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Abstract In this paper, we present a new variational method for sparse re-
gression using L0 regularization. The variational parameters appear in the
approximate model in a way that is similar to Breiman’s Garrote model. We
refer to this method as the variational Garrote (VG). We show that the com-
bination of the variational approximation and L0 regularization has the effect
of making the problem effectively of maximal rank even when the number of
samples is small compared to the number of variables. The VG is compared nu-
merically with the Lasso method, ridge regression and the recently introduced
paired mean field method (PMF) [1]. Numerical results show that the VG and
PMF yield more accurate predictions and more accurately reconstruct the true
model than the other methods. It is shown that the VG finds correct solutions
when the Lasso solution is inconsistent due to large input correlations. Glob-
ally, VG is significantly faster than PMF and tends to perform better as the
problems become denser and in problems with strongly correlated inputs. The
naive implementation of the VG scales cubic with the number of features. By
introducing Lagrange multipliers we obtain a dual formulation of the problem
that scales cubic in the number of samples, but close to linear in the number
of features.
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1 Introduction

One of the most common problems in statistics is linear regression. Given p
samples of n-dimensional input data xµ

i , i = 1, . . . , n and 1-dimensional output
data yµ, with µ = 1, . . . , p, find weights wi, w0 that best describe the relation

yµ =

n
∑

i=1

wix
µ
i + w0 + ξµ (1)

for all µ. ξµ is zero-mean noise with inverse variance β.
The ordinary least square (OLS) solution is given by w = χ−1b and w0 =

ȳ −∑i wix̄i, where χ is the input covariance matrix b is the vector of input-
output covariances and x̄i, ȳ are the mean values. There are several problems
with the OLS approach. When p is small, it typically has a low prediction
accuracy due to over fitting. In particular, when p < n, χ is not of maximal
rank and so its inverse is not uniquely defined. In addition, the OLS solution is
not sparse: it will find a solution wi 6= 0 for all i. Therefore, the interpretation
of the OLS solution is often difficult.

These problems are well-known, and there exist a number of approaches
to overcome these problems. The simplest approach is called ridge regression.
It adds a regularization term 1

2
λ
∑

iw
2
i with λ > 0 to the OLS criterion. This

has the effect that the input covariance matrix χ gets replaced by χ + λI
which is of maximal rank for all p. One optimizes λ by cross validation. Ridge
regression improves the prediction accuracy but not the interpretability of the
solution.

Another approach is Lasso [2]. It solves the OLS problem under the linear
constraint

∑

i |wi| ≤ t. This problem is equivalent to adding an L1 regulariza-
tion term λ

∑

i |wi| to the OLS criterion. The optimization of the quadratic
error under linear constraints can be solved efficiently. See [3] for a recent ac-
count. Again, λ or t may be found through cross validation. The advantage
of the L1 regularization is that the solution tends to be sparse. This improves
both the prediction accuracy and the interpretability of the solution.

The L1 or L2 regularization terms are known as shrinkage priors because
their effect is to shrink the size of wi. The idea of shrinkage prior has been
generalized by [4] to the form λ

∑

i |wi|q with q > 0 and q = 1, 2 corresponding
to the Lasso and ridge case, respectively. Better solutions can be obtained for
q < 1, however the resulting optimization problem is no longer convex and
therefore more difficult to solve.

An alternative Bayesian approach to obtain a sparse solution using an L0

penalty was proposed by [5]. They introduce n variational selector variables
si such that the prior distribution over wi is a mixture of a narrow (spike)
and wide (slab) Gaussian distribution, both centered on zero. The posterior
distribution over si indicates whether the input feature i is included in the
model or not. Since the number of subsets of features is exponential in n, for
large n one cannot compute the solution exactly. In addition, the posterior
is a complex high dimensional distribution of the wi and the other (hyper)
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parameters of the model. The computation of the posterior requires thus the
use of MCMC sampling [5] or a variational Bayesian approximation [1,6,7,8].

Although Bayesian approaches tend to over fit less than a maximum likeli-
hood or maximum a posteriori method (MAP approach), they also tend to be
relatively slow. Here we propose a partial Bayesian approach, where we apply
a variational approximation to integrate out the binary (selector) variables in
combination with a MAP approach for the remaining parameters. For clarity,
we analyse this idea in its most simple form, in the absence of (hierarchical)
priors. Instead, we infer the sparsity prior through cross validation. As we will
motivate below, we call the method the Variational Garrote (VG).

The paper is organized as follows. In section 2 we introduce the model and
we derive the variational approximation. We show that the combination of the
variational approximation and L0 regularization has the effect of making the
problem effectively of maximal rank by introducing a ’variational ridge term’.
As a result, the solution is well defined even when p < n as long as the number
of predictive features is less than p (which is controlled by the sparsity prior).

To gain further insight, in section 3 we study the case when the design
matrix is orthogonal. In this case the solution can be computed exactly in
closed form with no need to resort to approximations. In the variational ap-
proximation, we show for the uni-variate case that the solution is either unique
or has two solutions, depending on the input-output correlations, the number
of samples p and on the sparsity prior γ. We derive a phase plot and show
that the solution is unique, when the sparsity prior is not too strong or when
the input-output correlation is not too large. The input-output behavior of
the VG is shown to be close to optimal as a smoothed version of hard feature
selection. We argue that this behavior also holds in the multi-variate case.

In section 4 we compare the VG with a number of other MAP methods,
such as Lasso and ridge regression and with the paired mean field method
(PMF) [1], a recently proposed variational bayesian method. We show that
the VG and PMF significantly outperform the Lasso and ridge regression on
a large number of different examples both in terms of the accuracy of the
solution, as well as in prediction error. In addition, we show that the VG do not
suffer from the inconsistency of the Lasso method when the input correlations
are large. We show in detail how all methods compare as a function of the level
of noise, the sparsity of the target solution, the number of samples and the
number of irrelevant predictors. Globally, VG is significantly faster than PMF
and tends to perform better as the problems become denser and in problems
with strongly correlated inputs.
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2 The variational approximation

Consider the regression model of the form 1

yµ =
n
∑

i=1

wisix
µ
i + ξµ

n
∑

i=1

si ≤ t (2)

with si = 0, 1. The bits si = 1 will identify the predictive inputs i. Using a
Bayesian description, and denoting the data by D : {xµ, yµ}, µ = 1, . . . , p, the
likelihood term is given by

p(y|x, s,w, β) =

√

β

2π
exp



−β

2

(

y −
n
∑

i=1

wisixi

)2




p(D|s,w, β) =
∏

µ

p(yµ|xµ, s,w, β)

=

(

β

2π

)p/2

exp



−βp

2





n
∑

i,j=1

sisjwiwjχij − 2

n
∑

i=1

wisibi + σ2
y









(3)

with bi =
1
p

∑

µ x
µ
i y

µ, σ2
y = 1

p

∑

µ(y
µ)2, χij =

1
p

∑

µ x
µ
i x

µ
j .

We should also specify prior distributions over s,w, β. For concreteness,
we assume that the prior over s is factorized over the individual si, each with
identical prior probability:

p(s|γ) =
n
∏

i=1

p(si|γ) p(si|γ) =
exp (γsi)

1 + exp(γ)
(4)

with γ given which specifies the sparsity of the solution. We denote by p(w, β)
the prior over the inverse noise variance β and the feature weights w. We
will leave this prior unspecified since its choice does not affect the variational
approximation. 2

The posterior becomes

p(s,w, β|D, γ) =
p(w, β)p(s|γ)p(D|s,w, β)

p(D|γ) (5)

Computing the MAP estimate or computing statistics from the posterior is
complex in particular due to the discrete nature or s. We propose to com-
pute a variational approximation to the marginal posterior p(w, β|D, γ) =

1 We assume from here on without loss of generality that 1

p

∑p
µ=1

xµ
i = 1

p

∑p
µ=1

yµ = 0
2 It can be shown that the regression model specified by Eqs. 3 and 4 is identical to the

spike and slab model, with the difference that the latter usually contains a (Gaussian) prior
over the wi which could also be added in the above representation[1]. See appendix C for
details.
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∑

s
p(s,w, β|D, γ) and computing the MAP solution with respect to w, β.

Since p(D|γ) does not depend on w, β we can ignore it.
The posterior distribution Eq. 5 for given w, β is a typical Boltzmann

distribution involving terms linear and quadratic in si. It is well-known that
when the effective couplings wiwjχij are small, one can obtain good approx-
imations using methods that originated in the statistical physics community
and where si denote binary spins. Most prominently, one can use the mean
field or variational approximation [9], the TAP approximation [10] or belief
propagation (BP) [11]. For introductions into these methods also see [12,13].
Here, we will develop a solution based on the simplest possible variational
approximation and leave the possible improvements using BP or structured
mean field approximations to the future.

We approximate the sum by the variational bound using Jensen’s inequal-
ity.

log
∑

s

p(s|γ)p(D|s,w, β) ≥ −
∑

s

q(s) log
q(s)

p(s|γ)p(D|s,w, β)

= −F (q,w, β) (6)

q(s) is called the variational approximation and can be any positive probabil-
ity distribution on s and F (q,w, β) is called the variational free energy. The
optimal q(s) is found by minimizing F (q,w, β) with respect to q(s) so that
the tightest bound - best approximation - is obtained.

In order to be able to compute the variational free energy efficiently, q(s)
must be a tractable probability distribution, such as a chain or a tree with
limited tree-width [14]. Here we consider the simplest case where q(s) is a fully
factorized distribution: q(s) =

∏n
i=1 qi(si) with qi(si) = misi+(1−mi)(1−si),

so that q is fully specified by the expected values mi = qi(si = 1), which we
collectively denote by m. The expectation values with respect to q can now
be easily evaluated and the result is

F =
βp

2





n
∑

i,j

mimjwiwjχij +
∑

i

mi(1−mi)w
2
i χii − 2

n
∑

i=1

miwibi + σ2
y





− γ

n
∑

i=1

mi +

n
∑

i=1

(mi logmi + (1−mi) log(1−mi))−
p

2
log

β

2π
(7)

where we have omitted terms independent of m,β,w. The first line is due to
the likelihood term, the second line is due to the prior on s and the entropy
of q(s). The approximate marginal posterior is then

p(w, β|D, γ) ∝ p(w, β)
∑

s

p(s|γ)p(D|s,w, β)

≈ p(w, β) exp(−F (m,w, β, γ))

We can compute the variational approximationm for given w, β, γ by min-
imizing F with respect to m. In addition, p(w, β|D, γ) needs to be maximized
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with respect to w, β. Note, that the variational approximation only depends
on the likelihood term and the prior on γ, since these are the only terms that
depend on s. Thus, for givenw, the variational approximation does not depend
on the particular choices for the prior p(w, β). For concreteness, we assume a
flat prior p(w, β) ∝ 1. We set the derivatives of F with respect m,w, β equal
to zero. This gives the following set of fixed point equations:

mi = σ

(

γ +
βp

2
w2

i χii

)

(8)

w = (χ′)−1b χ′
ij = χijmj + (1−mj)χjjδij (9)

1

β
= σ2

y −
n
∑

i=1

miwibi (10)

with σ(x) = (1+ exp(−x))−1 and where in Eq. 10 we have used Eq. 9. Eqs. 8-
10 provide the final solution. They can be solved by fixed point iteration as
outlined in Algorithm 1: Initialize m at random. Compute w by solving the
linear system Eq. 9 and β from Eq. 10. Compute a new solution for m from
Eq.8.

Within the variational/MAP approximation the predictive model is given
by

y =
∑

i

miwixi + ξ (11)

with
〈

ξ2
〉

= 1/β and m,w, β as estimated by the above procedure. Eq. 11 has
some similarity with Breiman’s non-negative Garrote method [15]. It computes
the solution in a two step approach: it computes first wi using OLS and then
finds mi by minimizing

∑

µ

(

yµ −
n
∑

i=1

xµ
i wimi

)2

subject to mi ≥ 0
∑

i

mi ≤ t

Because of this similarity, we refer to our method as the variational Garrote
(VG). Note, that because of the OLS step the non-negative garrote requires
that p ≥ n. Instead, the variational solution Eqs. 8-10 computes the entire
solution in one step (and as we will see does not require p ≥ n).

Let us pause to make some observations about this solution. One might
naively expect that the variational approximation would simply consist of
replacing wisi in Eq. 2 by its variational expectation wimi. If this were the
case, m would disappear entirely from the equations and one would expect in
Eq. 9 the OLS solution with the normal input covariance matrix χ instead of
the new matrix χ′ (note, that in the special case that mi = 1 for all i, χ′ = χ
and Eq. 9 does reduce to the OLS solution). Instead, m and w are both to be
optimized, giving in general a different solution than the OLS solution 3.

3 The technical reason that this does not occur is that in the computation of the expec-
tation with respect to the distribution q that results in Eq. 7 one has 〈sisj〉 = mimj for
i 6= j, but

〈

s2i
〉

= 〈si〉 = mi.
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When mi < 1, χ′ differs from χ by rescaling with mi and adding a positive
diagonal to it, a ’variational ridge’. This is similar to the mechanism of ridge
regression, but with the important difference that the diagonal term depends
on i and is dynamically adjusted depending on the solution for m. Thus, the
sparsity prior together with variational approximation provides a mechanism
that solves the rank problem. When all mi < 1, χ′ is of maximal rank. Each
mi that approaches 1, reduces the rank by one. Thus, if χ has rank p < n,
χ′ can be still of rank n when no more than p of the mi = 1, the remaining
n− p of the mi < 1 making up for the rank deficiency. Note, that the size of
mi (and thus the rank of χ′) is controlled by γ through Eq. 8.

In the above procedure, we compute the VG solution for fixed γ and choose
its optimal value through cross validation on independent data [16]. This has
the advantage that our result is independent of our (possibly incorrect) prior
belief.

But another important advantage of varying γ manually is that it helps
to avoid local minima. When we increase γ from a negative value γmin to a
maximal value γmax in small steps, we obtain a sequence of solutions with
decreasing sparseness. These solutions will better fit the data and as a result
β increases with γ. Thus, increasing γ implements an annealing mechanism
where we sequentially obtain solutions at lower noise levels. We found empir-
ically that this approach is effective to reduce the problem of local minima.
To further deal with the effect of hysteresis (see section 3) we recompute the
solution from γmax down to γmin and choose the solution with lowest free
energy.

The minimal value of γ is chosen as the largest value such that mi = ǫ,
with ǫ small. We find from Eqs. 8-10 that

γmin = −pb2iχii

2σ2
y

+ σ−1(ǫ) +O(ǫ) (12)

with σ−1(x) = log(x/(1 − x)). We heuristically set the maximal value of γ as
well as the step size.

In appendix B we provide an alternative fixed point iteration scheme that
is more efficient in the large n small p limit. Whereas Eqs. 8-10 require the
repeated solution of a n-dimensional linear system, the dual formulation,
Eqs. (8),(21),(24)-(27), requires the repeated solution of a p dimensional linear
system. Algorithm 1 summarizes the VG method.

3 Orthogonal and uni-variate case

In order to obtain further insight in the solution, consider the case in which the
inputs are uncorrelated: χij = δij . In this case, we can derive the MAP solution
of Eq. 5 exactly, without the need to resort to the variational approximation.
Eq. 5 reduces to a distribution that factorizes over i with log probability
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input : Data D : {xµ, yµ}, µ = 1, . . . , p ; ǫ and step-size ∆γ
output : w,m, β, γ solution with minimal cross validation error

1 Preprocess data such that
∑

µ xµ
i =

∑

µ yµ = 0 and partition D in Dtrain, Dval

2 Compute bi =
1

p

∑

µ xµ
i y

µ and if n < p compute χij = 1

p

∑

µ xµ
i x

µ
j

3 Compute γmin from ǫ and γmax from γmin and ∆γ
4 for γ = γmin : ∆γ : γmax do // FORWARD PASS
5 η ← 1
6 while not converged do
7 Compute w, β from Eqs. (9)-(10) (n < p) or Eqs. (21), (24)-(27) (n > p);
8 Compute m′ using a smoothed version of Eq. (8): m′

i ← (1− η)mi + ησ(. . .)
9 if maxi |m′

i −mi| > 0.1 then
10 η ← η/2

11 m←m′

12 Store solution (w1,m1, β1)γ and F1(γ)← F ((w1,m1, β1)γ ) from Eq. (7)

13 for γ = γmax : −∆γ : γmin do // BACKWARD PASS
14 As 5− 11
15 Store solution (w2,m2, β2)γ and F2(γ)← F ((w2,m2, β2)γ ) from Eq. (7)

16 for γ = γmin : ∆γ : γmax do
17 Choose solution (w,m, β)γ that has minimal F1,2(γ)

18 Compute cross validation error on Dval using Eq. (11)

19 Select w,m, β, γ with minimal cross validation error

Algorithm 1: The Variational Garrote algorithm.

proportional to

L =
p

2
log β − βp

2

(

n
∑

i=1

si(w
2
i − 2wibi) + σ2

y

)

+ γ

n
∑

i=1

si

Maximizing wrt wi, β yields wi = bi, β
−1 = σ2

y −
∑n

i=1 sib
2
i and

L =
p

2
log β +

n
∑

i=1

si

(

βp

2
b2i + γ

)

− βp

2
σ2
y

Assume without loss of generality that b2i are sorted in decreasing order. L is
maximized by setting si = 1 when βp

2
b2i + γ > 0 and si = 0 otherwise. Thus,

the optimal solution is s1:k = 1, sk+1:n = 0, β−1 = σ2
y −∑k

i=1 b
2
i with k the

smallest integer such that

βp

2
b2k+1 + γ < 0 (13)

By varying γ from small to large, we find a sequence of solutions with decreas-
ing sparsity.

In the variational approximation the solution is very similar but not iden-
tical. Eq. 9 gives the same solution wi = bi. Eqs. 8 and 10 become

mi = σ

(

γ +
βp

2
b2i

)

1/β = σ2
y −

∑

i

b2imi
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which we can interpret as the variational approximations of Eq. 13, with
m1:k ≈ 1 and mk+1:n ≈ 0. The term

∑

i b
2
imi is the explained variance and

is subtracted from the total output variance to give an estimate of the noise
variance 1/β.

Note that the posterior is factorized in si, the variational approximation is
not identical to the exact map solution Eq. 13, although the results are very
similar. The relation is si = 0 ⇔ mi < 0.5 and si = 1 ⇔ mi > 0.5.

In order to further analyze the variational solution, we consider the 1-
dimensional case. The variational equations become

m = σ

(

γ +
p

2

ρ

1− ρm

)

= f(m) (14)

1

β
= σ2

y(1−mρ) (15)

with ρ = b2/σ2
y the squared correlation coefficient.

In Eq. 14, we have eliminated β and we must find a solution for m for this
non-linear equation. We see that it depends on the input-output correlation
ρ, the number of samples p and the sparsity γ. For p = 100, the solution for
different ρ, γ is illustrated in figure 10 (see appendix A). Eq. 14 has one or
three solutions for m, depending on the values of γ, ρ, p. The three solutions
correspond to two local minima and one local maximum of the free energy F .
For γ = −40 and γ = −10, we plot the stable solution(s) for different values
of ρ in the inserts in fig. 1. The best variational solution for m is given by the
solution with the lowest free energy, indicated by the solid lines in the inserts
in fig. 1.

Fig. 1 further shows the phase plot of γ, ρ that indicates that the variational
solution is unique for γ > γ∗ or for ρ < ρ∗. The solid line for 0 < ρ < ρ∗ in
fig. 1 indicates a smooth (second order) phase transition from m = 0 to m = 1.
For ρ > ρ∗, the transition from m = 0 to m = 1 is discontinuous: for each ρ
there is a range of values of γ where two variational solutionsm ≈ 0 and m ≈ 1
co-exist. For comparison, we also show the line γ = −pρ/2 that separates the
solution s = 0 and s = 1 according the the exact (non-variational) solution
Eq. 13.

The multi-valued variational solution results in a hysteresis effect. When
the solution is computed for increasing γ, the m ≈ 0 solution is obtained until
it no longer exists. If the sequence of solutions is computed for decreasing γ
the m ≈ 1 solution is obtained for values of γ where previously the m ≈ 0
solution was obtained.

From this simple one-dimensional case we may infer that the variational
approximation is relatively easy to compute in the uni-modal region (small ρ or
γ not too negative) and becomes more inaccurate in the region where multiple
minima exist (region between the dot-dashed and dashed lines in fig. 1) .

It is interesting to compare the uni-variate solution of the variational gar-
rote with ridge regression, Lasso or Breiman’s Garrote, which was previously
done for the latter three methods in [2]. Suppose that data are generated from
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m

Fig. 1 Phase plot ρ, γ for p = 100 giving the different solutions for m. Dashed and dot-
dashed lines for ρ > ρ∗ = 0.28 are from Eq. 18 where two solutions for m exist. Solid line
for ρ < ρ∗ is the solution for γ when m = 1/2, to indicate the transition from the unique
solution m ≈ 0 to the unique solution m ≈ 1. Dotted line is the exact transition from
s = 0 to s = 1 from Eq. 13. Insets indicate solutions for m versus ρ for γ = −10, p = 100
(top-right) and for γ = −40, p = 100 (bottom-left). In the lower left corner of the insets,
the unique solution m ≈ 0 is found. In the top right corner, the unique solution m ≈ 1 is
found. Between the dot-dashed and the dashed line, the two variational solutions m ≈ 0
and m ≈ 1 co-exist.

the model y = wx + ξ with
〈

ξ2
〉

=
〈

x2
〉

= 1. We compare the solutions as a
function of w. The OLS solution is approximately given by wols ≈ 〈xy〉 = w,
where we ignore the statistical deviations of order 1/p due to the finite data
set size. Similarly, the ridge regression solution is given by wridge ≈ λw, with
0 < λ < 1 depending on the ridge prior. The Lasso solution (for non-negative
w) is given by wlasso = (w − γ)+ [2], with γ depending on the L1 constraint.
Breiman’s Garrote solution is given by wgarrote = (1 − γ

w2 )
+w [2], with γ de-

pending on the L1 constraint. The VG solution is given by wvg = mw, with
m the solution of Eq. 14. Note, that the VG solution depends, in addition to
w, γ, on the unexplained variance σ2

y and the number of samples p, whereas
the other methods do not.

The qualitative difference of the solutions is shown in fig. 2. The ridge
regression solution is off by a constant multiplicative factor. The Lasso solution
is zero for small w and for larger w gives a solution that is shifted downwards
by a constant factor. Breiman’s Garrote is identical to the Lasso for small w
and shrinks less for larger w. The VG gives an almost ideal behavior and can
be interpreted as a soft version of variable selection: For small w the solution
is close to zero and the variable is ignored, and above a threshold it is identical
to the OLS solution.
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Fig. 2 Uni-variate solution for different regression methods. All methods yield a shrinked
solution (deviation from diagonal line). Variational Garrote (VG) with γ = −10, p = 100
and σ2

y = 1. Ridge regression with λ = 0.5. Garrote with γ = 1/4. Lasso with γ = 1/2.

The qualitative nature of the phase plot fig. 1 and the input-output be-
havior fig. 2 extends to the multi-variate orthogonal case. The symmetry
breaking of feature i is independent of all other features, except for the term
δ =

∑

j 6=i b
2
jmj that enters through β. If we increase γ, δ increases in steps

each time that one of the features j switches from mj ≈ 0 to mj ≈ 1. Thus δ
is constant almost always, except at the step points. Since the critical values
of ρ and γ depend in a simple way on δ, the phase plot for the multivariate
orthogonal case is qualitatively the same as for the uni-variate case.

4 Numerical examples

In the following examples, we compare the VG with Lasso, ridge regression
and in some cases, with the paired mean field approach (PMF) [1].

For most of the examples, we generate a training set, a validation set
and a test set. Inputs are generated from a zero mean multi-variate Gaussian
distribution with specified covariance structure. We generate outputs yµ =
∑

i ŵix
µ
i + dξµ with dξµ ∈ N (0, σ̂) and ŵi depending on the problem.

For VG, ridge regression and Lasso, we optimize the model parameters
on the training set and, when necessary, optimize the hyper parameters (γ in
the case of VG, λ in the case of ridge regression and Lasso) that minimize
the quadratic error on the validation set. For the Lasso, we used the method
described in [3] 4.

4 http://www-stat.stanford.edu/~tibs/glmnet-matlab/.

http://www-stat.stanford.edu/~tibs/glmnet-matlab/
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Comparison with PMF is performed using the software available online
for the regression case with one-dimensional output 5. Since PMF optimizes
hyperparameters as well, we merge both training and validation sets and the
resulting dataset is used as input for the PMF method. This ensures that all
methods use the same data for parameter estimation.

We define the solution vector for a given method as v. For VG, the compo-
nents are vi ≡ miwi. In the case of PMF, mi corresponds to the spike-and-slab
variational posterior and wi to the variational mean for the weights 6. For
Ridge and Lasso vi ≡ wi.

4.1 Small Example 1

In the first example, we take independent inputs xµ
i ∈ N (0, 1) and a teacher

weight vector with only one non-zero entry: ŵ = (1, 0, . . . , 0), n = 100 and
σ̂ = 1. The training set size p = 50, validation set size pv = 50 and test set size
pt = 400. We choose ǫ = 0.001 in Eq. 12, γmax = 0.02γmin, ∆γ = −0.02γmin

(see Algorithm 1 for details).

Results for a single run of the VG are shown in fig. 3. In fig. 3a, we plot the
minimal variational free energy F versus γ for both the forward and backward
run. Note, the hysteresis effect due to the local minima. For each γ, we use the
solution with the lowest F . In fig. 3b, we plot the training error and validation
error versus γ. The optimal γ ≈ −21 is denoted by a star and the corresponding
σ = 1/

√
β = 1.05. In fig. 3c, we plot the non-zero component v1 = m1w1 and

the maximum absolute value of the remaining components versus γ. Note the
robustness of the VG solution in the sense of the large range of γ values for
which the correct solution is found. In fig. 3d, we plot the optimal solution
vi = miwi versus i.

In fig. 4 we show the Lasso (top row) and ridge regression (bottom row)
results for the same data set. The optimal value for λ minimizes the validation
error (star). In fig. 4b,c we see that the Lasso selects a number of incorrect
features as well. Fig. 4b also shows that the Lasso solution with a larger λ in
the range 0.45 < λ < 0.95 could select the single correct feature, but would
then estimate ŵ1 too small due to the large shrinkage effect. Ridge regression
gives very bad results. The non-zero feature is too small and the remaining
features have large values. Note from fig. 4e, that ridge regression yields a
non-sparse solution for all values of λ.

Table 1 shows that the VG significantly outperforms the Lasso method
and ridge regression both in terms of prediction error, the accuracy of the
estimation of the parameters and the number of non-zero parameters. In this
simple example, there is no significant difference in the prediction error of
Lasso, PMF and VG, but the Lasso solution is significantly less sparse. There
is no significant difference between the solutions found by PMF and VG.

5 http://www.well.ox.ac.uk/~mtitsias/software.html .
6 The notation in [1] uses w̃i for wi and γi for mi.

http://www.well.ox.ac.uk/~mtitsias/software.html
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Fig. 3 Top left (a): Minimal variational free energy versus γ. The two curves correspond to
warm start solution from small to large γ (’forward’) and from large to small γ (’backward’)
(see also Algorithm 1). Top right (b): Training and validation error versus γ. The optimal γ
minimizes the validation error. Bottom left (c): Solution v1 = m1w1 and maxi=2:n |miwi|.
The correct solution is found in the range γ ≈ −20 to γ ≈ −5. Bottom right (d): Optimal
solution vi = wimi versus i.

Train Val Test # non-zero ‖δv‖1
Ridge 0.60 ± 0.43 1.72± 0.39 1.80± 0.12 − 3.97± 1.23
Lasso 0.78 ± 0.26 1.07± 0.20 1.17± 0.20 8.65± 6.75 0.80± 0.57
PMF − − 1.02± 0.10 1.5± 1.19 0.33± 0.37
VG 0.85 ± 0.22 0.96± 0.17 1.01± 0.10 1.20± 0.52 0.31± 0.30
True 0.93 ± 0.14 0.87± 0.20 0.98± 0.04 1 0

Table 1 Results for Example 1 averaged over 20 instances. Train is mean squared error
(MSE) on the training set. Val is MSE on the validation set. Test is MSE on the test set.
# non-zero is the number of non-zero elements in the Lasso solution and

∑n
i=1

(mi > 0.5)
for VG and PMF. ‖δv‖1 =

∑n
i=1
|vi − ŵi|.

4.2 Small Example 2

In the second example, we consider the effect of correlations in the input dis-
tribution. Following [2] we generate input data from a multi-variate Gaussian
distribution with covariance matrix χij = ζ|i−j|, with ζ = 0.5. In addition,
we choose multiple features non-zero: ŵi = 1, i = 1, 2, 5, 10, 50 and all other
ŵi = 0. We use n = 100, σ̂ = 1 and p/pv/pt = 50/50/400. In table 2 we
compare the performance of the VG, Lasso, ridge regression and PMF on
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Fig. 4 Regression solution for Lasso and ridge regression for same data set as in fig. 3. Top
row (a,b,c): Lasso. Bottom row (d,e,f): Ridge regression. Left column (a,d): training and
validation errors versus λ. Middle column (b,e): Solution for the non-zero feature v1 and the
zero-features maxi=2:n |vi|. Right column (c,f): Optimal Lasso and ridge regression solution
vi versus i.

Train Val Test # non-zero ‖δv‖1
Ridge 0.32± 0.27 3.30± 0.67 3.46± 0.31 − 11.09± 0.93
Lasso 0.75± 0.37 1.39± 0.37 1.48± 0.29 16.30 ± 6.60 2.08± 0.87
PMF − − 1.06± 0.11 5.15± 0.49 0.67± 0.35
VG 0.80± 0.25 1.13± 0.31 1.15± 0.21 5.05± 0.51 0.83± 0.54
True 0.93± 0.14 0.87± 0.20 0.98± 0.04 5 0

Table 2 Results for Example 2. For definitions see caption of Table 1 above.

20 random instances. We see that the VG and PMF significantly outperform
the Lasso method and ridge regression both in terms of prediction error and
accuracy of the estimation of the parameters. Again, there is no significant
difference between PMF and VG.

4.3 Effect of the noise

In this subsection we show the accuracy VG, Lasso and PMF as a function of
the noise σ̂2. We generate data with n = 100, p = 100, pv = 20 and ŵi = 1 for
20 randomly chosen components i. We vary σ̂2 in the range 10−4 to 10 for for
two values of the correlation strength in the inputs ζ = 0.5, 0.95.

For weakly correlated inputs, Fig. 5a., we distinguish three noise domains:
for large noise all methods produce errors of O(1) and fail to find the predictive
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Fig. 5 Accuracy of VG, Lasso and PMF as a function of the noise. Errorbars of ‖ δv ‖1
for 10 different random instances. Data is generated using n = 100, p = 100, pv = 20 and
ŵi = 1 for 20 randomly chosen components i. We consider two values of the correlation
strength in the inputs: (a) weakly correlated inputs ζ = 0.5 and (b) strongly correlated
inputs ζ = 0.95. For PMF we choose the best solution (the one with highest value of the
bound) for 10 different random initializations for each of the 10 instances.

features. For intermediate and low noise levels, VG and PMF are significantly
better than Lasso. In the limit of zero noise, the error of VG and PMF keeps
on decreasing whereas the Lasso error saturates to a constant value.

For strongly correlated inputs, Fig. 5b., we observe that whereas the error
of VG scales approximately as before, PMF gets stuck in local minima in
some instances, yielding worse average performance than VG. See section 5
for a further discussion of this point.

4.4 Analysis of consistency: VG vs Lasso

It is well-known that the Lasso method may yield inconsistent results when
input variables are correlated. In [17], necessary and sufficient conditions for
consistency are derived. In addition, they give a number of examples where
Lasso gives inconsistent results. Their simplest example has three input vari-
ables, x1, x2, x3. x1, x2, ξ, e are independent and Normal distributed random
variables, x3 = 2/3x1 + 2/3x2 + ξ and y =

∑3

i=1 ŵixi + e, p = 1000. When
ŵ = (−2, 3, 0) (Example b) this example is consistent, but when ŵ = (2, 3, 0)
(Example a) this example violates the consistency condition. The Lasso and
VG solution for Example a for different values of λ and γ are shown in fig. 6a,b,
respectively. The VG solution vi = miwi in terms of mi and wi is shown in
fig. 6c,d. The average results over 100 instances for Example a and Example b
are shown in table 3. We see that the VG does not suffer from inconsistency
and always finds the correct solution. This is remarkable as one might have
feared that the non-convexity of the VG would result in sub-optimal local
minima.
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Fig. 6 (Color online) Lasso and VG solution for the inconsistent Example a of [17]. Top
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the correct sparsity (w1,2 6= 0, w3 = 0) is obtained. Top right: the VG solution for v versus γ
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Example a Example b
‖δv‖1 max(|v3|) ‖δv‖1 max(|v3|)

Ridge 0.64± 0.18 0.48 0.02± 0.02 0.27
Lasso 0.19± 0.14 0.30 0.00± 0.00 0.00
VG 0.05± 0.03 0.00 0.00± 0.00 0.00

Table 3 Accuracy of Ridge, Lasso and VG for Example 1a,b from [17]. p = pv = 1000.
Parameters λ (Ridge and Lasso) and γ (VG) optimized through cross validation. ‖δv‖1
as before, max(|v3|) is maximum over 100 trials of the absolute value of v3. Example a is
inconsistent for Lasso and yields much larger errors than the VG. Example b is consistent
and the quality of the Lasso and VG are similar. Ridge regression is bad for both examples.

4.5 Boston-housing dataset: VG vs PMF

We now focus on comparing in more detail the performance of VG with PMF.
In [1], the Boston-housing dataset7 is used to test the accuracy of the PMF
approximation.

This is a linear regression problem that consists of 456 training examples
with one-dimensional response variable y and 13 predictors that include hous-
ing values. We use here the same setup as in [1] to compare VG with PMF. For
PMF, hyperparameters were fixed to values σ = 0.1×var(y), π = 0.25, σw = 1

7 http://archive.ics.uci.edu/ml/datasets/Housing
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soft-error extreme-error
PMF [1] 0.208 [0.002, 0.454] 0.204 [0.002, 0.454]
PMF 0.237 [0.001, 0.454] 0.209 [0.001, 0.454]
VG 0.006 [0.006, 0.006] 0.006 [0.006, 0.006]

Table 4 Comparison of VG and PMF in the Boston-housing dataset in terms of approxi-
mating the ground-truth ŵ. Average errors ‖δv‖1 =

∑n
i=1
|vi− ŵi| , with vi the approxima-

tion of VG or PMF, together with 95% confidence intervals (given by percentiles) obtained
after 300 random initializations for both soft and extreme initializations.

where var(y) denotes the output variance. For the VG, we use β = 1/σ2,
γ = log(π/(1−π)) and hyperparameter σw is implicitly equal to ∞ in the VG
(see Appendix C for details of how both models compare). Since γ and β are
given, the VG algorithm reduces to iterate eqs. (8) and (9) starting from a
random m. Similarly, the PMF reduces to perform an E-step given the fixed
hyperparameter values.

As in [1], we use random initial values for the variational parameters be-

tween 0 and 1 (soft initialization) and random values equal to 0 or 1 (hard
initialization). We considered as ground truth ŵ ≡ wtr the result of the effi-
cient paired Gibbs sampler developed in [1].

Table 4 shows the results. The first and second rows show the errors re-
ported in [1] and the errors that we obtain using their software, respectively.
We observe a small discrepancy in the average errors. However, if we consider
the percentiles, the results are consistent. In practice, what we observe is that
PMF finds two local optima depending on the initialization: one is the correct
solution (error ≈ 10−3) whereas the other has error 0.454. These two solu-
tions are found equally often for both soft or hard initializations, showing no
dependence on the type of initialization, in agreement with [1].

The results of VG are shown on the third row. Contrary to PMF, the
VG shows no dependence on the initialization and always finds a solution
with an error of order 10−3. These results give evidence that the combined
variational/MAP approach of VG can be better than PMF avoiding local
minima.

4.6 Dependence on the Number of Samples

We now analyze the performance of all considered methods as a function of the
proportion of samples available. We first analyze the case when inputs are not
correlated and then consider correlations of practical relevance that appear in
genetic datasets.

For these experiments, we generate the data for dimension n = 500 and
noise level β = 1. We explore two scenarios: very sparse problems with only
10% of active predictors and denser problems with 25% of active predictors.
The weights of the active predictors are set to 1.
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Fig. 7 Uncorrelated case: Performance as a function of number of training samples p
for two levels of sparsity (10% and 25% of non-zero entries). For each value averages over 20
runs are plotted. Top: area under the ROC curves (see text for definition). Middle: recon-
struction error, defined as ‖δv‖1 =

∑n
i=1
|vi − ŵi|. Bottom: generalization error, defined

as the MSE in the test set. For all methods except for PMF, train set size is p and vali-
dation sets size pv = p/30. For PMF the training set has size p + pv. Lowest curve shows
theoretically optimal generalization error obtained by using the target weights from which
the data is generated.

4.6.1 Uncorrelated Case

Figure 7 shows results of performance for uncorrelated inputs. Top plots show
the area under the Receiver Operating Characteristic (ROC) curve. The ROC
curve is calculated by thresholding the weight estimates. Those weights that
lie above (below) the threshold are considered as active (inactive) predictors.
The ROC curve plots the fraction of true positives versus the fraction of false
positives for all threshold values. The area under the curve measures the abil-
ity of the method to correctly classify those predictors that are and are not
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active. A value of 1 for the area represents a perfect classification whereas
0.5 represents random classification. The ROC is plotted as a function of the
fraction of samples relative to the number of inputs: p/n.

For both VG and PMF, we observe in all performance measures a transi-
tion from a regime where solutions are poor to a regime with almost perfect
recovery. This transition, not noticeable in the other (convex) methods, oc-
curs at around 35% of examples for 10% of sparsity (left column) and shifts to
higher values for denser problems (≈ 60% for 25% of sparsity, right column).

If we compare VG with PMF we see that in the regime where both methods
perform well, PMF performs slightly better than VG in terms of reconstruc-
tion error but their performance is identical in terms of the area under the
ROC curve. The difference between VG and PMF is slightly more pronounced
for denser problems. We also see that Lasso performs better than Ridge regres-
sion, but the difference between both methods tends to be smaller for denser
problems. Both Lasso and ridge regression are significantly worse than VG
and PMF.

4.6.2 Correlated case: Genetic dataset

We now consider correlated inputs. We use input data obtained from a ge-
netic domain, where inputs xi denote single nucleotide polymorphisms (SNPs)
that have values xi = {0, 1, 2}. SNPs typically show correlations structured in
blocks, where nearby SNPs are highly correlated, but show no dependence on
distant SNPs. An example of such correlation matrix can be seen in Figure 8
(left). The output data are generated as above.

Figure 8 (right) shows the results. Contrary to the uncorrelated case, the
existence of strong correlations between some of the predictors prevents a
clear distinction between solution regimes as a function of training set size.
We observe, as before, that both VG and PMF are the preferable methods for
sufficiently large training set size. In the three performance measures consid-
ered, VG performs better or comparable to PMF. Interestingly, the difference
between VG and PMF becomes more significant for denser problems, when we
expect more difficulty due to more presence of local minima.

4.7 Scaling with dimension n

We conclude our empirical study by analyzing how the methods scale, both in
terms of the quality of the solution as in terms of CPU times, as a function of
the number of features n for a constant number of samples. We use the data
as in Example 2 above, with uncorrelated inputs.

Figure 9 shows the results for VG, PMF and Lasso. For the VG, we use
the dual method described in the appendix B. Fig. 9a shows that the VG
and PMF have constant quality in terms of the error ‖δv‖1, whereas the
quality of the Lasso deteriorates with n. Fig. 9b shows that the VG and PMF
have close to optimal norms L0 = 5 and that the L0 norm of the Lasso
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Fig. 8 Correlated case: (LEFT) (Color online) Example of input correlation matrix.
(RIGHT) Performance as a function of number of training samples p for two levels of
sparsity (10% and 25% of non-zero entries). For each value averages over 20 runs are plotted.
Top: area under the ROC curves (see text for definition). Middle: reconstruction error,
defined as ‖δv‖1 =

∑n
i=1
|vi − ŵi|. Bottom: generalization error, defined as the MSE in

the validation set. For all methods except for PMF, train set size is p and validation sets
size pv = p/10. For PMF the training set has size p + pv.

deteriorates with n. Fig. 9c shows that the computation time of all methods
scales approximately linear with n. Lasso is significantly faster than VG and
PMF, and VG is significantly faster than PMF. Note, however that the VG
and the PMF methods are implemented in Matlab whereas the Lasso method
uses an optimized Fortran implementation.
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Fig. 9 Scaling with n: performance of VG, PMF and Lasso as a function of the number
of features n. Data are generated as in Example 2. p = 100, pv = 100, β = 2, ζ = 0.

5 Discussion

In this paper, we have introduced a new variational method for sparse regres-
sion using L0 penalty. We have presented a minimal version of the model with
no (hierarchical) prior distributions to highlight some important features: the
variational ridge term that dynamically regularizes the regression; the input-
output behavior as a smoothed version of hard feature selection; a phase plot
that shows when the variational solution is unique in the orthogonal design case
for different p, ρ, γ. We have also shown numerically that the VG is efficient
and accurate and yields results that significantly outperform other considered
methods.

The VG suffers from local minima as can be expected for any method
that needs to solve a non-convex problem, like the PMF. From the numerical
experiments we can conclude that VG is on average preferable to PMF in
practical scenarios with strongly correlated inputs and/or moderately sparse
problems, where the local minima problem is more severe. Although we have
no principled solution for the local minima problem, we think that the com-
bined variational/MAP approach together with the the annealing procedure
that results from increasing γ, followed by a ”heating” phase to detect hys-
teresis works well in practice, helping to avoid local minima. Another obvious
approach is to use multiple restarts or using more powerful approximations,
such as structured mean field approximation or belief propagation. We remark
that the PMF in the general setting [1] includes an extra layer of flexibility that
can be used to capture correlations between input variables. Such extensions
can also be considered for VG.

We have not explored the use of different priors on w or on β. In addition,
a prior could be imposed on γ. It is likely that for particular problems the use
of a suitable prior could further improve the results.

We have seen that the performance of the VG is excellent in the zero noise
limit. In this limit, the regression problem reduces to a compressed sensing
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problem [18,19]. The performance of compressed sensing with Lq sparseness
penalty was analyzed theoretically in [20], showing the superiority of the L1

penalty in comparison to the L2 penalty and suggesting the optimality of the
L0 penalty. Our numerical result are in agreement with this finding.

Our implementation uses parallel updating of Eqs. 8-10, or Eqs. 8,21, 24-27
when using the dual formulation. One may consider also a sequential updating.
This was done successfully for the Lasso based on the idea of the Gauss-
Seidel algorithm [3]. The advantage of such an approach is that each update
is linear in both n and p, since only the non-zero components need to be
updated. However, the number of updates to converge will be larger. The
proof of convergence for such a coordinate descend method for the VG is likely
to be more complex than for the Lasso due to non-convexity. As a result, a
smoothing parameter η 6= 1 (see Algorithm 1) may still be required.
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A : Phase plot computation for the orthogonal case

In the uni-variate case, f(m) in Eq. 14 is an increasing function of m and crosses the line m
either 1 or three times, depending on the values of p and γ (see fig. 10). In the multivariate
orthogonal case, this is still true, since the influence of other features is only through β.
We can thus write β−1 = σ2

y(1 − ρm − δ), where 0 ≤ δ < 1 is a function of the variational
parameters of the other features. Thus, there are regions of parameter space γ, p, ρ where
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Fig. 10 (Color online) f(m) vs m. Left (a): p = 100, γ = −10, different lines correspond
to different values of 0 < ρ < 1 (higher lines are higher ρ). The solution for m is given by
the intersection f with the diagonal line. The solution for m is unique and increases with
increasing ρ. Right (b): Same as left, but with p = 100, γ = −30. Depending on ρ, there are
one or three solutions for m. The solutions close to m ≈ 0, 1 correspond to local minima of
F . The intermediate solution corresponds to a local maximum of F .

the uni-variate solution is unique and others for which there are two stable solutions.
The transition between these two regions is when f ′(m) = 1 and f(m) = m. These two

equations imply

(

1 +
p

2

)

ρ2m2 −
(

2ρ(1 − δ) +
p

2
ρ2

)

m+ (1− δ)2 = 0 (16)
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This quadratic equation in m has either zero, one or two solutions, corresponding to no
touching, touching once and touching twice, respectively. Denote a = (1 + p

2
)ρ2, b = 2ρ(1−

δ) + p
2
ρ2. The critical value for ρ, p is when Eq. 16 has one solution for m, which occurs

when

D = b2 − 4a(1 − δ)2 =
p

2
ρ2 (ρ− ρ∗)

(

p

2
ρ+ 2(1 − δ) + 2(1 − δ)

√

1 +
p

2

)

= 0

ρ∗ =
4

p
(1 − δ)

(√

1 +
p

2
− 1

)

(17)

Thus, D is positive when ρ > ρ∗ and Eq. 16 has two solutions for m. We denote these

solutions by m1,2 = b±
√

D
2a

. Note, that the solutions in these critical points only depend on
ρ, p. For each of these solutions we must find a γ such that f(m) = m, which is given by

γi = log
mi

1−mi

−
p

2

ρ

1− ρmi

i = 1, 2 (18)

It is easy to see that the smallest of these solutions m1 < m2 corresponds to a local maximum
of the free energy and can be discarded. Thus, when ρ > ρ∗ and γ2 < γ < γ1 two stable
variational solutions m ≈ 0, 1 co-exist.

When ρ < ρ∗, Eq. 16 has no solutions for m. In this case the conditions f ′(m) = 1 and
f(m) = m cannot be jointly satisfied and the variational solution is unique.

From Eq. 17 we see that ρ∗ is a decreasing function of p and when p ≫ 1, ρ∗ ≈ 2
√

2

p
.

In the critical point, where ρ = ρ∗(p), m = b/2a ≈ 1

2

(

1 +
√

2

p

)

and

γ∗ ≈ −
√

2p(1 − δ) (19)

When ρ < ρ∗ or γ > γ∗ the variational solution is unique. We illustrate the phase plot ρ, γ
for p = 100 in fig. 1a.

B : Dual Formulation

The solution of the system of Eqs. 8-10 by fixed point iteration requires the repeated solution
of the n dimensional linear system χ′w = b. When n > p, we can obtain a more efficient
method using a dual formulation.

We define new variables zµ =
∑

i miwix
µ
i and add Lagrange multipliers λµ:

F = −
p

2
log

β

2π
+

β

2

p
∑

µ

(zµ − yµ)2 +
βp

2

∑

i

mi(1−mi)w
2

i χii

− γ
n
∑

i=1

mi +
n
∑

i=1

(mi logmi + (1 −mi) log(1−mi))

+
∑

µ

λµ(zµ −
∑

i

miwix
µ
i ) (20)
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We compute the derivatives of Eq. 20:

∂F

∂wi

= mi



βp(1−mi)χiiwi −
∑

µ

λµxµ
i





∂F

∂zµ
= β(zµ − yµ) + λµ

∂F

∂β
= −

p

2β
+

1

2

p
∑

µ

(zµ − yµ)2 +
p

2

∑

i

mi(1−mi)w
2

i χii

∂F

∂mi

=
βp

2
(1− 2mi)w

2

i χii − γ + σ−1(mi)−
∑

µ

λµwix
µ
i

∂F

∂λµ
= zµ −

∑

i

miwix
µ
i

By setting ∂F
∂wi

= ∂F
∂zµ

= 0 we obtain

wi =
1

βpχii

1

1−mi

∑

µ

λµxµ
i (21)

and zµ = yµ − 1

β
λµ. Setting the remaining derivatives to zero, and eliminating wi and zµ

we obtain Eq. 8 and

β =
1

p

∑

µν

λµλνAµν (22)

βyµ =
∑

ν

Aµνλ
ν (23)

with Aµν given by

Aµν = δµν +
1

p

∑

i

mi

1−mi

xµ
i x

ν
i

χii

(24)

For given Aµν , let ŷ denote the solution of

p
∑

ν=1

Aµν ŷ
ν = yµ (25)

Then it is easy to verify that

1

β
=

1

p

∑

µ

ŷµyµ (26)

λµ = βŷµ (27)

solve the system of Eqs. 22-23.

C : Relation with the Paired-Mean Field approximation

The VG shares many similarities with the recently proposed paired mean field (PMF) vari-
ational approach [1]. Here we relate both approaches in terms of three different aspects: the
probabilistic model, the variational approximation and the optimization algorithm.
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Model : The model considered for the PMF variational approximation is defined for multiple
outputs and considers a linear combination of basis functions governed by a Gaussian
process. To relate this model to the one presented in this work, we consider the one-
dimensional output without the extra input layer.
The spike and slab model [5] considers a linear regression model of the form:

y =
n
∑

i=0

v̂ixi + ξ

v̂i ∼ πN (v̂i|0, σ
2

w) + (1 − π)δ0(v̂i), ∀i.

That is, the prior over the weights is factorized, with each weight distributed according
to a mixture distribution: with probability π, each v̂i is drawn from a Gaussian centered
at zero with variance σ2

w, and with probability 1 − π, each v̂i is zero. The sparsity of
the solution is controlled by π, either directly or by specifying a prior over π.
Observe that we can equivalently write v̂i as the product of a Bernoulli random variable
si ∼ πsi(1 − π)1−si and a Gaussian random variable wi ∼ N (wi|0, σ2

w), which is the
reparameterization used in [1].
To relate the model used in the VG defined by Eqs. (2) and (4) to the previous one we
make the following identifications:
– The prior on wi is flat, which corresponds to setting σw =∞ in [1].
– γ = log(π/(1 − π)).

Thus, the spike and slab model [5] and the model considered by [1] are identical and
both models are identical to the model considered in this paper when a Gaussian prior
is placed over the weights.

Variational approximation : The PMF variational distribution places each weight wi and
bit si in the same factor:

q(w, s) =
n
∏

i=1

qi(wi, si). (28)

On the contrary, the VG reduces to the classical factorized variational approach under
the restriction that the posterior for the weight is a delta function.

Algorithm : The optimization in [1] uses an EM algorithm that alternates between ex-
pected values of the latent variables w, s (E-Step) and optimization of hyperparameters
{σ2

y , σ
2
w, π} (M-Step).

The VG method differs mainly in two points. The VG method:
– Computes expectation of s (denoted by m) but finds MAP solution for w.
– Searches the space of solutions using a forward and a backward sequential search over

hyperparameter γ using a validation set. For a given γ, the rest of the parameters
are optimized using a training set and initialized with a ’warm’ solution from the
previous step (see Algorithm 1).
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