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Abstract 

The study examined the effects of lesions of the thalamic nucleus medialis dorsalis (MD) 

made by neurotoxin in three cohorts ofrats to help understand the contribution of this 

nucleus to learning and memory. The lesions typically provided comprehensive damage to 

. 
MD, while the use of an excitotoxin helped to minimise damage to fibres of passage or 

adjacent fibre tracts. This excluded one confounding influence that may have been present 

in some previous studies. Some MD lesions also affected the anterior thalamic nuclei, and 

this additional damage led to spatial memory impairments, helping to confirm the value of 

results from rats with lesions confined to MD. Whilst the groups with MD lesions were 

largely unimpaired on non-spatial tests of visual recognition and discrimination, they were 

impaired on a configural discrimination task. The MD lesions did not impair spatial non-

matching to sample in aT-maze, nor the acquisition or performance over delay conditions 

of the standard radial maze task. There were impairments, however, when the radial maze 

was rotated during the delay, requiring a strategy shift. Similar impairment was found 

when a matching, rather than non-matching, strategy was required on the T-maze task and 

also when only some arms were rewarded on the radial arm maze task for reference 

memory measurement. No impairment was seen when the T-maze matching task was 

reversed to the non-matching variant, emphasising the lesion rats' preference for pre-

existing rules. In addition, some evidence was found that MD lesions brought about 

increased activity, but had no effect on conditioned place preference. The study concludes 

that MD damage in rats does not directly cause memory deficits. The influence that MD 

damage has on memory is, however, similar to that associated with damage to prefrontal 

cortex causing deficits in rule-switching ability, a higher order frontal lobe function . 
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1.1 - There have been many attempts to define memory. Often, they describe inemory as 

though it were a simple, mechanical procedure, imparting no sense of the depth and 

complexity of memory functioning; for example "the ability to receive a sensory 

impression, to retain it, and to recall it at the appropriate moment" (BrierJey, 1977, p199). 

This process of memorising is, in fact, exceedingly complex and seems at times to be 

impossible to isolate as a defined system, being bound up with a confusion of other 

contributive and dependent processes from perception to action. Nevertheless, certain 

brain structures are clearly of especial importance in memory, and deserve the attention of 

careful research. The role that science can play here is to establish painstakingly and 

empirically the links between brain structures whose evolution can be delineated with their 

particular contribution to the functioning of memory. 

The thalamic nucleus medialis dorsalis (MD) has at some time been associated with a 

wide range of functions of the brain, including motor programming (Vanderwolf, 1971), 

sleeping behaviour (Marini, Gritti, and Mancia, 1988), speech production (Bogousslavsky, 

Ferrazzini, Regli, AssaI, Tanabe, and Delaloye-Bischof, 1988), pain sensation ( Hoff, 

Pateisky, and Wanko, 1953), olfactory assessment (Mair, Capra, McEntee, and Engen, 

1980), multi modal sensory discrimination (Mair, Doty, Kelly, and Wilson, 1986), and time 

programming (Spiegel, Wycis, Orchinik, and Freed (1956). Despite this, MD ranks 

amongst a number of relatively well-defined structures that are pre-eminently implicated 

in normal mnemonic functioning, making it a target for especial interest in memory 

research. This study will attempt to isolate and illuminate some aspects of the role it plays 

in mnemonic functioning. 

3 



1.2 - Anatomical Properties and Connections of MD 

The thalamus forms the dorsal part of the diencephalon; the other parts being the 

hypothalamus and epithalamus. The brains of all mammalian species include a thalamus, 

or more correctly two thalami; one in each hemisphere, connected through the third 

ventricle by the massa intermedia. The medial thalamus, bounded by the thalamic midline 

and the lateral border of the internal medullary lamina, is generally accepted to be the part 

of the thalamus that, in humans, is most involved in memory processes such as the 

recognition and recall of people, places, facts and events; evidence for this coming from 

both clinical and experimental studies (Bentivoglio, Aggleton, and Mishkin, 1997). 

Structures comprising the medial thalamus are the anterior nuclei, midline nuclei, 

intralaminar nuclei, the medial portion of the ventral nuclei, the medial pulvinar, and MD. 

When the lateral dorsal nucleus is added to this group, it is often termed the limbic 

thalamus. MD is the largest structure in the medial thalamus, and is most frequently 

implicated in studies of memory. 

The characteristically strong connections of MD with prefrontal cortex have generally 

been used to define pre-frontal cortex by delineating it from (pre)motor cortical areas in 

the frontal lobe, although this definition is now regarded as overly simplistic 

(Groenewegen, Wright, and Uylings, 1997). Further, the view of thalamic nuclei as simple 

relays to the cortex is now largely seen as outdated, current opinion ascribing much more 

interesting aspects to their function (Sharman and Guillery, 1996). 

In primates MD can be readily divided into three regions on cytoarchitectonic grounds. 

These are the medial magnocellular portion (MDmc), the lateral parvocellular portion 

(MOpc), and the far lateral multiformis portion (MOmf) (Olszewski, 1952; Akert, 1964; 

Tobias 1975; Goldman-Rakic & Porrino, 1985). Olszewski (1952) also referred to a small 
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densocellular portion in the most caudal part of the nucleus. Although MD in the rat is 

much more homogeneous in its cytoarchitectonic structure, fibre preparations have helped 

to distinguish a medial, a central, and a lateral region (Cornwall & Phillipson, 1988; 

Krettek & Price, 1979; Leonard, 1969), and Groenewegen (1988) added a paralamellar 

area in the extreme lateral region. 

In order to establish an analogy between MD in rats and primates (including humans), it is 

necessary to compare these divisions on the basis of their projections. Thus, in the far 

lateral part ofMD, the rat's paralamellar segment would appear to correspond with the 

pars multiformis in primates; both having substantial reciprocal connections with the 

frontal eye fields (Groenewegen, 1988; Olszewski, 1952). This then leaves the apparent 

anomaly of the rat having three remaining segments (medial, central, and lateral) to 

compare with only two in primates (magnocellular and parvocellular). This anomaly may 

be resolved by the discovery that the central portion of MD in the rat has heavy inputs 

from olfactory regions such as the ventral orbital cortex, prepiriform cortex, and olfactory 

tubercle (Churchill, Zahm, and Kalivas, 1996; Groenewegen, 1988; Reep, Corwin and 

King, 1996). Similar rhinencephalic afferents in the primate terminate in MDmc (Ray and 

Price, 1993; Russchen, Ameral, & Price, 1987) (Figure 1). Given that the rat has evolved 

to rely heavily on olfaction, it seems reasonable to regard this central portion asa 

relatively specialised part of what would be MDmc. Other evidence indicating that the 

combined central and medial portions of MD in the rat correspond to MDmc in the 

monkey comes from the finding that in both it is these regions of MD that are connected 

with the ventral and orbital portions of the prefrontal cortex and receive limbic inputs from 

structures such as the amygdala and entorhinal cortex (Cornwall & Phillipson, 1988; 

Groenewegen, 1988; Nauta, 1961; Reep, Corwin, and King, 1996; Russchen et aI, 1987). 

Similarly, both the lateral MD in the rat and MDpc in the monkey are connected with the 

dorsal and lateral prefrontal cortex (Figure 1). Thus it can be seen that the divisions ofMD 
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are comparable in rats and primates; the central and medial portions in rats being 

analogous with MDmc, and likewise the lateral portion being analogous with MDpc. 

The major anatomical connections of MD in the rat, which are illustrated in Figures 1 and 

2, can be subdivided into four groups. First there are limbic system structures such as the 

amygdala and lateral hypothalamus. These connect largely with the medial and central 

portions of MD. Second, there are basal forebrain structures such as the ventral pallidum 

and olfactory tubercle, which also connect with the medial and central portions. Third, 

there are areas of the frontal cortex such as the prelimbic and medial precentral which 

connect with the medial, central, and lateral portions. The frontal eye fields are an 

exception to this, having reciprocal connections with the paralamellar portion of MD. The 

remaining major connections that do not fit into these three groups include such structures 

as the substantia nigra and thalamic reticular nucleus, and these connect diffusely 

throughout MD. It should be noted also that MD's cholinergic innervation in the rat has 

been shown to derive from the pedunculopontine tegmental nucleus rather than from the 

basal forebrain (Hallinger, Levey, Lee, Rye, and Wainer, 1987). 

An examination of the connections ofMD in the monkey (Figures 1 & 2) reveals a very 

similar picture to that in the rat with, once again, the major connections being with limbic, 

basal forebrain, and frontal cortical regions. Connections between the thalamus and the 

cortex are largely ipsilateral both in rats (Pirot, Jay, Glowinsky, and Thierry, 1994) and in 

monkeys (Dermon and Barbas, 1994). However, contralateral connections between MD 

and the cortex have been noted both in monkeys (Dermon and Barbas, 1994) and rats 

(Negyessy, Hamori, and Bentivoglio, 1998). 

In summary, it can be seen that the rat MD bears many connectional similarities with the 

primate MD, and as a consequence may prove to have similar functions. This may lead to 
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an experimental situation in which suitably analogous memory tasks can be applied to rats, 

monkeys, and humans with the ultimate aim of being able to use the rat as a·model of 

human diencephalic amnesia. 
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1.3 - Classifications of Memory Processes 

Most workers in the field of memory have found it possible to recognise three types of 

memory in terms of duration, i.e. the brief sensory store iconic or echoic memory, short

term memory, and long-term memory. Although the actual lengths of time ascribed to 

these terms vary widely, they cannot be regarded as merely relative terms, as the 

physiological mechanisms behind them can be differentiated. 

Furthermore, long-term memory can be seen to have a structure comprising procedural 

memory (knowing how) and declarative memory (knowing that) (Tulving, 1985). 

Procedural memory is then subdivided into classical conditioning, motor skills, and 

priming; declarative memory into episodic and semantic memory (Parkin, 1987; Tulving, 

1985). Episodic memory is memory for autobiographical events (facts about the world 

gained from unique personal experiences) as distinct from semantic memory which is 

memory for language, facts, general concepts, and rules about the world. Although 

episodic memory would seem necessarily to be a uniquely human facility, recent work 

with birds has shown at least an episodic-like memory function in non-human animals 

(Griffiths, Dickinson, and Clayton, 1999). 

Another important differentiation that has often been made, both in animal and human 

memory research, is that of working memory and reference memory (Honig, 1978; Olton, 

Becker, & Handelman, 1979). This distinction in animal, Le. non-human, research is made 

on the premise that the process of learning a general rule (reference memory) differs from 

the ability to learn a piece of information necessary to complete a single subsequent task 

(working memory). Therefore, in an experimental context like this study, working 

memory would provide the information needed to perform a single trial correctly, and 

reference memory would provide the rule as to how to perform all such trials. Whether 
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individual brain structures can be closely related to such particular types of memory is not 

clear. Some studies, however, have claimed to make this relationship in attempting to 

understand the neuronal mechanisms of memory (Funahashi and Kubota, 1994). 

1.4 - Diencephalic Amnesia and the Study of Memory 

In order to attempt to relate memory functions to specific brain loci, much use has been 

made over the years of cases of memory loss. This can be found in amnesic syndromes in 

human clinical cases, or deliberately created by producing brain lesions at sensitive sites in 

animals. In clinical amnesic syndromes in humans, the cause is usually brain damage of 

some kind cased by disease, trauma, or surgical intervention. 

Amnesia is often divided into anterograde amnesia, with memory loss acting on material 

encountered after the onset of brain injury or degeneration, and retrograde amnesia, 

pertaining to material acquired before the onset. Although both types of amnesia can be 

present in the same subject, anterograde amnesia has been of particular interest as the 

learning deficit can occur in the face of normal or near-normal performance in a wide 

range of other cognitive tasks. This points to the fact that certain brain structures can be 

regarded as being pre-eminently concerned with the encoding, storage, or retrieval of new 

memones. 

Anterograde amnesia is usually divided into two classes, reflecting the two anatomical 

regions within the brain with which amnesia is most often assoCiated. These regions are; 

the temporal lobe, which encompasses structures such as the hippocampus, fornix, and 

amygdala; and the diencephalon, which includes, amongst other structures, the 

mammillary bodies and several thalamic nuclei including MD. The basal forebrain and the 
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frontal lobes, which have strong anatomical links with these two regions also have 

amnesic syndromes associated with them. Therefore, as this series of animal experiments 

is based on MD, evidence from human diencephalic amnesia has been examined as a 

background to the work. As can be seen from the studies described below, however, tnere 

are considerable difficulties in obtaining accurate data from human cases, and this 

highlights the need for precise examination of the mnemonic effects of diencephalic 

lesions in animals. 

Human cases of surgically induced diencephalic amnesia are rare, and little knowledge has 

been gained from this source, compared with temporal lobe amnesia. It is, in any case, an 

unwanted side-effect of neurosurgery whose replication is likely to be avoided avidly. 

Accidental brain damage has supplied some data, but cases of circumscribed trauma 

lesions causing amnesia are rare. More information has been gained from lesions caused 

by disease processes that have led to amnesia, such as tumours and infarction. However, 

the greatest cause of diencephalic amnesia and also the best studied is Korsakoffs 

syndrome. The amnesia caused by Korsakoffs syndrome has been useful to the study of 

memory because it is relatively selective in some cases, leaving the intellect virtually 

intact. This is, however, a feature that is merely relative to other neurological disorders, 

and it must be noted that in the vast majority of cases the syndrome is associated with a 

reduction in I.Q. 
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1.5 - Evidence from Cases of lIuman Diencephalic Amnesia 

1.5.1 - Korsakofrs Syndrome 

Korsakoffs syndrome is a symptom-complex related to vitamin deficiency causing 

widespread degeneration of the brain. It is, however, notable for being associated with 

relatively small neuropathological lesions that give rise to a severe amnesic syndrome that 

is disproportionate to any other impairments in cognitive functioning (Kopelman, 1995). 

These small lesions have classsically been described in the medial thalamus and 

mammillary bodies. 

In 1887, Korsakoff, a nineteenth century Russian physician, first described this syndrome 

in cases of uterine infection, puerperal septicaemia, typhus, tuberculosis, diabetes mellitus 

and cases of poisoning by arsenic, lead, carbon monoxide, and ergot. However, during his 

studies of the syndrome most of his evidence came from cases of chronic alcoholism, 

which is still the case today. 

Gudden, in 1896, linked Korsakoffs findings with the neuropathology of two chronic 

alcoholics and one case of sulphuric acid poisoning described by Wernicke in 1881. The 

term Wernicke-Korsakoffsyndrome is sometimes used because of this association, but 

generally Korsakoffs syndrome or psychosis is distinguished as being the chronically 

amnesic form of the syndrome. Korsakoff described patients with "a derangement of 

memory and of the association of ideas" (Victor & Yakovlev, 1955, p.396), and is 

recognised currently as an abnormal mental state in an otherwise alert and responsive 

patient, characterised by a severely affected memory and learning (Kopelman, 1995). The 

Wernicke symptoms are less cognitive, applying more to motor dysfunctions, for example 
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nystagmus, dysarthria, gaze palsies, dysphagia, and gait disturbance as well as a global 

confusional state. Victor, Adams, and Collins (1989) distinguish KorsakofP's psychosis as 

affecting memory disproportionately, whilst leaving other areas of brain-functioning 

relatively clear. 

Korsakoffs syndrome has long been linked with thiamine (vitamin BI) deficiency which 

can cause a long-term inability to metabolise glucose, resulting in a distinctive, 

widespread brain tissue degeneration. Although a whole range of backgrounds to this kind 

of nutritional deficiency is possible, in recent times the sort of prolonged and severe 

thiamine deficiency required to produce this state is almost exclusively found in chronic 

alcoholics, whose general malnutrition combines with the reduced ability of the gut to 

absorb thiamine in the presence of alcohol. The relationship between chronic alcohol 

intake, thiamine deficiency, and learning impairments has been widely demonstrated in 

rats (Homewood, Bond, and MacKenzie, 1997; Homewood, Bond, and Mc Gregor, 1991; 

Irle and Markovitsch, 1983b; Langlais and Savage, 1995; Mair, Knoth, Rabchenuk, and 

Langlais, 1991; Zimitat, Kril, Harper, and Nixon, 1990). Similarly, Korsakoff-like 

anterograde memory deficits and associated neuroanatomical changes were induced in 

thiamine-deprived monkeys (Witt and Goldman-Rakic, 1983a & b) and in mice (Tako, 

Beracochea, Lescaudron, and Jaffard, 1991). The reversibility of this Korsakoff model in 

rats when treated with thiamine has been also been demonstrated (Zhang, Weilersbacher, 

Henderson, Corso, Olney, and Langlais, 1995). 

That the syndrome is relatively common can be seen by a reported prevailance of 1.7 per 

cent in Perth, Australia (Harper, 1979) and a diagnosis in 0.8 per cent of all autopsies in 

Oslo, Norway (Torvik, Lindboe, and Rogde, 1982). Enlarged ventricles are found on 

pathological investigations in fifty to one hundred per cent of alcoholics (Parsons & 

Prigatano, 1977). 
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Since the beginning of this century four cardinal elements of Korsakoffs syndrome have· 

been recognised in relation to memory deficits. These are, in order of their relative 

frequency of occurrence; anterograde amnesia, retrograde amnesia, disorientation in space 

and time, and confabulation. The anterograde amnesia element is highly characteristic of 

the condition, and was well described by Korsakoff. Anterograde amnesia is amenable to 

study in animals and thus is especially interesting for the purposes of this study. However, 

retrograde amnesia does occur in Korsakoff subjects, and Korsakoff himself described 

patients in whom the impairment involved memories from up to 30 years earlier. 

(Kopelman, 1995). More recent neuropsychological studies confirm this (Cohen and 

Squire, 1981; Parkin, Montaldi, and Leng, 1990; Squire, Haiste, and Shimamura, 1989), 

and retrograde amnesia covering 25 years of a Korsakoff patient's life is well decribed by 

Sacks (1985). Retrograde amnesia can also be seen to span episodic and semantic 

memories (Kopelman, 1989). Disorientation in space and time is a memory dysfunction 

sometimes noted in the syndrome and usually takes the form of an upsetting of the 

chronological order of events. Confabulation, the tendency to invent or improvise events 

and to substitute them for gaps in memory, is also a feature sometimes found in 

Korsakoffs syndrome. However, a more typical pattern is for Korsakoffpatients to be 

non-fluent in accessing memories in conversation rather than showing florid confabulation 

(Kopelmann, 1995). The confabulation that is present is likely to be due to the frontal lobe 

dysfunction characteristic of Korsakoffs syndrome (Baddeley and Wilson, 1988; Kapur 

and Coughlan, 1980; Kopelman, Ng, Van den Brouke, 1997; Luria, 1976). 

Studies of Korsakoff subjects using tests analogous to animal studies of memory have 

shown impairments in both spatial (Oscar-Berman & Zola-Morgan, 1980; Oscar-Berman, 

Zola-Morgan, Oberg, & Bonner, 1982) and non-spatial tasks (Aggleton, Nicol, Huston, & 
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Fairbairn, 1987; Kessler, Irle, and Markowitsch, 1986; Oscar-Bennan & Bonner, 1985 & 

1987). 

Precisely which brain structures are most critically affected in Korsakoffs syndrome is 

important to the study of memory and has been much researched. Damage to the 

mammillary bodies and the mediodorsal thalamic nuclei was noted in Korsakoff patients 

as long ago as 1896 by Gudden, who described shrinkage, loss of cells, and gliosis at these 

locations. The relative importance of these structures, though much disputed over the 

years, remains unconcluded. 

It was once widely assumed that mammillary body damage was the pre-eminently 

important factor in the syndrome, based on a number of studies that stressed their 

importance (Benedek & Juba, 1944; Delay, Brion, & Elissalde, 1958a; Gruner, 1956; 

Malamud and Skillicorn, 1956; Orthner, 1957, Remy, 1942). However, these studies can 

be criticised in that they tended to base their observations of mammillary body damage on 

gross pathological changes visible to the naked eye, which could be misleading. This is 

well illustrated by Delay et aI's (1958a) description of mammillary bodies appearing 

atrophic and yellow, yet on microscopic analysis they found loss of neurones to be only 

slight. Cravioto, Korein, and Silberman (1961) stress the importance of the mammillary 

bodies in their study of28 cases, all of which showed bilateral mammillary body changes, 

and half of which were gross lesions. However, of the twenty two brains which were 

examined microscopically, consistent thalamic damage was found in all of them, 

particularly in the anterior nuclear group. 

The large-scale and authoritative study of Victor et al (1989) also found little evidence of 

gross pathological lesions in the thalamus, but mammillary body lesions were apparent to 

the naked eye in 74 per cent of cases. However, despite these gross pathological findings, 
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their study provides the most widely accepted evidence for the predominant involvement 

of the thalamus and particularly the mediodorsal nucleus. Over 80 per cent of the 

Korsakoff patients examined post-mortem showed changes in the thalamus when this was 

examined microscopically. Of these cases, 88.4 percent had lesions of the mediodorsal 

nucleus, principally in the magnocellular portion, and 85 per cent lesions of the medial. 

pulvinar nucleus. The authors noted the ambiguous boundary between these two nuclei, 

but implied that the lesions of the latter constituted an extension of those of the former. In 

fact, MD was affected in every case of thalamic involvement, and in 20 per cent of these 

cases it was the only thalamic nucleus found to be involved. 

Although the authors did not claim to decide with certainty which structure was pre

eminently critical in memory function between the mammillary bodies, the mediodorsal 

nucleus, and the medial pulvinar nucleus, they did provide strong evidence in favour of the 

mediodorsal nucleus as follows: 

Of the 43 brains examined post-mortem in the study, only 5 were found with no change in 

the mediodorsal nuclei. These were also the only five cases which in life had shown no 

memory deficit, and the mammillary bodies were affected in all five cases. The authors 

conclude that the mammillary bodies may be significantly"affected in cases where there is 

no memory deficit. They sum up by stating their belief that the amnesic defect is related to 

lesions in the diencephalon, specifically in the medial dorsal nuclei and possibly in the 

medial pulvinar. Victor (1988) draws on what he terms "unambiguous evidence" from 

both human and animal studies to argue the irrelevance of mammillary bodies in the 

causation of Korsakoffs syndrome, declaring that medial thalamic lesions alone are quite 

sufficent to produce a severe and enduring amnesic state. 
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In contrast to this view of the lack of importance of the mammillary bodies, Torvik (1987) 

describes a study of 45 cases of Wernicke's encephalopathy. In this study, tl\e·majority of 

cases had lesions of both the mammillary bodies and the thalamus. However, eleven of21 

chronic cases had lesions restricted to the mammillary bodies, and three of these cases 

showed memory loss. One interpretation of the more usually observed la~k of amnesic 

effect with mammillary body lesions alone is that a conjoint mammillary body and medial 

thalamic lesion is necessary (Mayes, Meudell, Mann, and Pickering, 1988). This view is 

supported by lesion studies in monkeys that show a lack of effect on recognition memory 

with lesions of mammillary bodies alone (Aggleton and Mishkin, 1985; Zola-

Morgan, 1989), although Gaffan and Watkins (1991) found a deficit with MD lesions alone 

that, as with perirhinal lesions, was manifest with decreased set size. Mair, Warrington, 

and Weiskrantz (1979) described a severe anterograde and retrograde amnesia in two 

human patients with Korsakoffs syndrome who had only a thin band of gliosis running 

through the parataenial nucleus between the third ventricle and the magnocellular portion 

of MD. 

Evidence that neither mammillary body nor MD damage is sufficient in itself to cause 

amnesic Korsakoffs psychosis is given in a recent large-scale post-mortem study 

(Harding, Halliday, Caine, and Kril, 1999 in press). This shows that the loss of neUl:ones in 

both structures is equally substantial in both amnesic and non-amnesic alcoholic patients. 

Loss of neurones in the anterior thalamic nuclei, however, is confined to the Korsakoff 

patients, indicating the possibility that these nuclei hold the critical role in the amnesic 

syndrome. 

Evidence from imaging techniques on Korsakoffs patients is equivocal and, as yet, 

largely unenlightening. Computer tomography (CT) scans on Korsakoff patients, usually 

compared with normal and alcoholic control groups, are limited in their spatial definition 
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and cannot show small sub-cortical structures such as mammillary bodies with any useful 

precision (Fazio, Perani, Gilardi, Colombo, Cappa, Vallar, Bettinardi, Paulesu, Alberoni, 

Bressi, Franceschi, and Leenzi, 1992), although magnetic resonance images (MRI) have 

shown small mammillary bodies in Korsakoff cases (Squire, Amaral, and Press, 1990). 

Jacobson (1987) and Jacobson and Lishman (1990) used CT techniques in Korsakoff • 

patients to show thalamic hypodensity. Positron emission tomography (PET) scans, 

however, have demonstrated decline in cortical glucose metabolism in Korsakoff patients 

(Paller, Archaya, Richardson, Plaisant, Shimamura, Reed, and Jagust, 1997), but have not 

shown evidence of sulcal or ventricular enlargement (Carlen, Wilkinson, and Wortzman, 

1981). 

It seems reasonable then to conclude that, within the considerable experimental constraints 

associated with human subjects, anatomical and functional studies of Korsakoffpatients 

do indicate some possible links between memory function and the thalamus. The case for 

MD's pre-eminence in this involvement, however, remains unproven. 

I.S.2 - Other Thalamic Damage 

1.5.2.1 - Tumours 

The disturbances of memory often described as Korsakoff-like symptoms associated with 

tumourous growths in the diencephalon have been used to provide evidence of the link 

between memory and diencephalic structures. According to Markowitsch and Pritzel 

(1985) tumours of the dorsal midline structures of the thalamus are frequently found to be 

the cause of memory disturbances; their removal sometimes resulting in complete 

recovery of memory function. 
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One advantage in studying tumours involving MD is that their extent and c6nSequent 

mnemonic effects may not include effects on other structures implicated in memory 

function, especially the mammillary bodies and anterior thalamic nuclei. Such studies'are, 

however, quite rare. A bilateral thalamic tumour with no mammillary bOQY involvement 

was reported by Sprofkin and Sciarra (1952) to be associated with amnesic symptoms. 

Unfortunately no specific description of the thalamic structures involved was given in this 

study. McEntee, Biber, Perl, & Benson, (1976) described another such case in which 

amnesia was associated with bilateral thalamic tumour, described as invading the medial 

and posterior thalamus and including the mediodorsal nucleus, without involvement of the 

mammillary bodies or anterior thalamus. The authors also recognised, however, that 

tumours can cause damage distal from their site due to the surrounding oedema they 

create. 

Tumours on the floor and/or walls of the third ventricle close to MD have sometimes been 

implicated in memory disturbance syndromes, but, similarly, may be exerting an influence 

on structures elsewhere. Weisenburg, in 1911, reviewed a number of cases of memory 

disorders and concluded that the third ventricle tumour was causing increased pressure on 

the cerebral cortex rather than the damage being done directly to diencephalic structures 

(Brierley, 1977). Williams and Pennybacker (1954) found that third ventricle tumours had 

, resulted in amnesia due to increased pressure on diencephalic structures. Although it was 

assumed that the structures most affected by this pressure were the mammillary bodies, the 

nature of ventricular pressure cannot lend itself to much selectivity, and other structures 

bordering on the ventricle may be similarly implicated, especially the thalamus. 

The surgical removal of tumours of the diencephalon in cases showing amnesic symptoms 

has produced effects on subsequent memory perfonnance varying from complete 
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restitution to a worsening of memory functions (Foerster & Gagel, 1934; Geffen, Walsh, 

Simpson, and Jeeves, 1980). Williams and Pennybacker (1954) found that aspiration of 

fluid from the third ventricle as well as tumour removal resulted in improvement in 

memory defects, but the report of this is poorly documented. 

1.5.2.2 - Circulatory Disturbances 

After damage caused by chronic alcoholism, the most frequent cause of diencephalic 

damage is disturbances in blood circulation (Markowitsch & Pritzel, 1985). Occlusion or 

rupture of the major arteries can disturb or prevent normal metabolism in the pertinent 

brain area, often causing widespread and enduring amnesic states. In the case of thalamic 

damage, the relevant vessels are the paramedian thalamic arteries. Such damage is usually 

accompanied by mnemonic disturbances, and one case, a unilateral infarction of the 

thalamus, resulted in a deticit restricted to verbal memory (Michel, Laurent, Foyatier, 

Dlanc, and Portafaix, 1982). 

Computer tomography (CT) scans (e.g. Speedie and Heilman, 1982; von Cramen and 

Eilert, 1979; Winocur, Oxbury, Roberts, Agnetti, and Davis, 1984) and magnetic 

resonance imaging (MRI) techniques (Bogousslavsky et ai, 1988) have allowed damage to 

the thalamic nuclei to be identified more accurately. These studies described cases of 

restricted medial thalamic damage, both unilateral and bilateral, of ischemic origin 

associated with memory disturbances. Kritchevsky, Graf-Radford, and Damasio (1987), 

however, found no memory impairments in a group of patients with MRI-identified MD 

thalamic lesions in which the mammillo-thalamic tract was seen to be intact. The MD 

damage in all of these cases (Kritchevsky et aI, 1987) was, however, small (around 30 per 

cent). Further, von Cramen, Hebel, and Schuri (1985) carefully examined CT data from 
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their own six patients with medial thalamic damage and related it to performance on tests 

of memory function. The two patients without significant memory dysfunctlon had MD 

damage that spared the mammillothalamic tract and ventral part of the lamina medullaris 

interna. 

Amnesia caused during cardiac arrest has frequently been attributed solely to damage to 

the medial temporal lobe (O'Rourke, Saykin, Gilhool, Harley, O'Connor, and Sperling, 

1993; Rempel-Clower, Zola-Morgan, Squire, and Amaral, 1996; Sass, Lencz, Westerfeld, 

Novelly, Spencer, and Kim, 1991; Zola-Morgan, Squire, and Amaral, 1986). 

Consequently, patients who have suffered anoxic-ischemic brain damage are largely 

regarded as models of medial temporal lobe amnesia. Markowitsch, Weber-Luxemburger, 

Ewald, Kessler, and Heiss (1997), however, have demonstrated medial thalamic damage in 

one such amnesic patient using positron emission tomography (PET) that was not shown 

by MRI. Since memory disorders caused by medial diencephalic damage resemble those 

caused by medial temporal lobe damage (Bentivoglio, Aggleton, and Mishkin, 1997), the 

possibility arises that some amnesic effects reported in previous MRI studies could be at 

least partly attributable to medial thalamic damage. 

In a review ofthe mnemonic effects of thalamic infarction, Aggleton and Brown (1999) 

conclude that infarction in the anterior thalamus is associated with anterograde amnesia, 

and that mammillo-thalamic tract damage plays a critical role in this. Infarction in the 

mediodorsal part of the thalamus, however, seems more associated with executive control, 

whilst damage caused to the internal medullary lamina by infarction may accentuate both 

of these effects (Aggleton and Brown, 1999). 
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1.5.2.3 - Trauma 

Thalamic damage sustained in accidents can have an effect on memory; memory 

disturbances being the most frequently reported behavioural consequence of traumatic 

brain lesions. Retrograde amnesia is more common in trauma than damage caused by • 

tumours or circulatory disturbances, and a number of cases have been described in which 

head injuries have caused symptoms paralleling those of Korsakoff patients (Markowitsch 

and Pritzel, 1985). However, the nature of most head injuries makes the correlation of 

memory functions with a relatively circumscribed lesion difficult (Brierley, 1977). A well

known exception to this is case N.A. 

Case N.A., a 22 year old United States Air Force technician, sustained a brain injury as a 

result of a mishap with a miniature fencing foil paper knife in 1960. The resulting, 

apparently very localised, diencephalic damage and amnesia have been intensively studied 

over the subsequent years. The location of the lesion was identified in 1978 by computer 

tomography scan to be in the mediodorsal region of the left thalamus (Squire and Moore, 

1979). The resulting anterograde amnesia is markedly worse for verbal than for non-verbal 

material, but his intellect remains high with an I.Q. of 124. In fact, he has achieved higher 

scores than control subjects in many perceptual and cognitive tasks (Squire and Zola

Morgan, 1983). His amnesia differs from that of Korsakoff patients in that there is almost 

no retrograde amnesia, no impairment in tasks involving the temporal order of recent 

events, and he is able to exhibit release from proactive interference (Markowitsch and 

Pritzel, 1985). 

A subsequent study on Case N.A. (Squir~, Amaral, Zola-Morgan, Kritchevsky, and Press, 

1987) used magnetic resonance imaging to reveal evidence of damage to structures other 

than MD, notably the mammillo-thalamic tract. This finding highlights the difficulty of 
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obtaining reliable and detailed anatomical evidence from human subjects. Further, a 

similar penetrating injury to the mammillary bodies has been associated with a deficit for 

largely verbal material, but with recognition remaining almost normal (Dusoir, Kapur, 

Byrnes, McKinstry, and Hoare, 1990). A later imaging study has, however, revealed some 

abnormality in left hippocampal structure and function (Kapur, Scholey, Moore, Barker, 

Mayes, Brice, and Fleming, 1994). 

1.5.2.4 - Surgically induced lesions 

Although there has been a significant number of studies of surgical thalamic lesions 

performed on human subjects for clinical reasons, information on the mnemonic effects of 

these interventions is rare. There are several reasons for creating such lesions 

(Markowitsch and Pritzel, 1985), e.g. pain relief, control of aggressive behaviour, and 

control of epilepsy. As these are attempts to modify the emotional behaviour of 

individuals, the post-operative effects on memory have not necessarily been central to the 

descriptions of post-operative behaviour changes. Furthermore, the fact must be noted that 

such surgery is confined to patients whose abnormal behaviour has been attributed to 

abnormal brain activity. This makes interpretation of any data thus gained difficult to· 

apply to any general theory of thalamic memory function. 

Of those studies which have noted amnesic effects after lesions of MD, Spiegel, Wycis, 

Orchinik, and Freed (1955, 1956) provide a little evidence of a similarity to Korsakoffs 

syndrome. They describe a temporal disorientation (chronotaraxis) similar in some 

respects to Korsakoff s syndrome, but differing significantly in its duration. The symptom 

lasted generally for a few days or weeks with only one case lasting for as long as six 

months. The location of the lesions in these cases also remains unconfirmed. 
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There is also some evidence for the involvement of the anterior thalamic nuclear group 

from human surgical lesion cases. Although Brierley (1977) asserts the opinion that no 

such lesions, surgical or tumourous, have been shown to correlate with a true amnesia, 

Mark, Barry, McLardy, and Ervin, 1970 describe memory loss in a patient who receiveq 

bilateral radio-frequency lesions to the anterior nuclei. Markowitsch and Pritzel (1985) 

suggest, however, that lasting impairments are found only when lesions are made in 

patients with other existing damage to the central nervous system, e.g. Parkinson's 

disease. 

1.6 - Animal Evidence 

Animals, especially other mammals mammals, have been used in the attempt to develop 

models for human amnesic syndromes because of the difficulties and limitations of using 

purely human data for the study of memory and learning systems. As human studies of 

memory have made great use of memory losses and deficits to infer the existence and 

morphology of memory and learning mechanisms, so animal studies have been needed to 

establish the necessary and sufficient conditions under which the clinical syndromes 

occur. In this way, the memory and learning systems and inter-relationships of anatomical 

structures apparent in man may be paralleled, tested, and perhaps confirmed. 

The main limitation of using human amnesic patients in the study of learning and memory 

is that, for obvious ethical reasons, the therapeutic benefit to the individual always has to 

take precedence over the gaining of useful scientific data, even though this may assist in 

the understanding of the basis of the problem and therefore ultimately be useful in future 

therapy (Olton, 1985). Animals are therefore widely used to gain precise knowledge 
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relatively rapidly. Other difficulties encountered in human studies include the size of 

sample groups available to the scientist, the necessarily long delay in obtaining 

pathological data (although increased availability of scanning technology is decreasing 

this problem), the relatively uncircumscribed nature of uncontrolled lesion induction, 'and 

the interference of other extraneous factors in clinical subjects. 

Although invertebrates are often used to study neural mechanisms at the cellular level, and 

to build up phylogenetic trends in order to infer the human situation (Markowitsch and 

Pritzel, 1985), non-human mammals, principally monkeys and rats, have almost 

exclusively been used to produce models of human learning and memory. Despite the long 

history of memory studies using animals, it is only relatively recently that reliable and 

appropriate methods of memory testing have been developed that enable animal models to 

yield the kind of valuable knowledge that they now provide (Squire and Zola-Morgan, 

1985). 

Addressing the controversy over the relative importance of thalamic nuclei versus 

mammillary bodies, Victor et al (1989) reviewed some of the animal experimental 

literature. After pointing out the difficulty of directly equating animal behaviour in 

Korsakoff s syndrome, they cautiously suggest that animal studies do bear out their 

conclusions that in humans the thalamic nuclei, and especially the mediodorsal, are of 

primary importance. They go on to point out that the mammillary body lesions produce 

very variable behavioural results depending on the type of memory task used, and that 

lesions of the thalamic nuclei must be bilateral and virtually complete in animals. This 

latter point is also made by Squire and Zola-Morgan (1983) and Stokes and Best (1990c). 

However, the difficulty of producing such virtually complete lesions that are also confined 

to individual nuclei must not be underestimated (Hunt and Aggleton, 1991). The 
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anatomical descriptions in those studies that report virtually complete lesions must 

consequently be scrutinised very carefully for evidence of damage to adjacent structures. 

Before dealing with the classical lesion and behaviour studies of MD in monkeys and rats, 

it may be useful briefly to examine the link between chronic alcohol intake, thiamine 

deficiency, and learning impairments in animal studies. Using rats, a number of studies 

have succeeded in demonstrating that there is a causal relationship between these elements 

(Homewood, Bond, and MacKenzie, 1997; Homewood, Bond, and Mc Gregor, 1991; Irle 

and Markovitsch, 1983b; Langlais and Savage, 1995; Mair, Knoth, Rabchenuk, and 

Langlais, 1991; Zimitat, Kril, Harper, and Nixon, 1990). Similarly, Korsakoff-like 

anterograde memory deficits and associated neuroanatomical changes were induced in 

thiamine-deprived monkeys (Witt and Goldman-Rakic, 1983a & b) and in mice (Tako, 

Beracochea, Lescaudron, and Jaffard, 1991). The reversibility of this Korsakoff model in 

rats when treated with thiamine has been also been demonstrated (Zhang, Weilersbacher, 

Henderson, Corso, Olney, and Langlais, 1995). 

1.6.1 - Experimental lesion studies in monkeys 

Electrophysiological studies in which evoked potentials and single unit activity in MD in 

monkeys were correlated with learned behaviour have been reported (Alexander and 

Fuster, 1973; Kubota, Niki, and Goto, 1972). These studies, however, provide no strong 

evidence for a memory-related role for MD (Markowitsch, 1982). Similarly, the proximity 

to the medial thalamus of several major fibre tracts make stimulation studies in monkey 

MD (Briese and Olds, 1964; OIds, 1966). of little value when attempting to attribute brain 

functions to specific nuclei (Markowitsch, 1982). 
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Those lesion studies in monkeys that use behavioural testing of learning and memory are 

particularly of interest in the current study. However, other changes followirtg·MD lesions 

are worth noting as they may have secondary effects on more pertinent behavioural test 

results. Motor disturbances, principally of the extremities, have been observed (Showers, 

1958; Brierley and Beck, 1958), as have changes in emotionality (Brierley and Beck, 

1958; Butter and Snyder, 1972). All these studies used methods of lesion-making 

(aspiration and coagulation) which may have disrupted fibres of passage to bring about the 

observed changes. 

There is little evidence of impairment on sensory discrimination tasks (Aggleton and 

Mishkin, 1983a; Chow, 1954; Schulman, 1964; Thompson and Myers, 1971). Studies 

using delayed response-type tasks give conflicting results, with some studies reporting no 

impairments (Chow, 1954; Peters, Rosvold, and Mirsky, 1956; Walker, 1940), whilst 

others (Isserhoff, Rosvold, Galkin, and Goldman-Rakic, 1982; Schulman, 1964) found 

severe and long-lasting impairments on this class of task. 

Loss of recognition memory is often regarded as a core deficit in anterograde amnesia. 

Since recognition memory is readily testable in animals, usually by testing recognition of 

an object after a variable delay, the use of such tests in assessing animal models of 

anterograde amnesia has been widespread. The methodology was developed for use in 

monkeys with large medial temporal lesions (Mishkin, 1978; Zola-Morgan et aI, 1982) 

and was subsequently used with large (Aggleton and Mishkin, 1983a) and more restricted 

(Aggleton and Mishkin, 1983b; Zola-Morgan and Squire, 1985) medial diencephalic 

lesions. All these studies used aspiration lesions and reported severe recognition memory 

deficits, the size of the deficit seeming to correspond with the extent of medial thalamic 

damage. Using similar lesion techniques, Gaffan and Murray (1990), Gaffan and Watkins 

(1992), and Parker, Eacott, and Gaffan (1997) found recognition deficits in monkeys with 
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lesions aimed at medial magnocellular MD tested on a computer-based visual 

discrimination task. The severity of the deficits was seen to be as great as that associated 

with perirhinal lesions (Parker et al., 1997). 

From studies that have used monkeys, then, it is possible to say that the clearest effect of 

MD lesions on learning and memory is shown in tasks that address recognition memory. 

However, it must not be forgotten that since these studies all make use of aspiration 

techniques to ablate the nucleus, it is not possible to account for the damage to fibres of 

passage which may be affecting the behavioural outcome of the lesions. 

1.6.2 - Experimental lesion studies in rats 

The rat has been claimed to be an excellent model of human memory (Kesner, 1990) in 

that it displays serial position, serial anticipation learning, temporal coding, and repetition 

lag functions as well as utilisation of retrospective and prospective codes, nearly 

equivalent to that of humans. The clear practical advantages of using rats, combined with 

the above qualities, have led to a much larger number of studies using rats to measure the 

mnemonic effects of lesions in MD compared with monkeys. 

As in monkeys, lesions to rat MD have been used to investigate more general behavioural 

functions outside learning and memory (Table 1). Although these studies by no means 

represent a comprehensive or systematic basis for understanding the non-mnemonic 

behavioural effects of MD lesions in rats, some inferences may be drawn from the pattern 

of results shown here. The most frequently observed measure of behaviour is activity, 

either in the rats' home cage (Beracochea et aI, 1989; Vanderwolf, 1971) or in test 

apparatus (Kolb, 1977; Waring and Means, 1976), and the majority of studies suggests 
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that activity is unaffected by MD lesions. The level of activity displayed by animals is an 

important factor in behavioural testing, since changes in activity levels could lead to 

differences in performance that could be misinterpreted as deficits in learning and 

memory. Similarly, the way that rats deal with food and water, either in time spent eating 

and drinking (Beracochea et aI, 1989), food hoarding (Kolb, 1977), or fo(aging behaviour 

(Schacter et aI, 1991), could also be important, especially where behavioural testing 

involves food reward. In this case it appears that behaviour toward food and water is 

altered in rats with MD lesions (Table 1). Aside from being a factor in the interpretation of 

experimental results, there is also the possibility that this alteration in normal behaviour 

may indicate something about the way the lesion affects normal cognitive functions in the 

animal, particularly the role of executive functioning. This may be especially pertinent in 

the case of lesions to MD, since this structure has such direct and extensive anatomical 

links with the prefrontal cortex, the brain area known to be largely directed towards 

executive function. 

Tables 2, 3, and 4 list experiments that more directly test the cognitive, and principally 

learning and memory, effects ofMD lesions. Clearly, all three tables show the lack of 

consistency in the results from such tests. Table 2, dealing with non-spatial discrimination 

or recognition tasks, shows studies that cover a range of discrimination modalities, 

including vision, touch, audition, olfaction, and combinations of these. None of these types 

of task or modalities appears to form any consistent pattern of deficit. Other non-spatial 

learning and memory tasks that do not involve recognition or discrimination are shown in 

Table 3. Despite a near consensus of deficits being apparent after MD lesions in this class 

of task, it is difficult to draw any useful inferences since the nature of the tasks varies 

widely and the number of studies is in any case low. Table 4, deals with tests of spatial 

learning and memory, and, in contrast with Table 3, represents the largest and most 

comprehensive class of task that has been applied to rats with MD lesions. Again, despite 
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this relative thoroughness of investigation, there is still a confusingly wide array of 

. deficits, and those not consistently reported. 

One possible approach in the interpretation of these conflicting results is to recognise that 

conventional lesion-making techniques (electrolytic and radio frequency) destroy fibres ,of 

passage as well as cells located within the target area. Thus, the behavioural consequences 

of the lesion may not be confined to the function of the target structure. This problem is of 

particular concern for a sub-cortical nucleus like MD that not only contains fibres of 

passage, but is also bounded by a major fibre pathway, the internal medullary lamina. It is 

therefore possible that differences in lesion location and size could have marked 

behavioural consequences. This view is strongly suggested in a review article 

(Markowitsch, 1988) that largely uses examples from cases of human diencephalic 

amnesia. Accordingly, the outcome of the few animal studies that have used neurotoxins 

that help spare fibres of passage (Schwarcz, Hokfelt, Fuxe, Jonsson, Goldstein, and 

Terenius, 1979) may be of particular interest. Looking at the results of these studies in 

isolation then, it is certainly true to say that they are less likely to bring about significant 

deficits and changes in behaviour than are radio frequency or electrolytic lesions. This, at 

least, bears out the supposition that the destruction of fibres of passage may bring about 

behavioural changes that are not directly accountable to the structure being studied. 

Indeed, the one study that directly compared the effects of lesions made by neurotoxin and 

by radio frequency (Hunt and Aggleton, 1991) found a deficit with the latter and normal 

performance with the former lesion in groups of rats tested on the same task in the same 

experiment. 

This apparent effect of lesion method, however, does not in itself explain the confusing 

pattern of results. The neurotoxic lesion studies, taken in isolation, still show a broad array 

of effects, with evidence of impaired spatial memory in a range of RAM tasks, acquisition 
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of delayed non-match to sample object recognition, temporal alternation, and place 

preference acquisition. The fact that negative findings for most of these classes of tasks 

have been more widely reported can provide no real basis to show that learning and 

memory depend on the normal functioning of MD in the way that, for example, the 

hippocampus (Olton and Papas, 1979) or anterior thalamic (Aggleton and Brown, 1999) 

lesions can be seen to function. It might be, however, that this apparently unhelpful pattern 

could, by its nature, imply something important about MO's function. Since MD has broad 

and important connections with many cortical sites, it might be expected that it would 

have an influence on a wide array of classes of information being processed. Further, if 

these MO-cortical connections form part of a series of parallel cortical connection 

systems, then disruption ofMO's functioning would rarely be crucial in itself, but might 

provide the kind of results seen in Tables 1 to 4 above. The functions of MD, then, may be 

seen as providing a variety of influences on information being processed in learning and 

memory. 
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TASK AUTHORS LESION 
Emotionality Waring & Means, 1976 electrolytic 
Exploration Weiss & Means 1980 electrolytic 
Exploration Mair, Robinson, Koger, Fox, & Zhang, 1992 NMDA 
Running wheel activity Kolb,1977 electrolytic 
Open field activity Waring & Means, 1976 electrolytic 
Activity Vanderwolf, 1971 electrolytic 
Activity Beracochea, Jaffard, and Jarrard, 1989 ibotenic acid 
Food hoarding Kolb,1977 electrolytic 
Eating! drinking Beracochea, Jaffard, and Jarrard, 1989 ibotenic acid 
Central place foraging Schacter, Phelps, Brodbeck, Mogenson, & Roberts, 1991 electrolytic 

Table 1 - Findings of studies making general behavioural observations on rats with MD lesions 
+ = changed behaviour; - = unchanged behaviour 

RESULT 
+ 
-
-
-
-
+ 
-
+ 
+ at night 
+ 

37 



38 

TASK AUTHORS LESION RESULT 
Tactile discrimination Weiss & Means, 1980 electrolytic - anterograde, + retrograde 
Visual-tactile discrimination Waring&Means, 1976 electrolytic + 
Roughness discrimination Tigner, 1973 radio frequency + acquisition, + reversal 
Visual discrimination Slotnic & Kaneko, 1981 electrolytic -
Tone/light discrimination Means, Hershey, Waterhouse, & Lane, 1975 electrolytic + 
Brightness discrimination Tigner, 1973 radio frequency + acquisition, + reversal 
Odour discrim. & DNMS Staubli, Schottler, & Nejat-Bina, 1987 electrolytic + 
Odour discrim. & DNMS Zhang, Burk, Glode, & Mair, 1998 NMDA -
Odour discrim. & reversal Slotnik & Kaneko, 1981 electrolytic -post-op. retention, + reversal 
Odour discrim. & detection Eichenbaum, Shedlack, & Eckman, 1980 radio frequency - detection, + discrimination 
DNMS object recognition Hunt and Aggleton, 1991 ibotenic, RF + acquisition, - performance 
DNMS object recognition Mumby, Pinel, & Dastur, 1993 electrolytic + acquisition, + performance 
DNMS .Mair, Robinson, Koger, Fox & Zhang, 1992 NMDA - acquisition, - performance 
Place discrimination Tigner, 1973 radio frequency -

Table 2 - Findings of studies using non-spatial discrimination or recognition tasks on rats with MU lesions 
+ = deficit; - = no deficit 
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TASK AUTHORS LESION RESULT 
Learned food preference memory Wino cur, 1990 electrolytic - anterograde, + retrograde 
Active avoidance Vanderwolf, 1966 electrolytic + 
Delayed alternation (Skinner box) Peinado-Manzano & Pozo-Garcia, 1991 electrolytic + acquisition, + performance 
Place preference acquisition McAlonan, Robbins, & Everitt, 1993 ibotenic acid + 
Temporal aItn. in a straight alley Beracochea, Jaffard, & Jarrard, 1989 ibotenic acid + 

Table 3 - Findings of studies using non-spatial tasks other than discriminations or recognition on rats with MD lesions • 
+ = deficit; - = no deficit 

I 

I 
I 
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TASK AUTHORS LESION 
T -maze spontaneous alternation Weiss & Means, 1980 electrolytic 
T -maze spontaneous alternation Tigner, 1973 radio frequency 
T -maze spontaneous alternation Greene & Naranjo, 1986 electrolytic 
T -maze spontaneous alternation Vicedomini, Corwin, & Nonneman, 1982 electrolytic 
T -maze spontaneous alternation Hunt & Aggleton, 1991 ibotenic acid, RF 
T -maze delayed alternation Kessler & Markowitsch 1981 kainic acid 
T-maze post-operative retention Brito, Thomas, Davis, & Gingold, 1982 electrolytic 
T -maze reversal Means, Hershey, Waterhouse, & Lane, 1975 electrolytic 
Radial arm maze (RAM), no visual cues Stokes & Best 1988 electrolytic 
RAM working memory, visual cues Stokes & Best 1990a electrolytic 
RAM working memory & reference Stokes & Best 1990b electrolytic, 
memory, visual cues ibotenic acid 
RAM arm selection accuracy Stokes & Best 1990c ibotenic acid 
RAM working memory Kolb, Pittman, Sutherland & Whishaw, 1982 electrolytic 
RAM delay Kessler, Markowitsh, & Otto, 1982 ibotenic acid 
RAM working memory Beracochea, Jaffard, & Jarrard, 1989 ibotenic acid 
Skinner box delay non-match to position Neave, Sahgal, & Aggleton, 1993 NMDA 
Skinner box discrimination reversal Beracochea, Jaffard, & Jarrard, 1989 ibotenic acid 
Skinner box discrimination reversal Neave, Sahgal, & Aggleton, 1993 NMDA 
Water maze Kolb, Pittman, Sutherland & Whishaw, 1982 electrolytic 

-

Table 4 - Findings of studies using spatial memory tasks on rats with MD lesions 
+ = deficit; - = no deficit; *HPC = substantial damage to hippocampus reported 

RESULT 
+ 
-
-
+ 
- ibo, + RF 
+ (*HPC) 

• 

+ 
+ I 

+ , 

+ 
+ 

+ 
-
+ 
-
-acquis. -perfor. 

-
-
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1. 7 - General Aims of the Present Study 

This series of experiments builds upon a previous study of the role of MD in memory 

(Hunt and Aggleton, 1991) which primarily examined working memory in rats with 

circumscribed medial dorsal thalamic damage. This study found that rats.with both 

neurotoxin (ibotenic acid) and radio-frequency lesions made in MD were subsequently 

impaired on the acquisition of a non-matching to sample test of object recognition. These 

lesion groups were, however, found to be unimpaired on performing the task following 

acquisition with the imposition of intra-trial retention intervals of up to 60 seconds. A 

second experiment tested the same groups of rats on a spatial task, delayed forced 

alternation, in which the rats were tested with delays similar to those in the recognition 

experiment in both spaced and massed trials. Damage to MD had no effect on acquisition 

or on spaced trials, but a slight deficit was found in the animals with radio frequency 

lesions under massed trial conditions. Much clearer deficits were, however, present in 

those animals in which the lesion was found to extend appreciably into the anterior 

thalamic nuclei. This effect highlights both the important role that the anterior thalamic 

nuclei play in spatial memory and the danger of falsely attributing deficits to target brain 

structures without making adequate histological verification of the extent of lesions. 

Some findings in this previous study (Hunt and Aggleton, 1991) were equivocal, reflecting 

the pattern of results in this area in general (Tables 1-4). It may therefore be useful to be 

re-explore some of these findings as a starting point, using different and extended 

experimental approaches. The limited scope of the previous study necessarily demanded a 

very small range of tasks that could be applied to the rats, and consequently the types of 

memory functioning that could be examined. The present series of experiments sought to 

extend this to investigate other ways in which MD may be exerting an influence on 

learning and memory, expressed within a similar framework of interpreting behavioural 
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deficits in rats with MD lesions. For example, where the previous study used a task that 

looked at the ability of rats with MD lesions to choose unfamiliar objects presented to 

them in a V-maze (non-matching to sample), the present study used several tasks to ask 

how these rats recognise or make discriminations of both objects and places. Similarly, 

where the previous study used a single T-maze task to look at spatial working memory, • 

this study will use a number of variants of both the T-maze and radial arm maze tasks to 

look for deficits of both working and reference memory in a spatial context. 

There is considerable advantage in using lesion-making techniques that spare fibres of 

passage. This study will use the neurotoxic compound N-methyl-D aspartic acid (NMDA) 

that destroys cell bodies within rats' MD but spares fibre tracts such as the internal 

medullary lamina and the mammillo-thalamic tract. The resulting behavioural 

observations ought therefore to be a purer representation of the function of the nucleus, 

and may thus make a contribution to the small but growing number of studies that have 

questioned MO's mnemonic functions in this way. A disadvantage of using neurotoxins is 

that their perfusion through brain tissue can be unpredictable and their effect may spread 

to structures outside the target nucleus. The previous study (Hunt and Aggleton, 1991) 

found that the ibotenic acid used to make the lesions in MD had a propensity to extend its 

effect into the anterior thalamic nuclei, leaving the spatial memory deficits thus caused 

open to misinterpretation as effects of damage to MD itself. Only very careful examination 

and reporting of the histological preparations can avoid such misinterpretation of 

behavioural findings. It is clear from an examination of the literature that a number ofthe 

potentially relevant studies in this area have failed to do this adequately, thus depleting the 

already small stock of useful experimental findings in this area. The present study will he 

mindful of this possibility and will describe fully the extent of the lesions, making 

appropriate changes to the interpretation of behavioural analyses. 
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One inference that can be made from the previous study and from the pattern of results 

from other studies (Tables 1 - 4) is that brain damage, in this case circumscribed 

experimental lesions to MD, could effect behavioural changes that are not directly a 

function of mnemonic ability, but which may have an effect on the performance of tasks 

aimed at measuring learning and memory. Because rats' memory can be expressed and 

measured only in behavioural terms, the possibility that what is being measured is an 

aspect of behaviour and not memory has to be seriously considered. Changes in such 

factors as motor activity, attention, emotion, arousal, the perception of reward, and the 

tendency to perseverate, which may be quite subtle in their expression, could all be 

misinterpreted as pure memory deficit. This possibility could account for the range of 

seemingly inconsistent results to be found in the literature of previous studies. Although 

the use of a neurotoxin to make the experimental lesions goes some way to reducing this 

potentially confounding factor by minimising the disruption to the functioning of other 

structures in the brain, MD's own contribution to such indirect changes in the mediation of 

memory will be investigated. 

1.8 - Methodology 

The type of experimental strategy used in this study is well founded. It uses groups of 

laboratory animals as a model to test and specific, circumscribed hypotheses; the results of 

which can be used to address larger questions of more general interest. Essentially, the 

experimenter takes a group of genetically similar animals and causes, in some of those 

animals, controlled, circumscribed damage to a site in the brain that is of interest. The 

animals are otherwise treated in exactly the same way throughout their lives, with great 

care being taken to expose the control animals to the same environment and experience as 

the experimental animals, including the performance of sham surgeries on the control 
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animals analogous to the lesion-making techniques in the experimental groups. Thus, in 

each experiment in this study, the animals are divided into sham and a lesion groups, and 

both are exposed post-operatively to laboratory situations that address the relevant brain 

structure, and behavioural observations are recorded. The experimenter can thus assume 

that any behavioural differences between these two groups are dependent upon the lesion 

and, by implication, that the target structure is likely to be involved in that particular 

activity. It is, however, important to note that what is being studied is, in fact, a reflection 

of how the brain functions without the brain structure in question, and not directly the 

target structure's function. 

In creating damage to a defined structure in the brain, it is necessary not only to restrict 

damage to that structure, but also to destroy as large a proportion of it as is possible. This 

is, in itself, difficult to achieve and the task is further complicated by the presence of fibres 

of passage that may be present in such structures which, if destroyed, may have effects in 

other, possibly unrelated, brain areas. The present study uses micro-injections of 

neurotoxic substances for lesion-making in order to minimise such inadvertent damage to 

fibres of passage. Careful examination of appropriate histological preparations of brain 

tissue is also carried out at the end of the experiments in order that accurate assessment of 

the extent of damage caused can be made, thus reducing the possibility of making false 

attributions of observed behavioural differences. 

The study used groups of animals that were just large enough to give a statistically 

unambiguous answer. Since the strength of any effects found was unknown, the study 

aimed to use between eight and ten animals for each lesion group, and to have a similar 

size control group for each lesion group. An inbred strain of rats was chosen that is 

relatively small in size and may be assumed to have relatively good vision, not being 

albino or albino-derived. The rats used were thus suited to the type of behavioural tasks to 
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be applied. Since inbred strains, by definition, show only very tiny genetic differences 

between individuals, their use presents less opportunity for genetic variables to confound 

the behavioural test results. Further, variations in brain morphology between individuals 

are likely to be minimised, avoiding inaccuracies in targeting brain structures during 

stereotaxic surgical procedures. 

1.9 - Summary of Aims 

1.9.1 - To investigate whether deficits in spatial and non-spatial learning and memory are 

produced by MD lesions in rats. 

1.9.2 - To look for behavioural changes in rats following MD lesions that may contribute 

to deficits in learning and memory, such as activity, exploration, and the association of 

places with food reward. 

1.9.3 - To examine alternative interpretations of the effects ofMD lesions on learning and 

memory in rats. 

1.9.4 - To apply careful methods of investigation to differentiate effects directly 

attributable to MD from those that may result from damage to adjacent structures or fibres 

of passage and may previously have been reported as MD deficits. 
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CHAPTER TWO 

Cohort 1 - tests of non-spatial reference memory and 
spatial working memory. 
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2.1 - Introduction 

Although evidence from both clinical and animal studies has indicated that the thalamic 

nucleus medialis dorsalis has an important role in some aspects of learning and memory 

(Markowitsch, 1982, Victor et aI, 1989, Aggleton and Mishkin, 1983a, Aggleton and 

Mishkin, 1983b, Zola-Morgan and Squire, 1985), its involvement remains poorly defined. 

This first series of experiments was intended to build directly on the findings of a previous 

study (Hunt and Aggleton, 1991), extending and refining the range of types of memory 

task with which rats with MD lesions were challenged. The previous work had examined 

the role of MD in rats performing a limited range of spatial and non-spatial working 

memory tasks. These next three experiments, using the Grice box, radial arm maze, and T

maze, aimed to apply a similar approach using tests of non-spatial and spatial working and 

reference memory. 

Although the experiments in a previous study (Hunt and Aggleton, 1991) were designed 

primarily to examine working memory, the contribution of reference memory elements 

cannot be eliminated, since rule-learning was necessary to the performance of the tasks .. 

For example, on the V-maze delayed non-matching to sample task, designed to tax non

spatial working memory, the non-matching rule must first be acquired before delay 

conditions can be introduced. In fact, it was the examination of data from this acquisition 

stage of the experiment which revealed a learning impairment in the MD lesion group. The 

first in this new series of experiments therefore set out specifically to address the non

spatial rule-learning abilities of rats with MD lesions principally through a concurrent 

object discrimination task, but also tested discriminations serially, including a configural 

object discrimination. 
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A number of recent studies have used concurrent object discriminations to assess the 

effects of selective limbic lesions in rats (Aggleton, Kentridge, & Sembi, 1991; Rothblat, 

Vnek, Gleason, & Kromer, 1993; Wible, Shiber, & Olton, 1992). In such tasks the animals 

are required to learn a number of discriminations at the same time. This differs from 

"serial discriminations", the more standard design in which a new discrimination is not 

given until the previous one has been learnt. It has been reported that lesions of the fornix 

(Aggleton et ai, 1991; Wible et ai, 1992), the hippocampus (Wible et ai, 1992), and the 

parahippocampal region (Rothblat et aI, 1993) all impair the acquisition of concurrent 

object discriminations by rats. In contrast, lesions of the amygdala have no apparent effect 

on their own (Aggleton et ai, 1991). nor do they enhance the effects of hippocampal 

system damage (Aggleton et aI, 1991, Wible et ai, 1992). 

Interest in the performance of animals on such tasks stems from the fact that human 

amnesic subjects are impaired on learning concurrent visual discriminations. Deficits have 

been found among amnesic subjects irrespective of the type of discriminative stimuli 

(Aggleton, Nicol, Huston, & Fairbairn, 1988; Gaffan, Aggleton, Gaffan, & Shaw, 1990; 

Squire, Zola-Morgan, & Chen, 1988) or the type of feedback used to indicate correct 

responses (Gaffan et aI, 1990; Squire et ai, 1988). Furthermore, impairments have been 

found in amnesics with a variety of aetiologies and, hence, a variety of pathologies 

(Aggleton et al 1988; Aggleton, Shaw, & Gaffan, 1992; Kessler, Irle, & Markowitsch, 

1986; Oscar-Berman & Zola-Morgan, 1980; Squire et aI, 1988). It is therefore supposed 

that concurrent discrimination tasks provide a sensitive assay for both temporal lobe and 

diencephalic amnesia. 
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Studies using monkeys have indicated that mammillary body lesions have no effect on this 

task (Zola-Morgan, Squire, & Amaral, 1989), indicating a possible contribution from MD, 

and while monkeys with MD lesions can still learn single discriminations (Aggleton & 

Mishkin, 1983; Zola-Morgan & Squire, 1985), they are impaired on the acquisition of 

multiple discriminations presented serially (Gaffan & Murray, 1990). These lesions can 

also impair discriminations that require the subject to remember the amount of reward 

associated with a particular stimulus (Gaffan & Watkins, 1991). 

Studies using rats have also indicated that damage to medialis dorsalis can disrupt a wide 

range of discrimination tasks (Staubli, Schottler, & Nejat-Bina, 1987; Tigner, 1974; 

Waring & Means, 1976, Weiss & Means, 1980) and can abolish conditioned place 

preference learning (McAlonan, Robbins, & Everitt, 1993). As a consequence it has been 

suggested that medialis dorsalis is involved in reward-related processes (McAlonan et aI, 

1993), such as the way in which rewards help the learning of performance rules (Gaffan & 

Murray, 1990; Gaffan & Watkins, 1991; Staubli et ai, 1987). If this is the case it might be 

predicted that damage to MD would disrupt the learning of concurrent discrimination tasks 

when sufficient practice has led to the development of efficient learning strategies by 

normal subjects. 

Experiment 1, besides examining such concurrent learning, included a condition in which 

the stimuli to be discriminated are presented once per session. The rationale for this comes 

from the seemingly paradoxical finding that combined removal of the amygdala, 

hippocampus, and rhinal cortex in monkeys has no effect on the learning of concurrent 

discriminations when each trial for a given pair of stimuli is separated by 24 hours 

(Malamut, Mishkin, & Saunders, 1984; Phillips, Malamut, Bechevalier, & Mishkin, 1988). 
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One of the standard tasks used to assess spatial working memory in rats is the radial arm 

maze (Olton and Samuelson, 1976). In some studies, medialis dorsalis lesions whether 

made by neurotoxic (Beracochea, Jaffard, and Jarrard, 1989) or electrolytic (Kolb, Pitman, 

Sutherland, and Whishaw, 1982; Olton and Samuelson, 1976) means have had no 

disruptive effect on acquisition or performance. One of these studies (Kolb et ai, 1982) • 

also included an explicit reference memory component in which a number of arms were 

never baited. The thalamic lesions did not affect the ability of the rats to learn to avoid 

these arms, and so spared both working and reference memory. In contrast, a series of 

studies by Stokes and Best (1988; 1990a,b,c) described deficits in both the working and 

reference memory components of the radial arm task in groups of rats with nucleus 

medialis dorsalis lesions. These deficits were found whether the lesions were made by 

electrolytic or neurotoxic methods. Using a modified radial arm maze with additional 

interlinking arms, evidence of a mild acquisition deficit was again found following 

neurotoxic lesions of the nucleus medialis dorsalis (Kessler and Markowitsch, 1982). The 

same study also found evidence of a mild deficit when a delay of one hour was interposed 

between trials. 

In view of the disruptive effects of even small amounts of anterior thalamic damage, it is 

possible that many of the reported spatial memory deficits associated with medial dorsal 

thalamic damage are a consequence of anterior thalamic involvement (Hunt and 

Aggleton, 1991), or of damage to the intralaminar nuclei (Burk and Mair, 1998). In the 

case of conventional lesions, this involvement may include damage to tracts that are linked 

with these nuclei, most notably the mammillothalamic tract (Thomas and Gash, 1985). 

With these possibilities in mind, the current study re-investigated the effects of neurotoxic 

lesions confined to the region of nucleus medialis dorsalis on tests of spatial working 

memory. The tests included variants of the radial arm maze task and T -maze alternation. 
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The radial ann maze tests included conditions designed to detennine whether any of the 

subjects had acquired an alternative strategy (i.e. one that did not make demands on 

working memory). For this reason, Experiment 2 examined whether rats had learnt to 

solve the task by constantly turning in one direction or by using odour trails to avoid 

repeat visits to the same ann (Buresova and Bures, 1981). 

Experiment 3, the final test given to this cohort of animals, was a simple spatial learning 

task in aT-maze, forced-choice alternation. A previous study (Hunt and Aggleton, 1991) 

comparing the effects of radio-frequency and neurotoxic (ibotenic acid) MD lesions on this 

task, had found no consistent evidence that MD damage alters either acquisition or 

subsequent perfonnance of the task. The inclusion of this task helps to confinn or further 

test the lack of acquisition deficit found in that study (Hunt and Aggleton, 1991) using 

massed trials, and acts as a further assay for the effects of damage to the anterior thalamic 

nuclei. 

2.2 - General Methods 

The following description of methods applies to all experiments perfonned throughout the 

study. 

2.2.1 - Subjects 

The subjects were all naive male rats of the pigmented Dark Agouti (DA) strain (B&K 

Universal Ltd, Hull), approximately 12 weeks old and 21O-250g in weight at the start of 

the experiments. They were housed in individual cages in a holding room with a photo 
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period of 14: 1 0 hours light dark, and each was randomly assigned to one of two surgical 

groups: MD (lesions of the mediodorsal nucleus of the thalamus) or SHAM (surgical 

controls). Following recovery from surgery and throughout the subsequent testing period 

they were maintained on approximately 15g of laboratory diet (RM 1 (E) - Special Diets 

Services, Witham, Essex) per day, and their body weights were monitored so that they • 

remained at no less than 85% of normal. 

2.2.2 - Surgical Procedure 

Each animal was deeply anaesthetised by intraperitoneal injections of pentobarbitone 

sodium ("Sagatal", Rhone Merieux, Harlow) at a dose rate of6mg/lOOg. The animal was 

then placed in a stereotaxic headholder (David KopfInstruments, Tujunga, U.S.A.), the 

scalp retracted, and a small craniotomy made to expose the dura above the target region. In 

the MD lesion groups a single injection of 0.36JlI of a 0.2 molar solution of N-methyl-D

aspartic acid (Sigma Chemical Co. Ltd., Poole), dissolved in phosphate buffer (pH 7.2), 

was made through a 1 JlI micro-syringe (Hamilton Instruments, Bonaduz, Switzerland) in 

each hemisphere. Each injection was made over a period of five minutes and the needle 

was left in position for a further five minutes before being retracted. The injection co

ordinates relative to ear bar zero with the incisor bar set at +5.0 were: AP = 3.7, Ht = 4.6, 

LAT = ~ 0.7. Following removal of the needle from the second hemisphere the skin was 

sutured and wound powder (Acramide, Dales Pharmaceuticals, Skipton) applied to the 

area. The SHAM groups received identical treatment with the exception that the micro

syringe needle was introduced into the brain to a position just above the target nucleus, 

and no injection was made. 
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A heated pad was kept under the rats at all times during surgery to maintain near-normal 

body temperature, and a 6ml subcutaneous injection of isotonic saline (Ani~a·lcare Ltd, 

York) was made at the beginning of each surgery to prevent dehydration. The eyes were 

protected from both dehydration and excessive light by the application of ophthalmic 

ointment (Chloromycetin, Parke-Davis, Pontypool) after mounting the rats in the 

stereotaxic frame. Immediately following surgery a further saline injection was made 

along with etamphylline (Millophyline, Arnold's, Romford; 35mglkg, s.c.), a respiratory 

stimulant. 

2.2.3 - Histological Procedure 

At the end of the study each rat was perfused intracardially with 0.9% saline followed by 

5% formol saline. The brains were subsequently blocked, embedded in wax (Paraplast), 

and cut in 10 micron coronal sections. Every tenth section was mounted and stained with a 

Nissl stain (Cresyl violet). 

2.2.4 - Statistical Analysis 

Where appropriate, parametric tests were used to compare the groups' scores. Evidence of 

heterogeneity of variance was found in some instances and modifications of analyses were 

carried out accordingly. Student's (-tests were modified where appropriate by Levene's 

test (SPSS, Chicago, IL). Logarithmic transformations were carried out where indicated 

prior to analysis of variance. All (-tests were one-tailed unless otherwise stated. Analyses 

of simple effects following analysis of variance were based on just the level of the within

subject variable at which the effect was being tested (Keppel, 1973). The error bars shown 
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on figures represent standard error of the means. For those behavioural tests sensitive to 

anterior thalamic damage, a second series of analyses was conducted. These analyses 

excluded those MD rats with bilateral damage in any anterior thalamic nucleus. 
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2.3 - EXPERIMENT 1 - Object Discrimination. 

2.3.1 - Method 

2.3.1.1 - Subjects - The subjects were 17 rats as described in General Methods. Prior to 

surgery each rat was randomly allocated to one of two surgical groups. Nine rats were 

assigned to the group which was to receive neurotoxic lesions to the nucleus medialis 

dorsalis (MD I) and the remaining 8 formed the surgical control group (SHAM I). 

2.3.1.2 - Surgical, Histological, and Statistical Procedures - Procedures were as 

described in General Methods. 

2.3.1.3 - Test Apparatus - All tasks were carried out in a Grice box, composed of 

aluminium walls and door and a laminate plastic floor (Figure3). The small, rectangular 

start box (13x18cm) was separated from the funnel-shaped test area by a guillotine door. 

The far wall of the test area was 43cm wide and 43cm from the guillotine door. Two side: 

walls of equal length (46cm) joined the ends of this far wall to the entrance of the start 

box. All walls of the apparatus and the guillotine door were 24cm high. The floor 

contained two food circular food wells, 2.5cm in diameter by O.5cm deep, each located 

35cm from the start box. An aluminium partition protruded 16cm from the middle of the 

far wall and ensured that the rats could not run directly between the two food wells. 

The floor of the food wells was made of perforated zinc sheet, and directly underneath 

each was a tray containing the same type of reward pellets used in testing. This 
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arrangement, which was to prevent the animals from using olfactory cues in performing 

the discriminations, meant that the rats could not see the hidden pellets but could 

presumably smell them. Thus, in the event that the presence of food could be detected 

even when covered by an object, both the positive and negative food wells would smell 

similar. 

Illumination was by fluorescent room light suspended 132cm above the apparatus giving a 

luminance level of 100 lux at the position of the food wells. 

food wells 

Figure 3 - The Grice box used in all object discrimination tasks in Experiment I 

The objects used for the various discriminations differed in their size, shape, and colour 

(usually patterns of black and white). Multiple copies were made of all stimuli and they 

were sealed with coats of clear varnish to help eliminate olfactory cues. All of the objects 

had sufficiently large bases to cover the food wells completely. 

Object discrimination 1 - This used two differently shaped wooden objects (Figure 4), one 

painted black, the other white (maximum height 41 mm) . 
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Figure 4 - The black and white discrimination stimuli used in Object Discrimination 1. 

Concurrent discrimination - The 10 pairs of stimuli used for the concurrent 

di scriminations were made either of wood or metal (S+ and S- pairs were always of the 

same material) . All were covered with paint or clear varnish, and care was taken to make 

the individual stimuli as distinctive as possible both from one another and from those used 

in other conditions. The tallest of the stimuli was 92mrn high and the shortest Ilmm. 

Object discrimination 2 - This used two different wooden objects painted in distinctive 

patterns, similar in construction to those used in the concurrent discriminations. 

Con figural discrimination - Each stimulus consisted of a 5cm square base on which were 

set four equal lengths of varnished wooden dowel rods (40mm long, 13mm diameter). 

Some of these rods were glued lengthways on the base, others upright, and one piece was 

glued across the top end of the vertical rod(s). The two stimuli differed in the number and 

position of the vertical and horizontal rods (Figure 5). 

2.3.1.4 - Testing Procedure - Pre-training began a minimum of 14 days after surgery. 

During pre-training the animals were trained to run from the start box to find food pellets 
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(45mg, Campden Instruments Ltd. , Loughborough) in either food well by pushing aside a 

fl at wooden disc. 

Figure 5 - Discrimination objects, which differed in the number and position of the vertical and horizontal 
rods, used in con figural discrimination. 

For all of the following discrimination tasks the animals received 3 food pellets following 

a correct choice. A choice was defined as moving a stimulus object with front paws or 

snout. After making a choice the animal was picked up and returned to the start box. 

orrection trials were not run. The Left-right positions of the stimuli varied according to a 

random schedule. The animals received one session per day, 5 days per week. Care was 

taken when baiting the food wells not to provide the animals with additional cues. 

hroughout testing the experimenter was unaware to which group the rats belonged. 

Object di crimination 1. - Each animal received 20 trials per session. Half of the animals 

in each group were allocated the black object as the positive stimulus (S+), whi le the S+ 

for the other half was the white object. Training continued until the rat reached a criterion 

of at least 38 correct trials over two consecutive days. After an interval of 4 days they were 

tested on the concurrent task. 
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Concurrent discrimination. - The procedure was the same as in the previous task except 

that each session now consisted of 26 trials in which three different pairs of 

discriminations were interspersed. Two object pairs (AI vs A2, BI vs B2) were tested for 

just one trial every session (Single Trial condition). A further two object pairs (CI vs. C2, 

D' vs. 0 2) were tested for four trials on each session (Four Trial condition). Finally, two 

more pairs of objects (E' vs. E2, F' vs. f2) were used for 8 trials on every session (Eight 

Trial condition). All animals received 32 sessions. The discriminative stimuli for the Four 

and Eight Trials conditions were replaced by new pairs of stimuli for sessions 17-32, i.e. 

the second half of the total sessions. Whilst the order of the stimulus pairs was kept 

constant across all sessions, the various conditions were interspersed and the left-right 

positions of S+ randomised in order to prevent the development of side preferences. It was 

arranged that the choices made by the rats in Session I determined the actual S+ and S

stimuli. Thus, for each of the three conditions one of the S+ stimuli corresponded to that 

object selected by the rat on its very first exposure (discriminations A, C, and E, i.e. on 

trial 1 bait both objects), while the other S+ was the object not selected (discriminations B, 

D, and F, i.e. on trial 1 bait neither object). Four days after completion of the concurrent 

test the rats were trained on two discriminations presented serially. 

Object discrimination 2 and configural discrimination. - For both discriminations the rats 

received 20 trials per session, and were tested to a criterion of 19 correct trials in one 

session. For half of the animals in each group the S+ corresponded to the object selected 

on Trial I (both baited). For the other half the object selected on Trial 1 became S- (neither 

baited). Immediately after completing object discrimination 2, which used two distinctive 

painted wooden objects, the rats were tested on the configural discrimination, which was 

run in the same way. 
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2.3.2 - Results 

2.3.2.1 - llistological Analysis 

Damage within nucleus medialis dorsalis - All animals in the MDI group had extensive' 

bilateral lesions within nucleus medialis dorsalis. The largest and the smallest of the MDI 

lesions are depicted in Figure 7. In most cases the lesion affected at least 80% of the 

nucleus; the only sparing occurring at the most lateral and ventral limits of the nucleus. 

The region composing nucleus medialis dorsalis was always shrunken and within the 

extent of the lesion there was almost a complete loss of neurons, but no evident gliosis 

(Figure 6). In two cases there were small infarcts confined to nucleus medialis dorsalis, 

while a more extensive infarct, also confined to the nucleus, was found in another case. 

Damage to other structures - most cases showed a loss of cells in the medial portion of 

nucleus lateralis dorsalis (Figure 7). One case showed unilateral damage to the 

intralaminar nuclei. In three cases there was also extensive bilateral damage to the anterior 

dorsal nucleus, resulting in total or near-total loss of the nucleus. The other anterior 

thalamic nuclei were almost completely spared in all cases (although in three cases the 

lesion extended rostrally to encroach into the most caudal margins of the anteroventral 

thalamic nuclei). In all MDI cases there was damage to the mid-line nucleus 

paraventricularis, and to that part of nucleus parataenialis at the rostral level of medialis 

dorsalis. In most cases there was a restricted zone of damage where the tract passed 

through the dentate gyrus. The habenula did not appear to suffer neurotoxin damage. The 

needle tract could be seen entering the hippocampus, dorsal to medialis dorsalis in all 

SHAMl cases. 
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Figure 6 - Photo micrograp h of corona l sections (Niss l sta in) showing th e appearance of nucl eus media li s 
dorsa li s in a norma l anima l (left) and in th e MDI animal with the med ian s ized lesion (right) . T he 
photom ic rograph shows not only th e loss of neurons within nucleus medi a lis dorsa li s, but a lso the result ant 
contrac tion o f th e reg ion . For purposes of comparison th e mammillotha lamic trac t is marked with an 
as ter isk. H = hippocampus ; MD = nucleus media li s dorsalis . 

63 



-1·0 

Figure 7 . Diagrammatic reconstruction of the lesions of nucleus mediali s dorsalis. The coronal sections 
depict the smallest (b lack) and largest (diagonal lines) extent of cellular loss. The numbers refer to the 
approximate correspond ing AP leve ls from the stereotaxic atlas of Pellegrino and Cushman (1967 ). 
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2.3.2.2 - Behavioural Analysis 

2.3.2.2.1 - Single Discriminations 

Object Discrimination 1 - The acquisition performance of the two groupS' (Figure 8) was 

assessed by comparing the total number of errors in reaching the learning criterion. 

Levine's test for equality of variance showed that the data variance of the two groups was 

unequal, and a t-test which was therefore adjusted accordingly showed no significant 

difference between the groups (t = 0.38, df= 13.58, p= 0.35). 

Object Discrimination 2 - Comparisons of the performance of the two groups on this task 

produced no evidence of a lesion effect (Figure 8). A t-test on the number of errors to 

criterion confirmed this (t = 0.03, df = 15, P = 0.49). 

Con figural Discrimination - Evidence was found on this final discrimination that the two 

groups differed in their ability to learn the task (Figure 8). A t-test on the number of errors 

made in reaching the set learning criterion revealed that the MD 1 group was significantly 

impaired (t = 2.46, df= 9.55, p =0.02). Again the t-test has been adjusted to take account 

of the unequal nature of the variances. 

2.3.2.2.2 - Concurrent Discriminations 

Performance scores on this task were taken from the number of correct trials in each of the 

three conditions over successive blocks of 4 sessions. In the case of the Four and Eight 

Trial conditions the animals received a new set of stimuli on session 17 (the beginning of 
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block 5). As a consequence, sessions 17-32 (blocks 5-8) were primarily considered as 

completely new sets of discrimination data. Comparisons were made using an analysis of • 

variance (using SPSSx), with the factors group and block. 

One Trial condition: both groups showed evidence of learning the two discriminations • 

(Figure 9), even though they received just one trial per day on each of them. This is 

reflected in the highly significant block effect [F(7,105) = 6.04, p<O.OOI]. There was, 

however, no group effect [F(I,15) = 1.65, p = 0.22], nor was there a group x block 

interaction [F(7, 105) = 1.46, p = 0.19]. 

Four Trial condition: comparisons of the two groups on the first part of this condition 

(sessions 1-16) and on the second part (sessions 17-32) showed no evidence of any 

difference in performance. Again, there was a highly significant block effect as the 

animals improved with practice on each set of discrimination data [blocks 1-4, F(3,45) = 

45.45, p<O.OO I; blocks 5-8, F(3,45) = 15.81, p<O.OO I]. Both groups' performance fell on 

Block 5 (Figure 10) when the now-familiar discrimination stimuli were replaced by a new 

set. 

Eight Trial condition: The animals' performance was similar in pattern to that seen in the 

four trial condition, with a highly significant block effect on both sets of discrimination 

data [blocks 1-4, F(3,45) = 102.7, p<O.OOI; blocks 5-8, F(3,45) = 44.65, p<O.OOI]. Again, 

there was a marked falling of performance on block 5 after the stimuli had been replaced 

(Figure 9). There was, however, a significant difference between the groups on the first set 

(sessions 1-16), reflecting an initially poor perfonnance of the task by the MDI group 

[F(I, 15) = 5.14, P = 0.04]. The MDI group did subsequently make up this deficit over 

subsequent blocks, showing a steeper learning curve than the SHAMI group (Figure 11), 
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and from blocks 3 to 8 the performance of the two groups appears virtually 

indistinguishable. 
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Figure 8 - Mean errors to criterion of the MOl and Shaml groups on Discrimination I (black vs white), 
Discrimination 2, and Configura I Discrimination. Discr iminations I and 2 were separated by the concurrent 
task. Vertical lines indicate standard error of the mean (and in all subsequent fi gures in Chapter 2). 
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Figure 9 - Concurren t discrimination : One trial condition . Each block corresponds to four sessions. 
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Figure 10 - Concurrent discrimination: Four Trial condition. Each block corresponds to four sessions (32 trials). 
New pairs of stimuli were presented after completion of Block 4. 
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Figure 11 - Concurrent discrimination: Eight trial condition. Each block corresponds to four sessions. 
New pads of stimuli were presented after completion of Block 4 . 
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2.4 - EXPERIMENT 2 - Radial Arm Maze 

2.4.1 - Method 

2.4.1.1- Subjects - The subjects were the same animals as in Experiment 1 with the 

exception of one animal from the MD I group which was excluded because of illness. 

The groups were therefore: MOl n = 8, and SHAMI n = 8. 

2.4.1.2 - Test Apparatus - The apparatus was a radial arm maze comprising a central 

octagonal atrium with eight arms radiating from it. The atrium was 34cm in diameter 

and constructed of a varnished plywood floor with transparent acrylic sheet walls 24cm 

in height. The eight arms were each 86cm in length and IOcm in width and, like the 

atrium, were constructed of a plywood floor and clear acrylic walls. A food well in 

which reward pellets could be placed, 2cm in diameter and 0.5cm deep, was located 

2cm from lhe end of each arm. A clear acrylic guillotine door was located at the 

junction of each arm to the atrium, and these could be raised and lowered either together 

or independently by a system of overhead cords. The whole maze sat on a circular 

plywood turntable which could be rotated through 360 degrees by the experimenter. 

Each arm was identified to the experimenter by a printed number, and positions were 

marked on the floor beneath the maze so that its position on rotation could be replicated 

exactly. The testing was carried out in a room in which there were salient visual cues 

such as a door, a sink, a table and chair, and several wall posters, and lighting was 

provided by three fluorescent lights 140cm above the apparatus. 

2.4.1.4 - Testing Procedure - Pre-testing exposure to the maze was begun one week 

after all the animals had finished Experiment I, and about 12 weeks after surgery. These 
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pre-training habituation sessions continued daily for five days and involved free access 

to the apparatus which had reward pellets (Campden Instruments, Loughborough) 

placed in and around the food wells. Formal training then followed, each rat receiving 

one session per day. 

Each session began with the baiting of all maze arms with three reward pellets placed in 

each food well. The rat was placed in the central area and all the doors were raised, 

allowing the rat access to all rmS. The rat was deemed to have entered an arm when all 

four paws were in the arm, the doors were then lowered and the rat allowed to eat the 

reward pellets. The door to that arm only was then raised, allowing the rat back into the 

hub, and immediately closed again when the rat had passed through. This procedure was 

repeated until all eight arms had been visited. In this way the inter-trial delay was 

minimal and determined by the animal. The session was aborted if the rat had not 

completed the task after 10 minutes, or if it made no response at all for 2 minutes, and 

the data for that session was discounted. Criterion was deemed to have been reached 

when all eight arms had been visited in 10 or fewer attempts on each of 5 consecutive 

days. Throughout all testing in this experiment the experimenter was unaware of the 

group designation of each rat. 

On the session following acquisition, each rat was further tested by increasing the 

retention delay and by assessing the effect of turning the maze mid-session. On "turned" 

days (session 2 and each alternate session subsequently), the rat was initially run in the 

maze using the same method as in the acquisition phase, but after the rat had selected 

four different arms, it was taken out of the central area and placed in its own cage for 60 

seconds. During this time the maze was rotated on its turntable 45 degrees clockwise. 

As a consequence, each arm was now in the former position of its adjacent arm, and the 
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remaining reward pellets in the food wells were moved accordingly anticlockwise. Arm 

.. 
number I thus occupied the position formerly occupied by arm number 2 and so on. 

This meant that all of the distal spatial cues remained unaltered, but local intra-maze 

cues had changed position. At the end of the 60 second delay the rat was replaced in the 

centre of the maze and allowed to continue until it had visited all eight arins. 

On the interleaved, alternate sessions ("control delay"), testing procedure was exactly 

the same as the "turned delay" condition, except that a "sham" maze-turn was carried 

out in which the experimenter turned the maze 45 degrees clockwise, and immediately 

returned to its original position. This was done in order to avoid any association being 

made between the procedure of turning the maze and the changed conditions on 

"turned" sessions. To this same end, the experimenter also made the motions of 

apparently moving the reward pellets, but in fact leaving them in place. The rat was 

replaced in the centre of the maze at the end of the 60 seconds delay and continued the 

task until all eight arms had been visited. Each animal was given a total of five "turned 

delay" and five "control delay" sessions. 

2.4.2 - Results 

2.4.2.1 - Behavioural analysis - The behavioural analyses initially considered all of the 

MD 1 animals with substantial bilateral cell loss in nucleus medialis dorsalis. 

Subsequent analyses examined whether encroachment into the anterior thalamic nuclei 

had contributed to any of the lesion effects. This set of analyses was in response to the 

debate over whether some of the effects ascribed to medialis dorsalis lesions might be a 

result of damage to adjacent nuclei. 
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The initial analyses compared the total number of errors required to complete the 

acquisition criterion (Figure 12). This score did not include errors made on sessions that 

were void, i.e. when the choice behaviour of the rat was too slow. Although the MD I 

group made more errors than the SHAM} group in reaching the acquisition criterion ' 

(mean MD 1 = 11.13; mean SHAMI = 6.5), this difference narrowly failed to reach the 

significance level [t (14) = 1.54, p = 0.073]. Similarly, the MDI group required more 

test sessions (including void sessions) to complete the acquisition criterion (mean 

sessions, MDl = 8.13; SHAMI = 6.13) (Figure 12). This group difference was 

significant [t(14) = 2.44, p = 0.015]. 
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Figure 12 - Acquisition of the Radial Arm Maze task depicted by A) mean errors to criterion and 
B) mean sessions to criterion. 

Inspection of the arm selection by individual animals failed to indicate whether the 

MDl rats had learnt to adopt an egocentric strategy (i.e. choose an immediately adjacent 

arm and always turn in one direction). This was formally examined by calculating the 

number of sequential choice responses. To measure this, the first choice of an animal 

was ignored, but the second to eighth choice each animal made was given a score of + 1 
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(clockwise) or -I (anticlockwise) if the arm selected was immediately adjacent to the 

arm that the animal had come from. Any other choice was given a score ofO. In this 

wayan absolute score of7 would reflect a perfect sequential strategy while a score near 

zero would reflect a failure to use this strategy. Inspection of the absolute scores of the 

two groups for the last five acquisition sessions failed to provide evidence for the use of 

such a strategy (mean scores: MOl = 1.75, s.e.m. = 0.92; SHAMI = 0.25, s.e.m. = 

0.75), nor was there evidence of a group difference [t (14) = 1.26, P = 0.23, two-tailed]. 

Following acquisition, the effects of increasing the retention delay and of turning the 

maze were assessed. These analyses just used the errors made after the delay (Le. after 

the first four correct choices had been made) and, in fact, none of the rats made an error 

during the first four choices of either condition. An analysis of variance was then used 

to compare performance over the five sessions with the 'turned delay' condition, the five 

sessions of 'control delay', and the last five acquisition sessions (Figure 13). This 

analysis showed a significant effect of condition [F(2,28) = 28.47, p <0.001], a near

effect of group [F(l,14) = 4.10, p = 0.06], and a highly significant group x condition 

interaction [F(2,14) = 5.91, P = 0.007]. Analysis of the simple effects showed that there 

were no differences between the groups [F <I] on the acquisition and control delay 

conditions, but that a highly significant difference emerged at the turned delay condition 

[F(1,14) =10.9, p = 0.005]. This reflected the poorer performance of the lesion group at 

this one condition (Figure 13). 
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Figure 13 - Radial arm maze: performance over delay conditions. In 'turned delay' sessions the maze 
was rotated by 45° during the 60s delay period. 'Control delay' sessions included the 60s delay but the 
maze remained in the same position throughout the session. In both conditions the delay was imposed 
after four arms had been entered. 

The possibility was also examined that the MD I group were using scent trails as cues as 

well as the extra-maze cues, and hence were liable to make more errors when the maze 

was turned. Thus on the first trial after the maze was turned it was noted whether the 

actual arm chosen by the rat had already been visited on that session (because of the arm 

rotation). It was predicted that rats more reliant on odour cues would show a higher 

preference for arms that had not been entered that session. A comparison of the number 

of odour "free" choices over the five sessions indicated that the MD 1 group was indeed 

more likely to select such arms than the SHAMI animals [Mann-Whitney U (8,8) = 15, 

p=O.042]. 

Finally, attention was given to the possible contribution of any damage to the anterior 

thalamic nuclei. Three of the MD 1 cases displayed marked or complete bilateral cell 

loss in the anterior dorsal nucleus although the other anterior nuclei were spared. Two of 
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these three cases made the greatest number of errors to criterion, and when these three 

cases were removed fro m the analysis the borderline acquisition deficit completely 

di sappeared [revised mean errors to acquisition MOl = 7.2, s.e.m. = 0.1.39, t(11)= 

0.3 5]. A similar result was found for sessions to criterion [mean sessions = 7.4, s.e.m. = 

0.93 , t(II)= 1.25 ]. 

Similar compari sons on the 'turned delay', 'control delay', and 'no delay' conditions in 

which the same three MOl cases were removed (Figure 14) showed that there was still a 

signi ficant effect of condition [F(2,22) = 17.21 , p<O.OO 1] but there was now no 

evidence of a group effect [F(l, II) = 1.47, p = 0.25] or of a group x condition 

interaction [F(2,22) = 2.42, p = 0.11]. In spite of the lack of main effects, analysis of the 

simple effects showed that that this subset of MO I animals still performed poorly on the 

'turned delay' condition [F(l , II) = 4.75, P = 0.052]. 
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Figure 14 - Radial ann maze: perfonnance over delay conditions and excluding those subjects in the 
MD I group with substan ti al anterior thalamic lesions. 
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2.5 - EXPERIMENT 3 - T-Maze Non-Matching 

2.5.1 - Method 

2.5.1.1 - Subjects - The subjects were the same as in Experiment 2 (MOl n = 8, 

SHAMI n= 8). 

2.5.1.2 - Test Apparatus - The T-maze used in this task was identical to the one used in 

a previous study (Hunt and Aggleton, 1991). It had an aluminium floor 10cm wide and 

clear acrylic sheet walls 17cm high. The stem of the maze was 80cm long with an 

aluminium guillotine door 33cm from the beginning. The cross ann was 136 em long 

with a food well4cm in diameter and 0.75 em deep located in the floor 2cm from each 

end. The maze was supported on stands 93cm high and was illuminated by fluorescent 

room-lights suspended 92cm above the apparatus. At the choice point and food wells 

the luminance levels were 320 and 280 lux respectively. Testing was carried out in a 

different room from either Experiments 1 or 2, but, as in the room used for Experiment 

2, it contained salient visual cues. 

2.5.1.3 - Testing Procedure - Pre-test exposure to the maze began two weeks after all 

the animals had completed the R.A.M. tasks. Only one session of pre-training was 

required since the T -maze apparatus was similar in appearance and behavioural 

requirements to the R.A.M .. Each trial in this experiment consisted of two stages; an 

"information" run and a "test" run. At the beginning of each trial the experimenter 

placed three food reward pellets in each food well and closed off one ann of the maze 

with a wooden block adjacent to the choice point. The rat was then placed at the start 
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point and the guillotine door was raised, allowing the rat to run through towards the 

choice point. On this "information" run the rat was forced by the presence of the 

wooden block to enter the opposite arm, where it was allowed to eat all the pellets in the 

food well at the end of that arm before being picked up and returned to the start box. No 

retracing back into the stem of the maze was permitted once the rat had etltered the arm. 

Once back in the start box the experimenter removed the wooden block and raised the 

guillotine door to allow the animal to run up the stem towards the choice point for a 

second time (the "test" run). The delay between the end of the "information" run and the 

beginning of the "test" run was approximately 10 seconds. This time the animal was 

faced with two open arms at the choice point, and was deemed to have made a choice 

when all four of its paws were in one arm. At this point the wooden block was placed 

behind it to prevent retracing into the stem or entry into the unchosen arm. If a correct 

choice was made, i.e. the arm entered was the opposite one to the one entered on the 

information run, the animal was allowed to eat the reward pellets before being returned 

to the start box for trial 2. If an incorrect choice was made the rat was confined to the 

arm without food reward for 10 seconds before likewise being returned to the start box. 

One daily session consisted of 6 of such trials, and 5 sessions were performed by each 

rat (total 30 trials). The trials were "massed", that is the intertrial interval was restricted 

to 10 seconds as a previous study had indicated that that this condition could possibly be 

sensitive to dorsomedial thalamic damage (Hunt and Aggleton, 1991). 
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2.5.2 -Results 

2.5.2.1 - Behavioural Analysis - Both groups learned to perform this task at a high 

level almost immediately (Figure 15), and no difference emerged between the two 

groups (correct score means: MDl = 24.8, SHAMl = 24.5, maximum score = 30). 
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Figure 15- Perfonnance of the two groups on the T-maze non-matching task. 

2.6 - Discussion 

Experiment 1 was based on proposals that MD is important for the acquisition of 

reward-based performance rules, and is implicated in anterograde amnesic syndromes. 

The first stage of the experiment examined whether these lesions disrupted the learning 

of simple object discriminations. The results from two such tasks (Object 

Discriminations 1 and 2), in which just a single pair of objects was tested over 

successive sessions, showed that extensive lesions to MD did not impair discrimination 
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learning. This is consistent with the findings of some studies (Aggleton and Mishkin, 

~ . 
1983; Slotnick and Kaneko, 1981; Zola-Morgan and Squire, 1985) but contrary to 

others (Tigner, 1974; Waring and Means, 1976; Weiss and Means, 1980). 

The concurrent learning task was divided into three distinct, simultaneou~ conditions. 

The first ofthese involved the trials given only once every 24 hours. It was found that 

rats were able to learn discriminations based on just one trial per day, and that extensive 

lesions to MD failed to disrupt this learning. This resembles the lack of effect observed 

after extensive limbic lesions in monkeys. However, it remains to be discovered if such 

a lack of impairment follows MD lesions in monkeys. The second concurrent condition 

involved giving the animals four trials per day on a particular discrimination. 

Consequently it resembled the rate of stimulus presentation used in more typical 

concurrent discrimination studies. No evidence of any impairment was found using 

either of the two sets of discrimination objects. The third concurrent condition using 

eight trials per day on each discrimination comprised 60% of all the concurrent trials 

and was learnt very rapidly over sessions. It did reveal relatively slower learning by the 

MD rats on the first block of four trial sessions, no significant difference between the 

groups on the second block, and virtually identical performance thereafter. This finding 

at first sight resembles those from studies of olfactory discrimination learning, where 

MD lesions lead to a learning deficit that could be overcome with extensive training 

(Staubli, Schottler, and Nejat-Bina, 1987). However, the initial deficit is quickly 

overcome and it would be difficult to argue that the deficit is one of learning, but more 

likely derives from some other, unknown difficulty in discrimination in the MOl group 

which can be rapidly compensated for by efficient learning. It would appear therefore 

that MD lesions can sometimes disrupt initial performance in the early stages of a 

learning procedure, but that other systems ensure that the animal is still able to learn the 
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task, albeit less efficiently overall. A more specific proposal is that MD contributes to 

the encoding aspects of a task (Hunt and Aggleton, 1991; Staubli et aI, 1987), and henc~ 

lesions to this region can alter responsiveness to reward (Gaffan and Murray, 1990; 

Gaffan and Watkins, 1991). While this latter function may depend, in part, on inputs 

from the amygdala (Gaff an and Murray, 1990), it appears that other inputs are involved 

(Aggleton et aI, 1991; McAlonan et aI, 1993). An alternative proposal is that MD 

lesions produce an animal that is more inflexible, such that a prior bias towards the 

incorrect response may result in the appearance of an initial acquisition deficit. 

The final test in Experiment 1 was a single, "configural" discrimination. The group of 

animals with MD lesions were clearly impaired in this task in contrast to all the other 

object discriminations in this experiment. The question then arises as to why the MD 1 

group should be differentially affected by a discrimination in which the objects are 

composed of the same elements. A possible explanation is that the raised levels of 

interference in this type of task are affecting the MD 1 rats to a greater extent than the 

controls. Perirhinal cortical lesions have been seen to upset configural discriminations in 

monkeys (Buckley and Gaffan, 1998) and, given the anatomicall~nks between these two 

areas, this may be of importance. MD lesion rats were unimpaired on the Y -maze 

delayed non-match to sample task in the previous study (Hunt and Aggleton, 1991). The 

difference here could also lie in MD rats' lessened ability to reject information which is 

present in both objects in a trial but which is positive in only one. Hence, in attempting 

to discriminate between two objects which have a high level of common features, as in 

this final task in Experiment 1, the MD lesion animals may be more likely to make 

mistakes by being unable to withhold a positive response to a stimulus which may only 

superficially appear to be positive. Again, this would suggest a certain inflexibility of 

responding to test stimuli in the MD 1 group, and prompts further investigation of the 
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way in which animals with MD lesions make decisions on such tasks and how they 

behave in detail under test conditions. 

Experiment 2 suggested that neurotoxic lesions of nucleus medialis dorsalis can induce 

a borderline deficit on the acquisition of the standard radial-arm maze task, but careful 

analysis revealed that the deficit was more likely to be a consequence of bilateral 

damage in one of the anterior thalamic nuclei. This finding is consistent with the 

discovery that highly selective lesions in the anterior thalamic nuclei are sufficient to 

produce mild deficits in tests of spatial working memory (Aggleton, Hunt, Nagle, and 

Neave, 1996; Byatt and Dalrymple-Alford, 1996). Subsequent testing, in which a delay 

of 60 seconds was interposed between choices ("control delay"), again indicated that 

neurotoxic lesions of the medial dorsal nucleus are not sufficient to produce a more 

rapid loss of spatial working memory. 

The effect of moving the arms of the radial maze, but not the actual positions of those 

yet to be visited ('turned delay') did appear to reveal an effect of damage to nucleus 

medialis dorsalis. Although this effect was somewhat more marked in those cases with 

additional anterior thalamic damage, there was still evidence of a significant group 

difference after excluding those animals with bilateral anterior thalamic damage. Thus 

these results indicate that the medial thalamic lesions had disrupted the animals' 

response strategy in a way that presumably relates to the differential use of intra-maze 

and extra-maze cues. Normal rats performing radial-arm maze and T-maze tasks 

typically rely on distal allocentric cues (Olton, 1978; Olton and Papas, 1979), and will 

show overshadowing of intra-maze cues by extramaze (allocentric) cues (Diez

Chamizo, Serio, and Macintosh, 1985). This overshadowing is relevant to the 

performance of the SHAMI animals on the radial-arm maze task as it explains why 
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their scores were not affected by the rotation of the actual arms (,control delay' versus 

'turned delay'). Furthermore, inspection of their scores showed no evidence of an 

egocentric strategy. Thus, the SHAMI animals appeared to rely on distal allocentric 

cues and were able to ignore potentially misleading intra-maze cues. In contrast, the 

MD 1 animals were more disrupted, indicating a greater attention to intra-maze cues • 

when there is a conflict between the two sets of information. One likely source of intra

maze cues comes from odour trails, and there is evidence that this information is 

available to rats in the radial arm maze (Buresova and Bures, 1981). Support for this 

interpretation comes from the evidence of a bias by the MD I rats to select arms that had 

not been previously entered. This was observed after the delay in the 'turned delay' 

condition, where this strategy conflicted with the use of allocentric information and so 

led to errors. While this evidence is consistent with a reliance on intra-maze cues, it 

should be noted that an increased selection of unentered arms could occur for a variety 

of other reasons. 

Finally, Experiment 3 showed no evidence that the MDI animals were impaired on a 

'massed' T-maze forced alternation task which again tests spatial working memory. This 

confirms that this lesion group did not differ grossly from MD lesioned rats in a 

previous study (Hunt and Aggleton, 1991) in their ability to acquire a spatial working 

memory task. This contrasts with the deficit in performance of the MD 1 group in the 

"turned maze" condition of Experiment 2, in which this group's response strategy was 

disrupted on a spatial task. With this evidence, further examination of the ways that 

medial dorsal thalamic lesions affect the response strategies and exploratory activity of 

rats under maze-testing conditions would seem to be indicated. 
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CHAPTER THREE . 

Cohort 2 - tests of spatial working memory and spatial 
reference memory, spontaneous object recognition, and 

levels of exploration 
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3.1 - Introduction 

The radial arm maze is one of the standard tasks used to assess spatial working memory in 

rats is (Olton and Samuelson, 1976). One study using radial arm maze testing to assess the 

effects of thalamic lesions (Kolb et aI., 1982) also included an explicit reference memory 

component in which a number of arms were never baited. The thalamic lesions did not 

affect the ability of the rats to learn to avoid these arms, and so spared both working and 

reference memory. In contrast, the same method was used in a study by Stokes and Best 

(l990a), who described resulting deficits in both the working and reference memory 

components of the radial arm task in groups of rats with ibotenic acid lesions of nucleus 

medialis dorsalis. Experiment 2 on the previous cohort of rats found marginal deficits with 

MD lesions on the rate of acquiring the basic (all arms baited) radial arm maze task. The 

first aim of Experiment 4 was therefore to re-examine this task in the light of the previous 

equivocal acquisition result. Subsequently, Experiment 4 sought to examine further 

whether the medial thalamic deficits that can emerge on tests of 'working memory' 

actually reflect the working memory component or whether they might arise from some 

other aspect of task performance. As a consequence, rats with neurotoxic lesions of 

nucleus medialis dorsalis were tested on a variant of the radial-arm maze task in which 

there is an explicit reference memory, as well as a working memory component. This 

involved training rats when half of the arms are never baited from session to session, while 

the other half are always baited at the start of each session (Olton and Papas, 1979). 

Following this, Experiment 5 addresses the question of whether MD is involved in the 

recognition of objects. The results from Experiment 1, which used the Grice Box method 

to test visual discrimination, had proved somewhat equivocal, finding little substantial 

effect of MD lesions overall, but with some deficits on two ofthe nine analyses carried 
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out. A previous study (Hunt and Aggleton, 1991) had tested recognition (non-spatial 

delayed non-matching to sample) in a V-maze, and had found that rats with MD lesions 

were impaired on acquisition of the task but unimpaired on its subsequent perfonnance 

over delays of up to 60 seconds. This followed reports of deficits on similar tasks after 

aspiration or radio-frequency lesions in Monkeys (Aggleton and Mishkin, 1983a, Zola- • 

Morgan and Squire, 1985), which were interpreted as consistent with the supposed 

contribution of MD damage to human diencephalic amnesia. Experiment 5 applies a 

method of testing non-spatial memory which does not involve rule-learning, first described 

by Ennaceur and Delacour (1988). The test is based on the differential exploration of 

familiar and novel objects by rats and is entirely based on observations of their 

spontaneous behaviour. Although the results of this test could conceivably be affected by 

changes in activity or neophobic differences, it may still be described as a relatively pure 

non-spatial working memory test, free of reference memory components. 

One possible explanation for the somewhat vague pattern of often weak deficits emerging 

from rats performing memory tasks following MD lesions is that the deficits are associated 

not with any deficiency in mnemonic ability, but rather with some other incidental 

influence on the rats' perfonnance of the tasks linked with lesions to MD. An obvious 

candidate for this would be increased activity levels and/or decreased inhibition of 

exploratory behaviour. Since Experiment 5 is based upon exploration of objects, it is 

possible to use overall exploration time data from this experiment as an effective, if 

somewhat crude, means of determining whether rats with MD lesions are indeed more 

exploratory. Experiment 6, a test of emergence time, addresses the possibility that rats 

with MD lesions might experience decreased levels of inhibition when emerging from a 

relatively "safe" environment into one which is likely to be perceived as more 

"threatening". Experiment 7, the exploration of an open arena, puts animals in a visually 
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exposed environment in which exploration levels in normal rats are likely to be inhibited; 

~ . 
exploration being movement around the arena, especially toward the more exposed centre, 

and time spent in these central areas. 

3.2 - EXPERIMENT 4 - Radial Arm Maze 

3.2.1 - Method 

3.2.1.1 - Subjects - The new cohort of subjects were 17 experimentally naive rats as 

described in General Methods in Chapter 2. Prior to surgery they were randomly assigned 

to one of two surgical groups. Ten rats were assigned to the MD2 group and seven to the 

SHAM2 group. 

3.2.1.2 - Surgical and Histological Procedure - Procedures were as described in General 

Methods in Chapter 2. 

3.2.1.3 - Test Apparatus - The apparatus was the same eight-arm radial maze which was 

described in Chapter 2 (Experiment 2), and testing was carried out in the same room as 

that experiment. 

3.2.1.4 - Testing Procedure - Pre-testing exposure to the maze was begun two to three 

weeks after surgery and continued daily for five days during which the animals were free 

to explore the maze and eat reward pellets. Following this the acquisition phase was 

conducted using the same procedure and acquisition criterion as described for Experiment 

2. 
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On the test day following each rat's acquisition of the task testing continued with the next 

phase of the experiment designed to differentiate reference and working memory errors. 

One rat from the MD2 group failed to reach the acquisition criterion until the 50 testing 

sessions and had to be excluded from this subsequent testing. Each session began as in the 

acquisition phase but with only four of the eight arms baited. The pattern of arm baiting 

was determined before any rats began this phase of the experiment, and was different for 

each member of a surgical group. However, the baiting was matched between the two 

groups and was constant for each subject throughout the remaining test period. No more 

than two adjacent arms were baited and patterns which could be simply solved, for 

example by constant 90 degree turns, were avoided. The test session ended when all four 

baited arms had been visited, and each subject underwent 25 daily testing sessions. The 

experimenter scored each error as either reference memory, in which the subject entered 

arms which were never baited, or working memory, in which it re-entered arms which had 

already been visited. Re-entries to never-baited arms were therefore scored as reference 

memory errors only. 

3.2.2 - Results 

3.2.2.1 - Histological analysis 

Damage within flrfD: all seven rats in the MD2 group had extensive lesions within nucleus 

medialis dorsalis. The largest and smallest of these lesions are depicted in Figure 16. The 

pattern and character of damage within the nucleus in six of these cases was similar to that 

reported for the MOl group in Chapter 2, with very small areas of sparing occurring only 
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at the most rostral margins of the nucleus . The seventh case had a somewhat larger area of 

rostral sparing in the right hemisphere . There was one MD2 case with bilateral infarction 

restricted within the mediodorsal nucleus. 

Damage to otlter structures: Damage to nucleus latera li s dorsalis was observed in five of 

the seven cases, but it was a lways limited to the medial portion of the nucleus. One case 

showed unilateral damage to the intralaminar nuclei . There was bilateral damage to the 

anterior dorsal nucleus in two cases, while four cases showed unilateral damage in the 

same nucleus . Very limited unilateral damage to the anterior ventral nucleus was also 

noted in four cases, and more widespread unilateral damage was apparent in one case. The 

pattern of damage, and sparing, of the mid-line thalamic nuclei, the habenula and the 

dentate gyrus matched that reported for the MD I group. 

-0.6 -1.4 

Figure 16 - Diagrammatic reconstruction of the lesions of nucleus mediali s dorsalis . The coronal sections 
depict the smallest (black) and largest (diago nal lines) ex tent of cellular loss . The numbe rs refer to the 
arrrox imate co rresponding i\ P leve ls from the stereotaxic at las of Pellegrino and Cushman (1967). 
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3.2.2.2 - Behavioural analysis 

Acquisition - Student's t-tests, adjusted for inequality of variance using Levene's test, 

revealed that the MD2 group made significantly more errors in completing the acquisition 

criterion [mean errors SHAM2 == 5.2, s.e.m.= 0.71; MD2 =64.1, s.e.m == 24.8; t (6.01)= • 

2.38, p<0.03]. The MD2 animals also required significantly more sessions to criterion 

[mean SHAM2 = 7.3, s.e.m = 0.84; MD2 == 22.7, s.e.m == 5.66; t(6.27) == 2.70, p = 0.02]. 

One rat in the MD2 group performed exceptionally poorly and did not reach the 

acquisition criterion until the fifty-first test session (the next poorest animal required 32 

sessions). 

Working/reference memory - Figure 17 shows that the MD2 group produced more errors 

on both the working memory and reference memory conditions than did the SHAM2 

group (overall means: reference memory errors: MD2 == 77.5; SHAM2 == 61.1; working 

memory errors: MD2 == 37.3; SIIAM2 == 10.1). Both conditions were analysed jointly in a 

two-way ANOV A with a between-subjects factor of group and two within-subjects factors 

of condition, i.e. reference memory or working memory error, and block (the data was 

blocked into five blocks each of five sessions: Figure 18). This revealed a significant effect 

of condition [F( 1,14) == 328.1, p<O.OO 1 ], as many more "reference" memory errors were 

made overall, but no effect of block [F( 4,56) == 1.65, p == 1.74], indicating a lack of 

improvement over sessions. There was a group effect [F(I, 14) == 13.13, p == 0.003], but no 

condition x group interaction [F( 1,14) == 2.27, p = 0.15], even though the MD2 group 

tended to make disproportionately more working memory errors. There was, however, a 

significant group x block interaction, reflecting the MD2 group's increase in reference 

memory errors and decrease in working memory errors on block 4. The remaining 

interactions were non-significant, i.e. condition x block [F(4,56) == 0.82, p == 0.52J and 
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condition x group x block [F(4,56) = 0.45 , P = 0.78] . Analysis of the simple effects 

showed that the MD2 group made significantly more errors on both measures [working 

memory errors: F(I,14)= 12.3, p=0.004; reference memory errors [F(l, 14) = 7.50, 

p=O.O 16] . 

Again, the effect of damage extending outside the nucleus medialis dorsalis on tests of 

spatial performance was considered. Two rats in the MD2 group had bilateral lesions of 

the anterior dorsal thalamic nuclei , while another had bilateral damage in the anterior 

ventral nucleus. This rat required 51 sessions to reach the acquisition criterion. The 

preceding analyses were repeated, again adj usting for inequality of variance using 

Levene's test, with the data from these three rats excluded. Even after exclusion of these 

rats there was evidence of acquisition impairment in the MD2 group. Thus, the mean 

errors to criterion for the revised MD2 group was 38.3 [t(3.02) = 2.84, p = 0.03], and the 

mean sessions to criterion were 16.3 [t (3.34) = 2.44, P = 0.042). 
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Figure 17 - Perform ance of the radial arm maze task. The graph on the left shows the mean number of 
reference memory errors for the two groups, while that on the right shows the mean number of working 
memory errors. Vertica l lines indicate standard error of the mean (and in all subsequent figures in Chapter 
3). 
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Figure 18 - Performance of the radial arm maze task measured over five blocks of five sess ions, showing 
mean errors on both reference memory and working memory components of the task. 

The performance of the same revised MD2 group was examined on the working and 

reference memory versions of the task. These analyses showed that there was still a 

significant effect of condition [F(I ,12) = 317.1, P <0.001] and of group [F(1, 12) = 18.92, P 

= 0.001] but no effect of block [F(4,48) = 1.67, P = 0.36] . All other components of the 

analyses were non-significant. 

As the radial-arm maze acquisition procedure in this experiment was identical to that 

employed in Experiment 2 (Chapter 2), it was feasible to combine the results, and so 

derive a clearer picture as to whether damage to medialis dorsalis is sufficient to impair 

task acquisition. As it was first necessary to determine comparability of the two control 

groups ' data, an initial analysis was carried out. This showed that the error and session 

scores to criterion of the SHAMI and SHAM 2 groups were comparable [errors, t(16) = 

0.93; sessions, t(\6) = 1.02, p=O.32, two tailed]. This combined SHAM group (n= 18) was 

then used for comparisons with the MD rats with no bilateral anterior thalamic damage 
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(MD n = 9) and those with bilateral anterior thalamic damage (MD+ANT, n = 6) in an 

analysis of variance. 

Comparison of the error scores to complete acquisition revealed a highly significant group 

effect (means: MD+ANT = 58.17, MD = 21.00, SHAM = 5.78), [F(2, 30) = 6.16, 

p=O.006]. Subsequent Newman-Keuls tests showed that the MD+ANT group differed 

from the SHAM rats (p<O.OI) and from the MD animals (p<O.05), but the MD group did 

not differ significantly from the SHAM rats. Analysis of the session to criterion data 

produced exactly the same pattern of results (means: MD+ANT = 20.33, MD = 11.33, 

SHAM = 6.78). There was once again a large group effect [F(2,30) = 6.57, p:::0.004], and 

Newman-Keuls tests showed that the MD+ANT group differed from both the SHAM 

(p<0.01) and MD (p<0.05) groups, but the MD group did not differ from the SHAM 

group. 

3.3 - EXPERIMENT 5 - Spontaneous Object Recognition 

3.3.1- Method 

3.3.1.1 - Subjects and surgical and histological procedure- were as Experiment 4. 

However, during the course of this experiment one animal displayed symptoms of illness 

and was therefore excluded from this and all subsequent testing. 
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3.3.1.2 - Test apparatus - The apparatus consisted ofan open box (lOOcm x 100cm x 

50cm high) made of aluminium with the inside painted grey. The floor was covered with 

grade 10 wood flake animal bedding (Datesand, Manchester, UK) of the same type used in 

the animals' home cages. The objects to be discriminated were in triplicate and made of 

glass, plastic or metal. The weight of the objects ensured that they could not be moved oy 

the rats. A fluorescent light was positioned 2.1 metres above the floor of the testing box 

and video camera was mounted 1.75 metres above the test box on a tripod so that the test 

sessions could be relayed to the experimenter who was seated 3 metres from the test box 

observing the video monitor screen. The sessions were also recorded on video tape in case 

the need arose to re-examine the sessions later. 

3.3.1.3 - Testing procedure - All rats received five habituation sessions in which they 

were allowed 3 minutes to explore the apparatus. Testing began forty-eight hours later and 

consisted of two daily sessions per delay condition, in order to counterbalance the side on 

which novel and familiar objects appeared. These sessions were a minimum of 24h apart. 

Rats were first exposed to a matching pair of novel stimuli (A 1 and A2) for three minutes 

in the test box (sample phase). After a delay of either 15 min or 60 min they were returned 

to the apparatus. The box now contained a third, identical version of object A (A3) and a 

novel object (8). The time spent exploring each of the two objects in the sample phase and 

the test phase was recorded. Exploration of an object was defined as directing the nose to 

the object at a distance <2cm and/or touching the object with the nose. Behaviours such as 

turning around or sitting on the object were not considered exploratory. New sets of 

objects were used for each of the four sessions, and the use of any particular object as a 

sample or test stimulus was counterbalanced within a session. Throughout this test and the 

remaining tests of this cohort, the rats were kept on ad. lib. feeding. 
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3.3.2 - Results 

3.3.2.1 - Behavioural analysis - The first analyses considered the total times spent 

exploring the two identical objects in the sample phase (el). These measures are 

potentially valuable as group differences at this stage could potentially confound the 

recognition test. The exploration times (el) for each of the two delay conditions were 

analysed separately using Student's t-tests (two-tailed). The only evidence of difference 

concerned the 60 minute delay condition with the MD2 group displaying slightly elevated 

duration of exploration. [t(14) = 1.87, p = 0.08]. 

Comparisons of object preference were then performed for each of the two delay 

conditions using (I) dl, the discrimination index, which is the difference in time spent 

exploring the two objects over the entire choice phase (e.g. B-A3) and (2) d2, the 

discrimination ratio, which is the discrimination index divided by the total time spent 

exploring the two objects in the choice phase e.g. B-A31B+A3 i.e. (dl/e2). 

Analysis of variance using the factors delay and group was applied to the d 1 scores of the 

two groups over the two delay conditions. This analysis revealed a significant effect of 

delay [F (1,14) = 11.99, P = 0.004] but no effect of group [F (1,14) = 0.01, P = 0.94], nor a 

delay x group interaction [F (1,14) = 0.02, p = 0.90]. In view of the possibility that the two 

groups might differ in their respective levels of total exploration (Table 5), the more useful 

measure of object recognition is likely to be d2, the discrimination ratio, which takes into 

account individual differences in total exploration during the choice phase. The same 

analysis was applied to the d2 scores of the two groups, this time revealing no significant 

effect of delay [F (1,14) = 0.38, P = 0.55], nor of group [F (1,14) = 1.43, p = 0.25], nor a 

delay x group interaction [F (1,14) = 0.24, p = 0.63]. 
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IS minutes delay 
el e2 dl d2 

M02 87.33 124.33 35.67 0.30 
SIIAM2 72.90 91.40 34.80 0.38 

60 minutes delay 
el e2 dl d2 

MD2 60.00 65.00 21.17 0.30 
SIIAM2 46.70 62.20 21.30 0.34 

Table S - Mean observed measures of the two groups on the spontaneous object recognition test (mean 
seconds) over two delay conditions; e 1 = time spent exploring both objects in sample phase, e2 = time spent 
exploring both objects in choice phase, d 1 = discrimination index, d2 = discrimination ratio. 

In order to establish that recognition of novel objects was occurring during the choice 

phase (e2), Student's t-tests (one-tailed) were used to compare the time spent exploring 

novel and familiar objects on the two conditions by each of the separate groups. Student's 

t-tests were used to compare the time spent exploring novel and familiar objects on the 

two conditions by each of the separate groups. This was done in order to establish that 

recognition of novel objects was occurring during the choice phase (e2). Both groups spent 

significantly longer in exploring the novel objects on the 15 minute delay condition [MD2: 

t (5) = 6.72, p<O.OOI; SHAM2: t (9) = 9.17, p<O.OOI]. At the 60 minute delay condition 

the SHAM2 group showed a significant difference [t (9) = 4.85, p<O.OOI], but the MD2 

group narrowly failed to reach the 0.05 significance level [t (5)= 1.97, p = 0.053]. These 

within-group comparisons are, however, influenced by the differences in group sizes, so 

that the comparisons ofMD2 rats have less power. 
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3.4 - EXPERIMENT 6 - Emergence 

3.4.1 - Method 

3.4.1.1 - Subjects - were as Experiment 5. 

3.4.1.2 - Test apparatus.- The apparatus consisted ofa 30cm length of PVC pipe 12cm in 

diameter and closed at one end. This was stabilised by PVC feet to prevent rolling and the 

open end could be closed off by a heavy aluminium-faced block. The apparatus was placed 

at the centre of a table measuring 2m by O.8m which was covered in white polythene 

sheeting and illuminated by a 250W floodlight suspended 75cm above the surface of the 

table. 

3.4.1.3 - Testing procedure - Testing took place ten days after the end of the object 

recognition test and comprised a single session. Each rat was placed inside the apparatus 

and the opening was closed off for a period of 2 minutes. At the end of the 2 minutes the 

floodlight was switched on and the aluminium-faced block removed so that the rat could 

emerge. The experimenter, who was unaware of the rats' group at the time of testing, sat 

level with the open end of the apparatus and 60cm from it. Three timings were recorded 

for each animal: nose emergence, forepaws emergence, and hind paws emergence. The test 

was terminated when the rat's hind paws emerged or, if this did not happen, after 10 

minutes. 

101 



3.4.2 - Results 

3.4.2.1 - Behavioural analysis - Mean values for the nose and forepaw emergence 

measures were: nose, MD2 = 8.0 sec; SHAM2 = 15.4 sec; forepaws, MD2 = 31.2 sec; 

SHAM = 86.5 sec (Figure 19). Student's t-tests (two-tail, log transform) showed that the 

difference between the two groups in the emergence of the nose [t(14) = 1.39, P = 0.09) or 

the forepaws [t(14) = 1.67, p = 0.06] narrowly failed to reach significance. Hind paws 

emergence data were not compared due to a ceiling effect resulting from the failure of 

seven of the SHAM2 group and four of the MD2 group to complete the test within the 10 

minute period. 
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Figure 19 - Mean times in seconds for the emergence of the nose (left) and fore paws (right) 
of the two groups of rats. 
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3.5 - EXPERIMENT 7 - Exploration of an Open Arena ("open field") 

3.5 1 - Method 

3.5.1.1 - Subjects - were as Experiment 5. 

3.5.1.2 - Test apparatus - The apparatus consisted of a circular arena 90cm in diameter 

with a 45cm high wall. The floor and wall of the arena were painted matt black and the 

floor was marked with two concentric circles 30cm and 60cm in diameter. Each of the 

outer two rings thus formed was divided by radial lines, the outer ring being divided into 8 

sectors, and the middle ring into 4 sectors. The centre circle was undivided. Illumination 

of the arena was provided by a fluorescent room light 2m above it. A video camera was 

supported by a tripod 1.75m above the arena and to one side so that the activity sessions 

could be recorded without the presence of the experimenter in the room and analysed later. 

3.5.1.3 - Testing procedure - Each session consisted of a rat being placed in an outer 

sector and allowed to wander about the arena freely for 5 minutes during which time the 

video apparatus was recording. When all animals had completed one such session, activity 

was analysed from the video recording. All line crossings in which all four paws crossed a 

line were counted, and of these inward line crossings were noted. Also time spent in the 2 

inner rings, i.e. away from the arena wall, was recorded. The experimenter was unaware of 

the rats' groups during this process. 

103 



3.5.2 - Results 

3.5.2.1 - Behavioural analysis - All line crossings in which all four paws crossed a line 

were counted, and of these inward line crossings were noted. Also time spent in the inner 

ring and centre circle, i.e. away from the arena wall, was recorded (Figure 20). The 

experimenter was unaware of which experimental group the animals belonged to during 

this process. 

The M02 group made significantly more line crossings [t(14) = 3.60, P = 0.002] and 

inward line crossings [t(14) = 3.35, P = 0.003] than the SHAM2 group. There was no 

difference between the groups in time spent in the central parts of the arena (t(14) = 1.44, P 

= 0.09). Mean values were: line crossings, MD2 = 96.8; SHAM2 = 75.3; line crossings 

inward, M02 = 23.8; SHAM2 = 18.2;time spent in middle areas, M02 = 91.0 sec; 

SHAM2 = 70.4 sec. It should be noted that these group differences concerning line 

crossings and inward line crossings persisted after removal ofthose animals with bilateral 

anterior thalamic damage (p = 0.006 in both cases). 
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Figure 20 - Open arena exploration: all line cross ings (upper left), inward line crossings (upper right), and 
time spent in the innermost part of the arena (lower). 
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3.6 - Discussion 

Experiment 4 was a radial arm maze task in which reference and working memory 

components could be differentiated. This followed a repetition of the initial radial arm 

maze acquisition task in which all arms are baited and visited by the rat. The data from tbis 

part of the experiment, as in Experiment 2, showed that lesions of nucleus medialis 

dorsalis result in a borderline acquisition deficit, which is considerably exacerbated by the 

presence of damage to the anterior thalamic nuclei. This latter effect probably accounts for 

much of the variability that is found in the published descriptions concerning dorsomedial 

thalamic lesions and tests of spatial working memory. This conclusion is supported by two 

additional findings. First, that discrete lesions within individual anterior thalamic nuclei 

can impair tests of spatial working memory «Aggleton, Hunt, Nagle, and Neave, 1996). 

Second, when the radial-arm maze acquisition data were combined, so ensuring a much 

larger control group (n = 18) and larger thalamic sub-groups, no acquisition deficit was 

found in those rats with lesions essentially confined to nucleus medialis dorsalis i.e. those 

that did not have bilateral damage in any of the anterior thalamic nuclei (MD). The MDI 

rats also appeared unaffected on the T -maze alternation task even though it used massed 

trials to increase proactive interference. These results, which are consistent with a previous 

study (Hunt and Aggleton, 1991), also indicate that damage to this nucleus does not 

produce a loss of spatial working memory. 

In contrast, bilateral medial thalamic damage that included one of the anterior thalamic 

nuclei resulted in a significant acquisition impairment on the radial-arm maze task when 

compared not only to the sham controls but also to those animals with more discrete 

medial thalamic damage i.e. those without bilateral anterior thalamic damage. This 

additional damage was largely confined to the anterior dorsal nucleus in most cases. This 
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is of interest as this nucleus contains 'head direction' units (Taube, 1995) as does the lateral 

dorsal thalamic nucleus (Mizumori and Williams, 1993), both of which are immediately 

adjacent to medialis dorsalis. Furthermore, a loss of head direction information might be 

sufficient to disrupt radial-arm maze performance (Mizumori, Miya, and Ward, 1994). 

These findings lead to the prediction that dorsomedial thalamic lesions will have no effect 

on the standard radial arm maze task when the lesions are confined to nucleus medialis 

dorsalis. This view is supported by the failure to observe a radial-arm maze deficit in some 

other studies of dorsomedial thalamic lesions (Kolb, Pittman, Sutherland, and Whishaw, 

1982; Olton, 1978; Beracochea, Jaffard, and Jarrard, 1989). In contrast, a number of 

studies have described significant impairments after dorsomedial thalamic lesions (Stokes 

and Best, 1988, 1990a,b; Kessler, Markowitsch, and Otto, 1982), but in at least one of 

these studies the presence of consistent anterior thalamic involvement is acknowledged 

(Kessler et aI, 1982). In the series of studies by Stokes and Best (1988, 1990a and b), the 

status of the anterior thalamic nuclei is more difficult to determine. The lesion 

reconstruction in at least one of these studies (Stokes and Best, 1988) does, however, 

indicate the consistent involvement of the anterior thalamic nuclei, while 

photomicrographs show extensive lateral dorsal damage in other studies (Stokes and Best, 

1990a and b). In the light of the present study and other recent experiments (Aggleton, 

Hunt, Nagle, and Neave, 1996), it is clear that it is vital to state precisely the extent of 

anterior thalamic involvement when attempting the analyse the effects of damage to 

nucleus medialis dorsalis. 

It is not, however, the case that lesions of nucleus medialis dorsalis that spare the anterior 

thalamic nuclei leave performance of the radial-arm maze task unaffected. As in 

Experiment 2 where there was evidence that the lesions disrupted performance when the 

arms were turned, other deficits emerged in Experiment 4 when the radial-arm maze test 
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was modified in order to distinguish reference and working memory errors. This was 

.. 
achieved by having four arms that were never baited across all sessions, so that entries into 

these arms were counted as reference errors. The change in the task rules led to clearer 

deficits in animals with lesions of medialis dorsalis, and these were not dependent on the 

presence of anterior thalamic damage. Thus, a significant increase was observed in both' 

'working' memory and 'reference' memory errors, even for those animals lacking bilateral 

anterior thalamic damage. 

Previous studies have also used the combined reference/working memory design to test 

dorsomedial thalamic lesions, but the results have been inconsistent. While one study 

reported a lesion related deficit for both reference and working memory errors (Stokes and 

Best, I 990a). another study found no impairment on either component of the task (Kolb, 

Pittman, Sutherland, and Whishaw, 1982). The present study is not, however, strictly 

comparable as in both of these previous studies acquisition began with the modified 

version of the task i.e. the animals were not first run on the standard radial arm maze task 

with all arms baited. This difference probably makes the present version more demanding 

as the animals have to learn to withhold selection of a previously baited arm. Indeed, it is 

possible that this largely accounts for the deficits in the present study, a view that receives 

some support from the finding that lesions of the medial frontal cortex, which is closely 

connected with nucleus medialis dorsalis, produce a disproportionate impairment on the 

reference memory component (Kolb, Pittman, Sutherland, and Whishaw, 1982). 

Experiment 5 was a test of spontaneous object recognition which has been shown to be 

sensitive to cortical lesions involving the perirhinal cortex (Ennaceur, Neave, and 

Aggleton, 1996; Aggleton, Keen, Warburton, and Bussey, 1997). This is of interest as the 

perirhinal cortex projects to nucleus medialis dorsalis, and there is evidence that lesions in 
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this thalamic region can impair the acquisition (Hunt and Aggleton, 1991) and 

performance (Mumby, Pinel, and Dastur, 1993) of tasks such as delayed non-matching-to

sample (DNMS). In comparison with the DNMS task, the spontaneous test used in the 

current study is probably a purer test of recognition (Ennaceur and Delacour, 1988; 

Ennaceur and Meliani, 1988) as it does not involve acquiring a response'rule i.e. a 

reference memory component. This feature of the task is potentially important as a 

previous study found evidence that lesions of medialis dorsalis can impair DNMS 

acquisition (Hunt and Aggleton, 1991), but leave performance over increasing delays 

intact once the task rule had been mastered. Consistent with that finding, the current study 

appeared to demonstrate that rats with lesions of medialis dorsalis are able to recognise 

novel objects. This result will, however, require further examination as the thalamic 

lesions also affected some aspects of exploration (e.g. open field). As an increase in 

sample exploration could potentially mask a mild recognition deficit, subsequent 

experiments will need to use a variant of this task in which sample exploration times are 

matched between groups (Ennaceur, Neave, and Aggleton, 1997). This is especially 

important in view of other evidence that medial dorsal thalamic lesions in rats can lead to 

recognition deficits even after the non-matching rule as been acquired (Mumby, Pinel, and 

Dastur, 1993). 

The possible changes in exploration level in the object recognition task prompted two 

further tests of activity in the MD2 rats. While the emergence study failed to provide a 

clear group difference, the MD2 rats typically emerged faster as measured by nose and 

forepaw latencies. More convincing evidence of a change in exploration was found in the 

'open field' task. The rats with medial dorsal thalamic lesions showed significantly higher 

levels of movement around an open arena, as measured by the number of marked lines that 

they crossed, and by their movement toward the centre of the open space. As these 
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changes in exploration were not related to the extent of anterior thalamic damage it is most 

likely that lesions of nucleus medialis dorsalis were responsible for increased levels of 

exploration in the object recognition test and the open field study. An increase in levels of 

activity following neurotoxic lesions of the medial dorsal thalamus has been observed 

previously (Beracochea, Jarfard, and Jarrard, 1989) and there are obvious parallels with' 

the increase in activity that has been reported after prefrontal damage in rats (Kolb, 1984; 

Wolf, Dahlin, Hu, Xue, and White, 1995). These changes may also be linked to the deficits 

in the reference/working memory task if they indicate a release of behaviour and so add to 

the difficulty of withholding selection of the previously baited arm. 
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CHAPTER FOUR 

Cohort 3 - tests of conditioned cue preference, 
exploration, spatial delayed matching and non

matching, and activity 
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4.1 - Introduction 

Previous experiments in this study explored the somewhat confusing picture of deficits 

on learning and memory tasks displayed by rats with lesions to the thalamic nucleus 

medialis dorsalis. This took two directions; detailed investigations of aspects of spatial 

and non-spatial learning and memory tasks, and the investigation of aspects of non

mnemonic behaviour in the testing situation which might influence results. Further 

investigation of non-spatial learning and memory would seem not to be the most clearly 

indicated direction to follow, since previous experiments showed little indication of 

such deficits in rats with MD lesions. The next series of experiments, then, aimed to 

pursue the investigations further along the lines of learning and memory in spatial tasks, 

and the behaviour of rats with MD lesions in the test situation. 

The results of experiments completed so far in this study, far from describing a pattern 

of clear MD impairment in learning and memory, indicated that MD rats' ill-defined 

impairments in performance may have more to do with the way that they move around 

and behave in the test situation. Measures of exploratory behaviour indeed already 

indicated that rats with MD lesions can be more active in the test environment. This 

does not, however, explain why their performance in tests of learning and memory is 

sometimes diminished. In one sense it might be seen as an advantage for rats to be less 

inhibited when placed in novel, exposed situations when they have, necessarily, to move 

around the environment in order to achieve reward. It was therefore necessary to 

examine the relationship of place and reward in the context of learning and memory to 

establish whether this differs in rats with MD lesions. Experiment 8, therefore, used the 
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method of "conditioned place preference" to look at the way rats relate reward to 

environments that are visually distinctive and asked whether rats with MD lesions have 

a reduced ability to respond to the association of food reward and place. This class of 

task assesses the ability to associate a reinforcer with a specific cue signal, using a 

classical conditioning paradigm (Van der Kooy, 1985). As a consequence, it can help to 

determine whether lesions of MD disrupt reward-related processes. This is of value as 

such a deficit could affect the acquisition and performance of a wide array of tasks 

(Sahgal, 1993), which may be relevant to this type of study. Indeed, there is evidence 

from one study using a cue preference task (McAlonan et al., 1993) that ibotenic acid 

lesions of nucleus medialis dorsalis can impair conditioning. This study (McAlonan et 

al., 1993) used the term "conditioned place preference", although it has been pointed out 

(White and McDonald, 1993) that the term "place" can be misleading in such 

experimental methods, and should be reserved for locations perceived by relation to 

distal cues. The present study, which used only local cues, therefore uses the term "cue" 

as an appropriate term for the rats' immediate environment. However, it should be noted 

that the task is functionally similar to that used in McAlonan et aI's 1993 study, since 

distal cues were not available to the animals during the conditioning process in either 

study_ In addition to the main aim of this experiment, data from the first session of this 

experiment, in which rats were placed in an unfamiliar environment and allowed to 

wander freely, were used to assess further the notion that MD rats show increased levels 

of exploratory behaviour under such conditions. 

Experiment 9 was a repetition of the exploration of an open arena carried out with the 

previous cohort of animals in Experiment 7, which found that rats with MD lesions 
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made more exploratory movements in that environment. This positive finding- was an 

endorsement of the notion that an important element in MD rats' behaviour in the test 

situation may lie in the way they carry out exploratory behaviour. However, the 

effective size of the lesion group in that experiment had been quite small'(n = 6) and 

since the experiment was quick to run and unlikely to affect subsequent tests it was 

decided that a repetition to increase the numbers of subjects for analysis would 

strengthen the validity of the findings_ 

A previous study (Hunt and Aggleton, 1991) had looked at delayed non-matching to 

sample in a T-maze, finding that MD lesions had no effect on the acquisition of the task 

and only affected the group with lesions made by radio frequency means on the most 

difficult condition of delay_ Similarly, Experiment 3 in the present study had established 

that rats with MD lesions were unimpaired on learning the task (T -maze alternation) 

and, like the controls and normal rats (Rawlins & Olton 1982) learned the task very 

readily. Whilst rats find this normal T-maze alternation task easy to learn, they find a 

matching variant much harder (Rawlins, 1993). Experiment 10, then, examined the 

possibility that the acquisition of the T -maze matching rule might prove differentially 

testing for rats with MD lesions, either because removal of the ceiling effect of the 

readily-learned non-matching rule might reveal the previously hidden deficit, or because 

adopting the "counter-intuitive" matching rule might discriminate against MD animals_ 

In addition, one possible interpretation of the pattern of deficits encountered in testing 

on the radial arm maze could be an increase in the propensity of the lesion groups to 

perseverate in non-matching and thus visiting never-rewarded arms. 
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While it has been supposed that the prefrontal cortex, definitively connected with 

nucleus medialis dorsalis, might have a general role in working memory, it is most often 

thought to be involved in aspects of response or attentional control and their inhibition 

(Cohen et aI., 1996; Robbins, 1996). The T -maze matching to sample task, therefore; 

would seem ideally suited to tax these latter attributes of memory since, unlike the 

easily-learnt non-matching T-maze task (Experiment 3), it requires the rats to inhibit the 

innate foraging response and adopt the opposite response. The behavioural change 

required does not, however, involve any change in attentional demands since the rats are 

innately attending to spatial cues throughout. After examining the acquisition of this 

matching task, the experiment went on to look at the effect of conditions of delay on its 

performance, and then at reversal to the non-matching rule. 

Although a number of experiments in this study have assessed the possibility that rats 

with MD lesions are more active in an exploratory sense, no attempt has been made so 

far to examine undirected activity. Experiment 11, the final experiment in this study, 

used an automated system to address the question whether MD rats would be more 

active than controls purely in terms of movement rather than exploratory behaviour. The 

advantage of such automated measures is that they do not involve any possibility of 

experimenter bias, and provide very large amounts of data measured in a variety of 

ways. However, in another sense, they provide only very crude, unfiltered information 

about the rats' activity since, in this system, they are not able to distinguish between 

such very different activities as ear-washing and running. 
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4.2 - EXPERIMENT 8 - Conditioned Place Preference 

4.2.1 - Method 

4.2.1.1 - Subjects - The subjects were 20 experimentally naive rats as described in 

General Methods in Chapter 2. Prior to surgery they were randomly assigned to one of 

two surgical groups. Ten rats were assigned to the MD3 group and 10 to the SHAM3 

group. 

4.2.1.2 - Surgical and histological procedure - Procedures were as described in 

General Methods in Chapter 2. 

4.2.1.2 - Test apparatus - The apparatus was the same eight-arm radial maze which 

was described in Chapter 2 (Experiment 2), and testing was carried out in the same 

room as that experiment and Experiment 4. The guillotine doors to six of the maze arms 

were closed, leaving access from the central area to only two arms. The side and end 

walls and top of one of these arms was completely enclosed in black polythene sheeting 

and the other in white polythene sheeting so that the environment for the rats whilst in 

each arm was visually distinctive. The polythene sheeting could be applied to any of the 

arms according to the procedure described below. 

4.2.1.3 - Testing Procedure - All rats were maintained on a restricted feeding regime 

for five days prior to testing and throughout the testing period, their body weights were 

not allowed to fall below 85% of normal. On the first day of testing (session 1), each rat 
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was put into the centre of the maze and allowed free access for 20 minutes to the two 

open arms, enclosed in black and white polythene as described above and located 

opposite each other. No food was present in the maze during this session. Time spent in 

each of the two arms and the number of entries to each arm were recorded by the 

experimenter, who sat in the same location, 1.5 metres from the apparatus, throughout 

all test sessions. 

On test days 2 to 9, each rat was randomly assigned two of the maze's eight arms, one 

black and one white. These arms always had at least two closed arms between them. 

The pattern of arm assignment for individual rats in the SHAM3 group replicated that 

for rats in the MD3group. Half of the rats from each group were enclosed by a wooden 

block in the "baited" arm, and half in the "non-baited" arm for a period of 20 minutes on 

each test session. Twenty grams of the subjects' normal laboratory rat diet (RMIE, 

Special Diets Services, Witham, UK) was scattered around the floor of the "baited" 

arms, while the "non-baited" arms contained no food. The selection of "baited" and 

"non-baited" was counterbalanced between black and white arms. The confinement to 

"baited" and "non-baited" arms was alternated for each session so that each rat received 

equal exposure to "baited" and "non-baited" arms. Prior to each day's testing, the maze 

was rotated clockwise by one arm, i.e. by 45 degrees, and the polythene covers moved 

back by one arm into their former position. Each rat thus remained in the same spatial 

location but in a different arm, in order to prevent the accumulation of olfactory cues in 

the arms. The procedure for session 1 was repeated on the tenth and final testing day, 

Le. the rat was placed for 20 minutes in the apparatus with free access to both arms, 

neither of which was baited. 
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4.2.2 - Results 

4.2 2.1 - Histological analys is 

Damage withill MD. a ll anima ls in the MD3 group had extensive lesions within 

nuc leus med ia li s dorsalis . The larges t and sma llest of the MD3 lesions are depicted in 

Figure 2 1. The pattern and c harac ter of damage within the nucleus was similar to that 

reported for the MD I gro up in C hapte r 2, with very s mall areas of sparing occurring 

only at the most late ra l, ventral , caudal, and rostra l margins of the nucleus . There were, 

however, no cases of infarction in the MD3 group. 

-0 .2 

-06 -1 .4 

Fi gure 21 - Diagrammatic recon st ructi on of the lesions of nucleus medialis dorsa lis. The coronal sec ti ons 
deflict th e sma ll es t (b lack) and larges t (diagona l lines) extenl of ce llul ar loss . The numbers refer to lhe 
afl flro x im alc corresponding 1\ r leve ls from the Slereotax ic atl as of Pellegrino and Cushm an ( 1967) . 
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Damage to nuclei of the anterior thalamic group: loss of cells in the medial portion of 

nucleus lateralis dorsalis occurred in two cases, one unilateral and one bilateral. Damage 

to the anterior dorsal nucleus was noted in 5 cases bilaterally, and in three cases 

unilaterally. (n all cases the other anterior thalamic nuclei were almost completely 

spared. 

Damage to otller structures: The pattern of damage and sparing to mid-line thalamic 

nuclei, habenula, intralaminar nuclei, and the dentate gyrus was similar to that reported 

for the MD I group in Chapter 2. (n one MD3 case there was some cortical thinning at 

the point of needle tract entry with corresponding ventricular enlargement. 

4.2.2.2 - Behavioural analysis - the results of one animal from the SIIAM3 group were 

discarded due to severe noise interference during the critical day 10 test session. This 

left 9 animals in the Sl (AM3 group and lOin the MD3 group. The performance of the 

two groups can be seen in Figure 22. 

Time in arms - The time that each rat spent in the arm to be paired with food was 

recorded on session I and termed "cued I"; time spent in the non-baited arm on session 

I being termed "uncued I". Similarly the times that each rat spent in the two types of 

arms on session I 0, after the 8 pairing sessions, were termed "cued2" and "uncued2". 

Thus it was possible to calculate a ratio score. for each rat of cued 1 / cued I + uncued I 

and compare this with cued2 / cued2 t uncued2 in order to assess the effect of pairing 

on preference for each 
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Figure 22 - Conditioned cue preference. The graph on the left shows how both groups of rats spent 
longer in one distinctive arm of the apparatus after it had been paired with food. The graph on the right 
depicts the significantly increased number of entries to "paired" arms made by both groups, although 
there was no significant difference between the groups. Vertical lines indicate standard error of the mean 
(and in all subsequent figures in Chapter 4). 

rat. The data were log transformed prior to analysis as this is recommended when 

comparing proportional change (Hair, Anderson, Tatham, and Black, 1995). Analysis of 

variance was then carried out using the factors "pairing" and "group". The effect of 

pairing was significant [F (1,17) = 5.69, P = 0.029], but there was no group effect [F 

(1 ,17) = 0.001], nor group x pairing interaction [F (1,17) = 0.113]. 

The time that each rat spent in the arm to be paired with food was recorded on session 1 

and termed "cued 1 "; time spent in the non-baited arm on session 1 being termed 

"uncued 1 ". Similarly the times that each rat spent in the two types of arms on session 

10, after the 8 pairing sessions, were termed "cued2" and "uncued2". Thus it was 

possible to calculate a ratio score for each rat of cued 1 / cued 1 + uncued 1 and compare 

this with cued2 / cued2 + uncued2 in order to assess the effect of pairing on preference 
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for each rat. Once again, the data were log transformed (Hair et aI., 1995). Analysis of ~ 

variance was then carried out using the factors "pairing" and "group" . The effect of 

pairing was significant [F (1,17) = 5.69, p = 0.029], but there was no group effect [F 

(1 ,17) = 0.00 I] , nor group x pairing interaction [F (1,17) = 0.113]. 

Entries to arms - These data were analysed using the same method of calculating ratio 

scores as the "time in arms" above. A significant effect of pairing was found [F (1,17) = 

7.29, p = 0.015] , but there was no group effect [F (1 ,17) = 0.015] nor group x pairing 

interaction [F (1,17) = 0.023]. Total entries to arms on session 1 only were also 

compared between the groups to assess the difference in overall levels of exploratory 

behaviour (Figure 23). Student's t-test carried out on these data confirmed that the MD3 

group made significantly more arm-entries than the SHAM3 group [t (18) = 2.77, p = 

0.006). 
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Figure 23 - Conditioned cue preference: exploratory behaviour as measured by entries into arms on the 
initial test session. 
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4.3 - EXPERIMENT 9 - Exploration of an Open Arena 

4.3.1 - Method 

4.3.1.1 - Subjects - were as described in Experiment 8. 

4.3.2.2 - Test apparatus - was as Experiment 7. 

4.3.1.3 - Testing procedure - was as Experiment 7. Testing began 9 days after the end 

of Experiment 8. 

4.3.2 - Results 

4.3.2.1 - Behavioural analysis - Scoring was carried out as in Experiment 7. Despite 

the higher scoring of the MD3 group on all three measures of arena activity (Figure 24), 

there was no significant difference between the groups: line crossings (t =1.09, df= 18, 

p = 0.15; group means: MD3 = 96.83, SHAM3 = 75.30); inward line crossings (t = 0.88, 

df= 18, p = 0.20; group means: MD3 = 23.83, SHAM3 = 18.20); time spent in inner 

segments (t = 0.20, df = 18, p = 0.42; group means: MD3 = 91.00, SHAM3 = 70.40). 
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Figure 24 - Three measures of exploration activity in the open arena by the two groups. The upper left 
chart shows the mean number of times that each group crossed any of the lines marked on the arena floor, 
whilst the upper right shows the mean number of times that each group crossed lines whilst moving 
towards the centre of the arena and therefore away from the arena wall. The lower graph depicts the 
mean time that each group spent in the inner areas of the arena. 
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4.4 - EXPERIMENT 10 - Spatial Delayed Matching and Non-Matching to Place 

4.4.1 - Method 

4.4.1.1 - Subjects - were as described in Experiment 8. 

4.4.1.2 - Test Apparatus - was as Experiment 3. 

4.4.1.3 - Testing Procedure - Three sessions of pre-testing exposure to the maze were 

given 4 weeks after the end of Experiment 9. This was immediately followed by task 

acquisition. As in Experiment 3, each trial consisted of two stages; an 'information' run 

and a 'test' run. At the beginning of each trial, the experimenter placed three reward 

pellets (4Smg) in one food well and closed off the other arm of the maze with a wooden 

block adjacent to the choice point. The rat was then placed at the start point and the 

guillotine door raised, so allowing the rat to run to the choice point. On this 

'information' run, the rat was forced by the wooden block to enter a predetermined arm, 

where it was allowed to eat all three pellets. The rat was then picked up and returned to 

the start box. While the rat was retained in the start box, the experimenter baited the arm 

just visited by the rat with three reward pellets and also went through the motions of 

baiting the other arm without actually leaving any reward pellets in the food well. The 

experimenter then removed the wooden block and raised the guillotine door to allow the 

rat to run to the choice point for a second time (the 'test' run). The delay between the end 

of the 'information' run and the beginning of the 'test' run was approximately 10 

seconds. On the test run both arms were open and the rat was allowed a free choice. The 
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rat was deemed to have made a choice when all four of its paws were in one arm. At thi~ 

point the wooden block was placed behind it to prevent the rat changing its selection. If 

a correct choice was made, i.e. the rat entered the same arm as on the information run, 

the rat was allowed to eat the reward pellets before being returned to the start box for' 

trial two. If an incorrect choice was made the rat was confined to the arm without food 

reward for 10 seconds before being returned to the start box. Thus, the training differed 

from Experiment 3 in that the rat was required to carry out matching the arm on the test 

run rather than non-matching. Each daily session consisted of six trials, and rats were 

tested in groups of 3 or 4 with each rat having one trial in turn. This spaced method 

meant that there was an inter-trial interval of 3 to 5 minutes. 

When each rat had reached an acquisition criterion of25 correct trials over five 

consecutive sessions (30 trials), it moved on to the next stage in which three delay 

conditions of 10, 20, and 40 seconds were interposed between the information and test 

runs. Two trials at each condition were given each day in a pseudo-random order, and 

each rat received 10 such test sessions followed by three sessions (i.e. 18 trials) of 

undelayed matching to sample. 

The next stage began on the next test session and consisted of a reversal to non

matching to sample, i.e. rats were now rewarded for selecting in the choice phase the 

arm opposite to that entered in the sample phase. All other aspects of this stage of 

testing were identical to those used in the initial acquisition of the matching task. 

Testing continued until each rat had achieved the same acquisition criterion as in the 

matching to place stage (25 out of 30 trials). 
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4.4.2 - Results 

4.4.2.1 - Behavioural analysis 

Acquisition of matching to place task - Comparisons using the number of trials to the 

acquisition criterion (Figure 25) showed that the MD3 group were significantly slower 

to learn the task [two-tailed Student's t-test: t (18) = 3.25, p = 0.004; group means: MD3 

= 151.6, SHAM3 = 109.8]. Errors to criterion (Figure 25) revealed a similar acquisition 

difference between the two groups [t (18) = 3.68, P = 0.002: group means: MD3 = 75.9, 

SHAM3 = 54.1]. 
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Figure 25. Acquisition of the T-maze matching to place task. Mean numbers of trials to criterion (left) 
and errors to criterion (right) are shown for both groups. 
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Both groups began the acquisition phase (Figure 27) by performing well below chance 

levels (mean group correct trials over the first 30 trials: MD3 = 5.1, SHAM3 = 6.6; 

chance = 15). Two-tailed t-tests confirmed that both groups' performance at this stage 

was significantly below chance [MD3: t (9) = 9.71, p<O.OOl; SHAM3: t (9) = 13.3, • 

p<O.OO 1]. Furthermore, at this initial stage there was no difference in the performance 

levels of the two groups [first 30 trials, t (18)= 0.98, p = 0.34, two-tailed]. 

To examine more closely the way that the two groups acquired the matching task, the 

acquisition process was divided into two phases. Very low scores, (3/12 or lower) were 

described as "perseveration" (probability of scoring 3/12 or lower = 0.073), whilst 

scores of 4/12 or higher were described as "learning". The "perseveration" scores were 

assumed to correspond to the rats' initial attempts to solve the matching task by non

matching. The distinction was made by counting the number of correct responses made 

by each rat in a running window of 12 trials, beginning with trials 1 to 12 and advancing 

the window by one trial at a time. The initial perseveration phase was deemed to have 

ended when the rat achieved a score of four or more correct responses in a window of 

12 trials. The learning phase comprised all subsequent trials up to the task acquisition 

criterion of five or more correct responses on five successive days. Figure 26 shows the 

pattern of errors over these two phases, and analysis of variance of the error data using 

the factors group and phase showed a significant effect of group [F(l, 18) = 5.74, P = 

0.028], but not phase [F( 1,18) = 2.88, p = 0.107] nor group by phase interaction 

[F( 1,18) = 1.31, p = 0.267]. In spite of the ·lack of a significant interaction, analysis of 

the simple effects showed that the two groups differed on the "perseveration" measure 

(p<0.05) but not on the "learning" measure. For purposes of comparison, the acquisition 
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data are depicted in Figure 27 by blocks of trials only. Unlike the above method of 

analysis (Figure 26), this more conventional method clearly fails to show the important 

difference in the way that the two groups of rats learned the task. 
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Figure 26 - Acquisition of the T-maze matching to place task. The charts depict the mean number of 
errors made during the two acquisition phases of perseveration, (rats performing below chance) and 
learning (rats performing at or above chance). 
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Figure 27 - Acquisition of the T-maze matching to place task. The graph shows the pattern of 
acquisition over six blocks of 30 trials . Rats that acquired the task before block 6 were assumed to 
continue performing at the same level as when they reached the acquisition criterion. 
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Matching to place with delays - The performance of the two groups over the three delay 

conditions is shown in Figure 28. Analysis of variance was carried out using the factors 

of group and delay. There was a strong effect of delay [F (2, 36) = 14.05, p < 0.001], but 

no effect of group [F (l , 18) = 0.93], nor group by delay interaction [F (2, 36) = 0.66). 
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Figure 28 - T-maze matching to place performance. The graph shows the percentage of correct trials 
(maximum 20) performed by the two groups over three delay conditions following acquisition. 

Normal matching to position - Following the delay conditions each rat underwent three 

sessions of matching to sample with 10 sec retention intervals (18 trials). Both groups 

performed the task at a high level (mean scores: MD = 16, SHAM = 16.3), and there 

was no evidence of a group difference. 

Reversal to non-matching to place - Overall acquisition of the non-matching task by 

the two groups barely differed (group means of errors to criterion: MD = 39.7, s.e.m. = 

2.45, SHAM = 38.0, s.e.m. = 3.39). However, analysis of the pattern of errors by two 

phases, carried out in the same way as for the matching to place task, showed that the 
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two groups differed in the way that they achieved acquisition (Figure 29). Analysis of 

variance using the factors group and phase showed no effect of group [F( 1,18) = 0.05, p 

= 0.82], nor of phase [F(l,18) = 0.01, p = 0.915] , but there was a significant group by 

phase interaction [F(!, 18) = 8.75, P = 0.008]. This interaction arose from'the MD 

animals making more "perseverative" errors and fewer " learning" errors (Figure 29). 
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Figure 29 - Acquisition of the reversal to T-maze non-matching to sample task. The mean group error 
scores for the two groups have been divided into two phases: P = perseveration phase in which rats are 
performing below chance; L = learning phase in which rats are performing at or above chance. 
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4.5 - EXPERIMENT 11 - Automated Measures of Activity 

4.5.1 - Method 

4.5.1.1 - Subjects - were as described in Experiment 8. 

4.5.1.2 - Test apparatus - consisted of 8 dark grey polypropylene boxes of dimensions: 

length 60cm, width 40cm, and height 30cm. On one short side of each box, 3cm from 

the top, a hole was cut out 8cm wide and 10 cm high into which was fitted a passive 

infra-red sensor angled in such a way as to detect movement over the whole of the box 

floor area. Each detector was cOImected to a "Lab-Linc" automated activity monitoring 

system (Colbourn Instruments, Allentown, P.A., USA). Galvanised steel mesh sheets 

were used as lids for the boxes and the floor of each box was covered with grade 14 

wood flakes (Datesand Ltd, Manchester, UK) of the same type as that used as bedding 

in the rats' home cages. The boxes were arranged in a line on the floor of the test room, 

which was the same room as that used for Experiment 5. 

4.5.1.3 - Testing procedure - Testing was begun two weeks after the conclusion of 

Experiment 10. The 20 rats were tested on one day in two groups of 8 and one group of 

4. Each group of rats contained animals of both experimental groups, randomly 

assigned. Each rat was placed in a test box, the lid was secured, and activity recorded 

for a period of 72 minutes. At the end of the session the rats were returned to their home 
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cages and the bedding was replaced with clean wood flakes before the next group was 

tested. Three days after this first run a second, identical, run was completed. 

4.5.1.4 - Data Collection - Activity was classified as either "no movement", "small 

movements", or "large movements". Small movements were defined as less than one 

second in duration and large movements as more than one second in duration. These 

measurements were of time only, and no attempt was made to define the spatial 

magnitude of the movements. Within these three classifications of activity, recordings 

were made over the 72 minute session of both the number and duration of each type of 

movement in 36 two minute bins. 

4.5.2 - Results 

4.5.2.1 - Behavioural analysis - For each rat on each test run there were 6 sets of 

information recorded (number and duration of no movement events, small movement 

events, and large movement events) and 36 recordings of each. The 36 recordings were 

grouped as 6 blocks of 6 and are shown in Figures 30 to 32. 

As well as a consistency of performance throughout both the six different measures and 

two runs, Figures 30 to 32 also show the clear of time effect across the six blocks and 

apparently a close similarity between the performance of both groups. To confirm this, 

analyses of variance were carried out using the factors group and block and the results 

were as follows: 
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Figure 30 - automated activity monitoring. The upper two graphs show the duration of no movement 
events recorded for both groups over two 72 minute sessions, grouped into 6 blocks of 6 two 
minute bins. The lower two graphs represent the number of no movement events over the 
same sess ions. Error bars have been omitted for the sake of clarity, as in all cases s.e.m. was 
below 5% of the value. 
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Figure 31 - automated activity monitoring. The upper two graphs show the duration of small movement 
events recorded for both groups over two 72 minute sessions, grouped into 6 blocks of 6 two 
minute bins. The lower two graphs represent the number of small movement events over the 
same sessions. Error bars have been omitted for the sake of clarity, as in all cases s.e.m. was 
below 5% of the value. 
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Figure 32 - automated activity monitoring. The upper two graphs show the duration of large movement 
events recorded for both groups over two 72 minute sessions, grouped into 6 blocks of 6 two 
minute bins. The lower two graphs represent the number of large movement events over the 
same sessions. Error bars have been omitted for the sake of clarity, as in all cases s.e.m. was 
below 5% of the value. 
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.. . 
First Run - On the no movement duration measure there was no effect of group [F(l, 18) 

= 2.2S, p = 0.1S1], a strong effect of block [F(S,90) = 146.2S, p = <0.001], and the 

group by block interaction failed to reach the O.OS level of significance [F(5,90) = 2.22, 

p = 0.OS9]. On the no movement number measure there was no effect of group [F(I,18) 

= 1.48, P = 0.24], a strong effect of block [F(S,90) = 84.67, p = <0.001], and no 

significant group by block interaction [F(5,90) = I.S7, p = 0.175]. 

On the small movements duration «Is) measure there was no effect of group [F(l,18) = 

1.30, P = 0.27], a strong effect of block [F(S,90) = S1.8S, P = <0.001], and no significant 

group by block interaction [F(S,90) = 1.36, P = 0.247]. On the small movements number 

«Is) measure there was no effect of group [F(I,18) = 1.38, p = 0.2S6], a strong effect 

of block [F(S,90) = S2.22, P = <0.001], and no significant group by block interaction 

[F(S,90) = 1.48, p = 0.204]. 

On the large movements duration (> 1 s) measure there was no effect of group [F( 1,18) = 

2.23, P = 0.152], a strong effect of block [F(S,90) = 142.74, P = <0.001], and no 

significant group by block interaction [F(S,90) = 2.10, P = 0.072]. On the large 

movements number (> I s) measure there was no effect of group [F(l, 18) = 1.48, P = 

0.239], a strong effect of block [F(S,90) = 11S.03, p = <0.001], and no significant group 

by block interaction [F(5,90) = 1.24, p = 0.297]. 

Second Run - On the no movement duration measure there was no effect of group 

[F(l,18) = 2.68, p = 0.119], a strong effect of block [F(5,90) = 76.66, P = <0.001], and 

no significant group by block interaction [F(5,90) = 1.79, P = 0.123]. On the no 

139 



movement number measure there was no effect of group [F(l,18) = 2.39, P = 0.14], a 

strong effect of block [F(5,90) = 45.57, p = <0.001], and no significant group by block 

interaction [F(5,90) = 0.91, p = 0.481]. 

On the small movements duration «Is) measure there was no effect of group [F(I,18) = 

1.33, p = 0.263], a strong effect of block [F(5,90) = 26.63, p = <0.001], and no 

significant group by block interaction [F(5,90) = 1.32, p = 0.262]. On the small 

movements number «1 s) measure there was no effect of group [F(l, 18) = 1.96, p = 

0.178], a strong effect of block [F(5,90) = 27.77, P = <0.001], and no significant group 

by block interaction [F(5,90) = 1.23, p = 0.303]. 

On the large movements duration (> 1 s) measure there was no effect of group [F( 1,18) = 

2.82, p = 0.110], a strong effect of block [F(5,90) = 76.98, p = <0.001], and the group 

by block interaction just failed to reach the 0.05 level of significance [F(5,90) = 2.30, p 

= 0.052]. On the large movements number (> I s) measure there was no effect of group 

[F(I,18) = 2.95, p = 0.103], a strong effect of block [F(5,90) =,68.92, P = <0.001], and 

no significant group by block interaction [F(5,90) = 1.66, p = 0.152]. 

4.6 - Discussion 

Experiment 8 examined the way that rats relate reward to place, and asked whether rats 

with MD lesions behave differently in making this relationship. The experiment made 

the animals' immediate environments visually distinctive, and measured whether their 
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preference for place was influenced by previous association with food. The two groups 

did not differ on either of the two preference measures (time in arms, number of entries 

to arms), indicating that the difference in the way rats with lesions to the mediodorsal 

thalamus respond in learning and memory tasks does not lie in the way th'at they are 

relating reward and place. This result differs markedly from the findings of McAlonan 

et al. (1993), who found that ibotenic acid damage to MD in rats completely abolished 

the acquisition of conditioned place preference. The sizes of the lesions in the two 

studies appear comparable and the basic task procedures are similar. For this reason the 

difference in outcome is of interest, but remains unresolved. Despite this, there is no 

evidence that the present lesion group failed the matching task (Experiment 10) as they 

were insensitive to the reinforcers or were unable to associate a reinforcer with a 

specific cue. 

Session 1 in Experiment 8, in common with many tests of learning and memory in rats, 

involved the animals moving around voluntarily in an unfamiliar environment. In this 

instance data were collected of the number of entries rats made into maze arms, and it 

was thus possible to compare the total number of entries made by the two groups as a 

measure of exploratory activity. As might be predicted from previous experiments, the 

MD3 group made a greater number of entries, further adding evidence to the notion that 

MD rats are less inhibited in carrying out exploratory activity under test conditions. 

McAlonan et al (1993) had also carried out several measures of locomotor activity 

during a similar conditioned place preference study with MD rats and had found 

"tendencies" and "trends" towards increased activity in the MD rats on the final session 

which did not, however, reach the p<0.05 level of significance. The findings in the 
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present study, however, are particularly interesting since in this instance the animals 

were completely experimentally naive; session 1 representing the very first time that 

they had experienced an environment outside their home cage post-operatively. 

Hyperactivity was also investigated in Experiment 9 by repeating the arena exploration 

test of Experiment 7 that had found an increase in exploratory behaviour in the MD2 

group, albeit based on somewhat low numbers of animals in the groups. Although there 

was no evidence that rats in the lesion group were hyperactive in this open field test, 

other studies have reported an increase in exploration in a variety of test conditions 

following lesions of the dorsomedial thalamus (Beracochea et aI., 1989; Kolb, 1984; 

Kolb et aI., 1982). There is therefore still the possibility that rats with MD lesions may 

behave with raised levels of activity during maze testing. 

The T-maze tests in Experiment 10 revealed a consistent dissociation within the 

behavioural effects of lesions in nucleus medialis dorsalis. Thus, there was no evidence 

that the thalamic lesions disrupted the ability of the rats to distinguish which ann had 

been most recently visited (working memory) but the same rats were impaired at 

shifting from a preferred response rule. Evidence of their intact spatial working memory 

comes from the normal performance of the lesion group over retention delays (20s and 

40s) that were of sufficient length to preclude possible ceiling effects. Furthermore, the 

rats with medialis dorsalis lesions persistently performed below chance at the outset of 

matching training, at a level that was comparable to that of the control rats. This 

unusually poor level of performance is to be expected as normal rats have a very strong, 

innate bias to alternate in the T-maze (Richman and Dember, 1986), i.e. to tum in the 

opposite direction to that rewarded in the matching condition. Thus the highly 
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significant performance below chance reflects the comparable ability of both groups of 

rats to remember the most recently visited arm. 

This sparing of spatial working memory is consistent with recent studies 'that have 

helped to distinguish the contributions of other nuclei or tracts adjacent to medialis 

dorsalis. While selective lesions of the dorsomedial thalamus, similar to those in the 

present task, have little or no effect on non-matching to place tasks (Hunt and Aggleton, 

1991; Kessler et aI., 1982; Neave et aI., 1993), bilateral damage to the anterior thalamic 

nuclei will produce severe, lasting deficits on the same tasks (Aggleton et aI., 1996; 

Aggleton et aI., 1995a). These deficits are still present when the lesions are placed in 

subfields of the anterior thalamic nuclei (Aggleton et ai, 1996; Byatt and Dalrymple -

Alford, 1996), highlighting the need to minimise encroachment into these nuclei. 

Likewise, there is evidence that cutting the mamillothalamic tract is sufficient to impair 

T -maze alternation (Thomas and Gash, 1985). Thus, although some studies have 

reported that lesions in the dorsomedial thalamic region can disrupt spatial working 

memory (Stokes and Best, 1988, 1990a,b,c), careful analysis indicates that in many of 

these instances the lesions have encroached rostrally to involve the anterior ventral and 

anterior medial thalamic nuclei. 

Despite their intact spatial working memory, the MD animals were impaired at 

acquiring the matching rule. One possible explanation is that the lesion has a general 

effect on the ability of rats to learn the reference memory component of a task, in this 

case, the rule to match. A general failure to learn task rules does not, however, seem 

likely as the same rats were readily able to learn the non-matching to place task once 
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they had ceased perseverating on the original rule (Figure 29). Similarly, performance 

during the "learning phase" of the matching task appeared normal (Fig. 27). Also, 

previous studies have found that thalamic lesions made in the same manner do not 

disrupt the ability to acquire the delayed non-matching to position task in an automated 

chamber (Neave et aI., 1993). Similarly, medial dorsal thalamic lesions made by 

electrolytic means do they affect the ability to learn the position of a platform in the 

Morris water maze (Kolb et aI., 1982). In both instances, medialis dorsalis lesions 

spared the learning of a response rule in a spatial task. 

I laving excluded these other possibilities, a logical assumption may be that lesions of 

nucleus medialis dorsalis lead to a selective deficit in the ability to switch from a 

preferred strategy to a new strategy. The initial acquisition deficit arose from a failure to 

switch from an innately preferred strategy (non-matching) to a new strategy (matching), 

as reflected by a specific increase in "perseverative" errors. Similarly, the abnormal 

pattern of errors in the subsequent reversal to a non-matching rule also arose from an 

excess of "perseverative" errors. It is most unlikely that these. failures arose from an 

inability to shift attention to the critical stimulus dimension as in a study of rats with 

pre-frontal cortical lesions (Dias, Roberts, and Robbins, 1996) since the matching rule 

uses the same class of stimuli as the preferred, non-matching rule. Consequently, the 

deficit can be better characterised as a failure to shift response rules. This would also 

explain why lesions of nucleus medialis dorsalis were seen to have little or no impact on 

the standard radial arm maze procedure in Chapter 2, as this task accords with natural 

foraging strategies. In contrast, deficits were found when the procedure was modified in 

• 
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Chapter 3 so that the selection of some arms is never rewarded as the rat no~ has to 

withhold the normal foraging strategy of visiting all arms. 

Experiment 11 showed very clearly that the MD3 group were not more active than the 

SHAM3 group when activity is taken as any sort of movement. The experimental 

method broke down measured movement into a range of durations and expressed the 

data as both number of events and duration of those events. This negative finding is 

important, since it seems to indicate that the increased levels of activity reported in this 

and the previous chapter are not merely a result of increased global levels of locomotor 

activity. 
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CHAPTER FIVE 

Discussion 
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5.1 - Review of Experimental Findings 

The eleven experiments in this study were undertaken using three cohorts of rats at 

separate times. The type of testing performed on each cohort was deliberately chosen to 

avoid interference effects between different classes of tasks and behaviour. Especially 

important in this respect was the use spatial tasks, and for this reason the spatial tasks were 

dispersed across the three cohorts. It would seem useful, then, to review the findings 

functionally rather than in chronological order, so that the effects of MD lesions on classes 

of tasks may be more apparent. 

5.1.1 - Visual recognition and discrimination - Two types of experiment used visual cues 

to investigate learning and memory in rats with MD lesions. The spontaneous recognition 

of objects, which depends upon the normal propensity of rats to attend more to novel 

objects than to ones they have seen before, was unaffected by MD lesions. This test is 

regarded as a purer test of working memory than those tests that require the rats to learn a 

rule via food reward in order to apply working memory. One such test is the V-maze delay 

non-match to sample task as used in the previous study (Hunt and Aggleton, 1991) that the 

present study builds upon. Like the present study, the previous one used a neurotoxin to 

produce MD lesions, and found that this produced no impairment in working memory, 

even over incremental delay conditions. The MD group was, however, significantly 

impaired in acquiring the rule-learning component of the task. This is consistent with the 

findings of the present study, confirming that MD lesions produced with neurotoxins do 

not affect non-spatial working memory, either spontaneous or trained to food reward. 

MD lesions did not impair the rats' visual discrimination ability when the rat was 

rewarded with food for selecting the correct, but arbitrarily chosen, object. The MD rats 
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were, however, impaired in their ability to discriminate objects that differed only in the 

configuration of their compositional elements. This may be of interest since no one site in 

the brain has been specifically linked with configuralleaming, although prefrontal cortex 

or perirhinal areas would seem to be likely areas for such function. In a further series of 

object discrimination trials run concurrently, the rats with MD lesions showed impairment 

only on one (8 trial) condition. 

5.1.2 - Spatial learning and memory - Experiments were carried out in a radial arm maze 

and aT-maze to investigate spatial learning and memory using several variants of the 

basic tasks in each. These spatial test results were carefully examined to include only those 

rats in which the lesions were confined to MD, as some lesions were seen to extend 

substantially into the anterior thalamic nuclei. The data from these individuals, all in 

cohorts I and 2 and therefore affecting the radial arm maze tests, were analysed separately, 

revealing anterior thalamic damage to be the cause of impairments in acquisition and 

performance of RAM tasks. The implications of this finding are evaluated in section 5.2 

below. 

The first group of tests exploits the normal ways that rats move around in space in order to 

find food. In the present study these are the T-maze non-matching task and the radial arm 

maze (RAM) tasks in which all arms are baited with food. These tasks represent "purer" 

tests of working memory, since they do not require the rat to learn a new strategy or to 

suppress a preferred behaviour pattern. MD lesions did not bring about any deficit in T

maze non-matching to sample, confirming the findings of the previous study (Hunt and 

Aggleton, 1991). In this previous study, rats with MD lesions made with a neurotoxin 

learned the same non-matching task and performed it under incremental delay conditions 

without impairment. Acquisition of the basic RAM task and its performance with a delay 
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condition failed to reveal any deficit in the MD group, although a deficit was seen when 

the maze was turned during the delay, requiring a shift in strategy from the rats. It should 

be noted that two cohorts ofrats had performed acquisition of the basic RAM task (all 

arms baited) separately using an identical method, giving two sets of equivocal results that 

were potentially misleading. The data from the two cohorts was combinea to give the 

acquisition result above. 

The second group of tasks specifically required the rats to abandon innate or previously 

learned strategies and adopt contrary ones in order to obtain the food rewards. The MD 

rats were significantly impaired in learning such a matching strategy in the T-maze, 

contrasting with the way they spontaneously perform non-matching in the task. Whilst 

they appeared subsequently unimpaired in performing a rule reversal to non-matching after 

having learnt this matching rule, the MD rats differed in the way they learned the task, 

showing a significant increase in perseverative errors. This difference emphasises their 

apparent preference for pre-existing rules when responding to a need to change behaviour. 

Similarly, after acquiring the basic RAM task that utilises only working memory (all arms 

baited), the MD rats were impaired when the task was changed to allow measurement of 

reference memory (some rums baited). This task again required the rats to stop using their 

preferred non-matching rule, since this would lead to the selection of never-rewarded 

arms. 

5.1.3 - Conditioned place preference - The rats with MD lesions showed no difference 

from the operated shams in the way that they associated visually distinctive places with 

food. This normal pattern of response to reinforcement in a spatial context is an important 

factor in interpreting the results above. 
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5.1.4 - Activity and exploration - Exploration was explicitly measured in response to 

informal observations made during tests of learning and memory. These observations had· . 

indicated the possibility that exploratory behaviour may have been at a higher level in MO 

rats during testing. In addition, it was also possible to analyse activity data from some of 

the learning and memory tests above. 

The first test of exploratory behaviour specifically run for the purpose was a test of 

emergence from a dark, enclosed space into a brightly-lit open area. Rats with MO lesions 

were always faster to emerge, but analysis showed that the difference in time was marginal 

and narrowly fell short of significance. 

Two cohorts of rats were tested separately on the same measures of arena exploration. 

Although the rats with MD lesions appeared to be more exploratory throughout both of 

these sessions, the results were ambiguous. Since the test conditions on both sessions were 

identical, and since the performance of the two groups of sham operated animals did not 

differ (t values on all three measures = <1), it is possible to combine the results from the 

two sessions into a single analysis in order to increase its statistical power. The group 

numbers, thus combined, become MD2/3 = 16; SHAM2/3 = 20. As can be seen from 

Figure 32, the MD lesion group scored higher on all three measures of arena activity 

(group means: line crossings M02/3 = 89.38, SHAM2/3 = 76.35; inward line crossings 

M02/3 = 20.37, SHAM2/3 = 17.25; time spent in inner segments M02/3 = 79.81 s, 

SIIAM2/3 = 70.25). Student's t-tests (one tail) on these data confirm that the combined 

lesion group differed significantly from the combined surgical sham groups on both of the 

line-crossing measures, but not on time spent in the inner segments of the arena (all line 

crossings t = 2.63, df= 24.01, p = 0.008, adjusted for inequality of variance using Levine's 

test; inward line crossings t = 1.99, df= 34, p = 0.03; time in inner area t = 0.94, df= 34, P 
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= 0.18). Thus, the combined analysis reveals greater exploratory activity in the rats with 

MD lesions. 
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Figure 33 - Three measures of exploration activity in the open arena by the combined groups of cohorts 2 
and 3. The upper left chart shows the mean number of times that each group crossed any of the lines marked 
on the arena floor. The upper right chart shows the mean number of times that each group crossed lines 
whilst moving towards the centre of the arena and therefore away from the arena wall. The lower graph 
depicts the mean time that each group spent in the inner areas of the arena. Vertical lines indicate standard 
error of the mean . 
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Observations of exploratory behaviour were also made during the conditioned place 

preference experiment. These showed that the rats with MD lesions displayed more 

exploratory behaviour than the operated sham rats when first placed in the unfamiliar 

surroundings of the test apparatus. The lesion group on the spontaneous object recognition 

test also showed marginal evidence of increased exploratory behaviour, but this fell short 

of significance. 

In contrast to the previous tests of exploratory behaviour in unfamiliar environments, an 

automated experiment recording baseline activity showed nothing to suggest that the rats 

with MD lesions were intrinsically more active than the operated sham rats. 

5.2 - Evaluation 

To evaluate the above experimental findings in the context of issues laid out in Chapter I, 

it is necessary to answer two questions: do the findings indicate that the MD lesions were 

causing behavioural changes that can be interpreted as amnesia, and, if not, is there an 

alternative framework of cognitive charige that would account for these results? 

Tests of object discrimination and recognition were one class of experiment that addressed 

mnemonic ability directly, and no clear amnesic pattern of performance emerged from 

them. The MD rats were able to acquire a simple object discrimination normally, and 

performed concurrent object discriminations, shown to be sensitive to memory deficits in 

rats with damage to the hippocampus and related regions (Aggleton et aI, 1991; Rothblat 

et ai, 1993; Wible et ai, 1992), with only a mild, initial impairment on the eight trials per 

day condition. It can be argued that these tasks trained the rats to use a food reward "rule" 
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to demonstrate the discrimination of objects and that rats' performance on this task owes 

more to rule-learning than to their discrimination abilities. In the task that looked at 

spontaneous object recognition, described as being a purer assay of working memory 

(Ennaceur and Delacour, 1988), there was no evidence at all of deficit in the rats with MD 

lesions. These latter results, however, were based on only two test sessioI'l.s per delay 

condition, and it is possible that more test sessions might increase the sensitivity of the test 

and give different results. 

In memory for spatial tasks, the other class of experiments addressing the amnesia 

question more directly, the results are more intriguing. Although it is true to say that there 

are no clear mnemonic impairments here attributable to MD lesions, the MD rats did show 

some learning difficulties, with an increased propensity to perseverate when required to 

learn a matching task that is counter to their spontaneous behaviour. Again, though, there 

was no impairment on performing this task when conditions of delay were imposed, as 

might be expected if the problem caused by the MD lesions were analogous to an amnesic 

syndrome. This was also true of the MD rats' performance of the radial arm maze task 

when run with delays. That the MD rats were impaired when the maze was rotated during 

the delay on this task is very informative, but is not attributable to a classical mnemonic 

deficit. 

An interesting but unintentional effect of the lesion-making procedure was that some rats 

from the lesion groups in the radial arm maze experiments had damage that encroached 

substantially into the anterior thalamic nuclei. The clear deficits in task acquisition and 

performance shown by this sub-group are more consistent with impairments analogous 

with amnesia, in contrast to the results from the rats with lesions restricted to MD. The 

finding is important for three reasons. First, it would have been badly misleading for these 
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deficits to have been attributed to MD damage, and it is quite possible that other studies 

reporting spatial memory deficits may have done this; the reporting of lesion extent being .. 

sometimes far from explicit. Second, it reinforces the view of other studies that the 

anterior thalamic nuclei playa critical role in spatial learning and memory (Aggleton and 

Brown, 1999, Aggleton et aI, 1995; Byatt and Dalrymple-Alford, 1996). Finally, it 

emphasises that the testing methods used were sensitive to spatial memory impairments, 

and thus further helps to confirm that large lesions confined to MD do not produce deficits 

in spatial working memory. These results highlight the probability that what is being seen 

in MD rats should not be interpreted as amnesia. One possible interpretation is that this 

loss of deficit in the remaining purely MD lesion group is the result of lesser, ineffectual 

lesions of MD. Examination of the histological results, however, confirm that the lesions 

in the remaining MD group are substantial, affecting almost all ofMD's extent, and 

therefore the behavioural results from this sub-group may be taken as a true reflection of 

MD function in rats. 

Thus, since the behavioural changes in rats with MD lesions cannot be interpreted as 

amnesic effects, an alternative inference must be made to describe better the cognitive 

changes that have been observed throughout the series of experiments. One interpretation 

of the MD rats' pattern of behaviour in many of the tests could be that it is analogous with 

behaviour more usually associated with damage to the prefrontal cortex (PFC). This 

proposition would seem unsurprising, given MD's close anatomical links with PFC 

(Krettek and Price, 1977; Groenewegen, 1988; Ray and Price, 1992). A direct testing of 

the analogy between the MD impairments and PFC damage in rats is provided by Dias and 

Aggleton (unpublished results, submitted J. Neuroscience, 1999). The authors report that 

medial PFC lesions bring about disruption of the ability to shift response rules to match to 
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place in aT-maze with preserved spatial working memory in a strikingly similar way to 

that seen in the present study following MD lesions. 

A framework that may be used to relate this pattern ofMD deficits to PFC functions is 

provided by Wise, Murray, and Gerfen's (1996) analysis of PFC functiorts in monkeys. 

The authors have categorised PFC functions into different levels of behaviour-guiding 

rules, and propose that the function of PFC in learning and memory centres on the learning 

of new behaviour-guiding rules and the rejection of old rules. Lower order and higher 

order rules are differentiated in this model, which also proposes that different subregions 

of PFC are involved in mediating the two orders of rules. The authors also recognise a 

third or highest order of rules that deals with temporal ordering. Raggozino, Wilcox, Raso, 

and Kesner (1999) have tested this proposition in rats and suggest that the rat PFC may be 

similarly differentiated in function. This study (Raggozino et aI., 1999) presents evidence 

of the prelimbic and infralimbic areas ofPFC being involved in the selection of higher 

order rules, whilst raising the possibility that the lateral orbital area and/or the agranular 

insular area would be correspondingly involved in lower order rules. 

Thus it seems necessary to measure this hierarchy of rule mediation against the pattern of 

results observed in the present study, if the behaviour of MD rats is to be seen as 

analogous with PFC dysfunction. The classes of task that in the present study fall into 

Wise et aI's (1996) lower order of abstraction would be object recognition, object 

discrimination, and place recognition (T-maze non-matching and radial arm maze tasks). 

The MD lesions failed to produce impairments in any of these classes of task. The higher 

order of abstraction tasks in the present study would be represented by attention to and 

memory of stimulus components (configural object discrimination) and the application of 

abstract rules based on spatial information (T -maze matching). The MD rats were impaired 
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in both of these tasks in the present study. It therefore appears that the effects of the MD 

lesions are consistent with impairments in mediating the higher level of cognitive 

abstraction, but not in the lower level. 

This lack of cognitive flexibility in the MD rats is also analogous with dysfunction in • 

primates with frontal damage (Wise et aI., 1996, Dias, Robbins, and Roberts, 1996b), and 

is further seen to extend to humans with frontal damage (Dias, Robbins, and Roberts, 

1996a, 1997). The disinhibition in humans with PFC damage results in behaviour being 

guided by previously acquired responses that are inappropriate to current circumstances, a 

dysfunction that is very similar to that noted in the MD rats in the present study. The 

authors (Dias et aI., 1996a) also go on to suggest that damage to different areas of PFC is 

responsible for different types of inhibition loss (attentional selection and affective 

processing). 

The MD lesions in the present study also seemed to bring about increased levels of 

activity, or rather decreased inhibition of exploratory behaviour in the study. This was 

noted both in tests specifically designed to test for such behaviour (arena exploration, 

emergence), and during other tests ofleaming and memory (spontaneous object 

recognition, conditioned place preference). This again is analogous with PFC dysfunction 

in rats (Kolb, 1984), where hyperactivity in some situations has been seen to result from 

their apparent inability to initiate new response strategies in novel situations. Kolb (1984) 

also reports impaired performance in rats with PFC lesions on other tasks requiring 

changes in behaviour, which again is entirely consistent with the impairments described in 

this study. 
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5.3 - Conclusions 

5.3.1 - Conclusion 1 - MD damage in rats does not cause direct deficits in learning and 

memory. No evidence was found in the present study to support the proposition that 

lesions confined to MD bring about direct impairments to learning and memory systems. 

A number of factors may explain why other studies have ascribed such deficits to MD 

lesions. The first such explanation is that the physical methods of lesion making 

(aspiration, radio frequency, electrolysis) that have been widely used in the past have, by 

their nature, failed to restrict their effects to MD. Damage to fibre tracts such as the 

internal medullary lamina is usual with this method, as is associated damage to the 

intralaminar nuclei. Both of these structures may playa more critical role than MD in 

mediating learning and memory in rats (Burk and Mair, 1998). The second explanation is 

that lesions, especially neurotoxin lesions, often stray into the adjacent anterior nuclei, as 

in fact happened in the present study. If the results from such subjects are included in the 

MD lesion groups, the results are likely to be misleading. Many studies describing deficits 

following MD lesions fail to describe the extent of the lesions sufficiently adequately for 

this possibility to be discounted. The present study distinguished those subjects in which 

lesions extended significantly into the anterior thalamic nuclei, and consequently was able 

to add to the evidence that the anterior nuclei are critical in spatial learning and memory. 

5.3.2 - Conclusion 2 - The indirect effects of MD lesions on learning and memory are 

akin to those effects usually associated with damage to the prefrontal cortex in that the 

lesion groups showed deficits in rule switching abilities. This is distinct from inflexibility 

in attentional switching, being within the same sensory mode and domain of allocentric 

spatial information, i.e. the rats were able to continue to use their innate preference for 

spatial cues. Further, the results from the present study, when interpreted in this way, 
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indicate that MD mediates the "higher" orders of frontal lobe cognition functions and not 

the lower orders. 
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