU 1888 3385 

1.5 1 SU 2132 3437 
0.69 1 SU 2205 3390 

2.15 2 SU 2446 3438 
0.3 1 SU 2500 3503 

3.5 3 SU 1810 3308 

27.0 9 SU 1685 3150 

0.6 2 SU 1790 3005 

2.5 2 SU 1722 2967 

1.2 2 SU 1865 3068 

0.2 1 SU 2102 2471 

0.3 2 SU 1930 3230 

0.6 1 SU 1978 1993 

1.0 1 SU 2094 3067 
1.35 1 SU 2118 3096 
3.0 3 SU 1918 2203 
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Pitton Downs: 

BlandfordlGarvie 1.2 2 SU 2155 3153 

Peartree Farm 1.2 1 SU 2192 3191 

Bentleigh Farm 2.15 2 SU 2216 3214 

Ashley's Copse 4.7 2 SU 2618 3474 

Bussle's Wood 5.4 2 SU 2668 3451 
Kestrel's Farm 0.4 1 SU 2744 3456 
Broughton Down 42.7 10 SU 2850 3330 

Barford Down 11.25 2 SU 2007 2282 

Witherington Down (W) 6.7 2 SU 2055 2493 

Pepperbox Hill 7.0 5 SU 2135 2480 
Brickworth Down/Dean Hill 32.5 10 SU 2200 2555 
Whitehouse Copse Ride 0.625 1 SU 2497 2600 
Whitehouse Copse East 2.0 1 SU 2486 2584 

RNAD: 

South 7.26 3 SU 2610 2645 
Woodland Glade 0.23 1 SU 2603 2723 

East Juniper Area 1.6 1 SU 2555 2733 
North Banks 5.0 4 SU 2575 2647 

Whitehouse Copse West 0.8 1 SU 2432 2589 
Bullock's Hole 4.25 1 SU 2771 3421 

Total 99 

* Central site Grid reference 
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Sites Surveyed in 1997 

Site Area (ha) No. Transects OS Grid Reference 

Stockbottom Farm 0.12 1 SU 1958 3340 
Jowett's East 4.34 2 SU 2284 3279 
E. Winterslow Droveway 0.25 2 SU 2400 3388 
Blanche's Field 3.92 2 SU 2555 3582 
Haynes' Field 4.13 2 SU 2600 3547 
Bussles Wood Droveway 0.19 1 SU 2709 3443 

Broughton Down Extension 2.8 2 SU 2947 3267 

Standlynch Down 0.21 3 SU 2035 2422 
Witherington Dn. Reservoir 0.06 2 SU 2066 2417 
Cockey Dn. Footpath 0.12 1 SU 17213261 
Thorneydown Dual C'way 0.91 4 SU 2124 3400 
Bossington 4.69 3 SU 3213 3120 

Total 25 
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APPENDIX 3: Recording Forms Used for Botanical and Associated Habitat and 

Environmental Variables. (Followin 
_ 

Two Pages) 

Grassland card 2: community/quadrat 

ENGLISH Is this a community 
NATURE 

Survey title 
April 1994 

Site name 

Site Grid Reference 

Community name 

Surveyors CO/QU code no. (from map) 

Computer input reference 

Community/quadrat area 

Slope 

Aspect 

Vegetation height (cm) 

Photographic record 

I 

Surveyors ý'-'-1 

7 
or a quadrat 

0 

tt Data of . ý. 
I 

surrey -`ý 

CO/QU Grid Ref 
ý,... ý. _J 

Q 
Quadrat no. Lr...... "... i 

(ha) for community; (sq m) for quadrat 
Q"ý 

Soll depth (cm) J 

I 
__. J "LfJ pfi 

ý"ý 
(Ignore extreme variation) 

(No. of exposures) 

(Where held) 

Communtty/quadrat description and assessment 

Notes on management activities (Including zruen, 
m2nagement etc. not listed to key-words). Note any dilfen: noe In 
management of compartments if the community extends over mom Uun 
one compartmcnt. 

Community records only 

Management key-wordt 
ý'sr17ýn ($ "*s e Mani m"et 
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APPENDIX 5: Preferred Larval Food-plants 

Butterfly Species 

Small skipper 

Larval Food-plant 

Yorkshire fog Holcus lanatus, cock's-foot Dactylis glomerata, wood 

false-brome Brachypodium sylvaticum. 

Essex skipper Cock's-foot Dactylis glomerata, wood false-brome Brachypodium 

sylvaticum. 

Silver-spotted skipper Sheep's fescue Festuca ovina. 

Large skipper Cock's-foot Dactylis glomerata, wood false-brome Brachypodium 

sylvaticum. 

Dingy skipper Bird's-foot trefoil Lotus corniculatus, horse-shoe vetch Hippocrepis 

commosa. 

Grizzled skipper Wild strawberry Fragaria vesca. 

Green hairstreak Common rock-rose Helianthernum nummularium, bird's-foot trefoil 

Lotus corniculatus, dogwood Cornus sanguineus, buckthorn Rhamnus 

cathartica. 

Small copper Sorrel Rumex acetosa, sheep's sorrel R. acetosella. 

Small blue Kidney vetch Anthyllis vulneraria. 

Brown argus Common rock-rose Helianthemum nummularium. 

Common blue Bird's-foot trefoil Lotus corniculatus, black medick Medicago 

lupulina, red clover Trifolium pratense, white clover Trifolium repens. 
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Chalkhill blue Horse-shoe vetch Hippocrepis commosa. 

Dark green fritillary Hairy violet Viola hirta. 

Marbled white Various grass Graminae species (see Section 2.4.2). 

Hedge brown Fescues Festuca spp., bents Agrostis spp., sweet vernal-grass 

Anthoxanthum odoratum. 

Meadow brown Various grass Graminae species (see Section 2.4.2). 

Ringlet Cock's-foot Dactylis glomerata, wood false-brome Brachypodium 

sylvaticum, smooth meadow grass Poa pratensis, couch grass Elymus 

repens. 

Small heath Fescues Festuca spp., bents Agrostis spp., smooth meadow grass Poa 

pratensis. 
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APPENDIX 6: Preferred Adult Butterfly Nectar Sources 

Butterfly Species Nectar Species 

Small skipper Bramble Rubusfruticosus agg., common ragwort Seneciojacobaea, 

knapweeds Centaurea spp., field scabious Knautia arvensis, marjoram 

Origanum vulgare, common fleabane Pulicaria dysenterica, seifheal 

Prunella vulgaris, betony Betonica officinalis, red clover Trifolium 

pratense, vetches Vicia spp., bird's-foot trefoil Lotus corniculatus, 

thistles Cirsium spp., devil's-bit scabious Succis pratensis, musk thistle 

Carduus nutans. 

Essex skipper Knapweeds Centaurea spp., heather Calluna vulgaris, common 

fleabane Pulicaria dysenterica, dandelion Taraxacuin officinale agg., 

selfheal Prunella vulgaris, hawkweeds Hieracium spp., red clover 

Trifolium pratense, white clover Trifolium repens, thistles Cirsium spp. 

(partic. creeping thistle C. arvense), small scabious Scabiosa 

columbaria. 

Silver-spotted skipper Dwarf thistle Cirsium acaule, canine thistle Carlina vulgaris, 
knapweeds Centaurea spp., hawkweeds Hieracium spp., field scabious 

Knautia arvensis, autumn gentian Gentianella amarella, (shrubs). 

Large skipper Bramble Rubusfruticosus agg., wild privet Ligustrum vulgare, 
knapweeds Centaurea spp., field scabious Knautia arvensis, dandelion 

Taraxacurn officinale agg., kidney vetch Anthyllis vulneraria, vetches 
Vicia spp., bird's-foot trefoil Lotus corniculatus, thistles Cirsium spp., 
devil's-bit scabious Succis pratensis, musk thistle Carduus nutans, 

sainfoin Onobrychis viciifolia. 
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Dingy skipper Buttercups Ranunculus spp., hawkweeds Hieracium spp., vetches Vicia 

spp., bird's-foot trefoil Lotus corniculatus, horse-shoe vetch 
Hippocrepis comosa, milkworts Polygala spp., fragrant orchid 

Gymnadenia conopsea. 

Grizzled skipper Buttercups Ranunculus spp., bird's-foot trefoil Lotus corniculatus. 

Green hairstreak Wild privet Ligustrum vulgare, hawkweeds Hieracium spp., bird's-foot 

trefoil Lotus corniculatus, wayfaring tree Viburnum lantana (flowers 

and honeydew), common rock-rose Helianthemum nummularium, 

milkworts Polygala spp., germander speedwell Veronica chamaedrys. 

Small copper Buttercups Ranunculus spp., daisy Bellis perennis, yarrow Achillea 

millefolium, common ragwort Seneciojacobaea, heather Calluna 

vulgaris, common fleabane Pulicaria dysenterica, dandelion 

Taraxacum officinale agg., hawkweeds Hieracium spp., red clover 
Trifolium pratense, thistles Cirsium spp., knapweeds Centaurea spp., 

musk thistle Carduus nutans, hemp agrimony Eupatorium cannabinum, 

marjoram Origanum vulgare. 

Small blue Kidney vetch Anthyllis vulneraria, vetches Vicia spp., bird's-foot 

trefoil Lotus corniculatus, red clover Trifolium pratense, white clover 
Trifolium repens. 

Brown argus Wild thyme Thyinus praecox arcticus, common ragwort Senecio 

jacobaea, marjoram Origanum vulgare, hawkweeds Nieracium spp., 

white clover Trifolium repens, milkworts Polygala spp.. 
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Common blue Buttercups Ranunculus spp., wild thyme Thymus praecox arcticus, 

common ragwort Seneciojacobaea, knapweeds Centaurea spp., field 

scabious Knautia arvensis, marjoram Origanum vulgare, canine thistle 

Carlina vulgaris, common fleabane Pulicaria dysenterica, white clover 
Trifolium repens, Kidney vetch Anthyllis vulneraria, vetches Vicia 

spp., bird's-foot trefoil Lotus corniculatus, thistles Cirsium spp.. 

Chalkhill blue Wild thyme Thymus praecox arcticus, field scabious Knautia arvensis, 

marjoram Origanum vulgare, canine thistle Carlina vulgaris, selfheal 

Prunella vulgaris, bird's-foot trefoil Lotus corniculatus, thistles 

Cirsium spp., eyebrights Euphrasia spp.. 

Dark green fritillary Knapweeds Centaurea spp., field scabious Knautia arvensis, , thistles 

Cirsium spp., musk thistle Carduus nutans. 

Marbled white Bramble Rubusfruticosus agg., wild privet Ligustrum vulgare, 
knapweeds Centaurea spp., marjoram Origanum vulgare, thistles 

Cirsium spp., musk thistle Carduus nutans, pyramidal orchid 

Anacamptis pyramidalis. 

Hedge brown Bramble Rubus fruticosus agg., common ragwort Senecio jacobaea, 

field scabious Knautia arvensis, marjoram Origanum vulgare, carline 

thistle Carlina vulgaris, common fleabane Pulicaria dysenterica, 

thistles Cirsium spp., musk thistle Carduus nutans. 

Meadow brown Bramble Rubusfruticosus agg., wild privet Ligustrum vulgare, 
knapweeds Centaurea spp., marjoram Origanum vulgare, field 

scabious Knautia arvensis, devil's-bit scabious Succis pratensis. 

Ringlet Bramble Rubusfruticosus agg., wild privet Ligustrum vulgare, 
marjoram Origanuin vulgare, thistles Cirsium spp., musk thistle 
Carduus nutans. 
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Small heath Buttercups Ranunculus spp., wild thyme Thymus praecox arcticus, 

hawkweeds Hieracium spp., hemp agrimony Eupatorium cannabinum, 

marjoram Origanum vulgare. 
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APPENDIX 7: NEXPO Density Contour Maps of Species on Porton Down 

Refer to Figure 2.2 for data source points. 
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Grizzled skipper 1995 
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Small blue 1995 
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Common blue 1995 
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APPENDIX 8: Intra-set Correlations (Pearson's r) for the Major Data Sets 

There are three high correlations (r >0.5) which cause concern. The threshold of r>0.5 is an 

arbitrary one but agrees with those used by other workers (e. g. Fielding and Howarth, 1995). 

The variables involved are sward height, rabbit index, scrub, bare and stones. Of these, the 

correlation between bare and stones is particularly high. 

Appendix 8.1: (Porton Down 1995) 

Sward height Rabbit index Aspect 

Sward height 1.000 

Rabbit index -0.558 1.000 

Aspect 0.005 -0.054 1.000 

Slope -0.25 0.240 -0.250 
Scrub 0.115 -0.009 0.054 

Bare -0.545 0.297 -0.118 
Stones -0.396 0.264 0.029 

Slope Scrub Bare Stones 
Slope 1.000 
Scrub -0.063 1.000 

Bare 0.038 0.078 1.000 
Stones 0.010 0.067 0.724 1.000 
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Appendix 8.2: (Porton Down 1997) 

Sward height Rabbit index Aspect Slope 

Sward height 1.000 
Rabbit index -0.445 1.000 

Aspect 0.029 0.006 1.000 

Slope -0.296 0.257 -0.158 1.000 

Scrub -0.07 0.204 0.311 0.121 
Bare -0.527 0.62 0.171 0.119 
Stones -0.277 0.463 0.328 0.196 

Scrub Bare Stones 

Scrub 1.000 

Bare 0.343 1.000 

Stones 0.287 0.647 1.000 

Appendix 8.3: (Fragmented Sites 1996) 

Sward height Rabbit index Aspect Slope 
Sward height 1.000 

Rabbit index -0.303 1.000 

Aspect 0.054 -0.035 1.000 
Slope -0,113 -0.091 -0.396 1.000 
Scrub 0.174 0.041 0.086 -0.106 
Bare -0.511 0.065 0.074 0.223 
Stones -0.225 0.069 0.119 0.200 
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Scrub Bare Stones 

Scrub 1.000 

Bare 0.176 1.000 

Stones 0.101 0.750 1.000 

From these tables, the highest correlations are bare*sward and bare*stones for both the 1997 

Porton Down and Fragmented Sites data sets. 
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APPENDIX 9: Validation of Research Transect Estimation Method 

Method 

Two BMS-type transects were walked weekly (as per Pollard & Yates 1993) from April- 

September inclusive during 1995. The transects were located approximately tkm apart but 

within the same large grassland/scrub/woodland block at Porton Down. Transect 1(the 

official ECNBMS transect) had 15 sections while transect 2 had 12 sections. Transect 2 had 

several open grassy woodland ride sections plus wood/scrub edge while transect 1 had more 

open scrub/grassland with several wood edge sections. 

Data from transect 2 were used to construct a meadow brown population curve. Each section 

of transect 1 was used to model section populations using randomly selected sample dates 

during the flight period using the method above. Two estimates were made from each of one, 

two, three and four sample dates. Results from estimates were regressed against known }3MS 

indices for each section. The results are shown below. 

No. samples during flight period R2 values for estimates v BMS section index 

(regression slope) 

0.307-0.401(0.479-0.595) 

2 0.503-0.691(0.537-0.686) 

3 0.585-0.943 (0.56-1.07) 
4 0.942-0.957 (1.058-1.061) 
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Conclusions 

The best estimates (highest R2 values and slopes nearest to 1.0) were from three or four 

samples where samples were drawn from around the peak of the population curve. 

Clearly, this method can only be used for commoner species which show a high degree of 

synchronicity with emergence dates, population peaks and population senescence. 
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APPENDIX 10: Relationship Between Weekly BMS Indices at Porton Down and Other Sites 

Methods 

Weekly BMS-type transect data were available for the two transects at Porton plus Broughton 

Down (approximately 3 km from Porton Down), Dean Hill (approximately 9 km from Porton 

Down), and Martin Down (approximately 20 km from Porton Down). Weekly indices from 

sites where counts were considered high enough, were regressed against weekly indices from 

Porton Down. Indices were log-transformed (ln(index +1)), and linear regression analysis was 

performed. 

Results 

Marbled white 

The relationship between Porton Down and Broughton Down weekly indices was highly 

significant (Readjusted = 0.935; Fl, s = 87.924, P «0.001). However, neither relationships 

between Porton Down and Dean Hill nor Martin Down were significant (Readjusted = 0.343; 

Fi, s = 2.606, P=0.167 and Readjusted = 0.293; Fi, s = 2.074, P=0.209 respectively). 
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Hedge brown 

The relationship between Porton Down and Broughton Down, Dean Hill and Martin Down 

weekly indices were all significant (Readjusted = 0.903; F1,4 = 47.52, P=0.002, Readjusted = 

0.755; F1,4 = 16.398, P=0.015 and Readjusted = 0.631; F1,4 = 9.55, P=0.037 respectively). 

Meadow brown 

The relationship between Porton Down and Broughton Down weekly indices was highly 

significant (Readjusted = 0.896; F1,9 = 86.756, P «0.001). The relationship between Porton 

Down and Martin Down weekly indices was also significant (Readjusted = 0.296; F1,1I = 

6.043, P=0.032) but the one with Dean Hill was very poor (Readjusted = 0.0; F1,11= 0.072, P 

= 0.794). 

Common blue 

The relationship between Porton Down and Broughton Down weekly indices was not 

significant (R2adjusted = 0.0; F1,16 = 0.95, P=0.344). However, the relationship between 

Porton Down weekly indices and both those of Dean Hill (Readjusted = 0.317; Fi, 15 = 8.417, P 

0.011) and Martin Down (Readjusted = 0.336; F1, ls = 9.098, P=0.009) were significant. 
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The discrepancies in the common blue appeared to be due to differences in the levels of first 

generations which were relatively much higher at both Porton Down transects. 
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Conclusions 

Apart from hedge brown, which showed synchronous population curves across all sites, the 

picture is rather mixed as to whether there is enough correlation in population curves for the 

method to be applied without misgivings. It is known that hedge brown is one of the species 

whose time of emergence is largely related to day length and would therefore tend to show 

greater synchronicity across entire regions (Warren, 1992). Other species, including meadow 

brown, appear to show sensitivity to temperature in relation to emergence time. This would 

tend to cause local and regional variations in population curves. 

Roberts et al (1998) and Pearman et al (1998) used a method developed by Thomas (1983b) 

for calculating butterfly populations in study plots from central `reference' population curves 

drawn from BMS transects. These curves showed differences among local emergence and 

peak times of up to seven days, but were felt to be correlated strongly enough by these 

workers to use in these calculations. Some of these sites were many tens of kilometres apart. 

Given that there was an unknown measure of error in using independently obtained weekly 

indices across sites (not knowing the actual dates of surveys and therefore having potential 

comparisons up to seven days apart) and the poor data sets from Dean Hill in particular, it 

would appear that there is enough evidence of synchronicity across the study area for the 

method to be applied. 

306 



APPENDIX 11: Transects Sampled on Porton Down Between 1995 and 1997 and Sampling 

Periods 

1995 

Survey Period 

No Transects 12345 

1-152 incl 1/5-23/5 26/5-14/6 15/6-23/6 26/6-1917 24/7-1418 

6 

132 16/8-21/9 

1996 

Survey Period 

No Transects 1 2 3 

60 7/5-12/6 12/6-15/7 16/7-19/8 

4 

41 19/8-16/9 
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1997 

Survey Period 

No Transects 1234 

72 30/4-9/6 9/6-11/7 18/7-15/8 15/8-18/9 
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